| 1 | //===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the Loop Distribution Pass. Its main focus is to |
| 10 | // distribute loops that cannot be vectorized due to dependence cycles. It |
| 11 | // tries to isolate the offending dependences into a new loop allowing |
| 12 | // vectorization of the remaining parts. |
| 13 | // |
| 14 | // For dependence analysis, the pass uses the LoopVectorizer's |
| 15 | // LoopAccessAnalysis. Because this analysis presumes no change in the order of |
| 16 | // memory operations, special care is taken to preserve the lexical order of |
| 17 | // these operations. |
| 18 | // |
| 19 | // Similarly to the Vectorizer, the pass also supports loop versioning to |
| 20 | // run-time disambiguate potentially overlapping arrays. |
| 21 | // |
| 22 | //===----------------------------------------------------------------------===// |
| 23 | |
| 24 | #include "llvm/Transforms/Scalar/LoopDistribute.h" |
| 25 | #include "llvm/ADT/DenseMap.h" |
| 26 | #include "llvm/ADT/DepthFirstIterator.h" |
| 27 | #include "llvm/ADT/EquivalenceClasses.h" |
| 28 | #include "llvm/ADT/STLExtras.h" |
| 29 | #include "llvm/ADT/SetVector.h" |
| 30 | #include "llvm/ADT/SmallVector.h" |
| 31 | #include "llvm/ADT/Statistic.h" |
| 32 | #include "llvm/ADT/StringRef.h" |
| 33 | #include "llvm/ADT/Twine.h" |
| 34 | #include "llvm/ADT/iterator_range.h" |
| 35 | #include "llvm/Analysis/AssumptionCache.h" |
| 36 | #include "llvm/Analysis/GlobalsModRef.h" |
| 37 | #include "llvm/Analysis/LoopAccessAnalysis.h" |
| 38 | #include "llvm/Analysis/LoopAnalysisManager.h" |
| 39 | #include "llvm/Analysis/LoopInfo.h" |
| 40 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 41 | #include "llvm/Analysis/ScalarEvolution.h" |
| 42 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 43 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 44 | #include "llvm/IR/BasicBlock.h" |
| 45 | #include "llvm/IR/Constants.h" |
| 46 | #include "llvm/IR/DiagnosticInfo.h" |
| 47 | #include "llvm/IR/Dominators.h" |
| 48 | #include "llvm/IR/Function.h" |
| 49 | #include "llvm/IR/Instruction.h" |
| 50 | #include "llvm/IR/Instructions.h" |
| 51 | #include "llvm/IR/LLVMContext.h" |
| 52 | #include "llvm/IR/Metadata.h" |
| 53 | #include "llvm/IR/PassManager.h" |
| 54 | #include "llvm/IR/Value.h" |
| 55 | #include "llvm/Support/Casting.h" |
| 56 | #include "llvm/Support/CommandLine.h" |
| 57 | #include "llvm/Support/Debug.h" |
| 58 | #include "llvm/Support/raw_ostream.h" |
| 59 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 60 | #include "llvm/Transforms/Utils/Cloning.h" |
| 61 | #include "llvm/Transforms/Utils/Local.h" |
| 62 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 63 | #include "llvm/Transforms/Utils/LoopVersioning.h" |
| 64 | #include "llvm/Transforms/Utils/ValueMapper.h" |
| 65 | #include <cassert> |
| 66 | #include <list> |
| 67 | #include <tuple> |
| 68 | #include <utility> |
| 69 | |
| 70 | using namespace llvm; |
| 71 | |
| 72 | #define LDIST_NAME "loop-distribute" |
| 73 | #define DEBUG_TYPE LDIST_NAME |
| 74 | |
| 75 | /// @{ |
| 76 | /// Metadata attribute names |
| 77 | static const char *const LLVMLoopDistributeFollowupAll = |
| 78 | "llvm.loop.distribute.followup_all" ; |
| 79 | static const char *const LLVMLoopDistributeFollowupCoincident = |
| 80 | "llvm.loop.distribute.followup_coincident" ; |
| 81 | static const char *const LLVMLoopDistributeFollowupSequential = |
| 82 | "llvm.loop.distribute.followup_sequential" ; |
| 83 | static const char *const LLVMLoopDistributeFollowupFallback = |
| 84 | "llvm.loop.distribute.followup_fallback" ; |
| 85 | /// @} |
| 86 | |
| 87 | static cl::opt<bool> |
| 88 | LDistVerify("loop-distribute-verify" , cl::Hidden, |
| 89 | cl::desc("Turn on DominatorTree and LoopInfo verification " |
| 90 | "after Loop Distribution" ), |
| 91 | cl::init(Val: false)); |
| 92 | |
| 93 | static cl::opt<bool> DistributeNonIfConvertible( |
| 94 | "loop-distribute-non-if-convertible" , cl::Hidden, |
| 95 | cl::desc("Whether to distribute into a loop that may not be " |
| 96 | "if-convertible by the loop vectorizer" ), |
| 97 | cl::init(Val: false)); |
| 98 | |
| 99 | static cl::opt<unsigned> DistributeSCEVCheckThreshold( |
| 100 | "loop-distribute-scev-check-threshold" , cl::init(Val: 8), cl::Hidden, |
| 101 | cl::desc("The maximum number of SCEV checks allowed for Loop " |
| 102 | "Distribution" )); |
| 103 | |
| 104 | static cl::opt<unsigned> PragmaDistributeSCEVCheckThreshold( |
| 105 | "loop-distribute-scev-check-threshold-with-pragma" , cl::init(Val: 128), |
| 106 | cl::Hidden, |
| 107 | cl::desc("The maximum number of SCEV checks allowed for Loop " |
| 108 | "Distribution for loop marked with #pragma clang loop " |
| 109 | "distribute(enable)" )); |
| 110 | |
| 111 | static cl::opt<bool> EnableLoopDistribute( |
| 112 | "enable-loop-distribute" , cl::Hidden, |
| 113 | cl::desc("Enable the new, experimental LoopDistribution Pass" ), |
| 114 | cl::init(Val: false)); |
| 115 | |
| 116 | STATISTIC(NumLoopsDistributed, "Number of loops distributed" ); |
| 117 | |
| 118 | namespace { |
| 119 | |
| 120 | /// Maintains the set of instructions of the loop for a partition before |
| 121 | /// cloning. After cloning, it hosts the new loop. |
| 122 | class InstPartition { |
| 123 | using InstructionSet = SmallSetVector<Instruction *, 8>; |
| 124 | |
| 125 | public: |
| 126 | InstPartition(Instruction *I, Loop *L, bool DepCycle = false) |
| 127 | : DepCycle(DepCycle), OrigLoop(L) { |
| 128 | Set.insert(X: I); |
| 129 | } |
| 130 | |
| 131 | /// Returns whether this partition contains a dependence cycle. |
| 132 | bool hasDepCycle() const { return DepCycle; } |
| 133 | |
| 134 | /// Adds an instruction to this partition. |
| 135 | void add(Instruction *I) { Set.insert(X: I); } |
| 136 | |
| 137 | /// Collection accessors. |
| 138 | InstructionSet::iterator begin() { return Set.begin(); } |
| 139 | InstructionSet::iterator end() { return Set.end(); } |
| 140 | InstructionSet::const_iterator begin() const { return Set.begin(); } |
| 141 | InstructionSet::const_iterator end() const { return Set.end(); } |
| 142 | bool empty() const { return Set.empty(); } |
| 143 | |
| 144 | /// Moves this partition into \p Other. This partition becomes empty |
| 145 | /// after this. |
| 146 | void moveTo(InstPartition &Other) { |
| 147 | Other.Set.insert_range(R&: Set); |
| 148 | Set.clear(); |
| 149 | Other.DepCycle |= DepCycle; |
| 150 | } |
| 151 | |
| 152 | /// Populates the partition with a transitive closure of all the |
| 153 | /// instructions that the seeded instructions dependent on. |
| 154 | void populateUsedSet() { |
| 155 | // FIXME: We currently don't use control-dependence but simply include all |
| 156 | // blocks (possibly empty at the end) and let simplifycfg mostly clean this |
| 157 | // up. |
| 158 | for (auto *B : OrigLoop->getBlocks()) |
| 159 | Set.insert(X: B->getTerminator()); |
| 160 | |
| 161 | // Follow the use-def chains to form a transitive closure of all the |
| 162 | // instructions that the originally seeded instructions depend on. |
| 163 | SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end()); |
| 164 | while (!Worklist.empty()) { |
| 165 | Instruction *I = Worklist.pop_back_val(); |
| 166 | // Insert instructions from the loop that we depend on. |
| 167 | for (Value *V : I->operand_values()) { |
| 168 | auto *I = dyn_cast<Instruction>(Val: V); |
| 169 | if (I && OrigLoop->contains(BB: I->getParent()) && Set.insert(X: I)) |
| 170 | Worklist.push_back(Elt: I); |
| 171 | } |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | /// Clones the original loop. |
| 176 | /// |
| 177 | /// Updates LoopInfo and DominatorTree using the information that block \p |
| 178 | /// LoopDomBB dominates the loop. |
| 179 | Loop *(BasicBlock *InsertBefore, BasicBlock *LoopDomBB, |
| 180 | unsigned Index, LoopInfo *LI, |
| 181 | DominatorTree *DT) { |
| 182 | ClonedLoop = ::cloneLoopWithPreheader(Before: InsertBefore, LoopDomBB, OrigLoop, |
| 183 | VMap, NameSuffix: Twine(".ldist" ) + Twine(Index), |
| 184 | LI, DT, Blocks&: ClonedLoopBlocks); |
| 185 | return ClonedLoop; |
| 186 | } |
| 187 | |
| 188 | /// The cloned loop. If this partition is mapped to the original loop, |
| 189 | /// this is null. |
| 190 | const Loop *getClonedLoop() const { return ClonedLoop; } |
| 191 | |
| 192 | /// Returns the loop where this partition ends up after distribution. |
| 193 | /// If this partition is mapped to the original loop then use the block from |
| 194 | /// the loop. |
| 195 | Loop *getDistributedLoop() const { |
| 196 | return ClonedLoop ? ClonedLoop : OrigLoop; |
| 197 | } |
| 198 | |
| 199 | /// The VMap that is populated by cloning and then used in |
| 200 | /// remapinstruction to remap the cloned instructions. |
| 201 | ValueToValueMapTy &getVMap() { return VMap; } |
| 202 | |
| 203 | /// Remaps the cloned instructions using VMap. |
| 204 | void remapInstructions() { |
| 205 | remapInstructionsInBlocks(Blocks: ClonedLoopBlocks, VMap); |
| 206 | } |
| 207 | |
| 208 | /// Based on the set of instructions selected for this partition, |
| 209 | /// removes the unnecessary ones. |
| 210 | void removeUnusedInsts() { |
| 211 | SmallVector<Instruction *, 8> Unused; |
| 212 | |
| 213 | for (auto *Block : OrigLoop->getBlocks()) |
| 214 | for (auto &Inst : *Block) |
| 215 | if (!Set.count(key: &Inst)) { |
| 216 | Instruction *NewInst = &Inst; |
| 217 | if (!VMap.empty()) |
| 218 | NewInst = cast<Instruction>(Val&: VMap[NewInst]); |
| 219 | |
| 220 | assert(!isa<BranchInst>(NewInst) && |
| 221 | "Branches are marked used early on" ); |
| 222 | Unused.push_back(Elt: NewInst); |
| 223 | } |
| 224 | |
| 225 | // Delete the instructions backwards, as it has a reduced likelihood of |
| 226 | // having to update as many def-use and use-def chains. |
| 227 | for (auto *Inst : reverse(C&: Unused)) { |
| 228 | salvageDebugInfo(I&: *Inst); |
| 229 | if (!Inst->use_empty()) |
| 230 | Inst->replaceAllUsesWith(V: PoisonValue::get(T: Inst->getType())); |
| 231 | Inst->eraseFromParent(); |
| 232 | } |
| 233 | } |
| 234 | |
| 235 | void print(raw_ostream &OS) const { |
| 236 | OS << (DepCycle ? " (cycle)\n" : "\n" ); |
| 237 | for (auto *I : Set) |
| 238 | // Prefix with the block name. |
| 239 | OS << " " << I->getParent()->getName() << ":" << *I << "\n" ; |
| 240 | } |
| 241 | |
| 242 | void printBlocks(raw_ostream &OS) const { |
| 243 | for (auto *BB : getDistributedLoop()->getBlocks()) |
| 244 | OS << *BB; |
| 245 | } |
| 246 | |
| 247 | private: |
| 248 | /// Instructions from OrigLoop selected for this partition. |
| 249 | InstructionSet Set; |
| 250 | |
| 251 | /// Whether this partition contains a dependence cycle. |
| 252 | bool DepCycle; |
| 253 | |
| 254 | /// The original loop. |
| 255 | Loop *OrigLoop; |
| 256 | |
| 257 | /// The cloned loop. If this partition is mapped to the original loop, |
| 258 | /// this is null. |
| 259 | Loop *ClonedLoop = nullptr; |
| 260 | |
| 261 | /// The blocks of ClonedLoop including the preheader. If this |
| 262 | /// partition is mapped to the original loop, this is empty. |
| 263 | SmallVector<BasicBlock *, 8> ClonedLoopBlocks; |
| 264 | |
| 265 | /// These gets populated once the set of instructions have been |
| 266 | /// finalized. If this partition is mapped to the original loop, these are not |
| 267 | /// set. |
| 268 | ValueToValueMapTy VMap; |
| 269 | }; |
| 270 | |
| 271 | /// Holds the set of Partitions. It populates them, merges them and then |
| 272 | /// clones the loops. |
| 273 | class InstPartitionContainer { |
| 274 | using InstToPartitionIdT = DenseMap<Instruction *, int>; |
| 275 | |
| 276 | public: |
| 277 | InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT) |
| 278 | : L(L), LI(LI), DT(DT) {} |
| 279 | |
| 280 | /// Returns the number of partitions. |
| 281 | unsigned getSize() const { return PartitionContainer.size(); } |
| 282 | |
| 283 | /// Adds \p Inst into the current partition if that is marked to |
| 284 | /// contain cycles. Otherwise start a new partition for it. |
| 285 | void addToCyclicPartition(Instruction *Inst) { |
| 286 | // If the current partition is non-cyclic. Start a new one. |
| 287 | if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle()) |
| 288 | PartitionContainer.emplace_back(args&: Inst, args&: L, /*DepCycle=*/args: true); |
| 289 | else |
| 290 | PartitionContainer.back().add(I: Inst); |
| 291 | } |
| 292 | |
| 293 | /// Adds \p Inst into a partition that is not marked to contain |
| 294 | /// dependence cycles. |
| 295 | /// |
| 296 | // Initially we isolate memory instructions into as many partitions as |
| 297 | // possible, then later we may merge them back together. |
| 298 | void addToNewNonCyclicPartition(Instruction *Inst) { |
| 299 | PartitionContainer.emplace_back(args&: Inst, args&: L); |
| 300 | } |
| 301 | |
| 302 | /// Merges adjacent non-cyclic partitions. |
| 303 | /// |
| 304 | /// The idea is that we currently only want to isolate the non-vectorizable |
| 305 | /// partition. We could later allow more distribution among these partition |
| 306 | /// too. |
| 307 | void mergeAdjacentNonCyclic() { |
| 308 | mergeAdjacentPartitionsIf( |
| 309 | Predicate: [](const InstPartition *P) { return !P->hasDepCycle(); }); |
| 310 | } |
| 311 | |
| 312 | /// If a partition contains only conditional stores, we won't vectorize |
| 313 | /// it. Try to merge it with a previous cyclic partition. |
| 314 | void mergeNonIfConvertible() { |
| 315 | mergeAdjacentPartitionsIf(Predicate: [&](const InstPartition *Partition) { |
| 316 | if (Partition->hasDepCycle()) |
| 317 | return true; |
| 318 | |
| 319 | // Now, check if all stores are conditional in this partition. |
| 320 | bool seenStore = false; |
| 321 | |
| 322 | for (auto *Inst : *Partition) |
| 323 | if (isa<StoreInst>(Val: Inst)) { |
| 324 | seenStore = true; |
| 325 | if (!LoopAccessInfo::blockNeedsPredication(BB: Inst->getParent(), TheLoop: L, DT)) |
| 326 | return false; |
| 327 | } |
| 328 | return seenStore; |
| 329 | }); |
| 330 | } |
| 331 | |
| 332 | /// Merges the partitions according to various heuristics. |
| 333 | void mergeBeforePopulating() { |
| 334 | mergeAdjacentNonCyclic(); |
| 335 | if (!DistributeNonIfConvertible) |
| 336 | mergeNonIfConvertible(); |
| 337 | } |
| 338 | |
| 339 | /// Merges partitions in order to ensure that no loads are duplicated. |
| 340 | /// |
| 341 | /// We can't duplicate loads because that could potentially reorder them. |
| 342 | /// LoopAccessAnalysis provides dependency information with the context that |
| 343 | /// the order of memory operation is preserved. |
| 344 | /// |
| 345 | /// Return if any partitions were merged. |
| 346 | bool mergeToAvoidDuplicatedLoads() { |
| 347 | using LoadToPartitionT = DenseMap<Instruction *, InstPartition *>; |
| 348 | using ToBeMergedT = EquivalenceClasses<InstPartition *>; |
| 349 | |
| 350 | LoadToPartitionT LoadToPartition; |
| 351 | ToBeMergedT ToBeMerged; |
| 352 | |
| 353 | // Step through the partitions and create equivalence between partitions |
| 354 | // that contain the same load. Also put partitions in between them in the |
| 355 | // same equivalence class to avoid reordering of memory operations. |
| 356 | for (PartitionContainerT::iterator I = PartitionContainer.begin(), |
| 357 | E = PartitionContainer.end(); |
| 358 | I != E; ++I) { |
| 359 | auto *PartI = &*I; |
| 360 | |
| 361 | // If a load occurs in two partitions PartI and PartJ, merge all |
| 362 | // partitions (PartI, PartJ] into PartI. |
| 363 | for (Instruction *Inst : *PartI) |
| 364 | if (isa<LoadInst>(Val: Inst)) { |
| 365 | bool NewElt; |
| 366 | LoadToPartitionT::iterator LoadToPart; |
| 367 | |
| 368 | std::tie(args&: LoadToPart, args&: NewElt) = |
| 369 | LoadToPartition.insert(KV: std::make_pair(x&: Inst, y&: PartI)); |
| 370 | if (!NewElt) { |
| 371 | LLVM_DEBUG( |
| 372 | dbgs() |
| 373 | << "LDist: Merging partitions due to this load in multiple " |
| 374 | << "partitions: " << PartI << ", " << LoadToPart->second << "\n" |
| 375 | << *Inst << "\n" ); |
| 376 | |
| 377 | auto PartJ = I; |
| 378 | do { |
| 379 | --PartJ; |
| 380 | ToBeMerged.unionSets(V1: PartI, V2: &*PartJ); |
| 381 | } while (&*PartJ != LoadToPart->second); |
| 382 | } |
| 383 | } |
| 384 | } |
| 385 | if (ToBeMerged.empty()) |
| 386 | return false; |
| 387 | |
| 388 | // Merge the member of an equivalence class into its class leader. This |
| 389 | // makes the members empty. |
| 390 | for (const auto &C : ToBeMerged) { |
| 391 | if (!C->isLeader()) |
| 392 | continue; |
| 393 | |
| 394 | auto PartI = C->getData(); |
| 395 | for (auto *PartJ : make_range(x: std::next(x: ToBeMerged.member_begin(ECV: *C)), |
| 396 | y: ToBeMerged.member_end())) { |
| 397 | PartJ->moveTo(Other&: *PartI); |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | // Remove the empty partitions. |
| 402 | PartitionContainer.remove_if( |
| 403 | pred: [](const InstPartition &P) { return P.empty(); }); |
| 404 | |
| 405 | return true; |
| 406 | } |
| 407 | |
| 408 | /// Sets up the mapping between instructions to partitions. If the |
| 409 | /// instruction is duplicated across multiple partitions, set the entry to -1. |
| 410 | void setupPartitionIdOnInstructions() { |
| 411 | int PartitionID = 0; |
| 412 | for (const auto &Partition : PartitionContainer) { |
| 413 | for (Instruction *Inst : Partition) { |
| 414 | bool NewElt; |
| 415 | InstToPartitionIdT::iterator Iter; |
| 416 | |
| 417 | std::tie(args&: Iter, args&: NewElt) = |
| 418 | InstToPartitionId.insert(KV: std::make_pair(x&: Inst, y&: PartitionID)); |
| 419 | if (!NewElt) |
| 420 | Iter->second = -1; |
| 421 | } |
| 422 | ++PartitionID; |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | /// Populates the partition with everything that the seeding |
| 427 | /// instructions require. |
| 428 | void populateUsedSet() { |
| 429 | for (auto &P : PartitionContainer) |
| 430 | P.populateUsedSet(); |
| 431 | } |
| 432 | |
| 433 | /// This performs the main chunk of the work of cloning the loops for |
| 434 | /// the partitions. |
| 435 | void cloneLoops() { |
| 436 | BasicBlock *OrigPH = L->getLoopPreheader(); |
| 437 | // At this point the predecessor of the preheader is either the memcheck |
| 438 | // block or the top part of the original preheader. |
| 439 | BasicBlock *Pred = OrigPH->getSinglePredecessor(); |
| 440 | assert(Pred && "Preheader does not have a single predecessor" ); |
| 441 | BasicBlock *ExitBlock = L->getExitBlock(); |
| 442 | assert(ExitBlock && "No single exit block" ); |
| 443 | Loop *NewLoop; |
| 444 | |
| 445 | assert(!PartitionContainer.empty() && "at least two partitions expected" ); |
| 446 | // We're cloning the preheader along with the loop so we already made sure |
| 447 | // it was empty. |
| 448 | assert(&*OrigPH->begin() == OrigPH->getTerminator() && |
| 449 | "preheader not empty" ); |
| 450 | |
| 451 | // Preserve the original loop ID for use after the transformation. |
| 452 | MDNode *OrigLoopID = L->getLoopID(); |
| 453 | |
| 454 | // Create a loop for each partition except the last. Clone the original |
| 455 | // loop before PH along with adding a preheader for the cloned loop. Then |
| 456 | // update PH to point to the newly added preheader. |
| 457 | BasicBlock *TopPH = OrigPH; |
| 458 | unsigned Index = getSize() - 1; |
| 459 | for (auto &Part : llvm::drop_begin(RangeOrContainer: llvm::reverse(C&: PartitionContainer))) { |
| 460 | NewLoop = Part.cloneLoopWithPreheader(InsertBefore: TopPH, LoopDomBB: Pred, Index, LI, DT); |
| 461 | |
| 462 | Part.getVMap()[ExitBlock] = TopPH; |
| 463 | Part.remapInstructions(); |
| 464 | setNewLoopID(OrigLoopID, Part: &Part); |
| 465 | --Index; |
| 466 | TopPH = NewLoop->getLoopPreheader(); |
| 467 | } |
| 468 | Pred->getTerminator()->replaceUsesOfWith(From: OrigPH, To: TopPH); |
| 469 | |
| 470 | // Also set a new loop ID for the last loop. |
| 471 | setNewLoopID(OrigLoopID, Part: &PartitionContainer.back()); |
| 472 | |
| 473 | // Now go in forward order and update the immediate dominator for the |
| 474 | // preheaders with the exiting block of the previous loop. Dominance |
| 475 | // within the loop is updated in cloneLoopWithPreheader. |
| 476 | for (auto Curr = PartitionContainer.cbegin(), |
| 477 | Next = std::next(x: PartitionContainer.cbegin()), |
| 478 | E = PartitionContainer.cend(); |
| 479 | Next != E; ++Curr, ++Next) |
| 480 | DT->changeImmediateDominator( |
| 481 | BB: Next->getDistributedLoop()->getLoopPreheader(), |
| 482 | NewBB: Curr->getDistributedLoop()->getExitingBlock()); |
| 483 | } |
| 484 | |
| 485 | /// Removes the dead instructions from the cloned loops. |
| 486 | void removeUnusedInsts() { |
| 487 | for (auto &Partition : PartitionContainer) |
| 488 | Partition.removeUnusedInsts(); |
| 489 | } |
| 490 | |
| 491 | /// For each memory pointer, it computes the partitionId the pointer is |
| 492 | /// used in. |
| 493 | /// |
| 494 | /// This returns an array of int where the I-th entry corresponds to I-th |
| 495 | /// entry in LAI.getRuntimePointerCheck(). If the pointer is used in multiple |
| 496 | /// partitions its entry is set to -1. |
| 497 | SmallVector<int, 8> |
| 498 | computePartitionSetForPointers(const LoopAccessInfo &LAI) { |
| 499 | const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking(); |
| 500 | |
| 501 | unsigned N = RtPtrCheck->Pointers.size(); |
| 502 | SmallVector<int, 8> PtrToPartitions(N); |
| 503 | for (unsigned I = 0; I < N; ++I) { |
| 504 | Value *Ptr = RtPtrCheck->Pointers[I].PointerValue; |
| 505 | auto Instructions = |
| 506 | LAI.getInstructionsForAccess(Ptr, isWrite: RtPtrCheck->Pointers[I].IsWritePtr); |
| 507 | |
| 508 | int &Partition = PtrToPartitions[I]; |
| 509 | // First set it to uninitialized. |
| 510 | Partition = -2; |
| 511 | for (Instruction *Inst : Instructions) { |
| 512 | // Note that this could be -1 if Inst is duplicated across multiple |
| 513 | // partitions. |
| 514 | int ThisPartition = this->InstToPartitionId[Inst]; |
| 515 | if (Partition == -2) |
| 516 | Partition = ThisPartition; |
| 517 | // -1 means belonging to multiple partitions. |
| 518 | else if (Partition == -1) |
| 519 | break; |
| 520 | else if (Partition != (int)ThisPartition) |
| 521 | Partition = -1; |
| 522 | } |
| 523 | assert(Partition != -2 && "Pointer not belonging to any partition" ); |
| 524 | } |
| 525 | |
| 526 | return PtrToPartitions; |
| 527 | } |
| 528 | |
| 529 | void print(raw_ostream &OS) const { |
| 530 | unsigned Index = 0; |
| 531 | for (const auto &P : PartitionContainer) { |
| 532 | OS << "LDist: Partition " << Index++ << ":" ; |
| 533 | P.print(OS); |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | void dump() const { print(OS&: dbgs()); } |
| 538 | |
| 539 | #ifndef NDEBUG |
| 540 | friend raw_ostream &operator<<(raw_ostream &OS, |
| 541 | const InstPartitionContainer &Partitions) { |
| 542 | Partitions.print(OS); |
| 543 | return OS; |
| 544 | } |
| 545 | #endif |
| 546 | |
| 547 | void printBlocks(raw_ostream &OS) const { |
| 548 | unsigned Index = 0; |
| 549 | for (const auto &P : PartitionContainer) { |
| 550 | OS << "LDist: Partition " << Index++ << ":" ; |
| 551 | P.printBlocks(OS); |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | private: |
| 556 | using PartitionContainerT = std::list<InstPartition>; |
| 557 | |
| 558 | /// List of partitions. |
| 559 | PartitionContainerT PartitionContainer; |
| 560 | |
| 561 | /// Mapping from Instruction to partition Id. If the instruction |
| 562 | /// belongs to multiple partitions the entry contains -1. |
| 563 | InstToPartitionIdT InstToPartitionId; |
| 564 | |
| 565 | Loop *L; |
| 566 | LoopInfo *LI; |
| 567 | DominatorTree *DT; |
| 568 | |
| 569 | /// The control structure to merge adjacent partitions if both satisfy |
| 570 | /// the \p Predicate. |
| 571 | template <class UnaryPredicate> |
| 572 | void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) { |
| 573 | InstPartition *PrevMatch = nullptr; |
| 574 | for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) { |
| 575 | auto DoesMatch = Predicate(&*I); |
| 576 | if (PrevMatch == nullptr && DoesMatch) { |
| 577 | PrevMatch = &*I; |
| 578 | ++I; |
| 579 | } else if (PrevMatch != nullptr && DoesMatch) { |
| 580 | I->moveTo(Other&: *PrevMatch); |
| 581 | I = PartitionContainer.erase(position: I); |
| 582 | } else { |
| 583 | PrevMatch = nullptr; |
| 584 | ++I; |
| 585 | } |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | /// Assign new LoopIDs for the partition's cloned loop. |
| 590 | void setNewLoopID(MDNode *OrigLoopID, InstPartition *Part) { |
| 591 | std::optional<MDNode *> PartitionID = makeFollowupLoopID( |
| 592 | OrigLoopID, |
| 593 | FollowupAttrs: {LLVMLoopDistributeFollowupAll, |
| 594 | Part->hasDepCycle() ? LLVMLoopDistributeFollowupSequential |
| 595 | : LLVMLoopDistributeFollowupCoincident}); |
| 596 | if (PartitionID) { |
| 597 | Loop *NewLoop = Part->getDistributedLoop(); |
| 598 | NewLoop->setLoopID(*PartitionID); |
| 599 | } |
| 600 | } |
| 601 | }; |
| 602 | |
| 603 | /// For each memory instruction, this class maintains difference of the |
| 604 | /// number of unsafe dependences that start out from this instruction minus |
| 605 | /// those that end here. |
| 606 | /// |
| 607 | /// By traversing the memory instructions in program order and accumulating this |
| 608 | /// number, we know whether any unsafe dependence crosses over a program point. |
| 609 | class MemoryInstructionDependences { |
| 610 | using Dependence = MemoryDepChecker::Dependence; |
| 611 | |
| 612 | public: |
| 613 | struct Entry { |
| 614 | Instruction *Inst; |
| 615 | unsigned NumUnsafeDependencesStartOrEnd = 0; |
| 616 | |
| 617 | Entry(Instruction *Inst) : Inst(Inst) {} |
| 618 | }; |
| 619 | |
| 620 | using AccessesType = SmallVector<Entry, 8>; |
| 621 | |
| 622 | AccessesType::const_iterator begin() const { return Accesses.begin(); } |
| 623 | AccessesType::const_iterator end() const { return Accesses.end(); } |
| 624 | |
| 625 | MemoryInstructionDependences( |
| 626 | const SmallVectorImpl<Instruction *> &Instructions, |
| 627 | const SmallVectorImpl<Dependence> &Dependences) { |
| 628 | Accesses.append(in_start: Instructions.begin(), in_end: Instructions.end()); |
| 629 | |
| 630 | LLVM_DEBUG(dbgs() << "LDist: Backward dependences:\n" ); |
| 631 | for (const auto &Dep : Dependences) |
| 632 | if (Dep.isPossiblyBackward()) { |
| 633 | // Note that the designations source and destination follow the program |
| 634 | // order, i.e. source is always first. (The direction is given by the |
| 635 | // DepType.) |
| 636 | ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd; |
| 637 | --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd; |
| 638 | |
| 639 | LLVM_DEBUG(Dep.print(dbgs(), 2, Instructions)); |
| 640 | } |
| 641 | } |
| 642 | |
| 643 | private: |
| 644 | AccessesType Accesses; |
| 645 | }; |
| 646 | |
| 647 | /// The actual class performing the per-loop work. |
| 648 | class LoopDistributeForLoop { |
| 649 | public: |
| 650 | LoopDistributeForLoop(Loop *L, Function *F, LoopInfo *LI, DominatorTree *DT, |
| 651 | ScalarEvolution *SE, LoopAccessInfoManager &LAIs, |
| 652 | OptimizationRemarkEmitter *ORE) |
| 653 | : L(L), F(F), LI(LI), DT(DT), SE(SE), LAIs(LAIs), ORE(ORE) { |
| 654 | setForced(); |
| 655 | } |
| 656 | |
| 657 | /// Try to distribute an inner-most loop. |
| 658 | bool processLoop() { |
| 659 | assert(L->isInnermost() && "Only process inner loops." ); |
| 660 | |
| 661 | LLVM_DEBUG(dbgs() << "\nLDist: Checking a loop in '" |
| 662 | << L->getHeader()->getParent()->getName() << "' from " |
| 663 | << L->getLocStr() << "\n" ); |
| 664 | |
| 665 | // Having a single exit block implies there's also one exiting block. |
| 666 | if (!L->getExitBlock()) |
| 667 | return fail(RemarkName: "MultipleExitBlocks" , Message: "multiple exit blocks" ); |
| 668 | if (!L->isLoopSimplifyForm()) |
| 669 | return fail(RemarkName: "NotLoopSimplifyForm" , |
| 670 | Message: "loop is not in loop-simplify form" ); |
| 671 | if (!L->isRotatedForm()) |
| 672 | return fail(RemarkName: "NotBottomTested" , Message: "loop is not bottom tested" ); |
| 673 | |
| 674 | BasicBlock *PH = L->getLoopPreheader(); |
| 675 | |
| 676 | LAI = &LAIs.getInfo(L&: *L); |
| 677 | |
| 678 | // Currently, we only distribute to isolate the part of the loop with |
| 679 | // dependence cycles to enable partial vectorization. |
| 680 | if (LAI->canVectorizeMemory()) |
| 681 | return fail(RemarkName: "MemOpsCanBeVectorized" , |
| 682 | Message: "memory operations are safe for vectorization" ); |
| 683 | |
| 684 | auto *Dependences = LAI->getDepChecker().getDependences(); |
| 685 | if (!Dependences || Dependences->empty()) |
| 686 | return fail(RemarkName: "NoUnsafeDeps" , Message: "no unsafe dependences to isolate" ); |
| 687 | |
| 688 | LLVM_DEBUG(dbgs() << "LDist: Found a candidate loop: " |
| 689 | << L->getHeader()->getName() << "\n" ); |
| 690 | |
| 691 | InstPartitionContainer Partitions(L, LI, DT); |
| 692 | |
| 693 | // First, go through each memory operation and assign them to consecutive |
| 694 | // partitions (the order of partitions follows program order). Put those |
| 695 | // with unsafe dependences into "cyclic" partition otherwise put each store |
| 696 | // in its own "non-cyclic" partition (we'll merge these later). |
| 697 | // |
| 698 | // Note that a memory operation (e.g. Load2 below) at a program point that |
| 699 | // has an unsafe dependence (Store3->Load1) spanning over it must be |
| 700 | // included in the same cyclic partition as the dependent operations. This |
| 701 | // is to preserve the original program order after distribution. E.g.: |
| 702 | // |
| 703 | // NumUnsafeDependencesStartOrEnd NumUnsafeDependencesActive |
| 704 | // Load1 -. 1 0->1 |
| 705 | // Load2 | /Unsafe/ 0 1 |
| 706 | // Store3 -' -1 1->0 |
| 707 | // Load4 0 0 |
| 708 | // |
| 709 | // NumUnsafeDependencesActive > 0 indicates this situation and in this case |
| 710 | // we just keep assigning to the same cyclic partition until |
| 711 | // NumUnsafeDependencesActive reaches 0. |
| 712 | const MemoryDepChecker &DepChecker = LAI->getDepChecker(); |
| 713 | MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(), |
| 714 | *Dependences); |
| 715 | |
| 716 | int NumUnsafeDependencesActive = 0; |
| 717 | for (const auto &InstDep : MID) { |
| 718 | Instruction *I = InstDep.Inst; |
| 719 | // We update NumUnsafeDependencesActive post-instruction, catch the |
| 720 | // start of a dependence directly via NumUnsafeDependencesStartOrEnd. |
| 721 | if (NumUnsafeDependencesActive || |
| 722 | InstDep.NumUnsafeDependencesStartOrEnd > 0) |
| 723 | Partitions.addToCyclicPartition(Inst: I); |
| 724 | else |
| 725 | Partitions.addToNewNonCyclicPartition(Inst: I); |
| 726 | NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd; |
| 727 | assert(NumUnsafeDependencesActive >= 0 && |
| 728 | "Negative number of dependences active" ); |
| 729 | } |
| 730 | |
| 731 | // Add partitions for values used outside. These partitions can be out of |
| 732 | // order from the original program order. This is OK because if the |
| 733 | // partition uses a load we will merge this partition with the original |
| 734 | // partition of the load that we set up in the previous loop (see |
| 735 | // mergeToAvoidDuplicatedLoads). |
| 736 | auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L); |
| 737 | for (auto *Inst : DefsUsedOutside) |
| 738 | Partitions.addToNewNonCyclicPartition(Inst); |
| 739 | |
| 740 | LLVM_DEBUG(dbgs() << "LDist: Seeded partitions:\n" << Partitions); |
| 741 | if (Partitions.getSize() < 2) |
| 742 | return fail(RemarkName: "CantIsolateUnsafeDeps" , |
| 743 | Message: "cannot isolate unsafe dependencies" ); |
| 744 | |
| 745 | // Run the merge heuristics: Merge non-cyclic adjacent partitions since we |
| 746 | // should be able to vectorize these together. |
| 747 | Partitions.mergeBeforePopulating(); |
| 748 | LLVM_DEBUG(dbgs() << "LDist: Merged partitions:\n" << Partitions); |
| 749 | if (Partitions.getSize() < 2) |
| 750 | return fail(RemarkName: "CantIsolateUnsafeDeps" , |
| 751 | Message: "cannot isolate unsafe dependencies" ); |
| 752 | |
| 753 | // Now, populate the partitions with non-memory operations. |
| 754 | Partitions.populateUsedSet(); |
| 755 | LLVM_DEBUG(dbgs() << "LDist: Populated partitions:\n" << Partitions); |
| 756 | |
| 757 | // In order to preserve original lexical order for loads, keep them in the |
| 758 | // partition that we set up in the MemoryInstructionDependences loop. |
| 759 | if (Partitions.mergeToAvoidDuplicatedLoads()) { |
| 760 | LLVM_DEBUG(dbgs() << "LDist: Partitions merged to ensure unique loads:\n" |
| 761 | << Partitions); |
| 762 | if (Partitions.getSize() < 2) |
| 763 | return fail(RemarkName: "CantIsolateUnsafeDeps" , |
| 764 | Message: "cannot isolate unsafe dependencies" ); |
| 765 | } |
| 766 | |
| 767 | // Don't distribute the loop if we need too many SCEV run-time checks, or |
| 768 | // any if it's illegal. |
| 769 | const SCEVPredicate &Pred = LAI->getPSE().getPredicate(); |
| 770 | if (LAI->hasConvergentOp() && !Pred.isAlwaysTrue()) { |
| 771 | return fail(RemarkName: "RuntimeCheckWithConvergent" , |
| 772 | Message: "may not insert runtime check with convergent operation" ); |
| 773 | } |
| 774 | |
| 775 | if (Pred.getComplexity() > (IsForced.value_or(u: false) |
| 776 | ? PragmaDistributeSCEVCheckThreshold |
| 777 | : DistributeSCEVCheckThreshold)) |
| 778 | return fail(RemarkName: "TooManySCEVRuntimeChecks" , |
| 779 | Message: "too many SCEV run-time checks needed.\n" ); |
| 780 | |
| 781 | if (!IsForced.value_or(u: false) && hasDisableAllTransformsHint(L)) |
| 782 | return fail(RemarkName: "HeuristicDisabled" , Message: "distribution heuristic disabled" ); |
| 783 | |
| 784 | LLVM_DEBUG(dbgs() << "LDist: Distributing loop: " |
| 785 | << L->getHeader()->getName() << "\n" ); |
| 786 | // We're done forming the partitions set up the reverse mapping from |
| 787 | // instructions to partitions. |
| 788 | Partitions.setupPartitionIdOnInstructions(); |
| 789 | |
| 790 | // If we need run-time checks, version the loop now. |
| 791 | auto PtrToPartition = Partitions.computePartitionSetForPointers(LAI: *LAI); |
| 792 | const auto *RtPtrChecking = LAI->getRuntimePointerChecking(); |
| 793 | const auto &AllChecks = RtPtrChecking->getChecks(); |
| 794 | auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition, |
| 795 | RtPtrChecking); |
| 796 | |
| 797 | if (LAI->hasConvergentOp() && !Checks.empty()) { |
| 798 | return fail(RemarkName: "RuntimeCheckWithConvergent" , |
| 799 | Message: "may not insert runtime check with convergent operation" ); |
| 800 | } |
| 801 | |
| 802 | // To keep things simple have an empty preheader before we version or clone |
| 803 | // the loop. (Also split if this has no predecessor, i.e. entry, because we |
| 804 | // rely on PH having a predecessor.) |
| 805 | if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator()) |
| 806 | SplitBlock(Old: PH, SplitPt: PH->getTerminator(), DT, LI); |
| 807 | |
| 808 | if (!Pred.isAlwaysTrue() || !Checks.empty()) { |
| 809 | assert(!LAI->hasConvergentOp() && "inserting illegal loop versioning" ); |
| 810 | |
| 811 | MDNode *OrigLoopID = L->getLoopID(); |
| 812 | |
| 813 | LLVM_DEBUG(dbgs() << "LDist: Pointers:\n" ); |
| 814 | LLVM_DEBUG(LAI->getRuntimePointerChecking()->printChecks(dbgs(), Checks)); |
| 815 | LoopVersioning LVer(*LAI, Checks, L, LI, DT, SE); |
| 816 | LVer.versionLoop(DefsUsedOutside); |
| 817 | LVer.annotateLoopWithNoAlias(); |
| 818 | |
| 819 | // The unversioned loop will not be changed, so we inherit all attributes |
| 820 | // from the original loop, but remove the loop distribution metadata to |
| 821 | // avoid to distribute it again. |
| 822 | MDNode *UnversionedLoopID = *makeFollowupLoopID( |
| 823 | OrigLoopID, |
| 824 | FollowupAttrs: {LLVMLoopDistributeFollowupAll, LLVMLoopDistributeFollowupFallback}, |
| 825 | InheritOptionsAttrsPrefix: "llvm.loop.distribute." , AlwaysNew: true); |
| 826 | LVer.getNonVersionedLoop()->setLoopID(UnversionedLoopID); |
| 827 | } |
| 828 | |
| 829 | // Create identical copies of the original loop for each partition and hook |
| 830 | // them up sequentially. |
| 831 | Partitions.cloneLoops(); |
| 832 | |
| 833 | // Now, we remove the instruction from each loop that don't belong to that |
| 834 | // partition. |
| 835 | Partitions.removeUnusedInsts(); |
| 836 | LLVM_DEBUG(dbgs() << "LDist: After removing unused Instrs:\n" ); |
| 837 | LLVM_DEBUG(Partitions.printBlocks(dbgs())); |
| 838 | |
| 839 | if (LDistVerify) { |
| 840 | LI->verify(DomTree: *DT); |
| 841 | assert(DT->verify(DominatorTree::VerificationLevel::Fast)); |
| 842 | } |
| 843 | |
| 844 | ++NumLoopsDistributed; |
| 845 | // Report the success. |
| 846 | ORE->emit(RemarkBuilder: [&]() { |
| 847 | return OptimizationRemark(LDIST_NAME, "Distribute" , L->getStartLoc(), |
| 848 | L->getHeader()) |
| 849 | << "distributed loop" ; |
| 850 | }); |
| 851 | return true; |
| 852 | } |
| 853 | |
| 854 | /// Provide diagnostics then \return with false. |
| 855 | bool fail(StringRef , StringRef Message) { |
| 856 | LLVMContext &Ctx = F->getContext(); |
| 857 | bool Forced = isForced().value_or(u: false); |
| 858 | |
| 859 | LLVM_DEBUG(dbgs() << "LDist: Skipping; " << Message << "\n" ); |
| 860 | |
| 861 | // With Rpass-missed report that distribution failed. |
| 862 | ORE->emit(RemarkBuilder: [&]() { |
| 863 | return OptimizationRemarkMissed(LDIST_NAME, "NotDistributed" , |
| 864 | L->getStartLoc(), L->getHeader()) |
| 865 | << "loop not distributed: use -Rpass-analysis=loop-distribute for " |
| 866 | "more " |
| 867 | "info" ; |
| 868 | }); |
| 869 | |
| 870 | // With Rpass-analysis report why. This is on by default if distribution |
| 871 | // was requested explicitly. |
| 872 | ORE->emit(OptDiag: OptimizationRemarkAnalysis( |
| 873 | Forced ? OptimizationRemarkAnalysis::AlwaysPrint : LDIST_NAME, |
| 874 | RemarkName, L->getStartLoc(), L->getHeader()) |
| 875 | << "loop not distributed: " << Message); |
| 876 | |
| 877 | // Also issue a warning if distribution was requested explicitly but it |
| 878 | // failed. |
| 879 | if (Forced) |
| 880 | Ctx.diagnose(DI: DiagnosticInfoOptimizationFailure( |
| 881 | *F, L->getStartLoc(), "loop not distributed: failed " |
| 882 | "explicitly specified loop distribution" )); |
| 883 | |
| 884 | return false; |
| 885 | } |
| 886 | |
| 887 | /// Return if distribution forced to be enabled/disabled for the loop. |
| 888 | /// |
| 889 | /// If the optional has a value, it indicates whether distribution was forced |
| 890 | /// to be enabled (true) or disabled (false). If the optional has no value |
| 891 | /// distribution was not forced either way. |
| 892 | const std::optional<bool> &isForced() const { return IsForced; } |
| 893 | |
| 894 | private: |
| 895 | /// Filter out checks between pointers from the same partition. |
| 896 | /// |
| 897 | /// \p PtrToPartition contains the partition number for pointers. Partition |
| 898 | /// number -1 means that the pointer is used in multiple partitions. In this |
| 899 | /// case we can't safely omit the check. |
| 900 | SmallVector<RuntimePointerCheck, 4> includeOnlyCrossPartitionChecks( |
| 901 | const SmallVectorImpl<RuntimePointerCheck> &AllChecks, |
| 902 | const SmallVectorImpl<int> &PtrToPartition, |
| 903 | const RuntimePointerChecking *RtPtrChecking) { |
| 904 | SmallVector<RuntimePointerCheck, 4> Checks; |
| 905 | |
| 906 | copy_if(Range: AllChecks, Out: std::back_inserter(x&: Checks), |
| 907 | P: [&](const RuntimePointerCheck &Check) { |
| 908 | for (unsigned PtrIdx1 : Check.first->Members) |
| 909 | for (unsigned PtrIdx2 : Check.second->Members) |
| 910 | // Only include this check if there is a pair of pointers |
| 911 | // that require checking and the pointers fall into |
| 912 | // separate partitions. |
| 913 | // |
| 914 | // (Note that we already know at this point that the two |
| 915 | // pointer groups need checking but it doesn't follow |
| 916 | // that each pair of pointers within the two groups need |
| 917 | // checking as well. |
| 918 | // |
| 919 | // In other words we don't want to include a check just |
| 920 | // because there is a pair of pointers between the two |
| 921 | // pointer groups that require checks and a different |
| 922 | // pair whose pointers fall into different partitions.) |
| 923 | if (RtPtrChecking->needsChecking(I: PtrIdx1, J: PtrIdx2) && |
| 924 | !RuntimePointerChecking::arePointersInSamePartition( |
| 925 | PtrToPartition, PtrIdx1, PtrIdx2)) |
| 926 | return true; |
| 927 | return false; |
| 928 | }); |
| 929 | |
| 930 | return Checks; |
| 931 | } |
| 932 | |
| 933 | /// Check whether the loop metadata is forcing distribution to be |
| 934 | /// enabled/disabled. |
| 935 | void setForced() { |
| 936 | std::optional<const MDOperand *> Value = |
| 937 | findStringMetadataForLoop(TheLoop: L, Name: "llvm.loop.distribute.enable" ); |
| 938 | if (!Value) |
| 939 | return; |
| 940 | |
| 941 | const MDOperand *Op = *Value; |
| 942 | assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata" ); |
| 943 | IsForced = mdconst::extract<ConstantInt>(MD: *Op)->getZExtValue(); |
| 944 | } |
| 945 | |
| 946 | Loop *L; |
| 947 | Function *F; |
| 948 | |
| 949 | // Analyses used. |
| 950 | LoopInfo *LI; |
| 951 | const LoopAccessInfo *LAI = nullptr; |
| 952 | DominatorTree *DT; |
| 953 | ScalarEvolution *SE; |
| 954 | LoopAccessInfoManager &LAIs; |
| 955 | OptimizationRemarkEmitter *ORE; |
| 956 | |
| 957 | /// Indicates whether distribution is forced to be enabled/disabled for |
| 958 | /// the loop. |
| 959 | /// |
| 960 | /// If the optional has a value, it indicates whether distribution was forced |
| 961 | /// to be enabled (true) or disabled (false). If the optional has no value |
| 962 | /// distribution was not forced either way. |
| 963 | std::optional<bool> IsForced; |
| 964 | }; |
| 965 | |
| 966 | } // end anonymous namespace |
| 967 | |
| 968 | static bool (Function &F, LoopInfo *LI, DominatorTree *DT, |
| 969 | ScalarEvolution *SE, OptimizationRemarkEmitter *ORE, |
| 970 | LoopAccessInfoManager &LAIs) { |
| 971 | // Build up a worklist of inner-loops to distribute. This is necessary as the |
| 972 | // act of distributing a loop creates new loops and can invalidate iterators |
| 973 | // across the loops. |
| 974 | SmallVector<Loop *, 8> Worklist; |
| 975 | |
| 976 | for (Loop *TopLevelLoop : *LI) |
| 977 | for (Loop *L : depth_first(G: TopLevelLoop)) |
| 978 | // We only handle inner-most loops. |
| 979 | if (L->isInnermost()) |
| 980 | Worklist.push_back(Elt: L); |
| 981 | |
| 982 | // Now walk the identified inner loops. |
| 983 | bool Changed = false; |
| 984 | for (Loop *L : Worklist) { |
| 985 | LoopDistributeForLoop LDL(L, &F, LI, DT, SE, LAIs, ORE); |
| 986 | |
| 987 | // If distribution was forced for the specific loop to be |
| 988 | // enabled/disabled, follow that. Otherwise use the global flag. |
| 989 | if (LDL.isForced().value_or(u&: EnableLoopDistribute)) |
| 990 | Changed |= LDL.processLoop(); |
| 991 | } |
| 992 | |
| 993 | // Process each loop nest in the function. |
| 994 | return Changed; |
| 995 | } |
| 996 | |
| 997 | PreservedAnalyses LoopDistributePass::run(Function &F, |
| 998 | FunctionAnalysisManager &AM) { |
| 999 | auto &LI = AM.getResult<LoopAnalysis>(IR&: F); |
| 1000 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 1001 | auto &SE = AM.getResult<ScalarEvolutionAnalysis>(IR&: F); |
| 1002 | auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: F); |
| 1003 | |
| 1004 | LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(IR&: F); |
| 1005 | bool Changed = runImpl(F, LI: &LI, DT: &DT, SE: &SE, ORE: &ORE, LAIs); |
| 1006 | if (!Changed) |
| 1007 | return PreservedAnalyses::all(); |
| 1008 | PreservedAnalyses PA; |
| 1009 | PA.preserve<LoopAnalysis>(); |
| 1010 | PA.preserve<DominatorTreeAnalysis>(); |
| 1011 | return PA; |
| 1012 | } |
| 1013 | |