| 1 | //===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass does the inverse transformation of what LICM does. |
| 10 | // It traverses all of the instructions in the loop's preheader and sinks |
| 11 | // them to the loop body where frequency is lower than the loop's preheader. |
| 12 | // This pass is a reverse-transformation of LICM. It differs from the Sink |
| 13 | // pass in the following ways: |
| 14 | // |
| 15 | // * It only handles sinking of instructions from the loop's preheader to the |
| 16 | // loop's body |
| 17 | // * It uses alias set tracker to get more accurate alias info |
| 18 | // * It uses block frequency info to find the optimal sinking locations |
| 19 | // |
| 20 | // Overall algorithm: |
| 21 | // |
| 22 | // For I in Preheader: |
| 23 | // InsertBBs = BBs that uses I |
| 24 | // For BB in sorted(LoopBBs): |
| 25 | // DomBBs = BBs in InsertBBs that are dominated by BB |
| 26 | // if freq(DomBBs) > freq(BB) |
| 27 | // InsertBBs = UseBBs - DomBBs + BB |
| 28 | // For BB in InsertBBs: |
| 29 | // Insert I at BB's beginning |
| 30 | // |
| 31 | //===----------------------------------------------------------------------===// |
| 32 | |
| 33 | #include "llvm/Transforms/Scalar/LoopSink.h" |
| 34 | #include "llvm/ADT/SetOperations.h" |
| 35 | #include "llvm/ADT/Statistic.h" |
| 36 | #include "llvm/Analysis/AliasAnalysis.h" |
| 37 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
| 38 | #include "llvm/Analysis/LoopInfo.h" |
| 39 | #include "llvm/Analysis/MemorySSA.h" |
| 40 | #include "llvm/Analysis/MemorySSAUpdater.h" |
| 41 | #include "llvm/Analysis/ScalarEvolution.h" |
| 42 | #include "llvm/IR/Dominators.h" |
| 43 | #include "llvm/IR/Instructions.h" |
| 44 | #include "llvm/Support/BranchProbability.h" |
| 45 | #include "llvm/Support/CommandLine.h" |
| 46 | #include "llvm/Transforms/Scalar.h" |
| 47 | #include "llvm/Transforms/Utils/Local.h" |
| 48 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 49 | using namespace llvm; |
| 50 | |
| 51 | #define DEBUG_TYPE "loopsink" |
| 52 | |
| 53 | STATISTIC(NumLoopSunk, "Number of instructions sunk into loop" ); |
| 54 | STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop" ); |
| 55 | |
| 56 | static cl::opt<unsigned> SinkFrequencyPercentThreshold( |
| 57 | "sink-freq-percent-threshold" , cl::Hidden, cl::init(Val: 90), |
| 58 | cl::desc("Do not sink instructions that require cloning unless they " |
| 59 | "execute less than this percent of the time." )); |
| 60 | |
| 61 | static cl::opt<unsigned> MaxNumberOfUseBBsForSinking( |
| 62 | "max-uses-for-sinking" , cl::Hidden, cl::init(Val: 30), |
| 63 | cl::desc("Do not sink instructions that have too many uses." )); |
| 64 | |
| 65 | /// Return adjusted total frequency of \p BBs. |
| 66 | /// |
| 67 | /// * If there is only one BB, sinking instruction will not introduce code |
| 68 | /// size increase. Thus there is no need to adjust the frequency. |
| 69 | /// * If there are more than one BB, sinking would lead to code size increase. |
| 70 | /// In this case, we add some "tax" to the total frequency to make it harder |
| 71 | /// to sink. E.g. |
| 72 | /// Freq(Preheader) = 100 |
| 73 | /// Freq(BBs) = sum(50, 49) = 99 |
| 74 | /// Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to |
| 75 | /// BBs as the difference is too small to justify the code size increase. |
| 76 | /// To model this, The adjusted Freq(BBs) will be: |
| 77 | /// AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold% |
| 78 | static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs, |
| 79 | BlockFrequencyInfo &BFI) { |
| 80 | BlockFrequency T(0); |
| 81 | for (BasicBlock *B : BBs) |
| 82 | T += BFI.getBlockFreq(BB: B); |
| 83 | if (BBs.size() > 1) |
| 84 | T /= BranchProbability(SinkFrequencyPercentThreshold, 100); |
| 85 | return T; |
| 86 | } |
| 87 | |
| 88 | /// Return a set of basic blocks to insert sinked instructions. |
| 89 | /// |
| 90 | /// The returned set of basic blocks (BBsToSinkInto) should satisfy: |
| 91 | /// |
| 92 | /// * Inside the loop \p L |
| 93 | /// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto |
| 94 | /// that domintates the UseBB |
| 95 | /// * Has minimum total frequency that is no greater than preheader frequency |
| 96 | /// |
| 97 | /// The purpose of the function is to find the optimal sinking points to |
| 98 | /// minimize execution cost, which is defined as "sum of frequency of |
| 99 | /// BBsToSinkInto". |
| 100 | /// As a result, the returned BBsToSinkInto needs to have minimum total |
| 101 | /// frequency. |
| 102 | /// Additionally, if the total frequency of BBsToSinkInto exceeds preheader |
| 103 | /// frequency, the optimal solution is not sinking (return empty set). |
| 104 | /// |
| 105 | /// \p ColdLoopBBs is used to help find the optimal sinking locations. |
| 106 | /// It stores a list of BBs that is: |
| 107 | /// |
| 108 | /// * Inside the loop \p L |
| 109 | /// * Has a frequency no larger than the loop's preheader |
| 110 | /// * Sorted by BB frequency |
| 111 | /// |
| 112 | /// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()). |
| 113 | /// To avoid expensive computation, we cap the maximum UseBBs.size() in its |
| 114 | /// caller. |
| 115 | static SmallPtrSet<BasicBlock *, 2> |
| 116 | findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs, |
| 117 | const SmallVectorImpl<BasicBlock *> &ColdLoopBBs, |
| 118 | DominatorTree &DT, BlockFrequencyInfo &BFI) { |
| 119 | SmallPtrSet<BasicBlock *, 2> BBsToSinkInto; |
| 120 | if (UseBBs.size() == 0) |
| 121 | return BBsToSinkInto; |
| 122 | |
| 123 | BBsToSinkInto.insert_range(R: UseBBs); |
| 124 | SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB; |
| 125 | |
| 126 | // For every iteration: |
| 127 | // * Pick the ColdestBB from ColdLoopBBs |
| 128 | // * Find the set BBsDominatedByColdestBB that satisfy: |
| 129 | // - BBsDominatedByColdestBB is a subset of BBsToSinkInto |
| 130 | // - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB |
| 131 | // * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove |
| 132 | // BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to |
| 133 | // BBsToSinkInto |
| 134 | for (BasicBlock *ColdestBB : ColdLoopBBs) { |
| 135 | BBsDominatedByColdestBB.clear(); |
| 136 | for (BasicBlock *SinkedBB : BBsToSinkInto) |
| 137 | if (DT.dominates(A: ColdestBB, B: SinkedBB)) |
| 138 | BBsDominatedByColdestBB.insert(Ptr: SinkedBB); |
| 139 | if (BBsDominatedByColdestBB.size() == 0) |
| 140 | continue; |
| 141 | if (adjustedSumFreq(BBs&: BBsDominatedByColdestBB, BFI) > |
| 142 | BFI.getBlockFreq(BB: ColdestBB)) { |
| 143 | for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) { |
| 144 | BBsToSinkInto.erase(Ptr: DominatedBB); |
| 145 | } |
| 146 | BBsToSinkInto.insert(Ptr: ColdestBB); |
| 147 | continue; |
| 148 | } |
| 149 | // Otherwise, see if we can stop the search through the cold BBs early. |
| 150 | // Since the ColdLoopBBs list is sorted in increasing magnitude of |
| 151 | // frequency the cold BB frequencies can only get larger. The |
| 152 | // BBsToSinkInto set can only get smaller and have a smaller |
| 153 | // adjustedSumFreq, due to the earlier checking. So once we find a cold BB |
| 154 | // with a frequency at least as large as the adjustedSumFreq of the |
| 155 | // current BBsToSinkInto set, the earlier frequency check can never be |
| 156 | // true for a future iteration. Note we could do check this more |
| 157 | // aggressively earlier, but in practice this ended up being more |
| 158 | // expensive overall (added checking to the critical path through the loop |
| 159 | // that often ended up continuing early due to an empty |
| 160 | // BBsDominatedByColdestBB set, and the frequency check there was false |
| 161 | // most of the time anyway). |
| 162 | if (adjustedSumFreq(BBs&: BBsToSinkInto, BFI) <= BFI.getBlockFreq(BB: ColdestBB)) |
| 163 | break; |
| 164 | } |
| 165 | |
| 166 | // Can't sink into blocks that have no valid insertion point. |
| 167 | for (BasicBlock *BB : BBsToSinkInto) { |
| 168 | if (BB->getFirstInsertionPt() == BB->end()) { |
| 169 | BBsToSinkInto.clear(); |
| 170 | break; |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | // If the total frequency of BBsToSinkInto is larger than preheader frequency, |
| 175 | // do not sink. |
| 176 | if (adjustedSumFreq(BBs&: BBsToSinkInto, BFI) > |
| 177 | BFI.getBlockFreq(BB: L.getLoopPreheader())) |
| 178 | BBsToSinkInto.clear(); |
| 179 | return BBsToSinkInto; |
| 180 | } |
| 181 | |
| 182 | // Sinks \p I from the loop \p L's preheader to its uses. Returns true if |
| 183 | // sinking is successful. |
| 184 | // \p LoopBlockNumber is used to sort the insertion blocks to ensure |
| 185 | // determinism. |
| 186 | static bool sinkInstruction( |
| 187 | Loop &L, Instruction &I, const SmallVectorImpl<BasicBlock *> &ColdLoopBBs, |
| 188 | const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber, LoopInfo &LI, |
| 189 | DominatorTree &DT, BlockFrequencyInfo &BFI, MemorySSAUpdater *MSSAU) { |
| 190 | // Compute the set of blocks in loop L which contain a use of I. |
| 191 | SmallPtrSet<BasicBlock *, 2> BBs; |
| 192 | for (auto &U : I.uses()) { |
| 193 | Instruction *UI = cast<Instruction>(Val: U.getUser()); |
| 194 | |
| 195 | // We cannot sink I if it has uses outside of the loop. |
| 196 | if (!L.contains(L: LI.getLoopFor(BB: UI->getParent()))) |
| 197 | return false; |
| 198 | |
| 199 | if (!isa<PHINode>(Val: UI)) { |
| 200 | BBs.insert(Ptr: UI->getParent()); |
| 201 | continue; |
| 202 | } |
| 203 | |
| 204 | // We cannot sink I to PHI-uses, try to look through PHI to find the incoming |
| 205 | // block of the value being used. |
| 206 | PHINode *PN = dyn_cast<PHINode>(Val: UI); |
| 207 | BasicBlock *PhiBB = PN->getIncomingBlock(U); |
| 208 | |
| 209 | // If value's incoming block is from loop preheader directly, there's no |
| 210 | // place to sink to, bailout. |
| 211 | if (L.getLoopPreheader() == PhiBB) |
| 212 | return false; |
| 213 | |
| 214 | BBs.insert(Ptr: PhiBB); |
| 215 | } |
| 216 | |
| 217 | // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max |
| 218 | // BBs.size() to avoid expensive computation. |
| 219 | // FIXME: Handle code size growth for min_size and opt_size. |
| 220 | if (BBs.size() > MaxNumberOfUseBBsForSinking) |
| 221 | return false; |
| 222 | |
| 223 | // Find the set of BBs that we should insert a copy of I. |
| 224 | SmallPtrSet<BasicBlock *, 2> BBsToSinkInto = |
| 225 | findBBsToSinkInto(L, UseBBs: BBs, ColdLoopBBs, DT, BFI); |
| 226 | if (BBsToSinkInto.empty()) |
| 227 | return false; |
| 228 | |
| 229 | // Return if any of the candidate blocks to sink into is non-cold. |
| 230 | if (BBsToSinkInto.size() > 1 && |
| 231 | !llvm::set_is_subset(S1: BBsToSinkInto, S2: LoopBlockNumber)) |
| 232 | return false; |
| 233 | |
| 234 | // Copy the final BBs into a vector and sort them using the total ordering |
| 235 | // of the loop block numbers as iterating the set doesn't give a useful |
| 236 | // order. No need to stable sort as the block numbers are a total ordering. |
| 237 | SmallVector<BasicBlock *, 2> SortedBBsToSinkInto; |
| 238 | llvm::append_range(C&: SortedBBsToSinkInto, R&: BBsToSinkInto); |
| 239 | if (SortedBBsToSinkInto.size() > 1) { |
| 240 | llvm::sort(C&: SortedBBsToSinkInto, Comp: [&](BasicBlock *A, BasicBlock *B) { |
| 241 | return LoopBlockNumber.find(Val: A)->second < LoopBlockNumber.find(Val: B)->second; |
| 242 | }); |
| 243 | } |
| 244 | |
| 245 | BasicBlock *MoveBB = *SortedBBsToSinkInto.begin(); |
| 246 | // FIXME: Optimize the efficiency for cloned value replacement. The current |
| 247 | // implementation is O(SortedBBsToSinkInto.size() * I.num_uses()). |
| 248 | for (BasicBlock *N : ArrayRef(SortedBBsToSinkInto).drop_front(N: 1)) { |
| 249 | assert(LoopBlockNumber.find(N)->second > |
| 250 | LoopBlockNumber.find(MoveBB)->second && |
| 251 | "BBs not sorted!" ); |
| 252 | // Clone I and replace its uses. |
| 253 | Instruction *IC = I.clone(); |
| 254 | IC->setName(I.getName()); |
| 255 | IC->insertBefore(InsertPos: N->getFirstInsertionPt()); |
| 256 | |
| 257 | if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(I: &I)) { |
| 258 | // Create a new MemoryAccess and let MemorySSA set its defining access. |
| 259 | MemoryAccess *NewMemAcc = |
| 260 | MSSAU->createMemoryAccessInBB(I: IC, Definition: nullptr, BB: N, Point: MemorySSA::Beginning); |
| 261 | if (NewMemAcc) { |
| 262 | if (auto *MemDef = dyn_cast<MemoryDef>(Val: NewMemAcc)) |
| 263 | MSSAU->insertDef(Def: MemDef, /*RenameUses=*/true); |
| 264 | else { |
| 265 | auto *MemUse = cast<MemoryUse>(Val: NewMemAcc); |
| 266 | MSSAU->insertUse(Use: MemUse, /*RenameUses=*/true); |
| 267 | } |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | // Replaces uses of I with IC in N, except PHI-use which is being taken |
| 272 | // care of by defs in PHI's incoming blocks. |
| 273 | I.replaceUsesWithIf(New: IC, ShouldReplace: [N](Use &U) { |
| 274 | Instruction *UIToReplace = cast<Instruction>(Val: U.getUser()); |
| 275 | return UIToReplace->getParent() == N && !isa<PHINode>(Val: UIToReplace); |
| 276 | }); |
| 277 | // Replaces uses of I with IC in blocks dominated by N |
| 278 | replaceDominatedUsesWith(From: &I, To: IC, DT, BB: N); |
| 279 | LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName() |
| 280 | << '\n'); |
| 281 | NumLoopSunkCloned++; |
| 282 | } |
| 283 | LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n'); |
| 284 | NumLoopSunk++; |
| 285 | I.moveBefore(InsertPos: MoveBB->getFirstInsertionPt()); |
| 286 | |
| 287 | if (MSSAU) |
| 288 | if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>( |
| 289 | Val: MSSAU->getMemorySSA()->getMemoryAccess(I: &I))) |
| 290 | MSSAU->moveToPlace(What: OldMemAcc, BB: MoveBB, Where: MemorySSA::Beginning); |
| 291 | |
| 292 | return true; |
| 293 | } |
| 294 | |
| 295 | /// Sinks instructions from loop's preheader to the loop body if the |
| 296 | /// sum frequency of inserted copy is smaller than preheader's frequency. |
| 297 | static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI, |
| 298 | DominatorTree &DT, |
| 299 | BlockFrequencyInfo &BFI, |
| 300 | MemorySSA &MSSA, |
| 301 | ScalarEvolution *SE) { |
| 302 | BasicBlock * = L.getLoopPreheader(); |
| 303 | assert(Preheader && "Expected loop to have preheader" ); |
| 304 | |
| 305 | assert(Preheader->getParent()->hasProfileData() && |
| 306 | "Unexpected call when profile data unavailable." ); |
| 307 | |
| 308 | const BlockFrequency = BFI.getBlockFreq(BB: Preheader); |
| 309 | // If there are no basic blocks with lower frequency than the preheader then |
| 310 | // we can avoid the detailed analysis as we will never find profitable sinking |
| 311 | // opportunities. |
| 312 | if (all_of(Range: L.blocks(), P: [&](const BasicBlock *BB) { |
| 313 | return BFI.getBlockFreq(BB) > PreheaderFreq; |
| 314 | })) |
| 315 | return false; |
| 316 | |
| 317 | MemorySSAUpdater MSSAU(&MSSA); |
| 318 | SinkAndHoistLICMFlags LICMFlags(/*IsSink=*/true, L, MSSA); |
| 319 | |
| 320 | bool Changed = false; |
| 321 | |
| 322 | // Sort loop's basic blocks by frequency |
| 323 | SmallVector<BasicBlock *, 10> ColdLoopBBs; |
| 324 | SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber; |
| 325 | int i = 0; |
| 326 | for (BasicBlock *B : L.blocks()) |
| 327 | if (BFI.getBlockFreq(BB: B) < BFI.getBlockFreq(BB: L.getLoopPreheader())) { |
| 328 | ColdLoopBBs.push_back(Elt: B); |
| 329 | LoopBlockNumber[B] = ++i; |
| 330 | } |
| 331 | llvm::stable_sort(Range&: ColdLoopBBs, C: [&](BasicBlock *A, BasicBlock *B) { |
| 332 | return BFI.getBlockFreq(BB: A) < BFI.getBlockFreq(BB: B); |
| 333 | }); |
| 334 | |
| 335 | // Traverse preheader's instructions in reverse order because if A depends |
| 336 | // on B (A appears after B), A needs to be sunk first before B can be |
| 337 | // sinked. |
| 338 | for (Instruction &I : llvm::make_early_inc_range(Range: llvm::reverse(C&: *Preheader))) { |
| 339 | if (isa<PHINode>(Val: &I)) |
| 340 | continue; |
| 341 | // No need to check for instruction's operands are loop invariant. |
| 342 | assert(L.hasLoopInvariantOperands(&I) && |
| 343 | "Insts in a loop's preheader should have loop invariant operands!" ); |
| 344 | if (!canSinkOrHoistInst(I, AA: &AA, DT: &DT, CurLoop: &L, MSSAU, TargetExecutesOncePerLoop: false, LICMFlags)) |
| 345 | continue; |
| 346 | if (sinkInstruction(L, I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI, |
| 347 | MSSAU: &MSSAU)) { |
| 348 | Changed = true; |
| 349 | if (SE) |
| 350 | SE->forgetBlockAndLoopDispositions(V: &I); |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | return Changed; |
| 355 | } |
| 356 | |
| 357 | PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) { |
| 358 | // Enable LoopSink only when runtime profile is available. |
| 359 | // With static profile, the sinking decision may be sub-optimal. |
| 360 | if (!F.hasProfileData()) |
| 361 | return PreservedAnalyses::all(); |
| 362 | |
| 363 | LoopInfo &LI = FAM.getResult<LoopAnalysis>(IR&: F); |
| 364 | // Nothing to do if there are no loops. |
| 365 | if (LI.empty()) |
| 366 | return PreservedAnalyses::all(); |
| 367 | |
| 368 | AAResults &AA = FAM.getResult<AAManager>(IR&: F); |
| 369 | DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 370 | BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(IR&: F); |
| 371 | MemorySSA &MSSA = FAM.getResult<MemorySSAAnalysis>(IR&: F).getMSSA(); |
| 372 | |
| 373 | // We want to do a postorder walk over the loops. Since loops are a tree this |
| 374 | // is equivalent to a reversed preorder walk and preorder is easy to compute |
| 375 | // without recursion. Since we reverse the preorder, we will visit siblings |
| 376 | // in reverse program order. This isn't expected to matter at all but is more |
| 377 | // consistent with sinking algorithms which generally work bottom-up. |
| 378 | SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder(); |
| 379 | |
| 380 | bool Changed = false; |
| 381 | do { |
| 382 | Loop &L = *PreorderLoops.pop_back_val(); |
| 383 | |
| 384 | BasicBlock * = L.getLoopPreheader(); |
| 385 | if (!Preheader) |
| 386 | continue; |
| 387 | |
| 388 | // Note that we don't pass SCEV here because it is only used to invalidate |
| 389 | // loops in SCEV and we don't preserve (or request) SCEV at all making that |
| 390 | // unnecessary. |
| 391 | Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI, MSSA, |
| 392 | /*ScalarEvolution*/ SE: nullptr); |
| 393 | } while (!PreorderLoops.empty()); |
| 394 | |
| 395 | if (!Changed) |
| 396 | return PreservedAnalyses::all(); |
| 397 | |
| 398 | PreservedAnalyses PA; |
| 399 | PA.preserveSet<CFGAnalyses>(); |
| 400 | PA.preserve<MemorySSAAnalysis>(); |
| 401 | |
| 402 | if (VerifyMemorySSA) |
| 403 | MSSA.verifyMemorySSA(); |
| 404 | |
| 405 | return PA; |
| 406 | } |
| 407 | |