1 | //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass implements a simple loop unroller. It works best when loops have |
10 | // been canonicalized by the -indvars pass, allowing it to determine the trip |
11 | // counts of loops easily. |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/Transforms/Scalar/LoopUnrollPass.h" |
15 | #include "llvm/ADT/DenseMap.h" |
16 | #include "llvm/ADT/DenseMapInfo.h" |
17 | #include "llvm/ADT/DenseSet.h" |
18 | #include "llvm/ADT/STLExtras.h" |
19 | #include "llvm/ADT/SetVector.h" |
20 | #include "llvm/ADT/SmallPtrSet.h" |
21 | #include "llvm/ADT/SmallVector.h" |
22 | #include "llvm/ADT/StringRef.h" |
23 | #include "llvm/Analysis/AssumptionCache.h" |
24 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
25 | #include "llvm/Analysis/CodeMetrics.h" |
26 | #include "llvm/Analysis/LoopAnalysisManager.h" |
27 | #include "llvm/Analysis/LoopInfo.h" |
28 | #include "llvm/Analysis/LoopPass.h" |
29 | #include "llvm/Analysis/LoopUnrollAnalyzer.h" |
30 | #include "llvm/Analysis/MemorySSA.h" |
31 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
32 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
33 | #include "llvm/Analysis/ScalarEvolution.h" |
34 | #include "llvm/Analysis/TargetTransformInfo.h" |
35 | #include "llvm/IR/BasicBlock.h" |
36 | #include "llvm/IR/CFG.h" |
37 | #include "llvm/IR/Constant.h" |
38 | #include "llvm/IR/Constants.h" |
39 | #include "llvm/IR/DiagnosticInfo.h" |
40 | #include "llvm/IR/Dominators.h" |
41 | #include "llvm/IR/Function.h" |
42 | #include "llvm/IR/Instruction.h" |
43 | #include "llvm/IR/Instructions.h" |
44 | #include "llvm/IR/IntrinsicInst.h" |
45 | #include "llvm/IR/Metadata.h" |
46 | #include "llvm/IR/PassManager.h" |
47 | #include "llvm/InitializePasses.h" |
48 | #include "llvm/Pass.h" |
49 | #include "llvm/Support/Casting.h" |
50 | #include "llvm/Support/CommandLine.h" |
51 | #include "llvm/Support/Debug.h" |
52 | #include "llvm/Support/ErrorHandling.h" |
53 | #include "llvm/Support/raw_ostream.h" |
54 | #include "llvm/Transforms/Scalar.h" |
55 | #include "llvm/Transforms/Scalar/LoopPassManager.h" |
56 | #include "llvm/Transforms/Utils.h" |
57 | #include "llvm/Transforms/Utils/LoopPeel.h" |
58 | #include "llvm/Transforms/Utils/LoopSimplify.h" |
59 | #include "llvm/Transforms/Utils/LoopUtils.h" |
60 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
61 | #include "llvm/Transforms/Utils/SizeOpts.h" |
62 | #include "llvm/Transforms/Utils/UnrollLoop.h" |
63 | #include <algorithm> |
64 | #include <cassert> |
65 | #include <cstdint> |
66 | #include <limits> |
67 | #include <optional> |
68 | #include <string> |
69 | #include <tuple> |
70 | #include <utility> |
71 | |
72 | using namespace llvm; |
73 | |
74 | #define DEBUG_TYPE "loop-unroll" |
75 | |
76 | cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( |
77 | "forget-scev-loop-unroll" , cl::init(Val: false), cl::Hidden, |
78 | cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" |
79 | " the current top-most loop. This is sometimes preferred to reduce" |
80 | " compile time." )); |
81 | |
82 | static cl::opt<unsigned> |
83 | UnrollThreshold("unroll-threshold" , cl::Hidden, |
84 | cl::desc("The cost threshold for loop unrolling" )); |
85 | |
86 | static cl::opt<unsigned> |
87 | UnrollOptSizeThreshold( |
88 | "unroll-optsize-threshold" , cl::init(Val: 0), cl::Hidden, |
89 | cl::desc("The cost threshold for loop unrolling when optimizing for " |
90 | "size" )); |
91 | |
92 | static cl::opt<unsigned> UnrollPartialThreshold( |
93 | "unroll-partial-threshold" , cl::Hidden, |
94 | cl::desc("The cost threshold for partial loop unrolling" )); |
95 | |
96 | static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( |
97 | "unroll-max-percent-threshold-boost" , cl::init(Val: 400), cl::Hidden, |
98 | cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " |
99 | "to the threshold when aggressively unrolling a loop due to the " |
100 | "dynamic cost savings. If completely unrolling a loop will reduce " |
101 | "the total runtime from X to Y, we boost the loop unroll " |
102 | "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " |
103 | "X/Y). This limit avoids excessive code bloat." )); |
104 | |
105 | static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( |
106 | "unroll-max-iteration-count-to-analyze" , cl::init(Val: 10), cl::Hidden, |
107 | cl::desc("Don't allow loop unrolling to simulate more than this number of " |
108 | "iterations when checking full unroll profitability" )); |
109 | |
110 | static cl::opt<unsigned> UnrollCount( |
111 | "unroll-count" , cl::Hidden, |
112 | cl::desc("Use this unroll count for all loops including those with " |
113 | "unroll_count pragma values, for testing purposes" )); |
114 | |
115 | static cl::opt<unsigned> UnrollMaxCount( |
116 | "unroll-max-count" , cl::Hidden, |
117 | cl::desc("Set the max unroll count for partial and runtime unrolling, for" |
118 | "testing purposes" )); |
119 | |
120 | static cl::opt<unsigned> UnrollFullMaxCount( |
121 | "unroll-full-max-count" , cl::Hidden, |
122 | cl::desc( |
123 | "Set the max unroll count for full unrolling, for testing purposes" )); |
124 | |
125 | static cl::opt<bool> |
126 | UnrollAllowPartial("unroll-allow-partial" , cl::Hidden, |
127 | cl::desc("Allows loops to be partially unrolled until " |
128 | "-unroll-threshold loop size is reached." )); |
129 | |
130 | static cl::opt<bool> UnrollAllowRemainder( |
131 | "unroll-allow-remainder" , cl::Hidden, |
132 | cl::desc("Allow generation of a loop remainder (extra iterations) " |
133 | "when unrolling a loop." )); |
134 | |
135 | static cl::opt<bool> |
136 | UnrollRuntime("unroll-runtime" , cl::Hidden, |
137 | cl::desc("Unroll loops with run-time trip counts" )); |
138 | |
139 | static cl::opt<unsigned> UnrollMaxUpperBound( |
140 | "unroll-max-upperbound" , cl::init(Val: 8), cl::Hidden, |
141 | cl::desc( |
142 | "The max of trip count upper bound that is considered in unrolling" )); |
143 | |
144 | static cl::opt<unsigned> PragmaUnrollThreshold( |
145 | "pragma-unroll-threshold" , cl::init(Val: 16 * 1024), cl::Hidden, |
146 | cl::desc("Unrolled size limit for loops with an unroll(full) or " |
147 | "unroll_count pragma." )); |
148 | |
149 | static cl::opt<unsigned> FlatLoopTripCountThreshold( |
150 | "flat-loop-tripcount-threshold" , cl::init(Val: 5), cl::Hidden, |
151 | cl::desc("If the runtime tripcount for the loop is lower than the " |
152 | "threshold, the loop is considered as flat and will be less " |
153 | "aggressively unrolled." )); |
154 | |
155 | static cl::opt<bool> UnrollUnrollRemainder( |
156 | "unroll-remainder" , cl::Hidden, |
157 | cl::desc("Allow the loop remainder to be unrolled." )); |
158 | |
159 | // This option isn't ever intended to be enabled, it serves to allow |
160 | // experiments to check the assumptions about when this kind of revisit is |
161 | // necessary. |
162 | static cl::opt<bool> UnrollRevisitChildLoops( |
163 | "unroll-revisit-child-loops" , cl::Hidden, |
164 | cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " |
165 | "This shouldn't typically be needed as child loops (or their " |
166 | "clones) were already visited." )); |
167 | |
168 | static cl::opt<unsigned> UnrollThresholdAggressive( |
169 | "unroll-threshold-aggressive" , cl::init(Val: 300), cl::Hidden, |
170 | cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) " |
171 | "optimizations" )); |
172 | static cl::opt<unsigned> |
173 | UnrollThresholdDefault("unroll-threshold-default" , cl::init(Val: 150), |
174 | cl::Hidden, |
175 | cl::desc("Default threshold (max size of unrolled " |
176 | "loop), used in all but O3 optimizations" )); |
177 | |
178 | static cl::opt<unsigned> PragmaUnrollFullMaxIterations( |
179 | "pragma-unroll-full-max-iterations" , cl::init(Val: 1'000'000), cl::Hidden, |
180 | cl::desc("Maximum allowed iterations to unroll under pragma unroll full." )); |
181 | |
182 | /// A magic value for use with the Threshold parameter to indicate |
183 | /// that the loop unroll should be performed regardless of how much |
184 | /// code expansion would result. |
185 | static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); |
186 | |
187 | /// Gather the various unrolling parameters based on the defaults, compiler |
188 | /// flags, TTI overrides and user specified parameters. |
189 | TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( |
190 | Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, |
191 | BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, |
192 | OptimizationRemarkEmitter &ORE, int OptLevel, |
193 | std::optional<unsigned> UserThreshold, std::optional<unsigned> UserCount, |
194 | std::optional<bool> UserAllowPartial, std::optional<bool> UserRuntime, |
195 | std::optional<bool> UserUpperBound, |
196 | std::optional<unsigned> UserFullUnrollMaxCount) { |
197 | TargetTransformInfo::UnrollingPreferences UP; |
198 | |
199 | // Set up the defaults |
200 | UP.Threshold = |
201 | OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault; |
202 | UP.MaxPercentThresholdBoost = 400; |
203 | UP.OptSizeThreshold = UnrollOptSizeThreshold; |
204 | UP.PartialThreshold = 150; |
205 | UP.PartialOptSizeThreshold = UnrollOptSizeThreshold; |
206 | UP.Count = 0; |
207 | UP.DefaultUnrollRuntimeCount = 8; |
208 | UP.MaxCount = std::numeric_limits<unsigned>::max(); |
209 | UP.MaxUpperBound = UnrollMaxUpperBound; |
210 | UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); |
211 | UP.BEInsns = 2; |
212 | UP.Partial = false; |
213 | UP.Runtime = false; |
214 | UP.AllowRemainder = true; |
215 | UP.UnrollRemainder = false; |
216 | UP.AllowExpensiveTripCount = false; |
217 | UP.Force = false; |
218 | UP.UpperBound = false; |
219 | UP.UnrollAndJam = false; |
220 | UP.UnrollAndJamInnerLoopThreshold = 60; |
221 | UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; |
222 | UP.SCEVExpansionBudget = SCEVCheapExpansionBudget; |
223 | UP.RuntimeUnrollMultiExit = false; |
224 | |
225 | // Override with any target specific settings |
226 | TTI.getUnrollingPreferences(L, SE, UP, ORE: &ORE); |
227 | |
228 | // Apply size attributes |
229 | bool OptForSize = L->getHeader()->getParent()->hasOptSize() || |
230 | // Let unroll hints / pragmas take precedence over PGSO. |
231 | (hasUnrollTransformation(L) != TM_ForcedByUser && |
232 | llvm::shouldOptimizeForSize(BB: L->getHeader(), PSI, BFI, |
233 | QueryType: PGSOQueryType::IRPass)); |
234 | if (OptForSize) { |
235 | UP.Threshold = UP.OptSizeThreshold; |
236 | UP.PartialThreshold = UP.PartialOptSizeThreshold; |
237 | UP.MaxPercentThresholdBoost = 100; |
238 | } |
239 | |
240 | // Apply any user values specified by cl::opt |
241 | if (UnrollThreshold.getNumOccurrences() > 0) |
242 | UP.Threshold = UnrollThreshold; |
243 | if (UnrollPartialThreshold.getNumOccurrences() > 0) |
244 | UP.PartialThreshold = UnrollPartialThreshold; |
245 | if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) |
246 | UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; |
247 | if (UnrollMaxCount.getNumOccurrences() > 0) |
248 | UP.MaxCount = UnrollMaxCount; |
249 | if (UnrollMaxUpperBound.getNumOccurrences() > 0) |
250 | UP.MaxUpperBound = UnrollMaxUpperBound; |
251 | if (UnrollFullMaxCount.getNumOccurrences() > 0) |
252 | UP.FullUnrollMaxCount = UnrollFullMaxCount; |
253 | if (UnrollAllowPartial.getNumOccurrences() > 0) |
254 | UP.Partial = UnrollAllowPartial; |
255 | if (UnrollAllowRemainder.getNumOccurrences() > 0) |
256 | UP.AllowRemainder = UnrollAllowRemainder; |
257 | if (UnrollRuntime.getNumOccurrences() > 0) |
258 | UP.Runtime = UnrollRuntime; |
259 | if (UnrollMaxUpperBound == 0) |
260 | UP.UpperBound = false; |
261 | if (UnrollUnrollRemainder.getNumOccurrences() > 0) |
262 | UP.UnrollRemainder = UnrollUnrollRemainder; |
263 | if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0) |
264 | UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; |
265 | |
266 | // Apply user values provided by argument |
267 | if (UserThreshold) { |
268 | UP.Threshold = *UserThreshold; |
269 | UP.PartialThreshold = *UserThreshold; |
270 | } |
271 | if (UserCount) |
272 | UP.Count = *UserCount; |
273 | if (UserAllowPartial) |
274 | UP.Partial = *UserAllowPartial; |
275 | if (UserRuntime) |
276 | UP.Runtime = *UserRuntime; |
277 | if (UserUpperBound) |
278 | UP.UpperBound = *UserUpperBound; |
279 | if (UserFullUnrollMaxCount) |
280 | UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; |
281 | |
282 | return UP; |
283 | } |
284 | |
285 | namespace { |
286 | |
287 | /// A struct to densely store the state of an instruction after unrolling at |
288 | /// each iteration. |
289 | /// |
290 | /// This is designed to work like a tuple of <Instruction *, int> for the |
291 | /// purposes of hashing and lookup, but to be able to associate two boolean |
292 | /// states with each key. |
293 | struct UnrolledInstState { |
294 | Instruction *I; |
295 | int Iteration : 30; |
296 | unsigned IsFree : 1; |
297 | unsigned IsCounted : 1; |
298 | }; |
299 | |
300 | /// Hashing and equality testing for a set of the instruction states. |
301 | struct UnrolledInstStateKeyInfo { |
302 | using PtrInfo = DenseMapInfo<Instruction *>; |
303 | using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; |
304 | |
305 | static inline UnrolledInstState getEmptyKey() { |
306 | return {.I: PtrInfo::getEmptyKey(), .Iteration: 0, .IsFree: 0, .IsCounted: 0}; |
307 | } |
308 | |
309 | static inline UnrolledInstState getTombstoneKey() { |
310 | return {.I: PtrInfo::getTombstoneKey(), .Iteration: 0, .IsFree: 0, .IsCounted: 0}; |
311 | } |
312 | |
313 | static inline unsigned getHashValue(const UnrolledInstState &S) { |
314 | return PairInfo::getHashValue(PairVal: {S.I, S.Iteration}); |
315 | } |
316 | |
317 | static inline bool isEqual(const UnrolledInstState &LHS, |
318 | const UnrolledInstState &RHS) { |
319 | return PairInfo::isEqual(LHS: {LHS.I, LHS.Iteration}, RHS: {RHS.I, RHS.Iteration}); |
320 | } |
321 | }; |
322 | |
323 | struct EstimatedUnrollCost { |
324 | /// The estimated cost after unrolling. |
325 | unsigned UnrolledCost; |
326 | |
327 | /// The estimated dynamic cost of executing the instructions in the |
328 | /// rolled form. |
329 | unsigned RolledDynamicCost; |
330 | }; |
331 | |
332 | struct PragmaInfo { |
333 | PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU) |
334 | : UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC), |
335 | PragmaEnableUnroll(PEU) {} |
336 | const bool UserUnrollCount; |
337 | const bool PragmaFullUnroll; |
338 | const unsigned PragmaCount; |
339 | const bool PragmaEnableUnroll; |
340 | }; |
341 | |
342 | } // end anonymous namespace |
343 | |
344 | /// Figure out if the loop is worth full unrolling. |
345 | /// |
346 | /// Complete loop unrolling can make some loads constant, and we need to know |
347 | /// if that would expose any further optimization opportunities. This routine |
348 | /// estimates this optimization. It computes cost of unrolled loop |
349 | /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By |
350 | /// dynamic cost we mean that we won't count costs of blocks that are known not |
351 | /// to be executed (i.e. if we have a branch in the loop and we know that at the |
352 | /// given iteration its condition would be resolved to true, we won't add up the |
353 | /// cost of the 'false'-block). |
354 | /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If |
355 | /// the analysis failed (no benefits expected from the unrolling, or the loop is |
356 | /// too big to analyze), the returned value is std::nullopt. |
357 | static std::optional<EstimatedUnrollCost> analyzeLoopUnrollCost( |
358 | const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, |
359 | const SmallPtrSetImpl<const Value *> &EphValues, |
360 | const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize, |
361 | unsigned MaxIterationsCountToAnalyze) { |
362 | // We want to be able to scale offsets by the trip count and add more offsets |
363 | // to them without checking for overflows, and we already don't want to |
364 | // analyze *massive* trip counts, so we force the max to be reasonably small. |
365 | assert(MaxIterationsCountToAnalyze < |
366 | (unsigned)(std::numeric_limits<int>::max() / 2) && |
367 | "The unroll iterations max is too large!" ); |
368 | |
369 | // Only analyze inner loops. We can't properly estimate cost of nested loops |
370 | // and we won't visit inner loops again anyway. |
371 | if (!L->isInnermost()) |
372 | return std::nullopt; |
373 | |
374 | // Don't simulate loops with a big or unknown tripcount |
375 | if (!TripCount || TripCount > MaxIterationsCountToAnalyze) |
376 | return std::nullopt; |
377 | |
378 | SmallSetVector<BasicBlock *, 16> BBWorklist; |
379 | SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; |
380 | DenseMap<Value *, Value *> SimplifiedValues; |
381 | SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues; |
382 | |
383 | // The estimated cost of the unrolled form of the loop. We try to estimate |
384 | // this by simplifying as much as we can while computing the estimate. |
385 | InstructionCost UnrolledCost = 0; |
386 | |
387 | // We also track the estimated dynamic (that is, actually executed) cost in |
388 | // the rolled form. This helps identify cases when the savings from unrolling |
389 | // aren't just exposing dead control flows, but actual reduced dynamic |
390 | // instructions due to the simplifications which we expect to occur after |
391 | // unrolling. |
392 | InstructionCost RolledDynamicCost = 0; |
393 | |
394 | // We track the simplification of each instruction in each iteration. We use |
395 | // this to recursively merge costs into the unrolled cost on-demand so that |
396 | // we don't count the cost of any dead code. This is essentially a map from |
397 | // <instruction, int> to <bool, bool>, but stored as a densely packed struct. |
398 | DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; |
399 | |
400 | // A small worklist used to accumulate cost of instructions from each |
401 | // observable and reached root in the loop. |
402 | SmallVector<Instruction *, 16> CostWorklist; |
403 | |
404 | // PHI-used worklist used between iterations while accumulating cost. |
405 | SmallVector<Instruction *, 4> PHIUsedList; |
406 | |
407 | // Helper function to accumulate cost for instructions in the loop. |
408 | auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { |
409 | assert(Iteration >= 0 && "Cannot have a negative iteration!" ); |
410 | assert(CostWorklist.empty() && "Must start with an empty cost list" ); |
411 | assert(PHIUsedList.empty() && "Must start with an empty phi used list" ); |
412 | CostWorklist.push_back(Elt: &RootI); |
413 | TargetTransformInfo::TargetCostKind CostKind = |
414 | RootI.getFunction()->hasMinSize() ? |
415 | TargetTransformInfo::TCK_CodeSize : |
416 | TargetTransformInfo::TCK_SizeAndLatency; |
417 | for (;; --Iteration) { |
418 | do { |
419 | Instruction *I = CostWorklist.pop_back_val(); |
420 | |
421 | // InstCostMap only uses I and Iteration as a key, the other two values |
422 | // don't matter here. |
423 | auto CostIter = InstCostMap.find(V: {.I: I, .Iteration: Iteration, .IsFree: 0, .IsCounted: 0}); |
424 | if (CostIter == InstCostMap.end()) |
425 | // If an input to a PHI node comes from a dead path through the loop |
426 | // we may have no cost data for it here. What that actually means is |
427 | // that it is free. |
428 | continue; |
429 | auto &Cost = *CostIter; |
430 | if (Cost.IsCounted) |
431 | // Already counted this instruction. |
432 | continue; |
433 | |
434 | // Mark that we are counting the cost of this instruction now. |
435 | Cost.IsCounted = true; |
436 | |
437 | // If this is a PHI node in the loop header, just add it to the PHI set. |
438 | if (auto *PhiI = dyn_cast<PHINode>(Val: I)) |
439 | if (PhiI->getParent() == L->getHeader()) { |
440 | assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " |
441 | "inherently simplify during unrolling." ); |
442 | if (Iteration == 0) |
443 | continue; |
444 | |
445 | // Push the incoming value from the backedge into the PHI used list |
446 | // if it is an in-loop instruction. We'll use this to populate the |
447 | // cost worklist for the next iteration (as we count backwards). |
448 | if (auto *OpI = dyn_cast<Instruction>( |
449 | Val: PhiI->getIncomingValueForBlock(BB: L->getLoopLatch()))) |
450 | if (L->contains(Inst: OpI)) |
451 | PHIUsedList.push_back(Elt: OpI); |
452 | continue; |
453 | } |
454 | |
455 | // First accumulate the cost of this instruction. |
456 | if (!Cost.IsFree) { |
457 | // Consider simplified operands in instruction cost. |
458 | SmallVector<Value *, 4> Operands; |
459 | transform(Range: I->operands(), d_first: std::back_inserter(x&: Operands), |
460 | F: [&](Value *Op) { |
461 | if (auto Res = SimplifiedValues.lookup(Val: Op)) |
462 | return Res; |
463 | return Op; |
464 | }); |
465 | UnrolledCost += TTI.getInstructionCost(U: I, Operands, CostKind); |
466 | LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " |
467 | << Iteration << "): " ); |
468 | LLVM_DEBUG(I->dump()); |
469 | } |
470 | |
471 | // We must count the cost of every operand which is not free, |
472 | // recursively. If we reach a loop PHI node, simply add it to the set |
473 | // to be considered on the next iteration (backwards!). |
474 | for (Value *Op : I->operands()) { |
475 | // Check whether this operand is free due to being a constant or |
476 | // outside the loop. |
477 | auto *OpI = dyn_cast<Instruction>(Val: Op); |
478 | if (!OpI || !L->contains(Inst: OpI)) |
479 | continue; |
480 | |
481 | // Otherwise accumulate its cost. |
482 | CostWorklist.push_back(Elt: OpI); |
483 | } |
484 | } while (!CostWorklist.empty()); |
485 | |
486 | if (PHIUsedList.empty()) |
487 | // We've exhausted the search. |
488 | break; |
489 | |
490 | assert(Iteration > 0 && |
491 | "Cannot track PHI-used values past the first iteration!" ); |
492 | CostWorklist.append(in_start: PHIUsedList.begin(), in_end: PHIUsedList.end()); |
493 | PHIUsedList.clear(); |
494 | } |
495 | }; |
496 | |
497 | // Ensure that we don't violate the loop structure invariants relied on by |
498 | // this analysis. |
499 | assert(L->isLoopSimplifyForm() && "Must put loop into normal form first." ); |
500 | assert(L->isLCSSAForm(DT) && |
501 | "Must have loops in LCSSA form to track live-out values." ); |
502 | |
503 | LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n" ); |
504 | |
505 | TargetTransformInfo::TargetCostKind CostKind = |
506 | L->getHeader()->getParent()->hasMinSize() ? |
507 | TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency; |
508 | // Simulate execution of each iteration of the loop counting instructions, |
509 | // which would be simplified. |
510 | // Since the same load will take different values on different iterations, |
511 | // we literally have to go through all loop's iterations. |
512 | for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { |
513 | LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n" ); |
514 | |
515 | // Prepare for the iteration by collecting any simplified entry or backedge |
516 | // inputs. |
517 | for (Instruction &I : *L->getHeader()) { |
518 | auto *PHI = dyn_cast<PHINode>(Val: &I); |
519 | if (!PHI) |
520 | break; |
521 | |
522 | // The loop header PHI nodes must have exactly two input: one from the |
523 | // loop preheader and one from the loop latch. |
524 | assert( |
525 | PHI->getNumIncomingValues() == 2 && |
526 | "Must have an incoming value only for the preheader and the latch." ); |
527 | |
528 | Value *V = PHI->getIncomingValueForBlock( |
529 | BB: Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); |
530 | if (Iteration != 0 && SimplifiedValues.count(Val: V)) |
531 | V = SimplifiedValues.lookup(Val: V); |
532 | SimplifiedInputValues.push_back(Elt: {PHI, V}); |
533 | } |
534 | |
535 | // Now clear and re-populate the map for the next iteration. |
536 | SimplifiedValues.clear(); |
537 | while (!SimplifiedInputValues.empty()) |
538 | SimplifiedValues.insert(KV: SimplifiedInputValues.pop_back_val()); |
539 | |
540 | UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); |
541 | |
542 | BBWorklist.clear(); |
543 | BBWorklist.insert(X: L->getHeader()); |
544 | // Note that we *must not* cache the size, this loop grows the worklist. |
545 | for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { |
546 | BasicBlock *BB = BBWorklist[Idx]; |
547 | |
548 | // Visit all instructions in the given basic block and try to simplify |
549 | // it. We don't change the actual IR, just count optimization |
550 | // opportunities. |
551 | for (Instruction &I : *BB) { |
552 | // These won't get into the final code - don't even try calculating the |
553 | // cost for them. |
554 | if (EphValues.count(Ptr: &I)) |
555 | continue; |
556 | |
557 | // Track this instruction's expected baseline cost when executing the |
558 | // rolled loop form. |
559 | RolledDynamicCost += TTI.getInstructionCost(U: &I, CostKind); |
560 | |
561 | // Visit the instruction to analyze its loop cost after unrolling, |
562 | // and if the visitor returns true, mark the instruction as free after |
563 | // unrolling and continue. |
564 | bool IsFree = Analyzer.visit(I); |
565 | bool Inserted = InstCostMap.insert(V: {.I: &I, .Iteration: (int)Iteration, |
566 | .IsFree: (unsigned)IsFree, |
567 | /*IsCounted*/ false}).second; |
568 | (void)Inserted; |
569 | assert(Inserted && "Cannot have a state for an unvisited instruction!" ); |
570 | |
571 | if (IsFree) |
572 | continue; |
573 | |
574 | // Can't properly model a cost of a call. |
575 | // FIXME: With a proper cost model we should be able to do it. |
576 | if (auto *CI = dyn_cast<CallInst>(Val: &I)) { |
577 | const Function *Callee = CI->getCalledFunction(); |
578 | if (!Callee || TTI.isLoweredToCall(F: Callee)) { |
579 | LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n" ); |
580 | return std::nullopt; |
581 | } |
582 | } |
583 | |
584 | // If the instruction might have a side-effect recursively account for |
585 | // the cost of it and all the instructions leading up to it. |
586 | if (I.mayHaveSideEffects()) |
587 | AddCostRecursively(I, Iteration); |
588 | |
589 | // If unrolled body turns out to be too big, bail out. |
590 | if (UnrolledCost > MaxUnrolledLoopSize) { |
591 | LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" |
592 | << " UnrolledCost: " << UnrolledCost |
593 | << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize |
594 | << "\n" ); |
595 | return std::nullopt; |
596 | } |
597 | } |
598 | |
599 | Instruction *TI = BB->getTerminator(); |
600 | |
601 | auto getSimplifiedConstant = [&](Value *V) -> Constant * { |
602 | if (SimplifiedValues.count(Val: V)) |
603 | V = SimplifiedValues.lookup(Val: V); |
604 | return dyn_cast<Constant>(Val: V); |
605 | }; |
606 | |
607 | // Add in the live successors by first checking whether we have terminator |
608 | // that may be simplified based on the values simplified by this call. |
609 | BasicBlock *KnownSucc = nullptr; |
610 | if (BranchInst *BI = dyn_cast<BranchInst>(Val: TI)) { |
611 | if (BI->isConditional()) { |
612 | if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) { |
613 | // Just take the first successor if condition is undef |
614 | if (isa<UndefValue>(Val: SimpleCond)) |
615 | KnownSucc = BI->getSuccessor(i: 0); |
616 | else if (ConstantInt *SimpleCondVal = |
617 | dyn_cast<ConstantInt>(Val: SimpleCond)) |
618 | KnownSucc = BI->getSuccessor(i: SimpleCondVal->isZero() ? 1 : 0); |
619 | } |
620 | } |
621 | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: TI)) { |
622 | if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) { |
623 | // Just take the first successor if condition is undef |
624 | if (isa<UndefValue>(Val: SimpleCond)) |
625 | KnownSucc = SI->getSuccessor(idx: 0); |
626 | else if (ConstantInt *SimpleCondVal = |
627 | dyn_cast<ConstantInt>(Val: SimpleCond)) |
628 | KnownSucc = SI->findCaseValue(C: SimpleCondVal)->getCaseSuccessor(); |
629 | } |
630 | } |
631 | if (KnownSucc) { |
632 | if (L->contains(BB: KnownSucc)) |
633 | BBWorklist.insert(X: KnownSucc); |
634 | else |
635 | ExitWorklist.insert(X: {BB, KnownSucc}); |
636 | continue; |
637 | } |
638 | |
639 | // Add BB's successors to the worklist. |
640 | for (BasicBlock *Succ : successors(BB)) |
641 | if (L->contains(BB: Succ)) |
642 | BBWorklist.insert(X: Succ); |
643 | else |
644 | ExitWorklist.insert(X: {BB, Succ}); |
645 | AddCostRecursively(*TI, Iteration); |
646 | } |
647 | |
648 | // If we found no optimization opportunities on the first iteration, we |
649 | // won't find them on later ones too. |
650 | if (UnrolledCost == RolledDynamicCost) { |
651 | LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" |
652 | << " UnrolledCost: " << UnrolledCost << "\n" ); |
653 | return std::nullopt; |
654 | } |
655 | } |
656 | |
657 | while (!ExitWorklist.empty()) { |
658 | BasicBlock *ExitingBB, *ExitBB; |
659 | std::tie(args&: ExitingBB, args&: ExitBB) = ExitWorklist.pop_back_val(); |
660 | |
661 | for (Instruction &I : *ExitBB) { |
662 | auto *PN = dyn_cast<PHINode>(Val: &I); |
663 | if (!PN) |
664 | break; |
665 | |
666 | Value *Op = PN->getIncomingValueForBlock(BB: ExitingBB); |
667 | if (auto *OpI = dyn_cast<Instruction>(Val: Op)) |
668 | if (L->contains(Inst: OpI)) |
669 | AddCostRecursively(*OpI, TripCount - 1); |
670 | } |
671 | } |
672 | |
673 | assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() && |
674 | "All instructions must have a valid cost, whether the " |
675 | "loop is rolled or unrolled." ); |
676 | |
677 | LLVM_DEBUG(dbgs() << "Analysis finished:\n" |
678 | << "UnrolledCost: " << UnrolledCost << ", " |
679 | << "RolledDynamicCost: " << RolledDynamicCost << "\n" ); |
680 | return {{.UnrolledCost: unsigned(UnrolledCost.getValue()), |
681 | .RolledDynamicCost: unsigned(RolledDynamicCost.getValue())}}; |
682 | } |
683 | |
684 | UnrollCostEstimator::UnrollCostEstimator( |
685 | const Loop *L, const TargetTransformInfo &TTI, |
686 | const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { |
687 | CodeMetrics Metrics; |
688 | for (BasicBlock *BB : L->blocks()) |
689 | Metrics.analyzeBasicBlock(BB, TTI, EphValues, /* PrepareForLTO= */ false, |
690 | L); |
691 | NumInlineCandidates = Metrics.NumInlineCandidates; |
692 | NotDuplicatable = Metrics.notDuplicatable; |
693 | Convergence = Metrics.Convergence; |
694 | LoopSize = Metrics.NumInsts; |
695 | ConvergenceAllowsRuntime = |
696 | Metrics.Convergence != ConvergenceKind::Uncontrolled && |
697 | !getLoopConvergenceHeart(TheLoop: L); |
698 | |
699 | // Don't allow an estimate of size zero. This would allows unrolling of loops |
700 | // with huge iteration counts, which is a compile time problem even if it's |
701 | // not a problem for code quality. Also, the code using this size may assume |
702 | // that each loop has at least three instructions (likely a conditional |
703 | // branch, a comparison feeding that branch, and some kind of loop increment |
704 | // feeding that comparison instruction). |
705 | if (LoopSize.isValid() && LoopSize < BEInsns + 1) |
706 | // This is an open coded max() on InstructionCost |
707 | LoopSize = BEInsns + 1; |
708 | } |
709 | |
710 | bool UnrollCostEstimator::canUnroll() const { |
711 | switch (Convergence) { |
712 | case ConvergenceKind::ExtendedLoop: |
713 | LLVM_DEBUG(dbgs() << " Convergence prevents unrolling.\n" ); |
714 | return false; |
715 | default: |
716 | break; |
717 | } |
718 | if (!LoopSize.isValid()) { |
719 | LLVM_DEBUG(dbgs() << " Invalid loop size prevents unrolling.\n" ); |
720 | return false; |
721 | } |
722 | if (NotDuplicatable) { |
723 | LLVM_DEBUG(dbgs() << " Non-duplicatable blocks prevent unrolling.\n" ); |
724 | return false; |
725 | } |
726 | return true; |
727 | } |
728 | |
729 | uint64_t UnrollCostEstimator::getUnrolledLoopSize( |
730 | const TargetTransformInfo::UnrollingPreferences &UP, |
731 | unsigned CountOverwrite) const { |
732 | unsigned LS = LoopSize.getValue(); |
733 | assert(LS >= UP.BEInsns && "LoopSize should not be less than BEInsns!" ); |
734 | if (CountOverwrite) |
735 | return static_cast<uint64_t>(LS - UP.BEInsns) * CountOverwrite + UP.BEInsns; |
736 | else |
737 | return static_cast<uint64_t>(LS - UP.BEInsns) * UP.Count + UP.BEInsns; |
738 | } |
739 | |
740 | // Returns the loop hint metadata node with the given name (for example, |
741 | // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is |
742 | // returned. |
743 | static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) { |
744 | if (MDNode *LoopID = L->getLoopID()) |
745 | return GetUnrollMetadata(LoopID, Name); |
746 | return nullptr; |
747 | } |
748 | |
749 | // Returns true if the loop has an unroll(full) pragma. |
750 | static bool hasUnrollFullPragma(const Loop *L) { |
751 | return getUnrollMetadataForLoop(L, Name: "llvm.loop.unroll.full" ); |
752 | } |
753 | |
754 | // Returns true if the loop has an unroll(enable) pragma. This metadata is used |
755 | // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. |
756 | static bool hasUnrollEnablePragma(const Loop *L) { |
757 | return getUnrollMetadataForLoop(L, Name: "llvm.loop.unroll.enable" ); |
758 | } |
759 | |
760 | // Returns true if the loop has an runtime unroll(disable) pragma. |
761 | static bool hasRuntimeUnrollDisablePragma(const Loop *L) { |
762 | return getUnrollMetadataForLoop(L, Name: "llvm.loop.unroll.runtime.disable" ); |
763 | } |
764 | |
765 | // If loop has an unroll_count pragma return the (necessarily |
766 | // positive) value from the pragma. Otherwise return 0. |
767 | static unsigned unrollCountPragmaValue(const Loop *L) { |
768 | MDNode *MD = getUnrollMetadataForLoop(L, Name: "llvm.loop.unroll.count" ); |
769 | if (MD) { |
770 | assert(MD->getNumOperands() == 2 && |
771 | "Unroll count hint metadata should have two operands." ); |
772 | unsigned Count = |
773 | mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 1))->getZExtValue(); |
774 | assert(Count >= 1 && "Unroll count must be positive." ); |
775 | return Count; |
776 | } |
777 | return 0; |
778 | } |
779 | |
780 | // Computes the boosting factor for complete unrolling. |
781 | // If fully unrolling the loop would save a lot of RolledDynamicCost, it would |
782 | // be beneficial to fully unroll the loop even if unrolledcost is large. We |
783 | // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust |
784 | // the unroll threshold. |
785 | static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, |
786 | unsigned MaxPercentThresholdBoost) { |
787 | if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) |
788 | return 100; |
789 | else if (Cost.UnrolledCost != 0) |
790 | // The boosting factor is RolledDynamicCost / UnrolledCost |
791 | return std::min(a: 100 * Cost.RolledDynamicCost / Cost.UnrolledCost, |
792 | b: MaxPercentThresholdBoost); |
793 | else |
794 | return MaxPercentThresholdBoost; |
795 | } |
796 | |
797 | static std::optional<unsigned> |
798 | shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo, |
799 | const unsigned TripMultiple, const unsigned TripCount, |
800 | unsigned MaxTripCount, const UnrollCostEstimator UCE, |
801 | const TargetTransformInfo::UnrollingPreferences &UP) { |
802 | |
803 | // Using unroll pragma |
804 | // 1st priority is unroll count set by "unroll-count" option. |
805 | |
806 | if (PInfo.UserUnrollCount) { |
807 | if (UP.AllowRemainder && |
808 | UCE.getUnrolledLoopSize(UP, CountOverwrite: (unsigned)UnrollCount) < UP.Threshold) |
809 | return (unsigned)UnrollCount; |
810 | } |
811 | |
812 | // 2nd priority is unroll count set by pragma. |
813 | if (PInfo.PragmaCount > 0) { |
814 | if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0))) |
815 | return PInfo.PragmaCount; |
816 | } |
817 | |
818 | if (PInfo.PragmaFullUnroll && TripCount != 0) { |
819 | // Certain cases with UBSAN can cause trip count to be calculated as |
820 | // INT_MAX, Block full unrolling at a reasonable limit so that the compiler |
821 | // doesn't hang trying to unroll the loop. See PR77842 |
822 | if (TripCount > PragmaUnrollFullMaxIterations) { |
823 | LLVM_DEBUG(dbgs() << "Won't unroll; trip count is too large\n" ); |
824 | return std::nullopt; |
825 | } |
826 | |
827 | return TripCount; |
828 | } |
829 | |
830 | if (PInfo.PragmaEnableUnroll && !TripCount && MaxTripCount && |
831 | MaxTripCount <= UP.MaxUpperBound) |
832 | return MaxTripCount; |
833 | |
834 | // if didn't return until here, should continue to other priorties |
835 | return std::nullopt; |
836 | } |
837 | |
838 | static std::optional<unsigned> shouldFullUnroll( |
839 | Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, |
840 | ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, |
841 | const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE, |
842 | const TargetTransformInfo::UnrollingPreferences &UP) { |
843 | assert(FullUnrollTripCount && "should be non-zero!" ); |
844 | |
845 | if (FullUnrollTripCount > UP.FullUnrollMaxCount) |
846 | return std::nullopt; |
847 | |
848 | // When computing the unrolled size, note that BEInsns are not replicated |
849 | // like the rest of the loop body. |
850 | if (UCE.getUnrolledLoopSize(UP) < UP.Threshold) |
851 | return FullUnrollTripCount; |
852 | |
853 | // The loop isn't that small, but we still can fully unroll it if that |
854 | // helps to remove a significant number of instructions. |
855 | // To check that, run additional analysis on the loop. |
856 | if (std::optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( |
857 | L, TripCount: FullUnrollTripCount, DT, SE, EphValues, TTI, |
858 | MaxUnrolledLoopSize: UP.Threshold * UP.MaxPercentThresholdBoost / 100, |
859 | MaxIterationsCountToAnalyze: UP.MaxIterationsCountToAnalyze)) { |
860 | unsigned Boost = |
861 | getFullUnrollBoostingFactor(Cost: *Cost, MaxPercentThresholdBoost: UP.MaxPercentThresholdBoost); |
862 | if (Cost->UnrolledCost < UP.Threshold * Boost / 100) |
863 | return FullUnrollTripCount; |
864 | } |
865 | return std::nullopt; |
866 | } |
867 | |
868 | static std::optional<unsigned> |
869 | shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount, |
870 | const UnrollCostEstimator UCE, |
871 | const TargetTransformInfo::UnrollingPreferences &UP) { |
872 | |
873 | if (!TripCount) |
874 | return std::nullopt; |
875 | |
876 | if (!UP.Partial) { |
877 | LLVM_DEBUG(dbgs() << " will not try to unroll partially because " |
878 | << "-unroll-allow-partial not given\n" ); |
879 | return 0; |
880 | } |
881 | unsigned count = UP.Count; |
882 | if (count == 0) |
883 | count = TripCount; |
884 | if (UP.PartialThreshold != NoThreshold) { |
885 | // Reduce unroll count to be modulo of TripCount for partial unrolling. |
886 | if (UCE.getUnrolledLoopSize(UP, CountOverwrite: count) > UP.PartialThreshold) |
887 | count = (std::max(a: UP.PartialThreshold, b: UP.BEInsns + 1) - UP.BEInsns) / |
888 | (LoopSize - UP.BEInsns); |
889 | if (count > UP.MaxCount) |
890 | count = UP.MaxCount; |
891 | while (count != 0 && TripCount % count != 0) |
892 | count--; |
893 | if (UP.AllowRemainder && count <= 1) { |
894 | // If there is no Count that is modulo of TripCount, set Count to |
895 | // largest power-of-two factor that satisfies the threshold limit. |
896 | // As we'll create fixup loop, do the type of unrolling only if |
897 | // remainder loop is allowed. |
898 | count = UP.DefaultUnrollRuntimeCount; |
899 | while (count != 0 && |
900 | UCE.getUnrolledLoopSize(UP, CountOverwrite: count) > UP.PartialThreshold) |
901 | count >>= 1; |
902 | } |
903 | if (count < 2) { |
904 | count = 0; |
905 | } |
906 | } else { |
907 | count = TripCount; |
908 | } |
909 | if (count > UP.MaxCount) |
910 | count = UP.MaxCount; |
911 | |
912 | LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count << "\n" ); |
913 | |
914 | return count; |
915 | } |
916 | // Returns true if unroll count was set explicitly. |
917 | // Calculates unroll count and writes it to UP.Count. |
918 | // Unless IgnoreUser is true, will also use metadata and command-line options |
919 | // that are specific to to the LoopUnroll pass (which, for instance, are |
920 | // irrelevant for the LoopUnrollAndJam pass). |
921 | // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes |
922 | // many LoopUnroll-specific options. The shared functionality should be |
923 | // refactored into it own function. |
924 | bool llvm::computeUnrollCount( |
925 | Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, |
926 | AssumptionCache *AC, ScalarEvolution &SE, |
927 | const SmallPtrSetImpl<const Value *> &EphValues, |
928 | OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount, |
929 | bool MaxOrZero, unsigned TripMultiple, const UnrollCostEstimator &UCE, |
930 | TargetTransformInfo::UnrollingPreferences &UP, |
931 | TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) { |
932 | |
933 | unsigned LoopSize = UCE.getRolledLoopSize(); |
934 | |
935 | const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; |
936 | const bool PragmaFullUnroll = hasUnrollFullPragma(L); |
937 | const unsigned PragmaCount = unrollCountPragmaValue(L); |
938 | const bool PragmaEnableUnroll = hasUnrollEnablePragma(L); |
939 | |
940 | const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || |
941 | PragmaEnableUnroll || UserUnrollCount; |
942 | |
943 | PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount, |
944 | PragmaEnableUnroll); |
945 | // Use an explicit peel count that has been specified for testing. In this |
946 | // case it's not permitted to also specify an explicit unroll count. |
947 | if (PP.PeelCount) { |
948 | if (UnrollCount.getNumOccurrences() > 0) { |
949 | reportFatalUsageError(reason: "Cannot specify both explicit peel count and " |
950 | "explicit unroll count" ); |
951 | } |
952 | UP.Count = 1; |
953 | UP.Runtime = false; |
954 | return true; |
955 | } |
956 | // Check for explicit Count. |
957 | // 1st priority is unroll count set by "unroll-count" option. |
958 | // 2nd priority is unroll count set by pragma. |
959 | if (auto UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount, |
960 | MaxTripCount, UCE, UP)) { |
961 | UP.Count = *UnrollFactor; |
962 | |
963 | if (UserUnrollCount || (PragmaCount > 0)) { |
964 | UP.AllowExpensiveTripCount = true; |
965 | UP.Force = true; |
966 | } |
967 | UP.Runtime |= (PragmaCount > 0); |
968 | return ExplicitUnroll; |
969 | } else { |
970 | if (ExplicitUnroll && TripCount != 0) { |
971 | // If the loop has an unrolling pragma, we want to be more aggressive with |
972 | // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold |
973 | // value which is larger than the default limits. |
974 | UP.Threshold = std::max<unsigned>(a: UP.Threshold, b: PragmaUnrollThreshold); |
975 | UP.PartialThreshold = |
976 | std::max<unsigned>(a: UP.PartialThreshold, b: PragmaUnrollThreshold); |
977 | } |
978 | } |
979 | |
980 | // 3rd priority is exact full unrolling. This will eliminate all copies |
981 | // of some exit test. |
982 | UP.Count = 0; |
983 | if (TripCount) { |
984 | UP.Count = TripCount; |
985 | if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues, |
986 | FullUnrollTripCount: TripCount, UCE, UP)) { |
987 | UP.Count = *UnrollFactor; |
988 | UseUpperBound = false; |
989 | return ExplicitUnroll; |
990 | } |
991 | } |
992 | |
993 | // 4th priority is bounded unrolling. |
994 | // We can unroll by the upper bound amount if it's generally allowed or if |
995 | // we know that the loop is executed either the upper bound or zero times. |
996 | // (MaxOrZero unrolling keeps only the first loop test, so the number of |
997 | // loop tests remains the same compared to the non-unrolled version, whereas |
998 | // the generic upper bound unrolling keeps all but the last loop test so the |
999 | // number of loop tests goes up which may end up being worse on targets with |
1000 | // constrained branch predictor resources so is controlled by an option.) |
1001 | // In addition we only unroll small upper bounds. |
1002 | // Note that the cost of bounded unrolling is always strictly greater than |
1003 | // cost of exact full unrolling. As such, if we have an exact count and |
1004 | // found it unprofitable, we'll never chose to bounded unroll. |
1005 | if (!TripCount && MaxTripCount && (UP.UpperBound || MaxOrZero) && |
1006 | MaxTripCount <= UP.MaxUpperBound) { |
1007 | UP.Count = MaxTripCount; |
1008 | if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues, |
1009 | FullUnrollTripCount: MaxTripCount, UCE, UP)) { |
1010 | UP.Count = *UnrollFactor; |
1011 | UseUpperBound = true; |
1012 | return ExplicitUnroll; |
1013 | } |
1014 | } |
1015 | |
1016 | // 5th priority is loop peeling. |
1017 | computePeelCount(L, LoopSize, PP, TripCount, DT, SE, TTI, AC, Threshold: UP.Threshold); |
1018 | if (PP.PeelCount) { |
1019 | UP.Runtime = false; |
1020 | UP.Count = 1; |
1021 | return ExplicitUnroll; |
1022 | } |
1023 | |
1024 | // Before starting partial unrolling, set up.partial to true, |
1025 | // if user explicitly asked for unrolling |
1026 | if (TripCount) |
1027 | UP.Partial |= ExplicitUnroll; |
1028 | |
1029 | // 6th priority is partial unrolling. |
1030 | // Try partial unroll only when TripCount could be statically calculated. |
1031 | if (auto UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP)) { |
1032 | UP.Count = *UnrollFactor; |
1033 | |
1034 | if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && |
1035 | UP.Count != TripCount) |
1036 | ORE->emit(RemarkBuilder: [&]() { |
1037 | return OptimizationRemarkMissed(DEBUG_TYPE, |
1038 | "FullUnrollAsDirectedTooLarge" , |
1039 | L->getStartLoc(), L->getHeader()) |
1040 | << "Unable to fully unroll loop as directed by unroll pragma " |
1041 | "because " |
1042 | "unrolled size is too large." ; |
1043 | }); |
1044 | |
1045 | if (UP.PartialThreshold != NoThreshold) { |
1046 | if (UP.Count == 0) { |
1047 | if (PragmaEnableUnroll) |
1048 | ORE->emit(RemarkBuilder: [&]() { |
1049 | return OptimizationRemarkMissed(DEBUG_TYPE, |
1050 | "UnrollAsDirectedTooLarge" , |
1051 | L->getStartLoc(), L->getHeader()) |
1052 | << "Unable to unroll loop as directed by unroll(enable) " |
1053 | "pragma " |
1054 | "because unrolled size is too large." ; |
1055 | }); |
1056 | } |
1057 | } |
1058 | return ExplicitUnroll; |
1059 | } |
1060 | assert(TripCount == 0 && |
1061 | "All cases when TripCount is constant should be covered here." ); |
1062 | if (PragmaFullUnroll) |
1063 | ORE->emit(RemarkBuilder: [&]() { |
1064 | return OptimizationRemarkMissed( |
1065 | DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount" , |
1066 | L->getStartLoc(), L->getHeader()) |
1067 | << "Unable to fully unroll loop as directed by unroll(full) " |
1068 | "pragma " |
1069 | "because loop has a runtime trip count." ; |
1070 | }); |
1071 | |
1072 | // 7th priority is runtime unrolling. |
1073 | // Don't unroll a runtime trip count loop when it is disabled. |
1074 | if (hasRuntimeUnrollDisablePragma(L)) { |
1075 | UP.Count = 0; |
1076 | return false; |
1077 | } |
1078 | |
1079 | // Don't unroll a small upper bound loop unless user or TTI asked to do so. |
1080 | if (MaxTripCount && !UP.Force && MaxTripCount < UP.MaxUpperBound) { |
1081 | UP.Count = 0; |
1082 | return false; |
1083 | } |
1084 | |
1085 | // Check if the runtime trip count is too small when profile is available. |
1086 | if (L->getHeader()->getParent()->hasProfileData()) { |
1087 | if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { |
1088 | if (*ProfileTripCount < FlatLoopTripCountThreshold) |
1089 | return false; |
1090 | else |
1091 | UP.AllowExpensiveTripCount = true; |
1092 | } |
1093 | } |
1094 | UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; |
1095 | if (!UP.Runtime) { |
1096 | LLVM_DEBUG( |
1097 | dbgs() << " will not try to unroll loop with runtime trip count " |
1098 | << "-unroll-runtime not given\n" ); |
1099 | UP.Count = 0; |
1100 | return false; |
1101 | } |
1102 | if (UP.Count == 0) |
1103 | UP.Count = UP.DefaultUnrollRuntimeCount; |
1104 | |
1105 | // Reduce unroll count to be the largest power-of-two factor of |
1106 | // the original count which satisfies the threshold limit. |
1107 | while (UP.Count != 0 && |
1108 | UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold) |
1109 | UP.Count >>= 1; |
1110 | |
1111 | #ifndef NDEBUG |
1112 | unsigned OrigCount = UP.Count; |
1113 | #endif |
1114 | |
1115 | if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { |
1116 | while (UP.Count != 0 && TripMultiple % UP.Count != 0) |
1117 | UP.Count >>= 1; |
1118 | LLVM_DEBUG( |
1119 | dbgs() << "Remainder loop is restricted (that could architecture " |
1120 | "specific or because the loop contains a convergent " |
1121 | "instruction), so unroll count must divide the trip " |
1122 | "multiple, " |
1123 | << TripMultiple << ". Reducing unroll count from " << OrigCount |
1124 | << " to " << UP.Count << ".\n" ); |
1125 | |
1126 | using namespace ore; |
1127 | |
1128 | if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder) |
1129 | ORE->emit(RemarkBuilder: [&]() { |
1130 | return OptimizationRemarkMissed(DEBUG_TYPE, |
1131 | "DifferentUnrollCountFromDirected" , |
1132 | L->getStartLoc(), L->getHeader()) |
1133 | << "Unable to unroll loop the number of times directed by " |
1134 | "unroll_count pragma because remainder loop is restricted " |
1135 | "(that could architecture specific or because the loop " |
1136 | "contains a convergent instruction) and so must have an " |
1137 | "unroll " |
1138 | "count that divides the loop trip multiple of " |
1139 | << NV("TripMultiple" , TripMultiple) << ". Unrolling instead " |
1140 | << NV("UnrollCount" , UP.Count) << " time(s)." ; |
1141 | }); |
1142 | } |
1143 | |
1144 | if (UP.Count > UP.MaxCount) |
1145 | UP.Count = UP.MaxCount; |
1146 | |
1147 | if (MaxTripCount && UP.Count > MaxTripCount) |
1148 | UP.Count = MaxTripCount; |
1149 | |
1150 | LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count |
1151 | << "\n" ); |
1152 | if (UP.Count < 2) |
1153 | UP.Count = 0; |
1154 | return ExplicitUnroll; |
1155 | } |
1156 | |
1157 | static LoopUnrollResult |
1158 | tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, |
1159 | const TargetTransformInfo &TTI, AssumptionCache &AC, |
1160 | OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, |
1161 | ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, |
1162 | bool OnlyFullUnroll, bool OnlyWhenForced, bool ForgetAllSCEV, |
1163 | std::optional<unsigned> ProvidedCount, |
1164 | std::optional<unsigned> ProvidedThreshold, |
1165 | std::optional<bool> ProvidedAllowPartial, |
1166 | std::optional<bool> ProvidedRuntime, |
1167 | std::optional<bool> ProvidedUpperBound, |
1168 | std::optional<bool> ProvidedAllowPeeling, |
1169 | std::optional<bool> ProvidedAllowProfileBasedPeeling, |
1170 | std::optional<unsigned> ProvidedFullUnrollMaxCount, |
1171 | AAResults *AA = nullptr) { |
1172 | |
1173 | LLVM_DEBUG(dbgs() << "Loop Unroll: F[" |
1174 | << L->getHeader()->getParent()->getName() << "] Loop %" |
1175 | << L->getHeader()->getName() << "\n" ); |
1176 | TransformationMode TM = hasUnrollTransformation(L); |
1177 | if (TM & TM_Disable) |
1178 | return LoopUnrollResult::Unmodified; |
1179 | |
1180 | // If this loop isn't forced to be unrolled, avoid unrolling it when the |
1181 | // parent loop has an explicit unroll-and-jam pragma. This is to prevent |
1182 | // automatic unrolling from interfering with the user requested |
1183 | // transformation. |
1184 | Loop *ParentL = L->getParentLoop(); |
1185 | if (ParentL != nullptr && |
1186 | hasUnrollAndJamTransformation(L: ParentL) == TM_ForcedByUser && |
1187 | hasUnrollTransformation(L) != TM_ForcedByUser) { |
1188 | LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has" |
1189 | << " llvm.loop.unroll_and_jam.\n" ); |
1190 | return LoopUnrollResult::Unmodified; |
1191 | } |
1192 | |
1193 | // If this loop isn't forced to be unrolled, avoid unrolling it when the |
1194 | // loop has an explicit unroll-and-jam pragma. This is to prevent automatic |
1195 | // unrolling from interfering with the user requested transformation. |
1196 | if (hasUnrollAndJamTransformation(L) == TM_ForcedByUser && |
1197 | hasUnrollTransformation(L) != TM_ForcedByUser) { |
1198 | LLVM_DEBUG( |
1199 | dbgs() |
1200 | << " Not unrolling loop since it has llvm.loop.unroll_and_jam.\n" ); |
1201 | return LoopUnrollResult::Unmodified; |
1202 | } |
1203 | |
1204 | if (!L->isLoopSimplifyForm()) { |
1205 | LLVM_DEBUG( |
1206 | dbgs() << " Not unrolling loop which is not in loop-simplify form.\n" ); |
1207 | return LoopUnrollResult::Unmodified; |
1208 | } |
1209 | |
1210 | // When automatic unrolling is disabled, do not unroll unless overridden for |
1211 | // this loop. |
1212 | if (OnlyWhenForced && !(TM & TM_Enable)) |
1213 | return LoopUnrollResult::Unmodified; |
1214 | |
1215 | bool OptForSize = L->getHeader()->getParent()->hasOptSize(); |
1216 | TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( |
1217 | L, SE, TTI, BFI, PSI, ORE, OptLevel, UserThreshold: ProvidedThreshold, UserCount: ProvidedCount, |
1218 | UserAllowPartial: ProvidedAllowPartial, UserRuntime: ProvidedRuntime, UserUpperBound: ProvidedUpperBound, |
1219 | UserFullUnrollMaxCount: ProvidedFullUnrollMaxCount); |
1220 | TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences( |
1221 | L, SE, TTI, UserAllowPeeling: ProvidedAllowPeeling, UserAllowProfileBasedPeeling: ProvidedAllowProfileBasedPeeling, UnrollingSpecficValues: true); |
1222 | |
1223 | // Exit early if unrolling is disabled. For OptForSize, we pick the loop size |
1224 | // as threshold later on. |
1225 | if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && |
1226 | !OptForSize) |
1227 | return LoopUnrollResult::Unmodified; |
1228 | |
1229 | SmallPtrSet<const Value *, 32> EphValues; |
1230 | CodeMetrics::collectEphemeralValues(L, AC: &AC, EphValues); |
1231 | |
1232 | UnrollCostEstimator UCE(L, TTI, EphValues, UP.BEInsns); |
1233 | if (!UCE.canUnroll()) { |
1234 | LLVM_DEBUG(dbgs() << " Loop not considered unrollable.\n" ); |
1235 | return LoopUnrollResult::Unmodified; |
1236 | } |
1237 | |
1238 | unsigned LoopSize = UCE.getRolledLoopSize(); |
1239 | LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n" ); |
1240 | |
1241 | // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold |
1242 | // later), to (fully) unroll loops, if it does not increase code size. |
1243 | if (OptForSize) |
1244 | UP.Threshold = std::max(a: UP.Threshold, b: LoopSize + 1); |
1245 | |
1246 | if (UCE.NumInlineCandidates != 0) { |
1247 | LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n" ); |
1248 | return LoopUnrollResult::Unmodified; |
1249 | } |
1250 | |
1251 | // Find the smallest exact trip count for any exit. This is an upper bound |
1252 | // on the loop trip count, but an exit at an earlier iteration is still |
1253 | // possible. An unroll by the smallest exact trip count guarantees that all |
1254 | // branches relating to at least one exit can be eliminated. This is unlike |
1255 | // the max trip count, which only guarantees that the backedge can be broken. |
1256 | unsigned TripCount = 0; |
1257 | unsigned TripMultiple = 1; |
1258 | SmallVector<BasicBlock *, 8> ExitingBlocks; |
1259 | L->getExitingBlocks(ExitingBlocks); |
1260 | for (BasicBlock *ExitingBlock : ExitingBlocks) |
1261 | if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock)) |
1262 | if (!TripCount || TC < TripCount) |
1263 | TripCount = TripMultiple = TC; |
1264 | |
1265 | if (!TripCount) { |
1266 | // If no exact trip count is known, determine the trip multiple of either |
1267 | // the loop latch or the single exiting block. |
1268 | // TODO: Relax for multiple exits. |
1269 | BasicBlock *ExitingBlock = L->getLoopLatch(); |
1270 | if (!ExitingBlock || !L->isLoopExiting(BB: ExitingBlock)) |
1271 | ExitingBlock = L->getExitingBlock(); |
1272 | if (ExitingBlock) |
1273 | TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); |
1274 | } |
1275 | |
1276 | // If the loop contains a convergent operation, the prelude we'd add |
1277 | // to do the first few instructions before we hit the unrolled loop |
1278 | // is unsafe -- it adds a control-flow dependency to the convergent |
1279 | // operation. Therefore restrict remainder loop (try unrolling without). |
1280 | // |
1281 | // TODO: This is somewhat conservative; we could allow the remainder if the |
1282 | // trip count is uniform. |
1283 | UP.AllowRemainder &= UCE.ConvergenceAllowsRuntime; |
1284 | |
1285 | // Try to find the trip count upper bound if we cannot find the exact trip |
1286 | // count. |
1287 | unsigned MaxTripCount = 0; |
1288 | bool MaxOrZero = false; |
1289 | if (!TripCount) { |
1290 | MaxTripCount = SE.getSmallConstantMaxTripCount(L); |
1291 | MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); |
1292 | } |
1293 | |
1294 | // computeUnrollCount() decides whether it is beneficial to use upper bound to |
1295 | // fully unroll the loop. |
1296 | bool UseUpperBound = false; |
1297 | bool IsCountSetExplicitly = computeUnrollCount( |
1298 | L, TTI, DT, LI, AC: &AC, SE, EphValues, ORE: &ORE, TripCount, MaxTripCount, |
1299 | MaxOrZero, TripMultiple, UCE, UP, PP, UseUpperBound); |
1300 | if (!UP.Count) |
1301 | return LoopUnrollResult::Unmodified; |
1302 | |
1303 | UP.Runtime &= UCE.ConvergenceAllowsRuntime; |
1304 | |
1305 | if (PP.PeelCount) { |
1306 | assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step" ); |
1307 | LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName() |
1308 | << " with iteration count " << PP.PeelCount << "!\n" ); |
1309 | ORE.emit(RemarkBuilder: [&]() { |
1310 | return OptimizationRemark(DEBUG_TYPE, "Peeled" , L->getStartLoc(), |
1311 | L->getHeader()) |
1312 | << " peeled loop by " << ore::NV("PeelCount" , PP.PeelCount) |
1313 | << " iterations" ; |
1314 | }); |
1315 | |
1316 | ValueToValueMapTy VMap; |
1317 | if (peelLoop(L, PeelCount: PP.PeelCount, PeelLast: PP.PeelLast, LI, SE: &SE, DT, AC: &AC, PreserveLCSSA, |
1318 | VMap)) { |
1319 | simplifyLoopAfterUnroll(L, SimplifyIVs: true, LI, SE: &SE, DT: &DT, AC: &AC, TTI: &TTI, AA: nullptr); |
1320 | // If the loop was peeled, we already "used up" the profile information |
1321 | // we had, so we don't want to unroll or peel again. |
1322 | if (PP.PeelProfiledIterations) |
1323 | L->setLoopAlreadyUnrolled(); |
1324 | return LoopUnrollResult::PartiallyUnrolled; |
1325 | } |
1326 | return LoopUnrollResult::Unmodified; |
1327 | } |
1328 | |
1329 | // Do not attempt partial/runtime unrolling in FullLoopUnrolling |
1330 | if (OnlyFullUnroll && (UP.Count < TripCount || UP.Count < MaxTripCount)) { |
1331 | LLVM_DEBUG( |
1332 | dbgs() << "Not attempting partial/runtime unroll in FullLoopUnroll.\n" ); |
1333 | return LoopUnrollResult::Unmodified; |
1334 | } |
1335 | |
1336 | // At this point, UP.Runtime indicates that run-time unrolling is allowed. |
1337 | // However, we only want to actually perform it if we don't know the trip |
1338 | // count and the unroll count doesn't divide the known trip multiple. |
1339 | // TODO: This decision should probably be pushed up into |
1340 | // computeUnrollCount(). |
1341 | UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0; |
1342 | |
1343 | // Save loop properties before it is transformed. |
1344 | MDNode *OrigLoopID = L->getLoopID(); |
1345 | |
1346 | // Unroll the loop. |
1347 | Loop *RemainderLoop = nullptr; |
1348 | UnrollLoopOptions ULO; |
1349 | ULO.Count = UP.Count; |
1350 | ULO.Force = UP.Force; |
1351 | ULO.AllowExpensiveTripCount = UP.AllowExpensiveTripCount; |
1352 | ULO.UnrollRemainder = UP.UnrollRemainder; |
1353 | ULO.Runtime = UP.Runtime; |
1354 | ULO.ForgetAllSCEV = ForgetAllSCEV; |
1355 | ULO.Heart = getLoopConvergenceHeart(TheLoop: L); |
1356 | ULO.SCEVExpansionBudget = UP.SCEVExpansionBudget; |
1357 | ULO.RuntimeUnrollMultiExit = UP.RuntimeUnrollMultiExit; |
1358 | LoopUnrollResult UnrollResult = UnrollLoop( |
1359 | L, ULO, LI, SE: &SE, DT: &DT, AC: &AC, TTI: &TTI, ORE: &ORE, PreserveLCSSA, RemainderLoop: &RemainderLoop, AA); |
1360 | if (UnrollResult == LoopUnrollResult::Unmodified) |
1361 | return LoopUnrollResult::Unmodified; |
1362 | |
1363 | if (RemainderLoop) { |
1364 | std::optional<MDNode *> RemainderLoopID = |
1365 | makeFollowupLoopID(OrigLoopID, FollowupAttrs: {LLVMLoopUnrollFollowupAll, |
1366 | LLVMLoopUnrollFollowupRemainder}); |
1367 | if (RemainderLoopID) |
1368 | RemainderLoop->setLoopID(*RemainderLoopID); |
1369 | } |
1370 | |
1371 | if (UnrollResult != LoopUnrollResult::FullyUnrolled) { |
1372 | std::optional<MDNode *> NewLoopID = |
1373 | makeFollowupLoopID(OrigLoopID, FollowupAttrs: {LLVMLoopUnrollFollowupAll, |
1374 | LLVMLoopUnrollFollowupUnrolled}); |
1375 | if (NewLoopID) { |
1376 | L->setLoopID(*NewLoopID); |
1377 | |
1378 | // Do not setLoopAlreadyUnrolled if loop attributes have been specified |
1379 | // explicitly. |
1380 | return UnrollResult; |
1381 | } |
1382 | } |
1383 | |
1384 | // If loop has an unroll count pragma or unrolled by explicitly set count |
1385 | // mark loop as unrolled to prevent unrolling beyond that requested. |
1386 | if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly) |
1387 | L->setLoopAlreadyUnrolled(); |
1388 | |
1389 | return UnrollResult; |
1390 | } |
1391 | |
1392 | namespace { |
1393 | |
1394 | class LoopUnroll : public LoopPass { |
1395 | public: |
1396 | static char ID; // Pass ID, replacement for typeid |
1397 | |
1398 | int OptLevel; |
1399 | |
1400 | /// If false, use a cost model to determine whether unrolling of a loop is |
1401 | /// profitable. If true, only loops that explicitly request unrolling via |
1402 | /// metadata are considered. All other loops are skipped. |
1403 | bool OnlyWhenForced; |
1404 | |
1405 | /// If false, when SCEV is invalidated, only forget everything in the |
1406 | /// top-most loop (call forgetTopMostLoop), of the loop being processed. |
1407 | /// Otherwise, forgetAllLoops and rebuild when needed next. |
1408 | bool ForgetAllSCEV; |
1409 | |
1410 | std::optional<unsigned> ProvidedCount; |
1411 | std::optional<unsigned> ProvidedThreshold; |
1412 | std::optional<bool> ProvidedAllowPartial; |
1413 | std::optional<bool> ProvidedRuntime; |
1414 | std::optional<bool> ProvidedUpperBound; |
1415 | std::optional<bool> ProvidedAllowPeeling; |
1416 | std::optional<bool> ProvidedAllowProfileBasedPeeling; |
1417 | std::optional<unsigned> ProvidedFullUnrollMaxCount; |
1418 | |
1419 | LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, |
1420 | bool ForgetAllSCEV = false, |
1421 | std::optional<unsigned> Threshold = std::nullopt, |
1422 | std::optional<unsigned> Count = std::nullopt, |
1423 | std::optional<bool> AllowPartial = std::nullopt, |
1424 | std::optional<bool> Runtime = std::nullopt, |
1425 | std::optional<bool> UpperBound = std::nullopt, |
1426 | std::optional<bool> AllowPeeling = std::nullopt, |
1427 | std::optional<bool> AllowProfileBasedPeeling = std::nullopt, |
1428 | std::optional<unsigned> ProvidedFullUnrollMaxCount = std::nullopt) |
1429 | : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), |
1430 | ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), |
1431 | ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), |
1432 | ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), |
1433 | ProvidedAllowPeeling(AllowPeeling), |
1434 | ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), |
1435 | ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { |
1436 | initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); |
1437 | } |
1438 | |
1439 | bool runOnLoop(Loop *L, LPPassManager &LPM) override { |
1440 | if (skipLoop(L)) |
1441 | return false; |
1442 | |
1443 | Function &F = *L->getHeader()->getParent(); |
1444 | |
1445 | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
1446 | LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
1447 | ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
1448 | const TargetTransformInfo &TTI = |
1449 | getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
1450 | auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
1451 | // For the old PM, we can't use OptimizationRemarkEmitter as an analysis |
1452 | // pass. Function analyses need to be preserved across loop transformations |
1453 | // but ORE cannot be preserved (see comment before the pass definition). |
1454 | OptimizationRemarkEmitter ORE(&F); |
1455 | bool PreserveLCSSA = mustPreserveAnalysisID(AID&: LCSSAID); |
1456 | |
1457 | LoopUnrollResult Result = tryToUnrollLoop( |
1458 | L, DT, LI, SE, TTI, AC, ORE, BFI: nullptr, PSI: nullptr, PreserveLCSSA, OptLevel, |
1459 | /*OnlyFullUnroll*/ false, OnlyWhenForced, ForgetAllSCEV, ProvidedCount, |
1460 | ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime, |
1461 | ProvidedUpperBound, ProvidedAllowPeeling, |
1462 | ProvidedAllowProfileBasedPeeling, ProvidedFullUnrollMaxCount); |
1463 | |
1464 | if (Result == LoopUnrollResult::FullyUnrolled) |
1465 | LPM.markLoopAsDeleted(L&: *L); |
1466 | |
1467 | return Result != LoopUnrollResult::Unmodified; |
1468 | } |
1469 | |
1470 | /// This transformation requires natural loop information & requires that |
1471 | /// loop preheaders be inserted into the CFG... |
1472 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
1473 | AU.addRequired<AssumptionCacheTracker>(); |
1474 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
1475 | // FIXME: Loop passes are required to preserve domtree, and for now we just |
1476 | // recreate dom info if anything gets unrolled. |
1477 | getLoopAnalysisUsage(AU); |
1478 | } |
1479 | }; |
1480 | |
1481 | } // end anonymous namespace |
1482 | |
1483 | char LoopUnroll::ID = 0; |
1484 | |
1485 | INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll" , "Unroll loops" , false, false) |
1486 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
1487 | INITIALIZE_PASS_DEPENDENCY(LoopPass) |
1488 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
1489 | INITIALIZE_PASS_END(LoopUnroll, "loop-unroll" , "Unroll loops" , false, false) |
1490 | |
1491 | Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, |
1492 | bool ForgetAllSCEV, int Threshold, int Count, |
1493 | int AllowPartial, int Runtime, int UpperBound, |
1494 | int AllowPeeling) { |
1495 | // TODO: It would make more sense for this function to take the optionals |
1496 | // directly, but that's dangerous since it would silently break out of tree |
1497 | // callers. |
1498 | return new LoopUnroll( |
1499 | OptLevel, OnlyWhenForced, ForgetAllSCEV, |
1500 | Threshold == -1 ? std::nullopt : std::optional<unsigned>(Threshold), |
1501 | Count == -1 ? std::nullopt : std::optional<unsigned>(Count), |
1502 | AllowPartial == -1 ? std::nullopt : std::optional<bool>(AllowPartial), |
1503 | Runtime == -1 ? std::nullopt : std::optional<bool>(Runtime), |
1504 | UpperBound == -1 ? std::nullopt : std::optional<bool>(UpperBound), |
1505 | AllowPeeling == -1 ? std::nullopt : std::optional<bool>(AllowPeeling)); |
1506 | } |
1507 | |
1508 | PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, |
1509 | LoopStandardAnalysisResults &AR, |
1510 | LPMUpdater &Updater) { |
1511 | // For the new PM, we can't use OptimizationRemarkEmitter as an analysis |
1512 | // pass. Function analyses need to be preserved across loop transformations |
1513 | // but ORE cannot be preserved (see comment before the pass definition). |
1514 | OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); |
1515 | |
1516 | // Keep track of the previous loop structure so we can identify new loops |
1517 | // created by unrolling. |
1518 | Loop *ParentL = L.getParentLoop(); |
1519 | SmallPtrSet<Loop *, 4> OldLoops; |
1520 | if (ParentL) |
1521 | OldLoops.insert_range(R&: *ParentL); |
1522 | else |
1523 | OldLoops.insert_range(R&: AR.LI); |
1524 | |
1525 | std::string LoopName = std::string(L.getName()); |
1526 | |
1527 | bool Changed = |
1528 | tryToUnrollLoop(L: &L, DT&: AR.DT, LI: &AR.LI, SE&: AR.SE, TTI: AR.TTI, AC&: AR.AC, ORE, |
1529 | /*BFI*/ nullptr, /*PSI*/ nullptr, |
1530 | /*PreserveLCSSA*/ true, OptLevel, /*OnlyFullUnroll*/ true, |
1531 | OnlyWhenForced, ForgetAllSCEV: ForgetSCEV, /*Count*/ ProvidedCount: std::nullopt, |
1532 | /*Threshold*/ ProvidedThreshold: std::nullopt, /*AllowPartial*/ ProvidedAllowPartial: false, |
1533 | /*Runtime*/ ProvidedRuntime: false, /*UpperBound*/ ProvidedUpperBound: false, |
1534 | /*AllowPeeling*/ ProvidedAllowPeeling: true, |
1535 | /*AllowProfileBasedPeeling*/ ProvidedAllowProfileBasedPeeling: false, |
1536 | /*FullUnrollMaxCount*/ ProvidedFullUnrollMaxCount: std::nullopt) != |
1537 | LoopUnrollResult::Unmodified; |
1538 | if (!Changed) |
1539 | return PreservedAnalyses::all(); |
1540 | |
1541 | // The parent must not be damaged by unrolling! |
1542 | #ifndef NDEBUG |
1543 | if (ParentL) |
1544 | ParentL->verifyLoop(); |
1545 | #endif |
1546 | |
1547 | // Unrolling can do several things to introduce new loops into a loop nest: |
1548 | // - Full unrolling clones child loops within the current loop but then |
1549 | // removes the current loop making all of the children appear to be new |
1550 | // sibling loops. |
1551 | // |
1552 | // When a new loop appears as a sibling loop after fully unrolling, |
1553 | // its nesting structure has fundamentally changed and we want to revisit |
1554 | // it to reflect that. |
1555 | // |
1556 | // When unrolling has removed the current loop, we need to tell the |
1557 | // infrastructure that it is gone. |
1558 | // |
1559 | // Finally, we support a debugging/testing mode where we revisit child loops |
1560 | // as well. These are not expected to require further optimizations as either |
1561 | // they or the loop they were cloned from have been directly visited already. |
1562 | // But the debugging mode allows us to check this assumption. |
1563 | bool IsCurrentLoopValid = false; |
1564 | SmallVector<Loop *, 4> SibLoops; |
1565 | if (ParentL) |
1566 | SibLoops.append(in_start: ParentL->begin(), in_end: ParentL->end()); |
1567 | else |
1568 | SibLoops.append(in_start: AR.LI.begin(), in_end: AR.LI.end()); |
1569 | erase_if(C&: SibLoops, P: [&](Loop *SibLoop) { |
1570 | if (SibLoop == &L) { |
1571 | IsCurrentLoopValid = true; |
1572 | return true; |
1573 | } |
1574 | |
1575 | // Otherwise erase the loop from the list if it was in the old loops. |
1576 | return OldLoops.contains(Ptr: SibLoop); |
1577 | }); |
1578 | Updater.addSiblingLoops(NewSibLoops: SibLoops); |
1579 | |
1580 | if (!IsCurrentLoopValid) { |
1581 | Updater.markLoopAsDeleted(L, Name: LoopName); |
1582 | } else { |
1583 | // We can only walk child loops if the current loop remained valid. |
1584 | if (UnrollRevisitChildLoops) { |
1585 | // Walk *all* of the child loops. |
1586 | SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); |
1587 | Updater.addChildLoops(NewChildLoops: ChildLoops); |
1588 | } |
1589 | } |
1590 | |
1591 | return getLoopPassPreservedAnalyses(); |
1592 | } |
1593 | |
1594 | PreservedAnalyses LoopUnrollPass::run(Function &F, |
1595 | FunctionAnalysisManager &AM) { |
1596 | auto &LI = AM.getResult<LoopAnalysis>(IR&: F); |
1597 | // There are no loops in the function. Return before computing other expensive |
1598 | // analyses. |
1599 | if (LI.empty()) |
1600 | return PreservedAnalyses::all(); |
1601 | auto &SE = AM.getResult<ScalarEvolutionAnalysis>(IR&: F); |
1602 | auto &TTI = AM.getResult<TargetIRAnalysis>(IR&: F); |
1603 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
1604 | auto &AC = AM.getResult<AssumptionAnalysis>(IR&: F); |
1605 | auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: F); |
1606 | AAResults &AA = AM.getResult<AAManager>(IR&: F); |
1607 | |
1608 | LoopAnalysisManager *LAM = nullptr; |
1609 | if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(IR&: F)) |
1610 | LAM = &LAMProxy->getManager(); |
1611 | |
1612 | auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(IR&: F); |
1613 | ProfileSummaryInfo *PSI = |
1614 | MAMProxy.getCachedResult<ProfileSummaryAnalysis>(IR&: *F.getParent()); |
1615 | auto *BFI = (PSI && PSI->hasProfileSummary()) ? |
1616 | &AM.getResult<BlockFrequencyAnalysis>(IR&: F) : nullptr; |
1617 | |
1618 | bool Changed = false; |
1619 | |
1620 | // The unroller requires loops to be in simplified form, and also needs LCSSA. |
1621 | // Since simplification may add new inner loops, it has to run before the |
1622 | // legality and profitability checks. This means running the loop unroller |
1623 | // will simplify all loops, regardless of whether anything end up being |
1624 | // unrolled. |
1625 | for (const auto &L : LI) { |
1626 | Changed |= |
1627 | simplifyLoop(L, DT: &DT, LI: &LI, SE: &SE, AC: &AC, MSSAU: nullptr, PreserveLCSSA: false /* PreserveLCSSA */); |
1628 | Changed |= formLCSSARecursively(L&: *L, DT, LI: &LI, SE: &SE); |
1629 | } |
1630 | |
1631 | // Add the loop nests in the reverse order of LoopInfo. See method |
1632 | // declaration. |
1633 | SmallPriorityWorklist<Loop *, 4> Worklist; |
1634 | appendLoopsToWorklist(LI, Worklist); |
1635 | |
1636 | while (!Worklist.empty()) { |
1637 | // Because the LoopInfo stores the loops in RPO, we walk the worklist |
1638 | // from back to front so that we work forward across the CFG, which |
1639 | // for unrolling is only needed to get optimization remarks emitted in |
1640 | // a forward order. |
1641 | Loop &L = *Worklist.pop_back_val(); |
1642 | #ifndef NDEBUG |
1643 | Loop *ParentL = L.getParentLoop(); |
1644 | #endif |
1645 | |
1646 | // Check if the profile summary indicates that the profiled application |
1647 | // has a huge working set size, in which case we disable peeling to avoid |
1648 | // bloating it further. |
1649 | std::optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; |
1650 | if (PSI && PSI->hasHugeWorkingSetSize()) |
1651 | LocalAllowPeeling = false; |
1652 | std::string LoopName = std::string(L.getName()); |
1653 | // The API here is quite complex to call and we allow to select some |
1654 | // flavors of unrolling during construction time (by setting UnrollOpts). |
1655 | LoopUnrollResult Result = tryToUnrollLoop( |
1656 | L: &L, DT, LI: &LI, SE, TTI, AC, ORE, BFI, PSI, |
1657 | /*PreserveLCSSA*/ true, OptLevel: UnrollOpts.OptLevel, /*OnlyFullUnroll*/ false, |
1658 | OnlyWhenForced: UnrollOpts.OnlyWhenForced, ForgetAllSCEV: UnrollOpts.ForgetSCEV, |
1659 | /*Count*/ ProvidedCount: std::nullopt, |
1660 | /*Threshold*/ ProvidedThreshold: std::nullopt, ProvidedAllowPartial: UnrollOpts.AllowPartial, |
1661 | ProvidedRuntime: UnrollOpts.AllowRuntime, ProvidedUpperBound: UnrollOpts.AllowUpperBound, ProvidedAllowPeeling: LocalAllowPeeling, |
1662 | ProvidedAllowProfileBasedPeeling: UnrollOpts.AllowProfileBasedPeeling, ProvidedFullUnrollMaxCount: UnrollOpts.FullUnrollMaxCount, |
1663 | AA: &AA); |
1664 | Changed |= Result != LoopUnrollResult::Unmodified; |
1665 | |
1666 | // The parent must not be damaged by unrolling! |
1667 | #ifndef NDEBUG |
1668 | if (Result != LoopUnrollResult::Unmodified && ParentL) |
1669 | ParentL->verifyLoop(); |
1670 | #endif |
1671 | |
1672 | // Clear any cached analysis results for L if we removed it completely. |
1673 | if (LAM && Result == LoopUnrollResult::FullyUnrolled) |
1674 | LAM->clear(IR&: L, Name: LoopName); |
1675 | } |
1676 | |
1677 | if (!Changed) |
1678 | return PreservedAnalyses::all(); |
1679 | |
1680 | return getLoopPassPreservedAnalyses(); |
1681 | } |
1682 | |
1683 | void LoopUnrollPass::printPipeline( |
1684 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
1685 | static_cast<PassInfoMixin<LoopUnrollPass> *>(this)->printPipeline( |
1686 | OS, MapClassName2PassName); |
1687 | OS << '<'; |
1688 | if (UnrollOpts.AllowPartial != std::nullopt) |
1689 | OS << (*UnrollOpts.AllowPartial ? "" : "no-" ) << "partial;" ; |
1690 | if (UnrollOpts.AllowPeeling != std::nullopt) |
1691 | OS << (*UnrollOpts.AllowPeeling ? "" : "no-" ) << "peeling;" ; |
1692 | if (UnrollOpts.AllowRuntime != std::nullopt) |
1693 | OS << (*UnrollOpts.AllowRuntime ? "" : "no-" ) << "runtime;" ; |
1694 | if (UnrollOpts.AllowUpperBound != std::nullopt) |
1695 | OS << (*UnrollOpts.AllowUpperBound ? "" : "no-" ) << "upperbound;" ; |
1696 | if (UnrollOpts.AllowProfileBasedPeeling != std::nullopt) |
1697 | OS << (*UnrollOpts.AllowProfileBasedPeeling ? "" : "no-" ) |
1698 | << "profile-peeling;" ; |
1699 | if (UnrollOpts.FullUnrollMaxCount != std::nullopt) |
1700 | OS << "full-unroll-max=" << UnrollOpts.FullUnrollMaxCount << ';'; |
1701 | OS << 'O' << UnrollOpts.OptLevel; |
1702 | OS << '>'; |
1703 | } |
1704 | |