| 1 | //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This family of functions perform manipulations on basic blocks, and |
| 10 | // instructions contained within basic blocks. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 15 | #include "llvm/ADT/ArrayRef.h" |
| 16 | #include "llvm/ADT/SmallPtrSet.h" |
| 17 | #include "llvm/ADT/SmallVector.h" |
| 18 | #include "llvm/ADT/Twine.h" |
| 19 | #include "llvm/Analysis/CFG.h" |
| 20 | #include "llvm/Analysis/DomTreeUpdater.h" |
| 21 | #include "llvm/Analysis/LoopInfo.h" |
| 22 | #include "llvm/Analysis/MemoryDependenceAnalysis.h" |
| 23 | #include "llvm/Analysis/MemorySSAUpdater.h" |
| 24 | #include "llvm/IR/BasicBlock.h" |
| 25 | #include "llvm/IR/CFG.h" |
| 26 | #include "llvm/IR/Constants.h" |
| 27 | #include "llvm/IR/DebugInfo.h" |
| 28 | #include "llvm/IR/DebugInfoMetadata.h" |
| 29 | #include "llvm/IR/Dominators.h" |
| 30 | #include "llvm/IR/Function.h" |
| 31 | #include "llvm/IR/IRBuilder.h" |
| 32 | #include "llvm/IR/InstrTypes.h" |
| 33 | #include "llvm/IR/Instruction.h" |
| 34 | #include "llvm/IR/Instructions.h" |
| 35 | #include "llvm/IR/LLVMContext.h" |
| 36 | #include "llvm/IR/Type.h" |
| 37 | #include "llvm/IR/User.h" |
| 38 | #include "llvm/IR/Value.h" |
| 39 | #include "llvm/IR/ValueHandle.h" |
| 40 | #include "llvm/Support/Casting.h" |
| 41 | #include "llvm/Support/CommandLine.h" |
| 42 | #include "llvm/Support/Debug.h" |
| 43 | #include "llvm/Support/raw_ostream.h" |
| 44 | #include "llvm/Transforms/Utils/Local.h" |
| 45 | #include <cassert> |
| 46 | #include <cstdint> |
| 47 | #include <string> |
| 48 | #include <utility> |
| 49 | #include <vector> |
| 50 | |
| 51 | using namespace llvm; |
| 52 | |
| 53 | #define DEBUG_TYPE "basicblock-utils" |
| 54 | |
| 55 | static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth( |
| 56 | "max-deopt-or-unreachable-succ-check-depth" , cl::init(Val: 8), cl::Hidden, |
| 57 | cl::desc("Set the maximum path length when checking whether a basic block " |
| 58 | "is followed by a block that either has a terminating " |
| 59 | "deoptimizing call or is terminated with an unreachable" )); |
| 60 | |
| 61 | void llvm::detachDeadBlocks( |
| 62 | ArrayRef<BasicBlock *> BBs, |
| 63 | SmallVectorImpl<DominatorTree::UpdateType> *Updates, |
| 64 | bool KeepOneInputPHIs) { |
| 65 | for (auto *BB : BBs) { |
| 66 | // Loop through all of our successors and make sure they know that one |
| 67 | // of their predecessors is going away. |
| 68 | SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; |
| 69 | for (BasicBlock *Succ : successors(BB)) { |
| 70 | Succ->removePredecessor(Pred: BB, KeepOneInputPHIs); |
| 71 | if (Updates && UniqueSuccessors.insert(Ptr: Succ).second) |
| 72 | Updates->push_back(Elt: {DominatorTree::Delete, BB, Succ}); |
| 73 | } |
| 74 | |
| 75 | // Zap all the instructions in the block. |
| 76 | while (!BB->empty()) { |
| 77 | Instruction &I = BB->back(); |
| 78 | // If this instruction is used, replace uses with an arbitrary value. |
| 79 | // Because control flow can't get here, we don't care what we replace the |
| 80 | // value with. Note that since this block is unreachable, and all values |
| 81 | // contained within it must dominate their uses, that all uses will |
| 82 | // eventually be removed (they are themselves dead). |
| 83 | if (!I.use_empty()) |
| 84 | I.replaceAllUsesWith(V: PoisonValue::get(T: I.getType())); |
| 85 | BB->back().eraseFromParent(); |
| 86 | } |
| 87 | new UnreachableInst(BB->getContext(), BB); |
| 88 | assert(BB->size() == 1 && |
| 89 | isa<UnreachableInst>(BB->getTerminator()) && |
| 90 | "The successor list of BB isn't empty before " |
| 91 | "applying corresponding DTU updates." ); |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, |
| 96 | bool KeepOneInputPHIs) { |
| 97 | DeleteDeadBlocks(BBs: {BB}, DTU, KeepOneInputPHIs); |
| 98 | } |
| 99 | |
| 100 | void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, |
| 101 | bool KeepOneInputPHIs) { |
| 102 | #ifndef NDEBUG |
| 103 | // Make sure that all predecessors of each dead block is also dead. |
| 104 | SmallPtrSet<BasicBlock *, 4> Dead(llvm::from_range, BBs); |
| 105 | assert(Dead.size() == BBs.size() && "Duplicating blocks?" ); |
| 106 | for (auto *BB : Dead) |
| 107 | for (BasicBlock *Pred : predecessors(BB)) |
| 108 | assert(Dead.count(Pred) && "All predecessors must be dead!" ); |
| 109 | #endif |
| 110 | |
| 111 | SmallVector<DominatorTree::UpdateType, 4> Updates; |
| 112 | detachDeadBlocks(BBs, Updates: DTU ? &Updates : nullptr, KeepOneInputPHIs); |
| 113 | |
| 114 | if (DTU) |
| 115 | DTU->applyUpdates(Updates); |
| 116 | |
| 117 | for (BasicBlock *BB : BBs) |
| 118 | if (DTU) |
| 119 | DTU->deleteBB(DelBB: BB); |
| 120 | else |
| 121 | BB->eraseFromParent(); |
| 122 | } |
| 123 | |
| 124 | bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, |
| 125 | bool KeepOneInputPHIs) { |
| 126 | df_iterator_default_set<BasicBlock*> Reachable; |
| 127 | |
| 128 | // Mark all reachable blocks. |
| 129 | for (BasicBlock *BB : depth_first_ext(G: &F, S&: Reachable)) |
| 130 | (void)BB/* Mark all reachable blocks */; |
| 131 | |
| 132 | // Collect all dead blocks. |
| 133 | std::vector<BasicBlock*> DeadBlocks; |
| 134 | for (BasicBlock &BB : F) |
| 135 | if (!Reachable.count(Ptr: &BB)) |
| 136 | DeadBlocks.push_back(x: &BB); |
| 137 | |
| 138 | // Delete the dead blocks. |
| 139 | DeleteDeadBlocks(BBs: DeadBlocks, DTU, KeepOneInputPHIs); |
| 140 | |
| 141 | return !DeadBlocks.empty(); |
| 142 | } |
| 143 | |
| 144 | bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB, |
| 145 | MemoryDependenceResults *MemDep) { |
| 146 | if (!isa<PHINode>(Val: BB->begin())) |
| 147 | return false; |
| 148 | |
| 149 | while (PHINode *PN = dyn_cast<PHINode>(Val: BB->begin())) { |
| 150 | if (PN->getIncomingValue(i: 0) != PN) |
| 151 | PN->replaceAllUsesWith(V: PN->getIncomingValue(i: 0)); |
| 152 | else |
| 153 | PN->replaceAllUsesWith(V: PoisonValue::get(T: PN->getType())); |
| 154 | |
| 155 | if (MemDep) |
| 156 | MemDep->removeInstruction(InstToRemove: PN); // Memdep updates AA itself. |
| 157 | |
| 158 | PN->eraseFromParent(); |
| 159 | } |
| 160 | return true; |
| 161 | } |
| 162 | |
| 163 | bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI, |
| 164 | MemorySSAUpdater *MSSAU) { |
| 165 | // Recursively deleting a PHI may cause multiple PHIs to be deleted |
| 166 | // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. |
| 167 | SmallVector<WeakTrackingVH, 8> PHIs(llvm::make_pointer_range(Range: BB->phis())); |
| 168 | |
| 169 | bool Changed = false; |
| 170 | for (const auto &PHI : PHIs) |
| 171 | if (PHINode *PN = dyn_cast_or_null<PHINode>(Val: PHI.operator Value *())) |
| 172 | Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU); |
| 173 | |
| 174 | return Changed; |
| 175 | } |
| 176 | |
| 177 | bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, |
| 178 | LoopInfo *LI, MemorySSAUpdater *MSSAU, |
| 179 | MemoryDependenceResults *MemDep, |
| 180 | bool PredecessorWithTwoSuccessors, |
| 181 | DominatorTree *DT) { |
| 182 | if (BB->hasAddressTaken()) |
| 183 | return false; |
| 184 | |
| 185 | // Can't merge if there are multiple predecessors, or no predecessors. |
| 186 | BasicBlock *PredBB = BB->getUniquePredecessor(); |
| 187 | if (!PredBB) return false; |
| 188 | |
| 189 | // Don't break self-loops. |
| 190 | if (PredBB == BB) return false; |
| 191 | |
| 192 | // Don't break unwinding instructions or terminators with other side-effects. |
| 193 | Instruction *PTI = PredBB->getTerminator(); |
| 194 | if (PTI->isSpecialTerminator() || PTI->mayHaveSideEffects()) |
| 195 | return false; |
| 196 | |
| 197 | // Can't merge if there are multiple distinct successors. |
| 198 | if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) |
| 199 | return false; |
| 200 | |
| 201 | // Currently only allow PredBB to have two predecessors, one being BB. |
| 202 | // Update BI to branch to BB's only successor instead of BB. |
| 203 | BranchInst *PredBB_BI; |
| 204 | BasicBlock *NewSucc = nullptr; |
| 205 | unsigned FallThruPath; |
| 206 | if (PredecessorWithTwoSuccessors) { |
| 207 | if (!(PredBB_BI = dyn_cast<BranchInst>(Val: PTI))) |
| 208 | return false; |
| 209 | BranchInst *BB_JmpI = dyn_cast<BranchInst>(Val: BB->getTerminator()); |
| 210 | if (!BB_JmpI || !BB_JmpI->isUnconditional()) |
| 211 | return false; |
| 212 | NewSucc = BB_JmpI->getSuccessor(i: 0); |
| 213 | FallThruPath = PredBB_BI->getSuccessor(i: 0) == BB ? 0 : 1; |
| 214 | } |
| 215 | |
| 216 | // Can't merge if there is PHI loop. |
| 217 | for (PHINode &PN : BB->phis()) |
| 218 | if (llvm::is_contained(Range: PN.incoming_values(), Element: &PN)) |
| 219 | return false; |
| 220 | |
| 221 | LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " |
| 222 | << PredBB->getName() << "\n" ); |
| 223 | |
| 224 | // Begin by getting rid of unneeded PHIs. |
| 225 | SmallVector<AssertingVH<Value>, 4> IncomingValues; |
| 226 | if (isa<PHINode>(Val: BB->front())) { |
| 227 | for (PHINode &PN : BB->phis()) |
| 228 | if (!isa<PHINode>(Val: PN.getIncomingValue(i: 0)) || |
| 229 | cast<PHINode>(Val: PN.getIncomingValue(i: 0))->getParent() != BB) |
| 230 | IncomingValues.push_back(Elt: PN.getIncomingValue(i: 0)); |
| 231 | FoldSingleEntryPHINodes(BB, MemDep); |
| 232 | } |
| 233 | |
| 234 | if (DT) { |
| 235 | assert(!DTU && "cannot use both DT and DTU for updates" ); |
| 236 | DomTreeNode *PredNode = DT->getNode(BB: PredBB); |
| 237 | DomTreeNode *BBNode = DT->getNode(BB); |
| 238 | if (PredNode) { |
| 239 | assert(BBNode && "PredNode unreachable but BBNode reachable?" ); |
| 240 | for (DomTreeNode *C : to_vector(Range: BBNode->children())) |
| 241 | C->setIDom(PredNode); |
| 242 | } |
| 243 | } |
| 244 | // DTU update: Collect all the edges that exit BB. |
| 245 | // These dominator edges will be redirected from Pred. |
| 246 | std::vector<DominatorTree::UpdateType> Updates; |
| 247 | if (DTU) { |
| 248 | assert(!DT && "cannot use both DT and DTU for updates" ); |
| 249 | // To avoid processing the same predecessor more than once. |
| 250 | SmallPtrSet<BasicBlock *, 8> SeenSuccs; |
| 251 | SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(llvm::from_range, |
| 252 | successors(BB: PredBB)); |
| 253 | Updates.reserve(n: Updates.size() + 2 * succ_size(BB) + 1); |
| 254 | // Add insert edges first. Experimentally, for the particular case of two |
| 255 | // blocks that can be merged, with a single successor and single predecessor |
| 256 | // respectively, it is beneficial to have all insert updates first. Deleting |
| 257 | // edges first may lead to unreachable blocks, followed by inserting edges |
| 258 | // making the blocks reachable again. Such DT updates lead to high compile |
| 259 | // times. We add inserts before deletes here to reduce compile time. |
| 260 | for (BasicBlock *SuccOfBB : successors(BB)) |
| 261 | // This successor of BB may already be a PredBB's successor. |
| 262 | if (!SuccsOfPredBB.contains(Ptr: SuccOfBB)) |
| 263 | if (SeenSuccs.insert(Ptr: SuccOfBB).second) |
| 264 | Updates.push_back(x: {DominatorTree::Insert, PredBB, SuccOfBB}); |
| 265 | SeenSuccs.clear(); |
| 266 | for (BasicBlock *SuccOfBB : successors(BB)) |
| 267 | if (SeenSuccs.insert(Ptr: SuccOfBB).second) |
| 268 | Updates.push_back(x: {DominatorTree::Delete, BB, SuccOfBB}); |
| 269 | Updates.push_back(x: {DominatorTree::Delete, PredBB, BB}); |
| 270 | } |
| 271 | |
| 272 | Instruction *STI = BB->getTerminator(); |
| 273 | Instruction *Start = &*BB->begin(); |
| 274 | // If there's nothing to move, mark the starting instruction as the last |
| 275 | // instruction in the block. Terminator instruction is handled separately. |
| 276 | if (Start == STI) |
| 277 | Start = PTI; |
| 278 | |
| 279 | // Move all definitions in the successor to the predecessor... |
| 280 | PredBB->splice(ToIt: PTI->getIterator(), FromBB: BB, FromBeginIt: BB->begin(), FromEndIt: STI->getIterator()); |
| 281 | |
| 282 | if (MSSAU) |
| 283 | MSSAU->moveAllAfterMergeBlocks(From: BB, To: PredBB, Start); |
| 284 | |
| 285 | // Make all PHI nodes that referred to BB now refer to Pred as their |
| 286 | // source... |
| 287 | BB->replaceAllUsesWith(V: PredBB); |
| 288 | |
| 289 | if (PredecessorWithTwoSuccessors) { |
| 290 | // Delete the unconditional branch from BB. |
| 291 | BB->back().eraseFromParent(); |
| 292 | |
| 293 | // Update branch in the predecessor. |
| 294 | PredBB_BI->setSuccessor(idx: FallThruPath, NewSucc); |
| 295 | } else { |
| 296 | // Delete the unconditional branch from the predecessor. |
| 297 | PredBB->back().eraseFromParent(); |
| 298 | |
| 299 | // Move terminator instruction. |
| 300 | BB->back().moveBeforePreserving(BB&: *PredBB, I: PredBB->end()); |
| 301 | |
| 302 | // Terminator may be a memory accessing instruction too. |
| 303 | if (MSSAU) |
| 304 | if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>( |
| 305 | Val: MSSAU->getMemorySSA()->getMemoryAccess(I: PredBB->getTerminator()))) |
| 306 | MSSAU->moveToPlace(What: MUD, BB: PredBB, Where: MemorySSA::End); |
| 307 | } |
| 308 | // Add unreachable to now empty BB. |
| 309 | new UnreachableInst(BB->getContext(), BB); |
| 310 | |
| 311 | // Inherit predecessors name if it exists. |
| 312 | if (!PredBB->hasName()) |
| 313 | PredBB->takeName(V: BB); |
| 314 | |
| 315 | if (LI) |
| 316 | LI->removeBlock(BB); |
| 317 | |
| 318 | if (MemDep) |
| 319 | MemDep->invalidateCachedPredecessors(); |
| 320 | |
| 321 | if (DTU) |
| 322 | DTU->applyUpdates(Updates); |
| 323 | |
| 324 | if (DT) { |
| 325 | assert(succ_empty(BB) && |
| 326 | "successors should have been transferred to PredBB" ); |
| 327 | DT->eraseNode(BB); |
| 328 | } |
| 329 | |
| 330 | // Finally, erase the old block and update dominator info. |
| 331 | DeleteDeadBlock(BB, DTU); |
| 332 | |
| 333 | return true; |
| 334 | } |
| 335 | |
| 336 | bool llvm::MergeBlockSuccessorsIntoGivenBlocks( |
| 337 | SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU, |
| 338 | LoopInfo *LI) { |
| 339 | assert(!MergeBlocks.empty() && "MergeBlocks should not be empty" ); |
| 340 | |
| 341 | bool BlocksHaveBeenMerged = false; |
| 342 | while (!MergeBlocks.empty()) { |
| 343 | BasicBlock *BB = *MergeBlocks.begin(); |
| 344 | BasicBlock *Dest = BB->getSingleSuccessor(); |
| 345 | if (Dest && (!L || L->contains(BB: Dest))) { |
| 346 | BasicBlock *Fold = Dest->getUniquePredecessor(); |
| 347 | (void)Fold; |
| 348 | if (MergeBlockIntoPredecessor(BB: Dest, DTU, LI)) { |
| 349 | assert(Fold == BB && |
| 350 | "Expecting BB to be unique predecessor of the Dest block" ); |
| 351 | MergeBlocks.erase(Ptr: Dest); |
| 352 | BlocksHaveBeenMerged = true; |
| 353 | } else |
| 354 | MergeBlocks.erase(Ptr: BB); |
| 355 | } else |
| 356 | MergeBlocks.erase(Ptr: BB); |
| 357 | } |
| 358 | return BlocksHaveBeenMerged; |
| 359 | } |
| 360 | |
| 361 | /// Remove redundant instructions within sequences of consecutive dbg.value |
| 362 | /// instructions. This is done using a backward scan to keep the last dbg.value |
| 363 | /// describing a specific variable/fragment. |
| 364 | /// |
| 365 | /// BackwardScan strategy: |
| 366 | /// ---------------------- |
| 367 | /// Given a sequence of consecutive DbgValueInst like this |
| 368 | /// |
| 369 | /// dbg.value ..., "x", FragmentX1 (*) |
| 370 | /// dbg.value ..., "y", FragmentY1 |
| 371 | /// dbg.value ..., "x", FragmentX2 |
| 372 | /// dbg.value ..., "x", FragmentX1 (**) |
| 373 | /// |
| 374 | /// then the instruction marked with (*) can be removed (it is guaranteed to be |
| 375 | /// obsoleted by the instruction marked with (**) as the latter instruction is |
| 376 | /// describing the same variable using the same fragment info). |
| 377 | /// |
| 378 | /// Possible improvements: |
| 379 | /// - Check fully overlapping fragments and not only identical fragments. |
| 380 | static bool |
| 381 | DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { |
| 382 | SmallVector<DbgVariableRecord *, 8> ToBeRemoved; |
| 383 | SmallDenseSet<DebugVariable> VariableSet; |
| 384 | for (auto &I : reverse(C&: *BB)) { |
| 385 | for (DbgVariableRecord &DR : |
| 386 | reverse(C: filterDbgVars(R: I.getDbgRecordRange()))) { |
| 387 | DbgVariableRecord &DVR = cast<DbgVariableRecord>(Val&: DR); |
| 388 | |
| 389 | DebugVariable Key(DVR.getVariable(), DVR.getExpression(), |
| 390 | DVR.getDebugLoc()->getInlinedAt()); |
| 391 | auto R = VariableSet.insert(V: Key); |
| 392 | // If the same variable fragment is described more than once it is enough |
| 393 | // to keep the last one (i.e. the first found since we for reverse |
| 394 | // iteration). |
| 395 | if (R.second) |
| 396 | continue; |
| 397 | |
| 398 | if (DVR.isDbgAssign()) { |
| 399 | // Don't delete dbg.assign intrinsics that are linked to instructions. |
| 400 | if (!at::getAssignmentInsts(DVR: &DVR).empty()) |
| 401 | continue; |
| 402 | // Unlinked dbg.assign intrinsics can be treated like dbg.values. |
| 403 | } |
| 404 | |
| 405 | ToBeRemoved.push_back(Elt: &DVR); |
| 406 | } |
| 407 | // Sequence with consecutive dbg.value instrs ended. Clear the map to |
| 408 | // restart identifying redundant instructions if case we find another |
| 409 | // dbg.value sequence. |
| 410 | VariableSet.clear(); |
| 411 | } |
| 412 | |
| 413 | for (auto &DVR : ToBeRemoved) |
| 414 | DVR->eraseFromParent(); |
| 415 | |
| 416 | return !ToBeRemoved.empty(); |
| 417 | } |
| 418 | |
| 419 | static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { |
| 420 | return DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BB); |
| 421 | } |
| 422 | |
| 423 | /// Remove redundant dbg.value instructions using a forward scan. This can |
| 424 | /// remove a dbg.value instruction that is redundant due to indicating that a |
| 425 | /// variable has the same value as already being indicated by an earlier |
| 426 | /// dbg.value. |
| 427 | /// |
| 428 | /// ForwardScan strategy: |
| 429 | /// --------------------- |
| 430 | /// Given two identical dbg.value instructions, separated by a block of |
| 431 | /// instructions that isn't describing the same variable, like this |
| 432 | /// |
| 433 | /// dbg.value X1, "x", FragmentX1 (**) |
| 434 | /// <block of instructions, none being "dbg.value ..., "x", ..."> |
| 435 | /// dbg.value X1, "x", FragmentX1 (*) |
| 436 | /// |
| 437 | /// then the instruction marked with (*) can be removed. Variable "x" is already |
| 438 | /// described as being mapped to the SSA value X1. |
| 439 | /// |
| 440 | /// Possible improvements: |
| 441 | /// - Keep track of non-overlapping fragments. |
| 442 | static bool |
| 443 | DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { |
| 444 | SmallVector<DbgVariableRecord *, 8> ToBeRemoved; |
| 445 | SmallDenseMap<DebugVariable, |
| 446 | std::pair<SmallVector<Value *, 4>, DIExpression *>, 4> |
| 447 | VariableMap; |
| 448 | for (auto &I : *BB) { |
| 449 | for (DbgVariableRecord &DVR : filterDbgVars(R: I.getDbgRecordRange())) { |
| 450 | if (DVR.getType() == DbgVariableRecord::LocationType::Declare) |
| 451 | continue; |
| 452 | DebugVariable Key(DVR.getVariable(), std::nullopt, |
| 453 | DVR.getDebugLoc()->getInlinedAt()); |
| 454 | auto [VMI, Inserted] = VariableMap.try_emplace(Key); |
| 455 | // A dbg.assign with no linked instructions can be treated like a |
| 456 | // dbg.value (i.e. can be deleted). |
| 457 | bool IsDbgValueKind = |
| 458 | (!DVR.isDbgAssign() || at::getAssignmentInsts(DVR: &DVR).empty()); |
| 459 | |
| 460 | // Update the map if we found a new value/expression describing the |
| 461 | // variable, or if the variable wasn't mapped already. |
| 462 | SmallVector<Value *, 4> Values(DVR.location_ops()); |
| 463 | if (Inserted || VMI->second.first != Values || |
| 464 | VMI->second.second != DVR.getExpression()) { |
| 465 | if (IsDbgValueKind) |
| 466 | VMI->second = {Values, DVR.getExpression()}; |
| 467 | else |
| 468 | VMI->second = {Values, nullptr}; |
| 469 | continue; |
| 470 | } |
| 471 | // Don't delete dbg.assign intrinsics that are linked to instructions. |
| 472 | if (!IsDbgValueKind) |
| 473 | continue; |
| 474 | // Found an identical mapping. Remember the instruction for later removal. |
| 475 | ToBeRemoved.push_back(Elt: &DVR); |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | for (auto *DVR : ToBeRemoved) |
| 480 | DVR->eraseFromParent(); |
| 481 | |
| 482 | return !ToBeRemoved.empty(); |
| 483 | } |
| 484 | |
| 485 | static bool |
| 486 | DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) { |
| 487 | assert(BB->isEntryBlock() && "expected entry block" ); |
| 488 | SmallVector<DbgVariableRecord *, 8> ToBeRemoved; |
| 489 | DenseSet<DebugVariable> SeenDefForAggregate; |
| 490 | // Returns the DebugVariable for DVI with no fragment info. |
| 491 | auto GetAggregateVariable = [](const DbgVariableRecord &DVR) { |
| 492 | return DebugVariable(DVR.getVariable(), std::nullopt, |
| 493 | DVR.getDebugLoc().getInlinedAt()); |
| 494 | }; |
| 495 | |
| 496 | // Remove undef dbg.assign intrinsics that are encountered before |
| 497 | // any non-undef intrinsics from the entry block. |
| 498 | for (auto &I : *BB) { |
| 499 | for (DbgVariableRecord &DVR : filterDbgVars(R: I.getDbgRecordRange())) { |
| 500 | if (!DVR.isDbgValue() && !DVR.isDbgAssign()) |
| 501 | continue; |
| 502 | bool IsDbgValueKind = |
| 503 | (DVR.isDbgValue() || at::getAssignmentInsts(DVR: &DVR).empty()); |
| 504 | DebugVariable Aggregate = GetAggregateVariable(DVR); |
| 505 | if (!SeenDefForAggregate.contains(V: Aggregate)) { |
| 506 | bool IsKill = DVR.isKillLocation() && IsDbgValueKind; |
| 507 | if (!IsKill) { |
| 508 | SeenDefForAggregate.insert(V: Aggregate); |
| 509 | } else if (DVR.isDbgAssign()) { |
| 510 | ToBeRemoved.push_back(Elt: &DVR); |
| 511 | } |
| 512 | } |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | for (DbgVariableRecord *DVR : ToBeRemoved) |
| 517 | DVR->eraseFromParent(); |
| 518 | |
| 519 | return !ToBeRemoved.empty(); |
| 520 | } |
| 521 | |
| 522 | static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { |
| 523 | return DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BB); |
| 524 | } |
| 525 | |
| 526 | /// Remove redundant undef dbg.assign intrinsic from an entry block using a |
| 527 | /// forward scan. |
| 528 | /// Strategy: |
| 529 | /// --------------------- |
| 530 | /// Scanning forward, delete dbg.assign intrinsics iff they are undef, not |
| 531 | /// linked to an intrinsic, and don't share an aggregate variable with a debug |
| 532 | /// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns |
| 533 | /// that come before non-undef debug intrinsics for the variable are |
| 534 | /// deleted. Given: |
| 535 | /// |
| 536 | /// dbg.assign undef, "x", FragmentX1 (*) |
| 537 | /// <block of instructions, none being "dbg.value ..., "x", ..."> |
| 538 | /// dbg.value %V, "x", FragmentX2 |
| 539 | /// <block of instructions, none being "dbg.value ..., "x", ..."> |
| 540 | /// dbg.assign undef, "x", FragmentX1 |
| 541 | /// |
| 542 | /// then (only) the instruction marked with (*) can be removed. |
| 543 | /// Possible improvements: |
| 544 | /// - Keep track of non-overlapping fragments. |
| 545 | static bool removeUndefDbgAssignsFromEntryBlock(BasicBlock *BB) { |
| 546 | return DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BB); |
| 547 | } |
| 548 | |
| 549 | bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) { |
| 550 | bool MadeChanges = false; |
| 551 | // By using the "backward scan" strategy before the "forward scan" strategy we |
| 552 | // can remove both dbg.value (2) and (3) in a situation like this: |
| 553 | // |
| 554 | // (1) dbg.value V1, "x", DIExpression() |
| 555 | // ... |
| 556 | // (2) dbg.value V2, "x", DIExpression() |
| 557 | // (3) dbg.value V1, "x", DIExpression() |
| 558 | // |
| 559 | // The backward scan will remove (2), it is made obsolete by (3). After |
| 560 | // getting (2) out of the way, the foward scan will remove (3) since "x" |
| 561 | // already is described as having the value V1 at (1). |
| 562 | MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB); |
| 563 | if (BB->isEntryBlock() && |
| 564 | isAssignmentTrackingEnabled(M: *BB->getParent()->getParent())) |
| 565 | MadeChanges |= removeUndefDbgAssignsFromEntryBlock(BB); |
| 566 | MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB); |
| 567 | |
| 568 | if (MadeChanges) |
| 569 | LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: " |
| 570 | << BB->getName() << "\n" ); |
| 571 | return MadeChanges; |
| 572 | } |
| 573 | |
| 574 | void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) { |
| 575 | Instruction &I = *BI; |
| 576 | // Replaces all of the uses of the instruction with uses of the value |
| 577 | I.replaceAllUsesWith(V); |
| 578 | |
| 579 | // Make sure to propagate a name if there is one already. |
| 580 | if (I.hasName() && !V->hasName()) |
| 581 | V->takeName(V: &I); |
| 582 | |
| 583 | // Delete the unnecessary instruction now... |
| 584 | BI = BI->eraseFromParent(); |
| 585 | } |
| 586 | |
| 587 | void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, |
| 588 | Instruction *I) { |
| 589 | assert(I->getParent() == nullptr && |
| 590 | "ReplaceInstWithInst: Instruction already inserted into basic block!" ); |
| 591 | |
| 592 | // Copy debug location to newly added instruction, if it wasn't already set |
| 593 | // by the caller. |
| 594 | if (!I->getDebugLoc()) |
| 595 | I->setDebugLoc(BI->getDebugLoc()); |
| 596 | |
| 597 | // Insert the new instruction into the basic block... |
| 598 | BasicBlock::iterator New = I->insertInto(ParentBB: BB, It: BI); |
| 599 | |
| 600 | // Replace all uses of the old instruction, and delete it. |
| 601 | ReplaceInstWithValue(BI, V: I); |
| 602 | |
| 603 | // Move BI back to point to the newly inserted instruction |
| 604 | BI = New; |
| 605 | } |
| 606 | |
| 607 | bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) { |
| 608 | // Remember visited blocks to avoid infinite loop |
| 609 | SmallPtrSet<const BasicBlock *, 8> VisitedBlocks; |
| 610 | unsigned Depth = 0; |
| 611 | while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth && |
| 612 | VisitedBlocks.insert(Ptr: BB).second) { |
| 613 | if (isa<UnreachableInst>(Val: BB->getTerminator()) || |
| 614 | BB->getTerminatingDeoptimizeCall()) |
| 615 | return true; |
| 616 | BB = BB->getUniqueSuccessor(); |
| 617 | } |
| 618 | return false; |
| 619 | } |
| 620 | |
| 621 | void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { |
| 622 | BasicBlock::iterator BI(From); |
| 623 | ReplaceInstWithInst(BB: From->getParent(), BI, I: To); |
| 624 | } |
| 625 | |
| 626 | BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, |
| 627 | LoopInfo *LI, MemorySSAUpdater *MSSAU, |
| 628 | const Twine &BBName) { |
| 629 | unsigned SuccNum = GetSuccessorNumber(BB, Succ); |
| 630 | |
| 631 | Instruction *LatchTerm = BB->getTerminator(); |
| 632 | |
| 633 | CriticalEdgeSplittingOptions Options = |
| 634 | CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(); |
| 635 | |
| 636 | if ((isCriticalEdge(TI: LatchTerm, SuccNum, AllowIdenticalEdges: Options.MergeIdenticalEdges))) { |
| 637 | // If this is a critical edge, let SplitKnownCriticalEdge do it. |
| 638 | return SplitKnownCriticalEdge(TI: LatchTerm, SuccNum, Options, BBName); |
| 639 | } |
| 640 | |
| 641 | // If the edge isn't critical, then BB has a single successor or Succ has a |
| 642 | // single pred. Split the block. |
| 643 | if (BasicBlock *SP = Succ->getSinglePredecessor()) { |
| 644 | // If the successor only has a single pred, split the top of the successor |
| 645 | // block. |
| 646 | assert(SP == BB && "CFG broken" ); |
| 647 | (void)SP; |
| 648 | return SplitBlock(Old: Succ, SplitPt: &Succ->front(), DT, LI, MSSAU, BBName, |
| 649 | /*Before=*/true); |
| 650 | } |
| 651 | |
| 652 | // Otherwise, if BB has a single successor, split it at the bottom of the |
| 653 | // block. |
| 654 | assert(BB->getTerminator()->getNumSuccessors() == 1 && |
| 655 | "Should have a single succ!" ); |
| 656 | return SplitBlock(Old: BB, SplitPt: BB->getTerminator(), DT, LI, MSSAU, BBName); |
| 657 | } |
| 658 | |
| 659 | void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) { |
| 660 | if (auto *II = dyn_cast<InvokeInst>(Val: TI)) |
| 661 | II->setUnwindDest(Succ); |
| 662 | else if (auto *CS = dyn_cast<CatchSwitchInst>(Val: TI)) |
| 663 | CS->setUnwindDest(Succ); |
| 664 | else if (auto *CR = dyn_cast<CleanupReturnInst>(Val: TI)) |
| 665 | CR->setUnwindDest(Succ); |
| 666 | else |
| 667 | llvm_unreachable("unexpected terminator instruction" ); |
| 668 | } |
| 669 | |
| 670 | void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, |
| 671 | BasicBlock *NewPred, PHINode *Until) { |
| 672 | int BBIdx = 0; |
| 673 | for (PHINode &PN : DestBB->phis()) { |
| 674 | // We manually update the LandingPadReplacement PHINode and it is the last |
| 675 | // PHI Node. So, if we find it, we are done. |
| 676 | if (Until == &PN) |
| 677 | break; |
| 678 | |
| 679 | // Reuse the previous value of BBIdx if it lines up. In cases where we |
| 680 | // have multiple phi nodes with *lots* of predecessors, this is a speed |
| 681 | // win because we don't have to scan the PHI looking for TIBB. This |
| 682 | // happens because the BB list of PHI nodes are usually in the same |
| 683 | // order. |
| 684 | if (PN.getIncomingBlock(i: BBIdx) != OldPred) |
| 685 | BBIdx = PN.getBasicBlockIndex(BB: OldPred); |
| 686 | |
| 687 | assert(BBIdx != -1 && "Invalid PHI Index!" ); |
| 688 | PN.setIncomingBlock(i: BBIdx, BB: NewPred); |
| 689 | } |
| 690 | } |
| 691 | |
| 692 | BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, |
| 693 | LandingPadInst *OriginalPad, |
| 694 | PHINode *LandingPadReplacement, |
| 695 | const CriticalEdgeSplittingOptions &Options, |
| 696 | const Twine &BBName) { |
| 697 | |
| 698 | auto PadInst = Succ->getFirstNonPHIIt(); |
| 699 | if (!LandingPadReplacement && !PadInst->isEHPad()) |
| 700 | return SplitEdge(BB, Succ, DT: Options.DT, LI: Options.LI, MSSAU: Options.MSSAU, BBName); |
| 701 | |
| 702 | auto *LI = Options.LI; |
| 703 | SmallVector<BasicBlock *, 4> LoopPreds; |
| 704 | // Check if extra modifications will be required to preserve loop-simplify |
| 705 | // form after splitting. If it would require splitting blocks with IndirectBr |
| 706 | // terminators, bail out if preserving loop-simplify form is requested. |
| 707 | if (Options.PreserveLoopSimplify && LI) { |
| 708 | if (Loop *BBLoop = LI->getLoopFor(BB)) { |
| 709 | |
| 710 | // The only way that we can break LoopSimplify form by splitting a |
| 711 | // critical edge is when there exists some edge from BBLoop to Succ *and* |
| 712 | // the only edge into Succ from outside of BBLoop is that of NewBB after |
| 713 | // the split. If the first isn't true, then LoopSimplify still holds, |
| 714 | // NewBB is the new exit block and it has no non-loop predecessors. If the |
| 715 | // second isn't true, then Succ was not in LoopSimplify form prior to |
| 716 | // the split as it had a non-loop predecessor. In both of these cases, |
| 717 | // the predecessor must be directly in BBLoop, not in a subloop, or again |
| 718 | // LoopSimplify doesn't hold. |
| 719 | for (BasicBlock *P : predecessors(BB: Succ)) { |
| 720 | if (P == BB) |
| 721 | continue; // The new block is known. |
| 722 | if (LI->getLoopFor(BB: P) != BBLoop) { |
| 723 | // Loop is not in LoopSimplify form, no need to re simplify after |
| 724 | // splitting edge. |
| 725 | LoopPreds.clear(); |
| 726 | break; |
| 727 | } |
| 728 | LoopPreds.push_back(Elt: P); |
| 729 | } |
| 730 | // Loop-simplify form can be preserved, if we can split all in-loop |
| 731 | // predecessors. |
| 732 | if (any_of(Range&: LoopPreds, P: [](BasicBlock *Pred) { |
| 733 | return isa<IndirectBrInst>(Val: Pred->getTerminator()); |
| 734 | })) { |
| 735 | return nullptr; |
| 736 | } |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | auto *NewBB = |
| 741 | BasicBlock::Create(Context&: BB->getContext(), Name: BBName, Parent: BB->getParent(), InsertBefore: Succ); |
| 742 | setUnwindEdgeTo(TI: BB->getTerminator(), Succ: NewBB); |
| 743 | updatePhiNodes(DestBB: Succ, OldPred: BB, NewPred: NewBB, Until: LandingPadReplacement); |
| 744 | |
| 745 | if (LandingPadReplacement) { |
| 746 | auto *NewLP = OriginalPad->clone(); |
| 747 | auto *Terminator = BranchInst::Create(IfTrue: Succ, InsertBefore: NewBB); |
| 748 | NewLP->insertBefore(InsertPos: Terminator->getIterator()); |
| 749 | LandingPadReplacement->addIncoming(V: NewLP, BB: NewBB); |
| 750 | } else { |
| 751 | Value *ParentPad = nullptr; |
| 752 | if (auto *FuncletPad = dyn_cast<FuncletPadInst>(Val&: PadInst)) |
| 753 | ParentPad = FuncletPad->getParentPad(); |
| 754 | else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val&: PadInst)) |
| 755 | ParentPad = CatchSwitch->getParentPad(); |
| 756 | else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(Val&: PadInst)) |
| 757 | ParentPad = CleanupPad->getParentPad(); |
| 758 | else if (auto *LandingPad = dyn_cast<LandingPadInst>(Val&: PadInst)) |
| 759 | ParentPad = LandingPad->getParent(); |
| 760 | else |
| 761 | llvm_unreachable("handling for other EHPads not implemented yet" ); |
| 762 | |
| 763 | auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, Args: {}, NameStr: BBName, InsertBefore: NewBB); |
| 764 | CleanupReturnInst::Create(CleanupPad: NewCleanupPad, UnwindBB: Succ, InsertBefore: NewBB); |
| 765 | } |
| 766 | |
| 767 | auto *DT = Options.DT; |
| 768 | auto *MSSAU = Options.MSSAU; |
| 769 | if (!DT && !LI) |
| 770 | return NewBB; |
| 771 | |
| 772 | if (DT) { |
| 773 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
| 774 | SmallVector<DominatorTree::UpdateType, 3> Updates; |
| 775 | |
| 776 | Updates.push_back(Elt: {DominatorTree::Insert, BB, NewBB}); |
| 777 | Updates.push_back(Elt: {DominatorTree::Insert, NewBB, Succ}); |
| 778 | Updates.push_back(Elt: {DominatorTree::Delete, BB, Succ}); |
| 779 | |
| 780 | DTU.applyUpdates(Updates); |
| 781 | DTU.flush(); |
| 782 | |
| 783 | if (MSSAU) { |
| 784 | MSSAU->applyUpdates(Updates, DT&: *DT); |
| 785 | if (VerifyMemorySSA) |
| 786 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | if (LI) { |
| 791 | if (Loop *BBLoop = LI->getLoopFor(BB)) { |
| 792 | // If one or the other blocks were not in a loop, the new block is not |
| 793 | // either, and thus LI doesn't need to be updated. |
| 794 | if (Loop *SuccLoop = LI->getLoopFor(BB: Succ)) { |
| 795 | if (BBLoop == SuccLoop) { |
| 796 | // Both in the same loop, the NewBB joins loop. |
| 797 | SuccLoop->addBasicBlockToLoop(NewBB, LI&: *LI); |
| 798 | } else if (BBLoop->contains(L: SuccLoop)) { |
| 799 | // Edge from an outer loop to an inner loop. Add to the outer loop. |
| 800 | BBLoop->addBasicBlockToLoop(NewBB, LI&: *LI); |
| 801 | } else if (SuccLoop->contains(L: BBLoop)) { |
| 802 | // Edge from an inner loop to an outer loop. Add to the outer loop. |
| 803 | SuccLoop->addBasicBlockToLoop(NewBB, LI&: *LI); |
| 804 | } else { |
| 805 | // Edge from two loops with no containment relation. Because these |
| 806 | // are natural loops, we know that the destination block must be the |
| 807 | // header of its loop (adding a branch into a loop elsewhere would |
| 808 | // create an irreducible loop). |
| 809 | assert(SuccLoop->getHeader() == Succ && |
| 810 | "Should not create irreducible loops!" ); |
| 811 | if (Loop *P = SuccLoop->getParentLoop()) |
| 812 | P->addBasicBlockToLoop(NewBB, LI&: *LI); |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | // If BB is in a loop and Succ is outside of that loop, we may need to |
| 817 | // update LoopSimplify form and LCSSA form. |
| 818 | if (!BBLoop->contains(BB: Succ)) { |
| 819 | assert(!BBLoop->contains(NewBB) && |
| 820 | "Split point for loop exit is contained in loop!" ); |
| 821 | |
| 822 | // Update LCSSA form in the newly created exit block. |
| 823 | if (Options.PreserveLCSSA) { |
| 824 | createPHIsForSplitLoopExit(Preds: BB, SplitBB: NewBB, DestBB: Succ); |
| 825 | } |
| 826 | |
| 827 | if (!LoopPreds.empty()) { |
| 828 | BasicBlock *NewExitBB = SplitBlockPredecessors( |
| 829 | BB: Succ, Preds: LoopPreds, Suffix: "split" , DT, LI, MSSAU, PreserveLCSSA: Options.PreserveLCSSA); |
| 830 | if (Options.PreserveLCSSA) |
| 831 | createPHIsForSplitLoopExit(Preds: LoopPreds, SplitBB: NewExitBB, DestBB: Succ); |
| 832 | } |
| 833 | } |
| 834 | } |
| 835 | } |
| 836 | |
| 837 | return NewBB; |
| 838 | } |
| 839 | |
| 840 | void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, |
| 841 | BasicBlock *SplitBB, BasicBlock *DestBB) { |
| 842 | // SplitBB shouldn't have anything non-trivial in it yet. |
| 843 | assert((&*SplitBB->getFirstNonPHIIt() == SplitBB->getTerminator() || |
| 844 | SplitBB->isLandingPad()) && |
| 845 | "SplitBB has non-PHI nodes!" ); |
| 846 | |
| 847 | // For each PHI in the destination block. |
| 848 | for (PHINode &PN : DestBB->phis()) { |
| 849 | int Idx = PN.getBasicBlockIndex(BB: SplitBB); |
| 850 | assert(Idx >= 0 && "Invalid Block Index" ); |
| 851 | Value *V = PN.getIncomingValue(i: Idx); |
| 852 | |
| 853 | // If the input is a PHI which already satisfies LCSSA, don't create |
| 854 | // a new one. |
| 855 | if (const PHINode *VP = dyn_cast<PHINode>(Val: V)) |
| 856 | if (VP->getParent() == SplitBB) |
| 857 | continue; |
| 858 | |
| 859 | // Otherwise a new PHI is needed. Create one and populate it. |
| 860 | PHINode *NewPN = PHINode::Create(Ty: PN.getType(), NumReservedValues: Preds.size(), NameStr: "split" ); |
| 861 | BasicBlock::iterator InsertPos = |
| 862 | SplitBB->isLandingPad() ? SplitBB->begin() |
| 863 | : SplitBB->getTerminator()->getIterator(); |
| 864 | NewPN->insertBefore(InsertPos); |
| 865 | for (BasicBlock *BB : Preds) |
| 866 | NewPN->addIncoming(V, BB); |
| 867 | |
| 868 | // Update the original PHI. |
| 869 | PN.setIncomingValue(i: Idx, V: NewPN); |
| 870 | } |
| 871 | } |
| 872 | |
| 873 | unsigned |
| 874 | llvm::SplitAllCriticalEdges(Function &F, |
| 875 | const CriticalEdgeSplittingOptions &Options) { |
| 876 | unsigned NumBroken = 0; |
| 877 | for (BasicBlock &BB : F) { |
| 878 | Instruction *TI = BB.getTerminator(); |
| 879 | if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(Val: TI)) |
| 880 | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) |
| 881 | if (SplitCriticalEdge(TI, SuccNum: i, Options)) |
| 882 | ++NumBroken; |
| 883 | } |
| 884 | return NumBroken; |
| 885 | } |
| 886 | |
| 887 | static BasicBlock *SplitBlockImpl(BasicBlock *Old, BasicBlock::iterator SplitPt, |
| 888 | DomTreeUpdater *DTU, DominatorTree *DT, |
| 889 | LoopInfo *LI, MemorySSAUpdater *MSSAU, |
| 890 | const Twine &BBName, bool Before) { |
| 891 | if (Before) { |
| 892 | DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
| 893 | return splitBlockBefore(Old, SplitPt, |
| 894 | DTU: DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU, |
| 895 | BBName); |
| 896 | } |
| 897 | BasicBlock::iterator SplitIt = SplitPt; |
| 898 | while (isa<PHINode>(Val: SplitIt) || SplitIt->isEHPad()) { |
| 899 | ++SplitIt; |
| 900 | assert(SplitIt != SplitPt->getParent()->end()); |
| 901 | } |
| 902 | std::string Name = BBName.str(); |
| 903 | BasicBlock *New = Old->splitBasicBlock( |
| 904 | I: SplitIt, BBName: Name.empty() ? Old->getName() + ".split" : Name); |
| 905 | |
| 906 | // The new block lives in whichever loop the old one did. This preserves |
| 907 | // LCSSA as well, because we force the split point to be after any PHI nodes. |
| 908 | if (LI) |
| 909 | if (Loop *L = LI->getLoopFor(BB: Old)) |
| 910 | L->addBasicBlockToLoop(NewBB: New, LI&: *LI); |
| 911 | |
| 912 | if (DTU) { |
| 913 | SmallVector<DominatorTree::UpdateType, 8> Updates; |
| 914 | // Old dominates New. New node dominates all other nodes dominated by Old. |
| 915 | SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld; |
| 916 | Updates.push_back(Elt: {DominatorTree::Insert, Old, New}); |
| 917 | Updates.reserve(N: Updates.size() + 2 * succ_size(BB: New)); |
| 918 | for (BasicBlock *SuccessorOfOld : successors(BB: New)) |
| 919 | if (UniqueSuccessorsOfOld.insert(Ptr: SuccessorOfOld).second) { |
| 920 | Updates.push_back(Elt: {DominatorTree::Insert, New, SuccessorOfOld}); |
| 921 | Updates.push_back(Elt: {DominatorTree::Delete, Old, SuccessorOfOld}); |
| 922 | } |
| 923 | |
| 924 | DTU->applyUpdates(Updates); |
| 925 | } else if (DT) |
| 926 | // Old dominates New. New node dominates all other nodes dominated by Old. |
| 927 | if (DomTreeNode *OldNode = DT->getNode(BB: Old)) { |
| 928 | std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); |
| 929 | |
| 930 | DomTreeNode *NewNode = DT->addNewBlock(BB: New, DomBB: Old); |
| 931 | for (DomTreeNode *I : Children) |
| 932 | DT->changeImmediateDominator(N: I, NewIDom: NewNode); |
| 933 | } |
| 934 | |
| 935 | // Move MemoryAccesses still tracked in Old, but part of New now. |
| 936 | // Update accesses in successor blocks accordingly. |
| 937 | if (MSSAU) |
| 938 | MSSAU->moveAllAfterSpliceBlocks(From: Old, To: New, Start: &*(New->begin())); |
| 939 | |
| 940 | return New; |
| 941 | } |
| 942 | |
| 943 | BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, |
| 944 | DominatorTree *DT, LoopInfo *LI, |
| 945 | MemorySSAUpdater *MSSAU, const Twine &BBName, |
| 946 | bool Before) { |
| 947 | return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName, |
| 948 | Before); |
| 949 | } |
| 950 | BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, |
| 951 | DomTreeUpdater *DTU, LoopInfo *LI, |
| 952 | MemorySSAUpdater *MSSAU, const Twine &BBName, |
| 953 | bool Before) { |
| 954 | return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName, |
| 955 | Before); |
| 956 | } |
| 957 | |
| 958 | BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, BasicBlock::iterator SplitPt, |
| 959 | DomTreeUpdater *DTU, LoopInfo *LI, |
| 960 | MemorySSAUpdater *MSSAU, |
| 961 | const Twine &BBName) { |
| 962 | |
| 963 | BasicBlock::iterator SplitIt = SplitPt; |
| 964 | while (isa<PHINode>(Val: SplitIt) || SplitIt->isEHPad()) |
| 965 | ++SplitIt; |
| 966 | std::string Name = BBName.str(); |
| 967 | BasicBlock *New = Old->splitBasicBlock( |
| 968 | I: SplitIt, BBName: Name.empty() ? Old->getName() + ".split" : Name, |
| 969 | /* Before=*/true); |
| 970 | |
| 971 | // The new block lives in whichever loop the old one did. This preserves |
| 972 | // LCSSA as well, because we force the split point to be after any PHI nodes. |
| 973 | if (LI) |
| 974 | if (Loop *L = LI->getLoopFor(BB: Old)) |
| 975 | L->addBasicBlockToLoop(NewBB: New, LI&: *LI); |
| 976 | |
| 977 | if (DTU) { |
| 978 | SmallVector<DominatorTree::UpdateType, 8> DTUpdates; |
| 979 | // New dominates Old. The predecessor nodes of the Old node dominate |
| 980 | // New node. |
| 981 | SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld; |
| 982 | DTUpdates.push_back(Elt: {DominatorTree::Insert, New, Old}); |
| 983 | DTUpdates.reserve(N: DTUpdates.size() + 2 * pred_size(BB: New)); |
| 984 | for (BasicBlock *PredecessorOfOld : predecessors(BB: New)) |
| 985 | if (UniquePredecessorsOfOld.insert(Ptr: PredecessorOfOld).second) { |
| 986 | DTUpdates.push_back(Elt: {DominatorTree::Insert, PredecessorOfOld, New}); |
| 987 | DTUpdates.push_back(Elt: {DominatorTree::Delete, PredecessorOfOld, Old}); |
| 988 | } |
| 989 | |
| 990 | DTU->applyUpdates(Updates: DTUpdates); |
| 991 | |
| 992 | // Move MemoryAccesses still tracked in Old, but part of New now. |
| 993 | // Update accesses in successor blocks accordingly. |
| 994 | if (MSSAU) { |
| 995 | MSSAU->applyUpdates(Updates: DTUpdates, DT&: DTU->getDomTree()); |
| 996 | if (VerifyMemorySSA) |
| 997 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 998 | } |
| 999 | } |
| 1000 | return New; |
| 1001 | } |
| 1002 | |
| 1003 | /// Update DominatorTree, LoopInfo, and LCCSA analysis information. |
| 1004 | /// Invalidates DFS Numbering when DTU or DT is provided. |
| 1005 | static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, |
| 1006 | ArrayRef<BasicBlock *> Preds, |
| 1007 | DomTreeUpdater *DTU, DominatorTree *DT, |
| 1008 | LoopInfo *LI, MemorySSAUpdater *MSSAU, |
| 1009 | bool PreserveLCSSA, bool &HasLoopExit) { |
| 1010 | // Update dominator tree if available. |
| 1011 | if (DTU) { |
| 1012 | // Recalculation of DomTree is needed when updating a forward DomTree and |
| 1013 | // the Entry BB is replaced. |
| 1014 | if (NewBB->isEntryBlock() && DTU->hasDomTree()) { |
| 1015 | // The entry block was removed and there is no external interface for |
| 1016 | // the dominator tree to be notified of this change. In this corner-case |
| 1017 | // we recalculate the entire tree. |
| 1018 | DTU->recalculate(F&: *NewBB->getParent()); |
| 1019 | } else { |
| 1020 | // Split block expects NewBB to have a non-empty set of predecessors. |
| 1021 | SmallVector<DominatorTree::UpdateType, 8> Updates; |
| 1022 | SmallPtrSet<BasicBlock *, 8> UniquePreds; |
| 1023 | Updates.push_back(Elt: {DominatorTree::Insert, NewBB, OldBB}); |
| 1024 | Updates.reserve(N: Updates.size() + 2 * Preds.size()); |
| 1025 | for (auto *Pred : Preds) |
| 1026 | if (UniquePreds.insert(Ptr: Pred).second) { |
| 1027 | Updates.push_back(Elt: {DominatorTree::Insert, Pred, NewBB}); |
| 1028 | Updates.push_back(Elt: {DominatorTree::Delete, Pred, OldBB}); |
| 1029 | } |
| 1030 | DTU->applyUpdates(Updates); |
| 1031 | } |
| 1032 | } else if (DT) { |
| 1033 | if (OldBB == DT->getRootNode()->getBlock()) { |
| 1034 | assert(NewBB->isEntryBlock()); |
| 1035 | DT->setNewRoot(NewBB); |
| 1036 | } else { |
| 1037 | // Split block expects NewBB to have a non-empty set of predecessors. |
| 1038 | DT->splitBlock(NewBB); |
| 1039 | } |
| 1040 | } |
| 1041 | |
| 1042 | // Update MemoryPhis after split if MemorySSA is available |
| 1043 | if (MSSAU) |
| 1044 | MSSAU->wireOldPredecessorsToNewImmediatePredecessor(Old: OldBB, New: NewBB, Preds); |
| 1045 | |
| 1046 | // The rest of the logic is only relevant for updating the loop structures. |
| 1047 | if (!LI) |
| 1048 | return; |
| 1049 | |
| 1050 | if (DTU && DTU->hasDomTree()) |
| 1051 | DT = &DTU->getDomTree(); |
| 1052 | assert(DT && "DT should be available to update LoopInfo!" ); |
| 1053 | Loop *L = LI->getLoopFor(BB: OldBB); |
| 1054 | |
| 1055 | // If we need to preserve loop analyses, collect some information about how |
| 1056 | // this split will affect loops. |
| 1057 | bool IsLoopEntry = !!L; |
| 1058 | bool = false; |
| 1059 | for (BasicBlock *Pred : Preds) { |
| 1060 | // Preds that are not reachable from entry should not be used to identify if |
| 1061 | // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks |
| 1062 | // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader |
| 1063 | // as true and make the NewBB the header of some loop. This breaks LI. |
| 1064 | if (!DT->isReachableFromEntry(A: Pred)) |
| 1065 | continue; |
| 1066 | // If we need to preserve LCSSA, determine if any of the preds is a loop |
| 1067 | // exit. |
| 1068 | if (PreserveLCSSA) |
| 1069 | if (Loop *PL = LI->getLoopFor(BB: Pred)) |
| 1070 | if (!PL->contains(BB: OldBB)) |
| 1071 | HasLoopExit = true; |
| 1072 | |
| 1073 | // If we need to preserve LoopInfo, note whether any of the preds crosses |
| 1074 | // an interesting loop boundary. |
| 1075 | if (!L) |
| 1076 | continue; |
| 1077 | if (L->contains(BB: Pred)) |
| 1078 | IsLoopEntry = false; |
| 1079 | else |
| 1080 | SplitMakesNewLoopHeader = true; |
| 1081 | } |
| 1082 | |
| 1083 | // Unless we have a loop for OldBB, nothing else to do here. |
| 1084 | if (!L) |
| 1085 | return; |
| 1086 | |
| 1087 | if (IsLoopEntry) { |
| 1088 | // Add the new block to the nearest enclosing loop (and not an adjacent |
| 1089 | // loop). To find this, examine each of the predecessors and determine which |
| 1090 | // loops enclose them, and select the most-nested loop which contains the |
| 1091 | // loop containing the block being split. |
| 1092 | Loop *InnermostPredLoop = nullptr; |
| 1093 | for (BasicBlock *Pred : Preds) { |
| 1094 | if (Loop *PredLoop = LI->getLoopFor(BB: Pred)) { |
| 1095 | // Seek a loop which actually contains the block being split (to avoid |
| 1096 | // adjacent loops). |
| 1097 | while (PredLoop && !PredLoop->contains(BB: OldBB)) |
| 1098 | PredLoop = PredLoop->getParentLoop(); |
| 1099 | |
| 1100 | // Select the most-nested of these loops which contains the block. |
| 1101 | if (PredLoop && PredLoop->contains(BB: OldBB) && |
| 1102 | (!InnermostPredLoop || |
| 1103 | InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) |
| 1104 | InnermostPredLoop = PredLoop; |
| 1105 | } |
| 1106 | } |
| 1107 | |
| 1108 | if (InnermostPredLoop) |
| 1109 | InnermostPredLoop->addBasicBlockToLoop(NewBB, LI&: *LI); |
| 1110 | } else { |
| 1111 | L->addBasicBlockToLoop(NewBB, LI&: *LI); |
| 1112 | if (SplitMakesNewLoopHeader) |
| 1113 | L->moveToHeader(BB: NewBB); |
| 1114 | } |
| 1115 | } |
| 1116 | |
| 1117 | /// Update the PHI nodes in OrigBB to include the values coming from NewBB. |
| 1118 | /// This also updates AliasAnalysis, if available. |
| 1119 | static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, |
| 1120 | ArrayRef<BasicBlock *> Preds, BranchInst *BI, |
| 1121 | bool HasLoopExit) { |
| 1122 | // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. |
| 1123 | SmallPtrSet<BasicBlock *, 16> PredSet(llvm::from_range, Preds); |
| 1124 | for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(Val: I); ) { |
| 1125 | PHINode *PN = cast<PHINode>(Val: I++); |
| 1126 | |
| 1127 | // Check to see if all of the values coming in are the same. If so, we |
| 1128 | // don't need to create a new PHI node, unless it's needed for LCSSA. |
| 1129 | Value *InVal = nullptr; |
| 1130 | if (!HasLoopExit) { |
| 1131 | InVal = PN->getIncomingValueForBlock(BB: Preds[0]); |
| 1132 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| 1133 | if (!PredSet.count(Ptr: PN->getIncomingBlock(i))) |
| 1134 | continue; |
| 1135 | if (!InVal) |
| 1136 | InVal = PN->getIncomingValue(i); |
| 1137 | else if (InVal != PN->getIncomingValue(i)) { |
| 1138 | InVal = nullptr; |
| 1139 | break; |
| 1140 | } |
| 1141 | } |
| 1142 | } |
| 1143 | |
| 1144 | if (InVal) { |
| 1145 | // If all incoming values for the new PHI would be the same, just don't |
| 1146 | // make a new PHI. Instead, just remove the incoming values from the old |
| 1147 | // PHI. |
| 1148 | PN->removeIncomingValueIf( |
| 1149 | Predicate: [&](unsigned Idx) { |
| 1150 | return PredSet.contains(Ptr: PN->getIncomingBlock(i: Idx)); |
| 1151 | }, |
| 1152 | /* DeletePHIIfEmpty */ false); |
| 1153 | |
| 1154 | // Add an incoming value to the PHI node in the loop for the preheader |
| 1155 | // edge. |
| 1156 | PN->addIncoming(V: InVal, BB: NewBB); |
| 1157 | continue; |
| 1158 | } |
| 1159 | |
| 1160 | // If the values coming into the block are not the same, we need a new |
| 1161 | // PHI. |
| 1162 | // Create the new PHI node, insert it into NewBB at the end of the block |
| 1163 | PHINode *NewPHI = |
| 1164 | PHINode::Create(Ty: PN->getType(), NumReservedValues: Preds.size(), NameStr: PN->getName() + ".ph" , InsertBefore: BI->getIterator()); |
| 1165 | |
| 1166 | // NOTE! This loop walks backwards for a reason! First off, this minimizes |
| 1167 | // the cost of removal if we end up removing a large number of values, and |
| 1168 | // second off, this ensures that the indices for the incoming values aren't |
| 1169 | // invalidated when we remove one. |
| 1170 | for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { |
| 1171 | BasicBlock *IncomingBB = PN->getIncomingBlock(i); |
| 1172 | if (PredSet.count(Ptr: IncomingBB)) { |
| 1173 | Value *V = PN->removeIncomingValue(Idx: i, DeletePHIIfEmpty: false); |
| 1174 | NewPHI->addIncoming(V, BB: IncomingBB); |
| 1175 | } |
| 1176 | } |
| 1177 | |
| 1178 | PN->addIncoming(V: NewPHI, BB: NewBB); |
| 1179 | } |
| 1180 | } |
| 1181 | |
| 1182 | static void SplitLandingPadPredecessorsImpl( |
| 1183 | BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, |
| 1184 | const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, |
| 1185 | DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, |
| 1186 | MemorySSAUpdater *MSSAU, bool PreserveLCSSA); |
| 1187 | |
| 1188 | static BasicBlock * |
| 1189 | SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, |
| 1190 | const char *Suffix, DomTreeUpdater *DTU, |
| 1191 | DominatorTree *DT, LoopInfo *LI, |
| 1192 | MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { |
| 1193 | // Do not attempt to split that which cannot be split. |
| 1194 | if (!BB->canSplitPredecessors()) |
| 1195 | return nullptr; |
| 1196 | |
| 1197 | // For the landingpads we need to act a bit differently. |
| 1198 | // Delegate this work to the SplitLandingPadPredecessors. |
| 1199 | if (BB->isLandingPad()) { |
| 1200 | SmallVector<BasicBlock*, 2> NewBBs; |
| 1201 | std::string NewName = std::string(Suffix) + ".split-lp" ; |
| 1202 | |
| 1203 | SplitLandingPadPredecessorsImpl(OrigBB: BB, Preds, Suffix1: Suffix, Suffix2: NewName.c_str(), NewBBs, |
| 1204 | DTU, DT, LI, MSSAU, PreserveLCSSA); |
| 1205 | return NewBBs[0]; |
| 1206 | } |
| 1207 | |
| 1208 | // Create new basic block, insert right before the original block. |
| 1209 | BasicBlock *NewBB = BasicBlock::Create( |
| 1210 | Context&: BB->getContext(), Name: BB->getName() + Suffix, Parent: BB->getParent(), InsertBefore: BB); |
| 1211 | |
| 1212 | // The new block unconditionally branches to the old block. |
| 1213 | BranchInst *BI = BranchInst::Create(IfTrue: BB, InsertBefore: NewBB); |
| 1214 | |
| 1215 | Loop *L = nullptr; |
| 1216 | BasicBlock *OldLatch = nullptr; |
| 1217 | // Splitting the predecessors of a loop header creates a preheader block. |
| 1218 | if (LI && LI->isLoopHeader(BB)) { |
| 1219 | L = LI->getLoopFor(BB); |
| 1220 | // Using the loop start line number prevents debuggers stepping into the |
| 1221 | // loop body for this instruction. |
| 1222 | BI->setDebugLoc(L->getStartLoc()); |
| 1223 | |
| 1224 | // If BB is the header of the Loop, it is possible that the loop is |
| 1225 | // modified, such that the current latch does not remain the latch of the |
| 1226 | // loop. If that is the case, the loop metadata from the current latch needs |
| 1227 | // to be applied to the new latch. |
| 1228 | OldLatch = L->getLoopLatch(); |
| 1229 | } else |
| 1230 | BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); |
| 1231 | |
| 1232 | // Move the edges from Preds to point to NewBB instead of BB. |
| 1233 | for (BasicBlock *Pred : Preds) { |
| 1234 | // This is slightly more strict than necessary; the minimum requirement |
| 1235 | // is that there be no more than one indirectbr branching to BB. And |
| 1236 | // all BlockAddress uses would need to be updated. |
| 1237 | assert(!isa<IndirectBrInst>(Pred->getTerminator()) && |
| 1238 | "Cannot split an edge from an IndirectBrInst" ); |
| 1239 | Pred->getTerminator()->replaceSuccessorWith(OldBB: BB, NewBB); |
| 1240 | } |
| 1241 | |
| 1242 | // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI |
| 1243 | // node becomes an incoming value for BB's phi node. However, if the Preds |
| 1244 | // list is empty, we need to insert dummy entries into the PHI nodes in BB to |
| 1245 | // account for the newly created predecessor. |
| 1246 | if (Preds.empty()) { |
| 1247 | // Insert dummy values as the incoming value. |
| 1248 | for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(Val: I); ++I) |
| 1249 | cast<PHINode>(Val&: I)->addIncoming(V: PoisonValue::get(T: I->getType()), BB: NewBB); |
| 1250 | } |
| 1251 | |
| 1252 | // Update DominatorTree, LoopInfo, and LCCSA analysis information. |
| 1253 | bool HasLoopExit = false; |
| 1254 | UpdateAnalysisInformation(OldBB: BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA, |
| 1255 | HasLoopExit); |
| 1256 | |
| 1257 | if (!Preds.empty()) { |
| 1258 | // Update the PHI nodes in BB with the values coming from NewBB. |
| 1259 | UpdatePHINodes(OrigBB: BB, NewBB, Preds, BI, HasLoopExit); |
| 1260 | } |
| 1261 | |
| 1262 | if (OldLatch) { |
| 1263 | BasicBlock *NewLatch = L->getLoopLatch(); |
| 1264 | if (NewLatch != OldLatch) { |
| 1265 | MDNode *MD = OldLatch->getTerminator()->getMetadata(KindID: LLVMContext::MD_loop); |
| 1266 | NewLatch->getTerminator()->setMetadata(KindID: LLVMContext::MD_loop, Node: MD); |
| 1267 | // It's still possible that OldLatch is the latch of another inner loop, |
| 1268 | // in which case we do not remove the metadata. |
| 1269 | Loop *IL = LI->getLoopFor(BB: OldLatch); |
| 1270 | if (IL && IL->getLoopLatch() != OldLatch) |
| 1271 | OldLatch->getTerminator()->setMetadata(KindID: LLVMContext::MD_loop, Node: nullptr); |
| 1272 | } |
| 1273 | } |
| 1274 | |
| 1275 | return NewBB; |
| 1276 | } |
| 1277 | |
| 1278 | BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, |
| 1279 | ArrayRef<BasicBlock *> Preds, |
| 1280 | const char *Suffix, DominatorTree *DT, |
| 1281 | LoopInfo *LI, MemorySSAUpdater *MSSAU, |
| 1282 | bool PreserveLCSSA) { |
| 1283 | return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI, |
| 1284 | MSSAU, PreserveLCSSA); |
| 1285 | } |
| 1286 | BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, |
| 1287 | ArrayRef<BasicBlock *> Preds, |
| 1288 | const char *Suffix, |
| 1289 | DomTreeUpdater *DTU, LoopInfo *LI, |
| 1290 | MemorySSAUpdater *MSSAU, |
| 1291 | bool PreserveLCSSA) { |
| 1292 | return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU, |
| 1293 | /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA); |
| 1294 | } |
| 1295 | |
| 1296 | static void SplitLandingPadPredecessorsImpl( |
| 1297 | BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, |
| 1298 | const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, |
| 1299 | DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, |
| 1300 | MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { |
| 1301 | assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!" ); |
| 1302 | |
| 1303 | // Create a new basic block for OrigBB's predecessors listed in Preds. Insert |
| 1304 | // it right before the original block. |
| 1305 | BasicBlock *NewBB1 = BasicBlock::Create(Context&: OrigBB->getContext(), |
| 1306 | Name: OrigBB->getName() + Suffix1, |
| 1307 | Parent: OrigBB->getParent(), InsertBefore: OrigBB); |
| 1308 | NewBBs.push_back(Elt: NewBB1); |
| 1309 | |
| 1310 | // The new block unconditionally branches to the old block. |
| 1311 | BranchInst *BI1 = BranchInst::Create(IfTrue: OrigBB, InsertBefore: NewBB1); |
| 1312 | BI1->setDebugLoc(OrigBB->getFirstNonPHIIt()->getDebugLoc()); |
| 1313 | |
| 1314 | // Move the edges from Preds to point to NewBB1 instead of OrigBB. |
| 1315 | for (BasicBlock *Pred : Preds) { |
| 1316 | // This is slightly more strict than necessary; the minimum requirement |
| 1317 | // is that there be no more than one indirectbr branching to BB. And |
| 1318 | // all BlockAddress uses would need to be updated. |
| 1319 | assert(!isa<IndirectBrInst>(Pred->getTerminator()) && |
| 1320 | "Cannot split an edge from an IndirectBrInst" ); |
| 1321 | Pred->getTerminator()->replaceUsesOfWith(From: OrigBB, To: NewBB1); |
| 1322 | } |
| 1323 | |
| 1324 | bool HasLoopExit = false; |
| 1325 | UpdateAnalysisInformation(OldBB: OrigBB, NewBB: NewBB1, Preds, DTU, DT, LI, MSSAU, |
| 1326 | PreserveLCSSA, HasLoopExit); |
| 1327 | |
| 1328 | // Update the PHI nodes in OrigBB with the values coming from NewBB1. |
| 1329 | UpdatePHINodes(OrigBB, NewBB: NewBB1, Preds, BI: BI1, HasLoopExit); |
| 1330 | |
| 1331 | // Move the remaining edges from OrigBB to point to NewBB2. |
| 1332 | SmallVector<BasicBlock*, 8> NewBB2Preds; |
| 1333 | for (pred_iterator i = pred_begin(BB: OrigBB), e = pred_end(BB: OrigBB); |
| 1334 | i != e; ) { |
| 1335 | BasicBlock *Pred = *i++; |
| 1336 | if (Pred == NewBB1) continue; |
| 1337 | assert(!isa<IndirectBrInst>(Pred->getTerminator()) && |
| 1338 | "Cannot split an edge from an IndirectBrInst" ); |
| 1339 | NewBB2Preds.push_back(Elt: Pred); |
| 1340 | e = pred_end(BB: OrigBB); |
| 1341 | } |
| 1342 | |
| 1343 | BasicBlock *NewBB2 = nullptr; |
| 1344 | if (!NewBB2Preds.empty()) { |
| 1345 | // Create another basic block for the rest of OrigBB's predecessors. |
| 1346 | NewBB2 = BasicBlock::Create(Context&: OrigBB->getContext(), |
| 1347 | Name: OrigBB->getName() + Suffix2, |
| 1348 | Parent: OrigBB->getParent(), InsertBefore: OrigBB); |
| 1349 | NewBBs.push_back(Elt: NewBB2); |
| 1350 | |
| 1351 | // The new block unconditionally branches to the old block. |
| 1352 | BranchInst *BI2 = BranchInst::Create(IfTrue: OrigBB, InsertBefore: NewBB2); |
| 1353 | BI2->setDebugLoc(OrigBB->getFirstNonPHIIt()->getDebugLoc()); |
| 1354 | |
| 1355 | // Move the remaining edges from OrigBB to point to NewBB2. |
| 1356 | for (BasicBlock *NewBB2Pred : NewBB2Preds) |
| 1357 | NewBB2Pred->getTerminator()->replaceUsesOfWith(From: OrigBB, To: NewBB2); |
| 1358 | |
| 1359 | // Update DominatorTree, LoopInfo, and LCCSA analysis information. |
| 1360 | HasLoopExit = false; |
| 1361 | UpdateAnalysisInformation(OldBB: OrigBB, NewBB: NewBB2, Preds: NewBB2Preds, DTU, DT, LI, MSSAU, |
| 1362 | PreserveLCSSA, HasLoopExit); |
| 1363 | |
| 1364 | // Update the PHI nodes in OrigBB with the values coming from NewBB2. |
| 1365 | UpdatePHINodes(OrigBB, NewBB: NewBB2, Preds: NewBB2Preds, BI: BI2, HasLoopExit); |
| 1366 | } |
| 1367 | |
| 1368 | LandingPadInst *LPad = OrigBB->getLandingPadInst(); |
| 1369 | Instruction *Clone1 = LPad->clone(); |
| 1370 | Clone1->setName(Twine("lpad" ) + Suffix1); |
| 1371 | Clone1->insertInto(ParentBB: NewBB1, It: NewBB1->getFirstInsertionPt()); |
| 1372 | |
| 1373 | if (NewBB2) { |
| 1374 | Instruction *Clone2 = LPad->clone(); |
| 1375 | Clone2->setName(Twine("lpad" ) + Suffix2); |
| 1376 | Clone2->insertInto(ParentBB: NewBB2, It: NewBB2->getFirstInsertionPt()); |
| 1377 | |
| 1378 | // Create a PHI node for the two cloned landingpad instructions only |
| 1379 | // if the original landingpad instruction has some uses. |
| 1380 | if (!LPad->use_empty()) { |
| 1381 | assert(!LPad->getType()->isTokenTy() && |
| 1382 | "Split cannot be applied if LPad is token type. Otherwise an " |
| 1383 | "invalid PHINode of token type would be created." ); |
| 1384 | PHINode *PN = PHINode::Create(Ty: LPad->getType(), NumReservedValues: 2, NameStr: "lpad.phi" , InsertBefore: LPad->getIterator()); |
| 1385 | PN->addIncoming(V: Clone1, BB: NewBB1); |
| 1386 | PN->addIncoming(V: Clone2, BB: NewBB2); |
| 1387 | LPad->replaceAllUsesWith(V: PN); |
| 1388 | } |
| 1389 | LPad->eraseFromParent(); |
| 1390 | } else { |
| 1391 | // There is no second clone. Just replace the landing pad with the first |
| 1392 | // clone. |
| 1393 | LPad->replaceAllUsesWith(V: Clone1); |
| 1394 | LPad->eraseFromParent(); |
| 1395 | } |
| 1396 | } |
| 1397 | |
| 1398 | void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, |
| 1399 | ArrayRef<BasicBlock *> Preds, |
| 1400 | const char *Suffix1, const char *Suffix2, |
| 1401 | SmallVectorImpl<BasicBlock *> &NewBBs, |
| 1402 | DomTreeUpdater *DTU, LoopInfo *LI, |
| 1403 | MemorySSAUpdater *MSSAU, |
| 1404 | bool PreserveLCSSA) { |
| 1405 | return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2, |
| 1406 | NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU, |
| 1407 | PreserveLCSSA); |
| 1408 | } |
| 1409 | |
| 1410 | ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, |
| 1411 | BasicBlock *Pred, |
| 1412 | DomTreeUpdater *DTU) { |
| 1413 | Instruction *UncondBranch = Pred->getTerminator(); |
| 1414 | // Clone the return and add it to the end of the predecessor. |
| 1415 | Instruction *NewRet = RI->clone(); |
| 1416 | NewRet->insertInto(ParentBB: Pred, It: Pred->end()); |
| 1417 | |
| 1418 | // If the return instruction returns a value, and if the value was a |
| 1419 | // PHI node in "BB", propagate the right value into the return. |
| 1420 | for (Use &Op : NewRet->operands()) { |
| 1421 | Value *V = Op; |
| 1422 | Instruction *NewBC = nullptr; |
| 1423 | if (BitCastInst *BCI = dyn_cast<BitCastInst>(Val: V)) { |
| 1424 | // Return value might be bitcasted. Clone and insert it before the |
| 1425 | // return instruction. |
| 1426 | V = BCI->getOperand(i_nocapture: 0); |
| 1427 | NewBC = BCI->clone(); |
| 1428 | NewBC->insertInto(ParentBB: Pred, It: NewRet->getIterator()); |
| 1429 | Op = NewBC; |
| 1430 | } |
| 1431 | |
| 1432 | Instruction *NewEV = nullptr; |
| 1433 | if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Val: V)) { |
| 1434 | V = EVI->getOperand(i_nocapture: 0); |
| 1435 | NewEV = EVI->clone(); |
| 1436 | if (NewBC) { |
| 1437 | NewBC->setOperand(i: 0, Val: NewEV); |
| 1438 | NewEV->insertInto(ParentBB: Pred, It: NewBC->getIterator()); |
| 1439 | } else { |
| 1440 | NewEV->insertInto(ParentBB: Pred, It: NewRet->getIterator()); |
| 1441 | Op = NewEV; |
| 1442 | } |
| 1443 | } |
| 1444 | |
| 1445 | if (PHINode *PN = dyn_cast<PHINode>(Val: V)) { |
| 1446 | if (PN->getParent() == BB) { |
| 1447 | if (NewEV) { |
| 1448 | NewEV->setOperand(i: 0, Val: PN->getIncomingValueForBlock(BB: Pred)); |
| 1449 | } else if (NewBC) |
| 1450 | NewBC->setOperand(i: 0, Val: PN->getIncomingValueForBlock(BB: Pred)); |
| 1451 | else |
| 1452 | Op = PN->getIncomingValueForBlock(BB: Pred); |
| 1453 | } |
| 1454 | } |
| 1455 | } |
| 1456 | |
| 1457 | // Update any PHI nodes in the returning block to realize that we no |
| 1458 | // longer branch to them. |
| 1459 | BB->removePredecessor(Pred); |
| 1460 | UncondBranch->eraseFromParent(); |
| 1461 | |
| 1462 | if (DTU) |
| 1463 | DTU->applyUpdates(Updates: {{DominatorTree::Delete, Pred, BB}}); |
| 1464 | |
| 1465 | return cast<ReturnInst>(Val: NewRet); |
| 1466 | } |
| 1467 | |
| 1468 | Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, |
| 1469 | BasicBlock::iterator SplitBefore, |
| 1470 | bool Unreachable, |
| 1471 | MDNode *BranchWeights, |
| 1472 | DomTreeUpdater *DTU, LoopInfo *LI, |
| 1473 | BasicBlock *ThenBlock) { |
| 1474 | SplitBlockAndInsertIfThenElse( |
| 1475 | Cond, SplitBefore, ThenBlock: &ThenBlock, /* ElseBlock */ nullptr, |
| 1476 | /* UnreachableThen */ Unreachable, |
| 1477 | /* UnreachableElse */ false, BranchWeights, DTU, LI); |
| 1478 | return ThenBlock->getTerminator(); |
| 1479 | } |
| 1480 | |
| 1481 | Instruction *llvm::SplitBlockAndInsertIfElse(Value *Cond, |
| 1482 | BasicBlock::iterator SplitBefore, |
| 1483 | bool Unreachable, |
| 1484 | MDNode *BranchWeights, |
| 1485 | DomTreeUpdater *DTU, LoopInfo *LI, |
| 1486 | BasicBlock *ElseBlock) { |
| 1487 | SplitBlockAndInsertIfThenElse( |
| 1488 | Cond, SplitBefore, /* ThenBlock */ nullptr, ElseBlock: &ElseBlock, |
| 1489 | /* UnreachableThen */ false, |
| 1490 | /* UnreachableElse */ Unreachable, BranchWeights, DTU, LI); |
| 1491 | return ElseBlock->getTerminator(); |
| 1492 | } |
| 1493 | |
| 1494 | void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore, |
| 1495 | Instruction **ThenTerm, |
| 1496 | Instruction **ElseTerm, |
| 1497 | MDNode *BranchWeights, |
| 1498 | DomTreeUpdater *DTU, LoopInfo *LI) { |
| 1499 | BasicBlock *ThenBlock = nullptr; |
| 1500 | BasicBlock *ElseBlock = nullptr; |
| 1501 | SplitBlockAndInsertIfThenElse( |
| 1502 | Cond, SplitBefore, ThenBlock: &ThenBlock, ElseBlock: &ElseBlock, /* UnreachableThen */ false, |
| 1503 | /* UnreachableElse */ false, BranchWeights, DTU, LI); |
| 1504 | |
| 1505 | *ThenTerm = ThenBlock->getTerminator(); |
| 1506 | *ElseTerm = ElseBlock->getTerminator(); |
| 1507 | } |
| 1508 | |
| 1509 | void llvm::SplitBlockAndInsertIfThenElse( |
| 1510 | Value *Cond, BasicBlock::iterator SplitBefore, BasicBlock **ThenBlock, |
| 1511 | BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse, |
| 1512 | MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) { |
| 1513 | assert((ThenBlock || ElseBlock) && |
| 1514 | "At least one branch block must be created" ); |
| 1515 | assert((!UnreachableThen || !UnreachableElse) && |
| 1516 | "Split block tail must be reachable" ); |
| 1517 | |
| 1518 | SmallVector<DominatorTree::UpdateType, 8> Updates; |
| 1519 | SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors; |
| 1520 | BasicBlock *Head = SplitBefore->getParent(); |
| 1521 | if (DTU) { |
| 1522 | UniqueOrigSuccessors.insert_range(R: successors(BB: Head)); |
| 1523 | Updates.reserve(N: 4 + 2 * UniqueOrigSuccessors.size()); |
| 1524 | } |
| 1525 | |
| 1526 | LLVMContext &C = Head->getContext(); |
| 1527 | BasicBlock *Tail = Head->splitBasicBlock(I: SplitBefore); |
| 1528 | BasicBlock *TrueBlock = Tail; |
| 1529 | BasicBlock *FalseBlock = Tail; |
| 1530 | bool ThenToTailEdge = false; |
| 1531 | bool ElseToTailEdge = false; |
| 1532 | |
| 1533 | // Encapsulate the logic around creation/insertion/etc of a new block. |
| 1534 | auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB, |
| 1535 | bool &ToTailEdge) { |
| 1536 | if (PBB == nullptr) |
| 1537 | return; // Do not create/insert a block. |
| 1538 | |
| 1539 | if (*PBB) |
| 1540 | BB = *PBB; // Caller supplied block, use it. |
| 1541 | else { |
| 1542 | // Create a new block. |
| 1543 | BB = BasicBlock::Create(Context&: C, Name: "" , Parent: Head->getParent(), InsertBefore: Tail); |
| 1544 | if (Unreachable) |
| 1545 | (void)new UnreachableInst(C, BB); |
| 1546 | else { |
| 1547 | (void)BranchInst::Create(IfTrue: Tail, InsertBefore: BB); |
| 1548 | ToTailEdge = true; |
| 1549 | } |
| 1550 | BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc()); |
| 1551 | // Pass the new block back to the caller. |
| 1552 | *PBB = BB; |
| 1553 | } |
| 1554 | }; |
| 1555 | |
| 1556 | handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge); |
| 1557 | handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge); |
| 1558 | |
| 1559 | Instruction *HeadOldTerm = Head->getTerminator(); |
| 1560 | BranchInst *HeadNewTerm = |
| 1561 | BranchInst::Create(/*ifTrue*/ IfTrue: TrueBlock, /*ifFalse*/ IfFalse: FalseBlock, Cond); |
| 1562 | HeadNewTerm->setMetadata(KindID: LLVMContext::MD_prof, Node: BranchWeights); |
| 1563 | ReplaceInstWithInst(From: HeadOldTerm, To: HeadNewTerm); |
| 1564 | |
| 1565 | if (DTU) { |
| 1566 | Updates.emplace_back(Args: DominatorTree::Insert, Args&: Head, Args&: TrueBlock); |
| 1567 | Updates.emplace_back(Args: DominatorTree::Insert, Args&: Head, Args&: FalseBlock); |
| 1568 | if (ThenToTailEdge) |
| 1569 | Updates.emplace_back(Args: DominatorTree::Insert, Args&: TrueBlock, Args&: Tail); |
| 1570 | if (ElseToTailEdge) |
| 1571 | Updates.emplace_back(Args: DominatorTree::Insert, Args&: FalseBlock, Args&: Tail); |
| 1572 | for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) |
| 1573 | Updates.emplace_back(Args: DominatorTree::Insert, Args&: Tail, Args&: UniqueOrigSuccessor); |
| 1574 | for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) |
| 1575 | Updates.emplace_back(Args: DominatorTree::Delete, Args&: Head, Args&: UniqueOrigSuccessor); |
| 1576 | DTU->applyUpdates(Updates); |
| 1577 | } |
| 1578 | |
| 1579 | if (LI) { |
| 1580 | if (Loop *L = LI->getLoopFor(BB: Head); L) { |
| 1581 | if (ThenToTailEdge) |
| 1582 | L->addBasicBlockToLoop(NewBB: TrueBlock, LI&: *LI); |
| 1583 | if (ElseToTailEdge) |
| 1584 | L->addBasicBlockToLoop(NewBB: FalseBlock, LI&: *LI); |
| 1585 | L->addBasicBlockToLoop(NewBB: Tail, LI&: *LI); |
| 1586 | } |
| 1587 | } |
| 1588 | } |
| 1589 | |
| 1590 | std::pair<Instruction *, Value *> |
| 1591 | llvm::SplitBlockAndInsertSimpleForLoop(Value *End, |
| 1592 | BasicBlock::iterator SplitBefore) { |
| 1593 | BasicBlock *LoopPred = SplitBefore->getParent(); |
| 1594 | BasicBlock *LoopBody = SplitBlock(Old: SplitBefore->getParent(), SplitPt: SplitBefore); |
| 1595 | BasicBlock *LoopExit = SplitBlock(Old: SplitBefore->getParent(), SplitPt: SplitBefore); |
| 1596 | |
| 1597 | auto *Ty = End->getType(); |
| 1598 | auto &DL = SplitBefore->getDataLayout(); |
| 1599 | const unsigned Bitwidth = DL.getTypeSizeInBits(Ty); |
| 1600 | |
| 1601 | IRBuilder<> Builder(LoopBody->getTerminator()); |
| 1602 | auto *IV = Builder.CreatePHI(Ty, NumReservedValues: 2, Name: "iv" ); |
| 1603 | auto *IVNext = |
| 1604 | Builder.CreateAdd(LHS: IV, RHS: ConstantInt::get(Ty, V: 1), Name: IV->getName() + ".next" , |
| 1605 | /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); |
| 1606 | auto *IVCheck = Builder.CreateICmpEQ(LHS: IVNext, RHS: End, |
| 1607 | Name: IV->getName() + ".check" ); |
| 1608 | Builder.CreateCondBr(Cond: IVCheck, True: LoopExit, False: LoopBody); |
| 1609 | LoopBody->getTerminator()->eraseFromParent(); |
| 1610 | |
| 1611 | // Populate the IV PHI. |
| 1612 | IV->addIncoming(V: ConstantInt::get(Ty, V: 0), BB: LoopPred); |
| 1613 | IV->addIncoming(V: IVNext, BB: LoopBody); |
| 1614 | |
| 1615 | return std::make_pair(x: &*LoopBody->getFirstNonPHIIt(), y&: IV); |
| 1616 | } |
| 1617 | |
| 1618 | void llvm::SplitBlockAndInsertForEachLane( |
| 1619 | ElementCount EC, Type *IndexTy, BasicBlock::iterator InsertBefore, |
| 1620 | std::function<void(IRBuilderBase &, Value *)> Func) { |
| 1621 | |
| 1622 | IRBuilder<> IRB(InsertBefore->getParent(), InsertBefore); |
| 1623 | |
| 1624 | if (EC.isScalable()) { |
| 1625 | Value *NumElements = IRB.CreateElementCount(Ty: IndexTy, EC); |
| 1626 | |
| 1627 | auto [BodyIP, Index] = |
| 1628 | SplitBlockAndInsertSimpleForLoop(End: NumElements, SplitBefore: InsertBefore); |
| 1629 | |
| 1630 | IRB.SetInsertPoint(BodyIP); |
| 1631 | Func(IRB, Index); |
| 1632 | return; |
| 1633 | } |
| 1634 | |
| 1635 | unsigned Num = EC.getFixedValue(); |
| 1636 | for (unsigned Idx = 0; Idx < Num; ++Idx) { |
| 1637 | IRB.SetInsertPoint(InsertBefore); |
| 1638 | Func(IRB, ConstantInt::get(Ty: IndexTy, V: Idx)); |
| 1639 | } |
| 1640 | } |
| 1641 | |
| 1642 | void llvm::SplitBlockAndInsertForEachLane( |
| 1643 | Value *EVL, BasicBlock::iterator InsertBefore, |
| 1644 | std::function<void(IRBuilderBase &, Value *)> Func) { |
| 1645 | |
| 1646 | IRBuilder<> IRB(InsertBefore->getParent(), InsertBefore); |
| 1647 | Type *Ty = EVL->getType(); |
| 1648 | |
| 1649 | if (!isa<ConstantInt>(Val: EVL)) { |
| 1650 | auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(End: EVL, SplitBefore: InsertBefore); |
| 1651 | IRB.SetInsertPoint(BodyIP); |
| 1652 | Func(IRB, Index); |
| 1653 | return; |
| 1654 | } |
| 1655 | |
| 1656 | unsigned Num = cast<ConstantInt>(Val: EVL)->getZExtValue(); |
| 1657 | for (unsigned Idx = 0; Idx < Num; ++Idx) { |
| 1658 | IRB.SetInsertPoint(InsertBefore); |
| 1659 | Func(IRB, ConstantInt::get(Ty, V: Idx)); |
| 1660 | } |
| 1661 | } |
| 1662 | |
| 1663 | BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, |
| 1664 | BasicBlock *&IfFalse) { |
| 1665 | PHINode *SomePHI = dyn_cast<PHINode>(Val: BB->begin()); |
| 1666 | BasicBlock *Pred1 = nullptr; |
| 1667 | BasicBlock *Pred2 = nullptr; |
| 1668 | |
| 1669 | if (SomePHI) { |
| 1670 | if (SomePHI->getNumIncomingValues() != 2) |
| 1671 | return nullptr; |
| 1672 | Pred1 = SomePHI->getIncomingBlock(i: 0); |
| 1673 | Pred2 = SomePHI->getIncomingBlock(i: 1); |
| 1674 | } else { |
| 1675 | pred_iterator PI = pred_begin(BB), PE = pred_end(BB); |
| 1676 | if (PI == PE) // No predecessor |
| 1677 | return nullptr; |
| 1678 | Pred1 = *PI++; |
| 1679 | if (PI == PE) // Only one predecessor |
| 1680 | return nullptr; |
| 1681 | Pred2 = *PI++; |
| 1682 | if (PI != PE) // More than two predecessors |
| 1683 | return nullptr; |
| 1684 | } |
| 1685 | |
| 1686 | // We can only handle branches. Other control flow will be lowered to |
| 1687 | // branches if possible anyway. |
| 1688 | BranchInst *Pred1Br = dyn_cast<BranchInst>(Val: Pred1->getTerminator()); |
| 1689 | BranchInst *Pred2Br = dyn_cast<BranchInst>(Val: Pred2->getTerminator()); |
| 1690 | if (!Pred1Br || !Pred2Br) |
| 1691 | return nullptr; |
| 1692 | |
| 1693 | // Eliminate code duplication by ensuring that Pred1Br is conditional if |
| 1694 | // either are. |
| 1695 | if (Pred2Br->isConditional()) { |
| 1696 | // If both branches are conditional, we don't have an "if statement". In |
| 1697 | // reality, we could transform this case, but since the condition will be |
| 1698 | // required anyway, we stand no chance of eliminating it, so the xform is |
| 1699 | // probably not profitable. |
| 1700 | if (Pred1Br->isConditional()) |
| 1701 | return nullptr; |
| 1702 | |
| 1703 | std::swap(a&: Pred1, b&: Pred2); |
| 1704 | std::swap(a&: Pred1Br, b&: Pred2Br); |
| 1705 | } |
| 1706 | |
| 1707 | if (Pred1Br->isConditional()) { |
| 1708 | // The only thing we have to watch out for here is to make sure that Pred2 |
| 1709 | // doesn't have incoming edges from other blocks. If it does, the condition |
| 1710 | // doesn't dominate BB. |
| 1711 | if (!Pred2->getSinglePredecessor()) |
| 1712 | return nullptr; |
| 1713 | |
| 1714 | // If we found a conditional branch predecessor, make sure that it branches |
| 1715 | // to BB and Pred2Br. If it doesn't, this isn't an "if statement". |
| 1716 | if (Pred1Br->getSuccessor(i: 0) == BB && |
| 1717 | Pred1Br->getSuccessor(i: 1) == Pred2) { |
| 1718 | IfTrue = Pred1; |
| 1719 | IfFalse = Pred2; |
| 1720 | } else if (Pred1Br->getSuccessor(i: 0) == Pred2 && |
| 1721 | Pred1Br->getSuccessor(i: 1) == BB) { |
| 1722 | IfTrue = Pred2; |
| 1723 | IfFalse = Pred1; |
| 1724 | } else { |
| 1725 | // We know that one arm of the conditional goes to BB, so the other must |
| 1726 | // go somewhere unrelated, and this must not be an "if statement". |
| 1727 | return nullptr; |
| 1728 | } |
| 1729 | |
| 1730 | return Pred1Br; |
| 1731 | } |
| 1732 | |
| 1733 | // Ok, if we got here, both predecessors end with an unconditional branch to |
| 1734 | // BB. Don't panic! If both blocks only have a single (identical) |
| 1735 | // predecessor, and THAT is a conditional branch, then we're all ok! |
| 1736 | BasicBlock *CommonPred = Pred1->getSinglePredecessor(); |
| 1737 | if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) |
| 1738 | return nullptr; |
| 1739 | |
| 1740 | // Otherwise, if this is a conditional branch, then we can use it! |
| 1741 | BranchInst *BI = dyn_cast<BranchInst>(Val: CommonPred->getTerminator()); |
| 1742 | if (!BI) return nullptr; |
| 1743 | |
| 1744 | assert(BI->isConditional() && "Two successors but not conditional?" ); |
| 1745 | if (BI->getSuccessor(i: 0) == Pred1) { |
| 1746 | IfTrue = Pred1; |
| 1747 | IfFalse = Pred2; |
| 1748 | } else { |
| 1749 | IfTrue = Pred2; |
| 1750 | IfFalse = Pred1; |
| 1751 | } |
| 1752 | return BI; |
| 1753 | } |
| 1754 | |
| 1755 | void llvm::InvertBranch(BranchInst *PBI, IRBuilderBase &Builder) { |
| 1756 | Value *NewCond = PBI->getCondition(); |
| 1757 | // If this is a "cmp" instruction, only used for branching (and nowhere |
| 1758 | // else), then we can simply invert the predicate. |
| 1759 | if (NewCond->hasOneUse() && isa<CmpInst>(Val: NewCond)) { |
| 1760 | CmpInst *CI = cast<CmpInst>(Val: NewCond); |
| 1761 | CI->setPredicate(CI->getInversePredicate()); |
| 1762 | } else |
| 1763 | NewCond = Builder.CreateNot(V: NewCond, Name: NewCond->getName() + ".not" ); |
| 1764 | |
| 1765 | PBI->setCondition(NewCond); |
| 1766 | PBI->swapSuccessors(); |
| 1767 | } |
| 1768 | |
| 1769 | bool llvm::hasOnlySimpleTerminator(const Function &F) { |
| 1770 | for (auto &BB : F) { |
| 1771 | auto *Term = BB.getTerminator(); |
| 1772 | if (!(isa<ReturnInst>(Val: Term) || isa<UnreachableInst>(Val: Term) || |
| 1773 | isa<BranchInst>(Val: Term))) |
| 1774 | return false; |
| 1775 | } |
| 1776 | return true; |
| 1777 | } |
| 1778 | |