| 1 | //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass performs various transformations related to eliminating memcpy |
| 10 | // calls, or transforming sets of stores into memset's. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" |
| 15 | #include "llvm/ADT/DenseSet.h" |
| 16 | #include "llvm/ADT/STLExtras.h" |
| 17 | #include "llvm/ADT/ScopeExit.h" |
| 18 | #include "llvm/ADT/SmallVector.h" |
| 19 | #include "llvm/ADT/Statistic.h" |
| 20 | #include "llvm/ADT/iterator_range.h" |
| 21 | #include "llvm/Analysis/AliasAnalysis.h" |
| 22 | #include "llvm/Analysis/AssumptionCache.h" |
| 23 | #include "llvm/Analysis/CFG.h" |
| 24 | #include "llvm/Analysis/CaptureTracking.h" |
| 25 | #include "llvm/Analysis/GlobalsModRef.h" |
| 26 | #include "llvm/Analysis/InstructionSimplify.h" |
| 27 | #include "llvm/Analysis/Loads.h" |
| 28 | #include "llvm/Analysis/MemoryLocation.h" |
| 29 | #include "llvm/Analysis/MemorySSA.h" |
| 30 | #include "llvm/Analysis/MemorySSAUpdater.h" |
| 31 | #include "llvm/Analysis/PostDominators.h" |
| 32 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 33 | #include "llvm/Analysis/ValueTracking.h" |
| 34 | #include "llvm/IR/BasicBlock.h" |
| 35 | #include "llvm/IR/Constants.h" |
| 36 | #include "llvm/IR/DataLayout.h" |
| 37 | #include "llvm/IR/DerivedTypes.h" |
| 38 | #include "llvm/IR/Dominators.h" |
| 39 | #include "llvm/IR/Function.h" |
| 40 | #include "llvm/IR/GlobalVariable.h" |
| 41 | #include "llvm/IR/IRBuilder.h" |
| 42 | #include "llvm/IR/InstrTypes.h" |
| 43 | #include "llvm/IR/Instruction.h" |
| 44 | #include "llvm/IR/Instructions.h" |
| 45 | #include "llvm/IR/IntrinsicInst.h" |
| 46 | #include "llvm/IR/Intrinsics.h" |
| 47 | #include "llvm/IR/LLVMContext.h" |
| 48 | #include "llvm/IR/Module.h" |
| 49 | #include "llvm/IR/PassManager.h" |
| 50 | #include "llvm/IR/Type.h" |
| 51 | #include "llvm/IR/User.h" |
| 52 | #include "llvm/IR/Value.h" |
| 53 | #include "llvm/Support/Casting.h" |
| 54 | #include "llvm/Support/Debug.h" |
| 55 | #include "llvm/Support/raw_ostream.h" |
| 56 | #include "llvm/Transforms/Utils/Local.h" |
| 57 | #include <algorithm> |
| 58 | #include <cassert> |
| 59 | #include <cstdint> |
| 60 | #include <optional> |
| 61 | |
| 62 | using namespace llvm; |
| 63 | |
| 64 | #define DEBUG_TYPE "memcpyopt" |
| 65 | |
| 66 | static cl::opt<bool> EnableMemCpyOptWithoutLibcalls( |
| 67 | "enable-memcpyopt-without-libcalls" , cl::Hidden, |
| 68 | cl::desc("Enable memcpyopt even when libcalls are disabled" )); |
| 69 | |
| 70 | STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted" ); |
| 71 | STATISTIC(NumMemMoveInstr, "Number of memmove instructions deleted" ); |
| 72 | STATISTIC(NumMemSetInfer, "Number of memsets inferred" ); |
| 73 | STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy" ); |
| 74 | STATISTIC(NumCpyToSet, "Number of memcpys converted to memset" ); |
| 75 | STATISTIC(NumCallSlot, "Number of call slot optimizations performed" ); |
| 76 | STATISTIC(NumStackMove, "Number of stack-move optimizations performed" ); |
| 77 | |
| 78 | namespace { |
| 79 | |
| 80 | /// Represents a range of memset'd bytes with the ByteVal value. |
| 81 | /// This allows us to analyze stores like: |
| 82 | /// store 0 -> P+1 |
| 83 | /// store 0 -> P+0 |
| 84 | /// store 0 -> P+3 |
| 85 | /// store 0 -> P+2 |
| 86 | /// which sometimes happens with stores to arrays of structs etc. When we see |
| 87 | /// the first store, we make a range [1, 2). The second store extends the range |
| 88 | /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the |
| 89 | /// two ranges into [0, 3) which is memset'able. |
| 90 | struct MemsetRange { |
| 91 | // Start/End - A semi range that describes the span that this range covers. |
| 92 | // The range is closed at the start and open at the end: [Start, End). |
| 93 | int64_t Start, End; |
| 94 | |
| 95 | /// StartPtr - The getelementptr instruction that points to the start of the |
| 96 | /// range. |
| 97 | Value *StartPtr; |
| 98 | |
| 99 | /// Alignment - The known alignment of the first store. |
| 100 | MaybeAlign Alignment; |
| 101 | |
| 102 | /// TheStores - The actual stores that make up this range. |
| 103 | SmallVector<Instruction *, 16> TheStores; |
| 104 | |
| 105 | bool isProfitableToUseMemset(const DataLayout &DL) const; |
| 106 | }; |
| 107 | |
| 108 | } // end anonymous namespace |
| 109 | |
| 110 | static bool overreadUndefContents(MemorySSA *MSSA, MemCpyInst *MemCpy, |
| 111 | MemIntrinsic *MemSrc, BatchAAResults &BAA); |
| 112 | |
| 113 | bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { |
| 114 | // If we found more than 4 stores to merge or 16 bytes, use memset. |
| 115 | if (TheStores.size() >= 4 || End - Start >= 16) |
| 116 | return true; |
| 117 | |
| 118 | // If there is nothing to merge, don't do anything. |
| 119 | if (TheStores.size() < 2) |
| 120 | return false; |
| 121 | |
| 122 | // If any of the stores are a memset, then it is always good to extend the |
| 123 | // memset. |
| 124 | for (Instruction *SI : TheStores) |
| 125 | if (!isa<StoreInst>(Val: SI)) |
| 126 | return true; |
| 127 | |
| 128 | // Assume that the code generator is capable of merging pairs of stores |
| 129 | // together if it wants to. |
| 130 | if (TheStores.size() == 2) |
| 131 | return false; |
| 132 | |
| 133 | // If we have fewer than 8 stores, it can still be worthwhile to do this. |
| 134 | // For example, merging 4 i8 stores into an i32 store is useful almost always. |
| 135 | // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the |
| 136 | // memset will be split into 2 32-bit stores anyway) and doing so can |
| 137 | // pessimize the llvm optimizer. |
| 138 | // |
| 139 | // Since we don't have perfect knowledge here, make some assumptions: assume |
| 140 | // the maximum GPR width is the same size as the largest legal integer |
| 141 | // size. If so, check to see whether we will end up actually reducing the |
| 142 | // number of stores used. |
| 143 | unsigned Bytes = unsigned(End - Start); |
| 144 | unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; |
| 145 | if (MaxIntSize == 0) |
| 146 | MaxIntSize = 1; |
| 147 | unsigned NumPointerStores = Bytes / MaxIntSize; |
| 148 | |
| 149 | // Assume the remaining bytes if any are done a byte at a time. |
| 150 | unsigned NumByteStores = Bytes % MaxIntSize; |
| 151 | |
| 152 | // If we will reduce the # stores (according to this heuristic), do the |
| 153 | // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 |
| 154 | // etc. |
| 155 | return TheStores.size() > NumPointerStores + NumByteStores; |
| 156 | } |
| 157 | |
| 158 | namespace { |
| 159 | |
| 160 | class MemsetRanges { |
| 161 | using range_iterator = SmallVectorImpl<MemsetRange>::iterator; |
| 162 | |
| 163 | /// A sorted list of the memset ranges. |
| 164 | SmallVector<MemsetRange, 8> Ranges; |
| 165 | |
| 166 | const DataLayout &DL; |
| 167 | |
| 168 | public: |
| 169 | MemsetRanges(const DataLayout &DL) : DL(DL) {} |
| 170 | |
| 171 | using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; |
| 172 | |
| 173 | const_iterator begin() const { return Ranges.begin(); } |
| 174 | const_iterator end() const { return Ranges.end(); } |
| 175 | bool empty() const { return Ranges.empty(); } |
| 176 | |
| 177 | void addInst(int64_t OffsetFromFirst, Instruction *Inst) { |
| 178 | if (auto *SI = dyn_cast<StoreInst>(Val: Inst)) |
| 179 | addStore(OffsetFromFirst, SI); |
| 180 | else |
| 181 | addMemSet(OffsetFromFirst, MSI: cast<MemSetInst>(Val: Inst)); |
| 182 | } |
| 183 | |
| 184 | void addStore(int64_t OffsetFromFirst, StoreInst *SI) { |
| 185 | TypeSize StoreSize = DL.getTypeStoreSize(Ty: SI->getOperand(i_nocapture: 0)->getType()); |
| 186 | assert(!StoreSize.isScalable() && "Can't track scalable-typed stores" ); |
| 187 | addRange(Start: OffsetFromFirst, Size: StoreSize.getFixedValue(), |
| 188 | Ptr: SI->getPointerOperand(), Alignment: SI->getAlign(), Inst: SI); |
| 189 | } |
| 190 | |
| 191 | void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { |
| 192 | int64_t Size = cast<ConstantInt>(Val: MSI->getLength())->getZExtValue(); |
| 193 | addRange(Start: OffsetFromFirst, Size, Ptr: MSI->getDest(), Alignment: MSI->getDestAlign(), Inst: MSI); |
| 194 | } |
| 195 | |
| 196 | void addRange(int64_t Start, int64_t Size, Value *Ptr, MaybeAlign Alignment, |
| 197 | Instruction *Inst); |
| 198 | }; |
| 199 | |
| 200 | } // end anonymous namespace |
| 201 | |
| 202 | /// Add a new store to the MemsetRanges data structure. This adds a |
| 203 | /// new range for the specified store at the specified offset, merging into |
| 204 | /// existing ranges as appropriate. |
| 205 | void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, |
| 206 | MaybeAlign Alignment, Instruction *Inst) { |
| 207 | int64_t End = Start + Size; |
| 208 | |
| 209 | range_iterator I = partition_point( |
| 210 | Range&: Ranges, P: [=](const MemsetRange &O) { return O.End < Start; }); |
| 211 | |
| 212 | // We now know that I == E, in which case we didn't find anything to merge |
| 213 | // with, or that Start <= I->End. If End < I->Start or I == E, then we need |
| 214 | // to insert a new range. Handle this now. |
| 215 | if (I == Ranges.end() || End < I->Start) { |
| 216 | MemsetRange &R = *Ranges.insert(I, Elt: MemsetRange()); |
| 217 | R.Start = Start; |
| 218 | R.End = End; |
| 219 | R.StartPtr = Ptr; |
| 220 | R.Alignment = Alignment; |
| 221 | R.TheStores.push_back(Elt: Inst); |
| 222 | return; |
| 223 | } |
| 224 | |
| 225 | // This store overlaps with I, add it. |
| 226 | I->TheStores.push_back(Elt: Inst); |
| 227 | |
| 228 | // At this point, we may have an interval that completely contains our store. |
| 229 | // If so, just add it to the interval and return. |
| 230 | if (I->Start <= Start && I->End >= End) |
| 231 | return; |
| 232 | |
| 233 | // Now we know that Start <= I->End and End >= I->Start so the range overlaps |
| 234 | // but is not entirely contained within the range. |
| 235 | |
| 236 | // See if the range extends the start of the range. In this case, it couldn't |
| 237 | // possibly cause it to join the prior range, because otherwise we would have |
| 238 | // stopped on *it*. |
| 239 | if (Start < I->Start) { |
| 240 | I->Start = Start; |
| 241 | I->StartPtr = Ptr; |
| 242 | I->Alignment = Alignment; |
| 243 | } |
| 244 | |
| 245 | // Now we know that Start <= I->End and Start >= I->Start (so the startpoint |
| 246 | // is in or right at the end of I), and that End >= I->Start. Extend I out to |
| 247 | // End. |
| 248 | if (End > I->End) { |
| 249 | I->End = End; |
| 250 | range_iterator NextI = I; |
| 251 | while (++NextI != Ranges.end() && End >= NextI->Start) { |
| 252 | // Merge the range in. |
| 253 | I->TheStores.append(in_start: NextI->TheStores.begin(), in_end: NextI->TheStores.end()); |
| 254 | if (NextI->End > I->End) |
| 255 | I->End = NextI->End; |
| 256 | Ranges.erase(CI: NextI); |
| 257 | NextI = I; |
| 258 | } |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | //===----------------------------------------------------------------------===// |
| 263 | // MemCpyOptLegacyPass Pass |
| 264 | //===----------------------------------------------------------------------===// |
| 265 | |
| 266 | // Check that V is either not accessible by the caller, or unwinding cannot |
| 267 | // occur between Start and End. |
| 268 | static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start, |
| 269 | Instruction *End) { |
| 270 | assert(Start->getParent() == End->getParent() && "Must be in same block" ); |
| 271 | // Function can't unwind, so it also can't be visible through unwinding. |
| 272 | if (Start->getFunction()->doesNotThrow()) |
| 273 | return false; |
| 274 | |
| 275 | // Object is not visible on unwind. |
| 276 | // TODO: Support RequiresNoCaptureBeforeUnwind case. |
| 277 | bool RequiresNoCaptureBeforeUnwind; |
| 278 | if (isNotVisibleOnUnwind(Object: getUnderlyingObject(V), |
| 279 | RequiresNoCaptureBeforeUnwind) && |
| 280 | !RequiresNoCaptureBeforeUnwind) |
| 281 | return false; |
| 282 | |
| 283 | // Check whether there are any unwinding instructions in the range. |
| 284 | return any_of(Range: make_range(x: Start->getIterator(), y: End->getIterator()), |
| 285 | P: [](const Instruction &I) { return I.mayThrow(); }); |
| 286 | } |
| 287 | |
| 288 | void MemCpyOptPass::eraseInstruction(Instruction *I) { |
| 289 | MSSAU->removeMemoryAccess(I); |
| 290 | EEA->removeInstruction(I); |
| 291 | I->eraseFromParent(); |
| 292 | } |
| 293 | |
| 294 | // Check for mod or ref of Loc between Start and End, excluding both boundaries. |
| 295 | // Start and End must be in the same block. |
| 296 | // If SkippedLifetimeStart is provided, skip over one clobbering lifetime.start |
| 297 | // intrinsic and store it inside SkippedLifetimeStart. |
| 298 | static bool accessedBetween(BatchAAResults &AA, MemoryLocation Loc, |
| 299 | const MemoryUseOrDef *Start, |
| 300 | const MemoryUseOrDef *End, |
| 301 | Instruction **SkippedLifetimeStart = nullptr) { |
| 302 | assert(Start->getBlock() == End->getBlock() && "Only local supported" ); |
| 303 | for (const MemoryAccess &MA : |
| 304 | make_range(x: ++Start->getIterator(), y: End->getIterator())) { |
| 305 | Instruction *I = cast<MemoryUseOrDef>(Val: MA).getMemoryInst(); |
| 306 | if (isModOrRefSet(MRI: AA.getModRefInfo(I, OptLoc: Loc))) { |
| 307 | auto *II = dyn_cast<IntrinsicInst>(Val: I); |
| 308 | if (II && II->getIntrinsicID() == Intrinsic::lifetime_start && |
| 309 | SkippedLifetimeStart && !*SkippedLifetimeStart) { |
| 310 | *SkippedLifetimeStart = I; |
| 311 | continue; |
| 312 | } |
| 313 | |
| 314 | return true; |
| 315 | } |
| 316 | } |
| 317 | return false; |
| 318 | } |
| 319 | |
| 320 | // Check for mod of Loc between Start and End, excluding both boundaries. |
| 321 | // Start and End can be in different blocks. |
| 322 | static bool writtenBetween(MemorySSA *MSSA, BatchAAResults &AA, |
| 323 | MemoryLocation Loc, const MemoryUseOrDef *Start, |
| 324 | const MemoryUseOrDef *End) { |
| 325 | if (isa<MemoryUse>(Val: End)) { |
| 326 | // For MemoryUses, getClobberingMemoryAccess may skip non-clobbering writes. |
| 327 | // Manually check read accesses between Start and End, if they are in the |
| 328 | // same block, for clobbers. Otherwise assume Loc is clobbered. |
| 329 | return Start->getBlock() != End->getBlock() || |
| 330 | any_of( |
| 331 | Range: make_range(x: std::next(x: Start->getIterator()), y: End->getIterator()), |
| 332 | P: [&AA, Loc](const MemoryAccess &Acc) { |
| 333 | if (isa<MemoryUse>(Val: &Acc)) |
| 334 | return false; |
| 335 | Instruction *AccInst = |
| 336 | cast<MemoryUseOrDef>(Val: &Acc)->getMemoryInst(); |
| 337 | return isModSet(MRI: AA.getModRefInfo(I: AccInst, OptLoc: Loc)); |
| 338 | }); |
| 339 | } |
| 340 | |
| 341 | // TODO: Only walk until we hit Start. |
| 342 | MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( |
| 343 | End->getDefiningAccess(), Loc, AA); |
| 344 | return !MSSA->dominates(A: Clobber, B: Start); |
| 345 | } |
| 346 | |
| 347 | /// When scanning forward over instructions, we look for some other patterns to |
| 348 | /// fold away. In particular, this looks for stores to neighboring locations of |
| 349 | /// memory. If it sees enough consecutive ones, it attempts to merge them |
| 350 | /// together into a memcpy/memset. |
| 351 | Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, |
| 352 | Value *StartPtr, |
| 353 | Value *ByteVal) { |
| 354 | const DataLayout &DL = StartInst->getDataLayout(); |
| 355 | |
| 356 | // We can't track scalable types |
| 357 | if (auto *SI = dyn_cast<StoreInst>(Val: StartInst)) |
| 358 | if (DL.getTypeStoreSize(Ty: SI->getOperand(i_nocapture: 0)->getType()).isScalable()) |
| 359 | return nullptr; |
| 360 | |
| 361 | // Okay, so we now have a single store that can be splatable. Scan to find |
| 362 | // all subsequent stores of the same value to offset from the same pointer. |
| 363 | // Join these together into ranges, so we can decide whether contiguous blocks |
| 364 | // are stored. |
| 365 | MemsetRanges Ranges(DL); |
| 366 | |
| 367 | BasicBlock::iterator BI(StartInst); |
| 368 | |
| 369 | // Keeps track of the last memory use or def before the insertion point for |
| 370 | // the new memset. The new MemoryDef for the inserted memsets will be inserted |
| 371 | // after MemInsertPoint. |
| 372 | MemoryUseOrDef *MemInsertPoint = nullptr; |
| 373 | for (++BI; !BI->isTerminator(); ++BI) { |
| 374 | auto *CurrentAcc = |
| 375 | cast_or_null<MemoryUseOrDef>(Val: MSSA->getMemoryAccess(I: &*BI)); |
| 376 | if (CurrentAcc) |
| 377 | MemInsertPoint = CurrentAcc; |
| 378 | |
| 379 | // Calls that only access inaccessible memory do not block merging |
| 380 | // accessible stores. |
| 381 | if (auto *CB = dyn_cast<CallBase>(Val&: BI)) { |
| 382 | if (CB->onlyAccessesInaccessibleMemory()) |
| 383 | continue; |
| 384 | } |
| 385 | |
| 386 | if (!isa<StoreInst>(Val: BI) && !isa<MemSetInst>(Val: BI)) { |
| 387 | // If the instruction is readnone, ignore it, otherwise bail out. We |
| 388 | // don't even allow readonly here because we don't want something like: |
| 389 | // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). |
| 390 | if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) |
| 391 | break; |
| 392 | continue; |
| 393 | } |
| 394 | |
| 395 | if (auto *NextStore = dyn_cast<StoreInst>(Val&: BI)) { |
| 396 | // If this is a store, see if we can merge it in. |
| 397 | if (!NextStore->isSimple()) |
| 398 | break; |
| 399 | |
| 400 | Value *StoredVal = NextStore->getValueOperand(); |
| 401 | |
| 402 | // Don't convert stores of non-integral pointer types to memsets (which |
| 403 | // stores integers). |
| 404 | if (DL.isNonIntegralPointerType(Ty: StoredVal->getType()->getScalarType())) |
| 405 | break; |
| 406 | |
| 407 | // We can't track ranges involving scalable types. |
| 408 | if (DL.getTypeStoreSize(Ty: StoredVal->getType()).isScalable()) |
| 409 | break; |
| 410 | |
| 411 | // Check to see if this stored value is of the same byte-splattable value. |
| 412 | Value *StoredByte = isBytewiseValue(V: StoredVal, DL); |
| 413 | if (isa<UndefValue>(Val: ByteVal) && StoredByte) |
| 414 | ByteVal = StoredByte; |
| 415 | if (ByteVal != StoredByte) |
| 416 | break; |
| 417 | |
| 418 | // Check to see if this store is to a constant offset from the start ptr. |
| 419 | std::optional<int64_t> Offset = |
| 420 | NextStore->getPointerOperand()->getPointerOffsetFrom(Other: StartPtr, DL); |
| 421 | if (!Offset) |
| 422 | break; |
| 423 | |
| 424 | Ranges.addStore(OffsetFromFirst: *Offset, SI: NextStore); |
| 425 | } else { |
| 426 | auto *MSI = cast<MemSetInst>(Val&: BI); |
| 427 | |
| 428 | if (MSI->isVolatile() || ByteVal != MSI->getValue() || |
| 429 | !isa<ConstantInt>(Val: MSI->getLength())) |
| 430 | break; |
| 431 | |
| 432 | // Check to see if this store is to a constant offset from the start ptr. |
| 433 | std::optional<int64_t> Offset = |
| 434 | MSI->getDest()->getPointerOffsetFrom(Other: StartPtr, DL); |
| 435 | if (!Offset) |
| 436 | break; |
| 437 | |
| 438 | Ranges.addMemSet(OffsetFromFirst: *Offset, MSI); |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | // If we have no ranges, then we just had a single store with nothing that |
| 443 | // could be merged in. This is a very common case of course. |
| 444 | if (Ranges.empty()) |
| 445 | return nullptr; |
| 446 | |
| 447 | // If we had at least one store that could be merged in, add the starting |
| 448 | // store as well. We try to avoid this unless there is at least something |
| 449 | // interesting as a small compile-time optimization. |
| 450 | Ranges.addInst(OffsetFromFirst: 0, Inst: StartInst); |
| 451 | |
| 452 | // If we create any memsets, we put it right before the first instruction that |
| 453 | // isn't part of the memset block. This ensure that the memset is dominated |
| 454 | // by any addressing instruction needed by the start of the block. |
| 455 | IRBuilder<> Builder(&*BI); |
| 456 | |
| 457 | // Now that we have full information about ranges, loop over the ranges and |
| 458 | // emit memset's for anything big enough to be worthwhile. |
| 459 | Instruction *AMemSet = nullptr; |
| 460 | for (const MemsetRange &Range : Ranges) { |
| 461 | if (Range.TheStores.size() == 1) |
| 462 | continue; |
| 463 | |
| 464 | // If it is profitable to lower this range to memset, do so now. |
| 465 | if (!Range.isProfitableToUseMemset(DL)) |
| 466 | continue; |
| 467 | |
| 468 | // Otherwise, we do want to transform this! Create a new memset. |
| 469 | // Get the starting pointer of the block. |
| 470 | StartPtr = Range.StartPtr; |
| 471 | |
| 472 | AMemSet = Builder.CreateMemSet(Ptr: StartPtr, Val: ByteVal, Size: Range.End - Range.Start, |
| 473 | Align: Range.Alignment); |
| 474 | AMemSet->mergeDIAssignID(SourceInstructions: Range.TheStores); |
| 475 | |
| 476 | LLVM_DEBUG(dbgs() << "Replace stores:\n" ; for (Instruction *SI |
| 477 | : Range.TheStores) dbgs() |
| 478 | << *SI << '\n'; |
| 479 | dbgs() << "With: " << *AMemSet << '\n'); |
| 480 | if (!Range.TheStores.empty()) |
| 481 | AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); |
| 482 | |
| 483 | auto *NewDef = cast<MemoryDef>( |
| 484 | Val: MemInsertPoint->getMemoryInst() == &*BI |
| 485 | ? MSSAU->createMemoryAccessBefore(I: AMemSet, Definition: nullptr, InsertPt: MemInsertPoint) |
| 486 | : MSSAU->createMemoryAccessAfter(I: AMemSet, Definition: nullptr, InsertPt: MemInsertPoint)); |
| 487 | MSSAU->insertDef(Def: NewDef, /*RenameUses=*/true); |
| 488 | MemInsertPoint = NewDef; |
| 489 | |
| 490 | // Zap all the stores. |
| 491 | for (Instruction *SI : Range.TheStores) |
| 492 | eraseInstruction(I: SI); |
| 493 | |
| 494 | ++NumMemSetInfer; |
| 495 | } |
| 496 | |
| 497 | return AMemSet; |
| 498 | } |
| 499 | |
| 500 | // This method try to lift a store instruction before position P. |
| 501 | // It will lift the store and its argument + that anything that |
| 502 | // may alias with these. |
| 503 | // The method returns true if it was successful. |
| 504 | bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) { |
| 505 | // If the store alias this position, early bail out. |
| 506 | MemoryLocation StoreLoc = MemoryLocation::get(SI); |
| 507 | if (isModOrRefSet(MRI: AA->getModRefInfo(I: P, OptLoc: StoreLoc))) |
| 508 | return false; |
| 509 | |
| 510 | // Keep track of the arguments of all instruction we plan to lift |
| 511 | // so we can make sure to lift them as well if appropriate. |
| 512 | DenseSet<Instruction *> Args; |
| 513 | auto AddArg = [&](Value *Arg) { |
| 514 | auto *I = dyn_cast<Instruction>(Val: Arg); |
| 515 | if (I && I->getParent() == SI->getParent()) { |
| 516 | // Cannot hoist user of P above P |
| 517 | if (I == P) |
| 518 | return false; |
| 519 | Args.insert(V: I); |
| 520 | } |
| 521 | return true; |
| 522 | }; |
| 523 | if (!AddArg(SI->getPointerOperand())) |
| 524 | return false; |
| 525 | |
| 526 | // Instruction to lift before P. |
| 527 | SmallVector<Instruction *, 8> ToLift{SI}; |
| 528 | |
| 529 | // Memory locations of lifted instructions. |
| 530 | SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; |
| 531 | |
| 532 | // Lifted calls. |
| 533 | SmallVector<const CallBase *, 8> Calls; |
| 534 | |
| 535 | const MemoryLocation LoadLoc = MemoryLocation::get(LI); |
| 536 | |
| 537 | for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { |
| 538 | auto *C = &*I; |
| 539 | |
| 540 | // Make sure hoisting does not perform a store that was not guaranteed to |
| 541 | // happen. |
| 542 | if (!isGuaranteedToTransferExecutionToSuccessor(I: C)) |
| 543 | return false; |
| 544 | |
| 545 | bool MayAlias = isModOrRefSet(MRI: AA->getModRefInfo(I: C, OptLoc: std::nullopt)); |
| 546 | |
| 547 | bool NeedLift = false; |
| 548 | if (Args.erase(V: C)) |
| 549 | NeedLift = true; |
| 550 | else if (MayAlias) { |
| 551 | NeedLift = llvm::any_of(Range&: MemLocs, P: [C, this](const MemoryLocation &ML) { |
| 552 | return isModOrRefSet(MRI: AA->getModRefInfo(I: C, OptLoc: ML)); |
| 553 | }); |
| 554 | |
| 555 | if (!NeedLift) |
| 556 | NeedLift = llvm::any_of(Range&: Calls, P: [C, this](const CallBase *Call) { |
| 557 | return isModOrRefSet(MRI: AA->getModRefInfo(I: C, Call)); |
| 558 | }); |
| 559 | } |
| 560 | |
| 561 | if (!NeedLift) |
| 562 | continue; |
| 563 | |
| 564 | if (MayAlias) { |
| 565 | // Since LI is implicitly moved downwards past the lifted instructions, |
| 566 | // none of them may modify its source. |
| 567 | if (isModSet(MRI: AA->getModRefInfo(I: C, OptLoc: LoadLoc))) |
| 568 | return false; |
| 569 | else if (const auto *Call = dyn_cast<CallBase>(Val: C)) { |
| 570 | // If we can't lift this before P, it's game over. |
| 571 | if (isModOrRefSet(MRI: AA->getModRefInfo(I: P, Call))) |
| 572 | return false; |
| 573 | |
| 574 | Calls.push_back(Elt: Call); |
| 575 | } else if (isa<LoadInst>(Val: C) || isa<StoreInst>(Val: C) || isa<VAArgInst>(Val: C)) { |
| 576 | // If we can't lift this before P, it's game over. |
| 577 | auto ML = MemoryLocation::get(Inst: C); |
| 578 | if (isModOrRefSet(MRI: AA->getModRefInfo(I: P, OptLoc: ML))) |
| 579 | return false; |
| 580 | |
| 581 | MemLocs.push_back(Elt: ML); |
| 582 | } else |
| 583 | // We don't know how to lift this instruction. |
| 584 | return false; |
| 585 | } |
| 586 | |
| 587 | ToLift.push_back(Elt: C); |
| 588 | for (Value *Op : C->operands()) |
| 589 | if (!AddArg(Op)) |
| 590 | return false; |
| 591 | } |
| 592 | |
| 593 | // Find MSSA insertion point. Normally P will always have a corresponding |
| 594 | // memory access before which we can insert. However, with non-standard AA |
| 595 | // pipelines, there may be a mismatch between AA and MSSA, in which case we |
| 596 | // will scan for a memory access before P. In either case, we know for sure |
| 597 | // that at least the load will have a memory access. |
| 598 | // TODO: Simplify this once P will be determined by MSSA, in which case the |
| 599 | // discrepancy can no longer occur. |
| 600 | MemoryUseOrDef *MemInsertPoint = nullptr; |
| 601 | if (MemoryUseOrDef *MA = MSSA->getMemoryAccess(I: P)) { |
| 602 | MemInsertPoint = cast<MemoryUseOrDef>(Val&: --MA->getIterator()); |
| 603 | } else { |
| 604 | const Instruction *ConstP = P; |
| 605 | for (const Instruction &I : make_range(x: ++ConstP->getReverseIterator(), |
| 606 | y: ++LI->getReverseIterator())) { |
| 607 | if (MemoryUseOrDef *MA = MSSA->getMemoryAccess(I: &I)) { |
| 608 | MemInsertPoint = MA; |
| 609 | break; |
| 610 | } |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | // We made it, we need to lift. |
| 615 | for (auto *I : llvm::reverse(C&: ToLift)) { |
| 616 | LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n" ); |
| 617 | I->moveBefore(InsertPos: P->getIterator()); |
| 618 | assert(MemInsertPoint && "Must have found insert point" ); |
| 619 | if (MemoryUseOrDef *MA = MSSA->getMemoryAccess(I)) { |
| 620 | MSSAU->moveAfter(What: MA, Where: MemInsertPoint); |
| 621 | MemInsertPoint = MA; |
| 622 | } |
| 623 | } |
| 624 | |
| 625 | return true; |
| 626 | } |
| 627 | |
| 628 | bool MemCpyOptPass::processStoreOfLoad(StoreInst *SI, LoadInst *LI, |
| 629 | const DataLayout &DL, |
| 630 | BasicBlock::iterator &BBI) { |
| 631 | if (!LI->isSimple() || !LI->hasOneUse() || LI->getParent() != SI->getParent()) |
| 632 | return false; |
| 633 | |
| 634 | BatchAAResults BAA(*AA, EEA); |
| 635 | auto *T = LI->getType(); |
| 636 | // Don't introduce calls to memcpy/memmove intrinsics out of thin air if |
| 637 | // the corresponding libcalls are not available. |
| 638 | // TODO: We should really distinguish between libcall availability and |
| 639 | // our ability to introduce intrinsics. |
| 640 | if (T->isAggregateType() && |
| 641 | (EnableMemCpyOptWithoutLibcalls || |
| 642 | (TLI->has(F: LibFunc_memcpy) && TLI->has(F: LibFunc_memmove)))) { |
| 643 | MemoryLocation LoadLoc = MemoryLocation::get(LI); |
| 644 | |
| 645 | // We use alias analysis to check if an instruction may store to |
| 646 | // the memory we load from in between the load and the store. If |
| 647 | // such an instruction is found, we try to promote there instead |
| 648 | // of at the store position. |
| 649 | // TODO: Can use MSSA for this. |
| 650 | Instruction *P = SI; |
| 651 | for (auto &I : make_range(x: ++LI->getIterator(), y: SI->getIterator())) { |
| 652 | if (isModSet(MRI: BAA.getModRefInfo(I: &I, OptLoc: LoadLoc))) { |
| 653 | P = &I; |
| 654 | break; |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | // If we found an instruction that may write to the loaded memory, |
| 659 | // we can try to promote at this position instead of the store |
| 660 | // position if nothing aliases the store memory after this and the store |
| 661 | // destination is not in the range. |
| 662 | if (P == SI || moveUp(SI, P, LI)) { |
| 663 | // If we load from memory that may alias the memory we store to, |
| 664 | // memmove must be used to preserve semantic. If not, memcpy can |
| 665 | // be used. Also, if we load from constant memory, memcpy can be used |
| 666 | // as the constant memory won't be modified. |
| 667 | bool UseMemMove = false; |
| 668 | if (isModSet(MRI: AA->getModRefInfo(I: SI, OptLoc: LoadLoc))) |
| 669 | UseMemMove = true; |
| 670 | |
| 671 | IRBuilder<> Builder(P); |
| 672 | Value *Size = |
| 673 | Builder.CreateTypeSize(Ty: Builder.getInt64Ty(), Size: DL.getTypeStoreSize(Ty: T)); |
| 674 | Instruction *M; |
| 675 | if (UseMemMove) |
| 676 | M = Builder.CreateMemMove(Dst: SI->getPointerOperand(), DstAlign: SI->getAlign(), |
| 677 | Src: LI->getPointerOperand(), SrcAlign: LI->getAlign(), |
| 678 | Size); |
| 679 | else |
| 680 | M = Builder.CreateMemCpy(Dst: SI->getPointerOperand(), DstAlign: SI->getAlign(), |
| 681 | Src: LI->getPointerOperand(), SrcAlign: LI->getAlign(), Size); |
| 682 | M->copyMetadata(SrcInst: *SI, WL: LLVMContext::MD_DIAssignID); |
| 683 | |
| 684 | LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " << *M |
| 685 | << "\n" ); |
| 686 | |
| 687 | auto *LastDef = cast<MemoryDef>(Val: MSSA->getMemoryAccess(I: SI)); |
| 688 | auto *NewAccess = MSSAU->createMemoryAccessAfter(I: M, Definition: nullptr, InsertPt: LastDef); |
| 689 | MSSAU->insertDef(Def: cast<MemoryDef>(Val: NewAccess), /*RenameUses=*/true); |
| 690 | |
| 691 | eraseInstruction(I: SI); |
| 692 | eraseInstruction(I: LI); |
| 693 | ++NumMemCpyInstr; |
| 694 | |
| 695 | // Make sure we do not invalidate the iterator. |
| 696 | BBI = M->getIterator(); |
| 697 | return true; |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | // Detect cases where we're performing call slot forwarding, but |
| 702 | // happen to be using a load-store pair to implement it, rather than |
| 703 | // a memcpy. |
| 704 | auto GetCall = [&]() -> CallInst * { |
| 705 | // We defer this expensive clobber walk until the cheap checks |
| 706 | // have been done on the source inside performCallSlotOptzn. |
| 707 | if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>( |
| 708 | Val: MSSA->getWalker()->getClobberingMemoryAccess(I: LI, AA&: BAA))) |
| 709 | return dyn_cast_or_null<CallInst>(Val: LoadClobber->getMemoryInst()); |
| 710 | return nullptr; |
| 711 | }; |
| 712 | |
| 713 | bool Changed = performCallSlotOptzn( |
| 714 | cpyLoad: LI, cpyStore: SI, cpyDst: SI->getPointerOperand()->stripPointerCasts(), |
| 715 | cpySrc: LI->getPointerOperand()->stripPointerCasts(), |
| 716 | cpyLen: DL.getTypeStoreSize(Ty: SI->getOperand(i_nocapture: 0)->getType()), |
| 717 | cpyAlign: std::min(a: SI->getAlign(), b: LI->getAlign()), BAA, GetC: GetCall); |
| 718 | if (Changed) { |
| 719 | eraseInstruction(I: SI); |
| 720 | eraseInstruction(I: LI); |
| 721 | ++NumMemCpyInstr; |
| 722 | return true; |
| 723 | } |
| 724 | |
| 725 | // If this is a load-store pair from a stack slot to a stack slot, we |
| 726 | // might be able to perform the stack-move optimization just as we do for |
| 727 | // memcpys from an alloca to an alloca. |
| 728 | if (auto *DestAlloca = dyn_cast<AllocaInst>(Val: SI->getPointerOperand())) { |
| 729 | if (auto *SrcAlloca = dyn_cast<AllocaInst>(Val: LI->getPointerOperand())) { |
| 730 | if (performStackMoveOptzn(Load: LI, Store: SI, DestAlloca, SrcAlloca, |
| 731 | Size: DL.getTypeStoreSize(Ty: T), BAA)) { |
| 732 | // Avoid invalidating the iterator. |
| 733 | BBI = SI->getNextNonDebugInstruction()->getIterator(); |
| 734 | eraseInstruction(I: SI); |
| 735 | eraseInstruction(I: LI); |
| 736 | ++NumMemCpyInstr; |
| 737 | return true; |
| 738 | } |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | return false; |
| 743 | } |
| 744 | |
| 745 | bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { |
| 746 | if (!SI->isSimple()) |
| 747 | return false; |
| 748 | |
| 749 | // Avoid merging nontemporal stores since the resulting |
| 750 | // memcpy/memset would not be able to preserve the nontemporal hint. |
| 751 | // In theory we could teach how to propagate the !nontemporal metadata to |
| 752 | // memset calls. However, that change would force the backend to |
| 753 | // conservatively expand !nontemporal memset calls back to sequences of |
| 754 | // store instructions (effectively undoing the merging). |
| 755 | if (SI->getMetadata(KindID: LLVMContext::MD_nontemporal)) |
| 756 | return false; |
| 757 | |
| 758 | const DataLayout &DL = SI->getDataLayout(); |
| 759 | |
| 760 | Value *StoredVal = SI->getValueOperand(); |
| 761 | |
| 762 | // Not all the transforms below are correct for non-integral pointers, bail |
| 763 | // until we've audited the individual pieces. |
| 764 | if (DL.isNonIntegralPointerType(Ty: StoredVal->getType()->getScalarType())) |
| 765 | return false; |
| 766 | |
| 767 | // Load to store forwarding can be interpreted as memcpy. |
| 768 | if (auto *LI = dyn_cast<LoadInst>(Val: StoredVal)) |
| 769 | return processStoreOfLoad(SI, LI, DL, BBI); |
| 770 | |
| 771 | // The following code creates memset intrinsics out of thin air. Don't do |
| 772 | // this if the corresponding libfunc is not available. |
| 773 | // TODO: We should really distinguish between libcall availability and |
| 774 | // our ability to introduce intrinsics. |
| 775 | if (!(TLI->has(F: LibFunc_memset) || EnableMemCpyOptWithoutLibcalls)) |
| 776 | return false; |
| 777 | |
| 778 | // There are two cases that are interesting for this code to handle: memcpy |
| 779 | // and memset. Right now we only handle memset. |
| 780 | |
| 781 | // Ensure that the value being stored is something that can be memset'able a |
| 782 | // byte at a time like "0" or "-1" or any width, as well as things like |
| 783 | // 0xA0A0A0A0 and 0.0. |
| 784 | Value *V = SI->getOperand(i_nocapture: 0); |
| 785 | Value *ByteVal = isBytewiseValue(V, DL); |
| 786 | if (!ByteVal) |
| 787 | return false; |
| 788 | |
| 789 | if (Instruction *I = |
| 790 | tryMergingIntoMemset(StartInst: SI, StartPtr: SI->getPointerOperand(), ByteVal)) { |
| 791 | BBI = I->getIterator(); // Don't invalidate iterator. |
| 792 | return true; |
| 793 | } |
| 794 | |
| 795 | // If we have an aggregate, we try to promote it to memset regardless |
| 796 | // of opportunity for merging as it can expose optimization opportunities |
| 797 | // in subsequent passes. |
| 798 | auto *T = V->getType(); |
| 799 | if (!T->isAggregateType()) |
| 800 | return false; |
| 801 | |
| 802 | TypeSize Size = DL.getTypeStoreSize(Ty: T); |
| 803 | if (Size.isScalable()) |
| 804 | return false; |
| 805 | |
| 806 | IRBuilder<> Builder(SI); |
| 807 | auto *M = Builder.CreateMemSet(Ptr: SI->getPointerOperand(), Val: ByteVal, Size, |
| 808 | Align: SI->getAlign()); |
| 809 | M->copyMetadata(SrcInst: *SI, WL: LLVMContext::MD_DIAssignID); |
| 810 | |
| 811 | LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n" ); |
| 812 | |
| 813 | // The newly inserted memset is immediately overwritten by the original |
| 814 | // store, so we do not need to rename uses. |
| 815 | auto *StoreDef = cast<MemoryDef>(Val: MSSA->getMemoryAccess(I: SI)); |
| 816 | auto *NewAccess = MSSAU->createMemoryAccessBefore(I: M, Definition: nullptr, InsertPt: StoreDef); |
| 817 | MSSAU->insertDef(Def: cast<MemoryDef>(Val: NewAccess), /*RenameUses=*/false); |
| 818 | |
| 819 | eraseInstruction(I: SI); |
| 820 | NumMemSetInfer++; |
| 821 | |
| 822 | // Make sure we do not invalidate the iterator. |
| 823 | BBI = M->getIterator(); |
| 824 | return true; |
| 825 | } |
| 826 | |
| 827 | bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { |
| 828 | // See if there is another memset or store neighboring this memset which |
| 829 | // allows us to widen out the memset to do a single larger store. |
| 830 | if (isa<ConstantInt>(Val: MSI->getLength()) && !MSI->isVolatile()) |
| 831 | if (Instruction *I = |
| 832 | tryMergingIntoMemset(StartInst: MSI, StartPtr: MSI->getDest(), ByteVal: MSI->getValue())) { |
| 833 | BBI = I->getIterator(); // Don't invalidate iterator. |
| 834 | return true; |
| 835 | } |
| 836 | return false; |
| 837 | } |
| 838 | |
| 839 | /// Takes a memcpy and a call that it depends on, |
| 840 | /// and checks for the possibility of a call slot optimization by having |
| 841 | /// the call write its result directly into the destination of the memcpy. |
| 842 | bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad, |
| 843 | Instruction *cpyStore, Value *cpyDest, |
| 844 | Value *cpySrc, TypeSize cpySize, |
| 845 | Align cpyDestAlign, |
| 846 | BatchAAResults &BAA, |
| 847 | std::function<CallInst *()> GetC) { |
| 848 | // The general transformation to keep in mind is |
| 849 | // |
| 850 | // call @func(..., src, ...) |
| 851 | // memcpy(dest, src, ...) |
| 852 | // |
| 853 | // -> |
| 854 | // |
| 855 | // memcpy(dest, src, ...) |
| 856 | // call @func(..., dest, ...) |
| 857 | // |
| 858 | // Since moving the memcpy is technically awkward, we additionally check that |
| 859 | // src only holds uninitialized values at the moment of the call, meaning that |
| 860 | // the memcpy can be discarded rather than moved. |
| 861 | |
| 862 | // We can't optimize scalable types. |
| 863 | if (cpySize.isScalable()) |
| 864 | return false; |
| 865 | |
| 866 | // Require that src be an alloca. This simplifies the reasoning considerably. |
| 867 | auto *srcAlloca = dyn_cast<AllocaInst>(Val: cpySrc); |
| 868 | if (!srcAlloca) |
| 869 | return false; |
| 870 | |
| 871 | ConstantInt *srcArraySize = dyn_cast<ConstantInt>(Val: srcAlloca->getArraySize()); |
| 872 | if (!srcArraySize) |
| 873 | return false; |
| 874 | |
| 875 | const DataLayout &DL = cpyLoad->getDataLayout(); |
| 876 | TypeSize SrcAllocaSize = DL.getTypeAllocSize(Ty: srcAlloca->getAllocatedType()); |
| 877 | // We can't optimize scalable types. |
| 878 | if (SrcAllocaSize.isScalable()) |
| 879 | return false; |
| 880 | uint64_t srcSize = SrcAllocaSize * srcArraySize->getZExtValue(); |
| 881 | |
| 882 | if (cpySize < srcSize) |
| 883 | return false; |
| 884 | |
| 885 | CallInst *C = GetC(); |
| 886 | if (!C) |
| 887 | return false; |
| 888 | |
| 889 | // Lifetime marks shouldn't be operated on. |
| 890 | if (Function *F = C->getCalledFunction()) |
| 891 | if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) |
| 892 | return false; |
| 893 | |
| 894 | if (C->getParent() != cpyStore->getParent()) { |
| 895 | LLVM_DEBUG(dbgs() << "Call Slot: block local restriction\n" ); |
| 896 | return false; |
| 897 | } |
| 898 | |
| 899 | MemoryLocation DestLoc = |
| 900 | isa<StoreInst>(Val: cpyStore) |
| 901 | ? MemoryLocation::get(Inst: cpyStore) |
| 902 | : MemoryLocation::getForDest(MI: cast<MemCpyInst>(Val: cpyStore)); |
| 903 | |
| 904 | // Check that nothing touches the dest of the copy between |
| 905 | // the call and the store/memcpy. |
| 906 | Instruction *SkippedLifetimeStart = nullptr; |
| 907 | if (accessedBetween(AA&: BAA, Loc: DestLoc, Start: MSSA->getMemoryAccess(I: C), |
| 908 | End: MSSA->getMemoryAccess(I: cpyStore), SkippedLifetimeStart: &SkippedLifetimeStart)) { |
| 909 | LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer modified after call\n" ); |
| 910 | return false; |
| 911 | } |
| 912 | |
| 913 | // If we need to move a lifetime.start above the call, make sure that we can |
| 914 | // actually do so. If the argument is bitcasted for example, we would have to |
| 915 | // move the bitcast as well, which we don't handle. |
| 916 | if (SkippedLifetimeStart) { |
| 917 | auto *LifetimeArg = |
| 918 | dyn_cast<Instruction>(Val: SkippedLifetimeStart->getOperand(i: 1)); |
| 919 | if (LifetimeArg && LifetimeArg->getParent() == C->getParent() && |
| 920 | C->comesBefore(Other: LifetimeArg)) |
| 921 | return false; |
| 922 | } |
| 923 | |
| 924 | // Check that storing to the first srcSize bytes of dest will not cause a |
| 925 | // trap or data race. |
| 926 | bool ExplicitlyDereferenceableOnly; |
| 927 | if (!isWritableObject(Object: getUnderlyingObject(V: cpyDest), |
| 928 | ExplicitlyDereferenceableOnly) || |
| 929 | !isDereferenceableAndAlignedPointer(V: cpyDest, Alignment: Align(1), Size: APInt(64, cpySize), |
| 930 | DL, CtxI: C, AC, DT)) { |
| 931 | LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer not dereferenceable\n" ); |
| 932 | return false; |
| 933 | } |
| 934 | |
| 935 | // Make sure that nothing can observe cpyDest being written early. There are |
| 936 | // a number of cases to consider: |
| 937 | // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of |
| 938 | // the transform. |
| 939 | // 2. C itself may not access cpyDest (prior to the transform). This is |
| 940 | // checked further below. |
| 941 | // 3. If cpyDest is accessible to the caller of this function (potentially |
| 942 | // captured and not based on an alloca), we need to ensure that we cannot |
| 943 | // unwind between C and cpyStore. This is checked here. |
| 944 | // 4. If cpyDest is potentially captured, there may be accesses to it from |
| 945 | // another thread. In this case, we need to check that cpyStore is |
| 946 | // guaranteed to be executed if C is. As it is a non-atomic access, it |
| 947 | // renders accesses from other threads undefined. |
| 948 | // TODO: This is currently not checked. |
| 949 | if (mayBeVisibleThroughUnwinding(V: cpyDest, Start: C, End: cpyStore)) { |
| 950 | LLVM_DEBUG(dbgs() << "Call Slot: Dest may be visible through unwinding\n" ); |
| 951 | return false; |
| 952 | } |
| 953 | |
| 954 | // Check that dest points to memory that is at least as aligned as src. |
| 955 | Align srcAlign = srcAlloca->getAlign(); |
| 956 | bool isDestSufficientlyAligned = srcAlign <= cpyDestAlign; |
| 957 | // If dest is not aligned enough and we can't increase its alignment then |
| 958 | // bail out. |
| 959 | if (!isDestSufficientlyAligned && !isa<AllocaInst>(Val: cpyDest)) { |
| 960 | LLVM_DEBUG(dbgs() << "Call Slot: Dest not sufficiently aligned\n" ); |
| 961 | return false; |
| 962 | } |
| 963 | |
| 964 | // Check that src is not accessed except via the call and the memcpy. This |
| 965 | // guarantees that it holds only undefined values when passed in (so the final |
| 966 | // memcpy can be dropped), that it is not read or written between the call and |
| 967 | // the memcpy, and that writing beyond the end of it is undefined. |
| 968 | SmallVector<User *, 8> srcUseList(srcAlloca->users()); |
| 969 | while (!srcUseList.empty()) { |
| 970 | User *U = srcUseList.pop_back_val(); |
| 971 | |
| 972 | if (isa<AddrSpaceCastInst>(Val: U)) { |
| 973 | append_range(C&: srcUseList, R: U->users()); |
| 974 | continue; |
| 975 | } |
| 976 | if (isa<LifetimeIntrinsic>(Val: U)) |
| 977 | continue; |
| 978 | |
| 979 | if (U != C && U != cpyLoad) { |
| 980 | LLVM_DEBUG(dbgs() << "Call slot: Source accessed by " << *U << "\n" ); |
| 981 | return false; |
| 982 | } |
| 983 | } |
| 984 | |
| 985 | // Check whether src is captured by the called function, in which case there |
| 986 | // may be further indirect uses of src. |
| 987 | bool SrcIsCaptured = any_of(Range: C->args(), P: [&](Use &U) { |
| 988 | return U->stripPointerCasts() == cpySrc && |
| 989 | !C->doesNotCapture(OpNo: C->getArgOperandNo(U: &U)); |
| 990 | }); |
| 991 | |
| 992 | // If src is captured, then check whether there are any potential uses of |
| 993 | // src through the captured pointer before the lifetime of src ends, either |
| 994 | // due to a lifetime.end or a return from the function. |
| 995 | if (SrcIsCaptured) { |
| 996 | // Check that dest is not captured before/at the call. We have already |
| 997 | // checked that src is not captured before it. If either had been captured, |
| 998 | // then the call might be comparing the argument against the captured dest |
| 999 | // or src pointer. |
| 1000 | Value *DestObj = getUnderlyingObject(V: cpyDest); |
| 1001 | if (!isIdentifiedFunctionLocal(V: DestObj) || |
| 1002 | PointerMayBeCapturedBefore(V: DestObj, /* ReturnCaptures */ true, I: C, DT, |
| 1003 | /* IncludeI */ true)) |
| 1004 | return false; |
| 1005 | |
| 1006 | MemoryLocation SrcLoc = |
| 1007 | MemoryLocation(srcAlloca, LocationSize::precise(Value: srcSize)); |
| 1008 | for (Instruction &I : |
| 1009 | make_range(x: ++C->getIterator(), y: C->getParent()->end())) { |
| 1010 | // Lifetime of srcAlloca ends at lifetime.end. |
| 1011 | if (auto *II = dyn_cast<IntrinsicInst>(Val: &I)) { |
| 1012 | if (II->getIntrinsicID() == Intrinsic::lifetime_end && |
| 1013 | II->getArgOperand(i: 1)->stripPointerCasts() == srcAlloca && |
| 1014 | cast<ConstantInt>(Val: II->getArgOperand(i: 0))->uge(Num: srcSize)) |
| 1015 | break; |
| 1016 | } |
| 1017 | |
| 1018 | // Lifetime of srcAlloca ends at return. |
| 1019 | if (isa<ReturnInst>(Val: &I)) |
| 1020 | break; |
| 1021 | |
| 1022 | // Ignore the direct read of src in the load. |
| 1023 | if (&I == cpyLoad) |
| 1024 | continue; |
| 1025 | |
| 1026 | // Check whether this instruction may mod/ref src through the captured |
| 1027 | // pointer (we have already any direct mod/refs in the loop above). |
| 1028 | // Also bail if we hit a terminator, as we don't want to scan into other |
| 1029 | // blocks. |
| 1030 | if (isModOrRefSet(MRI: BAA.getModRefInfo(I: &I, OptLoc: SrcLoc)) || I.isTerminator()) |
| 1031 | return false; |
| 1032 | } |
| 1033 | } |
| 1034 | |
| 1035 | // Since we're changing the parameter to the callsite, we need to make sure |
| 1036 | // that what would be the new parameter dominates the callsite. |
| 1037 | bool NeedMoveGEP = false; |
| 1038 | if (!DT->dominates(Def: cpyDest, User: C)) { |
| 1039 | // Support moving a constant index GEP before the call. |
| 1040 | auto *GEP = dyn_cast<GetElementPtrInst>(Val: cpyDest); |
| 1041 | if (GEP && GEP->hasAllConstantIndices() && |
| 1042 | DT->dominates(Def: GEP->getPointerOperand(), User: C)) |
| 1043 | NeedMoveGEP = true; |
| 1044 | else |
| 1045 | return false; |
| 1046 | } |
| 1047 | |
| 1048 | // In addition to knowing that the call does not access src in some |
| 1049 | // unexpected manner, for example via a global, which we deduce from |
| 1050 | // the use analysis, we also need to know that it does not sneakily |
| 1051 | // access dest. We rely on AA to figure this out for us. |
| 1052 | MemoryLocation DestWithSrcSize(cpyDest, LocationSize::precise(Value: srcSize)); |
| 1053 | ModRefInfo MR = BAA.getModRefInfo(I: C, OptLoc: DestWithSrcSize); |
| 1054 | // If necessary, perform additional analysis. |
| 1055 | if (isModOrRefSet(MRI: MR)) |
| 1056 | MR = BAA.callCapturesBefore(I: C, MemLoc: DestWithSrcSize, DT); |
| 1057 | if (isModOrRefSet(MRI: MR)) |
| 1058 | return false; |
| 1059 | |
| 1060 | // We can't create address space casts here because we don't know if they're |
| 1061 | // safe for the target. |
| 1062 | if (cpySrc->getType() != cpyDest->getType()) |
| 1063 | return false; |
| 1064 | for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) |
| 1065 | if (C->getArgOperand(i: ArgI)->stripPointerCasts() == cpySrc && |
| 1066 | cpySrc->getType() != C->getArgOperand(i: ArgI)->getType()) |
| 1067 | return false; |
| 1068 | |
| 1069 | // All the checks have passed, so do the transformation. |
| 1070 | bool changedArgument = false; |
| 1071 | for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) |
| 1072 | if (C->getArgOperand(i: ArgI)->stripPointerCasts() == cpySrc) { |
| 1073 | changedArgument = true; |
| 1074 | C->setArgOperand(i: ArgI, v: cpyDest); |
| 1075 | } |
| 1076 | |
| 1077 | if (!changedArgument) |
| 1078 | return false; |
| 1079 | |
| 1080 | // If the destination wasn't sufficiently aligned then increase its alignment. |
| 1081 | if (!isDestSufficientlyAligned) { |
| 1082 | assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!" ); |
| 1083 | cast<AllocaInst>(Val: cpyDest)->setAlignment(srcAlign); |
| 1084 | } |
| 1085 | |
| 1086 | if (NeedMoveGEP) { |
| 1087 | auto *GEP = dyn_cast<GetElementPtrInst>(Val: cpyDest); |
| 1088 | GEP->moveBefore(InsertPos: C->getIterator()); |
| 1089 | } |
| 1090 | |
| 1091 | if (SkippedLifetimeStart) { |
| 1092 | SkippedLifetimeStart->moveBefore(InsertPos: C->getIterator()); |
| 1093 | MSSAU->moveBefore(What: MSSA->getMemoryAccess(I: SkippedLifetimeStart), |
| 1094 | Where: MSSA->getMemoryAccess(I: C)); |
| 1095 | } |
| 1096 | |
| 1097 | combineAAMetadata(K: C, J: cpyLoad); |
| 1098 | if (cpyLoad != cpyStore) |
| 1099 | combineAAMetadata(K: C, J: cpyStore); |
| 1100 | |
| 1101 | ++NumCallSlot; |
| 1102 | return true; |
| 1103 | } |
| 1104 | |
| 1105 | /// We've found that the (upward scanning) memory dependence of memcpy 'M' is |
| 1106 | /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. |
| 1107 | bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, |
| 1108 | MemCpyInst *MDep, |
| 1109 | BatchAAResults &BAA) { |
| 1110 | // We can only optimize non-volatile memcpy's. |
| 1111 | if (MDep->isVolatile()) |
| 1112 | return false; |
| 1113 | |
| 1114 | // If dep instruction is reading from our current input, then it is a noop |
| 1115 | // transfer and substituting the input won't change this instruction. Just |
| 1116 | // ignore the input and let someone else zap MDep. This handles cases like: |
| 1117 | // memcpy(a <- a) |
| 1118 | // memcpy(b <- a) |
| 1119 | // This also avoids infinite loops. |
| 1120 | if (BAA.isMustAlias(V1: MDep->getDest(), V2: MDep->getSource())) |
| 1121 | return false; |
| 1122 | |
| 1123 | int64_t MForwardOffset = 0; |
| 1124 | const DataLayout &DL = M->getModule()->getDataLayout(); |
| 1125 | // We can only transforms memcpy's where the dest of one is the source of the |
| 1126 | // other, or they have an offset in a range. |
| 1127 | if (M->getSource() != MDep->getDest()) { |
| 1128 | std::optional<int64_t> Offset = |
| 1129 | M->getSource()->getPointerOffsetFrom(Other: MDep->getDest(), DL); |
| 1130 | if (!Offset || *Offset < 0) |
| 1131 | return false; |
| 1132 | MForwardOffset = *Offset; |
| 1133 | } |
| 1134 | |
| 1135 | Value *CopyLength = M->getLength(); |
| 1136 | |
| 1137 | // The length of the memcpy's must be the same, or the preceding one must be |
| 1138 | // larger than the following one, or the contents of the overread must be |
| 1139 | // undefined bytes of a defined size. |
| 1140 | if (MForwardOffset != 0 || MDep->getLength() != CopyLength) { |
| 1141 | auto *MDepLen = dyn_cast<ConstantInt>(Val: MDep->getLength()); |
| 1142 | auto *MLen = dyn_cast<ConstantInt>(Val: CopyLength); |
| 1143 | // This could be converted to a runtime test (%CopyLength = |
| 1144 | // min(max(0, MDepLen - MForwardOffset), MLen)), but it is |
| 1145 | // unclear if that is useful |
| 1146 | if (!MDepLen || !MLen) |
| 1147 | return false; |
| 1148 | if (MDepLen->getZExtValue() < MLen->getZExtValue() + MForwardOffset) { |
| 1149 | if (!overreadUndefContents(MSSA, MemCpy: M, MemSrc: MDep, BAA)) |
| 1150 | return false; |
| 1151 | if (MDepLen->getZExtValue() <= (uint64_t)MForwardOffset) |
| 1152 | return false; // Should not reach here (there is obviously no aliasing |
| 1153 | // with MDep), so just bail in case it had incomplete info |
| 1154 | // somehow |
| 1155 | CopyLength = ConstantInt::get(Ty: CopyLength->getType(), |
| 1156 | V: MDepLen->getZExtValue() - MForwardOffset); |
| 1157 | } |
| 1158 | } |
| 1159 | |
| 1160 | IRBuilder<> Builder(M); |
| 1161 | auto *CopySource = MDep->getSource(); |
| 1162 | Instruction *NewCopySource = nullptr; |
| 1163 | auto CleanupOnRet = llvm::make_scope_exit(F: [&] { |
| 1164 | if (NewCopySource && NewCopySource->use_empty()) |
| 1165 | // Safety: It's safe here because we will only allocate more instructions |
| 1166 | // after finishing all BatchAA queries, but we have to be careful if we |
| 1167 | // want to do something like this in another place. Then we'd probably |
| 1168 | // have to delay instruction removal until all transforms on an |
| 1169 | // instruction finished. |
| 1170 | eraseInstruction(I: NewCopySource); |
| 1171 | }); |
| 1172 | MaybeAlign CopySourceAlign = MDep->getSourceAlign(); |
| 1173 | auto MCopyLoc = MemoryLocation::getForSource(MTI: MDep); |
| 1174 | // Truncate the size of the MDep access to just the bytes read |
| 1175 | if (MDep->getLength() != CopyLength) { |
| 1176 | auto *ConstLength = cast<ConstantInt>(Val: CopyLength); |
| 1177 | MCopyLoc = MCopyLoc.getWithNewSize( |
| 1178 | NewSize: LocationSize::precise(Value: ConstLength->getZExtValue())); |
| 1179 | } |
| 1180 | |
| 1181 | // When the forwarding offset is greater than 0, we transform |
| 1182 | // memcpy(d1 <- s1) |
| 1183 | // memcpy(d2 <- d1+o) |
| 1184 | // to |
| 1185 | // memcpy(d2 <- s1+o) |
| 1186 | if (MForwardOffset > 0) { |
| 1187 | // The copy destination of `M` maybe can serve as the source of copying. |
| 1188 | std::optional<int64_t> MDestOffset = |
| 1189 | M->getRawDest()->getPointerOffsetFrom(Other: MDep->getRawSource(), DL); |
| 1190 | if (MDestOffset == MForwardOffset) |
| 1191 | CopySource = M->getDest(); |
| 1192 | else { |
| 1193 | CopySource = Builder.CreateInBoundsPtrAdd( |
| 1194 | Ptr: CopySource, Offset: Builder.getInt64(C: MForwardOffset)); |
| 1195 | NewCopySource = dyn_cast<Instruction>(Val: CopySource); |
| 1196 | } |
| 1197 | // We need to update `MCopyLoc` if an offset exists. |
| 1198 | MCopyLoc = MCopyLoc.getWithNewPtr(NewPtr: CopySource); |
| 1199 | if (CopySourceAlign) |
| 1200 | CopySourceAlign = commonAlignment(A: *CopySourceAlign, Offset: MForwardOffset); |
| 1201 | } |
| 1202 | |
| 1203 | // Verify that the copied-from memory doesn't change in between the two |
| 1204 | // transfers. For example, in: |
| 1205 | // memcpy(a <- b) |
| 1206 | // *b = 42; |
| 1207 | // memcpy(c <- a) |
| 1208 | // It would be invalid to transform the second memcpy into memcpy(c <- b). |
| 1209 | // |
| 1210 | // TODO: If the code between M and MDep is transparent to the destination "c", |
| 1211 | // then we could still perform the xform by moving M up to the first memcpy. |
| 1212 | if (writtenBetween(MSSA, AA&: BAA, Loc: MCopyLoc, Start: MSSA->getMemoryAccess(I: MDep), |
| 1213 | End: MSSA->getMemoryAccess(I: M))) |
| 1214 | return false; |
| 1215 | |
| 1216 | // No need to create `memcpy(a <- a)`. |
| 1217 | if (BAA.isMustAlias(V1: M->getDest(), V2: CopySource)) { |
| 1218 | // Remove the instruction we're replacing. |
| 1219 | eraseInstruction(I: M); |
| 1220 | ++NumMemCpyInstr; |
| 1221 | return true; |
| 1222 | } |
| 1223 | |
| 1224 | // If the dest of the second might alias the source of the first, then the |
| 1225 | // source and dest might overlap. In addition, if the source of the first |
| 1226 | // points to constant memory, they won't overlap by definition. Otherwise, we |
| 1227 | // still want to eliminate the intermediate value, but we have to generate a |
| 1228 | // memmove instead of memcpy. |
| 1229 | bool UseMemMove = false; |
| 1230 | if (isModSet(MRI: BAA.getModRefInfo(I: M, OptLoc: MemoryLocation::getForSource(MTI: MDep)))) { |
| 1231 | // Don't convert llvm.memcpy.inline into memmove because memmove can be |
| 1232 | // lowered as a call, and that is not allowed for llvm.memcpy.inline (and |
| 1233 | // there is no inline version of llvm.memmove) |
| 1234 | if (M->isForceInlined()) |
| 1235 | return false; |
| 1236 | UseMemMove = true; |
| 1237 | } |
| 1238 | |
| 1239 | // If all checks passed, then we can transform M. |
| 1240 | LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n" |
| 1241 | << *MDep << '\n' |
| 1242 | << *M << '\n'); |
| 1243 | |
| 1244 | // TODO: Is this worth it if we're creating a less aligned memcpy? For |
| 1245 | // example we could be moving from movaps -> movq on x86. |
| 1246 | Instruction *NewM; |
| 1247 | if (UseMemMove) |
| 1248 | NewM = Builder.CreateMemMove(Dst: M->getDest(), DstAlign: M->getDestAlign(), Src: CopySource, |
| 1249 | SrcAlign: CopySourceAlign, Size: CopyLength, isVolatile: M->isVolatile()); |
| 1250 | else if (M->isForceInlined()) |
| 1251 | // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is |
| 1252 | // never allowed since that would allow the latter to be lowered as a call |
| 1253 | // to an external function. |
| 1254 | NewM = Builder.CreateMemCpyInline(Dst: M->getDest(), DstAlign: M->getDestAlign(), |
| 1255 | Src: CopySource, SrcAlign: CopySourceAlign, Size: CopyLength, |
| 1256 | isVolatile: M->isVolatile()); |
| 1257 | else |
| 1258 | NewM = Builder.CreateMemCpy(Dst: M->getDest(), DstAlign: M->getDestAlign(), Src: CopySource, |
| 1259 | SrcAlign: CopySourceAlign, Size: CopyLength, isVolatile: M->isVolatile()); |
| 1260 | |
| 1261 | NewM->copyMetadata(SrcInst: *M, WL: LLVMContext::MD_DIAssignID); |
| 1262 | |
| 1263 | assert(isa<MemoryDef>(MSSA->getMemoryAccess(M))); |
| 1264 | auto *LastDef = cast<MemoryDef>(Val: MSSA->getMemoryAccess(I: M)); |
| 1265 | auto *NewAccess = MSSAU->createMemoryAccessAfter(I: NewM, Definition: nullptr, InsertPt: LastDef); |
| 1266 | MSSAU->insertDef(Def: cast<MemoryDef>(Val: NewAccess), /*RenameUses=*/true); |
| 1267 | |
| 1268 | // Remove the instruction we're replacing. |
| 1269 | eraseInstruction(I: M); |
| 1270 | ++NumMemCpyInstr; |
| 1271 | return true; |
| 1272 | } |
| 1273 | |
| 1274 | /// We've found that the (upward scanning) memory dependence of \p MemCpy is |
| 1275 | /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that |
| 1276 | /// weren't copied over by \p MemCpy. |
| 1277 | /// |
| 1278 | /// In other words, transform: |
| 1279 | /// \code |
| 1280 | /// memset(dst, c, dst_size); |
| 1281 | /// ... |
| 1282 | /// memcpy(dst, src, src_size); |
| 1283 | /// \endcode |
| 1284 | /// into: |
| 1285 | /// \code |
| 1286 | /// ... |
| 1287 | /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); |
| 1288 | /// memcpy(dst, src, src_size); |
| 1289 | /// \endcode |
| 1290 | /// |
| 1291 | /// The memset is sunk to just before the memcpy to ensure that src_size is |
| 1292 | /// present when emitting the simplified memset. |
| 1293 | bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, |
| 1294 | MemSetInst *MemSet, |
| 1295 | BatchAAResults &BAA) { |
| 1296 | // We can only transform memset/memcpy with the same destination. |
| 1297 | if (!BAA.isMustAlias(V1: MemSet->getDest(), V2: MemCpy->getDest())) |
| 1298 | return false; |
| 1299 | |
| 1300 | // Don't perform the transform if src_size may be zero. In that case, the |
| 1301 | // transform is essentially a complex no-op and may lead to an infinite |
| 1302 | // loop if BasicAA is smart enough to understand that dst and dst + src_size |
| 1303 | // are still MustAlias after the transform. |
| 1304 | Value *SrcSize = MemCpy->getLength(); |
| 1305 | if (!isKnownNonZero(V: SrcSize, |
| 1306 | Q: SimplifyQuery(MemCpy->getDataLayout(), DT, AC, MemCpy))) |
| 1307 | return false; |
| 1308 | |
| 1309 | // Check that src and dst of the memcpy aren't the same. While memcpy |
| 1310 | // operands cannot partially overlap, exact equality is allowed. |
| 1311 | if (isModSet(MRI: BAA.getModRefInfo(I: MemCpy, OptLoc: MemoryLocation::getForSource(MTI: MemCpy)))) |
| 1312 | return false; |
| 1313 | |
| 1314 | // We know that dst up to src_size is not written. We now need to make sure |
| 1315 | // that dst up to dst_size is not accessed. (If we did not move the memset, |
| 1316 | // checking for reads would be sufficient.) |
| 1317 | if (accessedBetween(AA&: BAA, Loc: MemoryLocation::getForDest(MI: MemSet), |
| 1318 | Start: MSSA->getMemoryAccess(I: MemSet), |
| 1319 | End: MSSA->getMemoryAccess(I: MemCpy))) |
| 1320 | return false; |
| 1321 | |
| 1322 | // Use the same i8* dest as the memcpy, killing the memset dest if different. |
| 1323 | Value *Dest = MemCpy->getRawDest(); |
| 1324 | Value *DestSize = MemSet->getLength(); |
| 1325 | |
| 1326 | if (mayBeVisibleThroughUnwinding(V: Dest, Start: MemSet, End: MemCpy)) |
| 1327 | return false; |
| 1328 | |
| 1329 | // If the sizes are the same, simply drop the memset instead of generating |
| 1330 | // a replacement with zero size. |
| 1331 | if (DestSize == SrcSize) { |
| 1332 | eraseInstruction(I: MemSet); |
| 1333 | return true; |
| 1334 | } |
| 1335 | |
| 1336 | // By default, create an unaligned memset. |
| 1337 | Align Alignment = Align(1); |
| 1338 | // If Dest is aligned, and SrcSize is constant, use the minimum alignment |
| 1339 | // of the sum. |
| 1340 | const Align DestAlign = std::max(a: MemSet->getDestAlign().valueOrOne(), |
| 1341 | b: MemCpy->getDestAlign().valueOrOne()); |
| 1342 | if (DestAlign > 1) |
| 1343 | if (auto *SrcSizeC = dyn_cast<ConstantInt>(Val: SrcSize)) |
| 1344 | Alignment = commonAlignment(A: DestAlign, Offset: SrcSizeC->getZExtValue()); |
| 1345 | |
| 1346 | IRBuilder<> Builder(MemCpy); |
| 1347 | |
| 1348 | // Preserve the debug location of the old memset for the code emitted here |
| 1349 | // related to the new memset. This is correct according to the rules in |
| 1350 | // https://llvm.org/docs/HowToUpdateDebugInfo.html about "when to preserve an |
| 1351 | // instruction location", given that we move the memset within the basic |
| 1352 | // block. |
| 1353 | assert(MemSet->getParent() == MemCpy->getParent() && |
| 1354 | "Preserving debug location based on moving memset within BB." ); |
| 1355 | Builder.SetCurrentDebugLocation(MemSet->getDebugLoc()); |
| 1356 | |
| 1357 | // If the sizes have different types, zext the smaller one. |
| 1358 | if (DestSize->getType() != SrcSize->getType()) { |
| 1359 | if (DestSize->getType()->getIntegerBitWidth() > |
| 1360 | SrcSize->getType()->getIntegerBitWidth()) |
| 1361 | SrcSize = Builder.CreateZExt(V: SrcSize, DestTy: DestSize->getType()); |
| 1362 | else |
| 1363 | DestSize = Builder.CreateZExt(V: DestSize, DestTy: SrcSize->getType()); |
| 1364 | } |
| 1365 | |
| 1366 | Value *Ule = Builder.CreateICmpULE(LHS: DestSize, RHS: SrcSize); |
| 1367 | Value *SizeDiff = Builder.CreateSub(LHS: DestSize, RHS: SrcSize); |
| 1368 | Value *MemsetLen = Builder.CreateSelect( |
| 1369 | C: Ule, True: ConstantInt::getNullValue(Ty: DestSize->getType()), False: SizeDiff); |
| 1370 | Instruction *NewMemSet = |
| 1371 | Builder.CreateMemSet(Ptr: Builder.CreatePtrAdd(Ptr: Dest, Offset: SrcSize), |
| 1372 | Val: MemSet->getOperand(i_nocapture: 1), Size: MemsetLen, Align: Alignment); |
| 1373 | |
| 1374 | assert(isa<MemoryDef>(MSSA->getMemoryAccess(MemCpy)) && |
| 1375 | "MemCpy must be a MemoryDef" ); |
| 1376 | // The new memset is inserted before the memcpy, and it is known that the |
| 1377 | // memcpy's defining access is the memset about to be removed. |
| 1378 | auto *LastDef = cast<MemoryDef>(Val: MSSA->getMemoryAccess(I: MemCpy)); |
| 1379 | auto *NewAccess = |
| 1380 | MSSAU->createMemoryAccessBefore(I: NewMemSet, Definition: nullptr, InsertPt: LastDef); |
| 1381 | MSSAU->insertDef(Def: cast<MemoryDef>(Val: NewAccess), /*RenameUses=*/true); |
| 1382 | |
| 1383 | eraseInstruction(I: MemSet); |
| 1384 | return true; |
| 1385 | } |
| 1386 | |
| 1387 | /// Determine whether the pointer V had only undefined content (due to Def) up |
| 1388 | /// to the given Size, either because it was freshly alloca'd or started its |
| 1389 | /// lifetime. |
| 1390 | static bool hasUndefContents(MemorySSA *MSSA, BatchAAResults &AA, Value *V, |
| 1391 | MemoryDef *Def, Value *Size) { |
| 1392 | if (MSSA->isLiveOnEntryDef(MA: Def)) |
| 1393 | return isa<AllocaInst>(Val: getUnderlyingObject(V)); |
| 1394 | |
| 1395 | if (auto *II = dyn_cast_or_null<IntrinsicInst>(Val: Def->getMemoryInst())) { |
| 1396 | if (II->getIntrinsicID() == Intrinsic::lifetime_start) { |
| 1397 | auto *LTSize = cast<ConstantInt>(Val: II->getArgOperand(i: 0)); |
| 1398 | |
| 1399 | if (auto *CSize = dyn_cast<ConstantInt>(Val: Size)) { |
| 1400 | if (AA.isMustAlias(V1: V, V2: II->getArgOperand(i: 1)) && |
| 1401 | LTSize->getZExtValue() >= CSize->getZExtValue()) |
| 1402 | return true; |
| 1403 | } |
| 1404 | |
| 1405 | // If the lifetime.start covers a whole alloca (as it almost always |
| 1406 | // does) and we're querying a pointer based on that alloca, then we know |
| 1407 | // the memory is definitely undef, regardless of how exactly we alias. |
| 1408 | // The size also doesn't matter, as an out-of-bounds access would be UB. |
| 1409 | if (auto *Alloca = dyn_cast<AllocaInst>(Val: getUnderlyingObject(V))) { |
| 1410 | if (getUnderlyingObject(V: II->getArgOperand(i: 1)) == Alloca) { |
| 1411 | const DataLayout &DL = Alloca->getDataLayout(); |
| 1412 | if (std::optional<TypeSize> AllocaSize = |
| 1413 | Alloca->getAllocationSize(DL)) |
| 1414 | if (*AllocaSize == LTSize->getValue()) |
| 1415 | return true; |
| 1416 | } |
| 1417 | } |
| 1418 | } |
| 1419 | } |
| 1420 | |
| 1421 | return false; |
| 1422 | } |
| 1423 | |
| 1424 | // If the memcpy is larger than the previous, but the memory was undef prior to |
| 1425 | // that, we can just ignore the tail. Technically we're only interested in the |
| 1426 | // bytes from 0..MemSrcOffset and MemSrcLength+MemSrcOffset..CopySize here, but |
| 1427 | // as we can't easily represent this location (hasUndefContents uses mustAlias |
| 1428 | // which cannot deal with offsets), we use the full 0..CopySize range. |
| 1429 | static bool overreadUndefContents(MemorySSA *MSSA, MemCpyInst *MemCpy, |
| 1430 | MemIntrinsic *MemSrc, BatchAAResults &BAA) { |
| 1431 | Value *CopySize = MemCpy->getLength(); |
| 1432 | MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MTI: MemCpy); |
| 1433 | MemoryUseOrDef *MemSrcAccess = MSSA->getMemoryAccess(I: MemSrc); |
| 1434 | MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( |
| 1435 | MemSrcAccess->getDefiningAccess(), MemCpyLoc, AA&: BAA); |
| 1436 | if (auto *MD = dyn_cast<MemoryDef>(Val: Clobber)) |
| 1437 | if (hasUndefContents(MSSA, AA&: BAA, V: MemCpy->getSource(), Def: MD, Size: CopySize)) |
| 1438 | return true; |
| 1439 | return false; |
| 1440 | } |
| 1441 | |
| 1442 | /// Transform memcpy to memset when its source was just memset. |
| 1443 | /// In other words, turn: |
| 1444 | /// \code |
| 1445 | /// memset(dst1, c, dst1_size); |
| 1446 | /// memcpy(dst2, dst1, dst2_size); |
| 1447 | /// \endcode |
| 1448 | /// into: |
| 1449 | /// \code |
| 1450 | /// memset(dst1, c, dst1_size); |
| 1451 | /// memset(dst2, c, dst2_size); |
| 1452 | /// \endcode |
| 1453 | /// When dst2_size <= dst1_size. |
| 1454 | bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, |
| 1455 | MemSetInst *MemSet, |
| 1456 | BatchAAResults &BAA) { |
| 1457 | Value *MemSetSize = MemSet->getLength(); |
| 1458 | Value *CopySize = MemCpy->getLength(); |
| 1459 | |
| 1460 | int64_t MOffset = 0; |
| 1461 | const DataLayout &DL = MemCpy->getModule()->getDataLayout(); |
| 1462 | // We can only transforms memcpy's where the dest of one is the source of the |
| 1463 | // other, or they have a known offset. |
| 1464 | if (MemCpy->getSource() != MemSet->getDest()) { |
| 1465 | std::optional<int64_t> Offset = |
| 1466 | MemCpy->getSource()->getPointerOffsetFrom(Other: MemSet->getDest(), DL); |
| 1467 | if (!Offset || *Offset < 0) |
| 1468 | return false; |
| 1469 | MOffset = *Offset; |
| 1470 | } |
| 1471 | |
| 1472 | if (MOffset != 0 || MemSetSize != CopySize) { |
| 1473 | // Make sure the memcpy doesn't read any more than what the memset wrote, |
| 1474 | // other than undef. Don't worry about sizes larger than i64. |
| 1475 | auto *CMemSetSize = dyn_cast<ConstantInt>(Val: MemSetSize); |
| 1476 | auto *CCopySize = dyn_cast<ConstantInt>(Val: CopySize); |
| 1477 | if (!CMemSetSize || !CCopySize || |
| 1478 | CCopySize->getZExtValue() + MOffset > CMemSetSize->getZExtValue()) { |
| 1479 | if (!overreadUndefContents(MSSA, MemCpy, MemSrc: MemSet, BAA)) |
| 1480 | return false; |
| 1481 | |
| 1482 | if (CMemSetSize && CCopySize) { |
| 1483 | // If both have constant sizes and offsets, clip the memcpy to the |
| 1484 | // bounds of the memset if applicable. |
| 1485 | assert(CCopySize->getZExtValue() + MOffset > |
| 1486 | CMemSetSize->getZExtValue()); |
| 1487 | if (MOffset == 0) |
| 1488 | CopySize = MemSetSize; |
| 1489 | else |
| 1490 | CopySize = |
| 1491 | ConstantInt::get(Ty: CopySize->getType(), |
| 1492 | V: CMemSetSize->getZExtValue() <= (uint64_t)MOffset |
| 1493 | ? 0 |
| 1494 | : CMemSetSize->getZExtValue() - MOffset); |
| 1495 | } |
| 1496 | } |
| 1497 | } |
| 1498 | |
| 1499 | IRBuilder<> Builder(MemCpy); |
| 1500 | Instruction *NewM = |
| 1501 | Builder.CreateMemSet(Ptr: MemCpy->getRawDest(), Val: MemSet->getOperand(i_nocapture: 1), |
| 1502 | Size: CopySize, Align: MemCpy->getDestAlign()); |
| 1503 | auto *LastDef = cast<MemoryDef>(Val: MSSA->getMemoryAccess(I: MemCpy)); |
| 1504 | auto *NewAccess = MSSAU->createMemoryAccessAfter(I: NewM, Definition: nullptr, InsertPt: LastDef); |
| 1505 | MSSAU->insertDef(Def: cast<MemoryDef>(Val: NewAccess), /*RenameUses=*/true); |
| 1506 | |
| 1507 | return true; |
| 1508 | } |
| 1509 | |
| 1510 | // Attempts to optimize the pattern whereby memory is copied from an alloca to |
| 1511 | // another alloca, where the two allocas don't have conflicting mod/ref. If |
| 1512 | // successful, the two allocas can be merged into one and the transfer can be |
| 1513 | // deleted. This pattern is generated frequently in Rust, due to the ubiquity of |
| 1514 | // move operations in that language. |
| 1515 | // |
| 1516 | // Once we determine that the optimization is safe to perform, we replace all |
| 1517 | // uses of the destination alloca with the source alloca. We also "shrink wrap" |
| 1518 | // the lifetime markers of the single merged alloca to before the first use |
| 1519 | // and after the last use. Note that the "shrink wrapping" procedure is a safe |
| 1520 | // transformation only because we restrict the scope of this optimization to |
| 1521 | // allocas that aren't captured. |
| 1522 | bool MemCpyOptPass::performStackMoveOptzn(Instruction *Load, Instruction *Store, |
| 1523 | AllocaInst *DestAlloca, |
| 1524 | AllocaInst *SrcAlloca, TypeSize Size, |
| 1525 | BatchAAResults &BAA) { |
| 1526 | LLVM_DEBUG(dbgs() << "Stack Move: Attempting to optimize:\n" |
| 1527 | << *Store << "\n" ); |
| 1528 | |
| 1529 | // Make sure the two allocas are in the same address space. |
| 1530 | if (SrcAlloca->getAddressSpace() != DestAlloca->getAddressSpace()) { |
| 1531 | LLVM_DEBUG(dbgs() << "Stack Move: Address space mismatch\n" ); |
| 1532 | return false; |
| 1533 | } |
| 1534 | |
| 1535 | // Check that copy is full with static size. |
| 1536 | const DataLayout &DL = DestAlloca->getDataLayout(); |
| 1537 | std::optional<TypeSize> SrcSize = SrcAlloca->getAllocationSize(DL); |
| 1538 | if (!SrcSize || Size != *SrcSize) { |
| 1539 | LLVM_DEBUG(dbgs() << "Stack Move: Source alloca size mismatch\n" ); |
| 1540 | return false; |
| 1541 | } |
| 1542 | std::optional<TypeSize> DestSize = DestAlloca->getAllocationSize(DL); |
| 1543 | if (!DestSize || Size != *DestSize) { |
| 1544 | LLVM_DEBUG(dbgs() << "Stack Move: Destination alloca size mismatch\n" ); |
| 1545 | return false; |
| 1546 | } |
| 1547 | |
| 1548 | if (!SrcAlloca->isStaticAlloca() || !DestAlloca->isStaticAlloca()) |
| 1549 | return false; |
| 1550 | |
| 1551 | // Check that src and dest are never captured, unescaped allocas. Also |
| 1552 | // find the nearest common dominator and postdominator for all users in |
| 1553 | // order to shrink wrap the lifetimes, and instructions with noalias metadata |
| 1554 | // to remove them. |
| 1555 | |
| 1556 | SmallVector<Instruction *, 4> LifetimeMarkers; |
| 1557 | SmallSet<Instruction *, 4> AAMetadataInstrs; |
| 1558 | bool SrcNotDom = false; |
| 1559 | |
| 1560 | auto CaptureTrackingWithModRef = |
| 1561 | [&](Instruction *AI, |
| 1562 | function_ref<bool(Instruction *)> ModRefCallback) -> bool { |
| 1563 | SmallVector<Instruction *, 8> Worklist; |
| 1564 | Worklist.push_back(Elt: AI); |
| 1565 | unsigned MaxUsesToExplore = getDefaultMaxUsesToExploreForCaptureTracking(); |
| 1566 | Worklist.reserve(N: MaxUsesToExplore); |
| 1567 | SmallSet<const Use *, 20> Visited; |
| 1568 | while (!Worklist.empty()) { |
| 1569 | Instruction *I = Worklist.pop_back_val(); |
| 1570 | for (const Use &U : I->uses()) { |
| 1571 | auto *UI = cast<Instruction>(Val: U.getUser()); |
| 1572 | // If any use that isn't dominated by SrcAlloca exists, we move src |
| 1573 | // alloca to the entry before the transformation. |
| 1574 | if (!DT->dominates(Def: SrcAlloca, User: UI)) |
| 1575 | SrcNotDom = true; |
| 1576 | |
| 1577 | if (Visited.size() >= MaxUsesToExplore) { |
| 1578 | LLVM_DEBUG( |
| 1579 | dbgs() |
| 1580 | << "Stack Move: Exceeded max uses to see ModRef, bailing\n" ); |
| 1581 | return false; |
| 1582 | } |
| 1583 | if (!Visited.insert(Ptr: &U).second) |
| 1584 | continue; |
| 1585 | UseCaptureInfo CI = DetermineUseCaptureKind(U, Base: AI); |
| 1586 | if (capturesAnything(CC: CI.UseCC)) |
| 1587 | return false; |
| 1588 | |
| 1589 | if (UI->mayReadOrWriteMemory()) { |
| 1590 | if (UI->isLifetimeStartOrEnd()) { |
| 1591 | // We note the locations of these intrinsic calls so that we can |
| 1592 | // delete them later if the optimization succeeds, this is safe |
| 1593 | // since both llvm.lifetime.start and llvm.lifetime.end intrinsics |
| 1594 | // practically fill all the bytes of the alloca with an undefined |
| 1595 | // value, although conceptually marked as alive/dead. |
| 1596 | int64_t Size = cast<ConstantInt>(Val: UI->getOperand(i: 0))->getSExtValue(); |
| 1597 | if (Size < 0 || Size == DestSize) { |
| 1598 | LifetimeMarkers.push_back(Elt: UI); |
| 1599 | continue; |
| 1600 | } |
| 1601 | } |
| 1602 | AAMetadataInstrs.insert(Ptr: UI); |
| 1603 | |
| 1604 | if (!ModRefCallback(UI)) |
| 1605 | return false; |
| 1606 | } |
| 1607 | |
| 1608 | if (capturesAnything(CC: CI.ResultCC)) { |
| 1609 | Worklist.push_back(Elt: UI); |
| 1610 | continue; |
| 1611 | } |
| 1612 | } |
| 1613 | } |
| 1614 | return true; |
| 1615 | }; |
| 1616 | |
| 1617 | // Check that dest has no Mod/Ref, from the alloca to the Store, except full |
| 1618 | // size lifetime intrinsics. And collect modref inst for the reachability |
| 1619 | // check. |
| 1620 | ModRefInfo DestModRef = ModRefInfo::NoModRef; |
| 1621 | MemoryLocation DestLoc(DestAlloca, LocationSize::precise(Value: Size)); |
| 1622 | SmallVector<BasicBlock *, 8> ReachabilityWorklist; |
| 1623 | auto DestModRefCallback = [&](Instruction *UI) -> bool { |
| 1624 | // We don't care about the store itself. |
| 1625 | if (UI == Store) |
| 1626 | return true; |
| 1627 | ModRefInfo Res = BAA.getModRefInfo(I: UI, OptLoc: DestLoc); |
| 1628 | DestModRef |= Res; |
| 1629 | if (isModOrRefSet(MRI: Res)) { |
| 1630 | // Instructions reachability checks. |
| 1631 | // FIXME: adding the Instruction version isPotentiallyReachableFromMany on |
| 1632 | // lib/Analysis/CFG.cpp (currently only for BasicBlocks) might be helpful. |
| 1633 | if (UI->getParent() == Store->getParent()) { |
| 1634 | // The same block case is special because it's the only time we're |
| 1635 | // looking within a single block to see which instruction comes first. |
| 1636 | // Once we start looking at multiple blocks, the first instruction of |
| 1637 | // the block is reachable, so we only need to determine reachability |
| 1638 | // between whole blocks. |
| 1639 | BasicBlock *BB = UI->getParent(); |
| 1640 | |
| 1641 | // If A comes before B, then B is definitively reachable from A. |
| 1642 | if (UI->comesBefore(Other: Store)) |
| 1643 | return false; |
| 1644 | |
| 1645 | // If the user's parent block is entry, no predecessor exists. |
| 1646 | if (BB->isEntryBlock()) |
| 1647 | return true; |
| 1648 | |
| 1649 | // Otherwise, continue doing the normal per-BB CFG walk. |
| 1650 | ReachabilityWorklist.append(in_start: succ_begin(BB), in_end: succ_end(BB)); |
| 1651 | } else { |
| 1652 | ReachabilityWorklist.push_back(Elt: UI->getParent()); |
| 1653 | } |
| 1654 | } |
| 1655 | return true; |
| 1656 | }; |
| 1657 | |
| 1658 | if (!CaptureTrackingWithModRef(DestAlloca, DestModRefCallback)) |
| 1659 | return false; |
| 1660 | // Bailout if Dest may have any ModRef before Store. |
| 1661 | if (!ReachabilityWorklist.empty() && |
| 1662 | isPotentiallyReachableFromMany(Worklist&: ReachabilityWorklist, StopBB: Store->getParent(), |
| 1663 | ExclusionSet: nullptr, DT, LI: nullptr)) |
| 1664 | return false; |
| 1665 | |
| 1666 | // Check that, from after the Load to the end of the BB, |
| 1667 | // - if the dest has any Mod, src has no Ref, and |
| 1668 | // - if the dest has any Ref, src has no Mod except full-sized lifetimes. |
| 1669 | MemoryLocation SrcLoc(SrcAlloca, LocationSize::precise(Value: Size)); |
| 1670 | |
| 1671 | auto SrcModRefCallback = [&](Instruction *UI) -> bool { |
| 1672 | // Any ModRef post-dominated by Load doesn't matter, also Load and Store |
| 1673 | // themselves can be ignored. |
| 1674 | if (PDT->dominates(I1: Load, I2: UI) || UI == Load || UI == Store) |
| 1675 | return true; |
| 1676 | ModRefInfo Res = BAA.getModRefInfo(I: UI, OptLoc: SrcLoc); |
| 1677 | if ((isModSet(MRI: DestModRef) && isRefSet(MRI: Res)) || |
| 1678 | (isRefSet(MRI: DestModRef) && isModSet(MRI: Res))) |
| 1679 | return false; |
| 1680 | |
| 1681 | return true; |
| 1682 | }; |
| 1683 | |
| 1684 | if (!CaptureTrackingWithModRef(SrcAlloca, SrcModRefCallback)) |
| 1685 | return false; |
| 1686 | |
| 1687 | // We can do the transformation. First, move the SrcAlloca to the start of the |
| 1688 | // BB. |
| 1689 | if (SrcNotDom) |
| 1690 | SrcAlloca->moveBefore(BB&: *SrcAlloca->getParent(), |
| 1691 | I: SrcAlloca->getParent()->getFirstInsertionPt()); |
| 1692 | // Align the allocas appropriately. |
| 1693 | SrcAlloca->setAlignment( |
| 1694 | std::max(a: SrcAlloca->getAlign(), b: DestAlloca->getAlign())); |
| 1695 | |
| 1696 | // Merge the two allocas. |
| 1697 | DestAlloca->replaceAllUsesWith(V: SrcAlloca); |
| 1698 | eraseInstruction(I: DestAlloca); |
| 1699 | |
| 1700 | // Drop metadata on the source alloca. |
| 1701 | SrcAlloca->dropUnknownNonDebugMetadata(); |
| 1702 | |
| 1703 | // TODO: Reconstruct merged lifetime markers. |
| 1704 | // Remove all other lifetime markers. if the original lifetime intrinsics |
| 1705 | // exists. |
| 1706 | if (!LifetimeMarkers.empty()) { |
| 1707 | for (Instruction *I : LifetimeMarkers) |
| 1708 | eraseInstruction(I); |
| 1709 | } |
| 1710 | |
| 1711 | // As this transformation can cause memory accesses that didn't previously |
| 1712 | // alias to begin to alias one another, we remove !alias.scope, !noalias, |
| 1713 | // !tbaa and !tbaa_struct metadata from any uses of either alloca. |
| 1714 | // This is conservative, but more precision doesn't seem worthwhile |
| 1715 | // right now. |
| 1716 | for (Instruction *I : AAMetadataInstrs) { |
| 1717 | I->setMetadata(KindID: LLVMContext::MD_alias_scope, Node: nullptr); |
| 1718 | I->setMetadata(KindID: LLVMContext::MD_noalias, Node: nullptr); |
| 1719 | I->setMetadata(KindID: LLVMContext::MD_tbaa, Node: nullptr); |
| 1720 | I->setMetadata(KindID: LLVMContext::MD_tbaa_struct, Node: nullptr); |
| 1721 | } |
| 1722 | |
| 1723 | LLVM_DEBUG(dbgs() << "Stack Move: Performed staack-move optimization\n" ); |
| 1724 | NumStackMove++; |
| 1725 | return true; |
| 1726 | } |
| 1727 | |
| 1728 | static bool isZeroSize(Value *Size) { |
| 1729 | if (auto *I = dyn_cast<Instruction>(Val: Size)) |
| 1730 | if (auto *Res = simplifyInstruction(I, Q: I->getDataLayout())) |
| 1731 | Size = Res; |
| 1732 | // Treat undef/poison size like zero. |
| 1733 | if (auto *C = dyn_cast<Constant>(Val: Size)) |
| 1734 | return isa<UndefValue>(Val: C) || C->isNullValue(); |
| 1735 | return false; |
| 1736 | } |
| 1737 | |
| 1738 | /// Perform simplification of memcpy's. If we have memcpy A |
| 1739 | /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite |
| 1740 | /// B to be a memcpy from X to Z (or potentially a memmove, depending on |
| 1741 | /// circumstances). This allows later passes to remove the first memcpy |
| 1742 | /// altogether. |
| 1743 | bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) { |
| 1744 | // We can only optimize non-volatile memcpy's. |
| 1745 | if (M->isVolatile()) |
| 1746 | return false; |
| 1747 | |
| 1748 | // If the source and destination of the memcpy are the same, then zap it. |
| 1749 | if (M->getSource() == M->getDest()) { |
| 1750 | ++BBI; |
| 1751 | eraseInstruction(I: M); |
| 1752 | return true; |
| 1753 | } |
| 1754 | |
| 1755 | // If the size is zero, remove the memcpy. |
| 1756 | if (isZeroSize(Size: M->getLength())) { |
| 1757 | ++BBI; |
| 1758 | eraseInstruction(I: M); |
| 1759 | return true; |
| 1760 | } |
| 1761 | |
| 1762 | MemoryUseOrDef *MA = MSSA->getMemoryAccess(I: M); |
| 1763 | if (!MA) |
| 1764 | // Degenerate case: memcpy marked as not accessing memory. |
| 1765 | return false; |
| 1766 | |
| 1767 | // If copying from a constant, try to turn the memcpy into a memset. |
| 1768 | if (auto *GV = dyn_cast<GlobalVariable>(Val: M->getSource())) |
| 1769 | if (GV->isConstant() && GV->hasDefinitiveInitializer()) |
| 1770 | if (Value *ByteVal = isBytewiseValue(V: GV->getInitializer(), |
| 1771 | DL: M->getDataLayout())) { |
| 1772 | IRBuilder<> Builder(M); |
| 1773 | Instruction *NewM = Builder.CreateMemSet( |
| 1774 | Ptr: M->getRawDest(), Val: ByteVal, Size: M->getLength(), Align: M->getDestAlign(), isVolatile: false); |
| 1775 | auto *LastDef = cast<MemoryDef>(Val: MA); |
| 1776 | auto *NewAccess = |
| 1777 | MSSAU->createMemoryAccessAfter(I: NewM, Definition: nullptr, InsertPt: LastDef); |
| 1778 | MSSAU->insertDef(Def: cast<MemoryDef>(Val: NewAccess), /*RenameUses=*/true); |
| 1779 | |
| 1780 | eraseInstruction(I: M); |
| 1781 | ++NumCpyToSet; |
| 1782 | return true; |
| 1783 | } |
| 1784 | |
| 1785 | BatchAAResults BAA(*AA, EEA); |
| 1786 | // FIXME: Not using getClobberingMemoryAccess() here due to PR54682. |
| 1787 | MemoryAccess *AnyClobber = MA->getDefiningAccess(); |
| 1788 | MemoryLocation DestLoc = MemoryLocation::getForDest(MI: M); |
| 1789 | const MemoryAccess *DestClobber = |
| 1790 | MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc, AA&: BAA); |
| 1791 | |
| 1792 | // Try to turn a partially redundant memset + memcpy into |
| 1793 | // smaller memset + memcpy. We don't need the memcpy size for this. |
| 1794 | // The memcpy must post-dom the memset, so limit this to the same basic |
| 1795 | // block. A non-local generalization is likely not worthwhile. |
| 1796 | if (auto *MD = dyn_cast<MemoryDef>(Val: DestClobber)) |
| 1797 | if (auto *MDep = dyn_cast_or_null<MemSetInst>(Val: MD->getMemoryInst())) |
| 1798 | if (DestClobber->getBlock() == M->getParent()) |
| 1799 | if (processMemSetMemCpyDependence(MemCpy: M, MemSet: MDep, BAA)) |
| 1800 | return true; |
| 1801 | |
| 1802 | MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess( |
| 1803 | AnyClobber, MemoryLocation::getForSource(MTI: M), AA&: BAA); |
| 1804 | |
| 1805 | // There are five possible optimizations we can do for memcpy: |
| 1806 | // a) memcpy-memcpy xform which exposes redundance for DSE. |
| 1807 | // b) call-memcpy xform for return slot optimization. |
| 1808 | // c) memcpy from freshly alloca'd space or space that has just started |
| 1809 | // its lifetime copies undefined data, and we can therefore eliminate |
| 1810 | // the memcpy in favor of the data that was already at the destination. |
| 1811 | // d) memcpy from a just-memset'd source can be turned into memset. |
| 1812 | // e) elimination of memcpy via stack-move optimization. |
| 1813 | if (auto *MD = dyn_cast<MemoryDef>(Val: SrcClobber)) { |
| 1814 | if (Instruction *MI = MD->getMemoryInst()) { |
| 1815 | if (auto *CopySize = dyn_cast<ConstantInt>(Val: M->getLength())) { |
| 1816 | if (auto *C = dyn_cast<CallInst>(Val: MI)) { |
| 1817 | if (performCallSlotOptzn(cpyLoad: M, cpyStore: M, cpyDest: M->getDest(), cpySrc: M->getSource(), |
| 1818 | cpySize: TypeSize::getFixed(ExactSize: CopySize->getZExtValue()), |
| 1819 | cpyDestAlign: M->getDestAlign().valueOrOne(), BAA, |
| 1820 | GetC: [C]() -> CallInst * { return C; })) { |
| 1821 | LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n" |
| 1822 | << " call: " << *C << "\n" |
| 1823 | << " memcpy: " << *M << "\n" ); |
| 1824 | eraseInstruction(I: M); |
| 1825 | ++NumMemCpyInstr; |
| 1826 | return true; |
| 1827 | } |
| 1828 | } |
| 1829 | } |
| 1830 | if (auto *MDep = dyn_cast<MemCpyInst>(Val: MI)) |
| 1831 | if (processMemCpyMemCpyDependence(M, MDep, BAA)) |
| 1832 | return true; |
| 1833 | if (auto *MDep = dyn_cast<MemSetInst>(Val: MI)) { |
| 1834 | if (performMemCpyToMemSetOptzn(MemCpy: M, MemSet: MDep, BAA)) { |
| 1835 | LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n" ); |
| 1836 | eraseInstruction(I: M); |
| 1837 | ++NumCpyToSet; |
| 1838 | return true; |
| 1839 | } |
| 1840 | } |
| 1841 | } |
| 1842 | |
| 1843 | if (hasUndefContents(MSSA, AA&: BAA, V: M->getSource(), Def: MD, Size: M->getLength())) { |
| 1844 | LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n" ); |
| 1845 | eraseInstruction(I: M); |
| 1846 | ++NumMemCpyInstr; |
| 1847 | return true; |
| 1848 | } |
| 1849 | } |
| 1850 | |
| 1851 | // If the transfer is from a stack slot to a stack slot, then we may be able |
| 1852 | // to perform the stack-move optimization. See the comments in |
| 1853 | // performStackMoveOptzn() for more details. |
| 1854 | auto *DestAlloca = dyn_cast<AllocaInst>(Val: M->getDest()); |
| 1855 | if (!DestAlloca) |
| 1856 | return false; |
| 1857 | auto *SrcAlloca = dyn_cast<AllocaInst>(Val: M->getSource()); |
| 1858 | if (!SrcAlloca) |
| 1859 | return false; |
| 1860 | ConstantInt *Len = dyn_cast<ConstantInt>(Val: M->getLength()); |
| 1861 | if (Len == nullptr) |
| 1862 | return false; |
| 1863 | if (performStackMoveOptzn(Load: M, Store: M, DestAlloca, SrcAlloca, |
| 1864 | Size: TypeSize::getFixed(ExactSize: Len->getZExtValue()), BAA)) { |
| 1865 | // Avoid invalidating the iterator. |
| 1866 | BBI = M->getNextNonDebugInstruction()->getIterator(); |
| 1867 | eraseInstruction(I: M); |
| 1868 | ++NumMemCpyInstr; |
| 1869 | return true; |
| 1870 | } |
| 1871 | |
| 1872 | return false; |
| 1873 | } |
| 1874 | |
| 1875 | /// Memmove calls with overlapping src/dest buffers that come after a memset may |
| 1876 | /// be removed. |
| 1877 | bool MemCpyOptPass::isMemMoveMemSetDependency(MemMoveInst *M) { |
| 1878 | const auto &DL = M->getDataLayout(); |
| 1879 | MemoryUseOrDef *MemMoveAccess = MSSA->getMemoryAccess(I: M); |
| 1880 | if (!MemMoveAccess) |
| 1881 | return false; |
| 1882 | |
| 1883 | // The memmove is of form memmove(x, x + A, B). |
| 1884 | MemoryLocation SourceLoc = MemoryLocation::getForSource(MTI: M); |
| 1885 | auto *MemMoveSourceOp = M->getSource(); |
| 1886 | auto *Source = dyn_cast<GEPOperator>(Val: MemMoveSourceOp); |
| 1887 | if (!Source) |
| 1888 | return false; |
| 1889 | |
| 1890 | APInt Offset(DL.getIndexTypeSizeInBits(Ty: Source->getType()), 0); |
| 1891 | LocationSize MemMoveLocSize = SourceLoc.Size; |
| 1892 | if (Source->getPointerOperand() != M->getDest() || |
| 1893 | !MemMoveLocSize.hasValue() || |
| 1894 | !Source->accumulateConstantOffset(DL, Offset) || Offset.isNegative()) { |
| 1895 | return false; |
| 1896 | } |
| 1897 | |
| 1898 | uint64_t MemMoveSize = MemMoveLocSize.getValue(); |
| 1899 | LocationSize TotalSize = |
| 1900 | LocationSize::precise(Value: Offset.getZExtValue() + MemMoveSize); |
| 1901 | MemoryLocation CombinedLoc(M->getDest(), TotalSize); |
| 1902 | |
| 1903 | // The first dominating clobbering MemoryAccess for the combined location |
| 1904 | // needs to be a memset. |
| 1905 | BatchAAResults BAA(*AA); |
| 1906 | MemoryAccess *FirstDef = MemMoveAccess->getDefiningAccess(); |
| 1907 | auto *DestClobber = dyn_cast<MemoryDef>( |
| 1908 | Val: MSSA->getWalker()->getClobberingMemoryAccess(FirstDef, CombinedLoc, AA&: BAA)); |
| 1909 | if (!DestClobber) |
| 1910 | return false; |
| 1911 | |
| 1912 | auto *MS = dyn_cast_or_null<MemSetInst>(Val: DestClobber->getMemoryInst()); |
| 1913 | if (!MS) |
| 1914 | return false; |
| 1915 | |
| 1916 | // Memset length must be sufficiently large. |
| 1917 | auto *MemSetLength = dyn_cast<ConstantInt>(Val: MS->getLength()); |
| 1918 | if (!MemSetLength || MemSetLength->getZExtValue() < MemMoveSize) |
| 1919 | return false; |
| 1920 | |
| 1921 | // The destination buffer must have been memset'd. |
| 1922 | if (!BAA.isMustAlias(V1: MS->getDest(), V2: M->getDest())) |
| 1923 | return false; |
| 1924 | |
| 1925 | return true; |
| 1926 | } |
| 1927 | |
| 1928 | /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed |
| 1929 | /// not to alias. |
| 1930 | bool MemCpyOptPass::processMemMove(MemMoveInst *M, BasicBlock::iterator &BBI) { |
| 1931 | // See if the source could be modified by this memmove potentially. |
| 1932 | if (isModSet(MRI: AA->getModRefInfo(I: M, OptLoc: MemoryLocation::getForSource(MTI: M)))) { |
| 1933 | // On the off-chance the memmove clobbers src with previously memset'd |
| 1934 | // bytes, the memmove may be redundant. |
| 1935 | if (!M->isVolatile() && isMemMoveMemSetDependency(M)) { |
| 1936 | LLVM_DEBUG(dbgs() << "Removed redundant memmove.\n" ); |
| 1937 | ++BBI; |
| 1938 | eraseInstruction(I: M); |
| 1939 | ++NumMemMoveInstr; |
| 1940 | return true; |
| 1941 | } |
| 1942 | return false; |
| 1943 | } |
| 1944 | |
| 1945 | LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M |
| 1946 | << "\n" ); |
| 1947 | |
| 1948 | // If not, then we know we can transform this. |
| 1949 | Type *ArgTys[3] = {M->getRawDest()->getType(), M->getRawSource()->getType(), |
| 1950 | M->getLength()->getType()}; |
| 1951 | M->setCalledFunction(Intrinsic::getOrInsertDeclaration( |
| 1952 | M: M->getModule(), id: Intrinsic::memcpy, Tys: ArgTys)); |
| 1953 | |
| 1954 | // For MemorySSA nothing really changes (except that memcpy may imply stricter |
| 1955 | // aliasing guarantees). |
| 1956 | |
| 1957 | ++NumMoveToCpy; |
| 1958 | return true; |
| 1959 | } |
| 1960 | |
| 1961 | /// This is called on every byval argument in call sites. |
| 1962 | bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) { |
| 1963 | const DataLayout &DL = CB.getDataLayout(); |
| 1964 | // Find out what feeds this byval argument. |
| 1965 | Value *ByValArg = CB.getArgOperand(i: ArgNo); |
| 1966 | Type *ByValTy = CB.getParamByValType(ArgNo); |
| 1967 | TypeSize ByValSize = DL.getTypeAllocSize(Ty: ByValTy); |
| 1968 | MemoryLocation Loc(ByValArg, LocationSize::precise(Value: ByValSize)); |
| 1969 | MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(I: &CB); |
| 1970 | if (!CallAccess) |
| 1971 | return false; |
| 1972 | MemCpyInst *MDep = nullptr; |
| 1973 | BatchAAResults BAA(*AA, EEA); |
| 1974 | MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( |
| 1975 | CallAccess->getDefiningAccess(), Loc, AA&: BAA); |
| 1976 | if (auto *MD = dyn_cast<MemoryDef>(Val: Clobber)) |
| 1977 | MDep = dyn_cast_or_null<MemCpyInst>(Val: MD->getMemoryInst()); |
| 1978 | |
| 1979 | // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by |
| 1980 | // a memcpy, see if we can byval from the source of the memcpy instead of the |
| 1981 | // result. |
| 1982 | if (!MDep || MDep->isVolatile() || |
| 1983 | ByValArg->stripPointerCasts() != MDep->getDest()) |
| 1984 | return false; |
| 1985 | |
| 1986 | // The length of the memcpy must be larger or equal to the size of the byval. |
| 1987 | auto *C1 = dyn_cast<ConstantInt>(Val: MDep->getLength()); |
| 1988 | if (!C1 || !TypeSize::isKnownGE( |
| 1989 | LHS: TypeSize::getFixed(ExactSize: C1->getValue().getZExtValue()), RHS: ByValSize)) |
| 1990 | return false; |
| 1991 | |
| 1992 | // Get the alignment of the byval. If the call doesn't specify the alignment, |
| 1993 | // then it is some target specific value that we can't know. |
| 1994 | MaybeAlign ByValAlign = CB.getParamAlign(ArgNo); |
| 1995 | if (!ByValAlign) |
| 1996 | return false; |
| 1997 | |
| 1998 | // If it is greater than the memcpy, then we check to see if we can force the |
| 1999 | // source of the memcpy to the alignment we need. If we fail, we bail out. |
| 2000 | MaybeAlign MemDepAlign = MDep->getSourceAlign(); |
| 2001 | if ((!MemDepAlign || *MemDepAlign < *ByValAlign) && |
| 2002 | getOrEnforceKnownAlignment(V: MDep->getSource(), PrefAlign: ByValAlign, DL, CxtI: &CB, AC, |
| 2003 | DT) < *ByValAlign) |
| 2004 | return false; |
| 2005 | |
| 2006 | // The type of the memcpy source must match the byval argument |
| 2007 | if (MDep->getSource()->getType() != ByValArg->getType()) |
| 2008 | return false; |
| 2009 | |
| 2010 | // Verify that the copied-from memory doesn't change in between the memcpy and |
| 2011 | // the byval call. |
| 2012 | // memcpy(a <- b) |
| 2013 | // *b = 42; |
| 2014 | // foo(*a) |
| 2015 | // It would be invalid to transform the second memcpy into foo(*b). |
| 2016 | if (writtenBetween(MSSA, AA&: BAA, Loc: MemoryLocation::getForSource(MTI: MDep), |
| 2017 | Start: MSSA->getMemoryAccess(I: MDep), End: CallAccess)) |
| 2018 | return false; |
| 2019 | |
| 2020 | LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" |
| 2021 | << " " << *MDep << "\n" |
| 2022 | << " " << CB << "\n" ); |
| 2023 | |
| 2024 | // Otherwise we're good! Update the byval argument. |
| 2025 | combineAAMetadata(K: &CB, J: MDep); |
| 2026 | CB.setArgOperand(i: ArgNo, v: MDep->getSource()); |
| 2027 | ++NumMemCpyInstr; |
| 2028 | return true; |
| 2029 | } |
| 2030 | |
| 2031 | /// This is called on memcpy dest pointer arguments attributed as immutable |
| 2032 | /// during call. Try to use memcpy source directly if all of the following |
| 2033 | /// conditions are satisfied. |
| 2034 | /// 1. The memcpy dst is neither modified during the call nor captured by the |
| 2035 | /// call. |
| 2036 | /// 2. The memcpy dst is an alloca with known alignment & size. |
| 2037 | /// 2-1. The memcpy length == the alloca size which ensures that the new |
| 2038 | /// pointer is dereferenceable for the required range |
| 2039 | /// 2-2. The src pointer has alignment >= the alloca alignment or can be |
| 2040 | /// enforced so. |
| 2041 | /// 3. The memcpy dst and src is not modified between the memcpy and the call. |
| 2042 | /// (if MSSA clobber check is safe.) |
| 2043 | /// 4. The memcpy src is not modified during the call. (ModRef check shows no |
| 2044 | /// Mod.) |
| 2045 | bool MemCpyOptPass::processImmutArgument(CallBase &CB, unsigned ArgNo) { |
| 2046 | BatchAAResults BAA(*AA, EEA); |
| 2047 | Value *ImmutArg = CB.getArgOperand(i: ArgNo); |
| 2048 | |
| 2049 | // 1. Ensure passed argument is immutable during call. |
| 2050 | if (!CB.doesNotCapture(OpNo: ArgNo)) |
| 2051 | return false; |
| 2052 | |
| 2053 | // We know that the argument is readonly at this point, but the function |
| 2054 | // might still modify the same memory through a different pointer. Exclude |
| 2055 | // this either via noalias, or alias analysis. |
| 2056 | if (!CB.paramHasAttr(ArgNo, Kind: Attribute::NoAlias) && |
| 2057 | isModSet( |
| 2058 | MRI: BAA.getModRefInfo(I: &CB, OptLoc: MemoryLocation::getBeforeOrAfter(Ptr: ImmutArg)))) |
| 2059 | return false; |
| 2060 | |
| 2061 | const DataLayout &DL = CB.getDataLayout(); |
| 2062 | |
| 2063 | // 2. Check that arg is alloca |
| 2064 | // TODO: Even if the arg gets back to branches, we can remove memcpy if all |
| 2065 | // the alloca alignments can be enforced to source alignment. |
| 2066 | auto *AI = dyn_cast<AllocaInst>(Val: ImmutArg->stripPointerCasts()); |
| 2067 | if (!AI) |
| 2068 | return false; |
| 2069 | |
| 2070 | std::optional<TypeSize> AllocaSize = AI->getAllocationSize(DL); |
| 2071 | // Can't handle unknown size alloca. |
| 2072 | // (e.g. Variable Length Array, Scalable Vector) |
| 2073 | if (!AllocaSize || AllocaSize->isScalable()) |
| 2074 | return false; |
| 2075 | MemoryLocation Loc(ImmutArg, LocationSize::precise(Value: *AllocaSize)); |
| 2076 | MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(I: &CB); |
| 2077 | if (!CallAccess) |
| 2078 | return false; |
| 2079 | |
| 2080 | MemCpyInst *MDep = nullptr; |
| 2081 | MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( |
| 2082 | CallAccess->getDefiningAccess(), Loc, AA&: BAA); |
| 2083 | if (auto *MD = dyn_cast<MemoryDef>(Val: Clobber)) |
| 2084 | MDep = dyn_cast_or_null<MemCpyInst>(Val: MD->getMemoryInst()); |
| 2085 | |
| 2086 | // If the immut argument isn't fed by a memcpy, ignore it. If it is fed by |
| 2087 | // a memcpy, check that the arg equals the memcpy dest. |
| 2088 | if (!MDep || MDep->isVolatile() || AI != MDep->getDest()) |
| 2089 | return false; |
| 2090 | |
| 2091 | // The type of the memcpy source must match the immut argument |
| 2092 | if (MDep->getSource()->getType() != ImmutArg->getType()) |
| 2093 | return false; |
| 2094 | |
| 2095 | // 2-1. The length of the memcpy must be equal to the size of the alloca. |
| 2096 | auto *MDepLen = dyn_cast<ConstantInt>(Val: MDep->getLength()); |
| 2097 | if (!MDepLen || AllocaSize != MDepLen->getValue()) |
| 2098 | return false; |
| 2099 | |
| 2100 | // 2-2. the memcpy source align must be larger than or equal the alloca's |
| 2101 | // align. If not so, we check to see if we can force the source of the memcpy |
| 2102 | // to the alignment we need. If we fail, we bail out. |
| 2103 | Align MemDepAlign = MDep->getSourceAlign().valueOrOne(); |
| 2104 | Align AllocaAlign = AI->getAlign(); |
| 2105 | if (MemDepAlign < AllocaAlign && |
| 2106 | getOrEnforceKnownAlignment(V: MDep->getSource(), PrefAlign: AllocaAlign, DL, CxtI: &CB, AC, |
| 2107 | DT) < AllocaAlign) |
| 2108 | return false; |
| 2109 | |
| 2110 | // 3. Verify that the source doesn't change in between the memcpy and |
| 2111 | // the call. |
| 2112 | // memcpy(a <- b) |
| 2113 | // *b = 42; |
| 2114 | // foo(*a) |
| 2115 | // It would be invalid to transform the second memcpy into foo(*b). |
| 2116 | if (writtenBetween(MSSA, AA&: BAA, Loc: MemoryLocation::getForSource(MTI: MDep), |
| 2117 | Start: MSSA->getMemoryAccess(I: MDep), End: CallAccess)) |
| 2118 | return false; |
| 2119 | |
| 2120 | // 4. The memcpy src must not be modified during the call. |
| 2121 | if (isModSet(MRI: BAA.getModRefInfo(I: &CB, OptLoc: MemoryLocation::getForSource(MTI: MDep)))) |
| 2122 | return false; |
| 2123 | |
| 2124 | LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to Immut src:\n" |
| 2125 | << " " << *MDep << "\n" |
| 2126 | << " " << CB << "\n" ); |
| 2127 | |
| 2128 | // Otherwise we're good! Update the immut argument. |
| 2129 | combineAAMetadata(K: &CB, J: MDep); |
| 2130 | CB.setArgOperand(i: ArgNo, v: MDep->getSource()); |
| 2131 | ++NumMemCpyInstr; |
| 2132 | return true; |
| 2133 | } |
| 2134 | |
| 2135 | /// Executes one iteration of MemCpyOptPass. |
| 2136 | bool MemCpyOptPass::iterateOnFunction(Function &F) { |
| 2137 | bool MadeChange = false; |
| 2138 | |
| 2139 | // Walk all instruction in the function. |
| 2140 | for (BasicBlock &BB : F) { |
| 2141 | // Skip unreachable blocks. For example processStore assumes that an |
| 2142 | // instruction in a BB can't be dominated by a later instruction in the |
| 2143 | // same BB (which is a scenario that can happen for an unreachable BB that |
| 2144 | // has itself as a predecessor). |
| 2145 | if (!DT->isReachableFromEntry(A: &BB)) |
| 2146 | continue; |
| 2147 | |
| 2148 | for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { |
| 2149 | // Avoid invalidating the iterator. |
| 2150 | Instruction *I = &*BI++; |
| 2151 | |
| 2152 | bool RepeatInstruction = false; |
| 2153 | |
| 2154 | if (auto *SI = dyn_cast<StoreInst>(Val: I)) |
| 2155 | MadeChange |= processStore(SI, BBI&: BI); |
| 2156 | else if (auto *M = dyn_cast<MemSetInst>(Val: I)) |
| 2157 | RepeatInstruction = processMemSet(MSI: M, BBI&: BI); |
| 2158 | else if (auto *M = dyn_cast<MemCpyInst>(Val: I)) |
| 2159 | RepeatInstruction = processMemCpy(M, BBI&: BI); |
| 2160 | else if (auto *M = dyn_cast<MemMoveInst>(Val: I)) |
| 2161 | RepeatInstruction = processMemMove(M, BBI&: BI); |
| 2162 | else if (auto *CB = dyn_cast<CallBase>(Val: I)) { |
| 2163 | for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) { |
| 2164 | if (CB->isByValArgument(ArgNo: i)) |
| 2165 | MadeChange |= processByValArgument(CB&: *CB, ArgNo: i); |
| 2166 | else if (CB->onlyReadsMemory(OpNo: i)) |
| 2167 | MadeChange |= processImmutArgument(CB&: *CB, ArgNo: i); |
| 2168 | } |
| 2169 | } |
| 2170 | |
| 2171 | // Reprocess the instruction if desired. |
| 2172 | if (RepeatInstruction) { |
| 2173 | if (BI != BB.begin()) |
| 2174 | --BI; |
| 2175 | MadeChange = true; |
| 2176 | } |
| 2177 | } |
| 2178 | } |
| 2179 | |
| 2180 | return MadeChange; |
| 2181 | } |
| 2182 | |
| 2183 | PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { |
| 2184 | auto &TLI = AM.getResult<TargetLibraryAnalysis>(IR&: F); |
| 2185 | auto *AA = &AM.getResult<AAManager>(IR&: F); |
| 2186 | auto *AC = &AM.getResult<AssumptionAnalysis>(IR&: F); |
| 2187 | auto *DT = &AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 2188 | auto *PDT = &AM.getResult<PostDominatorTreeAnalysis>(IR&: F); |
| 2189 | auto *MSSA = &AM.getResult<MemorySSAAnalysis>(IR&: F); |
| 2190 | |
| 2191 | bool MadeChange = runImpl(F, TLI: &TLI, AA, AC, DT, PDT, MSSA: &MSSA->getMSSA()); |
| 2192 | if (!MadeChange) |
| 2193 | return PreservedAnalyses::all(); |
| 2194 | |
| 2195 | PreservedAnalyses PA; |
| 2196 | PA.preserveSet<CFGAnalyses>(); |
| 2197 | PA.preserve<MemorySSAAnalysis>(); |
| 2198 | return PA; |
| 2199 | } |
| 2200 | |
| 2201 | bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_, |
| 2202 | AliasAnalysis *AA_, AssumptionCache *AC_, |
| 2203 | DominatorTree *DT_, PostDominatorTree *PDT_, |
| 2204 | MemorySSA *MSSA_) { |
| 2205 | bool MadeChange = false; |
| 2206 | TLI = TLI_; |
| 2207 | AA = AA_; |
| 2208 | AC = AC_; |
| 2209 | DT = DT_; |
| 2210 | PDT = PDT_; |
| 2211 | MSSA = MSSA_; |
| 2212 | MemorySSAUpdater MSSAU_(MSSA_); |
| 2213 | MSSAU = &MSSAU_; |
| 2214 | EarliestEscapeAnalysis EEA_(*DT); |
| 2215 | EEA = &EEA_; |
| 2216 | |
| 2217 | while (true) { |
| 2218 | if (!iterateOnFunction(F)) |
| 2219 | break; |
| 2220 | MadeChange = true; |
| 2221 | } |
| 2222 | |
| 2223 | if (VerifyMemorySSA) |
| 2224 | MSSA_->verifyMemorySSA(); |
| 2225 | |
| 2226 | return MadeChange; |
| 2227 | } |
| 2228 | |