1 | //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This transformation analyzes and transforms the induction variables (and |
10 | // computations derived from them) into simpler forms suitable for subsequent |
11 | // analysis and transformation. |
12 | // |
13 | // If the trip count of a loop is computable, this pass also makes the following |
14 | // changes: |
15 | // 1. The exit condition for the loop is canonicalized to compare the |
16 | // induction value against the exit value. This turns loops like: |
17 | // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' |
18 | // 2. Any use outside of the loop of an expression derived from the indvar |
19 | // is changed to compute the derived value outside of the loop, eliminating |
20 | // the dependence on the exit value of the induction variable. If the only |
21 | // purpose of the loop is to compute the exit value of some derived |
22 | // expression, this transformation will make the loop dead. |
23 | // |
24 | //===----------------------------------------------------------------------===// |
25 | |
26 | #include "llvm/Transforms/Scalar/IndVarSimplify.h" |
27 | #include "llvm/ADT/APFloat.h" |
28 | #include "llvm/ADT/ArrayRef.h" |
29 | #include "llvm/ADT/STLExtras.h" |
30 | #include "llvm/ADT/SmallPtrSet.h" |
31 | #include "llvm/ADT/SmallSet.h" |
32 | #include "llvm/ADT/SmallVector.h" |
33 | #include "llvm/ADT/Statistic.h" |
34 | #include "llvm/ADT/iterator_range.h" |
35 | #include "llvm/Analysis/LoopInfo.h" |
36 | #include "llvm/Analysis/LoopPass.h" |
37 | #include "llvm/Analysis/MemorySSA.h" |
38 | #include "llvm/Analysis/MemorySSAUpdater.h" |
39 | #include "llvm/Analysis/ScalarEvolution.h" |
40 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
41 | #include "llvm/Analysis/ScalarEvolutionPatternMatch.h" |
42 | #include "llvm/Analysis/TargetLibraryInfo.h" |
43 | #include "llvm/Analysis/TargetTransformInfo.h" |
44 | #include "llvm/Analysis/ValueTracking.h" |
45 | #include "llvm/IR/BasicBlock.h" |
46 | #include "llvm/IR/Constant.h" |
47 | #include "llvm/IR/ConstantRange.h" |
48 | #include "llvm/IR/Constants.h" |
49 | #include "llvm/IR/DataLayout.h" |
50 | #include "llvm/IR/DerivedTypes.h" |
51 | #include "llvm/IR/Dominators.h" |
52 | #include "llvm/IR/Function.h" |
53 | #include "llvm/IR/IRBuilder.h" |
54 | #include "llvm/IR/InstrTypes.h" |
55 | #include "llvm/IR/Instruction.h" |
56 | #include "llvm/IR/Instructions.h" |
57 | #include "llvm/IR/Intrinsics.h" |
58 | #include "llvm/IR/PassManager.h" |
59 | #include "llvm/IR/PatternMatch.h" |
60 | #include "llvm/IR/Type.h" |
61 | #include "llvm/IR/Use.h" |
62 | #include "llvm/IR/User.h" |
63 | #include "llvm/IR/Value.h" |
64 | #include "llvm/IR/ValueHandle.h" |
65 | #include "llvm/Support/Casting.h" |
66 | #include "llvm/Support/CommandLine.h" |
67 | #include "llvm/Support/Debug.h" |
68 | #include "llvm/Support/MathExtras.h" |
69 | #include "llvm/Support/raw_ostream.h" |
70 | #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" |
71 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
72 | #include "llvm/Transforms/Utils/Local.h" |
73 | #include "llvm/Transforms/Utils/LoopUtils.h" |
74 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
75 | #include "llvm/Transforms/Utils/SimplifyIndVar.h" |
76 | #include <cassert> |
77 | #include <cstdint> |
78 | #include <utility> |
79 | |
80 | using namespace llvm; |
81 | using namespace PatternMatch; |
82 | using namespace SCEVPatternMatch; |
83 | |
84 | #define DEBUG_TYPE "indvars" |
85 | |
86 | STATISTIC(NumWidened , "Number of indvars widened" ); |
87 | STATISTIC(NumReplaced , "Number of exit values replaced" ); |
88 | STATISTIC(NumLFTR , "Number of loop exit tests replaced" ); |
89 | STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated" ); |
90 | STATISTIC(NumElimIV , "Number of congruent IVs eliminated" ); |
91 | |
92 | static cl::opt<ReplaceExitVal> ReplaceExitValue( |
93 | "replexitval" , cl::Hidden, cl::init(Val: OnlyCheapRepl), |
94 | cl::desc("Choose the strategy to replace exit value in IndVarSimplify" ), |
95 | cl::values( |
96 | clEnumValN(NeverRepl, "never" , "never replace exit value" ), |
97 | clEnumValN(OnlyCheapRepl, "cheap" , |
98 | "only replace exit value when the cost is cheap" ), |
99 | clEnumValN( |
100 | UnusedIndVarInLoop, "unusedindvarinloop" , |
101 | "only replace exit value when it is an unused " |
102 | "induction variable in the loop and has cheap replacement cost" ), |
103 | clEnumValN(NoHardUse, "noharduse" , |
104 | "only replace exit values when loop def likely dead" ), |
105 | clEnumValN(AlwaysRepl, "always" , |
106 | "always replace exit value whenever possible" ))); |
107 | |
108 | static cl::opt<bool> UsePostIncrementRanges( |
109 | "indvars-post-increment-ranges" , cl::Hidden, |
110 | cl::desc("Use post increment control-dependent ranges in IndVarSimplify" ), |
111 | cl::init(Val: true)); |
112 | |
113 | static cl::opt<bool> |
114 | DisableLFTR("disable-lftr" , cl::Hidden, cl::init(Val: false), |
115 | cl::desc("Disable Linear Function Test Replace optimization" )); |
116 | |
117 | static cl::opt<bool> |
118 | LoopPredication("indvars-predicate-loops" , cl::Hidden, cl::init(Val: true), |
119 | cl::desc("Predicate conditions in read only loops" )); |
120 | |
121 | static cl::opt<bool> |
122 | AllowIVWidening("indvars-widen-indvars" , cl::Hidden, cl::init(Val: true), |
123 | cl::desc("Allow widening of indvars to eliminate s/zext" )); |
124 | |
125 | namespace { |
126 | |
127 | class IndVarSimplify { |
128 | LoopInfo *LI; |
129 | ScalarEvolution *SE; |
130 | DominatorTree *DT; |
131 | const DataLayout &DL; |
132 | TargetLibraryInfo *TLI; |
133 | const TargetTransformInfo *TTI; |
134 | std::unique_ptr<MemorySSAUpdater> MSSAU; |
135 | |
136 | SmallVector<WeakTrackingVH, 16> DeadInsts; |
137 | bool WidenIndVars; |
138 | |
139 | bool RunUnswitching = false; |
140 | |
141 | bool handleFloatingPointIV(Loop *L, PHINode *PH); |
142 | bool rewriteNonIntegerIVs(Loop *L); |
143 | |
144 | bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); |
145 | /// Try to improve our exit conditions by converting condition from signed |
146 | /// to unsigned or rotating computation out of the loop. |
147 | /// (See inline comment about why this is duplicated from simplifyAndExtend) |
148 | bool canonicalizeExitCondition(Loop *L); |
149 | /// Try to eliminate loop exits based on analyzeable exit counts |
150 | bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter); |
151 | /// Try to form loop invariant tests for loop exits by changing how many |
152 | /// iterations of the loop run when that is unobservable. |
153 | bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); |
154 | |
155 | bool rewriteFirstIterationLoopExitValues(Loop *L); |
156 | |
157 | bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, |
158 | const SCEV *ExitCount, |
159 | PHINode *IndVar, SCEVExpander &Rewriter); |
160 | |
161 | bool sinkUnusedInvariants(Loop *L); |
162 | |
163 | public: |
164 | IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, |
165 | const DataLayout &DL, TargetLibraryInfo *TLI, |
166 | TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars) |
167 | : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI), |
168 | WidenIndVars(WidenIndVars) { |
169 | if (MSSA) |
170 | MSSAU = std::make_unique<MemorySSAUpdater>(args&: MSSA); |
171 | } |
172 | |
173 | bool run(Loop *L); |
174 | |
175 | bool runUnswitching() const { return RunUnswitching; } |
176 | }; |
177 | |
178 | } // end anonymous namespace |
179 | |
180 | //===----------------------------------------------------------------------===// |
181 | // rewriteNonIntegerIVs and helpers. Prefer integer IVs. |
182 | //===----------------------------------------------------------------------===// |
183 | |
184 | /// Convert APF to an integer, if possible. |
185 | static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { |
186 | bool isExact = false; |
187 | // See if we can convert this to an int64_t |
188 | uint64_t UIntVal; |
189 | if (APF.convertToInteger(Input: MutableArrayRef(UIntVal), Width: 64, IsSigned: true, |
190 | RM: APFloat::rmTowardZero, IsExact: &isExact) != APFloat::opOK || |
191 | !isExact) |
192 | return false; |
193 | IntVal = UIntVal; |
194 | return true; |
195 | } |
196 | |
197 | /// If the loop has floating induction variable then insert corresponding |
198 | /// integer induction variable if possible. |
199 | /// For example, |
200 | /// for(double i = 0; i < 10000; ++i) |
201 | /// bar(i) |
202 | /// is converted into |
203 | /// for(int i = 0; i < 10000; ++i) |
204 | /// bar((double)i); |
205 | bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { |
206 | unsigned IncomingEdge = L->contains(BB: PN->getIncomingBlock(i: 0)); |
207 | unsigned BackEdge = IncomingEdge^1; |
208 | |
209 | // Check incoming value. |
210 | auto *InitValueVal = dyn_cast<ConstantFP>(Val: PN->getIncomingValue(i: IncomingEdge)); |
211 | |
212 | int64_t InitValue; |
213 | if (!InitValueVal || !ConvertToSInt(APF: InitValueVal->getValueAPF(), IntVal&: InitValue)) |
214 | return false; |
215 | |
216 | // Check IV increment. Reject this PN if increment operation is not |
217 | // an add or increment value can not be represented by an integer. |
218 | auto *Incr = dyn_cast<BinaryOperator>(Val: PN->getIncomingValue(i: BackEdge)); |
219 | if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; |
220 | |
221 | // If this is not an add of the PHI with a constantfp, or if the constant fp |
222 | // is not an integer, bail out. |
223 | ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Val: Incr->getOperand(i_nocapture: 1)); |
224 | int64_t IncValue; |
225 | if (IncValueVal == nullptr || Incr->getOperand(i_nocapture: 0) != PN || |
226 | !ConvertToSInt(APF: IncValueVal->getValueAPF(), IntVal&: IncValue)) |
227 | return false; |
228 | |
229 | // Check Incr uses. One user is PN and the other user is an exit condition |
230 | // used by the conditional terminator. |
231 | Value::user_iterator IncrUse = Incr->user_begin(); |
232 | Instruction *U1 = cast<Instruction>(Val: *IncrUse++); |
233 | if (IncrUse == Incr->user_end()) return false; |
234 | Instruction *U2 = cast<Instruction>(Val: *IncrUse++); |
235 | if (IncrUse != Incr->user_end()) return false; |
236 | |
237 | // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't |
238 | // only used by a branch, we can't transform it. |
239 | FCmpInst *Compare = dyn_cast<FCmpInst>(Val: U1); |
240 | if (!Compare) |
241 | Compare = dyn_cast<FCmpInst>(Val: U2); |
242 | if (!Compare || !Compare->hasOneUse() || |
243 | !isa<BranchInst>(Val: Compare->user_back())) |
244 | return false; |
245 | |
246 | BranchInst *TheBr = cast<BranchInst>(Val: Compare->user_back()); |
247 | |
248 | // We need to verify that the branch actually controls the iteration count |
249 | // of the loop. If not, the new IV can overflow and no one will notice. |
250 | // The branch block must be in the loop and one of the successors must be out |
251 | // of the loop. |
252 | assert(TheBr->isConditional() && "Can't use fcmp if not conditional" ); |
253 | if (!L->contains(BB: TheBr->getParent()) || |
254 | (L->contains(BB: TheBr->getSuccessor(i: 0)) && |
255 | L->contains(BB: TheBr->getSuccessor(i: 1)))) |
256 | return false; |
257 | |
258 | // If it isn't a comparison with an integer-as-fp (the exit value), we can't |
259 | // transform it. |
260 | ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Val: Compare->getOperand(i_nocapture: 1)); |
261 | int64_t ExitValue; |
262 | if (ExitValueVal == nullptr || |
263 | !ConvertToSInt(APF: ExitValueVal->getValueAPF(), IntVal&: ExitValue)) |
264 | return false; |
265 | |
266 | // Find new predicate for integer comparison. |
267 | CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; |
268 | switch (Compare->getPredicate()) { |
269 | default: return false; // Unknown comparison. |
270 | case CmpInst::FCMP_OEQ: |
271 | case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; |
272 | case CmpInst::FCMP_ONE: |
273 | case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; |
274 | case CmpInst::FCMP_OGT: |
275 | case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; |
276 | case CmpInst::FCMP_OGE: |
277 | case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; |
278 | case CmpInst::FCMP_OLT: |
279 | case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; |
280 | case CmpInst::FCMP_OLE: |
281 | case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; |
282 | } |
283 | |
284 | // We convert the floating point induction variable to a signed i32 value if |
285 | // we can. This is only safe if the comparison will not overflow in a way |
286 | // that won't be trapped by the integer equivalent operations. Check for this |
287 | // now. |
288 | // TODO: We could use i64 if it is native and the range requires it. |
289 | |
290 | // The start/stride/exit values must all fit in signed i32. |
291 | if (!isInt<32>(x: InitValue) || !isInt<32>(x: IncValue) || !isInt<32>(x: ExitValue)) |
292 | return false; |
293 | |
294 | // If not actually striding (add x, 0.0), avoid touching the code. |
295 | if (IncValue == 0) |
296 | return false; |
297 | |
298 | // Positive and negative strides have different safety conditions. |
299 | if (IncValue > 0) { |
300 | // If we have a positive stride, we require the init to be less than the |
301 | // exit value. |
302 | if (InitValue >= ExitValue) |
303 | return false; |
304 | |
305 | uint32_t Range = uint32_t(ExitValue-InitValue); |
306 | // Check for infinite loop, either: |
307 | // while (i <= Exit) or until (i > Exit) |
308 | if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { |
309 | if (++Range == 0) return false; // Range overflows. |
310 | } |
311 | |
312 | unsigned Leftover = Range % uint32_t(IncValue); |
313 | |
314 | // If this is an equality comparison, we require that the strided value |
315 | // exactly land on the exit value, otherwise the IV condition will wrap |
316 | // around and do things the fp IV wouldn't. |
317 | if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && |
318 | Leftover != 0) |
319 | return false; |
320 | |
321 | // If the stride would wrap around the i32 before exiting, we can't |
322 | // transform the IV. |
323 | if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) |
324 | return false; |
325 | } else { |
326 | // If we have a negative stride, we require the init to be greater than the |
327 | // exit value. |
328 | if (InitValue <= ExitValue) |
329 | return false; |
330 | |
331 | uint32_t Range = uint32_t(InitValue-ExitValue); |
332 | // Check for infinite loop, either: |
333 | // while (i >= Exit) or until (i < Exit) |
334 | if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { |
335 | if (++Range == 0) return false; // Range overflows. |
336 | } |
337 | |
338 | unsigned Leftover = Range % uint32_t(-IncValue); |
339 | |
340 | // If this is an equality comparison, we require that the strided value |
341 | // exactly land on the exit value, otherwise the IV condition will wrap |
342 | // around and do things the fp IV wouldn't. |
343 | if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && |
344 | Leftover != 0) |
345 | return false; |
346 | |
347 | // If the stride would wrap around the i32 before exiting, we can't |
348 | // transform the IV. |
349 | if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) |
350 | return false; |
351 | } |
352 | |
353 | IntegerType *Int32Ty = Type::getInt32Ty(C&: PN->getContext()); |
354 | |
355 | // Insert new integer induction variable. |
356 | PHINode *NewPHI = |
357 | PHINode::Create(Ty: Int32Ty, NumReservedValues: 2, NameStr: PN->getName() + ".int" , InsertBefore: PN->getIterator()); |
358 | NewPHI->addIncoming(V: ConstantInt::getSigned(Ty: Int32Ty, V: InitValue), |
359 | BB: PN->getIncomingBlock(i: IncomingEdge)); |
360 | NewPHI->setDebugLoc(PN->getDebugLoc()); |
361 | |
362 | Instruction *NewAdd = BinaryOperator::CreateAdd( |
363 | V1: NewPHI, V2: ConstantInt::getSigned(Ty: Int32Ty, V: IncValue), |
364 | Name: Incr->getName() + ".int" , InsertBefore: Incr->getIterator()); |
365 | NewAdd->setDebugLoc(Incr->getDebugLoc()); |
366 | NewPHI->addIncoming(V: NewAdd, BB: PN->getIncomingBlock(i: BackEdge)); |
367 | |
368 | ICmpInst *NewCompare = new ICmpInst( |
369 | TheBr->getIterator(), NewPred, NewAdd, |
370 | ConstantInt::getSigned(Ty: Int32Ty, V: ExitValue), Compare->getName()); |
371 | NewCompare->setDebugLoc(Compare->getDebugLoc()); |
372 | |
373 | // In the following deletions, PN may become dead and may be deleted. |
374 | // Use a WeakTrackingVH to observe whether this happens. |
375 | WeakTrackingVH WeakPH = PN; |
376 | |
377 | // Delete the old floating point exit comparison. The branch starts using the |
378 | // new comparison. |
379 | NewCompare->takeName(V: Compare); |
380 | Compare->replaceAllUsesWith(V: NewCompare); |
381 | RecursivelyDeleteTriviallyDeadInstructions(V: Compare, TLI, MSSAU: MSSAU.get()); |
382 | |
383 | // Delete the old floating point increment. |
384 | Incr->replaceAllUsesWith(V: PoisonValue::get(T: Incr->getType())); |
385 | RecursivelyDeleteTriviallyDeadInstructions(V: Incr, TLI, MSSAU: MSSAU.get()); |
386 | |
387 | // If the FP induction variable still has uses, this is because something else |
388 | // in the loop uses its value. In order to canonicalize the induction |
389 | // variable, we chose to eliminate the IV and rewrite it in terms of an |
390 | // int->fp cast. |
391 | // |
392 | // We give preference to sitofp over uitofp because it is faster on most |
393 | // platforms. |
394 | if (WeakPH) { |
395 | Instruction *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv" , |
396 | PN->getParent()->getFirstInsertionPt()); |
397 | Conv->setDebugLoc(PN->getDebugLoc()); |
398 | PN->replaceAllUsesWith(V: Conv); |
399 | RecursivelyDeleteTriviallyDeadInstructions(V: PN, TLI, MSSAU: MSSAU.get()); |
400 | } |
401 | return true; |
402 | } |
403 | |
404 | bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { |
405 | // First step. Check to see if there are any floating-point recurrences. |
406 | // If there are, change them into integer recurrences, permitting analysis by |
407 | // the SCEV routines. |
408 | BasicBlock * = L->getHeader(); |
409 | |
410 | SmallVector<WeakTrackingVH, 8> PHIs(llvm::make_pointer_range(Range: Header->phis())); |
411 | |
412 | bool Changed = false; |
413 | for (WeakTrackingVH &PHI : PHIs) |
414 | if (PHINode *PN = dyn_cast_or_null<PHINode>(Val: &*PHI)) |
415 | Changed |= handleFloatingPointIV(L, PN); |
416 | |
417 | // If the loop previously had floating-point IV, ScalarEvolution |
418 | // may not have been able to compute a trip count. Now that we've done some |
419 | // re-writing, the trip count may be computable. |
420 | if (Changed) |
421 | SE->forgetLoop(L); |
422 | return Changed; |
423 | } |
424 | |
425 | //===---------------------------------------------------------------------===// |
426 | // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know |
427 | // they will exit at the first iteration. |
428 | //===---------------------------------------------------------------------===// |
429 | |
430 | /// Check to see if this loop has loop invariant conditions which lead to loop |
431 | /// exits. If so, we know that if the exit path is taken, it is at the first |
432 | /// loop iteration. This lets us predict exit values of PHI nodes that live in |
433 | /// loop header. |
434 | bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { |
435 | // Verify the input to the pass is already in LCSSA form. |
436 | assert(L->isLCSSAForm(*DT)); |
437 | |
438 | SmallVector<BasicBlock *, 8> ExitBlocks; |
439 | L->getUniqueExitBlocks(ExitBlocks); |
440 | |
441 | bool MadeAnyChanges = false; |
442 | for (auto *ExitBB : ExitBlocks) { |
443 | // If there are no more PHI nodes in this exit block, then no more |
444 | // values defined inside the loop are used on this path. |
445 | for (PHINode &PN : ExitBB->phis()) { |
446 | for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); |
447 | IncomingValIdx != E; ++IncomingValIdx) { |
448 | auto *IncomingBB = PN.getIncomingBlock(i: IncomingValIdx); |
449 | |
450 | // Can we prove that the exit must run on the first iteration if it |
451 | // runs at all? (i.e. early exits are fine for our purposes, but |
452 | // traces which lead to this exit being taken on the 2nd iteration |
453 | // aren't.) Note that this is about whether the exit branch is |
454 | // executed, not about whether it is taken. |
455 | if (!L->getLoopLatch() || |
456 | !DT->dominates(A: IncomingBB, B: L->getLoopLatch())) |
457 | continue; |
458 | |
459 | // Get condition that leads to the exit path. |
460 | auto *TermInst = IncomingBB->getTerminator(); |
461 | |
462 | Value *Cond = nullptr; |
463 | if (auto *BI = dyn_cast<BranchInst>(Val: TermInst)) { |
464 | // Must be a conditional branch, otherwise the block |
465 | // should not be in the loop. |
466 | Cond = BI->getCondition(); |
467 | } else if (auto *SI = dyn_cast<SwitchInst>(Val: TermInst)) |
468 | Cond = SI->getCondition(); |
469 | else |
470 | continue; |
471 | |
472 | if (!L->isLoopInvariant(V: Cond)) |
473 | continue; |
474 | |
475 | auto *ExitVal = dyn_cast<PHINode>(Val: PN.getIncomingValue(i: IncomingValIdx)); |
476 | |
477 | // Only deal with PHIs in the loop header. |
478 | if (!ExitVal || ExitVal->getParent() != L->getHeader()) |
479 | continue; |
480 | |
481 | // If ExitVal is a PHI on the loop header, then we know its |
482 | // value along this exit because the exit can only be taken |
483 | // on the first iteration. |
484 | auto * = L->getLoopPreheader(); |
485 | assert(LoopPreheader && "Invalid loop" ); |
486 | int = ExitVal->getBasicBlockIndex(BB: LoopPreheader); |
487 | if (PreheaderIdx != -1) { |
488 | assert(ExitVal->getParent() == L->getHeader() && |
489 | "ExitVal must be in loop header" ); |
490 | MadeAnyChanges = true; |
491 | PN.setIncomingValue(i: IncomingValIdx, |
492 | V: ExitVal->getIncomingValue(i: PreheaderIdx)); |
493 | SE->forgetValue(V: &PN); |
494 | } |
495 | } |
496 | } |
497 | } |
498 | return MadeAnyChanges; |
499 | } |
500 | |
501 | //===----------------------------------------------------------------------===// |
502 | // IV Widening - Extend the width of an IV to cover its widest uses. |
503 | //===----------------------------------------------------------------------===// |
504 | |
505 | /// Update information about the induction variable that is extended by this |
506 | /// sign or zero extend operation. This is used to determine the final width of |
507 | /// the IV before actually widening it. |
508 | static void visitIVCast(CastInst *Cast, WideIVInfo &WI, |
509 | ScalarEvolution *SE, |
510 | const TargetTransformInfo *TTI) { |
511 | bool IsSigned = Cast->getOpcode() == Instruction::SExt; |
512 | if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) |
513 | return; |
514 | |
515 | Type *Ty = Cast->getType(); |
516 | uint64_t Width = SE->getTypeSizeInBits(Ty); |
517 | if (!Cast->getDataLayout().isLegalInteger(Width)) |
518 | return; |
519 | |
520 | // Check that `Cast` actually extends the induction variable (we rely on this |
521 | // later). This takes care of cases where `Cast` is extending a truncation of |
522 | // the narrow induction variable, and thus can end up being narrower than the |
523 | // "narrow" induction variable. |
524 | uint64_t NarrowIVWidth = SE->getTypeSizeInBits(Ty: WI.NarrowIV->getType()); |
525 | if (NarrowIVWidth >= Width) |
526 | return; |
527 | |
528 | // Cast is either an sext or zext up to this point. |
529 | // We should not widen an indvar if arithmetics on the wider indvar are more |
530 | // expensive than those on the narrower indvar. We check only the cost of ADD |
531 | // because at least an ADD is required to increment the induction variable. We |
532 | // could compute more comprehensively the cost of all instructions on the |
533 | // induction variable when necessary. |
534 | if (TTI && |
535 | TTI->getArithmeticInstrCost(Opcode: Instruction::Add, Ty) > |
536 | TTI->getArithmeticInstrCost(Opcode: Instruction::Add, |
537 | Ty: Cast->getOperand(i_nocapture: 0)->getType())) { |
538 | return; |
539 | } |
540 | |
541 | if (!WI.WidestNativeType || |
542 | Width > SE->getTypeSizeInBits(Ty: WI.WidestNativeType)) { |
543 | WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); |
544 | WI.IsSigned = IsSigned; |
545 | return; |
546 | } |
547 | |
548 | // We extend the IV to satisfy the sign of its user(s), or 'signed' |
549 | // if there are multiple users with both sign- and zero extensions, |
550 | // in order not to introduce nondeterministic behaviour based on the |
551 | // unspecified order of a PHI nodes' users-iterator. |
552 | WI.IsSigned |= IsSigned; |
553 | } |
554 | |
555 | //===----------------------------------------------------------------------===// |
556 | // Live IV Reduction - Minimize IVs live across the loop. |
557 | //===----------------------------------------------------------------------===// |
558 | |
559 | //===----------------------------------------------------------------------===// |
560 | // Simplification of IV users based on SCEV evaluation. |
561 | //===----------------------------------------------------------------------===// |
562 | |
563 | namespace { |
564 | |
565 | class IndVarSimplifyVisitor : public IVVisitor { |
566 | ScalarEvolution *SE; |
567 | const TargetTransformInfo *TTI; |
568 | PHINode *IVPhi; |
569 | |
570 | public: |
571 | WideIVInfo WI; |
572 | |
573 | IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, |
574 | const TargetTransformInfo *TTI, |
575 | const DominatorTree *DTree) |
576 | : SE(SCEV), TTI(TTI), IVPhi(IV) { |
577 | DT = DTree; |
578 | WI.NarrowIV = IVPhi; |
579 | } |
580 | |
581 | // Implement the interface used by simplifyUsersOfIV. |
582 | void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } |
583 | }; |
584 | |
585 | } // end anonymous namespace |
586 | |
587 | /// Iteratively perform simplification on a worklist of IV users. Each |
588 | /// successive simplification may push more users which may themselves be |
589 | /// candidates for simplification. |
590 | /// |
591 | /// Sign/Zero extend elimination is interleaved with IV simplification. |
592 | bool IndVarSimplify::simplifyAndExtend(Loop *L, |
593 | SCEVExpander &Rewriter, |
594 | LoopInfo *LI) { |
595 | SmallVector<WideIVInfo, 8> WideIVs; |
596 | |
597 | auto *GuardDecl = Intrinsic::getDeclarationIfExists( |
598 | M: L->getBlocks()[0]->getModule(), id: Intrinsic::experimental_guard); |
599 | bool HasGuards = GuardDecl && !GuardDecl->use_empty(); |
600 | |
601 | SmallVector<PHINode *, 8> LoopPhis( |
602 | llvm::make_pointer_range(Range: L->getHeader()->phis())); |
603 | |
604 | // Each round of simplification iterates through the SimplifyIVUsers worklist |
605 | // for all current phis, then determines whether any IVs can be |
606 | // widened. Widening adds new phis to LoopPhis, inducing another round of |
607 | // simplification on the wide IVs. |
608 | bool Changed = false; |
609 | while (!LoopPhis.empty()) { |
610 | // Evaluate as many IV expressions as possible before widening any IVs. This |
611 | // forces SCEV to set no-wrap flags before evaluating sign/zero |
612 | // extension. The first time SCEV attempts to normalize sign/zero extension, |
613 | // the result becomes final. So for the most predictable results, we delay |
614 | // evaluation of sign/zero extend evaluation until needed, and avoid running |
615 | // other SCEV based analysis prior to simplifyAndExtend. |
616 | do { |
617 | PHINode *CurrIV = LoopPhis.pop_back_val(); |
618 | |
619 | // Information about sign/zero extensions of CurrIV. |
620 | IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); |
621 | |
622 | const auto &[C, U] = simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, Dead&: DeadInsts, |
623 | Rewriter, V: &Visitor); |
624 | |
625 | Changed |= C; |
626 | RunUnswitching |= U; |
627 | if (Visitor.WI.WidestNativeType) { |
628 | WideIVs.push_back(Elt: Visitor.WI); |
629 | } |
630 | } while(!LoopPhis.empty()); |
631 | |
632 | // Continue if we disallowed widening. |
633 | if (!WidenIndVars) |
634 | continue; |
635 | |
636 | for (; !WideIVs.empty(); WideIVs.pop_back()) { |
637 | unsigned ElimExt; |
638 | unsigned Widened; |
639 | if (PHINode *WidePhi = createWideIV(WI: WideIVs.back(), LI, SE, Rewriter, |
640 | DT, DeadInsts, NumElimExt&: ElimExt, NumWidened&: Widened, |
641 | HasGuards, UsePostIncrementRanges)) { |
642 | NumElimExt += ElimExt; |
643 | NumWidened += Widened; |
644 | Changed = true; |
645 | LoopPhis.push_back(Elt: WidePhi); |
646 | } |
647 | } |
648 | } |
649 | return Changed; |
650 | } |
651 | |
652 | //===----------------------------------------------------------------------===// |
653 | // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. |
654 | //===----------------------------------------------------------------------===// |
655 | |
656 | /// Given an Value which is hoped to be part of an add recurance in the given |
657 | /// loop, return the associated Phi node if so. Otherwise, return null. Note |
658 | /// that this is less general than SCEVs AddRec checking. |
659 | static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) { |
660 | Instruction *IncI = dyn_cast<Instruction>(Val: IncV); |
661 | if (!IncI) |
662 | return nullptr; |
663 | |
664 | switch (IncI->getOpcode()) { |
665 | case Instruction::Add: |
666 | case Instruction::Sub: |
667 | break; |
668 | case Instruction::GetElementPtr: |
669 | // An IV counter must preserve its type. |
670 | if (IncI->getNumOperands() == 2) |
671 | break; |
672 | [[fallthrough]]; |
673 | default: |
674 | return nullptr; |
675 | } |
676 | |
677 | PHINode *Phi = dyn_cast<PHINode>(Val: IncI->getOperand(i: 0)); |
678 | if (Phi && Phi->getParent() == L->getHeader()) { |
679 | if (L->isLoopInvariant(V: IncI->getOperand(i: 1))) |
680 | return Phi; |
681 | return nullptr; |
682 | } |
683 | if (IncI->getOpcode() == Instruction::GetElementPtr) |
684 | return nullptr; |
685 | |
686 | // Allow add/sub to be commuted. |
687 | Phi = dyn_cast<PHINode>(Val: IncI->getOperand(i: 1)); |
688 | if (Phi && Phi->getParent() == L->getHeader()) { |
689 | if (L->isLoopInvariant(V: IncI->getOperand(i: 0))) |
690 | return Phi; |
691 | } |
692 | return nullptr; |
693 | } |
694 | |
695 | /// Whether the current loop exit test is based on this value. Currently this |
696 | /// is limited to a direct use in the loop condition. |
697 | static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) { |
698 | BranchInst *BI = cast<BranchInst>(Val: ExitingBB->getTerminator()); |
699 | ICmpInst *ICmp = dyn_cast<ICmpInst>(Val: BI->getCondition()); |
700 | // TODO: Allow non-icmp loop test. |
701 | if (!ICmp) |
702 | return false; |
703 | |
704 | // TODO: Allow indirect use. |
705 | return ICmp->getOperand(i_nocapture: 0) == V || ICmp->getOperand(i_nocapture: 1) == V; |
706 | } |
707 | |
708 | /// linearFunctionTestReplace policy. Return true unless we can show that the |
709 | /// current exit test is already sufficiently canonical. |
710 | static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) { |
711 | assert(L->getLoopLatch() && "Must be in simplified form" ); |
712 | |
713 | // Avoid converting a constant or loop invariant test back to a runtime |
714 | // test. This is critical for when SCEV's cached ExitCount is less precise |
715 | // than the current IR (such as after we've proven a particular exit is |
716 | // actually dead and thus the BE count never reaches our ExitCount.) |
717 | BranchInst *BI = cast<BranchInst>(Val: ExitingBB->getTerminator()); |
718 | if (L->isLoopInvariant(V: BI->getCondition())) |
719 | return false; |
720 | |
721 | // Do LFTR to simplify the exit condition to an ICMP. |
722 | ICmpInst *Cond = dyn_cast<ICmpInst>(Val: BI->getCondition()); |
723 | if (!Cond) |
724 | return true; |
725 | |
726 | // Do LFTR to simplify the exit ICMP to EQ/NE |
727 | ICmpInst::Predicate Pred = Cond->getPredicate(); |
728 | if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) |
729 | return true; |
730 | |
731 | // Look for a loop invariant RHS |
732 | Value *LHS = Cond->getOperand(i_nocapture: 0); |
733 | Value *RHS = Cond->getOperand(i_nocapture: 1); |
734 | if (!L->isLoopInvariant(V: RHS)) { |
735 | if (!L->isLoopInvariant(V: LHS)) |
736 | return true; |
737 | std::swap(a&: LHS, b&: RHS); |
738 | } |
739 | // Look for a simple IV counter LHS |
740 | PHINode *Phi = dyn_cast<PHINode>(Val: LHS); |
741 | if (!Phi) |
742 | Phi = getLoopPhiForCounter(IncV: LHS, L); |
743 | |
744 | if (!Phi) |
745 | return true; |
746 | |
747 | // Do LFTR if PHI node is defined in the loop, but is *not* a counter. |
748 | int Idx = Phi->getBasicBlockIndex(BB: L->getLoopLatch()); |
749 | if (Idx < 0) |
750 | return true; |
751 | |
752 | // Do LFTR if the exit condition's IV is *not* a simple counter. |
753 | Value *IncV = Phi->getIncomingValue(i: Idx); |
754 | return Phi != getLoopPhiForCounter(IncV, L); |
755 | } |
756 | |
757 | /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils |
758 | /// down to checking that all operands are constant and listing instructions |
759 | /// that may hide undef. |
760 | static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, |
761 | unsigned Depth) { |
762 | if (isa<Constant>(Val: V)) |
763 | return !isa<UndefValue>(Val: V); |
764 | |
765 | if (Depth >= 6) |
766 | return false; |
767 | |
768 | // Conservatively handle non-constant non-instructions. For example, Arguments |
769 | // may be undef. |
770 | Instruction *I = dyn_cast<Instruction>(Val: V); |
771 | if (!I) |
772 | return false; |
773 | |
774 | // Load and return values may be undef. |
775 | if(I->mayReadFromMemory() || isa<CallInst>(Val: I) || isa<InvokeInst>(Val: I)) |
776 | return false; |
777 | |
778 | // Optimistically handle other instructions. |
779 | for (Value *Op : I->operands()) { |
780 | if (!Visited.insert(Ptr: Op).second) |
781 | continue; |
782 | if (!hasConcreteDefImpl(V: Op, Visited, Depth: Depth+1)) |
783 | return false; |
784 | } |
785 | return true; |
786 | } |
787 | |
788 | /// Return true if the given value is concrete. We must prove that undef can |
789 | /// never reach it. |
790 | /// |
791 | /// TODO: If we decide that this is a good approach to checking for undef, we |
792 | /// may factor it into a common location. |
793 | static bool hasConcreteDef(Value *V) { |
794 | SmallPtrSet<Value*, 8> Visited; |
795 | Visited.insert(Ptr: V); |
796 | return hasConcreteDefImpl(V, Visited, Depth: 0); |
797 | } |
798 | |
799 | /// Return true if the given phi is a "counter" in L. A counter is an |
800 | /// add recurance (of integer or pointer type) with an arbitrary start, and a |
801 | /// step of 1. Note that L must have exactly one latch. |
802 | static bool isLoopCounter(PHINode* Phi, Loop *L, |
803 | ScalarEvolution *SE) { |
804 | assert(Phi->getParent() == L->getHeader()); |
805 | assert(L->getLoopLatch()); |
806 | |
807 | if (!SE->isSCEVable(Ty: Phi->getType())) |
808 | return false; |
809 | |
810 | const SCEV *S = SE->getSCEV(V: Phi); |
811 | if (!match(S, P: m_scev_AffineAddRec(Op0: m_SCEV(), Op1: m_scev_One(), L: m_SpecificLoop(L)))) |
812 | return false; |
813 | |
814 | int LatchIdx = Phi->getBasicBlockIndex(BB: L->getLoopLatch()); |
815 | Value *IncV = Phi->getIncomingValue(i: LatchIdx); |
816 | return (getLoopPhiForCounter(IncV, L) == Phi && |
817 | isa<SCEVAddRecExpr>(Val: SE->getSCEV(V: IncV))); |
818 | } |
819 | |
820 | /// Search the loop header for a loop counter (anadd rec w/step of one) |
821 | /// suitable for use by LFTR. If multiple counters are available, select the |
822 | /// "best" one based profitable heuristics. |
823 | /// |
824 | /// BECount may be an i8* pointer type. The pointer difference is already |
825 | /// valid count without scaling the address stride, so it remains a pointer |
826 | /// expression as far as SCEV is concerned. |
827 | static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB, |
828 | const SCEV *BECount, |
829 | ScalarEvolution *SE, DominatorTree *DT) { |
830 | uint64_t BCWidth = SE->getTypeSizeInBits(Ty: BECount->getType()); |
831 | |
832 | Value *Cond = cast<BranchInst>(Val: ExitingBB->getTerminator())->getCondition(); |
833 | |
834 | // Loop over all of the PHI nodes, looking for a simple counter. |
835 | PHINode *BestPhi = nullptr; |
836 | const SCEV *BestInit = nullptr; |
837 | BasicBlock *LatchBlock = L->getLoopLatch(); |
838 | assert(LatchBlock && "Must be in simplified form" ); |
839 | const DataLayout &DL = L->getHeader()->getDataLayout(); |
840 | |
841 | for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(Val: I); ++I) { |
842 | PHINode *Phi = cast<PHINode>(Val&: I); |
843 | if (!isLoopCounter(Phi, L, SE)) |
844 | continue; |
845 | |
846 | const auto *AR = cast<SCEVAddRecExpr>(Val: SE->getSCEV(V: Phi)); |
847 | |
848 | // AR may be a pointer type, while BECount is an integer type. |
849 | // AR may be wider than BECount. With eq/ne tests overflow is immaterial. |
850 | // AR may not be a narrower type, or we may never exit. |
851 | uint64_t PhiWidth = SE->getTypeSizeInBits(Ty: AR->getType()); |
852 | if (PhiWidth < BCWidth || !DL.isLegalInteger(Width: PhiWidth)) |
853 | continue; |
854 | |
855 | // Avoid reusing a potentially undef value to compute other values that may |
856 | // have originally had a concrete definition. |
857 | if (!hasConcreteDef(V: Phi)) { |
858 | // We explicitly allow unknown phis as long as they are already used by |
859 | // the loop exit test. This is legal since performing LFTR could not |
860 | // increase the number of undef users. |
861 | Value *IncPhi = Phi->getIncomingValueForBlock(BB: LatchBlock); |
862 | if (!isLoopExitTestBasedOn(V: Phi, ExitingBB) && |
863 | !isLoopExitTestBasedOn(V: IncPhi, ExitingBB)) |
864 | continue; |
865 | } |
866 | |
867 | // Avoid introducing undefined behavior due to poison which didn't exist in |
868 | // the original program. (Annoyingly, the rules for poison and undef |
869 | // propagation are distinct, so this does NOT cover the undef case above.) |
870 | // We have to ensure that we don't introduce UB by introducing a use on an |
871 | // iteration where said IV produces poison. Our strategy here differs for |
872 | // pointers and integer IVs. For integers, we strip and reinfer as needed, |
873 | // see code in linearFunctionTestReplace. For pointers, we restrict |
874 | // transforms as there is no good way to reinfer inbounds once lost. |
875 | if (!Phi->getType()->isIntegerTy() && |
876 | !mustExecuteUBIfPoisonOnPathTo(Root: Phi, OnPathTo: ExitingBB->getTerminator(), DT)) |
877 | continue; |
878 | |
879 | const SCEV *Init = AR->getStart(); |
880 | |
881 | if (BestPhi && !isAlmostDeadIV(IV: BestPhi, LatchBlock, Cond)) { |
882 | // Don't force a live loop counter if another IV can be used. |
883 | if (isAlmostDeadIV(IV: Phi, LatchBlock, Cond)) |
884 | continue; |
885 | |
886 | // Prefer to count-from-zero. This is a more "canonical" counter form. It |
887 | // also prefers integer to pointer IVs. |
888 | if (BestInit->isZero() != Init->isZero()) { |
889 | if (BestInit->isZero()) |
890 | continue; |
891 | } |
892 | // If two IVs both count from zero or both count from nonzero then the |
893 | // narrower is likely a dead phi that has been widened. Use the wider phi |
894 | // to allow the other to be eliminated. |
895 | else if (PhiWidth <= SE->getTypeSizeInBits(Ty: BestPhi->getType())) |
896 | continue; |
897 | } |
898 | BestPhi = Phi; |
899 | BestInit = Init; |
900 | } |
901 | return BestPhi; |
902 | } |
903 | |
904 | /// Insert an IR expression which computes the value held by the IV IndVar |
905 | /// (which must be an loop counter w/unit stride) after the backedge of loop L |
906 | /// is taken ExitCount times. |
907 | static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB, |
908 | const SCEV *ExitCount, bool UsePostInc, Loop *L, |
909 | SCEVExpander &Rewriter, ScalarEvolution *SE) { |
910 | assert(isLoopCounter(IndVar, L, SE)); |
911 | assert(ExitCount->getType()->isIntegerTy() && "exit count must be integer" ); |
912 | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(Val: SE->getSCEV(V: IndVar)); |
913 | assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride" ); |
914 | |
915 | // For integer IVs, truncate the IV before computing the limit unless we |
916 | // know apriori that the limit must be a constant when evaluated in the |
917 | // bitwidth of the IV. We prefer (potentially) keeping a truncate of the |
918 | // IV in the loop over a (potentially) expensive expansion of the widened |
919 | // exit count add(zext(add)) expression. |
920 | if (IndVar->getType()->isIntegerTy() && |
921 | SE->getTypeSizeInBits(Ty: AR->getType()) > |
922 | SE->getTypeSizeInBits(Ty: ExitCount->getType())) { |
923 | const SCEV *IVInit = AR->getStart(); |
924 | if (!isa<SCEVConstant>(Val: IVInit) || !isa<SCEVConstant>(Val: ExitCount)) |
925 | AR = cast<SCEVAddRecExpr>(Val: SE->getTruncateExpr(Op: AR, Ty: ExitCount->getType())); |
926 | } |
927 | |
928 | const SCEVAddRecExpr *ARBase = UsePostInc ? AR->getPostIncExpr(SE&: *SE) : AR; |
929 | const SCEV *IVLimit = ARBase->evaluateAtIteration(It: ExitCount, SE&: *SE); |
930 | assert(SE->isLoopInvariant(IVLimit, L) && |
931 | "Computed iteration count is not loop invariant!" ); |
932 | return Rewriter.expandCodeFor(SH: IVLimit, Ty: ARBase->getType(), |
933 | I: ExitingBB->getTerminator()); |
934 | } |
935 | |
936 | /// This method rewrites the exit condition of the loop to be a canonical != |
937 | /// comparison against the incremented loop induction variable. This pass is |
938 | /// able to rewrite the exit tests of any loop where the SCEV analysis can |
939 | /// determine a loop-invariant trip count of the loop, which is actually a much |
940 | /// broader range than just linear tests. |
941 | bool IndVarSimplify:: |
942 | linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, |
943 | const SCEV *ExitCount, |
944 | PHINode *IndVar, SCEVExpander &Rewriter) { |
945 | assert(L->getLoopLatch() && "Loop no longer in simplified form?" ); |
946 | assert(isLoopCounter(IndVar, L, SE)); |
947 | Instruction * const IncVar = |
948 | cast<Instruction>(Val: IndVar->getIncomingValueForBlock(BB: L->getLoopLatch())); |
949 | |
950 | // Initialize CmpIndVar to the preincremented IV. |
951 | Value *CmpIndVar = IndVar; |
952 | bool UsePostInc = false; |
953 | |
954 | // If the exiting block is the same as the backedge block, we prefer to |
955 | // compare against the post-incremented value, otherwise we must compare |
956 | // against the preincremented value. |
957 | if (ExitingBB == L->getLoopLatch()) { |
958 | // For pointer IVs, we chose to not strip inbounds which requires us not |
959 | // to add a potentially UB introducing use. We need to either a) show |
960 | // the loop test we're modifying is already in post-inc form, or b) show |
961 | // that adding a use must not introduce UB. |
962 | bool SafeToPostInc = |
963 | IndVar->getType()->isIntegerTy() || |
964 | isLoopExitTestBasedOn(V: IncVar, ExitingBB) || |
965 | mustExecuteUBIfPoisonOnPathTo(Root: IncVar, OnPathTo: ExitingBB->getTerminator(), DT); |
966 | if (SafeToPostInc) { |
967 | UsePostInc = true; |
968 | CmpIndVar = IncVar; |
969 | } |
970 | } |
971 | |
972 | // It may be necessary to drop nowrap flags on the incrementing instruction |
973 | // if either LFTR moves from a pre-inc check to a post-inc check (in which |
974 | // case the increment might have previously been poison on the last iteration |
975 | // only) or if LFTR switches to a different IV that was previously dynamically |
976 | // dead (and as such may be arbitrarily poison). We remove any nowrap flags |
977 | // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc |
978 | // check), because the pre-inc addrec flags may be adopted from the original |
979 | // instruction, while SCEV has to explicitly prove the post-inc nowrap flags. |
980 | // TODO: This handling is inaccurate for one case: If we switch to a |
981 | // dynamically dead IV that wraps on the first loop iteration only, which is |
982 | // not covered by the post-inc addrec. (If the new IV was not dynamically |
983 | // dead, it could not be poison on the first iteration in the first place.) |
984 | if (auto *BO = dyn_cast<BinaryOperator>(Val: IncVar)) { |
985 | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(Val: SE->getSCEV(V: IncVar)); |
986 | if (BO->hasNoUnsignedWrap()) |
987 | BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap()); |
988 | if (BO->hasNoSignedWrap()) |
989 | BO->setHasNoSignedWrap(AR->hasNoSignedWrap()); |
990 | } |
991 | |
992 | Value *ExitCnt = genLoopLimit( |
993 | IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE); |
994 | assert(ExitCnt->getType()->isPointerTy() == |
995 | IndVar->getType()->isPointerTy() && |
996 | "genLoopLimit missed a cast" ); |
997 | |
998 | // Insert a new icmp_ne or icmp_eq instruction before the branch. |
999 | BranchInst *BI = cast<BranchInst>(Val: ExitingBB->getTerminator()); |
1000 | ICmpInst::Predicate P; |
1001 | if (L->contains(BB: BI->getSuccessor(i: 0))) |
1002 | P = ICmpInst::ICMP_NE; |
1003 | else |
1004 | P = ICmpInst::ICMP_EQ; |
1005 | |
1006 | IRBuilder<> Builder(BI); |
1007 | |
1008 | // The new loop exit condition should reuse the debug location of the |
1009 | // original loop exit condition. |
1010 | if (auto *Cond = dyn_cast<Instruction>(Val: BI->getCondition())) |
1011 | Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); |
1012 | |
1013 | // For integer IVs, if we evaluated the limit in the narrower bitwidth to |
1014 | // avoid the expensive expansion of the limit expression in the wider type, |
1015 | // emit a truncate to narrow the IV to the ExitCount type. This is safe |
1016 | // since we know (from the exit count bitwidth), that we can't self-wrap in |
1017 | // the narrower type. |
1018 | unsigned CmpIndVarSize = SE->getTypeSizeInBits(Ty: CmpIndVar->getType()); |
1019 | unsigned ExitCntSize = SE->getTypeSizeInBits(Ty: ExitCnt->getType()); |
1020 | if (CmpIndVarSize > ExitCntSize) { |
1021 | assert(!CmpIndVar->getType()->isPointerTy() && |
1022 | !ExitCnt->getType()->isPointerTy()); |
1023 | |
1024 | // Before resorting to actually inserting the truncate, use the same |
1025 | // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend |
1026 | // the other side of the comparison instead. We still evaluate the limit |
1027 | // in the narrower bitwidth, we just prefer a zext/sext outside the loop to |
1028 | // a truncate within in. |
1029 | bool Extended = false; |
1030 | const SCEV *IV = SE->getSCEV(V: CmpIndVar); |
1031 | const SCEV *TruncatedIV = SE->getTruncateExpr(Op: IV, Ty: ExitCnt->getType()); |
1032 | const SCEV *ZExtTrunc = |
1033 | SE->getZeroExtendExpr(Op: TruncatedIV, Ty: CmpIndVar->getType()); |
1034 | |
1035 | if (ZExtTrunc == IV) { |
1036 | Extended = true; |
1037 | ExitCnt = Builder.CreateZExt(V: ExitCnt, DestTy: IndVar->getType(), |
1038 | Name: "wide.trip.count" ); |
1039 | } else { |
1040 | const SCEV *SExtTrunc = |
1041 | SE->getSignExtendExpr(Op: TruncatedIV, Ty: CmpIndVar->getType()); |
1042 | if (SExtTrunc == IV) { |
1043 | Extended = true; |
1044 | ExitCnt = Builder.CreateSExt(V: ExitCnt, DestTy: IndVar->getType(), |
1045 | Name: "wide.trip.count" ); |
1046 | } |
1047 | } |
1048 | |
1049 | if (Extended) { |
1050 | bool Discard; |
1051 | L->makeLoopInvariant(V: ExitCnt, Changed&: Discard); |
1052 | } else |
1053 | CmpIndVar = Builder.CreateTrunc(V: CmpIndVar, DestTy: ExitCnt->getType(), |
1054 | Name: "lftr.wideiv" ); |
1055 | } |
1056 | LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" |
1057 | << " LHS:" << *CmpIndVar << '\n' |
1058 | << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==" ) |
1059 | << "\n" |
1060 | << " RHS:\t" << *ExitCnt << "\n" |
1061 | << "ExitCount:\t" << *ExitCount << "\n" |
1062 | << " was: " << *BI->getCondition() << "\n" ); |
1063 | |
1064 | Value *Cond = Builder.CreateICmp(P, LHS: CmpIndVar, RHS: ExitCnt, Name: "exitcond" ); |
1065 | Value *OrigCond = BI->getCondition(); |
1066 | // It's tempting to use replaceAllUsesWith here to fully replace the old |
1067 | // comparison, but that's not immediately safe, since users of the old |
1068 | // comparison may not be dominated by the new comparison. Instead, just |
1069 | // update the branch to use the new comparison; in the common case this |
1070 | // will make old comparison dead. |
1071 | BI->setCondition(Cond); |
1072 | DeadInsts.emplace_back(Args&: OrigCond); |
1073 | |
1074 | ++NumLFTR; |
1075 | return true; |
1076 | } |
1077 | |
1078 | //===----------------------------------------------------------------------===// |
1079 | // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. |
1080 | //===----------------------------------------------------------------------===// |
1081 | |
1082 | /// If there's a single exit block, sink any loop-invariant values that |
1083 | /// were defined in the preheader but not used inside the loop into the |
1084 | /// exit block to reduce register pressure in the loop. |
1085 | bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { |
1086 | BasicBlock *ExitBlock = L->getExitBlock(); |
1087 | if (!ExitBlock) return false; |
1088 | |
1089 | BasicBlock * = L->getLoopPreheader(); |
1090 | if (!Preheader) return false; |
1091 | |
1092 | bool MadeAnyChanges = false; |
1093 | for (Instruction &I : llvm::make_early_inc_range(Range: llvm::reverse(C&: *Preheader))) { |
1094 | |
1095 | // Skip BB Terminator. |
1096 | if (Preheader->getTerminator() == &I) |
1097 | continue; |
1098 | |
1099 | // New instructions were inserted at the end of the preheader. |
1100 | if (isa<PHINode>(Val: I)) |
1101 | break; |
1102 | |
1103 | // Don't move instructions which might have side effects, since the side |
1104 | // effects need to complete before instructions inside the loop. Also don't |
1105 | // move instructions which might read memory, since the loop may modify |
1106 | // memory. Note that it's okay if the instruction might have undefined |
1107 | // behavior: LoopSimplify guarantees that the preheader dominates the exit |
1108 | // block. |
1109 | if (I.mayHaveSideEffects() || I.mayReadFromMemory()) |
1110 | continue; |
1111 | |
1112 | // Skip debug or pseudo instructions. |
1113 | if (I.isDebugOrPseudoInst()) |
1114 | continue; |
1115 | |
1116 | // Skip eh pad instructions. |
1117 | if (I.isEHPad()) |
1118 | continue; |
1119 | |
1120 | // Don't sink alloca: we never want to sink static alloca's out of the |
1121 | // entry block, and correctly sinking dynamic alloca's requires |
1122 | // checks for stacksave/stackrestore intrinsics. |
1123 | // FIXME: Refactor this check somehow? |
1124 | if (isa<AllocaInst>(Val: &I)) |
1125 | continue; |
1126 | |
1127 | // Determine if there is a use in or before the loop (direct or |
1128 | // otherwise). |
1129 | bool UsedInLoop = false; |
1130 | for (Use &U : I.uses()) { |
1131 | Instruction *User = cast<Instruction>(Val: U.getUser()); |
1132 | BasicBlock *UseBB = User->getParent(); |
1133 | if (PHINode *P = dyn_cast<PHINode>(Val: User)) { |
1134 | unsigned i = |
1135 | PHINode::getIncomingValueNumForOperand(i: U.getOperandNo()); |
1136 | UseBB = P->getIncomingBlock(i); |
1137 | } |
1138 | if (UseBB == Preheader || L->contains(BB: UseBB)) { |
1139 | UsedInLoop = true; |
1140 | break; |
1141 | } |
1142 | } |
1143 | |
1144 | // If there is, the def must remain in the preheader. |
1145 | if (UsedInLoop) |
1146 | continue; |
1147 | |
1148 | // Otherwise, sink it to the exit block. |
1149 | I.moveBefore(InsertPos: ExitBlock->getFirstInsertionPt()); |
1150 | SE->forgetValue(V: &I); |
1151 | MadeAnyChanges = true; |
1152 | } |
1153 | |
1154 | return MadeAnyChanges; |
1155 | } |
1156 | |
1157 | static void replaceExitCond(BranchInst *BI, Value *NewCond, |
1158 | SmallVectorImpl<WeakTrackingVH> &DeadInsts) { |
1159 | auto *OldCond = BI->getCondition(); |
1160 | LLVM_DEBUG(dbgs() << "Replacing condition of loop-exiting branch " << *BI |
1161 | << " with " << *NewCond << "\n" ); |
1162 | BI->setCondition(NewCond); |
1163 | if (OldCond->use_empty()) |
1164 | DeadInsts.emplace_back(Args&: OldCond); |
1165 | } |
1166 | |
1167 | static Constant *createFoldedExitCond(const Loop *L, BasicBlock *ExitingBB, |
1168 | bool IsTaken) { |
1169 | BranchInst *BI = cast<BranchInst>(Val: ExitingBB->getTerminator()); |
1170 | bool ExitIfTrue = !L->contains(BB: *succ_begin(BB: ExitingBB)); |
1171 | auto *OldCond = BI->getCondition(); |
1172 | return ConstantInt::get(Ty: OldCond->getType(), |
1173 | V: IsTaken ? ExitIfTrue : !ExitIfTrue); |
1174 | } |
1175 | |
1176 | static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken, |
1177 | SmallVectorImpl<WeakTrackingVH> &DeadInsts) { |
1178 | BranchInst *BI = cast<BranchInst>(Val: ExitingBB->getTerminator()); |
1179 | auto *NewCond = createFoldedExitCond(L, ExitingBB, IsTaken); |
1180 | replaceExitCond(BI, NewCond, DeadInsts); |
1181 | } |
1182 | |
1183 | static void ( |
1184 | LoopInfo *LI, Loop *L, SmallVectorImpl<WeakTrackingVH> &DeadInsts, |
1185 | ScalarEvolution &SE) { |
1186 | assert(L->isLoopSimplifyForm() && "Should only do it in simplify form!" ); |
1187 | auto * = L->getLoopPreheader(); |
1188 | auto * = L->getHeader(); |
1189 | SmallVector<Instruction *> Worklist; |
1190 | for (auto &PN : LoopHeader->phis()) { |
1191 | auto * = PN.getIncomingValueForBlock(BB: LoopPreheader); |
1192 | for (User *U : PN.users()) |
1193 | Worklist.push_back(Elt: cast<Instruction>(Val: U)); |
1194 | SE.forgetValue(V: &PN); |
1195 | PN.replaceAllUsesWith(V: PreheaderIncoming); |
1196 | DeadInsts.emplace_back(Args: &PN); |
1197 | } |
1198 | |
1199 | // Replacing with the preheader value will often allow IV users to simplify |
1200 | // (especially if the preheader value is a constant). |
1201 | SmallPtrSet<Instruction *, 16> Visited; |
1202 | while (!Worklist.empty()) { |
1203 | auto *I = cast<Instruction>(Val: Worklist.pop_back_val()); |
1204 | if (!Visited.insert(Ptr: I).second) |
1205 | continue; |
1206 | |
1207 | // Don't simplify instructions outside the loop. |
1208 | if (!L->contains(Inst: I)) |
1209 | continue; |
1210 | |
1211 | Value *Res = simplifyInstruction(I, Q: I->getDataLayout()); |
1212 | if (Res && LI->replacementPreservesLCSSAForm(From: I, To: Res)) { |
1213 | for (User *U : I->users()) |
1214 | Worklist.push_back(Elt: cast<Instruction>(Val: U)); |
1215 | I->replaceAllUsesWith(V: Res); |
1216 | DeadInsts.emplace_back(Args&: I); |
1217 | } |
1218 | } |
1219 | } |
1220 | |
1221 | static Value * |
1222 | createInvariantCond(const Loop *L, BasicBlock *ExitingBB, |
1223 | const ScalarEvolution::LoopInvariantPredicate &LIP, |
1224 | SCEVExpander &Rewriter) { |
1225 | ICmpInst::Predicate InvariantPred = LIP.Pred; |
1226 | BasicBlock * = L->getLoopPreheader(); |
1227 | assert(Preheader && "Preheader doesn't exist" ); |
1228 | Rewriter.setInsertPoint(Preheader->getTerminator()); |
1229 | auto *LHSV = Rewriter.expandCodeFor(SH: LIP.LHS); |
1230 | auto *RHSV = Rewriter.expandCodeFor(SH: LIP.RHS); |
1231 | bool ExitIfTrue = !L->contains(BB: *succ_begin(BB: ExitingBB)); |
1232 | if (ExitIfTrue) |
1233 | InvariantPred = ICmpInst::getInversePredicate(pred: InvariantPred); |
1234 | IRBuilder<> Builder(Preheader->getTerminator()); |
1235 | BranchInst *BI = cast<BranchInst>(Val: ExitingBB->getTerminator()); |
1236 | return Builder.CreateICmp(P: InvariantPred, LHS: LHSV, RHS: RHSV, |
1237 | Name: BI->getCondition()->getName()); |
1238 | } |
1239 | |
1240 | static std::optional<Value *> |
1241 | createReplacement(ICmpInst *ICmp, const Loop *L, BasicBlock *ExitingBB, |
1242 | const SCEV *MaxIter, bool Inverted, bool SkipLastIter, |
1243 | ScalarEvolution *SE, SCEVExpander &Rewriter) { |
1244 | CmpPredicate Pred = ICmp->getCmpPredicate(); |
1245 | Value *LHS = ICmp->getOperand(i_nocapture: 0); |
1246 | Value *RHS = ICmp->getOperand(i_nocapture: 1); |
1247 | |
1248 | // 'LHS pred RHS' should now mean that we stay in loop. |
1249 | auto *BI = cast<BranchInst>(Val: ExitingBB->getTerminator()); |
1250 | if (Inverted) |
1251 | Pred = ICmpInst::getInverseCmpPredicate(Pred); |
1252 | |
1253 | const SCEV *LHSS = SE->getSCEVAtScope(V: LHS, L); |
1254 | const SCEV *RHSS = SE->getSCEVAtScope(V: RHS, L); |
1255 | // Can we prove it to be trivially true or false? |
1256 | if (auto EV = SE->evaluatePredicateAt(Pred, LHS: LHSS, RHS: RHSS, CtxI: BI)) |
1257 | return createFoldedExitCond(L, ExitingBB, /*IsTaken*/ !*EV); |
1258 | |
1259 | auto *ARTy = LHSS->getType(); |
1260 | auto *MaxIterTy = MaxIter->getType(); |
1261 | // If possible, adjust types. |
1262 | if (SE->getTypeSizeInBits(Ty: ARTy) > SE->getTypeSizeInBits(Ty: MaxIterTy)) |
1263 | MaxIter = SE->getZeroExtendExpr(Op: MaxIter, Ty: ARTy); |
1264 | else if (SE->getTypeSizeInBits(Ty: ARTy) < SE->getTypeSizeInBits(Ty: MaxIterTy)) { |
1265 | const SCEV *MinusOne = SE->getMinusOne(Ty: ARTy); |
1266 | const SCEV *MaxAllowedIter = SE->getZeroExtendExpr(Op: MinusOne, Ty: MaxIterTy); |
1267 | if (SE->isKnownPredicateAt(Pred: ICmpInst::ICMP_ULE, LHS: MaxIter, RHS: MaxAllowedIter, CtxI: BI)) |
1268 | MaxIter = SE->getTruncateExpr(Op: MaxIter, Ty: ARTy); |
1269 | } |
1270 | |
1271 | if (SkipLastIter) { |
1272 | // Semantically skip last iter is "subtract 1, do not bother about unsigned |
1273 | // wrap". getLoopInvariantExitCondDuringFirstIterations knows how to deal |
1274 | // with umin in a smart way, but umin(a, b) - 1 will likely not simplify. |
1275 | // So we manually construct umin(a - 1, b - 1). |
1276 | SmallVector<const SCEV *, 4> Elements; |
1277 | if (auto *UMin = dyn_cast<SCEVUMinExpr>(Val: MaxIter)) { |
1278 | for (const SCEV *Op : UMin->operands()) |
1279 | Elements.push_back(Elt: SE->getMinusSCEV(LHS: Op, RHS: SE->getOne(Ty: Op->getType()))); |
1280 | MaxIter = SE->getUMinFromMismatchedTypes(Ops&: Elements); |
1281 | } else |
1282 | MaxIter = SE->getMinusSCEV(LHS: MaxIter, RHS: SE->getOne(Ty: MaxIter->getType())); |
1283 | } |
1284 | |
1285 | // Check if there is a loop-invariant predicate equivalent to our check. |
1286 | auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHS: LHSS, RHS: RHSS, |
1287 | L, CtxI: BI, MaxIter); |
1288 | if (!LIP) |
1289 | return std::nullopt; |
1290 | |
1291 | // Can we prove it to be trivially true? |
1292 | if (SE->isKnownPredicateAt(Pred: LIP->Pred, LHS: LIP->LHS, RHS: LIP->RHS, CtxI: BI)) |
1293 | return createFoldedExitCond(L, ExitingBB, /*IsTaken*/ false); |
1294 | else |
1295 | return createInvariantCond(L, ExitingBB, LIP: *LIP, Rewriter); |
1296 | } |
1297 | |
1298 | static bool optimizeLoopExitWithUnknownExitCount( |
1299 | const Loop *L, BranchInst *BI, BasicBlock *ExitingBB, const SCEV *MaxIter, |
1300 | bool SkipLastIter, ScalarEvolution *SE, SCEVExpander &Rewriter, |
1301 | SmallVectorImpl<WeakTrackingVH> &DeadInsts) { |
1302 | assert( |
1303 | (L->contains(BI->getSuccessor(0)) != L->contains(BI->getSuccessor(1))) && |
1304 | "Not a loop exit!" ); |
1305 | |
1306 | // For branch that stays in loop by TRUE condition, go through AND. For branch |
1307 | // that stays in loop by FALSE condition, go through OR. Both gives the |
1308 | // similar logic: "stay in loop iff all conditions are true(false)". |
1309 | bool Inverted = L->contains(BB: BI->getSuccessor(i: 1)); |
1310 | SmallVector<ICmpInst *, 4> LeafConditions; |
1311 | SmallVector<Value *, 4> Worklist; |
1312 | SmallPtrSet<Value *, 4> Visited; |
1313 | Value *OldCond = BI->getCondition(); |
1314 | Visited.insert(Ptr: OldCond); |
1315 | Worklist.push_back(Elt: OldCond); |
1316 | |
1317 | auto GoThrough = [&](Value *V) { |
1318 | Value *LHS = nullptr, *RHS = nullptr; |
1319 | if (Inverted) { |
1320 | if (!match(V, P: m_LogicalOr(L: m_Value(V&: LHS), R: m_Value(V&: RHS)))) |
1321 | return false; |
1322 | } else { |
1323 | if (!match(V, P: m_LogicalAnd(L: m_Value(V&: LHS), R: m_Value(V&: RHS)))) |
1324 | return false; |
1325 | } |
1326 | if (Visited.insert(Ptr: LHS).second) |
1327 | Worklist.push_back(Elt: LHS); |
1328 | if (Visited.insert(Ptr: RHS).second) |
1329 | Worklist.push_back(Elt: RHS); |
1330 | return true; |
1331 | }; |
1332 | |
1333 | do { |
1334 | Value *Curr = Worklist.pop_back_val(); |
1335 | // Go through AND/OR conditions. Collect leaf ICMPs. We only care about |
1336 | // those with one use, to avoid instruction duplication. |
1337 | if (Curr->hasOneUse()) |
1338 | if (!GoThrough(Curr)) |
1339 | if (auto *ICmp = dyn_cast<ICmpInst>(Val: Curr)) |
1340 | LeafConditions.push_back(Elt: ICmp); |
1341 | } while (!Worklist.empty()); |
1342 | |
1343 | // If the current basic block has the same exit count as the whole loop, and |
1344 | // it consists of multiple icmp's, try to collect all icmp's that give exact |
1345 | // same exit count. For all other icmp's, we could use one less iteration, |
1346 | // because their value on the last iteration doesn't really matter. |
1347 | SmallPtrSet<ICmpInst *, 4> ICmpsFailingOnLastIter; |
1348 | if (!SkipLastIter && LeafConditions.size() > 1 && |
1349 | SE->getExitCount(L, ExitingBlock: ExitingBB, |
1350 | Kind: ScalarEvolution::ExitCountKind::SymbolicMaximum) == |
1351 | MaxIter) |
1352 | for (auto *ICmp : LeafConditions) { |
1353 | auto EL = SE->computeExitLimitFromCond(L, ExitCond: ICmp, ExitIfTrue: Inverted, |
1354 | /*ControlsExit*/ ControlsOnlyExit: false); |
1355 | const SCEV *ExitMax = EL.SymbolicMaxNotTaken; |
1356 | if (isa<SCEVCouldNotCompute>(Val: ExitMax)) |
1357 | continue; |
1358 | // They could be of different types (specifically this happens after |
1359 | // IV widening). |
1360 | auto *WiderType = |
1361 | SE->getWiderType(Ty1: ExitMax->getType(), Ty2: MaxIter->getType()); |
1362 | const SCEV *WideExitMax = SE->getNoopOrZeroExtend(V: ExitMax, Ty: WiderType); |
1363 | const SCEV *WideMaxIter = SE->getNoopOrZeroExtend(V: MaxIter, Ty: WiderType); |
1364 | if (WideExitMax == WideMaxIter) |
1365 | ICmpsFailingOnLastIter.insert(Ptr: ICmp); |
1366 | } |
1367 | |
1368 | bool Changed = false; |
1369 | for (auto *OldCond : LeafConditions) { |
1370 | // Skip last iteration for this icmp under one of two conditions: |
1371 | // - We do it for all conditions; |
1372 | // - There is another ICmp that would fail on last iter, so this one doesn't |
1373 | // really matter. |
1374 | bool OptimisticSkipLastIter = SkipLastIter; |
1375 | if (!OptimisticSkipLastIter) { |
1376 | if (ICmpsFailingOnLastIter.size() > 1) |
1377 | OptimisticSkipLastIter = true; |
1378 | else if (ICmpsFailingOnLastIter.size() == 1) |
1379 | OptimisticSkipLastIter = !ICmpsFailingOnLastIter.count(Ptr: OldCond); |
1380 | } |
1381 | if (auto Replaced = |
1382 | createReplacement(ICmp: OldCond, L, ExitingBB, MaxIter, Inverted, |
1383 | SkipLastIter: OptimisticSkipLastIter, SE, Rewriter)) { |
1384 | Changed = true; |
1385 | auto *NewCond = *Replaced; |
1386 | if (auto *NCI = dyn_cast<Instruction>(Val: NewCond)) { |
1387 | NCI->setName(OldCond->getName() + ".first_iter" ); |
1388 | } |
1389 | LLVM_DEBUG(dbgs() << "Unknown exit count: Replacing " << *OldCond |
1390 | << " with " << *NewCond << "\n" ); |
1391 | assert(OldCond->hasOneUse() && "Must be!" ); |
1392 | OldCond->replaceAllUsesWith(V: NewCond); |
1393 | DeadInsts.push_back(Elt: OldCond); |
1394 | // Make sure we no longer consider this condition as failing on last |
1395 | // iteration. |
1396 | ICmpsFailingOnLastIter.erase(Ptr: OldCond); |
1397 | } |
1398 | } |
1399 | return Changed; |
1400 | } |
1401 | |
1402 | bool IndVarSimplify::canonicalizeExitCondition(Loop *L) { |
1403 | // Note: This is duplicating a particular part on SimplifyIndVars reasoning. |
1404 | // We need to duplicate it because given icmp zext(small-iv), C, IVUsers |
1405 | // never reaches the icmp since the zext doesn't fold to an AddRec unless |
1406 | // it already has flags. The alternative to this would be to extending the |
1407 | // set of "interesting" IV users to include the icmp, but doing that |
1408 | // regresses results in practice by querying SCEVs before trip counts which |
1409 | // rely on them which results in SCEV caching sub-optimal answers. The |
1410 | // concern about caching sub-optimal results is why we only query SCEVs of |
1411 | // the loop invariant RHS here. |
1412 | SmallVector<BasicBlock*, 16> ExitingBlocks; |
1413 | L->getExitingBlocks(ExitingBlocks); |
1414 | bool Changed = false; |
1415 | for (auto *ExitingBB : ExitingBlocks) { |
1416 | auto *BI = dyn_cast<BranchInst>(Val: ExitingBB->getTerminator()); |
1417 | if (!BI) |
1418 | continue; |
1419 | assert(BI->isConditional() && "exit branch must be conditional" ); |
1420 | |
1421 | auto *ICmp = dyn_cast<ICmpInst>(Val: BI->getCondition()); |
1422 | if (!ICmp || !ICmp->hasOneUse()) |
1423 | continue; |
1424 | |
1425 | auto *LHS = ICmp->getOperand(i_nocapture: 0); |
1426 | auto *RHS = ICmp->getOperand(i_nocapture: 1); |
1427 | // For the range reasoning, avoid computing SCEVs in the loop to avoid |
1428 | // poisoning cache with sub-optimal results. For the must-execute case, |
1429 | // this is a neccessary precondition for correctness. |
1430 | if (!L->isLoopInvariant(V: RHS)) { |
1431 | if (!L->isLoopInvariant(V: LHS)) |
1432 | continue; |
1433 | // Same logic applies for the inverse case |
1434 | std::swap(a&: LHS, b&: RHS); |
1435 | } |
1436 | |
1437 | // Match (icmp signed-cond zext, RHS) |
1438 | Value *LHSOp = nullptr; |
1439 | if (!match(V: LHS, P: m_ZExt(Op: m_Value(V&: LHSOp))) || !ICmp->isSigned()) |
1440 | continue; |
1441 | |
1442 | const unsigned InnerBitWidth = DL.getTypeSizeInBits(Ty: LHSOp->getType()); |
1443 | const unsigned OuterBitWidth = DL.getTypeSizeInBits(Ty: RHS->getType()); |
1444 | auto FullCR = ConstantRange::getFull(BitWidth: InnerBitWidth); |
1445 | FullCR = FullCR.zeroExtend(BitWidth: OuterBitWidth); |
1446 | auto RHSCR = SE->getUnsignedRange(S: SE->applyLoopGuards(Expr: SE->getSCEV(V: RHS), L)); |
1447 | if (FullCR.contains(CR: RHSCR)) { |
1448 | // We have now matched icmp signed-cond zext(X), zext(Y'), and can thus |
1449 | // replace the signed condition with the unsigned version. |
1450 | ICmp->setPredicate(ICmp->getUnsignedPredicate()); |
1451 | Changed = true; |
1452 | // Note: No SCEV invalidation needed. We've changed the predicate, but |
1453 | // have not changed exit counts, or the values produced by the compare. |
1454 | continue; |
1455 | } |
1456 | } |
1457 | |
1458 | // Now that we've canonicalized the condition to match the extend, |
1459 | // see if we can rotate the extend out of the loop. |
1460 | for (auto *ExitingBB : ExitingBlocks) { |
1461 | auto *BI = dyn_cast<BranchInst>(Val: ExitingBB->getTerminator()); |
1462 | if (!BI) |
1463 | continue; |
1464 | assert(BI->isConditional() && "exit branch must be conditional" ); |
1465 | |
1466 | auto *ICmp = dyn_cast<ICmpInst>(Val: BI->getCondition()); |
1467 | if (!ICmp || !ICmp->hasOneUse() || !ICmp->isUnsigned()) |
1468 | continue; |
1469 | |
1470 | bool Swapped = false; |
1471 | auto *LHS = ICmp->getOperand(i_nocapture: 0); |
1472 | auto *RHS = ICmp->getOperand(i_nocapture: 1); |
1473 | if (L->isLoopInvariant(V: LHS) == L->isLoopInvariant(V: RHS)) |
1474 | // Nothing to rotate |
1475 | continue; |
1476 | if (L->isLoopInvariant(V: LHS)) { |
1477 | // Same logic applies for the inverse case until we actually pick |
1478 | // which operand of the compare to update. |
1479 | Swapped = true; |
1480 | std::swap(a&: LHS, b&: RHS); |
1481 | } |
1482 | assert(!L->isLoopInvariant(LHS) && L->isLoopInvariant(RHS)); |
1483 | |
1484 | // Match (icmp unsigned-cond zext, RHS) |
1485 | // TODO: Extend to handle corresponding sext/signed-cmp case |
1486 | // TODO: Extend to other invertible functions |
1487 | Value *LHSOp = nullptr; |
1488 | if (!match(V: LHS, P: m_ZExt(Op: m_Value(V&: LHSOp)))) |
1489 | continue; |
1490 | |
1491 | // In general, we only rotate if we can do so without increasing the number |
1492 | // of instructions. The exception is when we have an zext(add-rec). The |
1493 | // reason for allowing this exception is that we know we need to get rid |
1494 | // of the zext for SCEV to be able to compute a trip count for said loops; |
1495 | // we consider the new trip count valuable enough to increase instruction |
1496 | // count by one. |
1497 | if (!LHS->hasOneUse() && !isa<SCEVAddRecExpr>(Val: SE->getSCEV(V: LHSOp))) |
1498 | continue; |
1499 | |
1500 | // Given a icmp unsigned-cond zext(Op) where zext(trunc(RHS)) == RHS |
1501 | // replace with an icmp of the form icmp unsigned-cond Op, trunc(RHS) |
1502 | // when zext is loop varying and RHS is loop invariant. This converts |
1503 | // loop varying work to loop-invariant work. |
1504 | auto doRotateTransform = [&]() { |
1505 | assert(ICmp->isUnsigned() && "must have proven unsigned already" ); |
1506 | auto *NewRHS = CastInst::Create( |
1507 | Instruction::Trunc, S: RHS, Ty: LHSOp->getType(), Name: "" , |
1508 | InsertBefore: L->getLoopPreheader()->getTerminator()->getIterator()); |
1509 | // NewRHS is an operation that has been hoisted out of the loop, and |
1510 | // therefore should have a dropped location. |
1511 | NewRHS->setDebugLoc(DebugLoc::getDropped()); |
1512 | ICmp->setOperand(i_nocapture: Swapped ? 1 : 0, Val_nocapture: LHSOp); |
1513 | ICmp->setOperand(i_nocapture: Swapped ? 0 : 1, Val_nocapture: NewRHS); |
1514 | // Samesign flag cannot be preserved after narrowing the compare. |
1515 | ICmp->setSameSign(false); |
1516 | if (LHS->use_empty()) |
1517 | DeadInsts.push_back(Elt: LHS); |
1518 | }; |
1519 | |
1520 | const unsigned InnerBitWidth = DL.getTypeSizeInBits(Ty: LHSOp->getType()); |
1521 | const unsigned OuterBitWidth = DL.getTypeSizeInBits(Ty: RHS->getType()); |
1522 | auto FullCR = ConstantRange::getFull(BitWidth: InnerBitWidth); |
1523 | FullCR = FullCR.zeroExtend(BitWidth: OuterBitWidth); |
1524 | auto RHSCR = SE->getUnsignedRange(S: SE->applyLoopGuards(Expr: SE->getSCEV(V: RHS), L)); |
1525 | if (FullCR.contains(CR: RHSCR)) { |
1526 | doRotateTransform(); |
1527 | Changed = true; |
1528 | // Note, we are leaving SCEV in an unfortunately imprecise case here |
1529 | // as rotation tends to reveal information about trip counts not |
1530 | // previously visible. |
1531 | continue; |
1532 | } |
1533 | } |
1534 | |
1535 | return Changed; |
1536 | } |
1537 | |
1538 | bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) { |
1539 | SmallVector<BasicBlock*, 16> ExitingBlocks; |
1540 | L->getExitingBlocks(ExitingBlocks); |
1541 | |
1542 | // Remove all exits which aren't both rewriteable and execute on every |
1543 | // iteration. |
1544 | llvm::erase_if(C&: ExitingBlocks, P: [&](BasicBlock *ExitingBB) { |
1545 | // If our exitting block exits multiple loops, we can only rewrite the |
1546 | // innermost one. Otherwise, we're changing how many times the innermost |
1547 | // loop runs before it exits. |
1548 | if (LI->getLoopFor(BB: ExitingBB) != L) |
1549 | return true; |
1550 | |
1551 | // Can't rewrite non-branch yet. |
1552 | BranchInst *BI = dyn_cast<BranchInst>(Val: ExitingBB->getTerminator()); |
1553 | if (!BI) |
1554 | return true; |
1555 | |
1556 | // Likewise, the loop latch must be dominated by the exiting BB. |
1557 | if (!DT->dominates(A: ExitingBB, B: L->getLoopLatch())) |
1558 | return true; |
1559 | |
1560 | if (auto *CI = dyn_cast<ConstantInt>(Val: BI->getCondition())) { |
1561 | // If already constant, nothing to do. However, if this is an |
1562 | // unconditional exit, we can still replace header phis with their |
1563 | // preheader value. |
1564 | if (!L->contains(BB: BI->getSuccessor(i: CI->isNullValue()))) |
1565 | replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts, SE&: *SE); |
1566 | return true; |
1567 | } |
1568 | |
1569 | return false; |
1570 | }); |
1571 | |
1572 | if (ExitingBlocks.empty()) |
1573 | return false; |
1574 | |
1575 | // Get a symbolic upper bound on the loop backedge taken count. |
1576 | const SCEV *MaxBECount = SE->getSymbolicMaxBackedgeTakenCount(L); |
1577 | if (isa<SCEVCouldNotCompute>(Val: MaxBECount)) |
1578 | return false; |
1579 | |
1580 | // Visit our exit blocks in order of dominance. We know from the fact that |
1581 | // all exits must dominate the latch, so there is a total dominance order |
1582 | // between them. |
1583 | llvm::sort(C&: ExitingBlocks, Comp: [&](BasicBlock *A, BasicBlock *B) { |
1584 | // std::sort sorts in ascending order, so we want the inverse of |
1585 | // the normal dominance relation. |
1586 | if (A == B) return false; |
1587 | if (DT->properlyDominates(A, B)) |
1588 | return true; |
1589 | else { |
1590 | assert(DT->properlyDominates(B, A) && |
1591 | "expected total dominance order!" ); |
1592 | return false; |
1593 | } |
1594 | }); |
1595 | #ifdef ASSERT |
1596 | for (unsigned i = 1; i < ExitingBlocks.size(); i++) { |
1597 | assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])); |
1598 | } |
1599 | #endif |
1600 | |
1601 | bool Changed = false; |
1602 | bool SkipLastIter = false; |
1603 | const SCEV *CurrMaxExit = SE->getCouldNotCompute(); |
1604 | auto UpdateSkipLastIter = [&](const SCEV *MaxExitCount) { |
1605 | if (SkipLastIter || isa<SCEVCouldNotCompute>(Val: MaxExitCount)) |
1606 | return; |
1607 | if (isa<SCEVCouldNotCompute>(Val: CurrMaxExit)) |
1608 | CurrMaxExit = MaxExitCount; |
1609 | else |
1610 | CurrMaxExit = SE->getUMinFromMismatchedTypes(LHS: CurrMaxExit, RHS: MaxExitCount); |
1611 | // If the loop has more than 1 iteration, all further checks will be |
1612 | // executed 1 iteration less. |
1613 | if (CurrMaxExit == MaxBECount) |
1614 | SkipLastIter = true; |
1615 | }; |
1616 | SmallSet<const SCEV *, 8> DominatingExactExitCounts; |
1617 | for (BasicBlock *ExitingBB : ExitingBlocks) { |
1618 | const SCEV *ExactExitCount = SE->getExitCount(L, ExitingBlock: ExitingBB); |
1619 | const SCEV *MaxExitCount = SE->getExitCount( |
1620 | L, ExitingBlock: ExitingBB, Kind: ScalarEvolution::ExitCountKind::SymbolicMaximum); |
1621 | if (isa<SCEVCouldNotCompute>(Val: ExactExitCount)) { |
1622 | // Okay, we do not know the exit count here. Can we at least prove that it |
1623 | // will remain the same within iteration space? |
1624 | auto *BI = cast<BranchInst>(Val: ExitingBB->getTerminator()); |
1625 | auto OptimizeCond = [&](bool SkipLastIter) { |
1626 | return optimizeLoopExitWithUnknownExitCount(L, BI, ExitingBB, |
1627 | MaxIter: MaxBECount, SkipLastIter, |
1628 | SE, Rewriter, DeadInsts); |
1629 | }; |
1630 | |
1631 | // TODO: We might have proved that we can skip the last iteration for |
1632 | // this check. In this case, we only want to check the condition on the |
1633 | // pre-last iteration (MaxBECount - 1). However, there is a nasty |
1634 | // corner case: |
1635 | // |
1636 | // for (i = len; i != 0; i--) { ... check (i ult X) ... } |
1637 | // |
1638 | // If we could not prove that len != 0, then we also could not prove that |
1639 | // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then |
1640 | // OptimizeCond will likely not prove anything for it, even if it could |
1641 | // prove the same fact for len. |
1642 | // |
1643 | // As a temporary solution, we query both last and pre-last iterations in |
1644 | // hope that we will be able to prove triviality for at least one of |
1645 | // them. We can stop querying MaxBECount for this case once SCEV |
1646 | // understands that (MaxBECount - 1) will not overflow here. |
1647 | if (OptimizeCond(false)) |
1648 | Changed = true; |
1649 | else if (SkipLastIter && OptimizeCond(true)) |
1650 | Changed = true; |
1651 | UpdateSkipLastIter(MaxExitCount); |
1652 | continue; |
1653 | } |
1654 | |
1655 | UpdateSkipLastIter(ExactExitCount); |
1656 | |
1657 | // If we know we'd exit on the first iteration, rewrite the exit to |
1658 | // reflect this. This does not imply the loop must exit through this |
1659 | // exit; there may be an earlier one taken on the first iteration. |
1660 | // We know that the backedge can't be taken, so we replace all |
1661 | // the header PHIs with values coming from the preheader. |
1662 | if (ExactExitCount->isZero()) { |
1663 | foldExit(L, ExitingBB, IsTaken: true, DeadInsts); |
1664 | replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts, SE&: *SE); |
1665 | Changed = true; |
1666 | continue; |
1667 | } |
1668 | |
1669 | assert(ExactExitCount->getType()->isIntegerTy() && |
1670 | MaxBECount->getType()->isIntegerTy() && |
1671 | "Exit counts must be integers" ); |
1672 | |
1673 | Type *WiderType = |
1674 | SE->getWiderType(Ty1: MaxBECount->getType(), Ty2: ExactExitCount->getType()); |
1675 | ExactExitCount = SE->getNoopOrZeroExtend(V: ExactExitCount, Ty: WiderType); |
1676 | MaxBECount = SE->getNoopOrZeroExtend(V: MaxBECount, Ty: WiderType); |
1677 | assert(MaxBECount->getType() == ExactExitCount->getType()); |
1678 | |
1679 | // Can we prove that some other exit must be taken strictly before this |
1680 | // one? |
1681 | if (SE->isLoopEntryGuardedByCond(L, Pred: CmpInst::ICMP_ULT, LHS: MaxBECount, |
1682 | RHS: ExactExitCount)) { |
1683 | foldExit(L, ExitingBB, IsTaken: false, DeadInsts); |
1684 | Changed = true; |
1685 | continue; |
1686 | } |
1687 | |
1688 | // As we run, keep track of which exit counts we've encountered. If we |
1689 | // find a duplicate, we've found an exit which would have exited on the |
1690 | // exiting iteration, but (from the visit order) strictly follows another |
1691 | // which does the same and is thus dead. |
1692 | if (!DominatingExactExitCounts.insert(Ptr: ExactExitCount).second) { |
1693 | foldExit(L, ExitingBB, IsTaken: false, DeadInsts); |
1694 | Changed = true; |
1695 | continue; |
1696 | } |
1697 | |
1698 | // TODO: There might be another oppurtunity to leverage SCEV's reasoning |
1699 | // here. If we kept track of the min of dominanting exits so far, we could |
1700 | // discharge exits with EC >= MDEC. This is less powerful than the existing |
1701 | // transform (since later exits aren't considered), but potentially more |
1702 | // powerful for any case where SCEV can prove a >=u b, but neither a == b |
1703 | // or a >u b. Such a case is not currently known. |
1704 | } |
1705 | return Changed; |
1706 | } |
1707 | |
1708 | bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { |
1709 | SmallVector<BasicBlock*, 16> ExitingBlocks; |
1710 | L->getExitingBlocks(ExitingBlocks); |
1711 | |
1712 | // Finally, see if we can rewrite our exit conditions into a loop invariant |
1713 | // form. If we have a read-only loop, and we can tell that we must exit down |
1714 | // a path which does not need any of the values computed within the loop, we |
1715 | // can rewrite the loop to exit on the first iteration. Note that this |
1716 | // doesn't either a) tell us the loop exits on the first iteration (unless |
1717 | // *all* exits are predicateable) or b) tell us *which* exit might be taken. |
1718 | // This transformation looks a lot like a restricted form of dead loop |
1719 | // elimination, but restricted to read-only loops and without neccesssarily |
1720 | // needing to kill the loop entirely. |
1721 | if (!LoopPredication) |
1722 | return false; |
1723 | |
1724 | // Note: ExactBTC is the exact backedge taken count *iff* the loop exits |
1725 | // through *explicit* control flow. We have to eliminate the possibility of |
1726 | // implicit exits (see below) before we know it's truly exact. |
1727 | const SCEV *ExactBTC = SE->getBackedgeTakenCount(L); |
1728 | if (isa<SCEVCouldNotCompute>(Val: ExactBTC) || !Rewriter.isSafeToExpand(S: ExactBTC)) |
1729 | return false; |
1730 | |
1731 | assert(SE->isLoopInvariant(ExactBTC, L) && "BTC must be loop invariant" ); |
1732 | assert(ExactBTC->getType()->isIntegerTy() && "BTC must be integer" ); |
1733 | |
1734 | auto BadExit = [&](BasicBlock *ExitingBB) { |
1735 | // If our exiting block exits multiple loops, we can only rewrite the |
1736 | // innermost one. Otherwise, we're changing how many times the innermost |
1737 | // loop runs before it exits. |
1738 | if (LI->getLoopFor(BB: ExitingBB) != L) |
1739 | return true; |
1740 | |
1741 | // Can't rewrite non-branch yet. |
1742 | BranchInst *BI = dyn_cast<BranchInst>(Val: ExitingBB->getTerminator()); |
1743 | if (!BI) |
1744 | return true; |
1745 | |
1746 | // If already constant, nothing to do. |
1747 | if (isa<Constant>(Val: BI->getCondition())) |
1748 | return true; |
1749 | |
1750 | // If the exit block has phis, we need to be able to compute the values |
1751 | // within the loop which contains them. This assumes trivially lcssa phis |
1752 | // have already been removed; TODO: generalize |
1753 | BasicBlock *ExitBlock = |
1754 | BI->getSuccessor(i: L->contains(BB: BI->getSuccessor(i: 0)) ? 1 : 0); |
1755 | if (!ExitBlock->phis().empty()) |
1756 | return true; |
1757 | |
1758 | const SCEV *ExitCount = SE->getExitCount(L, ExitingBlock: ExitingBB); |
1759 | if (isa<SCEVCouldNotCompute>(Val: ExitCount) || |
1760 | !Rewriter.isSafeToExpand(S: ExitCount)) |
1761 | return true; |
1762 | |
1763 | assert(SE->isLoopInvariant(ExitCount, L) && |
1764 | "Exit count must be loop invariant" ); |
1765 | assert(ExitCount->getType()->isIntegerTy() && "Exit count must be integer" ); |
1766 | return false; |
1767 | }; |
1768 | |
1769 | // Make sure all exits dominate the latch. This means there is a linear chain |
1770 | // of exits. We check this before sorting so we have a total order. |
1771 | BasicBlock *Latch = L->getLoopLatch(); |
1772 | for (BasicBlock *ExitingBB : ExitingBlocks) |
1773 | if (!DT->dominates(A: ExitingBB, B: Latch)) |
1774 | return false; |
1775 | |
1776 | // If we have any exits which can't be predicated themselves, than we can't |
1777 | // predicate any exit which isn't guaranteed to execute before it. Consider |
1778 | // two exits (a) and (b) which would both exit on the same iteration. If we |
1779 | // can predicate (b), but not (a), and (a) preceeds (b) along some path, then |
1780 | // we could convert a loop from exiting through (a) to one exiting through |
1781 | // (b). Note that this problem exists only for exits with the same exit |
1782 | // count, and we could be more aggressive when exit counts are known inequal. |
1783 | llvm::sort(C&: ExitingBlocks, Comp: [&](BasicBlock *A, BasicBlock *B) { |
1784 | // llvm::sort sorts in ascending order, so we want the inverse of |
1785 | // the normal dominance relation. |
1786 | if (A == B) |
1787 | return false; |
1788 | if (DT->properlyDominates(A, B)) |
1789 | return true; |
1790 | if (DT->properlyDominates(A: B, B: A)) |
1791 | return false; |
1792 | llvm_unreachable("Should have total dominance order" ); |
1793 | }); |
1794 | |
1795 | // Make sure our exit blocks are really a total order (i.e. a linear chain of |
1796 | // exits before the backedge). |
1797 | for (unsigned i = 1; i < ExitingBlocks.size(); i++) |
1798 | assert(DT->dominates(ExitingBlocks[i - 1], ExitingBlocks[i]) && |
1799 | "Not sorted by dominance" ); |
1800 | |
1801 | // Given our sorted total order, we know that exit[j] must be evaluated |
1802 | // after all exit[i] such j > i. |
1803 | for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++) |
1804 | if (BadExit(ExitingBlocks[i])) { |
1805 | ExitingBlocks.resize(N: i); |
1806 | break; |
1807 | } |
1808 | |
1809 | if (ExitingBlocks.empty()) |
1810 | return false; |
1811 | |
1812 | // At this point, ExitingBlocks consists of only those blocks which are |
1813 | // predicatable. Given that, we know we have at least one exit we can |
1814 | // predicate if the loop is doesn't have side effects and doesn't have any |
1815 | // implicit exits (because then our exact BTC isn't actually exact). |
1816 | // @Reviewers - As structured, this is O(I^2) for loop nests. Any |
1817 | // suggestions on how to improve this? I can obviously bail out for outer |
1818 | // loops, but that seems less than ideal. MemorySSA can find memory writes, |
1819 | // is that enough for *all* side effects? |
1820 | for (BasicBlock *BB : L->blocks()) |
1821 | for (auto &I : *BB) |
1822 | // TODO:isGuaranteedToTransfer |
1823 | if (I.mayHaveSideEffects()) |
1824 | return false; |
1825 | |
1826 | bool Changed = false; |
1827 | // Finally, do the actual predication for all predicatable blocks. A couple |
1828 | // of notes here: |
1829 | // 1) We don't bother to constant fold dominated exits with identical exit |
1830 | // counts; that's simply a form of CSE/equality propagation and we leave |
1831 | // it for dedicated passes. |
1832 | // 2) We insert the comparison at the branch. Hoisting introduces additional |
1833 | // legality constraints and we leave that to dedicated logic. We want to |
1834 | // predicate even if we can't insert a loop invariant expression as |
1835 | // peeling or unrolling will likely reduce the cost of the otherwise loop |
1836 | // varying check. |
1837 | Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator()); |
1838 | IRBuilder<> B(L->getLoopPreheader()->getTerminator()); |
1839 | Value *ExactBTCV = nullptr; // Lazily generated if needed. |
1840 | for (BasicBlock *ExitingBB : ExitingBlocks) { |
1841 | const SCEV *ExitCount = SE->getExitCount(L, ExitingBlock: ExitingBB); |
1842 | |
1843 | auto *BI = cast<BranchInst>(Val: ExitingBB->getTerminator()); |
1844 | Value *NewCond; |
1845 | if (ExitCount == ExactBTC) { |
1846 | NewCond = L->contains(BB: BI->getSuccessor(i: 0)) ? |
1847 | B.getFalse() : B.getTrue(); |
1848 | } else { |
1849 | Value *ECV = Rewriter.expandCodeFor(SH: ExitCount); |
1850 | if (!ExactBTCV) |
1851 | ExactBTCV = Rewriter.expandCodeFor(SH: ExactBTC); |
1852 | Value *RHS = ExactBTCV; |
1853 | if (ECV->getType() != RHS->getType()) { |
1854 | Type *WiderTy = SE->getWiderType(Ty1: ECV->getType(), Ty2: RHS->getType()); |
1855 | ECV = B.CreateZExt(V: ECV, DestTy: WiderTy); |
1856 | RHS = B.CreateZExt(V: RHS, DestTy: WiderTy); |
1857 | } |
1858 | auto Pred = L->contains(BB: BI->getSuccessor(i: 0)) ? |
1859 | ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; |
1860 | NewCond = B.CreateICmp(P: Pred, LHS: ECV, RHS); |
1861 | } |
1862 | Value *OldCond = BI->getCondition(); |
1863 | BI->setCondition(NewCond); |
1864 | if (OldCond->use_empty()) |
1865 | DeadInsts.emplace_back(Args&: OldCond); |
1866 | Changed = true; |
1867 | RunUnswitching = true; |
1868 | } |
1869 | |
1870 | return Changed; |
1871 | } |
1872 | |
1873 | //===----------------------------------------------------------------------===// |
1874 | // IndVarSimplify driver. Manage several subpasses of IV simplification. |
1875 | //===----------------------------------------------------------------------===// |
1876 | |
1877 | bool IndVarSimplify::run(Loop *L) { |
1878 | // We need (and expect!) the incoming loop to be in LCSSA. |
1879 | assert(L->isRecursivelyLCSSAForm(*DT, *LI) && |
1880 | "LCSSA required to run indvars!" ); |
1881 | |
1882 | // If LoopSimplify form is not available, stay out of trouble. Some notes: |
1883 | // - LSR currently only supports LoopSimplify-form loops. Indvars' |
1884 | // canonicalization can be a pessimization without LSR to "clean up" |
1885 | // afterwards. |
1886 | // - We depend on having a preheader; in particular, |
1887 | // Loop::getCanonicalInductionVariable only supports loops with preheaders, |
1888 | // and we're in trouble if we can't find the induction variable even when |
1889 | // we've manually inserted one. |
1890 | // - LFTR relies on having a single backedge. |
1891 | if (!L->isLoopSimplifyForm()) |
1892 | return false; |
1893 | |
1894 | bool Changed = false; |
1895 | // If there are any floating-point recurrences, attempt to |
1896 | // transform them to use integer recurrences. |
1897 | Changed |= rewriteNonIntegerIVs(L); |
1898 | |
1899 | // Create a rewriter object which we'll use to transform the code with. |
1900 | SCEVExpander Rewriter(*SE, DL, "indvars" ); |
1901 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
1902 | Rewriter.setDebugType(DEBUG_TYPE); |
1903 | #endif |
1904 | |
1905 | // Eliminate redundant IV users. |
1906 | // |
1907 | // Simplification works best when run before other consumers of SCEV. We |
1908 | // attempt to avoid evaluating SCEVs for sign/zero extend operations until |
1909 | // other expressions involving loop IVs have been evaluated. This helps SCEV |
1910 | // set no-wrap flags before normalizing sign/zero extension. |
1911 | Rewriter.disableCanonicalMode(); |
1912 | Changed |= simplifyAndExtend(L, Rewriter, LI); |
1913 | |
1914 | // Check to see if we can compute the final value of any expressions |
1915 | // that are recurrent in the loop, and substitute the exit values from the |
1916 | // loop into any instructions outside of the loop that use the final values |
1917 | // of the current expressions. |
1918 | if (ReplaceExitValue != NeverRepl) { |
1919 | if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT, |
1920 | ReplaceExitValue, DeadInsts)) { |
1921 | NumReplaced += Rewrites; |
1922 | Changed = true; |
1923 | } |
1924 | } |
1925 | |
1926 | // Eliminate redundant IV cycles. |
1927 | NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts, TTI); |
1928 | |
1929 | // Try to convert exit conditions to unsigned and rotate computation |
1930 | // out of the loop. Note: Handles invalidation internally if needed. |
1931 | Changed |= canonicalizeExitCondition(L); |
1932 | |
1933 | // Try to eliminate loop exits based on analyzeable exit counts |
1934 | if (optimizeLoopExits(L, Rewriter)) { |
1935 | Changed = true; |
1936 | // Given we've changed exit counts, notify SCEV |
1937 | // Some nested loops may share same folded exit basic block, |
1938 | // thus we need to notify top most loop. |
1939 | SE->forgetTopmostLoop(L); |
1940 | } |
1941 | |
1942 | // Try to form loop invariant tests for loop exits by changing how many |
1943 | // iterations of the loop run when that is unobservable. |
1944 | if (predicateLoopExits(L, Rewriter)) { |
1945 | Changed = true; |
1946 | // Given we've changed exit counts, notify SCEV |
1947 | SE->forgetLoop(L); |
1948 | } |
1949 | |
1950 | // If we have a trip count expression, rewrite the loop's exit condition |
1951 | // using it. |
1952 | if (!DisableLFTR) { |
1953 | BasicBlock * = L->getLoopPreheader(); |
1954 | |
1955 | SmallVector<BasicBlock*, 16> ExitingBlocks; |
1956 | L->getExitingBlocks(ExitingBlocks); |
1957 | for (BasicBlock *ExitingBB : ExitingBlocks) { |
1958 | // Can't rewrite non-branch yet. |
1959 | if (!isa<BranchInst>(Val: ExitingBB->getTerminator())) |
1960 | continue; |
1961 | |
1962 | // If our exitting block exits multiple loops, we can only rewrite the |
1963 | // innermost one. Otherwise, we're changing how many times the innermost |
1964 | // loop runs before it exits. |
1965 | if (LI->getLoopFor(BB: ExitingBB) != L) |
1966 | continue; |
1967 | |
1968 | if (!needsLFTR(L, ExitingBB)) |
1969 | continue; |
1970 | |
1971 | const SCEV *ExitCount = SE->getExitCount(L, ExitingBlock: ExitingBB); |
1972 | if (isa<SCEVCouldNotCompute>(Val: ExitCount)) |
1973 | continue; |
1974 | |
1975 | // This was handled above, but as we form SCEVs, we can sometimes refine |
1976 | // existing ones; this allows exit counts to be folded to zero which |
1977 | // weren't when optimizeLoopExits saw them. Arguably, we should iterate |
1978 | // until stable to handle cases like this better. |
1979 | if (ExitCount->isZero()) |
1980 | continue; |
1981 | |
1982 | PHINode *IndVar = FindLoopCounter(L, ExitingBB, BECount: ExitCount, SE, DT); |
1983 | if (!IndVar) |
1984 | continue; |
1985 | |
1986 | // Avoid high cost expansions. Note: This heuristic is questionable in |
1987 | // that our definition of "high cost" is not exactly principled. |
1988 | if (Rewriter.isHighCostExpansion(Exprs: ExitCount, L, Budget: SCEVCheapExpansionBudget, |
1989 | TTI, At: PreHeader->getTerminator())) |
1990 | continue; |
1991 | |
1992 | if (!Rewriter.isSafeToExpand(S: ExitCount)) |
1993 | continue; |
1994 | |
1995 | Changed |= linearFunctionTestReplace(L, ExitingBB, |
1996 | ExitCount, IndVar, |
1997 | Rewriter); |
1998 | } |
1999 | } |
2000 | // Clear the rewriter cache, because values that are in the rewriter's cache |
2001 | // can be deleted in the loop below, causing the AssertingVH in the cache to |
2002 | // trigger. |
2003 | Rewriter.clear(); |
2004 | |
2005 | // Now that we're done iterating through lists, clean up any instructions |
2006 | // which are now dead. |
2007 | while (!DeadInsts.empty()) { |
2008 | Value *V = DeadInsts.pop_back_val(); |
2009 | |
2010 | if (PHINode *PHI = dyn_cast_or_null<PHINode>(Val: V)) |
2011 | Changed |= RecursivelyDeleteDeadPHINode(PN: PHI, TLI, MSSAU: MSSAU.get()); |
2012 | else if (Instruction *Inst = dyn_cast_or_null<Instruction>(Val: V)) |
2013 | Changed |= |
2014 | RecursivelyDeleteTriviallyDeadInstructions(V: Inst, TLI, MSSAU: MSSAU.get()); |
2015 | } |
2016 | |
2017 | // The Rewriter may not be used from this point on. |
2018 | |
2019 | // Loop-invariant instructions in the preheader that aren't used in the |
2020 | // loop may be sunk below the loop to reduce register pressure. |
2021 | Changed |= sinkUnusedInvariants(L); |
2022 | |
2023 | // rewriteFirstIterationLoopExitValues does not rely on the computation of |
2024 | // trip count and therefore can further simplify exit values in addition to |
2025 | // rewriteLoopExitValues. |
2026 | Changed |= rewriteFirstIterationLoopExitValues(L); |
2027 | |
2028 | // Clean up dead instructions. |
2029 | Changed |= DeleteDeadPHIs(BB: L->getHeader(), TLI, MSSAU: MSSAU.get()); |
2030 | |
2031 | // Check a post-condition. |
2032 | assert(L->isRecursivelyLCSSAForm(*DT, *LI) && |
2033 | "Indvars did not preserve LCSSA!" ); |
2034 | if (VerifyMemorySSA && MSSAU) |
2035 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
2036 | |
2037 | return Changed; |
2038 | } |
2039 | |
2040 | PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, |
2041 | LoopStandardAnalysisResults &AR, |
2042 | LPMUpdater &) { |
2043 | Function *F = L.getHeader()->getParent(); |
2044 | const DataLayout &DL = F->getDataLayout(); |
2045 | |
2046 | IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA, |
2047 | WidenIndVars && AllowIVWidening); |
2048 | if (!IVS.run(L: &L)) |
2049 | return PreservedAnalyses::all(); |
2050 | |
2051 | auto PA = getLoopPassPreservedAnalyses(); |
2052 | PA.preserveSet<CFGAnalyses>(); |
2053 | if (IVS.runUnswitching()) { |
2054 | AM.getResult<ShouldRunExtraSimpleLoopUnswitch>(IR&: L, ExtraArgs&: AR); |
2055 | PA.preserve<ShouldRunExtraSimpleLoopUnswitch>(); |
2056 | } |
2057 | |
2058 | if (AR.MSSA) |
2059 | PA.preserve<MemorySSAAnalysis>(); |
2060 | return PA; |
2061 | } |
2062 | |