| 1 | //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass implements a simple loop unroller. It works best when loops have |
| 10 | // been canonicalized by the -indvars pass, allowing it to determine the trip |
| 11 | // counts of loops easily. |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Transforms/Scalar/LoopUnrollPass.h" |
| 15 | #include "llvm/ADT/DenseMap.h" |
| 16 | #include "llvm/ADT/DenseMapInfo.h" |
| 17 | #include "llvm/ADT/DenseSet.h" |
| 18 | #include "llvm/ADT/STLExtras.h" |
| 19 | #include "llvm/ADT/SetVector.h" |
| 20 | #include "llvm/ADT/SmallPtrSet.h" |
| 21 | #include "llvm/ADT/SmallVector.h" |
| 22 | #include "llvm/ADT/StringRef.h" |
| 23 | #include "llvm/Analysis/AssumptionCache.h" |
| 24 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
| 25 | #include "llvm/Analysis/CodeMetrics.h" |
| 26 | #include "llvm/Analysis/LoopAnalysisManager.h" |
| 27 | #include "llvm/Analysis/LoopInfo.h" |
| 28 | #include "llvm/Analysis/LoopPass.h" |
| 29 | #include "llvm/Analysis/LoopUnrollAnalyzer.h" |
| 30 | #include "llvm/Analysis/MemorySSA.h" |
| 31 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 32 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
| 33 | #include "llvm/Analysis/ScalarEvolution.h" |
| 34 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 35 | #include "llvm/IR/BasicBlock.h" |
| 36 | #include "llvm/IR/CFG.h" |
| 37 | #include "llvm/IR/Constant.h" |
| 38 | #include "llvm/IR/Constants.h" |
| 39 | #include "llvm/IR/DiagnosticInfo.h" |
| 40 | #include "llvm/IR/Dominators.h" |
| 41 | #include "llvm/IR/Function.h" |
| 42 | #include "llvm/IR/Instruction.h" |
| 43 | #include "llvm/IR/Instructions.h" |
| 44 | #include "llvm/IR/IntrinsicInst.h" |
| 45 | #include "llvm/IR/Metadata.h" |
| 46 | #include "llvm/IR/PassManager.h" |
| 47 | #include "llvm/InitializePasses.h" |
| 48 | #include "llvm/Pass.h" |
| 49 | #include "llvm/Support/Casting.h" |
| 50 | #include "llvm/Support/CommandLine.h" |
| 51 | #include "llvm/Support/Debug.h" |
| 52 | #include "llvm/Support/ErrorHandling.h" |
| 53 | #include "llvm/Support/raw_ostream.h" |
| 54 | #include "llvm/Transforms/Scalar.h" |
| 55 | #include "llvm/Transforms/Scalar/LoopPassManager.h" |
| 56 | #include "llvm/Transforms/Utils.h" |
| 57 | #include "llvm/Transforms/Utils/LoopPeel.h" |
| 58 | #include "llvm/Transforms/Utils/LoopSimplify.h" |
| 59 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 60 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
| 61 | #include "llvm/Transforms/Utils/SizeOpts.h" |
| 62 | #include "llvm/Transforms/Utils/UnrollLoop.h" |
| 63 | #include <algorithm> |
| 64 | #include <cassert> |
| 65 | #include <cstdint> |
| 66 | #include <limits> |
| 67 | #include <optional> |
| 68 | #include <string> |
| 69 | #include <tuple> |
| 70 | #include <utility> |
| 71 | |
| 72 | using namespace llvm; |
| 73 | |
| 74 | #define DEBUG_TYPE "loop-unroll" |
| 75 | |
| 76 | cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( |
| 77 | "forget-scev-loop-unroll" , cl::init(Val: false), cl::Hidden, |
| 78 | cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" |
| 79 | " the current top-most loop. This is sometimes preferred to reduce" |
| 80 | " compile time." )); |
| 81 | |
| 82 | static cl::opt<unsigned> |
| 83 | UnrollThreshold("unroll-threshold" , cl::Hidden, |
| 84 | cl::desc("The cost threshold for loop unrolling" )); |
| 85 | |
| 86 | static cl::opt<unsigned> |
| 87 | UnrollOptSizeThreshold( |
| 88 | "unroll-optsize-threshold" , cl::init(Val: 0), cl::Hidden, |
| 89 | cl::desc("The cost threshold for loop unrolling when optimizing for " |
| 90 | "size" )); |
| 91 | |
| 92 | static cl::opt<unsigned> UnrollPartialThreshold( |
| 93 | "unroll-partial-threshold" , cl::Hidden, |
| 94 | cl::desc("The cost threshold for partial loop unrolling" )); |
| 95 | |
| 96 | static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( |
| 97 | "unroll-max-percent-threshold-boost" , cl::init(Val: 400), cl::Hidden, |
| 98 | cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " |
| 99 | "to the threshold when aggressively unrolling a loop due to the " |
| 100 | "dynamic cost savings. If completely unrolling a loop will reduce " |
| 101 | "the total runtime from X to Y, we boost the loop unroll " |
| 102 | "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " |
| 103 | "X/Y). This limit avoids excessive code bloat." )); |
| 104 | |
| 105 | static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( |
| 106 | "unroll-max-iteration-count-to-analyze" , cl::init(Val: 10), cl::Hidden, |
| 107 | cl::desc("Don't allow loop unrolling to simulate more than this number of " |
| 108 | "iterations when checking full unroll profitability" )); |
| 109 | |
| 110 | static cl::opt<unsigned> UnrollCount( |
| 111 | "unroll-count" , cl::Hidden, |
| 112 | cl::desc("Use this unroll count for all loops including those with " |
| 113 | "unroll_count pragma values, for testing purposes" )); |
| 114 | |
| 115 | static cl::opt<unsigned> UnrollMaxCount( |
| 116 | "unroll-max-count" , cl::Hidden, |
| 117 | cl::desc("Set the max unroll count for partial and runtime unrolling, for" |
| 118 | "testing purposes" )); |
| 119 | |
| 120 | static cl::opt<unsigned> UnrollFullMaxCount( |
| 121 | "unroll-full-max-count" , cl::Hidden, |
| 122 | cl::desc( |
| 123 | "Set the max unroll count for full unrolling, for testing purposes" )); |
| 124 | |
| 125 | static cl::opt<bool> |
| 126 | UnrollAllowPartial("unroll-allow-partial" , cl::Hidden, |
| 127 | cl::desc("Allows loops to be partially unrolled until " |
| 128 | "-unroll-threshold loop size is reached." )); |
| 129 | |
| 130 | static cl::opt<bool> UnrollAllowRemainder( |
| 131 | "unroll-allow-remainder" , cl::Hidden, |
| 132 | cl::desc("Allow generation of a loop remainder (extra iterations) " |
| 133 | "when unrolling a loop." )); |
| 134 | |
| 135 | static cl::opt<bool> |
| 136 | UnrollRuntime("unroll-runtime" , cl::Hidden, |
| 137 | cl::desc("Unroll loops with run-time trip counts" )); |
| 138 | |
| 139 | static cl::opt<unsigned> UnrollMaxUpperBound( |
| 140 | "unroll-max-upperbound" , cl::init(Val: 8), cl::Hidden, |
| 141 | cl::desc( |
| 142 | "The max of trip count upper bound that is considered in unrolling" )); |
| 143 | |
| 144 | static cl::opt<unsigned> PragmaUnrollThreshold( |
| 145 | "pragma-unroll-threshold" , cl::init(Val: 16 * 1024), cl::Hidden, |
| 146 | cl::desc("Unrolled size limit for loops with an unroll(full) or " |
| 147 | "unroll_count pragma." )); |
| 148 | |
| 149 | static cl::opt<unsigned> FlatLoopTripCountThreshold( |
| 150 | "flat-loop-tripcount-threshold" , cl::init(Val: 5), cl::Hidden, |
| 151 | cl::desc("If the runtime tripcount for the loop is lower than the " |
| 152 | "threshold, the loop is considered as flat and will be less " |
| 153 | "aggressively unrolled." )); |
| 154 | |
| 155 | static cl::opt<bool> UnrollUnrollRemainder( |
| 156 | "unroll-remainder" , cl::Hidden, |
| 157 | cl::desc("Allow the loop remainder to be unrolled." )); |
| 158 | |
| 159 | // This option isn't ever intended to be enabled, it serves to allow |
| 160 | // experiments to check the assumptions about when this kind of revisit is |
| 161 | // necessary. |
| 162 | static cl::opt<bool> UnrollRevisitChildLoops( |
| 163 | "unroll-revisit-child-loops" , cl::Hidden, |
| 164 | cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " |
| 165 | "This shouldn't typically be needed as child loops (or their " |
| 166 | "clones) were already visited." )); |
| 167 | |
| 168 | static cl::opt<unsigned> UnrollThresholdAggressive( |
| 169 | "unroll-threshold-aggressive" , cl::init(Val: 300), cl::Hidden, |
| 170 | cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) " |
| 171 | "optimizations" )); |
| 172 | static cl::opt<unsigned> |
| 173 | UnrollThresholdDefault("unroll-threshold-default" , cl::init(Val: 150), |
| 174 | cl::Hidden, |
| 175 | cl::desc("Default threshold (max size of unrolled " |
| 176 | "loop), used in all but O3 optimizations" )); |
| 177 | |
| 178 | static cl::opt<unsigned> PragmaUnrollFullMaxIterations( |
| 179 | "pragma-unroll-full-max-iterations" , cl::init(Val: 1'000'000), cl::Hidden, |
| 180 | cl::desc("Maximum allowed iterations to unroll under pragma unroll full." )); |
| 181 | |
| 182 | /// A magic value for use with the Threshold parameter to indicate |
| 183 | /// that the loop unroll should be performed regardless of how much |
| 184 | /// code expansion would result. |
| 185 | static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); |
| 186 | |
| 187 | /// Gather the various unrolling parameters based on the defaults, compiler |
| 188 | /// flags, TTI overrides and user specified parameters. |
| 189 | TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( |
| 190 | Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, |
| 191 | BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, |
| 192 | OptimizationRemarkEmitter &ORE, int OptLevel, |
| 193 | std::optional<unsigned> UserThreshold, std::optional<unsigned> UserCount, |
| 194 | std::optional<bool> UserAllowPartial, std::optional<bool> UserRuntime, |
| 195 | std::optional<bool> UserUpperBound, |
| 196 | std::optional<unsigned> UserFullUnrollMaxCount) { |
| 197 | TargetTransformInfo::UnrollingPreferences UP; |
| 198 | |
| 199 | // Set up the defaults |
| 200 | UP.Threshold = |
| 201 | OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault; |
| 202 | UP.MaxPercentThresholdBoost = 400; |
| 203 | UP.OptSizeThreshold = UnrollOptSizeThreshold; |
| 204 | UP.PartialThreshold = 150; |
| 205 | UP.PartialOptSizeThreshold = UnrollOptSizeThreshold; |
| 206 | UP.Count = 0; |
| 207 | UP.DefaultUnrollRuntimeCount = 8; |
| 208 | UP.MaxCount = std::numeric_limits<unsigned>::max(); |
| 209 | UP.MaxUpperBound = UnrollMaxUpperBound; |
| 210 | UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); |
| 211 | UP.BEInsns = 2; |
| 212 | UP.Partial = false; |
| 213 | UP.Runtime = false; |
| 214 | UP.AllowRemainder = true; |
| 215 | UP.UnrollRemainder = false; |
| 216 | UP.AllowExpensiveTripCount = false; |
| 217 | UP.Force = false; |
| 218 | UP.UpperBound = false; |
| 219 | UP.UnrollAndJam = false; |
| 220 | UP.UnrollAndJamInnerLoopThreshold = 60; |
| 221 | UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; |
| 222 | UP.SCEVExpansionBudget = SCEVCheapExpansionBudget; |
| 223 | UP.RuntimeUnrollMultiExit = false; |
| 224 | |
| 225 | // Override with any target specific settings |
| 226 | TTI.getUnrollingPreferences(L, SE, UP, ORE: &ORE); |
| 227 | |
| 228 | // Apply size attributes |
| 229 | bool OptForSize = L->getHeader()->getParent()->hasOptSize() || |
| 230 | // Let unroll hints / pragmas take precedence over PGSO. |
| 231 | (hasUnrollTransformation(L) != TM_ForcedByUser && |
| 232 | llvm::shouldOptimizeForSize(BB: L->getHeader(), PSI, BFI, |
| 233 | QueryType: PGSOQueryType::IRPass)); |
| 234 | if (OptForSize) { |
| 235 | UP.Threshold = UP.OptSizeThreshold; |
| 236 | UP.PartialThreshold = UP.PartialOptSizeThreshold; |
| 237 | UP.MaxPercentThresholdBoost = 100; |
| 238 | } |
| 239 | |
| 240 | // Apply any user values specified by cl::opt |
| 241 | if (UnrollThreshold.getNumOccurrences() > 0) |
| 242 | UP.Threshold = UnrollThreshold; |
| 243 | if (UnrollPartialThreshold.getNumOccurrences() > 0) |
| 244 | UP.PartialThreshold = UnrollPartialThreshold; |
| 245 | if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) |
| 246 | UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; |
| 247 | if (UnrollMaxCount.getNumOccurrences() > 0) |
| 248 | UP.MaxCount = UnrollMaxCount; |
| 249 | if (UnrollMaxUpperBound.getNumOccurrences() > 0) |
| 250 | UP.MaxUpperBound = UnrollMaxUpperBound; |
| 251 | if (UnrollFullMaxCount.getNumOccurrences() > 0) |
| 252 | UP.FullUnrollMaxCount = UnrollFullMaxCount; |
| 253 | if (UnrollAllowPartial.getNumOccurrences() > 0) |
| 254 | UP.Partial = UnrollAllowPartial; |
| 255 | if (UnrollAllowRemainder.getNumOccurrences() > 0) |
| 256 | UP.AllowRemainder = UnrollAllowRemainder; |
| 257 | if (UnrollRuntime.getNumOccurrences() > 0) |
| 258 | UP.Runtime = UnrollRuntime; |
| 259 | if (UnrollMaxUpperBound == 0) |
| 260 | UP.UpperBound = false; |
| 261 | if (UnrollUnrollRemainder.getNumOccurrences() > 0) |
| 262 | UP.UnrollRemainder = UnrollUnrollRemainder; |
| 263 | if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0) |
| 264 | UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; |
| 265 | |
| 266 | // Apply user values provided by argument |
| 267 | if (UserThreshold) { |
| 268 | UP.Threshold = *UserThreshold; |
| 269 | UP.PartialThreshold = *UserThreshold; |
| 270 | } |
| 271 | if (UserCount) |
| 272 | UP.Count = *UserCount; |
| 273 | if (UserAllowPartial) |
| 274 | UP.Partial = *UserAllowPartial; |
| 275 | if (UserRuntime) |
| 276 | UP.Runtime = *UserRuntime; |
| 277 | if (UserUpperBound) |
| 278 | UP.UpperBound = *UserUpperBound; |
| 279 | if (UserFullUnrollMaxCount) |
| 280 | UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; |
| 281 | |
| 282 | return UP; |
| 283 | } |
| 284 | |
| 285 | namespace { |
| 286 | |
| 287 | /// A struct to densely store the state of an instruction after unrolling at |
| 288 | /// each iteration. |
| 289 | /// |
| 290 | /// This is designed to work like a tuple of <Instruction *, int> for the |
| 291 | /// purposes of hashing and lookup, but to be able to associate two boolean |
| 292 | /// states with each key. |
| 293 | struct UnrolledInstState { |
| 294 | Instruction *I; |
| 295 | int Iteration : 30; |
| 296 | unsigned IsFree : 1; |
| 297 | unsigned IsCounted : 1; |
| 298 | }; |
| 299 | |
| 300 | /// Hashing and equality testing for a set of the instruction states. |
| 301 | struct UnrolledInstStateKeyInfo { |
| 302 | using PtrInfo = DenseMapInfo<Instruction *>; |
| 303 | using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; |
| 304 | |
| 305 | static inline UnrolledInstState getEmptyKey() { |
| 306 | return {.I: PtrInfo::getEmptyKey(), .Iteration: 0, .IsFree: 0, .IsCounted: 0}; |
| 307 | } |
| 308 | |
| 309 | static inline UnrolledInstState getTombstoneKey() { |
| 310 | return {.I: PtrInfo::getTombstoneKey(), .Iteration: 0, .IsFree: 0, .IsCounted: 0}; |
| 311 | } |
| 312 | |
| 313 | static inline unsigned getHashValue(const UnrolledInstState &S) { |
| 314 | return PairInfo::getHashValue(PairVal: {S.I, S.Iteration}); |
| 315 | } |
| 316 | |
| 317 | static inline bool isEqual(const UnrolledInstState &LHS, |
| 318 | const UnrolledInstState &RHS) { |
| 319 | return PairInfo::isEqual(LHS: {LHS.I, LHS.Iteration}, RHS: {RHS.I, RHS.Iteration}); |
| 320 | } |
| 321 | }; |
| 322 | |
| 323 | struct EstimatedUnrollCost { |
| 324 | /// The estimated cost after unrolling. |
| 325 | unsigned UnrolledCost; |
| 326 | |
| 327 | /// The estimated dynamic cost of executing the instructions in the |
| 328 | /// rolled form. |
| 329 | unsigned RolledDynamicCost; |
| 330 | }; |
| 331 | |
| 332 | struct PragmaInfo { |
| 333 | PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU) |
| 334 | : UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC), |
| 335 | PragmaEnableUnroll(PEU) {} |
| 336 | const bool UserUnrollCount; |
| 337 | const bool PragmaFullUnroll; |
| 338 | const unsigned PragmaCount; |
| 339 | const bool PragmaEnableUnroll; |
| 340 | }; |
| 341 | |
| 342 | } // end anonymous namespace |
| 343 | |
| 344 | /// Figure out if the loop is worth full unrolling. |
| 345 | /// |
| 346 | /// Complete loop unrolling can make some loads constant, and we need to know |
| 347 | /// if that would expose any further optimization opportunities. This routine |
| 348 | /// estimates this optimization. It computes cost of unrolled loop |
| 349 | /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By |
| 350 | /// dynamic cost we mean that we won't count costs of blocks that are known not |
| 351 | /// to be executed (i.e. if we have a branch in the loop and we know that at the |
| 352 | /// given iteration its condition would be resolved to true, we won't add up the |
| 353 | /// cost of the 'false'-block). |
| 354 | /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If |
| 355 | /// the analysis failed (no benefits expected from the unrolling, or the loop is |
| 356 | /// too big to analyze), the returned value is std::nullopt. |
| 357 | static std::optional<EstimatedUnrollCost> analyzeLoopUnrollCost( |
| 358 | const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, |
| 359 | const SmallPtrSetImpl<const Value *> &EphValues, |
| 360 | const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize, |
| 361 | unsigned MaxIterationsCountToAnalyze) { |
| 362 | // We want to be able to scale offsets by the trip count and add more offsets |
| 363 | // to them without checking for overflows, and we already don't want to |
| 364 | // analyze *massive* trip counts, so we force the max to be reasonably small. |
| 365 | assert(MaxIterationsCountToAnalyze < |
| 366 | (unsigned)(std::numeric_limits<int>::max() / 2) && |
| 367 | "The unroll iterations max is too large!" ); |
| 368 | |
| 369 | // Only analyze inner loops. We can't properly estimate cost of nested loops |
| 370 | // and we won't visit inner loops again anyway. |
| 371 | if (!L->isInnermost()) |
| 372 | return std::nullopt; |
| 373 | |
| 374 | // Don't simulate loops with a big or unknown tripcount |
| 375 | if (!TripCount || TripCount > MaxIterationsCountToAnalyze) |
| 376 | return std::nullopt; |
| 377 | |
| 378 | SmallSetVector<BasicBlock *, 16> BBWorklist; |
| 379 | SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; |
| 380 | DenseMap<Value *, Value *> SimplifiedValues; |
| 381 | SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues; |
| 382 | |
| 383 | // The estimated cost of the unrolled form of the loop. We try to estimate |
| 384 | // this by simplifying as much as we can while computing the estimate. |
| 385 | InstructionCost UnrolledCost = 0; |
| 386 | |
| 387 | // We also track the estimated dynamic (that is, actually executed) cost in |
| 388 | // the rolled form. This helps identify cases when the savings from unrolling |
| 389 | // aren't just exposing dead control flows, but actual reduced dynamic |
| 390 | // instructions due to the simplifications which we expect to occur after |
| 391 | // unrolling. |
| 392 | InstructionCost RolledDynamicCost = 0; |
| 393 | |
| 394 | // We track the simplification of each instruction in each iteration. We use |
| 395 | // this to recursively merge costs into the unrolled cost on-demand so that |
| 396 | // we don't count the cost of any dead code. This is essentially a map from |
| 397 | // <instruction, int> to <bool, bool>, but stored as a densely packed struct. |
| 398 | DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; |
| 399 | |
| 400 | // A small worklist used to accumulate cost of instructions from each |
| 401 | // observable and reached root in the loop. |
| 402 | SmallVector<Instruction *, 16> CostWorklist; |
| 403 | |
| 404 | // PHI-used worklist used between iterations while accumulating cost. |
| 405 | SmallVector<Instruction *, 4> PHIUsedList; |
| 406 | |
| 407 | // Helper function to accumulate cost for instructions in the loop. |
| 408 | auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { |
| 409 | assert(Iteration >= 0 && "Cannot have a negative iteration!" ); |
| 410 | assert(CostWorklist.empty() && "Must start with an empty cost list" ); |
| 411 | assert(PHIUsedList.empty() && "Must start with an empty phi used list" ); |
| 412 | CostWorklist.push_back(Elt: &RootI); |
| 413 | TargetTransformInfo::TargetCostKind CostKind = |
| 414 | RootI.getFunction()->hasMinSize() ? |
| 415 | TargetTransformInfo::TCK_CodeSize : |
| 416 | TargetTransformInfo::TCK_SizeAndLatency; |
| 417 | for (;; --Iteration) { |
| 418 | do { |
| 419 | Instruction *I = CostWorklist.pop_back_val(); |
| 420 | |
| 421 | // InstCostMap only uses I and Iteration as a key, the other two values |
| 422 | // don't matter here. |
| 423 | auto CostIter = InstCostMap.find(V: {.I: I, .Iteration: Iteration, .IsFree: 0, .IsCounted: 0}); |
| 424 | if (CostIter == InstCostMap.end()) |
| 425 | // If an input to a PHI node comes from a dead path through the loop |
| 426 | // we may have no cost data for it here. What that actually means is |
| 427 | // that it is free. |
| 428 | continue; |
| 429 | auto &Cost = *CostIter; |
| 430 | if (Cost.IsCounted) |
| 431 | // Already counted this instruction. |
| 432 | continue; |
| 433 | |
| 434 | // Mark that we are counting the cost of this instruction now. |
| 435 | Cost.IsCounted = true; |
| 436 | |
| 437 | // If this is a PHI node in the loop header, just add it to the PHI set. |
| 438 | if (auto *PhiI = dyn_cast<PHINode>(Val: I)) |
| 439 | if (PhiI->getParent() == L->getHeader()) { |
| 440 | assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " |
| 441 | "inherently simplify during unrolling." ); |
| 442 | if (Iteration == 0) |
| 443 | continue; |
| 444 | |
| 445 | // Push the incoming value from the backedge into the PHI used list |
| 446 | // if it is an in-loop instruction. We'll use this to populate the |
| 447 | // cost worklist for the next iteration (as we count backwards). |
| 448 | if (auto *OpI = dyn_cast<Instruction>( |
| 449 | Val: PhiI->getIncomingValueForBlock(BB: L->getLoopLatch()))) |
| 450 | if (L->contains(Inst: OpI)) |
| 451 | PHIUsedList.push_back(Elt: OpI); |
| 452 | continue; |
| 453 | } |
| 454 | |
| 455 | // First accumulate the cost of this instruction. |
| 456 | if (!Cost.IsFree) { |
| 457 | // Consider simplified operands in instruction cost. |
| 458 | SmallVector<Value *, 4> Operands; |
| 459 | transform(Range: I->operands(), d_first: std::back_inserter(x&: Operands), |
| 460 | F: [&](Value *Op) { |
| 461 | if (auto Res = SimplifiedValues.lookup(Val: Op)) |
| 462 | return Res; |
| 463 | return Op; |
| 464 | }); |
| 465 | UnrolledCost += TTI.getInstructionCost(U: I, Operands, CostKind); |
| 466 | LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " |
| 467 | << Iteration << "): " ); |
| 468 | LLVM_DEBUG(I->dump()); |
| 469 | } |
| 470 | |
| 471 | // We must count the cost of every operand which is not free, |
| 472 | // recursively. If we reach a loop PHI node, simply add it to the set |
| 473 | // to be considered on the next iteration (backwards!). |
| 474 | for (Value *Op : I->operands()) { |
| 475 | // Check whether this operand is free due to being a constant or |
| 476 | // outside the loop. |
| 477 | auto *OpI = dyn_cast<Instruction>(Val: Op); |
| 478 | if (!OpI || !L->contains(Inst: OpI)) |
| 479 | continue; |
| 480 | |
| 481 | // Otherwise accumulate its cost. |
| 482 | CostWorklist.push_back(Elt: OpI); |
| 483 | } |
| 484 | } while (!CostWorklist.empty()); |
| 485 | |
| 486 | if (PHIUsedList.empty()) |
| 487 | // We've exhausted the search. |
| 488 | break; |
| 489 | |
| 490 | assert(Iteration > 0 && |
| 491 | "Cannot track PHI-used values past the first iteration!" ); |
| 492 | CostWorklist.append(in_start: PHIUsedList.begin(), in_end: PHIUsedList.end()); |
| 493 | PHIUsedList.clear(); |
| 494 | } |
| 495 | }; |
| 496 | |
| 497 | // Ensure that we don't violate the loop structure invariants relied on by |
| 498 | // this analysis. |
| 499 | assert(L->isLoopSimplifyForm() && "Must put loop into normal form first." ); |
| 500 | assert(L->isLCSSAForm(DT) && |
| 501 | "Must have loops in LCSSA form to track live-out values." ); |
| 502 | |
| 503 | LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n" ); |
| 504 | |
| 505 | TargetTransformInfo::TargetCostKind CostKind = |
| 506 | L->getHeader()->getParent()->hasMinSize() ? |
| 507 | TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency; |
| 508 | // Simulate execution of each iteration of the loop counting instructions, |
| 509 | // which would be simplified. |
| 510 | // Since the same load will take different values on different iterations, |
| 511 | // we literally have to go through all loop's iterations. |
| 512 | for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { |
| 513 | LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n" ); |
| 514 | |
| 515 | // Prepare for the iteration by collecting any simplified entry or backedge |
| 516 | // inputs. |
| 517 | for (Instruction &I : *L->getHeader()) { |
| 518 | auto *PHI = dyn_cast<PHINode>(Val: &I); |
| 519 | if (!PHI) |
| 520 | break; |
| 521 | |
| 522 | // The loop header PHI nodes must have exactly two input: one from the |
| 523 | // loop preheader and one from the loop latch. |
| 524 | assert( |
| 525 | PHI->getNumIncomingValues() == 2 && |
| 526 | "Must have an incoming value only for the preheader and the latch." ); |
| 527 | |
| 528 | Value *V = PHI->getIncomingValueForBlock( |
| 529 | BB: Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); |
| 530 | if (Iteration != 0 && SimplifiedValues.count(Val: V)) |
| 531 | V = SimplifiedValues.lookup(Val: V); |
| 532 | SimplifiedInputValues.push_back(Elt: {PHI, V}); |
| 533 | } |
| 534 | |
| 535 | // Now clear and re-populate the map for the next iteration. |
| 536 | SimplifiedValues.clear(); |
| 537 | while (!SimplifiedInputValues.empty()) |
| 538 | SimplifiedValues.insert(KV: SimplifiedInputValues.pop_back_val()); |
| 539 | |
| 540 | UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); |
| 541 | |
| 542 | BBWorklist.clear(); |
| 543 | BBWorklist.insert(X: L->getHeader()); |
| 544 | // Note that we *must not* cache the size, this loop grows the worklist. |
| 545 | for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { |
| 546 | BasicBlock *BB = BBWorklist[Idx]; |
| 547 | |
| 548 | // Visit all instructions in the given basic block and try to simplify |
| 549 | // it. We don't change the actual IR, just count optimization |
| 550 | // opportunities. |
| 551 | for (Instruction &I : *BB) { |
| 552 | // These won't get into the final code - don't even try calculating the |
| 553 | // cost for them. |
| 554 | if (EphValues.count(Ptr: &I)) |
| 555 | continue; |
| 556 | |
| 557 | // Track this instruction's expected baseline cost when executing the |
| 558 | // rolled loop form. |
| 559 | RolledDynamicCost += TTI.getInstructionCost(U: &I, CostKind); |
| 560 | |
| 561 | // Visit the instruction to analyze its loop cost after unrolling, |
| 562 | // and if the visitor returns true, mark the instruction as free after |
| 563 | // unrolling and continue. |
| 564 | bool IsFree = Analyzer.visit(I); |
| 565 | bool Inserted = InstCostMap.insert(V: {.I: &I, .Iteration: (int)Iteration, |
| 566 | .IsFree: (unsigned)IsFree, |
| 567 | /*IsCounted*/ false}).second; |
| 568 | (void)Inserted; |
| 569 | assert(Inserted && "Cannot have a state for an unvisited instruction!" ); |
| 570 | |
| 571 | if (IsFree) |
| 572 | continue; |
| 573 | |
| 574 | // Can't properly model a cost of a call. |
| 575 | // FIXME: With a proper cost model we should be able to do it. |
| 576 | if (auto *CI = dyn_cast<CallInst>(Val: &I)) { |
| 577 | const Function *Callee = CI->getCalledFunction(); |
| 578 | if (!Callee || TTI.isLoweredToCall(F: Callee)) { |
| 579 | LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n" ); |
| 580 | return std::nullopt; |
| 581 | } |
| 582 | } |
| 583 | |
| 584 | // If the instruction might have a side-effect recursively account for |
| 585 | // the cost of it and all the instructions leading up to it. |
| 586 | if (I.mayHaveSideEffects()) |
| 587 | AddCostRecursively(I, Iteration); |
| 588 | |
| 589 | // If unrolled body turns out to be too big, bail out. |
| 590 | if (UnrolledCost > MaxUnrolledLoopSize) { |
| 591 | LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" |
| 592 | << " UnrolledCost: " << UnrolledCost |
| 593 | << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize |
| 594 | << "\n" ); |
| 595 | return std::nullopt; |
| 596 | } |
| 597 | } |
| 598 | |
| 599 | Instruction *TI = BB->getTerminator(); |
| 600 | |
| 601 | auto getSimplifiedConstant = [&](Value *V) -> Constant * { |
| 602 | if (SimplifiedValues.count(Val: V)) |
| 603 | V = SimplifiedValues.lookup(Val: V); |
| 604 | return dyn_cast<Constant>(Val: V); |
| 605 | }; |
| 606 | |
| 607 | // Add in the live successors by first checking whether we have terminator |
| 608 | // that may be simplified based on the values simplified by this call. |
| 609 | BasicBlock *KnownSucc = nullptr; |
| 610 | if (BranchInst *BI = dyn_cast<BranchInst>(Val: TI)) { |
| 611 | if (BI->isConditional()) { |
| 612 | if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) { |
| 613 | // Just take the first successor if condition is undef |
| 614 | if (isa<UndefValue>(Val: SimpleCond)) |
| 615 | KnownSucc = BI->getSuccessor(i: 0); |
| 616 | else if (ConstantInt *SimpleCondVal = |
| 617 | dyn_cast<ConstantInt>(Val: SimpleCond)) |
| 618 | KnownSucc = BI->getSuccessor(i: SimpleCondVal->isZero() ? 1 : 0); |
| 619 | } |
| 620 | } |
| 621 | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: TI)) { |
| 622 | if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) { |
| 623 | // Just take the first successor if condition is undef |
| 624 | if (isa<UndefValue>(Val: SimpleCond)) |
| 625 | KnownSucc = SI->getSuccessor(idx: 0); |
| 626 | else if (ConstantInt *SimpleCondVal = |
| 627 | dyn_cast<ConstantInt>(Val: SimpleCond)) |
| 628 | KnownSucc = SI->findCaseValue(C: SimpleCondVal)->getCaseSuccessor(); |
| 629 | } |
| 630 | } |
| 631 | if (KnownSucc) { |
| 632 | if (L->contains(BB: KnownSucc)) |
| 633 | BBWorklist.insert(X: KnownSucc); |
| 634 | else |
| 635 | ExitWorklist.insert(X: {BB, KnownSucc}); |
| 636 | continue; |
| 637 | } |
| 638 | |
| 639 | // Add BB's successors to the worklist. |
| 640 | for (BasicBlock *Succ : successors(BB)) |
| 641 | if (L->contains(BB: Succ)) |
| 642 | BBWorklist.insert(X: Succ); |
| 643 | else |
| 644 | ExitWorklist.insert(X: {BB, Succ}); |
| 645 | AddCostRecursively(*TI, Iteration); |
| 646 | } |
| 647 | |
| 648 | // If we found no optimization opportunities on the first iteration, we |
| 649 | // won't find them on later ones too. |
| 650 | if (UnrolledCost == RolledDynamicCost) { |
| 651 | LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" |
| 652 | << " UnrolledCost: " << UnrolledCost << "\n" ); |
| 653 | return std::nullopt; |
| 654 | } |
| 655 | } |
| 656 | |
| 657 | while (!ExitWorklist.empty()) { |
| 658 | BasicBlock *ExitingBB, *ExitBB; |
| 659 | std::tie(args&: ExitingBB, args&: ExitBB) = ExitWorklist.pop_back_val(); |
| 660 | |
| 661 | for (Instruction &I : *ExitBB) { |
| 662 | auto *PN = dyn_cast<PHINode>(Val: &I); |
| 663 | if (!PN) |
| 664 | break; |
| 665 | |
| 666 | Value *Op = PN->getIncomingValueForBlock(BB: ExitingBB); |
| 667 | if (auto *OpI = dyn_cast<Instruction>(Val: Op)) |
| 668 | if (L->contains(Inst: OpI)) |
| 669 | AddCostRecursively(*OpI, TripCount - 1); |
| 670 | } |
| 671 | } |
| 672 | |
| 673 | assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() && |
| 674 | "All instructions must have a valid cost, whether the " |
| 675 | "loop is rolled or unrolled." ); |
| 676 | |
| 677 | LLVM_DEBUG(dbgs() << "Analysis finished:\n" |
| 678 | << "UnrolledCost: " << UnrolledCost << ", " |
| 679 | << "RolledDynamicCost: " << RolledDynamicCost << "\n" ); |
| 680 | return {{.UnrolledCost: unsigned(UnrolledCost.getValue()), |
| 681 | .RolledDynamicCost: unsigned(RolledDynamicCost.getValue())}}; |
| 682 | } |
| 683 | |
| 684 | UnrollCostEstimator::UnrollCostEstimator( |
| 685 | const Loop *L, const TargetTransformInfo &TTI, |
| 686 | const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { |
| 687 | CodeMetrics Metrics; |
| 688 | for (BasicBlock *BB : L->blocks()) |
| 689 | Metrics.analyzeBasicBlock(BB, TTI, EphValues, /* PrepareForLTO= */ false, |
| 690 | L); |
| 691 | NumInlineCandidates = Metrics.NumInlineCandidates; |
| 692 | NotDuplicatable = Metrics.notDuplicatable; |
| 693 | Convergence = Metrics.Convergence; |
| 694 | LoopSize = Metrics.NumInsts; |
| 695 | ConvergenceAllowsRuntime = |
| 696 | Metrics.Convergence != ConvergenceKind::Uncontrolled && |
| 697 | !getLoopConvergenceHeart(TheLoop: L); |
| 698 | |
| 699 | // Don't allow an estimate of size zero. This would allows unrolling of loops |
| 700 | // with huge iteration counts, which is a compile time problem even if it's |
| 701 | // not a problem for code quality. Also, the code using this size may assume |
| 702 | // that each loop has at least three instructions (likely a conditional |
| 703 | // branch, a comparison feeding that branch, and some kind of loop increment |
| 704 | // feeding that comparison instruction). |
| 705 | if (LoopSize.isValid() && LoopSize < BEInsns + 1) |
| 706 | // This is an open coded max() on InstructionCost |
| 707 | LoopSize = BEInsns + 1; |
| 708 | } |
| 709 | |
| 710 | bool UnrollCostEstimator::canUnroll() const { |
| 711 | switch (Convergence) { |
| 712 | case ConvergenceKind::ExtendedLoop: |
| 713 | LLVM_DEBUG(dbgs() << " Convergence prevents unrolling.\n" ); |
| 714 | return false; |
| 715 | default: |
| 716 | break; |
| 717 | } |
| 718 | if (!LoopSize.isValid()) { |
| 719 | LLVM_DEBUG(dbgs() << " Invalid loop size prevents unrolling.\n" ); |
| 720 | return false; |
| 721 | } |
| 722 | if (NotDuplicatable) { |
| 723 | LLVM_DEBUG(dbgs() << " Non-duplicatable blocks prevent unrolling.\n" ); |
| 724 | return false; |
| 725 | } |
| 726 | return true; |
| 727 | } |
| 728 | |
| 729 | uint64_t UnrollCostEstimator::getUnrolledLoopSize( |
| 730 | const TargetTransformInfo::UnrollingPreferences &UP, |
| 731 | unsigned CountOverwrite) const { |
| 732 | unsigned LS = LoopSize.getValue(); |
| 733 | assert(LS >= UP.BEInsns && "LoopSize should not be less than BEInsns!" ); |
| 734 | if (CountOverwrite) |
| 735 | return static_cast<uint64_t>(LS - UP.BEInsns) * CountOverwrite + UP.BEInsns; |
| 736 | else |
| 737 | return static_cast<uint64_t>(LS - UP.BEInsns) * UP.Count + UP.BEInsns; |
| 738 | } |
| 739 | |
| 740 | // Returns the loop hint metadata node with the given name (for example, |
| 741 | // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is |
| 742 | // returned. |
| 743 | static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) { |
| 744 | if (MDNode *LoopID = L->getLoopID()) |
| 745 | return GetUnrollMetadata(LoopID, Name); |
| 746 | return nullptr; |
| 747 | } |
| 748 | |
| 749 | // Returns true if the loop has an unroll(full) pragma. |
| 750 | static bool hasUnrollFullPragma(const Loop *L) { |
| 751 | return getUnrollMetadataForLoop(L, Name: "llvm.loop.unroll.full" ); |
| 752 | } |
| 753 | |
| 754 | // Returns true if the loop has an unroll(enable) pragma. This metadata is used |
| 755 | // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. |
| 756 | static bool hasUnrollEnablePragma(const Loop *L) { |
| 757 | return getUnrollMetadataForLoop(L, Name: "llvm.loop.unroll.enable" ); |
| 758 | } |
| 759 | |
| 760 | // Returns true if the loop has an runtime unroll(disable) pragma. |
| 761 | static bool hasRuntimeUnrollDisablePragma(const Loop *L) { |
| 762 | return getUnrollMetadataForLoop(L, Name: "llvm.loop.unroll.runtime.disable" ); |
| 763 | } |
| 764 | |
| 765 | // If loop has an unroll_count pragma return the (necessarily |
| 766 | // positive) value from the pragma. Otherwise return 0. |
| 767 | static unsigned unrollCountPragmaValue(const Loop *L) { |
| 768 | MDNode *MD = getUnrollMetadataForLoop(L, Name: "llvm.loop.unroll.count" ); |
| 769 | if (MD) { |
| 770 | assert(MD->getNumOperands() == 2 && |
| 771 | "Unroll count hint metadata should have two operands." ); |
| 772 | unsigned Count = |
| 773 | mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 1))->getZExtValue(); |
| 774 | assert(Count >= 1 && "Unroll count must be positive." ); |
| 775 | return Count; |
| 776 | } |
| 777 | return 0; |
| 778 | } |
| 779 | |
| 780 | // Computes the boosting factor for complete unrolling. |
| 781 | // If fully unrolling the loop would save a lot of RolledDynamicCost, it would |
| 782 | // be beneficial to fully unroll the loop even if unrolledcost is large. We |
| 783 | // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust |
| 784 | // the unroll threshold. |
| 785 | static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, |
| 786 | unsigned MaxPercentThresholdBoost) { |
| 787 | if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) |
| 788 | return 100; |
| 789 | else if (Cost.UnrolledCost != 0) |
| 790 | // The boosting factor is RolledDynamicCost / UnrolledCost |
| 791 | return std::min(a: 100 * Cost.RolledDynamicCost / Cost.UnrolledCost, |
| 792 | b: MaxPercentThresholdBoost); |
| 793 | else |
| 794 | return MaxPercentThresholdBoost; |
| 795 | } |
| 796 | |
| 797 | static std::optional<unsigned> |
| 798 | shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo, |
| 799 | const unsigned TripMultiple, const unsigned TripCount, |
| 800 | unsigned MaxTripCount, const UnrollCostEstimator UCE, |
| 801 | const TargetTransformInfo::UnrollingPreferences &UP) { |
| 802 | |
| 803 | // Using unroll pragma |
| 804 | // 1st priority is unroll count set by "unroll-count" option. |
| 805 | |
| 806 | if (PInfo.UserUnrollCount) { |
| 807 | if (UP.AllowRemainder && |
| 808 | UCE.getUnrolledLoopSize(UP, CountOverwrite: (unsigned)UnrollCount) < UP.Threshold) |
| 809 | return (unsigned)UnrollCount; |
| 810 | } |
| 811 | |
| 812 | // 2nd priority is unroll count set by pragma. |
| 813 | if (PInfo.PragmaCount > 0) { |
| 814 | if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0))) |
| 815 | return PInfo.PragmaCount; |
| 816 | } |
| 817 | |
| 818 | if (PInfo.PragmaFullUnroll && TripCount != 0) { |
| 819 | // Certain cases with UBSAN can cause trip count to be calculated as |
| 820 | // INT_MAX, Block full unrolling at a reasonable limit so that the compiler |
| 821 | // doesn't hang trying to unroll the loop. See PR77842 |
| 822 | if (TripCount > PragmaUnrollFullMaxIterations) { |
| 823 | LLVM_DEBUG(dbgs() << "Won't unroll; trip count is too large\n" ); |
| 824 | return std::nullopt; |
| 825 | } |
| 826 | |
| 827 | return TripCount; |
| 828 | } |
| 829 | |
| 830 | if (PInfo.PragmaEnableUnroll && !TripCount && MaxTripCount && |
| 831 | MaxTripCount <= UP.MaxUpperBound) |
| 832 | return MaxTripCount; |
| 833 | |
| 834 | // if didn't return until here, should continue to other priorties |
| 835 | return std::nullopt; |
| 836 | } |
| 837 | |
| 838 | static std::optional<unsigned> shouldFullUnroll( |
| 839 | Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, |
| 840 | ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, |
| 841 | const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE, |
| 842 | const TargetTransformInfo::UnrollingPreferences &UP) { |
| 843 | assert(FullUnrollTripCount && "should be non-zero!" ); |
| 844 | |
| 845 | if (FullUnrollTripCount > UP.FullUnrollMaxCount) |
| 846 | return std::nullopt; |
| 847 | |
| 848 | // When computing the unrolled size, note that BEInsns are not replicated |
| 849 | // like the rest of the loop body. |
| 850 | if (UCE.getUnrolledLoopSize(UP) < UP.Threshold) |
| 851 | return FullUnrollTripCount; |
| 852 | |
| 853 | // The loop isn't that small, but we still can fully unroll it if that |
| 854 | // helps to remove a significant number of instructions. |
| 855 | // To check that, run additional analysis on the loop. |
| 856 | if (std::optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( |
| 857 | L, TripCount: FullUnrollTripCount, DT, SE, EphValues, TTI, |
| 858 | MaxUnrolledLoopSize: UP.Threshold * UP.MaxPercentThresholdBoost / 100, |
| 859 | MaxIterationsCountToAnalyze: UP.MaxIterationsCountToAnalyze)) { |
| 860 | unsigned Boost = |
| 861 | getFullUnrollBoostingFactor(Cost: *Cost, MaxPercentThresholdBoost: UP.MaxPercentThresholdBoost); |
| 862 | if (Cost->UnrolledCost < UP.Threshold * Boost / 100) |
| 863 | return FullUnrollTripCount; |
| 864 | } |
| 865 | return std::nullopt; |
| 866 | } |
| 867 | |
| 868 | static std::optional<unsigned> |
| 869 | shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount, |
| 870 | const UnrollCostEstimator UCE, |
| 871 | const TargetTransformInfo::UnrollingPreferences &UP) { |
| 872 | |
| 873 | if (!TripCount) |
| 874 | return std::nullopt; |
| 875 | |
| 876 | if (!UP.Partial) { |
| 877 | LLVM_DEBUG(dbgs() << " will not try to unroll partially because " |
| 878 | << "-unroll-allow-partial not given\n" ); |
| 879 | return 0; |
| 880 | } |
| 881 | unsigned count = UP.Count; |
| 882 | if (count == 0) |
| 883 | count = TripCount; |
| 884 | if (UP.PartialThreshold != NoThreshold) { |
| 885 | // Reduce unroll count to be modulo of TripCount for partial unrolling. |
| 886 | if (UCE.getUnrolledLoopSize(UP, CountOverwrite: count) > UP.PartialThreshold) |
| 887 | count = (std::max(a: UP.PartialThreshold, b: UP.BEInsns + 1) - UP.BEInsns) / |
| 888 | (LoopSize - UP.BEInsns); |
| 889 | if (count > UP.MaxCount) |
| 890 | count = UP.MaxCount; |
| 891 | while (count != 0 && TripCount % count != 0) |
| 892 | count--; |
| 893 | if (UP.AllowRemainder && count <= 1) { |
| 894 | // If there is no Count that is modulo of TripCount, set Count to |
| 895 | // largest power-of-two factor that satisfies the threshold limit. |
| 896 | // As we'll create fixup loop, do the type of unrolling only if |
| 897 | // remainder loop is allowed. |
| 898 | count = UP.DefaultUnrollRuntimeCount; |
| 899 | while (count != 0 && |
| 900 | UCE.getUnrolledLoopSize(UP, CountOverwrite: count) > UP.PartialThreshold) |
| 901 | count >>= 1; |
| 902 | } |
| 903 | if (count < 2) { |
| 904 | count = 0; |
| 905 | } |
| 906 | } else { |
| 907 | count = TripCount; |
| 908 | } |
| 909 | if (count > UP.MaxCount) |
| 910 | count = UP.MaxCount; |
| 911 | |
| 912 | LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count << "\n" ); |
| 913 | |
| 914 | return count; |
| 915 | } |
| 916 | // Returns true if unroll count was set explicitly. |
| 917 | // Calculates unroll count and writes it to UP.Count. |
| 918 | // Unless IgnoreUser is true, will also use metadata and command-line options |
| 919 | // that are specific to to the LoopUnroll pass (which, for instance, are |
| 920 | // irrelevant for the LoopUnrollAndJam pass). |
| 921 | // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes |
| 922 | // many LoopUnroll-specific options. The shared functionality should be |
| 923 | // refactored into it own function. |
| 924 | bool llvm::computeUnrollCount( |
| 925 | Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, |
| 926 | AssumptionCache *AC, ScalarEvolution &SE, |
| 927 | const SmallPtrSetImpl<const Value *> &EphValues, |
| 928 | OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount, |
| 929 | bool MaxOrZero, unsigned TripMultiple, const UnrollCostEstimator &UCE, |
| 930 | TargetTransformInfo::UnrollingPreferences &UP, |
| 931 | TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) { |
| 932 | |
| 933 | unsigned LoopSize = UCE.getRolledLoopSize(); |
| 934 | |
| 935 | const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; |
| 936 | const bool PragmaFullUnroll = hasUnrollFullPragma(L); |
| 937 | const unsigned PragmaCount = unrollCountPragmaValue(L); |
| 938 | const bool PragmaEnableUnroll = hasUnrollEnablePragma(L); |
| 939 | |
| 940 | const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || |
| 941 | PragmaEnableUnroll || UserUnrollCount; |
| 942 | |
| 943 | PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount, |
| 944 | PragmaEnableUnroll); |
| 945 | // Use an explicit peel count that has been specified for testing. In this |
| 946 | // case it's not permitted to also specify an explicit unroll count. |
| 947 | if (PP.PeelCount) { |
| 948 | if (UnrollCount.getNumOccurrences() > 0) { |
| 949 | reportFatalUsageError(reason: "Cannot specify both explicit peel count and " |
| 950 | "explicit unroll count" ); |
| 951 | } |
| 952 | UP.Count = 1; |
| 953 | UP.Runtime = false; |
| 954 | return true; |
| 955 | } |
| 956 | // Check for explicit Count. |
| 957 | // 1st priority is unroll count set by "unroll-count" option. |
| 958 | // 2nd priority is unroll count set by pragma. |
| 959 | if (auto UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount, |
| 960 | MaxTripCount, UCE, UP)) { |
| 961 | UP.Count = *UnrollFactor; |
| 962 | |
| 963 | if (UserUnrollCount || (PragmaCount > 0)) { |
| 964 | UP.AllowExpensiveTripCount = true; |
| 965 | UP.Force = true; |
| 966 | } |
| 967 | UP.Runtime |= (PragmaCount > 0); |
| 968 | return ExplicitUnroll; |
| 969 | } else { |
| 970 | if (ExplicitUnroll && TripCount != 0) { |
| 971 | // If the loop has an unrolling pragma, we want to be more aggressive with |
| 972 | // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold |
| 973 | // value which is larger than the default limits. |
| 974 | UP.Threshold = std::max<unsigned>(a: UP.Threshold, b: PragmaUnrollThreshold); |
| 975 | UP.PartialThreshold = |
| 976 | std::max<unsigned>(a: UP.PartialThreshold, b: PragmaUnrollThreshold); |
| 977 | } |
| 978 | } |
| 979 | |
| 980 | // 3rd priority is exact full unrolling. This will eliminate all copies |
| 981 | // of some exit test. |
| 982 | UP.Count = 0; |
| 983 | if (TripCount) { |
| 984 | UP.Count = TripCount; |
| 985 | if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues, |
| 986 | FullUnrollTripCount: TripCount, UCE, UP)) { |
| 987 | UP.Count = *UnrollFactor; |
| 988 | UseUpperBound = false; |
| 989 | return ExplicitUnroll; |
| 990 | } |
| 991 | } |
| 992 | |
| 993 | // 4th priority is bounded unrolling. |
| 994 | // We can unroll by the upper bound amount if it's generally allowed or if |
| 995 | // we know that the loop is executed either the upper bound or zero times. |
| 996 | // (MaxOrZero unrolling keeps only the first loop test, so the number of |
| 997 | // loop tests remains the same compared to the non-unrolled version, whereas |
| 998 | // the generic upper bound unrolling keeps all but the last loop test so the |
| 999 | // number of loop tests goes up which may end up being worse on targets with |
| 1000 | // constrained branch predictor resources so is controlled by an option.) |
| 1001 | // In addition we only unroll small upper bounds. |
| 1002 | // Note that the cost of bounded unrolling is always strictly greater than |
| 1003 | // cost of exact full unrolling. As such, if we have an exact count and |
| 1004 | // found it unprofitable, we'll never chose to bounded unroll. |
| 1005 | if (!TripCount && MaxTripCount && (UP.UpperBound || MaxOrZero) && |
| 1006 | MaxTripCount <= UP.MaxUpperBound) { |
| 1007 | UP.Count = MaxTripCount; |
| 1008 | if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues, |
| 1009 | FullUnrollTripCount: MaxTripCount, UCE, UP)) { |
| 1010 | UP.Count = *UnrollFactor; |
| 1011 | UseUpperBound = true; |
| 1012 | return ExplicitUnroll; |
| 1013 | } |
| 1014 | } |
| 1015 | |
| 1016 | // 5th priority is loop peeling. |
| 1017 | computePeelCount(L, LoopSize, PP, TripCount, DT, SE, TTI, AC, Threshold: UP.Threshold); |
| 1018 | if (PP.PeelCount) { |
| 1019 | UP.Runtime = false; |
| 1020 | UP.Count = 1; |
| 1021 | return ExplicitUnroll; |
| 1022 | } |
| 1023 | |
| 1024 | // Before starting partial unrolling, set up.partial to true, |
| 1025 | // if user explicitly asked for unrolling |
| 1026 | if (TripCount) |
| 1027 | UP.Partial |= ExplicitUnroll; |
| 1028 | |
| 1029 | // 6th priority is partial unrolling. |
| 1030 | // Try partial unroll only when TripCount could be statically calculated. |
| 1031 | if (auto UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP)) { |
| 1032 | UP.Count = *UnrollFactor; |
| 1033 | |
| 1034 | if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && |
| 1035 | UP.Count != TripCount) |
| 1036 | ORE->emit(RemarkBuilder: [&]() { |
| 1037 | return OptimizationRemarkMissed(DEBUG_TYPE, |
| 1038 | "FullUnrollAsDirectedTooLarge" , |
| 1039 | L->getStartLoc(), L->getHeader()) |
| 1040 | << "Unable to fully unroll loop as directed by unroll pragma " |
| 1041 | "because " |
| 1042 | "unrolled size is too large." ; |
| 1043 | }); |
| 1044 | |
| 1045 | if (UP.PartialThreshold != NoThreshold) { |
| 1046 | if (UP.Count == 0) { |
| 1047 | if (PragmaEnableUnroll) |
| 1048 | ORE->emit(RemarkBuilder: [&]() { |
| 1049 | return OptimizationRemarkMissed(DEBUG_TYPE, |
| 1050 | "UnrollAsDirectedTooLarge" , |
| 1051 | L->getStartLoc(), L->getHeader()) |
| 1052 | << "Unable to unroll loop as directed by unroll(enable) " |
| 1053 | "pragma " |
| 1054 | "because unrolled size is too large." ; |
| 1055 | }); |
| 1056 | } |
| 1057 | } |
| 1058 | return ExplicitUnroll; |
| 1059 | } |
| 1060 | assert(TripCount == 0 && |
| 1061 | "All cases when TripCount is constant should be covered here." ); |
| 1062 | if (PragmaFullUnroll) |
| 1063 | ORE->emit(RemarkBuilder: [&]() { |
| 1064 | return OptimizationRemarkMissed( |
| 1065 | DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount" , |
| 1066 | L->getStartLoc(), L->getHeader()) |
| 1067 | << "Unable to fully unroll loop as directed by unroll(full) " |
| 1068 | "pragma " |
| 1069 | "because loop has a runtime trip count." ; |
| 1070 | }); |
| 1071 | |
| 1072 | // 7th priority is runtime unrolling. |
| 1073 | // Don't unroll a runtime trip count loop when it is disabled. |
| 1074 | if (hasRuntimeUnrollDisablePragma(L)) { |
| 1075 | UP.Count = 0; |
| 1076 | return false; |
| 1077 | } |
| 1078 | |
| 1079 | // Don't unroll a small upper bound loop unless user or TTI asked to do so. |
| 1080 | if (MaxTripCount && !UP.Force && MaxTripCount < UP.MaxUpperBound) { |
| 1081 | UP.Count = 0; |
| 1082 | return false; |
| 1083 | } |
| 1084 | |
| 1085 | // Check if the runtime trip count is too small when profile is available. |
| 1086 | if (L->getHeader()->getParent()->hasProfileData()) { |
| 1087 | if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { |
| 1088 | if (*ProfileTripCount < FlatLoopTripCountThreshold) |
| 1089 | return false; |
| 1090 | else |
| 1091 | UP.AllowExpensiveTripCount = true; |
| 1092 | } |
| 1093 | } |
| 1094 | UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; |
| 1095 | if (!UP.Runtime) { |
| 1096 | LLVM_DEBUG( |
| 1097 | dbgs() << " will not try to unroll loop with runtime trip count " |
| 1098 | << "-unroll-runtime not given\n" ); |
| 1099 | UP.Count = 0; |
| 1100 | return false; |
| 1101 | } |
| 1102 | if (UP.Count == 0) |
| 1103 | UP.Count = UP.DefaultUnrollRuntimeCount; |
| 1104 | |
| 1105 | // Reduce unroll count to be the largest power-of-two factor of |
| 1106 | // the original count which satisfies the threshold limit. |
| 1107 | while (UP.Count != 0 && |
| 1108 | UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold) |
| 1109 | UP.Count >>= 1; |
| 1110 | |
| 1111 | #ifndef NDEBUG |
| 1112 | unsigned OrigCount = UP.Count; |
| 1113 | #endif |
| 1114 | |
| 1115 | if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { |
| 1116 | while (UP.Count != 0 && TripMultiple % UP.Count != 0) |
| 1117 | UP.Count >>= 1; |
| 1118 | LLVM_DEBUG( |
| 1119 | dbgs() << "Remainder loop is restricted (that could architecture " |
| 1120 | "specific or because the loop contains a convergent " |
| 1121 | "instruction), so unroll count must divide the trip " |
| 1122 | "multiple, " |
| 1123 | << TripMultiple << ". Reducing unroll count from " << OrigCount |
| 1124 | << " to " << UP.Count << ".\n" ); |
| 1125 | |
| 1126 | using namespace ore; |
| 1127 | |
| 1128 | if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder) |
| 1129 | ORE->emit(RemarkBuilder: [&]() { |
| 1130 | return OptimizationRemarkMissed(DEBUG_TYPE, |
| 1131 | "DifferentUnrollCountFromDirected" , |
| 1132 | L->getStartLoc(), L->getHeader()) |
| 1133 | << "Unable to unroll loop the number of times directed by " |
| 1134 | "unroll_count pragma because remainder loop is restricted " |
| 1135 | "(that could architecture specific or because the loop " |
| 1136 | "contains a convergent instruction) and so must have an " |
| 1137 | "unroll " |
| 1138 | "count that divides the loop trip multiple of " |
| 1139 | << NV("TripMultiple" , TripMultiple) << ". Unrolling instead " |
| 1140 | << NV("UnrollCount" , UP.Count) << " time(s)." ; |
| 1141 | }); |
| 1142 | } |
| 1143 | |
| 1144 | if (UP.Count > UP.MaxCount) |
| 1145 | UP.Count = UP.MaxCount; |
| 1146 | |
| 1147 | if (MaxTripCount && UP.Count > MaxTripCount) |
| 1148 | UP.Count = MaxTripCount; |
| 1149 | |
| 1150 | LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count |
| 1151 | << "\n" ); |
| 1152 | if (UP.Count < 2) |
| 1153 | UP.Count = 0; |
| 1154 | return ExplicitUnroll; |
| 1155 | } |
| 1156 | |
| 1157 | static LoopUnrollResult |
| 1158 | tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, |
| 1159 | const TargetTransformInfo &TTI, AssumptionCache &AC, |
| 1160 | OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, |
| 1161 | ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, |
| 1162 | bool OnlyFullUnroll, bool OnlyWhenForced, bool ForgetAllSCEV, |
| 1163 | std::optional<unsigned> ProvidedCount, |
| 1164 | std::optional<unsigned> ProvidedThreshold, |
| 1165 | std::optional<bool> ProvidedAllowPartial, |
| 1166 | std::optional<bool> ProvidedRuntime, |
| 1167 | std::optional<bool> ProvidedUpperBound, |
| 1168 | std::optional<bool> ProvidedAllowPeeling, |
| 1169 | std::optional<bool> ProvidedAllowProfileBasedPeeling, |
| 1170 | std::optional<unsigned> ProvidedFullUnrollMaxCount, |
| 1171 | AAResults *AA = nullptr) { |
| 1172 | |
| 1173 | LLVM_DEBUG(dbgs() << "Loop Unroll: F[" |
| 1174 | << L->getHeader()->getParent()->getName() << "] Loop %" |
| 1175 | << L->getHeader()->getName() << "\n" ); |
| 1176 | TransformationMode TM = hasUnrollTransformation(L); |
| 1177 | if (TM & TM_Disable) |
| 1178 | return LoopUnrollResult::Unmodified; |
| 1179 | |
| 1180 | // If this loop isn't forced to be unrolled, avoid unrolling it when the |
| 1181 | // parent loop has an explicit unroll-and-jam pragma. This is to prevent |
| 1182 | // automatic unrolling from interfering with the user requested |
| 1183 | // transformation. |
| 1184 | Loop *ParentL = L->getParentLoop(); |
| 1185 | if (ParentL != nullptr && |
| 1186 | hasUnrollAndJamTransformation(L: ParentL) == TM_ForcedByUser && |
| 1187 | hasUnrollTransformation(L) != TM_ForcedByUser) { |
| 1188 | LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has" |
| 1189 | << " llvm.loop.unroll_and_jam.\n" ); |
| 1190 | return LoopUnrollResult::Unmodified; |
| 1191 | } |
| 1192 | |
| 1193 | // If this loop isn't forced to be unrolled, avoid unrolling it when the |
| 1194 | // loop has an explicit unroll-and-jam pragma. This is to prevent automatic |
| 1195 | // unrolling from interfering with the user requested transformation. |
| 1196 | if (hasUnrollAndJamTransformation(L) == TM_ForcedByUser && |
| 1197 | hasUnrollTransformation(L) != TM_ForcedByUser) { |
| 1198 | LLVM_DEBUG( |
| 1199 | dbgs() |
| 1200 | << " Not unrolling loop since it has llvm.loop.unroll_and_jam.\n" ); |
| 1201 | return LoopUnrollResult::Unmodified; |
| 1202 | } |
| 1203 | |
| 1204 | if (!L->isLoopSimplifyForm()) { |
| 1205 | LLVM_DEBUG( |
| 1206 | dbgs() << " Not unrolling loop which is not in loop-simplify form.\n" ); |
| 1207 | return LoopUnrollResult::Unmodified; |
| 1208 | } |
| 1209 | |
| 1210 | // When automatic unrolling is disabled, do not unroll unless overridden for |
| 1211 | // this loop. |
| 1212 | if (OnlyWhenForced && !(TM & TM_Enable)) |
| 1213 | return LoopUnrollResult::Unmodified; |
| 1214 | |
| 1215 | bool OptForSize = L->getHeader()->getParent()->hasOptSize(); |
| 1216 | TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( |
| 1217 | L, SE, TTI, BFI, PSI, ORE, OptLevel, UserThreshold: ProvidedThreshold, UserCount: ProvidedCount, |
| 1218 | UserAllowPartial: ProvidedAllowPartial, UserRuntime: ProvidedRuntime, UserUpperBound: ProvidedUpperBound, |
| 1219 | UserFullUnrollMaxCount: ProvidedFullUnrollMaxCount); |
| 1220 | TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences( |
| 1221 | L, SE, TTI, UserAllowPeeling: ProvidedAllowPeeling, UserAllowProfileBasedPeeling: ProvidedAllowProfileBasedPeeling, UnrollingSpecficValues: true); |
| 1222 | |
| 1223 | // Exit early if unrolling is disabled. For OptForSize, we pick the loop size |
| 1224 | // as threshold later on. |
| 1225 | if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && |
| 1226 | !OptForSize) |
| 1227 | return LoopUnrollResult::Unmodified; |
| 1228 | |
| 1229 | SmallPtrSet<const Value *, 32> EphValues; |
| 1230 | CodeMetrics::collectEphemeralValues(L, AC: &AC, EphValues); |
| 1231 | |
| 1232 | UnrollCostEstimator UCE(L, TTI, EphValues, UP.BEInsns); |
| 1233 | if (!UCE.canUnroll()) { |
| 1234 | LLVM_DEBUG(dbgs() << " Loop not considered unrollable.\n" ); |
| 1235 | return LoopUnrollResult::Unmodified; |
| 1236 | } |
| 1237 | |
| 1238 | unsigned LoopSize = UCE.getRolledLoopSize(); |
| 1239 | LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n" ); |
| 1240 | |
| 1241 | // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold |
| 1242 | // later), to (fully) unroll loops, if it does not increase code size. |
| 1243 | if (OptForSize) |
| 1244 | UP.Threshold = std::max(a: UP.Threshold, b: LoopSize + 1); |
| 1245 | |
| 1246 | if (UCE.NumInlineCandidates != 0) { |
| 1247 | LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n" ); |
| 1248 | return LoopUnrollResult::Unmodified; |
| 1249 | } |
| 1250 | |
| 1251 | // Find the smallest exact trip count for any exit. This is an upper bound |
| 1252 | // on the loop trip count, but an exit at an earlier iteration is still |
| 1253 | // possible. An unroll by the smallest exact trip count guarantees that all |
| 1254 | // branches relating to at least one exit can be eliminated. This is unlike |
| 1255 | // the max trip count, which only guarantees that the backedge can be broken. |
| 1256 | unsigned TripCount = 0; |
| 1257 | unsigned TripMultiple = 1; |
| 1258 | SmallVector<BasicBlock *, 8> ExitingBlocks; |
| 1259 | L->getExitingBlocks(ExitingBlocks); |
| 1260 | for (BasicBlock *ExitingBlock : ExitingBlocks) |
| 1261 | if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock)) |
| 1262 | if (!TripCount || TC < TripCount) |
| 1263 | TripCount = TripMultiple = TC; |
| 1264 | |
| 1265 | if (!TripCount) { |
| 1266 | // If no exact trip count is known, determine the trip multiple of either |
| 1267 | // the loop latch or the single exiting block. |
| 1268 | // TODO: Relax for multiple exits. |
| 1269 | BasicBlock *ExitingBlock = L->getLoopLatch(); |
| 1270 | if (!ExitingBlock || !L->isLoopExiting(BB: ExitingBlock)) |
| 1271 | ExitingBlock = L->getExitingBlock(); |
| 1272 | if (ExitingBlock) |
| 1273 | TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); |
| 1274 | } |
| 1275 | |
| 1276 | // If the loop contains a convergent operation, the prelude we'd add |
| 1277 | // to do the first few instructions before we hit the unrolled loop |
| 1278 | // is unsafe -- it adds a control-flow dependency to the convergent |
| 1279 | // operation. Therefore restrict remainder loop (try unrolling without). |
| 1280 | // |
| 1281 | // TODO: This is somewhat conservative; we could allow the remainder if the |
| 1282 | // trip count is uniform. |
| 1283 | UP.AllowRemainder &= UCE.ConvergenceAllowsRuntime; |
| 1284 | |
| 1285 | // Try to find the trip count upper bound if we cannot find the exact trip |
| 1286 | // count. |
| 1287 | unsigned MaxTripCount = 0; |
| 1288 | bool MaxOrZero = false; |
| 1289 | if (!TripCount) { |
| 1290 | MaxTripCount = SE.getSmallConstantMaxTripCount(L); |
| 1291 | MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); |
| 1292 | } |
| 1293 | |
| 1294 | // computeUnrollCount() decides whether it is beneficial to use upper bound to |
| 1295 | // fully unroll the loop. |
| 1296 | bool UseUpperBound = false; |
| 1297 | bool IsCountSetExplicitly = computeUnrollCount( |
| 1298 | L, TTI, DT, LI, AC: &AC, SE, EphValues, ORE: &ORE, TripCount, MaxTripCount, |
| 1299 | MaxOrZero, TripMultiple, UCE, UP, PP, UseUpperBound); |
| 1300 | if (!UP.Count) |
| 1301 | return LoopUnrollResult::Unmodified; |
| 1302 | |
| 1303 | UP.Runtime &= UCE.ConvergenceAllowsRuntime; |
| 1304 | |
| 1305 | if (PP.PeelCount) { |
| 1306 | assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step" ); |
| 1307 | LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName() |
| 1308 | << " with iteration count " << PP.PeelCount << "!\n" ); |
| 1309 | ORE.emit(RemarkBuilder: [&]() { |
| 1310 | return OptimizationRemark(DEBUG_TYPE, "Peeled" , L->getStartLoc(), |
| 1311 | L->getHeader()) |
| 1312 | << " peeled loop by " << ore::NV("PeelCount" , PP.PeelCount) |
| 1313 | << " iterations" ; |
| 1314 | }); |
| 1315 | |
| 1316 | ValueToValueMapTy VMap; |
| 1317 | if (peelLoop(L, PeelCount: PP.PeelCount, PeelLast: PP.PeelLast, LI, SE: &SE, DT, AC: &AC, PreserveLCSSA, |
| 1318 | VMap)) { |
| 1319 | simplifyLoopAfterUnroll(L, SimplifyIVs: true, LI, SE: &SE, DT: &DT, AC: &AC, TTI: &TTI, AA: nullptr); |
| 1320 | // If the loop was peeled, we already "used up" the profile information |
| 1321 | // we had, so we don't want to unroll or peel again. |
| 1322 | if (PP.PeelProfiledIterations) |
| 1323 | L->setLoopAlreadyUnrolled(); |
| 1324 | return LoopUnrollResult::PartiallyUnrolled; |
| 1325 | } |
| 1326 | return LoopUnrollResult::Unmodified; |
| 1327 | } |
| 1328 | |
| 1329 | // Do not attempt partial/runtime unrolling in FullLoopUnrolling |
| 1330 | if (OnlyFullUnroll && (UP.Count < TripCount || UP.Count < MaxTripCount)) { |
| 1331 | LLVM_DEBUG( |
| 1332 | dbgs() << "Not attempting partial/runtime unroll in FullLoopUnroll.\n" ); |
| 1333 | return LoopUnrollResult::Unmodified; |
| 1334 | } |
| 1335 | |
| 1336 | // At this point, UP.Runtime indicates that run-time unrolling is allowed. |
| 1337 | // However, we only want to actually perform it if we don't know the trip |
| 1338 | // count and the unroll count doesn't divide the known trip multiple. |
| 1339 | // TODO: This decision should probably be pushed up into |
| 1340 | // computeUnrollCount(). |
| 1341 | UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0; |
| 1342 | |
| 1343 | // Save loop properties before it is transformed. |
| 1344 | MDNode *OrigLoopID = L->getLoopID(); |
| 1345 | |
| 1346 | // Unroll the loop. |
| 1347 | Loop *RemainderLoop = nullptr; |
| 1348 | UnrollLoopOptions ULO; |
| 1349 | ULO.Count = UP.Count; |
| 1350 | ULO.Force = UP.Force; |
| 1351 | ULO.AllowExpensiveTripCount = UP.AllowExpensiveTripCount; |
| 1352 | ULO.UnrollRemainder = UP.UnrollRemainder; |
| 1353 | ULO.Runtime = UP.Runtime; |
| 1354 | ULO.ForgetAllSCEV = ForgetAllSCEV; |
| 1355 | ULO.Heart = getLoopConvergenceHeart(TheLoop: L); |
| 1356 | ULO.SCEVExpansionBudget = UP.SCEVExpansionBudget; |
| 1357 | ULO.RuntimeUnrollMultiExit = UP.RuntimeUnrollMultiExit; |
| 1358 | LoopUnrollResult UnrollResult = UnrollLoop( |
| 1359 | L, ULO, LI, SE: &SE, DT: &DT, AC: &AC, TTI: &TTI, ORE: &ORE, PreserveLCSSA, RemainderLoop: &RemainderLoop, AA); |
| 1360 | if (UnrollResult == LoopUnrollResult::Unmodified) |
| 1361 | return LoopUnrollResult::Unmodified; |
| 1362 | |
| 1363 | if (RemainderLoop) { |
| 1364 | std::optional<MDNode *> RemainderLoopID = |
| 1365 | makeFollowupLoopID(OrigLoopID, FollowupAttrs: {LLVMLoopUnrollFollowupAll, |
| 1366 | LLVMLoopUnrollFollowupRemainder}); |
| 1367 | if (RemainderLoopID) |
| 1368 | RemainderLoop->setLoopID(*RemainderLoopID); |
| 1369 | } |
| 1370 | |
| 1371 | if (UnrollResult != LoopUnrollResult::FullyUnrolled) { |
| 1372 | std::optional<MDNode *> NewLoopID = |
| 1373 | makeFollowupLoopID(OrigLoopID, FollowupAttrs: {LLVMLoopUnrollFollowupAll, |
| 1374 | LLVMLoopUnrollFollowupUnrolled}); |
| 1375 | if (NewLoopID) { |
| 1376 | L->setLoopID(*NewLoopID); |
| 1377 | |
| 1378 | // Do not setLoopAlreadyUnrolled if loop attributes have been specified |
| 1379 | // explicitly. |
| 1380 | return UnrollResult; |
| 1381 | } |
| 1382 | } |
| 1383 | |
| 1384 | // If loop has an unroll count pragma or unrolled by explicitly set count |
| 1385 | // mark loop as unrolled to prevent unrolling beyond that requested. |
| 1386 | if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly) |
| 1387 | L->setLoopAlreadyUnrolled(); |
| 1388 | |
| 1389 | return UnrollResult; |
| 1390 | } |
| 1391 | |
| 1392 | namespace { |
| 1393 | |
| 1394 | class LoopUnroll : public LoopPass { |
| 1395 | public: |
| 1396 | static char ID; // Pass ID, replacement for typeid |
| 1397 | |
| 1398 | int OptLevel; |
| 1399 | |
| 1400 | /// If false, use a cost model to determine whether unrolling of a loop is |
| 1401 | /// profitable. If true, only loops that explicitly request unrolling via |
| 1402 | /// metadata are considered. All other loops are skipped. |
| 1403 | bool OnlyWhenForced; |
| 1404 | |
| 1405 | /// If false, when SCEV is invalidated, only forget everything in the |
| 1406 | /// top-most loop (call forgetTopMostLoop), of the loop being processed. |
| 1407 | /// Otherwise, forgetAllLoops and rebuild when needed next. |
| 1408 | bool ForgetAllSCEV; |
| 1409 | |
| 1410 | std::optional<unsigned> ProvidedCount; |
| 1411 | std::optional<unsigned> ProvidedThreshold; |
| 1412 | std::optional<bool> ProvidedAllowPartial; |
| 1413 | std::optional<bool> ProvidedRuntime; |
| 1414 | std::optional<bool> ProvidedUpperBound; |
| 1415 | std::optional<bool> ProvidedAllowPeeling; |
| 1416 | std::optional<bool> ProvidedAllowProfileBasedPeeling; |
| 1417 | std::optional<unsigned> ProvidedFullUnrollMaxCount; |
| 1418 | |
| 1419 | LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, |
| 1420 | bool ForgetAllSCEV = false, |
| 1421 | std::optional<unsigned> Threshold = std::nullopt, |
| 1422 | std::optional<unsigned> Count = std::nullopt, |
| 1423 | std::optional<bool> AllowPartial = std::nullopt, |
| 1424 | std::optional<bool> Runtime = std::nullopt, |
| 1425 | std::optional<bool> UpperBound = std::nullopt, |
| 1426 | std::optional<bool> AllowPeeling = std::nullopt, |
| 1427 | std::optional<bool> AllowProfileBasedPeeling = std::nullopt, |
| 1428 | std::optional<unsigned> ProvidedFullUnrollMaxCount = std::nullopt) |
| 1429 | : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), |
| 1430 | ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), |
| 1431 | ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), |
| 1432 | ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), |
| 1433 | ProvidedAllowPeeling(AllowPeeling), |
| 1434 | ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), |
| 1435 | ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { |
| 1436 | initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); |
| 1437 | } |
| 1438 | |
| 1439 | bool runOnLoop(Loop *L, LPPassManager &LPM) override { |
| 1440 | if (skipLoop(L)) |
| 1441 | return false; |
| 1442 | |
| 1443 | Function &F = *L->getHeader()->getParent(); |
| 1444 | |
| 1445 | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 1446 | LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| 1447 | ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| 1448 | const TargetTransformInfo &TTI = |
| 1449 | getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| 1450 | auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
| 1451 | // For the old PM, we can't use OptimizationRemarkEmitter as an analysis |
| 1452 | // pass. Function analyses need to be preserved across loop transformations |
| 1453 | // but ORE cannot be preserved (see comment before the pass definition). |
| 1454 | OptimizationRemarkEmitter ORE(&F); |
| 1455 | bool PreserveLCSSA = mustPreserveAnalysisID(AID&: LCSSAID); |
| 1456 | |
| 1457 | LoopUnrollResult Result = tryToUnrollLoop( |
| 1458 | L, DT, LI, SE, TTI, AC, ORE, BFI: nullptr, PSI: nullptr, PreserveLCSSA, OptLevel, |
| 1459 | /*OnlyFullUnroll*/ false, OnlyWhenForced, ForgetAllSCEV, ProvidedCount, |
| 1460 | ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime, |
| 1461 | ProvidedUpperBound, ProvidedAllowPeeling, |
| 1462 | ProvidedAllowProfileBasedPeeling, ProvidedFullUnrollMaxCount); |
| 1463 | |
| 1464 | if (Result == LoopUnrollResult::FullyUnrolled) |
| 1465 | LPM.markLoopAsDeleted(L&: *L); |
| 1466 | |
| 1467 | return Result != LoopUnrollResult::Unmodified; |
| 1468 | } |
| 1469 | |
| 1470 | /// This transformation requires natural loop information & requires that |
| 1471 | /// loop preheaders be inserted into the CFG... |
| 1472 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 1473 | AU.addRequired<AssumptionCacheTracker>(); |
| 1474 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
| 1475 | // FIXME: Loop passes are required to preserve domtree, and for now we just |
| 1476 | // recreate dom info if anything gets unrolled. |
| 1477 | getLoopAnalysisUsage(AU); |
| 1478 | } |
| 1479 | }; |
| 1480 | |
| 1481 | } // end anonymous namespace |
| 1482 | |
| 1483 | char LoopUnroll::ID = 0; |
| 1484 | |
| 1485 | INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll" , "Unroll loops" , false, false) |
| 1486 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| 1487 | INITIALIZE_PASS_DEPENDENCY(LoopPass) |
| 1488 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| 1489 | INITIALIZE_PASS_END(LoopUnroll, "loop-unroll" , "Unroll loops" , false, false) |
| 1490 | |
| 1491 | Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, |
| 1492 | bool ForgetAllSCEV, int Threshold, int Count, |
| 1493 | int AllowPartial, int Runtime, int UpperBound, |
| 1494 | int AllowPeeling) { |
| 1495 | // TODO: It would make more sense for this function to take the optionals |
| 1496 | // directly, but that's dangerous since it would silently break out of tree |
| 1497 | // callers. |
| 1498 | return new LoopUnroll( |
| 1499 | OptLevel, OnlyWhenForced, ForgetAllSCEV, |
| 1500 | Threshold == -1 ? std::nullopt : std::optional<unsigned>(Threshold), |
| 1501 | Count == -1 ? std::nullopt : std::optional<unsigned>(Count), |
| 1502 | AllowPartial == -1 ? std::nullopt : std::optional<bool>(AllowPartial), |
| 1503 | Runtime == -1 ? std::nullopt : std::optional<bool>(Runtime), |
| 1504 | UpperBound == -1 ? std::nullopt : std::optional<bool>(UpperBound), |
| 1505 | AllowPeeling == -1 ? std::nullopt : std::optional<bool>(AllowPeeling)); |
| 1506 | } |
| 1507 | |
| 1508 | PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, |
| 1509 | LoopStandardAnalysisResults &AR, |
| 1510 | LPMUpdater &Updater) { |
| 1511 | // For the new PM, we can't use OptimizationRemarkEmitter as an analysis |
| 1512 | // pass. Function analyses need to be preserved across loop transformations |
| 1513 | // but ORE cannot be preserved (see comment before the pass definition). |
| 1514 | OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); |
| 1515 | |
| 1516 | // Keep track of the previous loop structure so we can identify new loops |
| 1517 | // created by unrolling. |
| 1518 | Loop *ParentL = L.getParentLoop(); |
| 1519 | SmallPtrSet<Loop *, 4> OldLoops; |
| 1520 | if (ParentL) |
| 1521 | OldLoops.insert_range(R&: *ParentL); |
| 1522 | else |
| 1523 | OldLoops.insert_range(R&: AR.LI); |
| 1524 | |
| 1525 | std::string LoopName = std::string(L.getName()); |
| 1526 | |
| 1527 | bool Changed = |
| 1528 | tryToUnrollLoop(L: &L, DT&: AR.DT, LI: &AR.LI, SE&: AR.SE, TTI: AR.TTI, AC&: AR.AC, ORE, |
| 1529 | /*BFI*/ nullptr, /*PSI*/ nullptr, |
| 1530 | /*PreserveLCSSA*/ true, OptLevel, /*OnlyFullUnroll*/ true, |
| 1531 | OnlyWhenForced, ForgetAllSCEV: ForgetSCEV, /*Count*/ ProvidedCount: std::nullopt, |
| 1532 | /*Threshold*/ ProvidedThreshold: std::nullopt, /*AllowPartial*/ ProvidedAllowPartial: false, |
| 1533 | /*Runtime*/ ProvidedRuntime: false, /*UpperBound*/ ProvidedUpperBound: false, |
| 1534 | /*AllowPeeling*/ ProvidedAllowPeeling: true, |
| 1535 | /*AllowProfileBasedPeeling*/ ProvidedAllowProfileBasedPeeling: false, |
| 1536 | /*FullUnrollMaxCount*/ ProvidedFullUnrollMaxCount: std::nullopt) != |
| 1537 | LoopUnrollResult::Unmodified; |
| 1538 | if (!Changed) |
| 1539 | return PreservedAnalyses::all(); |
| 1540 | |
| 1541 | // The parent must not be damaged by unrolling! |
| 1542 | #ifndef NDEBUG |
| 1543 | if (ParentL) |
| 1544 | ParentL->verifyLoop(); |
| 1545 | #endif |
| 1546 | |
| 1547 | // Unrolling can do several things to introduce new loops into a loop nest: |
| 1548 | // - Full unrolling clones child loops within the current loop but then |
| 1549 | // removes the current loop making all of the children appear to be new |
| 1550 | // sibling loops. |
| 1551 | // |
| 1552 | // When a new loop appears as a sibling loop after fully unrolling, |
| 1553 | // its nesting structure has fundamentally changed and we want to revisit |
| 1554 | // it to reflect that. |
| 1555 | // |
| 1556 | // When unrolling has removed the current loop, we need to tell the |
| 1557 | // infrastructure that it is gone. |
| 1558 | // |
| 1559 | // Finally, we support a debugging/testing mode where we revisit child loops |
| 1560 | // as well. These are not expected to require further optimizations as either |
| 1561 | // they or the loop they were cloned from have been directly visited already. |
| 1562 | // But the debugging mode allows us to check this assumption. |
| 1563 | bool IsCurrentLoopValid = false; |
| 1564 | SmallVector<Loop *, 4> SibLoops; |
| 1565 | if (ParentL) |
| 1566 | SibLoops.append(in_start: ParentL->begin(), in_end: ParentL->end()); |
| 1567 | else |
| 1568 | SibLoops.append(in_start: AR.LI.begin(), in_end: AR.LI.end()); |
| 1569 | erase_if(C&: SibLoops, P: [&](Loop *SibLoop) { |
| 1570 | if (SibLoop == &L) { |
| 1571 | IsCurrentLoopValid = true; |
| 1572 | return true; |
| 1573 | } |
| 1574 | |
| 1575 | // Otherwise erase the loop from the list if it was in the old loops. |
| 1576 | return OldLoops.contains(Ptr: SibLoop); |
| 1577 | }); |
| 1578 | Updater.addSiblingLoops(NewSibLoops: SibLoops); |
| 1579 | |
| 1580 | if (!IsCurrentLoopValid) { |
| 1581 | Updater.markLoopAsDeleted(L, Name: LoopName); |
| 1582 | } else { |
| 1583 | // We can only walk child loops if the current loop remained valid. |
| 1584 | if (UnrollRevisitChildLoops) { |
| 1585 | // Walk *all* of the child loops. |
| 1586 | SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); |
| 1587 | Updater.addChildLoops(NewChildLoops: ChildLoops); |
| 1588 | } |
| 1589 | } |
| 1590 | |
| 1591 | return getLoopPassPreservedAnalyses(); |
| 1592 | } |
| 1593 | |
| 1594 | PreservedAnalyses LoopUnrollPass::run(Function &F, |
| 1595 | FunctionAnalysisManager &AM) { |
| 1596 | auto &LI = AM.getResult<LoopAnalysis>(IR&: F); |
| 1597 | // There are no loops in the function. Return before computing other expensive |
| 1598 | // analyses. |
| 1599 | if (LI.empty()) |
| 1600 | return PreservedAnalyses::all(); |
| 1601 | auto &SE = AM.getResult<ScalarEvolutionAnalysis>(IR&: F); |
| 1602 | auto &TTI = AM.getResult<TargetIRAnalysis>(IR&: F); |
| 1603 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 1604 | auto &AC = AM.getResult<AssumptionAnalysis>(IR&: F); |
| 1605 | auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: F); |
| 1606 | AAResults &AA = AM.getResult<AAManager>(IR&: F); |
| 1607 | |
| 1608 | LoopAnalysisManager *LAM = nullptr; |
| 1609 | if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(IR&: F)) |
| 1610 | LAM = &LAMProxy->getManager(); |
| 1611 | |
| 1612 | auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(IR&: F); |
| 1613 | ProfileSummaryInfo *PSI = |
| 1614 | MAMProxy.getCachedResult<ProfileSummaryAnalysis>(IR&: *F.getParent()); |
| 1615 | auto *BFI = (PSI && PSI->hasProfileSummary()) ? |
| 1616 | &AM.getResult<BlockFrequencyAnalysis>(IR&: F) : nullptr; |
| 1617 | |
| 1618 | bool Changed = false; |
| 1619 | |
| 1620 | // The unroller requires loops to be in simplified form, and also needs LCSSA. |
| 1621 | // Since simplification may add new inner loops, it has to run before the |
| 1622 | // legality and profitability checks. This means running the loop unroller |
| 1623 | // will simplify all loops, regardless of whether anything end up being |
| 1624 | // unrolled. |
| 1625 | for (const auto &L : LI) { |
| 1626 | Changed |= |
| 1627 | simplifyLoop(L, DT: &DT, LI: &LI, SE: &SE, AC: &AC, MSSAU: nullptr, PreserveLCSSA: false /* PreserveLCSSA */); |
| 1628 | Changed |= formLCSSARecursively(L&: *L, DT, LI: &LI, SE: &SE); |
| 1629 | } |
| 1630 | |
| 1631 | // Add the loop nests in the reverse order of LoopInfo. See method |
| 1632 | // declaration. |
| 1633 | SmallPriorityWorklist<Loop *, 4> Worklist; |
| 1634 | appendLoopsToWorklist(LI, Worklist); |
| 1635 | |
| 1636 | while (!Worklist.empty()) { |
| 1637 | // Because the LoopInfo stores the loops in RPO, we walk the worklist |
| 1638 | // from back to front so that we work forward across the CFG, which |
| 1639 | // for unrolling is only needed to get optimization remarks emitted in |
| 1640 | // a forward order. |
| 1641 | Loop &L = *Worklist.pop_back_val(); |
| 1642 | #ifndef NDEBUG |
| 1643 | Loop *ParentL = L.getParentLoop(); |
| 1644 | #endif |
| 1645 | |
| 1646 | // Check if the profile summary indicates that the profiled application |
| 1647 | // has a huge working set size, in which case we disable peeling to avoid |
| 1648 | // bloating it further. |
| 1649 | std::optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; |
| 1650 | if (PSI && PSI->hasHugeWorkingSetSize()) |
| 1651 | LocalAllowPeeling = false; |
| 1652 | std::string LoopName = std::string(L.getName()); |
| 1653 | // The API here is quite complex to call and we allow to select some |
| 1654 | // flavors of unrolling during construction time (by setting UnrollOpts). |
| 1655 | LoopUnrollResult Result = tryToUnrollLoop( |
| 1656 | L: &L, DT, LI: &LI, SE, TTI, AC, ORE, BFI, PSI, |
| 1657 | /*PreserveLCSSA*/ true, OptLevel: UnrollOpts.OptLevel, /*OnlyFullUnroll*/ false, |
| 1658 | OnlyWhenForced: UnrollOpts.OnlyWhenForced, ForgetAllSCEV: UnrollOpts.ForgetSCEV, |
| 1659 | /*Count*/ ProvidedCount: std::nullopt, |
| 1660 | /*Threshold*/ ProvidedThreshold: std::nullopt, ProvidedAllowPartial: UnrollOpts.AllowPartial, |
| 1661 | ProvidedRuntime: UnrollOpts.AllowRuntime, ProvidedUpperBound: UnrollOpts.AllowUpperBound, ProvidedAllowPeeling: LocalAllowPeeling, |
| 1662 | ProvidedAllowProfileBasedPeeling: UnrollOpts.AllowProfileBasedPeeling, ProvidedFullUnrollMaxCount: UnrollOpts.FullUnrollMaxCount, |
| 1663 | AA: &AA); |
| 1664 | Changed |= Result != LoopUnrollResult::Unmodified; |
| 1665 | |
| 1666 | // The parent must not be damaged by unrolling! |
| 1667 | #ifndef NDEBUG |
| 1668 | if (Result != LoopUnrollResult::Unmodified && ParentL) |
| 1669 | ParentL->verifyLoop(); |
| 1670 | #endif |
| 1671 | |
| 1672 | // Clear any cached analysis results for L if we removed it completely. |
| 1673 | if (LAM && Result == LoopUnrollResult::FullyUnrolled) |
| 1674 | LAM->clear(IR&: L, Name: LoopName); |
| 1675 | } |
| 1676 | |
| 1677 | if (!Changed) |
| 1678 | return PreservedAnalyses::all(); |
| 1679 | |
| 1680 | return getLoopPassPreservedAnalyses(); |
| 1681 | } |
| 1682 | |
| 1683 | void LoopUnrollPass::printPipeline( |
| 1684 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
| 1685 | static_cast<PassInfoMixin<LoopUnrollPass> *>(this)->printPipeline( |
| 1686 | OS, MapClassName2PassName); |
| 1687 | OS << '<'; |
| 1688 | if (UnrollOpts.AllowPartial != std::nullopt) |
| 1689 | OS << (*UnrollOpts.AllowPartial ? "" : "no-" ) << "partial;" ; |
| 1690 | if (UnrollOpts.AllowPeeling != std::nullopt) |
| 1691 | OS << (*UnrollOpts.AllowPeeling ? "" : "no-" ) << "peeling;" ; |
| 1692 | if (UnrollOpts.AllowRuntime != std::nullopt) |
| 1693 | OS << (*UnrollOpts.AllowRuntime ? "" : "no-" ) << "runtime;" ; |
| 1694 | if (UnrollOpts.AllowUpperBound != std::nullopt) |
| 1695 | OS << (*UnrollOpts.AllowUpperBound ? "" : "no-" ) << "upperbound;" ; |
| 1696 | if (UnrollOpts.AllowProfileBasedPeeling != std::nullopt) |
| 1697 | OS << (*UnrollOpts.AllowProfileBasedPeeling ? "" : "no-" ) |
| 1698 | << "profile-peeling;" ; |
| 1699 | if (UnrollOpts.FullUnrollMaxCount != std::nullopt) |
| 1700 | OS << "full-unroll-max=" << UnrollOpts.FullUnrollMaxCount << ';'; |
| 1701 | OS << 'O' << UnrollOpts.OptLevel; |
| 1702 | OS << '>'; |
| 1703 | } |
| 1704 | |