1 | //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass hoists expressions from branches to a common dominator. It uses |
10 | // GVN (global value numbering) to discover expressions computing the same |
11 | // values. The primary goals of code-hoisting are: |
12 | // 1. To reduce the code size. |
13 | // 2. In some cases reduce critical path (by exposing more ILP). |
14 | // |
15 | // The algorithm factors out the reachability of values such that multiple |
16 | // queries to find reachability of values are fast. This is based on finding the |
17 | // ANTIC points in the CFG which do not change during hoisting. The ANTIC points |
18 | // are basically the dominance-frontiers in the inverse graph. So we introduce a |
19 | // data structure (CHI nodes) to keep track of values flowing out of a basic |
20 | // block. We only do this for values with multiple occurrences in the function |
21 | // as they are the potential hoistable candidates. This approach allows us to |
22 | // hoist instructions to a basic block with more than two successors, as well as |
23 | // deal with infinite loops in a trivial way. |
24 | // |
25 | // Limitations: This pass does not hoist fully redundant expressions because |
26 | // they are already handled by GVN-PRE. It is advisable to run gvn-hoist before |
27 | // and after gvn-pre because gvn-pre creates opportunities for more instructions |
28 | // to be hoisted. |
29 | // |
30 | // Hoisting may affect the performance in some cases. To mitigate that, hoisting |
31 | // is disabled in the following cases. |
32 | // 1. Scalars across calls. |
33 | // 2. geps when corresponding load/store cannot be hoisted. |
34 | //===----------------------------------------------------------------------===// |
35 | |
36 | #include "llvm/ADT/DenseMap.h" |
37 | #include "llvm/ADT/DenseSet.h" |
38 | #include "llvm/ADT/STLExtras.h" |
39 | #include "llvm/ADT/SmallPtrSet.h" |
40 | #include "llvm/ADT/SmallVector.h" |
41 | #include "llvm/ADT/Statistic.h" |
42 | #include "llvm/ADT/iterator_range.h" |
43 | #include "llvm/Analysis/AliasAnalysis.h" |
44 | #include "llvm/Analysis/GlobalsModRef.h" |
45 | #include "llvm/Analysis/IteratedDominanceFrontier.h" |
46 | #include "llvm/Analysis/MemoryDependenceAnalysis.h" |
47 | #include "llvm/Analysis/MemorySSA.h" |
48 | #include "llvm/Analysis/MemorySSAUpdater.h" |
49 | #include "llvm/Analysis/PostDominators.h" |
50 | #include "llvm/Analysis/ValueTracking.h" |
51 | #include "llvm/IR/Argument.h" |
52 | #include "llvm/IR/BasicBlock.h" |
53 | #include "llvm/IR/CFG.h" |
54 | #include "llvm/IR/Constants.h" |
55 | #include "llvm/IR/Dominators.h" |
56 | #include "llvm/IR/Function.h" |
57 | #include "llvm/IR/Instruction.h" |
58 | #include "llvm/IR/Instructions.h" |
59 | #include "llvm/IR/IntrinsicInst.h" |
60 | #include "llvm/IR/LLVMContext.h" |
61 | #include "llvm/IR/PassManager.h" |
62 | #include "llvm/IR/Use.h" |
63 | #include "llvm/IR/User.h" |
64 | #include "llvm/IR/Value.h" |
65 | #include "llvm/Support/Casting.h" |
66 | #include "llvm/Support/CommandLine.h" |
67 | #include "llvm/Support/Debug.h" |
68 | #include "llvm/Support/raw_ostream.h" |
69 | #include "llvm/Transforms/Scalar/GVN.h" |
70 | #include "llvm/Transforms/Utils/Local.h" |
71 | #include <algorithm> |
72 | #include <cassert> |
73 | #include <memory> |
74 | #include <utility> |
75 | #include <vector> |
76 | |
77 | using namespace llvm; |
78 | |
79 | #define DEBUG_TYPE "gvn-hoist" |
80 | |
81 | STATISTIC(NumHoisted, "Number of instructions hoisted" ); |
82 | STATISTIC(NumRemoved, "Number of instructions removed" ); |
83 | STATISTIC(NumLoadsHoisted, "Number of loads hoisted" ); |
84 | STATISTIC(NumLoadsRemoved, "Number of loads removed" ); |
85 | STATISTIC(NumStoresHoisted, "Number of stores hoisted" ); |
86 | STATISTIC(NumStoresRemoved, "Number of stores removed" ); |
87 | STATISTIC(NumCallsHoisted, "Number of calls hoisted" ); |
88 | STATISTIC(NumCallsRemoved, "Number of calls removed" ); |
89 | |
90 | static cl::opt<int> |
91 | MaxHoistedThreshold("gvn-max-hoisted" , cl::Hidden, cl::init(Val: -1), |
92 | cl::desc("Max number of instructions to hoist " |
93 | "(default unlimited = -1)" )); |
94 | |
95 | static cl::opt<int> MaxNumberOfBBSInPath( |
96 | "gvn-hoist-max-bbs" , cl::Hidden, cl::init(Val: 4), |
97 | cl::desc("Max number of basic blocks on the path between " |
98 | "hoisting locations (default = 4, unlimited = -1)" )); |
99 | |
100 | static cl::opt<int> MaxDepthInBB( |
101 | "gvn-hoist-max-depth" , cl::Hidden, cl::init(Val: 100), |
102 | cl::desc("Hoist instructions from the beginning of the BB up to the " |
103 | "maximum specified depth (default = 100, unlimited = -1)" )); |
104 | |
105 | static cl::opt<int> |
106 | MaxChainLength("gvn-hoist-max-chain-length" , cl::Hidden, cl::init(Val: 10), |
107 | cl::desc("Maximum length of dependent chains to hoist " |
108 | "(default = 10, unlimited = -1)" )); |
109 | |
110 | namespace llvm { |
111 | |
112 | using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>; |
113 | using SmallVecInsn = SmallVector<Instruction *, 4>; |
114 | using SmallVecImplInsn = SmallVectorImpl<Instruction *>; |
115 | |
116 | // Each element of a hoisting list contains the basic block where to hoist and |
117 | // a list of instructions to be hoisted. |
118 | using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>; |
119 | |
120 | using HoistingPointList = SmallVector<HoistingPointInfo, 4>; |
121 | |
122 | // A map from a pair of VNs to all the instructions with those VNs. |
123 | using VNType = std::pair<unsigned, uintptr_t>; |
124 | |
125 | using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>; |
126 | |
127 | // CHI keeps information about values flowing out of a basic block. It is |
128 | // similar to PHI but in the inverse graph, and used for outgoing values on each |
129 | // edge. For conciseness, it is computed only for instructions with multiple |
130 | // occurrences in the CFG because they are the only hoistable candidates. |
131 | // A (CHI[{V, B, I1}, {V, C, I2}] |
132 | // / \ |
133 | // / \ |
134 | // B(I1) C (I2) |
135 | // The Value number for both I1 and I2 is V, the CHI node will save the |
136 | // instruction as well as the edge where the value is flowing to. |
137 | struct CHIArg { |
138 | VNType VN; |
139 | |
140 | // Edge destination (shows the direction of flow), may not be where the I is. |
141 | BasicBlock *Dest; |
142 | |
143 | // The instruction (VN) which uses the values flowing out of CHI. |
144 | Instruction *I; |
145 | |
146 | bool operator==(const CHIArg &A) const { return VN == A.VN; } |
147 | bool operator!=(const CHIArg &A) const { return !(*this == A); } |
148 | }; |
149 | |
150 | using CHIIt = SmallVectorImpl<CHIArg>::iterator; |
151 | using CHIArgs = iterator_range<CHIIt>; |
152 | using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>; |
153 | using InValuesType = |
154 | DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>; |
155 | |
156 | // An invalid value number Used when inserting a single value number into |
157 | // VNtoInsns. |
158 | enum : uintptr_t { InvalidVN = ~(uintptr_t)2 }; |
159 | |
160 | // Records all scalar instructions candidate for code hoisting. |
161 | class InsnInfo { |
162 | VNtoInsns VNtoScalars; |
163 | |
164 | public: |
165 | // Inserts I and its value number in VNtoScalars. |
166 | void insert(Instruction *I, GVNPass::ValueTable &VN) { |
167 | // Scalar instruction. |
168 | unsigned V = VN.lookupOrAdd(V: I); |
169 | VNtoScalars[{V, InvalidVN}].push_back(Elt: I); |
170 | } |
171 | |
172 | const VNtoInsns &getVNTable() const { return VNtoScalars; } |
173 | }; |
174 | |
175 | // Records all load instructions candidate for code hoisting. |
176 | class LoadInfo { |
177 | VNtoInsns VNtoLoads; |
178 | |
179 | public: |
180 | // Insert Load and the value number of its memory address in VNtoLoads. |
181 | void insert(LoadInst *Load, GVNPass::ValueTable &VN) { |
182 | if (Load->isSimple()) { |
183 | unsigned V = VN.lookupOrAdd(V: Load->getPointerOperand()); |
184 | // With opaque pointers we may have loads from the same pointer with |
185 | // different result types, which should be disambiguated. |
186 | VNtoLoads[{V, (uintptr_t)Load->getType()}].push_back(Elt: Load); |
187 | } |
188 | } |
189 | |
190 | const VNtoInsns &getVNTable() const { return VNtoLoads; } |
191 | }; |
192 | |
193 | // Records all store instructions candidate for code hoisting. |
194 | class StoreInfo { |
195 | VNtoInsns VNtoStores; |
196 | |
197 | public: |
198 | // Insert the Store and a hash number of the store address and the stored |
199 | // value in VNtoStores. |
200 | void insert(StoreInst *Store, GVNPass::ValueTable &VN) { |
201 | if (!Store->isSimple()) |
202 | return; |
203 | // Hash the store address and the stored value. |
204 | Value *Ptr = Store->getPointerOperand(); |
205 | Value *Val = Store->getValueOperand(); |
206 | VNtoStores[{VN.lookupOrAdd(V: Ptr), VN.lookupOrAdd(V: Val)}].push_back(Elt: Store); |
207 | } |
208 | |
209 | const VNtoInsns &getVNTable() const { return VNtoStores; } |
210 | }; |
211 | |
212 | // Records all call instructions candidate for code hoisting. |
213 | class CallInfo { |
214 | VNtoInsns VNtoCallsScalars; |
215 | VNtoInsns VNtoCallsLoads; |
216 | VNtoInsns VNtoCallsStores; |
217 | |
218 | public: |
219 | // Insert Call and its value numbering in one of the VNtoCalls* containers. |
220 | void insert(CallInst *Call, GVNPass::ValueTable &VN) { |
221 | // A call that doesNotAccessMemory is handled as a Scalar, |
222 | // onlyReadsMemory will be handled as a Load instruction, |
223 | // all other calls will be handled as stores. |
224 | unsigned V = VN.lookupOrAdd(V: Call); |
225 | auto Entry = std::make_pair(x&: V, y: InvalidVN); |
226 | |
227 | if (Call->doesNotAccessMemory()) |
228 | VNtoCallsScalars[Entry].push_back(Elt: Call); |
229 | else if (Call->onlyReadsMemory()) |
230 | VNtoCallsLoads[Entry].push_back(Elt: Call); |
231 | else |
232 | VNtoCallsStores[Entry].push_back(Elt: Call); |
233 | } |
234 | |
235 | const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } |
236 | const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } |
237 | const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } |
238 | }; |
239 | |
240 | // This pass hoists common computations across branches sharing common |
241 | // dominator. The primary goal is to reduce the code size, and in some |
242 | // cases reduce critical path (by exposing more ILP). |
243 | class GVNHoist { |
244 | public: |
245 | GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA, |
246 | MemoryDependenceResults *MD, MemorySSA *MSSA) |
247 | : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA), |
248 | MSSAUpdater(std::make_unique<MemorySSAUpdater>(args&: MSSA)) { |
249 | MSSA->ensureOptimizedUses(); |
250 | } |
251 | |
252 | bool run(Function &F); |
253 | |
254 | // Copied from NewGVN.cpp |
255 | // This function provides global ranking of operations so that we can place |
256 | // them in a canonical order. Note that rank alone is not necessarily enough |
257 | // for a complete ordering, as constants all have the same rank. However, |
258 | // generally, we will simplify an operation with all constants so that it |
259 | // doesn't matter what order they appear in. |
260 | unsigned int rank(const Value *V) const; |
261 | |
262 | private: |
263 | GVNPass::ValueTable VN; |
264 | DominatorTree *DT; |
265 | PostDominatorTree *PDT; |
266 | AliasAnalysis *AA; |
267 | MemoryDependenceResults *MD; |
268 | MemorySSA *MSSA; |
269 | std::unique_ptr<MemorySSAUpdater> MSSAUpdater; |
270 | DenseMap<const Value *, unsigned> DFSNumber; |
271 | BBSideEffectsSet BBSideEffects; |
272 | DenseSet<const BasicBlock *> HoistBarrier; |
273 | SmallVector<BasicBlock *, 32> IDFBlocks; |
274 | unsigned NumFuncArgs; |
275 | const bool HoistingGeps = false; |
276 | |
277 | enum InsKind { Unknown, Scalar, Load, Store }; |
278 | |
279 | // Return true when there are exception handling in BB. |
280 | bool hasEH(const BasicBlock *BB); |
281 | |
282 | // Return true when I1 appears before I2 in the instructions of BB. |
283 | bool firstInBB(const Instruction *I1, const Instruction *I2) { |
284 | assert(I1->getParent() == I2->getParent()); |
285 | unsigned I1DFS = DFSNumber.lookup(Val: I1); |
286 | unsigned I2DFS = DFSNumber.lookup(Val: I2); |
287 | assert(I1DFS && I2DFS); |
288 | return I1DFS < I2DFS; |
289 | } |
290 | |
291 | // Return true when there are memory uses of Def in BB. |
292 | bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, |
293 | const BasicBlock *BB); |
294 | |
295 | bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, |
296 | int &NBBsOnAllPaths); |
297 | |
298 | // Return true when there are exception handling or loads of memory Def |
299 | // between Def and NewPt. This function is only called for stores: Def is |
300 | // the MemoryDef of the store to be hoisted. |
301 | |
302 | // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and |
303 | // return true when the counter NBBsOnAllPaths reaces 0, except when it is |
304 | // initialized to -1 which is unlimited. |
305 | bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, |
306 | int &NBBsOnAllPaths); |
307 | |
308 | // Return true when there are exception handling between HoistPt and BB. |
309 | // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and |
310 | // return true when the counter NBBsOnAllPaths reaches 0, except when it is |
311 | // initialized to -1 which is unlimited. |
312 | bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, |
313 | int &NBBsOnAllPaths); |
314 | |
315 | // Return true when it is safe to hoist a memory load or store U from OldPt |
316 | // to NewPt. |
317 | bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, |
318 | MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths); |
319 | |
320 | // Return true when it is safe to hoist scalar instructions from all blocks in |
321 | // WL to HoistBB. |
322 | bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB, |
323 | int &NBBsOnAllPaths) { |
324 | return !hasEHOnPath(HoistPt: HoistBB, SrcBB: BB, NBBsOnAllPaths); |
325 | } |
326 | |
327 | // In the inverse CFG, the dominance frontier of basic block (BB) is the |
328 | // point where ANTIC needs to be computed for instructions which are going |
329 | // to be hoisted. Since this point does not change during gvn-hoist, |
330 | // we compute it only once (on demand). |
331 | // The ides is inspired from: |
332 | // "Partial Redundancy Elimination in SSA Form" |
333 | // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW |
334 | // They use similar idea in the forward graph to find fully redundant and |
335 | // partially redundant expressions, here it is used in the inverse graph to |
336 | // find fully anticipable instructions at merge point (post-dominator in |
337 | // the inverse CFG). |
338 | // Returns the edge via which an instruction in BB will get the values from. |
339 | |
340 | // Returns true when the values are flowing out to each edge. |
341 | bool valueAnticipable(CHIArgs C, Instruction *TI) const; |
342 | |
343 | // Check if it is safe to hoist values tracked by CHI in the range |
344 | // [Begin, End) and accumulate them in Safe. |
345 | void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K, |
346 | SmallVectorImpl<CHIArg> &Safe); |
347 | |
348 | using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>; |
349 | |
350 | // Push all the VNs corresponding to BB into RenameStack. |
351 | void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, |
352 | RenameStackType &RenameStack); |
353 | |
354 | void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, |
355 | RenameStackType &RenameStack); |
356 | |
357 | // Walk the post-dominator tree top-down and use a stack for each value to |
358 | // store the last value you see. When you hit a CHI from a given edge, the |
359 | // value to use as the argument is at the top of the stack, add the value to |
360 | // CHI and pop. |
361 | void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) { |
362 | auto Root = PDT->getNode(BB: nullptr); |
363 | if (!Root) |
364 | return; |
365 | // Depth first walk on PDom tree to fill the CHIargs at each PDF. |
366 | for (auto *Node : depth_first(G: Root)) { |
367 | BasicBlock *BB = Node->getBlock(); |
368 | if (!BB) |
369 | continue; |
370 | |
371 | RenameStackType RenameStack; |
372 | // Collect all values in BB and push to stack. |
373 | fillRenameStack(BB, ValueBBs, RenameStack); |
374 | |
375 | // Fill outgoing values in each CHI corresponding to BB. |
376 | fillChiArgs(BB, CHIBBs, RenameStack); |
377 | } |
378 | } |
379 | |
380 | // Walk all the CHI-nodes to find ones which have a empty-entry and remove |
381 | // them Then collect all the instructions which are safe to hoist and see if |
382 | // they form a list of anticipable values. OutValues contains CHIs |
383 | // corresponding to each basic block. |
384 | void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K, |
385 | HoistingPointList &HPL); |
386 | |
387 | // Compute insertion points for each values which can be fully anticipated at |
388 | // a dominator. HPL contains all such values. |
389 | void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, |
390 | InsKind K) { |
391 | // Sort VNs based on their rankings |
392 | std::vector<VNType> Ranks; |
393 | for (const auto &Entry : Map) { |
394 | Ranks.push_back(x: Entry.first); |
395 | } |
396 | |
397 | // TODO: Remove fully-redundant expressions. |
398 | // Get instruction from the Map, assume that all the Instructions |
399 | // with same VNs have same rank (this is an approximation). |
400 | llvm::sort(C&: Ranks, Comp: [this, &Map](const VNType &r1, const VNType &r2) { |
401 | return (rank(V: *Map.lookup(Val: r1).begin()) < rank(V: *Map.lookup(Val: r2).begin())); |
402 | }); |
403 | |
404 | // - Sort VNs according to their rank, and start with lowest ranked VN |
405 | // - Take a VN and for each instruction with same VN |
406 | // - Find the dominance frontier in the inverse graph (PDF) |
407 | // - Insert the chi-node at PDF |
408 | // - Remove the chi-nodes with missing entries |
409 | // - Remove values from CHI-nodes which do not truly flow out, e.g., |
410 | // modified along the path. |
411 | // - Collect the remaining values that are still anticipable |
412 | SmallVector<BasicBlock *, 2> IDFBlocks; |
413 | ReverseIDFCalculator IDFs(*PDT); |
414 | OutValuesType OutValue; |
415 | InValuesType InValue; |
416 | for (const auto &R : Ranks) { |
417 | const SmallVecInsn &V = Map.lookup(Val: R); |
418 | if (V.size() < 2) |
419 | continue; |
420 | const VNType &VN = R; |
421 | SmallPtrSet<BasicBlock *, 2> VNBlocks; |
422 | for (const auto &I : V) { |
423 | BasicBlock *BBI = I->getParent(); |
424 | if (!hasEH(BB: BBI)) |
425 | VNBlocks.insert(Ptr: BBI); |
426 | } |
427 | // Compute the Post Dominance Frontiers of each basic block |
428 | // The dominance frontier of a live block X in the reverse |
429 | // control graph is the set of blocks upon which X is control |
430 | // dependent. The following sequence computes the set of blocks |
431 | // which currently have dead terminators that are control |
432 | // dependence sources of a block which is in NewLiveBlocks. |
433 | IDFs.setDefiningBlocks(VNBlocks); |
434 | IDFBlocks.clear(); |
435 | IDFs.calculate(IDFBlocks); |
436 | |
437 | // Make a map of BB vs instructions to be hoisted. |
438 | for (unsigned i = 0; i < V.size(); ++i) { |
439 | InValue[V[i]->getParent()].push_back(Elt: std::make_pair(x: VN, y: V[i])); |
440 | } |
441 | // Insert empty CHI node for this VN. This is used to factor out |
442 | // basic blocks where the ANTIC can potentially change. |
443 | CHIArg EmptyChi = {.VN: VN, .Dest: nullptr, .I: nullptr}; |
444 | for (auto *IDFBB : IDFBlocks) { |
445 | for (unsigned i = 0; i < V.size(); ++i) { |
446 | // Ignore spurious PDFs. |
447 | if (DT->properlyDominates(A: IDFBB, B: V[i]->getParent())) { |
448 | OutValue[IDFBB].push_back(Elt: EmptyChi); |
449 | LLVM_DEBUG(dbgs() << "\nInserting a CHI for BB: " |
450 | << IDFBB->getName() << ", for Insn: " << *V[i]); |
451 | } |
452 | } |
453 | } |
454 | } |
455 | |
456 | // Insert CHI args at each PDF to iterate on factored graph of |
457 | // control dependence. |
458 | insertCHI(ValueBBs&: InValue, CHIBBs&: OutValue); |
459 | // Using the CHI args inserted at each PDF, find fully anticipable values. |
460 | findHoistableCandidates(CHIBBs&: OutValue, K, HPL); |
461 | } |
462 | |
463 | // Return true when all operands of Instr are available at insertion point |
464 | // HoistPt. When limiting the number of hoisted expressions, one could hoist |
465 | // a load without hoisting its access function. So before hoisting any |
466 | // expression, make sure that all its operands are available at insert point. |
467 | bool allOperandsAvailable(const Instruction *I, |
468 | const BasicBlock *HoistPt) const; |
469 | |
470 | // Same as allOperandsAvailable with recursive check for GEP operands. |
471 | bool allGepOperandsAvailable(const Instruction *I, |
472 | const BasicBlock *HoistPt) const; |
473 | |
474 | // Make all operands of the GEP available. |
475 | void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, |
476 | const SmallVecInsn &InstructionsToHoist, |
477 | Instruction *Gep) const; |
478 | |
479 | void updateAlignment(Instruction *I, Instruction *Repl); |
480 | |
481 | // Remove all the instructions in Candidates and replace their usage with |
482 | // Repl. Returns the number of instructions removed. |
483 | unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl, |
484 | MemoryUseOrDef *NewMemAcc); |
485 | |
486 | // Replace all Memory PHI usage with NewMemAcc. |
487 | void raMPHIuw(MemoryUseOrDef *NewMemAcc); |
488 | |
489 | // Remove all other instructions and replace them with Repl. |
490 | unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl, |
491 | BasicBlock *DestBB, bool MoveAccess); |
492 | |
493 | // In the case Repl is a load or a store, we make all their GEPs |
494 | // available: GEPs are not hoisted by default to avoid the address |
495 | // computations to be hoisted without the associated load or store. |
496 | bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt, |
497 | const SmallVecInsn &InstructionsToHoist) const; |
498 | |
499 | std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL); |
500 | |
501 | // Hoist all expressions. Returns Number of scalars hoisted |
502 | // and number of non-scalars hoisted. |
503 | std::pair<unsigned, unsigned> hoistExpressions(Function &F); |
504 | }; |
505 | |
506 | bool GVNHoist::run(Function &F) { |
507 | NumFuncArgs = F.arg_size(); |
508 | VN.setDomTree(DT); |
509 | VN.setAliasAnalysis(AA); |
510 | VN.setMemDep(M: MD); |
511 | bool Res = false; |
512 | // Perform DFS Numbering of instructions. |
513 | unsigned BBI = 0; |
514 | for (const BasicBlock *BB : depth_first(G: &F.getEntryBlock())) { |
515 | DFSNumber[BB] = ++BBI; |
516 | unsigned I = 0; |
517 | for (const auto &Inst : *BB) |
518 | DFSNumber[&Inst] = ++I; |
519 | } |
520 | |
521 | int ChainLength = 0; |
522 | |
523 | // FIXME: use lazy evaluation of VN to avoid the fix-point computation. |
524 | while (true) { |
525 | if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength) |
526 | return Res; |
527 | |
528 | auto HoistStat = hoistExpressions(F); |
529 | if (HoistStat.first + HoistStat.second == 0) |
530 | return Res; |
531 | |
532 | if (HoistStat.second > 0) |
533 | // To address a limitation of the current GVN, we need to rerun the |
534 | // hoisting after we hoisted loads or stores in order to be able to |
535 | // hoist all scalars dependent on the hoisted ld/st. |
536 | VN.clear(); |
537 | |
538 | Res = true; |
539 | } |
540 | |
541 | return Res; |
542 | } |
543 | |
544 | unsigned int GVNHoist::rank(const Value *V) const { |
545 | // Prefer constants to undef to anything else |
546 | // Undef is a constant, have to check it first. |
547 | // Prefer smaller constants to constantexprs |
548 | if (isa<ConstantExpr>(Val: V)) |
549 | return 2; |
550 | if (isa<UndefValue>(Val: V)) |
551 | return 1; |
552 | if (isa<Constant>(Val: V)) |
553 | return 0; |
554 | else if (auto *A = dyn_cast<Argument>(Val: V)) |
555 | return 3 + A->getArgNo(); |
556 | |
557 | // Need to shift the instruction DFS by number of arguments + 3 to account |
558 | // for the constant and argument ranking above. |
559 | auto Result = DFSNumber.lookup(Val: V); |
560 | if (Result > 0) |
561 | return 4 + NumFuncArgs + Result; |
562 | // Unreachable or something else, just return a really large number. |
563 | return ~0; |
564 | } |
565 | |
566 | bool GVNHoist::hasEH(const BasicBlock *BB) { |
567 | auto [It, Inserted] = BBSideEffects.try_emplace(Key: BB); |
568 | if (!Inserted) |
569 | return It->second; |
570 | |
571 | if (BB->isEHPad() || BB->hasAddressTaken()) { |
572 | It->second = true; |
573 | return true; |
574 | } |
575 | |
576 | if (BB->getTerminator()->mayThrow()) { |
577 | It->second = true; |
578 | return true; |
579 | } |
580 | |
581 | return false; |
582 | } |
583 | |
584 | bool GVNHoist::hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, |
585 | const BasicBlock *BB) { |
586 | const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); |
587 | if (!Acc) |
588 | return false; |
589 | |
590 | Instruction *OldPt = Def->getMemoryInst(); |
591 | const BasicBlock *OldBB = OldPt->getParent(); |
592 | const BasicBlock *NewBB = NewPt->getParent(); |
593 | bool ReachedNewPt = false; |
594 | |
595 | for (const MemoryAccess &MA : *Acc) |
596 | if (const MemoryUse *MU = dyn_cast<MemoryUse>(Val: &MA)) { |
597 | Instruction *Insn = MU->getMemoryInst(); |
598 | |
599 | // Do not check whether MU aliases Def when MU occurs after OldPt. |
600 | if (BB == OldBB && firstInBB(I1: OldPt, I2: Insn)) |
601 | break; |
602 | |
603 | // Do not check whether MU aliases Def when MU occurs before NewPt. |
604 | if (BB == NewBB) { |
605 | if (!ReachedNewPt) { |
606 | if (firstInBB(I1: Insn, I2: NewPt)) |
607 | continue; |
608 | ReachedNewPt = true; |
609 | } |
610 | } |
611 | if (MemorySSAUtil::defClobbersUseOrDef(MD: Def, MU, AA&: *AA)) |
612 | return true; |
613 | } |
614 | |
615 | return false; |
616 | } |
617 | |
618 | bool GVNHoist::hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, |
619 | int &NBBsOnAllPaths) { |
620 | // Stop walk once the limit is reached. |
621 | if (NBBsOnAllPaths == 0) |
622 | return true; |
623 | |
624 | // Impossible to hoist with exceptions on the path. |
625 | if (hasEH(BB)) |
626 | return true; |
627 | |
628 | // No such instruction after HoistBarrier in a basic block was |
629 | // selected for hoisting so instructions selected within basic block with |
630 | // a hoist barrier can be hoisted. |
631 | if ((BB != SrcBB) && HoistBarrier.count(V: BB)) |
632 | return true; |
633 | |
634 | return false; |
635 | } |
636 | |
637 | bool GVNHoist::hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, |
638 | int &NBBsOnAllPaths) { |
639 | const BasicBlock *NewBB = NewPt->getParent(); |
640 | const BasicBlock *OldBB = Def->getBlock(); |
641 | assert(DT->dominates(NewBB, OldBB) && "invalid path" ); |
642 | assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) && |
643 | "def does not dominate new hoisting point" ); |
644 | |
645 | // Walk all basic blocks reachable in depth-first iteration on the inverse |
646 | // CFG from OldBB to NewBB. These blocks are all the blocks that may be |
647 | // executed between the execution of NewBB and OldBB. Hoisting an expression |
648 | // from OldBB into NewBB has to be safe on all execution paths. |
649 | for (auto I = idf_begin(G: OldBB), E = idf_end(G: OldBB); I != E;) { |
650 | const BasicBlock *BB = *I; |
651 | if (BB == NewBB) { |
652 | // Stop traversal when reaching HoistPt. |
653 | I.skipChildren(); |
654 | continue; |
655 | } |
656 | |
657 | if (hasEHhelper(BB, SrcBB: OldBB, NBBsOnAllPaths)) |
658 | return true; |
659 | |
660 | // Check that we do not move a store past loads. |
661 | if (hasMemoryUse(NewPt, Def, BB)) |
662 | return true; |
663 | |
664 | // -1 is unlimited number of blocks on all paths. |
665 | if (NBBsOnAllPaths != -1) |
666 | --NBBsOnAllPaths; |
667 | |
668 | ++I; |
669 | } |
670 | |
671 | return false; |
672 | } |
673 | |
674 | bool GVNHoist::hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, |
675 | int &NBBsOnAllPaths) { |
676 | assert(DT->dominates(HoistPt, SrcBB) && "Invalid path" ); |
677 | |
678 | // Walk all basic blocks reachable in depth-first iteration on |
679 | // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the |
680 | // blocks that may be executed between the execution of NewHoistPt and |
681 | // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe |
682 | // on all execution paths. |
683 | for (auto I = idf_begin(G: SrcBB), E = idf_end(G: SrcBB); I != E;) { |
684 | const BasicBlock *BB = *I; |
685 | if (BB == HoistPt) { |
686 | // Stop traversal when reaching NewHoistPt. |
687 | I.skipChildren(); |
688 | continue; |
689 | } |
690 | |
691 | if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths)) |
692 | return true; |
693 | |
694 | // -1 is unlimited number of blocks on all paths. |
695 | if (NBBsOnAllPaths != -1) |
696 | --NBBsOnAllPaths; |
697 | |
698 | ++I; |
699 | } |
700 | |
701 | return false; |
702 | } |
703 | |
704 | bool GVNHoist::safeToHoistLdSt(const Instruction *NewPt, |
705 | const Instruction *OldPt, MemoryUseOrDef *U, |
706 | GVNHoist::InsKind K, int &NBBsOnAllPaths) { |
707 | // In place hoisting is safe. |
708 | if (NewPt == OldPt) |
709 | return true; |
710 | |
711 | const BasicBlock *NewBB = NewPt->getParent(); |
712 | const BasicBlock *OldBB = OldPt->getParent(); |
713 | const BasicBlock *UBB = U->getBlock(); |
714 | |
715 | // Check for dependences on the Memory SSA. |
716 | MemoryAccess *D = U->getDefiningAccess(); |
717 | BasicBlock *DBB = D->getBlock(); |
718 | if (DT->properlyDominates(A: NewBB, B: DBB)) |
719 | // Cannot move the load or store to NewBB above its definition in DBB. |
720 | return false; |
721 | |
722 | if (NewBB == DBB && !MSSA->isLiveOnEntryDef(MA: D)) |
723 | if (auto *UD = dyn_cast<MemoryUseOrDef>(Val: D)) |
724 | if (!firstInBB(I1: UD->getMemoryInst(), I2: NewPt)) |
725 | // Cannot move the load or store to NewPt above its definition in D. |
726 | return false; |
727 | |
728 | // Check for unsafe hoistings due to side effects. |
729 | if (K == InsKind::Store) { |
730 | if (hasEHOrLoadsOnPath(NewPt, Def: cast<MemoryDef>(Val: U), NBBsOnAllPaths)) |
731 | return false; |
732 | } else if (hasEHOnPath(HoistPt: NewBB, SrcBB: OldBB, NBBsOnAllPaths)) |
733 | return false; |
734 | |
735 | if (UBB == NewBB) { |
736 | if (DT->properlyDominates(A: DBB, B: NewBB)) |
737 | return true; |
738 | assert(UBB == DBB); |
739 | assert(MSSA->locallyDominates(D, U)); |
740 | } |
741 | |
742 | // No side effects: it is safe to hoist. |
743 | return true; |
744 | } |
745 | |
746 | bool GVNHoist::valueAnticipable(CHIArgs C, Instruction *TI) const { |
747 | if (TI->getNumSuccessors() > (unsigned)size(Range&: C)) |
748 | return false; // Not enough args in this CHI. |
749 | |
750 | for (auto CHI : C) { |
751 | // Find if all the edges have values flowing out of BB. |
752 | if (!llvm::is_contained(Range: successors(I: TI), Element: CHI.Dest)) |
753 | return false; |
754 | } |
755 | return true; |
756 | } |
757 | |
758 | void GVNHoist::checkSafety(CHIArgs C, BasicBlock *BB, GVNHoist::InsKind K, |
759 | SmallVectorImpl<CHIArg> &Safe) { |
760 | int NumBBsOnAllPaths = MaxNumberOfBBSInPath; |
761 | const Instruction *T = BB->getTerminator(); |
762 | for (auto CHI : C) { |
763 | Instruction *Insn = CHI.I; |
764 | if (!Insn) // No instruction was inserted in this CHI. |
765 | continue; |
766 | // If the Terminator is some kind of "exotic terminator" that produces a |
767 | // value (such as InvokeInst, CallBrInst, or CatchSwitchInst) which the CHI |
768 | // uses, it is not safe to hoist the use above the def. |
769 | if (!T->use_empty() && is_contained(Range: Insn->operands(), Element: cast<const Value>(Val: T))) |
770 | continue; |
771 | if (K == InsKind::Scalar) { |
772 | if (safeToHoistScalar(HoistBB: BB, BB: Insn->getParent(), NBBsOnAllPaths&: NumBBsOnAllPaths)) |
773 | Safe.push_back(Elt: CHI); |
774 | } else { |
775 | if (MemoryUseOrDef *UD = MSSA->getMemoryAccess(I: Insn)) |
776 | if (safeToHoistLdSt(NewPt: T, OldPt: Insn, U: UD, K, NBBsOnAllPaths&: NumBBsOnAllPaths)) |
777 | Safe.push_back(Elt: CHI); |
778 | } |
779 | } |
780 | } |
781 | |
782 | void GVNHoist::fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, |
783 | GVNHoist::RenameStackType &RenameStack) { |
784 | auto it1 = ValueBBs.find(Val: BB); |
785 | if (it1 != ValueBBs.end()) { |
786 | // Iterate in reverse order to keep lower ranked values on the top. |
787 | LLVM_DEBUG(dbgs() << "\nVisiting: " << BB->getName() |
788 | << " for pushing instructions on stack" ;); |
789 | for (std::pair<VNType, Instruction *> &VI : reverse(C&: it1->second)) { |
790 | // Get the value of instruction I |
791 | LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second); |
792 | RenameStack[VI.first].push_back(Elt: VI.second); |
793 | } |
794 | } |
795 | } |
796 | |
797 | void GVNHoist::fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, |
798 | GVNHoist::RenameStackType &RenameStack) { |
799 | // For each *predecessor* (because Post-DOM) of BB check if it has a CHI |
800 | for (auto *Pred : predecessors(BB)) { |
801 | auto P = CHIBBs.find(Val: Pred); |
802 | if (P == CHIBBs.end()) { |
803 | continue; |
804 | } |
805 | LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName();); |
806 | // A CHI is found (BB -> Pred is an edge in the CFG) |
807 | // Pop the stack until Top(V) = Ve. |
808 | auto &VCHI = P->second; |
809 | for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) { |
810 | CHIArg &C = *It; |
811 | if (!C.Dest) { |
812 | auto si = RenameStack.find(Val: C.VN); |
813 | // The Basic Block where CHI is must dominate the value we want to |
814 | // track in a CHI. In the PDom walk, there can be values in the |
815 | // stack which are not control dependent e.g., nested loop. |
816 | if (si != RenameStack.end() && si->second.size() && |
817 | DT->properlyDominates(A: Pred, B: si->second.back()->getParent())) { |
818 | C.Dest = BB; // Assign the edge |
819 | C.I = si->second.pop_back_val(); // Assign the argument |
820 | LLVM_DEBUG(dbgs() |
821 | << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I |
822 | << ", VN: " << C.VN.first << ", " << C.VN.second); |
823 | } |
824 | // Move to next CHI of a different value |
825 | It = std::find_if(first: It, last: VCHI.end(), pred: [It](CHIArg &A) { return A != *It; }); |
826 | } else |
827 | ++It; |
828 | } |
829 | } |
830 | } |
831 | |
832 | void GVNHoist::findHoistableCandidates(OutValuesType &CHIBBs, |
833 | GVNHoist::InsKind K, |
834 | HoistingPointList &HPL) { |
835 | auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; }; |
836 | |
837 | // CHIArgs now have the outgoing values, so check for anticipability and |
838 | // accumulate hoistable candidates in HPL. |
839 | for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) { |
840 | BasicBlock *BB = A.first; |
841 | SmallVectorImpl<CHIArg> &CHIs = A.second; |
842 | // Vector of PHIs contains PHIs for different instructions. |
843 | // Sort the args according to their VNs, such that identical |
844 | // instructions are together. |
845 | llvm::stable_sort(Range&: CHIs, C: cmpVN); |
846 | auto TI = BB->getTerminator(); |
847 | auto B = CHIs.begin(); |
848 | // [PreIt, PHIIt) form a range of CHIs which have identical VNs. |
849 | auto PHIIt = llvm::find_if(Range&: CHIs, P: [B](CHIArg &A) { return A != *B; }); |
850 | auto PrevIt = CHIs.begin(); |
851 | while (PrevIt != PHIIt) { |
852 | // Collect values which satisfy safety checks. |
853 | SmallVector<CHIArg, 2> Safe; |
854 | // We check for safety first because there might be multiple values in |
855 | // the same path, some of which are not safe to be hoisted, but overall |
856 | // each edge has at least one value which can be hoisted, making the |
857 | // value anticipable along that path. |
858 | checkSafety(C: make_range(x: PrevIt, y: PHIIt), BB, K, Safe); |
859 | |
860 | // List of safe values should be anticipable at TI. |
861 | if (valueAnticipable(C: make_range(x: Safe.begin(), y: Safe.end()), TI)) { |
862 | HPL.push_back(Elt: {BB, SmallVecInsn()}); |
863 | SmallVecInsn &V = HPL.back().second; |
864 | for (auto B : Safe) |
865 | V.push_back(Elt: B.I); |
866 | } |
867 | |
868 | // Check other VNs |
869 | PrevIt = PHIIt; |
870 | PHIIt = std::find_if(first: PrevIt, last: CHIs.end(), |
871 | pred: [PrevIt](CHIArg &A) { return A != *PrevIt; }); |
872 | } |
873 | } |
874 | } |
875 | |
876 | bool GVNHoist::allOperandsAvailable(const Instruction *I, |
877 | const BasicBlock *HoistPt) const { |
878 | for (const Use &Op : I->operands()) |
879 | if (const auto *Inst = dyn_cast<Instruction>(Val: &Op)) |
880 | if (!DT->dominates(A: Inst->getParent(), B: HoistPt)) |
881 | return false; |
882 | |
883 | return true; |
884 | } |
885 | |
886 | bool GVNHoist::allGepOperandsAvailable(const Instruction *I, |
887 | const BasicBlock *HoistPt) const { |
888 | for (const Use &Op : I->operands()) |
889 | if (const auto *Inst = dyn_cast<Instruction>(Val: &Op)) |
890 | if (!DT->dominates(A: Inst->getParent(), B: HoistPt)) { |
891 | if (const GetElementPtrInst *GepOp = |
892 | dyn_cast<GetElementPtrInst>(Val: Inst)) { |
893 | if (!allGepOperandsAvailable(I: GepOp, HoistPt)) |
894 | return false; |
895 | // Gep is available if all operands of GepOp are available. |
896 | } else { |
897 | // Gep is not available if it has operands other than GEPs that are |
898 | // defined in blocks not dominating HoistPt. |
899 | return false; |
900 | } |
901 | } |
902 | return true; |
903 | } |
904 | |
905 | void GVNHoist::makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, |
906 | const SmallVecInsn &InstructionsToHoist, |
907 | Instruction *Gep) const { |
908 | assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available" ); |
909 | |
910 | Instruction *ClonedGep = Gep->clone(); |
911 | for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i) |
912 | if (Instruction *Op = dyn_cast<Instruction>(Val: Gep->getOperand(i))) { |
913 | // Check whether the operand is already available. |
914 | if (DT->dominates(A: Op->getParent(), B: HoistPt)) |
915 | continue; |
916 | |
917 | // As a GEP can refer to other GEPs, recursively make all the operands |
918 | // of this GEP available at HoistPt. |
919 | if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Val: Op)) |
920 | makeGepsAvailable(Repl: ClonedGep, HoistPt, InstructionsToHoist, Gep: GepOp); |
921 | } |
922 | |
923 | // Copy Gep and replace its uses in Repl with ClonedGep. |
924 | ClonedGep->insertBefore(InsertPos: HoistPt->getTerminator()->getIterator()); |
925 | |
926 | // Conservatively discard any optimization hints, they may differ on the |
927 | // other paths. |
928 | ClonedGep->dropUnknownNonDebugMetadata(); |
929 | |
930 | // If we have optimization hints which agree with each other along different |
931 | // paths, preserve them. |
932 | for (const Instruction *OtherInst : InstructionsToHoist) { |
933 | const GetElementPtrInst *OtherGep; |
934 | if (auto *OtherLd = dyn_cast<LoadInst>(Val: OtherInst)) |
935 | OtherGep = cast<GetElementPtrInst>(Val: OtherLd->getPointerOperand()); |
936 | else |
937 | OtherGep = cast<GetElementPtrInst>( |
938 | Val: cast<StoreInst>(Val: OtherInst)->getPointerOperand()); |
939 | ClonedGep->andIRFlags(V: OtherGep); |
940 | |
941 | // Merge debug locations of GEPs, because the hoisted GEP replaces those |
942 | // in branches. When cloning, ClonedGep preserves the debug location of |
943 | // Gepd, so Gep is skipped to avoid merging it twice. |
944 | if (OtherGep != Gep) { |
945 | ClonedGep->applyMergedLocation(LocA: ClonedGep->getDebugLoc(), |
946 | LocB: OtherGep->getDebugLoc()); |
947 | } |
948 | } |
949 | |
950 | // Replace uses of Gep with ClonedGep in Repl. |
951 | Repl->replaceUsesOfWith(From: Gep, To: ClonedGep); |
952 | } |
953 | |
954 | void GVNHoist::updateAlignment(Instruction *I, Instruction *Repl) { |
955 | if (auto *ReplacementLoad = dyn_cast<LoadInst>(Val: Repl)) { |
956 | ReplacementLoad->setAlignment( |
957 | std::min(a: ReplacementLoad->getAlign(), b: cast<LoadInst>(Val: I)->getAlign())); |
958 | ++NumLoadsRemoved; |
959 | } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Val: Repl)) { |
960 | ReplacementStore->setAlignment( |
961 | std::min(a: ReplacementStore->getAlign(), b: cast<StoreInst>(Val: I)->getAlign())); |
962 | ++NumStoresRemoved; |
963 | } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Val: Repl)) { |
964 | ReplacementAlloca->setAlignment(std::max(a: ReplacementAlloca->getAlign(), |
965 | b: cast<AllocaInst>(Val: I)->getAlign())); |
966 | } else if (isa<CallInst>(Val: Repl)) { |
967 | ++NumCallsRemoved; |
968 | } |
969 | } |
970 | |
971 | unsigned GVNHoist::rauw(const SmallVecInsn &Candidates, Instruction *Repl, |
972 | MemoryUseOrDef *NewMemAcc) { |
973 | unsigned NR = 0; |
974 | for (Instruction *I : Candidates) { |
975 | if (I != Repl) { |
976 | ++NR; |
977 | updateAlignment(I, Repl); |
978 | if (NewMemAcc) { |
979 | // Update the uses of the old MSSA access with NewMemAcc. |
980 | MemoryAccess *OldMA = MSSA->getMemoryAccess(I); |
981 | OldMA->replaceAllUsesWith(V: NewMemAcc); |
982 | MSSAUpdater->removeMemoryAccess(OldMA); |
983 | } |
984 | |
985 | combineMetadataForCSE(K: Repl, J: I, DoesKMove: true); |
986 | Repl->andIRFlags(V: I); |
987 | I->replaceAllUsesWith(V: Repl); |
988 | // Also invalidate the Alias Analysis cache. |
989 | MD->removeInstruction(InstToRemove: I); |
990 | I->eraseFromParent(); |
991 | } |
992 | } |
993 | return NR; |
994 | } |
995 | |
996 | void GVNHoist::raMPHIuw(MemoryUseOrDef *NewMemAcc) { |
997 | SmallPtrSet<MemoryPhi *, 4> UsePhis; |
998 | for (User *U : NewMemAcc->users()) |
999 | if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(Val: U)) |
1000 | UsePhis.insert(Ptr: Phi); |
1001 | |
1002 | for (MemoryPhi *Phi : UsePhis) { |
1003 | auto In = Phi->incoming_values(); |
1004 | if (llvm::all_of(Range&: In, P: [&](Use &U) { return U == NewMemAcc; })) { |
1005 | Phi->replaceAllUsesWith(V: NewMemAcc); |
1006 | MSSAUpdater->removeMemoryAccess(Phi); |
1007 | } |
1008 | } |
1009 | } |
1010 | |
1011 | unsigned GVNHoist::removeAndReplace(const SmallVecInsn &Candidates, |
1012 | Instruction *Repl, BasicBlock *DestBB, |
1013 | bool MoveAccess) { |
1014 | MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(I: Repl); |
1015 | if (MoveAccess && NewMemAcc) { |
1016 | // The definition of this ld/st will not change: ld/st hoisting is |
1017 | // legal when the ld/st is not moved past its current definition. |
1018 | MSSAUpdater->moveToPlace(What: NewMemAcc, BB: DestBB, Where: MemorySSA::BeforeTerminator); |
1019 | } |
1020 | |
1021 | // Replace all other instructions with Repl with memory access NewMemAcc. |
1022 | unsigned NR = rauw(Candidates, Repl, NewMemAcc); |
1023 | |
1024 | // Remove MemorySSA phi nodes with the same arguments. |
1025 | if (NewMemAcc) |
1026 | raMPHIuw(NewMemAcc); |
1027 | return NR; |
1028 | } |
1029 | |
1030 | bool GVNHoist::makeGepOperandsAvailable( |
1031 | Instruction *Repl, BasicBlock *HoistPt, |
1032 | const SmallVecInsn &InstructionsToHoist) const { |
1033 | // Check whether the GEP of a ld/st can be synthesized at HoistPt. |
1034 | GetElementPtrInst *Gep = nullptr; |
1035 | Instruction *Val = nullptr; |
1036 | if (auto *Ld = dyn_cast<LoadInst>(Val: Repl)) { |
1037 | Gep = dyn_cast<GetElementPtrInst>(Val: Ld->getPointerOperand()); |
1038 | } else if (auto *St = dyn_cast<StoreInst>(Val: Repl)) { |
1039 | Gep = dyn_cast<GetElementPtrInst>(Val: St->getPointerOperand()); |
1040 | Val = dyn_cast<Instruction>(Val: St->getValueOperand()); |
1041 | // Check that the stored value is available. |
1042 | if (Val) { |
1043 | if (isa<GetElementPtrInst>(Val)) { |
1044 | // Check whether we can compute the GEP at HoistPt. |
1045 | if (!allGepOperandsAvailable(I: Val, HoistPt)) |
1046 | return false; |
1047 | } else if (!DT->dominates(A: Val->getParent(), B: HoistPt)) |
1048 | return false; |
1049 | } |
1050 | } |
1051 | |
1052 | // Check whether we can compute the Gep at HoistPt. |
1053 | if (!Gep || !allGepOperandsAvailable(I: Gep, HoistPt)) |
1054 | return false; |
1055 | |
1056 | makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep); |
1057 | |
1058 | if (Val && isa<GetElementPtrInst>(Val)) |
1059 | makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep: Val); |
1060 | |
1061 | return true; |
1062 | } |
1063 | |
1064 | std::pair<unsigned, unsigned> GVNHoist::hoist(HoistingPointList &HPL) { |
1065 | unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; |
1066 | for (const HoistingPointInfo &HP : HPL) { |
1067 | // Find out whether we already have one of the instructions in HoistPt, |
1068 | // in which case we do not have to move it. |
1069 | BasicBlock *DestBB = HP.first; |
1070 | const SmallVecInsn &InstructionsToHoist = HP.second; |
1071 | Instruction *Repl = nullptr; |
1072 | for (Instruction *I : InstructionsToHoist) |
1073 | if (I->getParent() == DestBB) |
1074 | // If there are two instructions in HoistPt to be hoisted in place: |
1075 | // update Repl to be the first one, such that we can rename the uses |
1076 | // of the second based on the first. |
1077 | if (!Repl || firstInBB(I1: I, I2: Repl)) |
1078 | Repl = I; |
1079 | |
1080 | // Keep track of whether we moved the instruction so we know whether we |
1081 | // should move the MemoryAccess. |
1082 | bool MoveAccess = true; |
1083 | if (Repl) { |
1084 | // Repl is already in HoistPt: it remains in place. |
1085 | assert(allOperandsAvailable(Repl, DestBB) && |
1086 | "instruction depends on operands that are not available" ); |
1087 | MoveAccess = false; |
1088 | } else { |
1089 | // When we do not find Repl in HoistPt, select the first in the list |
1090 | // and move it to HoistPt. |
1091 | Repl = InstructionsToHoist.front(); |
1092 | |
1093 | // We can move Repl in HoistPt only when all operands are available. |
1094 | // The order in which hoistings are done may influence the availability |
1095 | // of operands. |
1096 | if (!allOperandsAvailable(I: Repl, HoistPt: DestBB)) { |
1097 | // When HoistingGeps there is nothing more we can do to make the |
1098 | // operands available: just continue. |
1099 | if (HoistingGeps) |
1100 | continue; |
1101 | |
1102 | // When not HoistingGeps we need to copy the GEPs. |
1103 | if (!makeGepOperandsAvailable(Repl, HoistPt: DestBB, InstructionsToHoist)) |
1104 | continue; |
1105 | } |
1106 | |
1107 | // Move the instruction at the end of HoistPt. |
1108 | Instruction *Last = DestBB->getTerminator(); |
1109 | MD->removeInstruction(InstToRemove: Repl); |
1110 | Repl->moveBefore(InsertPos: Last->getIterator()); |
1111 | |
1112 | DFSNumber[Repl] = DFSNumber[Last]++; |
1113 | } |
1114 | |
1115 | // Drop debug location as per debug info update guide. |
1116 | Repl->dropLocation(); |
1117 | NR += removeAndReplace(Candidates: InstructionsToHoist, Repl, DestBB, MoveAccess); |
1118 | |
1119 | if (isa<LoadInst>(Val: Repl)) |
1120 | ++NL; |
1121 | else if (isa<StoreInst>(Val: Repl)) |
1122 | ++NS; |
1123 | else if (isa<CallInst>(Val: Repl)) |
1124 | ++NC; |
1125 | else // Scalar |
1126 | ++NI; |
1127 | } |
1128 | |
1129 | if (MSSA && VerifyMemorySSA) |
1130 | MSSA->verifyMemorySSA(); |
1131 | |
1132 | NumHoisted += NL + NS + NC + NI; |
1133 | NumRemoved += NR; |
1134 | NumLoadsHoisted += NL; |
1135 | NumStoresHoisted += NS; |
1136 | NumCallsHoisted += NC; |
1137 | return {NI, NL + NC + NS}; |
1138 | } |
1139 | |
1140 | std::pair<unsigned, unsigned> GVNHoist::hoistExpressions(Function &F) { |
1141 | InsnInfo II; |
1142 | LoadInfo LI; |
1143 | StoreInfo SI; |
1144 | CallInfo CI; |
1145 | for (BasicBlock *BB : depth_first(G: &F.getEntryBlock())) { |
1146 | int InstructionNb = 0; |
1147 | for (Instruction &I1 : *BB) { |
1148 | // If I1 cannot guarantee progress, subsequent instructions |
1149 | // in BB cannot be hoisted anyways. |
1150 | if (!isGuaranteedToTransferExecutionToSuccessor(I: &I1)) { |
1151 | HoistBarrier.insert(V: BB); |
1152 | break; |
1153 | } |
1154 | // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting |
1155 | // deeper may increase the register pressure and compilation time. |
1156 | if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB) |
1157 | break; |
1158 | |
1159 | // Do not value number terminator instructions. |
1160 | if (I1.isTerminator()) |
1161 | break; |
1162 | |
1163 | if (auto *Load = dyn_cast<LoadInst>(Val: &I1)) |
1164 | LI.insert(Load, VN); |
1165 | else if (auto *Store = dyn_cast<StoreInst>(Val: &I1)) |
1166 | SI.insert(Store, VN); |
1167 | else if (auto *Call = dyn_cast<CallInst>(Val: &I1)) { |
1168 | if (auto *Intr = dyn_cast<IntrinsicInst>(Val: Call)) { |
1169 | if (Intr->getIntrinsicID() == Intrinsic::assume || |
1170 | Intr->getIntrinsicID() == Intrinsic::sideeffect) |
1171 | continue; |
1172 | } |
1173 | if (Call->mayHaveSideEffects()) |
1174 | break; |
1175 | |
1176 | if (Call->isConvergent()) |
1177 | break; |
1178 | |
1179 | CI.insert(Call, VN); |
1180 | } else if (HoistingGeps || !isa<GetElementPtrInst>(Val: &I1)) |
1181 | // Do not hoist scalars past calls that may write to memory because |
1182 | // that could result in spills later. geps are handled separately. |
1183 | // TODO: We can relax this for targets like AArch64 as they have more |
1184 | // registers than X86. |
1185 | II.insert(I: &I1, VN); |
1186 | } |
1187 | } |
1188 | |
1189 | HoistingPointList HPL; |
1190 | computeInsertionPoints(Map: II.getVNTable(), HPL, K: InsKind::Scalar); |
1191 | computeInsertionPoints(Map: LI.getVNTable(), HPL, K: InsKind::Load); |
1192 | computeInsertionPoints(Map: SI.getVNTable(), HPL, K: InsKind::Store); |
1193 | computeInsertionPoints(Map: CI.getScalarVNTable(), HPL, K: InsKind::Scalar); |
1194 | computeInsertionPoints(Map: CI.getLoadVNTable(), HPL, K: InsKind::Load); |
1195 | computeInsertionPoints(Map: CI.getStoreVNTable(), HPL, K: InsKind::Store); |
1196 | return hoist(HPL); |
1197 | } |
1198 | |
1199 | } // end namespace llvm |
1200 | |
1201 | PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) { |
1202 | DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
1203 | PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(IR&: F); |
1204 | AliasAnalysis &AA = AM.getResult<AAManager>(IR&: F); |
1205 | MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(IR&: F); |
1206 | MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(IR&: F).getMSSA(); |
1207 | GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); |
1208 | if (!G.run(F)) |
1209 | return PreservedAnalyses::all(); |
1210 | |
1211 | PreservedAnalyses PA; |
1212 | PA.preserve<DominatorTreeAnalysis>(); |
1213 | PA.preserve<MemorySSAAnalysis>(); |
1214 | return PA; |
1215 | } |
1216 | |