| 1 | //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass hoists expressions from branches to a common dominator. It uses |
| 10 | // GVN (global value numbering) to discover expressions computing the same |
| 11 | // values. The primary goals of code-hoisting are: |
| 12 | // 1. To reduce the code size. |
| 13 | // 2. In some cases reduce critical path (by exposing more ILP). |
| 14 | // |
| 15 | // The algorithm factors out the reachability of values such that multiple |
| 16 | // queries to find reachability of values are fast. This is based on finding the |
| 17 | // ANTIC points in the CFG which do not change during hoisting. The ANTIC points |
| 18 | // are basically the dominance-frontiers in the inverse graph. So we introduce a |
| 19 | // data structure (CHI nodes) to keep track of values flowing out of a basic |
| 20 | // block. We only do this for values with multiple occurrences in the function |
| 21 | // as they are the potential hoistable candidates. This approach allows us to |
| 22 | // hoist instructions to a basic block with more than two successors, as well as |
| 23 | // deal with infinite loops in a trivial way. |
| 24 | // |
| 25 | // Limitations: This pass does not hoist fully redundant expressions because |
| 26 | // they are already handled by GVN-PRE. It is advisable to run gvn-hoist before |
| 27 | // and after gvn-pre because gvn-pre creates opportunities for more instructions |
| 28 | // to be hoisted. |
| 29 | // |
| 30 | // Hoisting may affect the performance in some cases. To mitigate that, hoisting |
| 31 | // is disabled in the following cases. |
| 32 | // 1. Scalars across calls. |
| 33 | // 2. geps when corresponding load/store cannot be hoisted. |
| 34 | //===----------------------------------------------------------------------===// |
| 35 | |
| 36 | #include "llvm/ADT/DenseMap.h" |
| 37 | #include "llvm/ADT/DenseSet.h" |
| 38 | #include "llvm/ADT/STLExtras.h" |
| 39 | #include "llvm/ADT/SmallPtrSet.h" |
| 40 | #include "llvm/ADT/SmallVector.h" |
| 41 | #include "llvm/ADT/Statistic.h" |
| 42 | #include "llvm/ADT/iterator_range.h" |
| 43 | #include "llvm/Analysis/AliasAnalysis.h" |
| 44 | #include "llvm/Analysis/GlobalsModRef.h" |
| 45 | #include "llvm/Analysis/IteratedDominanceFrontier.h" |
| 46 | #include "llvm/Analysis/MemoryDependenceAnalysis.h" |
| 47 | #include "llvm/Analysis/MemorySSA.h" |
| 48 | #include "llvm/Analysis/MemorySSAUpdater.h" |
| 49 | #include "llvm/Analysis/PostDominators.h" |
| 50 | #include "llvm/Analysis/ValueTracking.h" |
| 51 | #include "llvm/IR/Argument.h" |
| 52 | #include "llvm/IR/BasicBlock.h" |
| 53 | #include "llvm/IR/CFG.h" |
| 54 | #include "llvm/IR/Constants.h" |
| 55 | #include "llvm/IR/Dominators.h" |
| 56 | #include "llvm/IR/Function.h" |
| 57 | #include "llvm/IR/Instruction.h" |
| 58 | #include "llvm/IR/Instructions.h" |
| 59 | #include "llvm/IR/IntrinsicInst.h" |
| 60 | #include "llvm/IR/LLVMContext.h" |
| 61 | #include "llvm/IR/PassManager.h" |
| 62 | #include "llvm/IR/Use.h" |
| 63 | #include "llvm/IR/User.h" |
| 64 | #include "llvm/IR/Value.h" |
| 65 | #include "llvm/Support/Casting.h" |
| 66 | #include "llvm/Support/CommandLine.h" |
| 67 | #include "llvm/Support/Debug.h" |
| 68 | #include "llvm/Support/raw_ostream.h" |
| 69 | #include "llvm/Transforms/Scalar/GVN.h" |
| 70 | #include "llvm/Transforms/Utils/Local.h" |
| 71 | #include <algorithm> |
| 72 | #include <cassert> |
| 73 | #include <memory> |
| 74 | #include <utility> |
| 75 | #include <vector> |
| 76 | |
| 77 | using namespace llvm; |
| 78 | |
| 79 | #define DEBUG_TYPE "gvn-hoist" |
| 80 | |
| 81 | STATISTIC(NumHoisted, "Number of instructions hoisted" ); |
| 82 | STATISTIC(NumRemoved, "Number of instructions removed" ); |
| 83 | STATISTIC(NumLoadsHoisted, "Number of loads hoisted" ); |
| 84 | STATISTIC(NumLoadsRemoved, "Number of loads removed" ); |
| 85 | STATISTIC(NumStoresHoisted, "Number of stores hoisted" ); |
| 86 | STATISTIC(NumStoresRemoved, "Number of stores removed" ); |
| 87 | STATISTIC(NumCallsHoisted, "Number of calls hoisted" ); |
| 88 | STATISTIC(NumCallsRemoved, "Number of calls removed" ); |
| 89 | |
| 90 | static cl::opt<int> |
| 91 | MaxHoistedThreshold("gvn-max-hoisted" , cl::Hidden, cl::init(Val: -1), |
| 92 | cl::desc("Max number of instructions to hoist " |
| 93 | "(default unlimited = -1)" )); |
| 94 | |
| 95 | static cl::opt<int> MaxNumberOfBBSInPath( |
| 96 | "gvn-hoist-max-bbs" , cl::Hidden, cl::init(Val: 4), |
| 97 | cl::desc("Max number of basic blocks on the path between " |
| 98 | "hoisting locations (default = 4, unlimited = -1)" )); |
| 99 | |
| 100 | static cl::opt<int> MaxDepthInBB( |
| 101 | "gvn-hoist-max-depth" , cl::Hidden, cl::init(Val: 100), |
| 102 | cl::desc("Hoist instructions from the beginning of the BB up to the " |
| 103 | "maximum specified depth (default = 100, unlimited = -1)" )); |
| 104 | |
| 105 | static cl::opt<int> |
| 106 | MaxChainLength("gvn-hoist-max-chain-length" , cl::Hidden, cl::init(Val: 10), |
| 107 | cl::desc("Maximum length of dependent chains to hoist " |
| 108 | "(default = 10, unlimited = -1)" )); |
| 109 | |
| 110 | namespace llvm { |
| 111 | |
| 112 | using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>; |
| 113 | using SmallVecInsn = SmallVector<Instruction *, 4>; |
| 114 | using SmallVecImplInsn = SmallVectorImpl<Instruction *>; |
| 115 | |
| 116 | // Each element of a hoisting list contains the basic block where to hoist and |
| 117 | // a list of instructions to be hoisted. |
| 118 | using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>; |
| 119 | |
| 120 | using HoistingPointList = SmallVector<HoistingPointInfo, 4>; |
| 121 | |
| 122 | // A map from a pair of VNs to all the instructions with those VNs. |
| 123 | using VNType = std::pair<unsigned, uintptr_t>; |
| 124 | |
| 125 | using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>; |
| 126 | |
| 127 | // CHI keeps information about values flowing out of a basic block. It is |
| 128 | // similar to PHI but in the inverse graph, and used for outgoing values on each |
| 129 | // edge. For conciseness, it is computed only for instructions with multiple |
| 130 | // occurrences in the CFG because they are the only hoistable candidates. |
| 131 | // A (CHI[{V, B, I1}, {V, C, I2}] |
| 132 | // / \ |
| 133 | // / \ |
| 134 | // B(I1) C (I2) |
| 135 | // The Value number for both I1 and I2 is V, the CHI node will save the |
| 136 | // instruction as well as the edge where the value is flowing to. |
| 137 | struct CHIArg { |
| 138 | VNType VN; |
| 139 | |
| 140 | // Edge destination (shows the direction of flow), may not be where the I is. |
| 141 | BasicBlock *Dest; |
| 142 | |
| 143 | // The instruction (VN) which uses the values flowing out of CHI. |
| 144 | Instruction *I; |
| 145 | |
| 146 | bool operator==(const CHIArg &A) const { return VN == A.VN; } |
| 147 | bool operator!=(const CHIArg &A) const { return !(*this == A); } |
| 148 | }; |
| 149 | |
| 150 | using CHIIt = SmallVectorImpl<CHIArg>::iterator; |
| 151 | using CHIArgs = iterator_range<CHIIt>; |
| 152 | using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>; |
| 153 | using InValuesType = |
| 154 | DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>; |
| 155 | |
| 156 | // An invalid value number Used when inserting a single value number into |
| 157 | // VNtoInsns. |
| 158 | enum : uintptr_t { InvalidVN = ~(uintptr_t)2 }; |
| 159 | |
| 160 | // Records all scalar instructions candidate for code hoisting. |
| 161 | class InsnInfo { |
| 162 | VNtoInsns VNtoScalars; |
| 163 | |
| 164 | public: |
| 165 | // Inserts I and its value number in VNtoScalars. |
| 166 | void insert(Instruction *I, GVNPass::ValueTable &VN) { |
| 167 | // Scalar instruction. |
| 168 | unsigned V = VN.lookupOrAdd(V: I); |
| 169 | VNtoScalars[{V, InvalidVN}].push_back(Elt: I); |
| 170 | } |
| 171 | |
| 172 | const VNtoInsns &getVNTable() const { return VNtoScalars; } |
| 173 | }; |
| 174 | |
| 175 | // Records all load instructions candidate for code hoisting. |
| 176 | class LoadInfo { |
| 177 | VNtoInsns VNtoLoads; |
| 178 | |
| 179 | public: |
| 180 | // Insert Load and the value number of its memory address in VNtoLoads. |
| 181 | void insert(LoadInst *Load, GVNPass::ValueTable &VN) { |
| 182 | if (Load->isSimple()) { |
| 183 | unsigned V = VN.lookupOrAdd(V: Load->getPointerOperand()); |
| 184 | // With opaque pointers we may have loads from the same pointer with |
| 185 | // different result types, which should be disambiguated. |
| 186 | VNtoLoads[{V, (uintptr_t)Load->getType()}].push_back(Elt: Load); |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | const VNtoInsns &getVNTable() const { return VNtoLoads; } |
| 191 | }; |
| 192 | |
| 193 | // Records all store instructions candidate for code hoisting. |
| 194 | class StoreInfo { |
| 195 | VNtoInsns VNtoStores; |
| 196 | |
| 197 | public: |
| 198 | // Insert the Store and a hash number of the store address and the stored |
| 199 | // value in VNtoStores. |
| 200 | void insert(StoreInst *Store, GVNPass::ValueTable &VN) { |
| 201 | if (!Store->isSimple()) |
| 202 | return; |
| 203 | // Hash the store address and the stored value. |
| 204 | Value *Ptr = Store->getPointerOperand(); |
| 205 | Value *Val = Store->getValueOperand(); |
| 206 | VNtoStores[{VN.lookupOrAdd(V: Ptr), VN.lookupOrAdd(V: Val)}].push_back(Elt: Store); |
| 207 | } |
| 208 | |
| 209 | const VNtoInsns &getVNTable() const { return VNtoStores; } |
| 210 | }; |
| 211 | |
| 212 | // Records all call instructions candidate for code hoisting. |
| 213 | class CallInfo { |
| 214 | VNtoInsns VNtoCallsScalars; |
| 215 | VNtoInsns VNtoCallsLoads; |
| 216 | VNtoInsns VNtoCallsStores; |
| 217 | |
| 218 | public: |
| 219 | // Insert Call and its value numbering in one of the VNtoCalls* containers. |
| 220 | void insert(CallInst *Call, GVNPass::ValueTable &VN) { |
| 221 | // A call that doesNotAccessMemory is handled as a Scalar, |
| 222 | // onlyReadsMemory will be handled as a Load instruction, |
| 223 | // all other calls will be handled as stores. |
| 224 | unsigned V = VN.lookupOrAdd(V: Call); |
| 225 | auto Entry = std::make_pair(x&: V, y: InvalidVN); |
| 226 | |
| 227 | if (Call->doesNotAccessMemory()) |
| 228 | VNtoCallsScalars[Entry].push_back(Elt: Call); |
| 229 | else if (Call->onlyReadsMemory()) |
| 230 | VNtoCallsLoads[Entry].push_back(Elt: Call); |
| 231 | else |
| 232 | VNtoCallsStores[Entry].push_back(Elt: Call); |
| 233 | } |
| 234 | |
| 235 | const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } |
| 236 | const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } |
| 237 | const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } |
| 238 | }; |
| 239 | |
| 240 | // This pass hoists common computations across branches sharing common |
| 241 | // dominator. The primary goal is to reduce the code size, and in some |
| 242 | // cases reduce critical path (by exposing more ILP). |
| 243 | class GVNHoist { |
| 244 | public: |
| 245 | GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA, |
| 246 | MemoryDependenceResults *MD, MemorySSA *MSSA) |
| 247 | : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA), |
| 248 | MSSAUpdater(std::make_unique<MemorySSAUpdater>(args&: MSSA)) { |
| 249 | MSSA->ensureOptimizedUses(); |
| 250 | } |
| 251 | |
| 252 | bool run(Function &F); |
| 253 | |
| 254 | // Copied from NewGVN.cpp |
| 255 | // This function provides global ranking of operations so that we can place |
| 256 | // them in a canonical order. Note that rank alone is not necessarily enough |
| 257 | // for a complete ordering, as constants all have the same rank. However, |
| 258 | // generally, we will simplify an operation with all constants so that it |
| 259 | // doesn't matter what order they appear in. |
| 260 | unsigned int rank(const Value *V) const; |
| 261 | |
| 262 | private: |
| 263 | GVNPass::ValueTable VN; |
| 264 | DominatorTree *DT; |
| 265 | PostDominatorTree *PDT; |
| 266 | AliasAnalysis *AA; |
| 267 | MemoryDependenceResults *MD; |
| 268 | MemorySSA *MSSA; |
| 269 | std::unique_ptr<MemorySSAUpdater> MSSAUpdater; |
| 270 | DenseMap<const Value *, unsigned> DFSNumber; |
| 271 | BBSideEffectsSet BBSideEffects; |
| 272 | DenseSet<const BasicBlock *> HoistBarrier; |
| 273 | SmallVector<BasicBlock *, 32> IDFBlocks; |
| 274 | unsigned NumFuncArgs; |
| 275 | const bool HoistingGeps = false; |
| 276 | |
| 277 | enum InsKind { Unknown, Scalar, Load, Store }; |
| 278 | |
| 279 | // Return true when there are exception handling in BB. |
| 280 | bool hasEH(const BasicBlock *BB); |
| 281 | |
| 282 | // Return true when I1 appears before I2 in the instructions of BB. |
| 283 | bool firstInBB(const Instruction *I1, const Instruction *I2) { |
| 284 | assert(I1->getParent() == I2->getParent()); |
| 285 | unsigned I1DFS = DFSNumber.lookup(Val: I1); |
| 286 | unsigned I2DFS = DFSNumber.lookup(Val: I2); |
| 287 | assert(I1DFS && I2DFS); |
| 288 | return I1DFS < I2DFS; |
| 289 | } |
| 290 | |
| 291 | // Return true when there are memory uses of Def in BB. |
| 292 | bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, |
| 293 | const BasicBlock *BB); |
| 294 | |
| 295 | bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, |
| 296 | int &NBBsOnAllPaths); |
| 297 | |
| 298 | // Return true when there are exception handling or loads of memory Def |
| 299 | // between Def and NewPt. This function is only called for stores: Def is |
| 300 | // the MemoryDef of the store to be hoisted. |
| 301 | |
| 302 | // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and |
| 303 | // return true when the counter NBBsOnAllPaths reaces 0, except when it is |
| 304 | // initialized to -1 which is unlimited. |
| 305 | bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, |
| 306 | int &NBBsOnAllPaths); |
| 307 | |
| 308 | // Return true when there are exception handling between HoistPt and BB. |
| 309 | // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and |
| 310 | // return true when the counter NBBsOnAllPaths reaches 0, except when it is |
| 311 | // initialized to -1 which is unlimited. |
| 312 | bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, |
| 313 | int &NBBsOnAllPaths); |
| 314 | |
| 315 | // Return true when it is safe to hoist a memory load or store U from OldPt |
| 316 | // to NewPt. |
| 317 | bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, |
| 318 | MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths); |
| 319 | |
| 320 | // Return true when it is safe to hoist scalar instructions from all blocks in |
| 321 | // WL to HoistBB. |
| 322 | bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB, |
| 323 | int &NBBsOnAllPaths) { |
| 324 | return !hasEHOnPath(HoistPt: HoistBB, SrcBB: BB, NBBsOnAllPaths); |
| 325 | } |
| 326 | |
| 327 | // In the inverse CFG, the dominance frontier of basic block (BB) is the |
| 328 | // point where ANTIC needs to be computed for instructions which are going |
| 329 | // to be hoisted. Since this point does not change during gvn-hoist, |
| 330 | // we compute it only once (on demand). |
| 331 | // The ides is inspired from: |
| 332 | // "Partial Redundancy Elimination in SSA Form" |
| 333 | // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW |
| 334 | // They use similar idea in the forward graph to find fully redundant and |
| 335 | // partially redundant expressions, here it is used in the inverse graph to |
| 336 | // find fully anticipable instructions at merge point (post-dominator in |
| 337 | // the inverse CFG). |
| 338 | // Returns the edge via which an instruction in BB will get the values from. |
| 339 | |
| 340 | // Returns true when the values are flowing out to each edge. |
| 341 | bool valueAnticipable(CHIArgs C, Instruction *TI) const; |
| 342 | |
| 343 | // Check if it is safe to hoist values tracked by CHI in the range |
| 344 | // [Begin, End) and accumulate them in Safe. |
| 345 | void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K, |
| 346 | SmallVectorImpl<CHIArg> &Safe); |
| 347 | |
| 348 | using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>; |
| 349 | |
| 350 | // Push all the VNs corresponding to BB into RenameStack. |
| 351 | void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, |
| 352 | RenameStackType &RenameStack); |
| 353 | |
| 354 | void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, |
| 355 | RenameStackType &RenameStack); |
| 356 | |
| 357 | // Walk the post-dominator tree top-down and use a stack for each value to |
| 358 | // store the last value you see. When you hit a CHI from a given edge, the |
| 359 | // value to use as the argument is at the top of the stack, add the value to |
| 360 | // CHI and pop. |
| 361 | void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) { |
| 362 | auto Root = PDT->getNode(BB: nullptr); |
| 363 | if (!Root) |
| 364 | return; |
| 365 | // Depth first walk on PDom tree to fill the CHIargs at each PDF. |
| 366 | for (auto *Node : depth_first(G: Root)) { |
| 367 | BasicBlock *BB = Node->getBlock(); |
| 368 | if (!BB) |
| 369 | continue; |
| 370 | |
| 371 | RenameStackType RenameStack; |
| 372 | // Collect all values in BB and push to stack. |
| 373 | fillRenameStack(BB, ValueBBs, RenameStack); |
| 374 | |
| 375 | // Fill outgoing values in each CHI corresponding to BB. |
| 376 | fillChiArgs(BB, CHIBBs, RenameStack); |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | // Walk all the CHI-nodes to find ones which have a empty-entry and remove |
| 381 | // them Then collect all the instructions which are safe to hoist and see if |
| 382 | // they form a list of anticipable values. OutValues contains CHIs |
| 383 | // corresponding to each basic block. |
| 384 | void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K, |
| 385 | HoistingPointList &HPL); |
| 386 | |
| 387 | // Compute insertion points for each values which can be fully anticipated at |
| 388 | // a dominator. HPL contains all such values. |
| 389 | void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, |
| 390 | InsKind K) { |
| 391 | // Sort VNs based on their rankings |
| 392 | std::vector<VNType> Ranks; |
| 393 | for (const auto &Entry : Map) { |
| 394 | Ranks.push_back(x: Entry.first); |
| 395 | } |
| 396 | |
| 397 | // TODO: Remove fully-redundant expressions. |
| 398 | // Get instruction from the Map, assume that all the Instructions |
| 399 | // with same VNs have same rank (this is an approximation). |
| 400 | llvm::sort(C&: Ranks, Comp: [this, &Map](const VNType &r1, const VNType &r2) { |
| 401 | return (rank(V: *Map.lookup(Val: r1).begin()) < rank(V: *Map.lookup(Val: r2).begin())); |
| 402 | }); |
| 403 | |
| 404 | // - Sort VNs according to their rank, and start with lowest ranked VN |
| 405 | // - Take a VN and for each instruction with same VN |
| 406 | // - Find the dominance frontier in the inverse graph (PDF) |
| 407 | // - Insert the chi-node at PDF |
| 408 | // - Remove the chi-nodes with missing entries |
| 409 | // - Remove values from CHI-nodes which do not truly flow out, e.g., |
| 410 | // modified along the path. |
| 411 | // - Collect the remaining values that are still anticipable |
| 412 | SmallVector<BasicBlock *, 2> IDFBlocks; |
| 413 | ReverseIDFCalculator IDFs(*PDT); |
| 414 | OutValuesType OutValue; |
| 415 | InValuesType InValue; |
| 416 | for (const auto &R : Ranks) { |
| 417 | const SmallVecInsn &V = Map.lookup(Val: R); |
| 418 | if (V.size() < 2) |
| 419 | continue; |
| 420 | const VNType &VN = R; |
| 421 | SmallPtrSet<BasicBlock *, 2> VNBlocks; |
| 422 | for (const auto &I : V) { |
| 423 | BasicBlock *BBI = I->getParent(); |
| 424 | if (!hasEH(BB: BBI)) |
| 425 | VNBlocks.insert(Ptr: BBI); |
| 426 | } |
| 427 | // Compute the Post Dominance Frontiers of each basic block |
| 428 | // The dominance frontier of a live block X in the reverse |
| 429 | // control graph is the set of blocks upon which X is control |
| 430 | // dependent. The following sequence computes the set of blocks |
| 431 | // which currently have dead terminators that are control |
| 432 | // dependence sources of a block which is in NewLiveBlocks. |
| 433 | IDFs.setDefiningBlocks(VNBlocks); |
| 434 | IDFBlocks.clear(); |
| 435 | IDFs.calculate(IDFBlocks); |
| 436 | |
| 437 | // Make a map of BB vs instructions to be hoisted. |
| 438 | for (unsigned i = 0; i < V.size(); ++i) { |
| 439 | InValue[V[i]->getParent()].push_back(Elt: std::make_pair(x: VN, y: V[i])); |
| 440 | } |
| 441 | // Insert empty CHI node for this VN. This is used to factor out |
| 442 | // basic blocks where the ANTIC can potentially change. |
| 443 | CHIArg EmptyChi = {.VN: VN, .Dest: nullptr, .I: nullptr}; |
| 444 | for (auto *IDFBB : IDFBlocks) { |
| 445 | for (unsigned i = 0; i < V.size(); ++i) { |
| 446 | // Ignore spurious PDFs. |
| 447 | if (DT->properlyDominates(A: IDFBB, B: V[i]->getParent())) { |
| 448 | OutValue[IDFBB].push_back(Elt: EmptyChi); |
| 449 | LLVM_DEBUG(dbgs() << "\nInserting a CHI for BB: " |
| 450 | << IDFBB->getName() << ", for Insn: " << *V[i]); |
| 451 | } |
| 452 | } |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | // Insert CHI args at each PDF to iterate on factored graph of |
| 457 | // control dependence. |
| 458 | insertCHI(ValueBBs&: InValue, CHIBBs&: OutValue); |
| 459 | // Using the CHI args inserted at each PDF, find fully anticipable values. |
| 460 | findHoistableCandidates(CHIBBs&: OutValue, K, HPL); |
| 461 | } |
| 462 | |
| 463 | // Return true when all operands of Instr are available at insertion point |
| 464 | // HoistPt. When limiting the number of hoisted expressions, one could hoist |
| 465 | // a load without hoisting its access function. So before hoisting any |
| 466 | // expression, make sure that all its operands are available at insert point. |
| 467 | bool allOperandsAvailable(const Instruction *I, |
| 468 | const BasicBlock *HoistPt) const; |
| 469 | |
| 470 | // Same as allOperandsAvailable with recursive check for GEP operands. |
| 471 | bool allGepOperandsAvailable(const Instruction *I, |
| 472 | const BasicBlock *HoistPt) const; |
| 473 | |
| 474 | // Make all operands of the GEP available. |
| 475 | void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, |
| 476 | const SmallVecInsn &InstructionsToHoist, |
| 477 | Instruction *Gep) const; |
| 478 | |
| 479 | void updateAlignment(Instruction *I, Instruction *Repl); |
| 480 | |
| 481 | // Remove all the instructions in Candidates and replace their usage with |
| 482 | // Repl. Returns the number of instructions removed. |
| 483 | unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl, |
| 484 | MemoryUseOrDef *NewMemAcc); |
| 485 | |
| 486 | // Replace all Memory PHI usage with NewMemAcc. |
| 487 | void raMPHIuw(MemoryUseOrDef *NewMemAcc); |
| 488 | |
| 489 | // Remove all other instructions and replace them with Repl. |
| 490 | unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl, |
| 491 | BasicBlock *DestBB, bool MoveAccess); |
| 492 | |
| 493 | // In the case Repl is a load or a store, we make all their GEPs |
| 494 | // available: GEPs are not hoisted by default to avoid the address |
| 495 | // computations to be hoisted without the associated load or store. |
| 496 | bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt, |
| 497 | const SmallVecInsn &InstructionsToHoist) const; |
| 498 | |
| 499 | std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL); |
| 500 | |
| 501 | // Hoist all expressions. Returns Number of scalars hoisted |
| 502 | // and number of non-scalars hoisted. |
| 503 | std::pair<unsigned, unsigned> hoistExpressions(Function &F); |
| 504 | }; |
| 505 | |
| 506 | bool GVNHoist::run(Function &F) { |
| 507 | NumFuncArgs = F.arg_size(); |
| 508 | VN.setDomTree(DT); |
| 509 | VN.setAliasAnalysis(AA); |
| 510 | VN.setMemDep(M: MD); |
| 511 | bool Res = false; |
| 512 | // Perform DFS Numbering of instructions. |
| 513 | unsigned BBI = 0; |
| 514 | for (const BasicBlock *BB : depth_first(G: &F.getEntryBlock())) { |
| 515 | DFSNumber[BB] = ++BBI; |
| 516 | unsigned I = 0; |
| 517 | for (const auto &Inst : *BB) |
| 518 | DFSNumber[&Inst] = ++I; |
| 519 | } |
| 520 | |
| 521 | int ChainLength = 0; |
| 522 | |
| 523 | // FIXME: use lazy evaluation of VN to avoid the fix-point computation. |
| 524 | while (true) { |
| 525 | if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength) |
| 526 | return Res; |
| 527 | |
| 528 | auto HoistStat = hoistExpressions(F); |
| 529 | if (HoistStat.first + HoistStat.second == 0) |
| 530 | return Res; |
| 531 | |
| 532 | if (HoistStat.second > 0) |
| 533 | // To address a limitation of the current GVN, we need to rerun the |
| 534 | // hoisting after we hoisted loads or stores in order to be able to |
| 535 | // hoist all scalars dependent on the hoisted ld/st. |
| 536 | VN.clear(); |
| 537 | |
| 538 | Res = true; |
| 539 | } |
| 540 | |
| 541 | return Res; |
| 542 | } |
| 543 | |
| 544 | unsigned int GVNHoist::rank(const Value *V) const { |
| 545 | // Prefer constants to undef to anything else |
| 546 | // Undef is a constant, have to check it first. |
| 547 | // Prefer smaller constants to constantexprs |
| 548 | if (isa<ConstantExpr>(Val: V)) |
| 549 | return 2; |
| 550 | if (isa<UndefValue>(Val: V)) |
| 551 | return 1; |
| 552 | if (isa<Constant>(Val: V)) |
| 553 | return 0; |
| 554 | else if (auto *A = dyn_cast<Argument>(Val: V)) |
| 555 | return 3 + A->getArgNo(); |
| 556 | |
| 557 | // Need to shift the instruction DFS by number of arguments + 3 to account |
| 558 | // for the constant and argument ranking above. |
| 559 | auto Result = DFSNumber.lookup(Val: V); |
| 560 | if (Result > 0) |
| 561 | return 4 + NumFuncArgs + Result; |
| 562 | // Unreachable or something else, just return a really large number. |
| 563 | return ~0; |
| 564 | } |
| 565 | |
| 566 | bool GVNHoist::hasEH(const BasicBlock *BB) { |
| 567 | auto [It, Inserted] = BBSideEffects.try_emplace(Key: BB); |
| 568 | if (!Inserted) |
| 569 | return It->second; |
| 570 | |
| 571 | if (BB->isEHPad() || BB->hasAddressTaken()) { |
| 572 | It->second = true; |
| 573 | return true; |
| 574 | } |
| 575 | |
| 576 | if (BB->getTerminator()->mayThrow()) { |
| 577 | It->second = true; |
| 578 | return true; |
| 579 | } |
| 580 | |
| 581 | return false; |
| 582 | } |
| 583 | |
| 584 | bool GVNHoist::hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, |
| 585 | const BasicBlock *BB) { |
| 586 | const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); |
| 587 | if (!Acc) |
| 588 | return false; |
| 589 | |
| 590 | Instruction *OldPt = Def->getMemoryInst(); |
| 591 | const BasicBlock *OldBB = OldPt->getParent(); |
| 592 | const BasicBlock *NewBB = NewPt->getParent(); |
| 593 | bool ReachedNewPt = false; |
| 594 | |
| 595 | for (const MemoryAccess &MA : *Acc) |
| 596 | if (const MemoryUse *MU = dyn_cast<MemoryUse>(Val: &MA)) { |
| 597 | Instruction *Insn = MU->getMemoryInst(); |
| 598 | |
| 599 | // Do not check whether MU aliases Def when MU occurs after OldPt. |
| 600 | if (BB == OldBB && firstInBB(I1: OldPt, I2: Insn)) |
| 601 | break; |
| 602 | |
| 603 | // Do not check whether MU aliases Def when MU occurs before NewPt. |
| 604 | if (BB == NewBB) { |
| 605 | if (!ReachedNewPt) { |
| 606 | if (firstInBB(I1: Insn, I2: NewPt)) |
| 607 | continue; |
| 608 | ReachedNewPt = true; |
| 609 | } |
| 610 | } |
| 611 | if (MemorySSAUtil::defClobbersUseOrDef(MD: Def, MU, AA&: *AA)) |
| 612 | return true; |
| 613 | } |
| 614 | |
| 615 | return false; |
| 616 | } |
| 617 | |
| 618 | bool GVNHoist::hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, |
| 619 | int &NBBsOnAllPaths) { |
| 620 | // Stop walk once the limit is reached. |
| 621 | if (NBBsOnAllPaths == 0) |
| 622 | return true; |
| 623 | |
| 624 | // Impossible to hoist with exceptions on the path. |
| 625 | if (hasEH(BB)) |
| 626 | return true; |
| 627 | |
| 628 | // No such instruction after HoistBarrier in a basic block was |
| 629 | // selected for hoisting so instructions selected within basic block with |
| 630 | // a hoist barrier can be hoisted. |
| 631 | if ((BB != SrcBB) && HoistBarrier.count(V: BB)) |
| 632 | return true; |
| 633 | |
| 634 | return false; |
| 635 | } |
| 636 | |
| 637 | bool GVNHoist::hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, |
| 638 | int &NBBsOnAllPaths) { |
| 639 | const BasicBlock *NewBB = NewPt->getParent(); |
| 640 | const BasicBlock *OldBB = Def->getBlock(); |
| 641 | assert(DT->dominates(NewBB, OldBB) && "invalid path" ); |
| 642 | assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) && |
| 643 | "def does not dominate new hoisting point" ); |
| 644 | |
| 645 | // Walk all basic blocks reachable in depth-first iteration on the inverse |
| 646 | // CFG from OldBB to NewBB. These blocks are all the blocks that may be |
| 647 | // executed between the execution of NewBB and OldBB. Hoisting an expression |
| 648 | // from OldBB into NewBB has to be safe on all execution paths. |
| 649 | for (auto I = idf_begin(G: OldBB), E = idf_end(G: OldBB); I != E;) { |
| 650 | const BasicBlock *BB = *I; |
| 651 | if (BB == NewBB) { |
| 652 | // Stop traversal when reaching HoistPt. |
| 653 | I.skipChildren(); |
| 654 | continue; |
| 655 | } |
| 656 | |
| 657 | if (hasEHhelper(BB, SrcBB: OldBB, NBBsOnAllPaths)) |
| 658 | return true; |
| 659 | |
| 660 | // Check that we do not move a store past loads. |
| 661 | if (hasMemoryUse(NewPt, Def, BB)) |
| 662 | return true; |
| 663 | |
| 664 | // -1 is unlimited number of blocks on all paths. |
| 665 | if (NBBsOnAllPaths != -1) |
| 666 | --NBBsOnAllPaths; |
| 667 | |
| 668 | ++I; |
| 669 | } |
| 670 | |
| 671 | return false; |
| 672 | } |
| 673 | |
| 674 | bool GVNHoist::hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, |
| 675 | int &NBBsOnAllPaths) { |
| 676 | assert(DT->dominates(HoistPt, SrcBB) && "Invalid path" ); |
| 677 | |
| 678 | // Walk all basic blocks reachable in depth-first iteration on |
| 679 | // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the |
| 680 | // blocks that may be executed between the execution of NewHoistPt and |
| 681 | // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe |
| 682 | // on all execution paths. |
| 683 | for (auto I = idf_begin(G: SrcBB), E = idf_end(G: SrcBB); I != E;) { |
| 684 | const BasicBlock *BB = *I; |
| 685 | if (BB == HoistPt) { |
| 686 | // Stop traversal when reaching NewHoistPt. |
| 687 | I.skipChildren(); |
| 688 | continue; |
| 689 | } |
| 690 | |
| 691 | if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths)) |
| 692 | return true; |
| 693 | |
| 694 | // -1 is unlimited number of blocks on all paths. |
| 695 | if (NBBsOnAllPaths != -1) |
| 696 | --NBBsOnAllPaths; |
| 697 | |
| 698 | ++I; |
| 699 | } |
| 700 | |
| 701 | return false; |
| 702 | } |
| 703 | |
| 704 | bool GVNHoist::safeToHoistLdSt(const Instruction *NewPt, |
| 705 | const Instruction *OldPt, MemoryUseOrDef *U, |
| 706 | GVNHoist::InsKind K, int &NBBsOnAllPaths) { |
| 707 | // In place hoisting is safe. |
| 708 | if (NewPt == OldPt) |
| 709 | return true; |
| 710 | |
| 711 | const BasicBlock *NewBB = NewPt->getParent(); |
| 712 | const BasicBlock *OldBB = OldPt->getParent(); |
| 713 | const BasicBlock *UBB = U->getBlock(); |
| 714 | |
| 715 | // Check for dependences on the Memory SSA. |
| 716 | MemoryAccess *D = U->getDefiningAccess(); |
| 717 | BasicBlock *DBB = D->getBlock(); |
| 718 | if (DT->properlyDominates(A: NewBB, B: DBB)) |
| 719 | // Cannot move the load or store to NewBB above its definition in DBB. |
| 720 | return false; |
| 721 | |
| 722 | if (NewBB == DBB && !MSSA->isLiveOnEntryDef(MA: D)) |
| 723 | if (auto *UD = dyn_cast<MemoryUseOrDef>(Val: D)) |
| 724 | if (!firstInBB(I1: UD->getMemoryInst(), I2: NewPt)) |
| 725 | // Cannot move the load or store to NewPt above its definition in D. |
| 726 | return false; |
| 727 | |
| 728 | // Check for unsafe hoistings due to side effects. |
| 729 | if (K == InsKind::Store) { |
| 730 | if (hasEHOrLoadsOnPath(NewPt, Def: cast<MemoryDef>(Val: U), NBBsOnAllPaths)) |
| 731 | return false; |
| 732 | } else if (hasEHOnPath(HoistPt: NewBB, SrcBB: OldBB, NBBsOnAllPaths)) |
| 733 | return false; |
| 734 | |
| 735 | if (UBB == NewBB) { |
| 736 | if (DT->properlyDominates(A: DBB, B: NewBB)) |
| 737 | return true; |
| 738 | assert(UBB == DBB); |
| 739 | assert(MSSA->locallyDominates(D, U)); |
| 740 | } |
| 741 | |
| 742 | // No side effects: it is safe to hoist. |
| 743 | return true; |
| 744 | } |
| 745 | |
| 746 | bool GVNHoist::valueAnticipable(CHIArgs C, Instruction *TI) const { |
| 747 | if (TI->getNumSuccessors() > (unsigned)size(Range&: C)) |
| 748 | return false; // Not enough args in this CHI. |
| 749 | |
| 750 | for (auto CHI : C) { |
| 751 | // Find if all the edges have values flowing out of BB. |
| 752 | if (!llvm::is_contained(Range: successors(I: TI), Element: CHI.Dest)) |
| 753 | return false; |
| 754 | } |
| 755 | return true; |
| 756 | } |
| 757 | |
| 758 | void GVNHoist::checkSafety(CHIArgs C, BasicBlock *BB, GVNHoist::InsKind K, |
| 759 | SmallVectorImpl<CHIArg> &Safe) { |
| 760 | int NumBBsOnAllPaths = MaxNumberOfBBSInPath; |
| 761 | const Instruction *T = BB->getTerminator(); |
| 762 | for (auto CHI : C) { |
| 763 | Instruction *Insn = CHI.I; |
| 764 | if (!Insn) // No instruction was inserted in this CHI. |
| 765 | continue; |
| 766 | // If the Terminator is some kind of "exotic terminator" that produces a |
| 767 | // value (such as InvokeInst, CallBrInst, or CatchSwitchInst) which the CHI |
| 768 | // uses, it is not safe to hoist the use above the def. |
| 769 | if (!T->use_empty() && is_contained(Range: Insn->operands(), Element: cast<const Value>(Val: T))) |
| 770 | continue; |
| 771 | if (K == InsKind::Scalar) { |
| 772 | if (safeToHoistScalar(HoistBB: BB, BB: Insn->getParent(), NBBsOnAllPaths&: NumBBsOnAllPaths)) |
| 773 | Safe.push_back(Elt: CHI); |
| 774 | } else { |
| 775 | if (MemoryUseOrDef *UD = MSSA->getMemoryAccess(I: Insn)) |
| 776 | if (safeToHoistLdSt(NewPt: T, OldPt: Insn, U: UD, K, NBBsOnAllPaths&: NumBBsOnAllPaths)) |
| 777 | Safe.push_back(Elt: CHI); |
| 778 | } |
| 779 | } |
| 780 | } |
| 781 | |
| 782 | void GVNHoist::fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, |
| 783 | GVNHoist::RenameStackType &RenameStack) { |
| 784 | auto it1 = ValueBBs.find(Val: BB); |
| 785 | if (it1 != ValueBBs.end()) { |
| 786 | // Iterate in reverse order to keep lower ranked values on the top. |
| 787 | LLVM_DEBUG(dbgs() << "\nVisiting: " << BB->getName() |
| 788 | << " for pushing instructions on stack" ;); |
| 789 | for (std::pair<VNType, Instruction *> &VI : reverse(C&: it1->second)) { |
| 790 | // Get the value of instruction I |
| 791 | LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second); |
| 792 | RenameStack[VI.first].push_back(Elt: VI.second); |
| 793 | } |
| 794 | } |
| 795 | } |
| 796 | |
| 797 | void GVNHoist::fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, |
| 798 | GVNHoist::RenameStackType &RenameStack) { |
| 799 | // For each *predecessor* (because Post-DOM) of BB check if it has a CHI |
| 800 | for (auto *Pred : predecessors(BB)) { |
| 801 | auto P = CHIBBs.find(Val: Pred); |
| 802 | if (P == CHIBBs.end()) { |
| 803 | continue; |
| 804 | } |
| 805 | LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName();); |
| 806 | // A CHI is found (BB -> Pred is an edge in the CFG) |
| 807 | // Pop the stack until Top(V) = Ve. |
| 808 | auto &VCHI = P->second; |
| 809 | for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) { |
| 810 | CHIArg &C = *It; |
| 811 | if (!C.Dest) { |
| 812 | auto si = RenameStack.find(Val: C.VN); |
| 813 | // The Basic Block where CHI is must dominate the value we want to |
| 814 | // track in a CHI. In the PDom walk, there can be values in the |
| 815 | // stack which are not control dependent e.g., nested loop. |
| 816 | if (si != RenameStack.end() && si->second.size() && |
| 817 | DT->properlyDominates(A: Pred, B: si->second.back()->getParent())) { |
| 818 | C.Dest = BB; // Assign the edge |
| 819 | C.I = si->second.pop_back_val(); // Assign the argument |
| 820 | LLVM_DEBUG(dbgs() |
| 821 | << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I |
| 822 | << ", VN: " << C.VN.first << ", " << C.VN.second); |
| 823 | } |
| 824 | // Move to next CHI of a different value |
| 825 | It = std::find_if(first: It, last: VCHI.end(), pred: [It](CHIArg &A) { return A != *It; }); |
| 826 | } else |
| 827 | ++It; |
| 828 | } |
| 829 | } |
| 830 | } |
| 831 | |
| 832 | void GVNHoist::findHoistableCandidates(OutValuesType &CHIBBs, |
| 833 | GVNHoist::InsKind K, |
| 834 | HoistingPointList &HPL) { |
| 835 | auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; }; |
| 836 | |
| 837 | // CHIArgs now have the outgoing values, so check for anticipability and |
| 838 | // accumulate hoistable candidates in HPL. |
| 839 | for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) { |
| 840 | BasicBlock *BB = A.first; |
| 841 | SmallVectorImpl<CHIArg> &CHIs = A.second; |
| 842 | // Vector of PHIs contains PHIs for different instructions. |
| 843 | // Sort the args according to their VNs, such that identical |
| 844 | // instructions are together. |
| 845 | llvm::stable_sort(Range&: CHIs, C: cmpVN); |
| 846 | auto TI = BB->getTerminator(); |
| 847 | auto B = CHIs.begin(); |
| 848 | // [PreIt, PHIIt) form a range of CHIs which have identical VNs. |
| 849 | auto PHIIt = llvm::find_if(Range&: CHIs, P: [B](CHIArg &A) { return A != *B; }); |
| 850 | auto PrevIt = CHIs.begin(); |
| 851 | while (PrevIt != PHIIt) { |
| 852 | // Collect values which satisfy safety checks. |
| 853 | SmallVector<CHIArg, 2> Safe; |
| 854 | // We check for safety first because there might be multiple values in |
| 855 | // the same path, some of which are not safe to be hoisted, but overall |
| 856 | // each edge has at least one value which can be hoisted, making the |
| 857 | // value anticipable along that path. |
| 858 | checkSafety(C: make_range(x: PrevIt, y: PHIIt), BB, K, Safe); |
| 859 | |
| 860 | // List of safe values should be anticipable at TI. |
| 861 | if (valueAnticipable(C: make_range(x: Safe.begin(), y: Safe.end()), TI)) { |
| 862 | HPL.push_back(Elt: {BB, SmallVecInsn()}); |
| 863 | SmallVecInsn &V = HPL.back().second; |
| 864 | for (auto B : Safe) |
| 865 | V.push_back(Elt: B.I); |
| 866 | } |
| 867 | |
| 868 | // Check other VNs |
| 869 | PrevIt = PHIIt; |
| 870 | PHIIt = std::find_if(first: PrevIt, last: CHIs.end(), |
| 871 | pred: [PrevIt](CHIArg &A) { return A != *PrevIt; }); |
| 872 | } |
| 873 | } |
| 874 | } |
| 875 | |
| 876 | bool GVNHoist::allOperandsAvailable(const Instruction *I, |
| 877 | const BasicBlock *HoistPt) const { |
| 878 | for (const Use &Op : I->operands()) |
| 879 | if (const auto *Inst = dyn_cast<Instruction>(Val: &Op)) |
| 880 | if (!DT->dominates(A: Inst->getParent(), B: HoistPt)) |
| 881 | return false; |
| 882 | |
| 883 | return true; |
| 884 | } |
| 885 | |
| 886 | bool GVNHoist::allGepOperandsAvailable(const Instruction *I, |
| 887 | const BasicBlock *HoistPt) const { |
| 888 | for (const Use &Op : I->operands()) |
| 889 | if (const auto *Inst = dyn_cast<Instruction>(Val: &Op)) |
| 890 | if (!DT->dominates(A: Inst->getParent(), B: HoistPt)) { |
| 891 | if (const GetElementPtrInst *GepOp = |
| 892 | dyn_cast<GetElementPtrInst>(Val: Inst)) { |
| 893 | if (!allGepOperandsAvailable(I: GepOp, HoistPt)) |
| 894 | return false; |
| 895 | // Gep is available if all operands of GepOp are available. |
| 896 | } else { |
| 897 | // Gep is not available if it has operands other than GEPs that are |
| 898 | // defined in blocks not dominating HoistPt. |
| 899 | return false; |
| 900 | } |
| 901 | } |
| 902 | return true; |
| 903 | } |
| 904 | |
| 905 | void GVNHoist::makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, |
| 906 | const SmallVecInsn &InstructionsToHoist, |
| 907 | Instruction *Gep) const { |
| 908 | assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available" ); |
| 909 | |
| 910 | Instruction *ClonedGep = Gep->clone(); |
| 911 | for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i) |
| 912 | if (Instruction *Op = dyn_cast<Instruction>(Val: Gep->getOperand(i))) { |
| 913 | // Check whether the operand is already available. |
| 914 | if (DT->dominates(A: Op->getParent(), B: HoistPt)) |
| 915 | continue; |
| 916 | |
| 917 | // As a GEP can refer to other GEPs, recursively make all the operands |
| 918 | // of this GEP available at HoistPt. |
| 919 | if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Val: Op)) |
| 920 | makeGepsAvailable(Repl: ClonedGep, HoistPt, InstructionsToHoist, Gep: GepOp); |
| 921 | } |
| 922 | |
| 923 | // Copy Gep and replace its uses in Repl with ClonedGep. |
| 924 | ClonedGep->insertBefore(InsertPos: HoistPt->getTerminator()->getIterator()); |
| 925 | |
| 926 | // Conservatively discard any optimization hints, they may differ on the |
| 927 | // other paths. |
| 928 | ClonedGep->dropUnknownNonDebugMetadata(); |
| 929 | |
| 930 | // If we have optimization hints which agree with each other along different |
| 931 | // paths, preserve them. |
| 932 | for (const Instruction *OtherInst : InstructionsToHoist) { |
| 933 | const GetElementPtrInst *OtherGep; |
| 934 | if (auto *OtherLd = dyn_cast<LoadInst>(Val: OtherInst)) |
| 935 | OtherGep = cast<GetElementPtrInst>(Val: OtherLd->getPointerOperand()); |
| 936 | else |
| 937 | OtherGep = cast<GetElementPtrInst>( |
| 938 | Val: cast<StoreInst>(Val: OtherInst)->getPointerOperand()); |
| 939 | ClonedGep->andIRFlags(V: OtherGep); |
| 940 | |
| 941 | // Merge debug locations of GEPs, because the hoisted GEP replaces those |
| 942 | // in branches. When cloning, ClonedGep preserves the debug location of |
| 943 | // Gepd, so Gep is skipped to avoid merging it twice. |
| 944 | if (OtherGep != Gep) { |
| 945 | ClonedGep->applyMergedLocation(LocA: ClonedGep->getDebugLoc(), |
| 946 | LocB: OtherGep->getDebugLoc()); |
| 947 | } |
| 948 | } |
| 949 | |
| 950 | // Replace uses of Gep with ClonedGep in Repl. |
| 951 | Repl->replaceUsesOfWith(From: Gep, To: ClonedGep); |
| 952 | } |
| 953 | |
| 954 | void GVNHoist::updateAlignment(Instruction *I, Instruction *Repl) { |
| 955 | if (auto *ReplacementLoad = dyn_cast<LoadInst>(Val: Repl)) { |
| 956 | ReplacementLoad->setAlignment( |
| 957 | std::min(a: ReplacementLoad->getAlign(), b: cast<LoadInst>(Val: I)->getAlign())); |
| 958 | ++NumLoadsRemoved; |
| 959 | } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Val: Repl)) { |
| 960 | ReplacementStore->setAlignment( |
| 961 | std::min(a: ReplacementStore->getAlign(), b: cast<StoreInst>(Val: I)->getAlign())); |
| 962 | ++NumStoresRemoved; |
| 963 | } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Val: Repl)) { |
| 964 | ReplacementAlloca->setAlignment(std::max(a: ReplacementAlloca->getAlign(), |
| 965 | b: cast<AllocaInst>(Val: I)->getAlign())); |
| 966 | } else if (isa<CallInst>(Val: Repl)) { |
| 967 | ++NumCallsRemoved; |
| 968 | } |
| 969 | } |
| 970 | |
| 971 | unsigned GVNHoist::rauw(const SmallVecInsn &Candidates, Instruction *Repl, |
| 972 | MemoryUseOrDef *NewMemAcc) { |
| 973 | unsigned NR = 0; |
| 974 | for (Instruction *I : Candidates) { |
| 975 | if (I != Repl) { |
| 976 | ++NR; |
| 977 | updateAlignment(I, Repl); |
| 978 | if (NewMemAcc) { |
| 979 | // Update the uses of the old MSSA access with NewMemAcc. |
| 980 | MemoryAccess *OldMA = MSSA->getMemoryAccess(I); |
| 981 | OldMA->replaceAllUsesWith(V: NewMemAcc); |
| 982 | MSSAUpdater->removeMemoryAccess(OldMA); |
| 983 | } |
| 984 | |
| 985 | combineMetadataForCSE(K: Repl, J: I, DoesKMove: true); |
| 986 | Repl->andIRFlags(V: I); |
| 987 | I->replaceAllUsesWith(V: Repl); |
| 988 | // Also invalidate the Alias Analysis cache. |
| 989 | MD->removeInstruction(InstToRemove: I); |
| 990 | I->eraseFromParent(); |
| 991 | } |
| 992 | } |
| 993 | return NR; |
| 994 | } |
| 995 | |
| 996 | void GVNHoist::raMPHIuw(MemoryUseOrDef *NewMemAcc) { |
| 997 | SmallPtrSet<MemoryPhi *, 4> UsePhis; |
| 998 | for (User *U : NewMemAcc->users()) |
| 999 | if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(Val: U)) |
| 1000 | UsePhis.insert(Ptr: Phi); |
| 1001 | |
| 1002 | for (MemoryPhi *Phi : UsePhis) { |
| 1003 | auto In = Phi->incoming_values(); |
| 1004 | if (llvm::all_of(Range&: In, P: [&](Use &U) { return U == NewMemAcc; })) { |
| 1005 | Phi->replaceAllUsesWith(V: NewMemAcc); |
| 1006 | MSSAUpdater->removeMemoryAccess(Phi); |
| 1007 | } |
| 1008 | } |
| 1009 | } |
| 1010 | |
| 1011 | unsigned GVNHoist::removeAndReplace(const SmallVecInsn &Candidates, |
| 1012 | Instruction *Repl, BasicBlock *DestBB, |
| 1013 | bool MoveAccess) { |
| 1014 | MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(I: Repl); |
| 1015 | if (MoveAccess && NewMemAcc) { |
| 1016 | // The definition of this ld/st will not change: ld/st hoisting is |
| 1017 | // legal when the ld/st is not moved past its current definition. |
| 1018 | MSSAUpdater->moveToPlace(What: NewMemAcc, BB: DestBB, Where: MemorySSA::BeforeTerminator); |
| 1019 | } |
| 1020 | |
| 1021 | // Replace all other instructions with Repl with memory access NewMemAcc. |
| 1022 | unsigned NR = rauw(Candidates, Repl, NewMemAcc); |
| 1023 | |
| 1024 | // Remove MemorySSA phi nodes with the same arguments. |
| 1025 | if (NewMemAcc) |
| 1026 | raMPHIuw(NewMemAcc); |
| 1027 | return NR; |
| 1028 | } |
| 1029 | |
| 1030 | bool GVNHoist::makeGepOperandsAvailable( |
| 1031 | Instruction *Repl, BasicBlock *HoistPt, |
| 1032 | const SmallVecInsn &InstructionsToHoist) const { |
| 1033 | // Check whether the GEP of a ld/st can be synthesized at HoistPt. |
| 1034 | GetElementPtrInst *Gep = nullptr; |
| 1035 | Instruction *Val = nullptr; |
| 1036 | if (auto *Ld = dyn_cast<LoadInst>(Val: Repl)) { |
| 1037 | Gep = dyn_cast<GetElementPtrInst>(Val: Ld->getPointerOperand()); |
| 1038 | } else if (auto *St = dyn_cast<StoreInst>(Val: Repl)) { |
| 1039 | Gep = dyn_cast<GetElementPtrInst>(Val: St->getPointerOperand()); |
| 1040 | Val = dyn_cast<Instruction>(Val: St->getValueOperand()); |
| 1041 | // Check that the stored value is available. |
| 1042 | if (Val) { |
| 1043 | if (isa<GetElementPtrInst>(Val)) { |
| 1044 | // Check whether we can compute the GEP at HoistPt. |
| 1045 | if (!allGepOperandsAvailable(I: Val, HoistPt)) |
| 1046 | return false; |
| 1047 | } else if (!DT->dominates(A: Val->getParent(), B: HoistPt)) |
| 1048 | return false; |
| 1049 | } |
| 1050 | } |
| 1051 | |
| 1052 | // Check whether we can compute the Gep at HoistPt. |
| 1053 | if (!Gep || !allGepOperandsAvailable(I: Gep, HoistPt)) |
| 1054 | return false; |
| 1055 | |
| 1056 | makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep); |
| 1057 | |
| 1058 | if (Val && isa<GetElementPtrInst>(Val)) |
| 1059 | makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep: Val); |
| 1060 | |
| 1061 | return true; |
| 1062 | } |
| 1063 | |
| 1064 | std::pair<unsigned, unsigned> GVNHoist::hoist(HoistingPointList &HPL) { |
| 1065 | unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; |
| 1066 | for (const HoistingPointInfo &HP : HPL) { |
| 1067 | // Find out whether we already have one of the instructions in HoistPt, |
| 1068 | // in which case we do not have to move it. |
| 1069 | BasicBlock *DestBB = HP.first; |
| 1070 | const SmallVecInsn &InstructionsToHoist = HP.second; |
| 1071 | Instruction *Repl = nullptr; |
| 1072 | for (Instruction *I : InstructionsToHoist) |
| 1073 | if (I->getParent() == DestBB) |
| 1074 | // If there are two instructions in HoistPt to be hoisted in place: |
| 1075 | // update Repl to be the first one, such that we can rename the uses |
| 1076 | // of the second based on the first. |
| 1077 | if (!Repl || firstInBB(I1: I, I2: Repl)) |
| 1078 | Repl = I; |
| 1079 | |
| 1080 | // Keep track of whether we moved the instruction so we know whether we |
| 1081 | // should move the MemoryAccess. |
| 1082 | bool MoveAccess = true; |
| 1083 | if (Repl) { |
| 1084 | // Repl is already in HoistPt: it remains in place. |
| 1085 | assert(allOperandsAvailable(Repl, DestBB) && |
| 1086 | "instruction depends on operands that are not available" ); |
| 1087 | MoveAccess = false; |
| 1088 | } else { |
| 1089 | // When we do not find Repl in HoistPt, select the first in the list |
| 1090 | // and move it to HoistPt. |
| 1091 | Repl = InstructionsToHoist.front(); |
| 1092 | |
| 1093 | // We can move Repl in HoistPt only when all operands are available. |
| 1094 | // The order in which hoistings are done may influence the availability |
| 1095 | // of operands. |
| 1096 | if (!allOperandsAvailable(I: Repl, HoistPt: DestBB)) { |
| 1097 | // When HoistingGeps there is nothing more we can do to make the |
| 1098 | // operands available: just continue. |
| 1099 | if (HoistingGeps) |
| 1100 | continue; |
| 1101 | |
| 1102 | // When not HoistingGeps we need to copy the GEPs. |
| 1103 | if (!makeGepOperandsAvailable(Repl, HoistPt: DestBB, InstructionsToHoist)) |
| 1104 | continue; |
| 1105 | } |
| 1106 | |
| 1107 | // Move the instruction at the end of HoistPt. |
| 1108 | Instruction *Last = DestBB->getTerminator(); |
| 1109 | MD->removeInstruction(InstToRemove: Repl); |
| 1110 | Repl->moveBefore(InsertPos: Last->getIterator()); |
| 1111 | |
| 1112 | DFSNumber[Repl] = DFSNumber[Last]++; |
| 1113 | } |
| 1114 | |
| 1115 | // Drop debug location as per debug info update guide. |
| 1116 | Repl->dropLocation(); |
| 1117 | NR += removeAndReplace(Candidates: InstructionsToHoist, Repl, DestBB, MoveAccess); |
| 1118 | |
| 1119 | if (isa<LoadInst>(Val: Repl)) |
| 1120 | ++NL; |
| 1121 | else if (isa<StoreInst>(Val: Repl)) |
| 1122 | ++NS; |
| 1123 | else if (isa<CallInst>(Val: Repl)) |
| 1124 | ++NC; |
| 1125 | else // Scalar |
| 1126 | ++NI; |
| 1127 | } |
| 1128 | |
| 1129 | if (MSSA && VerifyMemorySSA) |
| 1130 | MSSA->verifyMemorySSA(); |
| 1131 | |
| 1132 | NumHoisted += NL + NS + NC + NI; |
| 1133 | NumRemoved += NR; |
| 1134 | NumLoadsHoisted += NL; |
| 1135 | NumStoresHoisted += NS; |
| 1136 | NumCallsHoisted += NC; |
| 1137 | return {NI, NL + NC + NS}; |
| 1138 | } |
| 1139 | |
| 1140 | std::pair<unsigned, unsigned> GVNHoist::hoistExpressions(Function &F) { |
| 1141 | InsnInfo II; |
| 1142 | LoadInfo LI; |
| 1143 | StoreInfo SI; |
| 1144 | CallInfo CI; |
| 1145 | for (BasicBlock *BB : depth_first(G: &F.getEntryBlock())) { |
| 1146 | int InstructionNb = 0; |
| 1147 | for (Instruction &I1 : *BB) { |
| 1148 | // If I1 cannot guarantee progress, subsequent instructions |
| 1149 | // in BB cannot be hoisted anyways. |
| 1150 | if (!isGuaranteedToTransferExecutionToSuccessor(I: &I1)) { |
| 1151 | HoistBarrier.insert(V: BB); |
| 1152 | break; |
| 1153 | } |
| 1154 | // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting |
| 1155 | // deeper may increase the register pressure and compilation time. |
| 1156 | if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB) |
| 1157 | break; |
| 1158 | |
| 1159 | // Do not value number terminator instructions. |
| 1160 | if (I1.isTerminator()) |
| 1161 | break; |
| 1162 | |
| 1163 | if (auto *Load = dyn_cast<LoadInst>(Val: &I1)) |
| 1164 | LI.insert(Load, VN); |
| 1165 | else if (auto *Store = dyn_cast<StoreInst>(Val: &I1)) |
| 1166 | SI.insert(Store, VN); |
| 1167 | else if (auto *Call = dyn_cast<CallInst>(Val: &I1)) { |
| 1168 | if (auto *Intr = dyn_cast<IntrinsicInst>(Val: Call)) { |
| 1169 | if (Intr->getIntrinsicID() == Intrinsic::assume || |
| 1170 | Intr->getIntrinsicID() == Intrinsic::sideeffect) |
| 1171 | continue; |
| 1172 | } |
| 1173 | if (Call->mayHaveSideEffects()) |
| 1174 | break; |
| 1175 | |
| 1176 | if (Call->isConvergent()) |
| 1177 | break; |
| 1178 | |
| 1179 | CI.insert(Call, VN); |
| 1180 | } else if (HoistingGeps || !isa<GetElementPtrInst>(Val: &I1)) |
| 1181 | // Do not hoist scalars past calls that may write to memory because |
| 1182 | // that could result in spills later. geps are handled separately. |
| 1183 | // TODO: We can relax this for targets like AArch64 as they have more |
| 1184 | // registers than X86. |
| 1185 | II.insert(I: &I1, VN); |
| 1186 | } |
| 1187 | } |
| 1188 | |
| 1189 | HoistingPointList HPL; |
| 1190 | computeInsertionPoints(Map: II.getVNTable(), HPL, K: InsKind::Scalar); |
| 1191 | computeInsertionPoints(Map: LI.getVNTable(), HPL, K: InsKind::Load); |
| 1192 | computeInsertionPoints(Map: SI.getVNTable(), HPL, K: InsKind::Store); |
| 1193 | computeInsertionPoints(Map: CI.getScalarVNTable(), HPL, K: InsKind::Scalar); |
| 1194 | computeInsertionPoints(Map: CI.getLoadVNTable(), HPL, K: InsKind::Load); |
| 1195 | computeInsertionPoints(Map: CI.getStoreVNTable(), HPL, K: InsKind::Store); |
| 1196 | return hoist(HPL); |
| 1197 | } |
| 1198 | |
| 1199 | } // end namespace llvm |
| 1200 | |
| 1201 | PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) { |
| 1202 | DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 1203 | PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(IR&: F); |
| 1204 | AliasAnalysis &AA = AM.getResult<AAManager>(IR&: F); |
| 1205 | MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(IR&: F); |
| 1206 | MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(IR&: F).getMSSA(); |
| 1207 | GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); |
| 1208 | if (!G.run(F)) |
| 1209 | return PreservedAnalyses::all(); |
| 1210 | |
| 1211 | PreservedAnalyses PA; |
| 1212 | PA.preserve<DominatorTreeAnalysis>(); |
| 1213 | PA.preserve<MemorySSAAnalysis>(); |
| 1214 | return PA; |
| 1215 | } |
| 1216 | |