1 | //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This family of functions perform manipulations on basic blocks, and |
10 | // instructions contained within basic blocks. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
15 | #include "llvm/ADT/ArrayRef.h" |
16 | #include "llvm/ADT/SmallPtrSet.h" |
17 | #include "llvm/ADT/SmallVector.h" |
18 | #include "llvm/ADT/Twine.h" |
19 | #include "llvm/Analysis/CFG.h" |
20 | #include "llvm/Analysis/DomTreeUpdater.h" |
21 | #include "llvm/Analysis/LoopInfo.h" |
22 | #include "llvm/Analysis/MemoryDependenceAnalysis.h" |
23 | #include "llvm/Analysis/MemorySSAUpdater.h" |
24 | #include "llvm/IR/BasicBlock.h" |
25 | #include "llvm/IR/CFG.h" |
26 | #include "llvm/IR/Constants.h" |
27 | #include "llvm/IR/DebugInfo.h" |
28 | #include "llvm/IR/DebugInfoMetadata.h" |
29 | #include "llvm/IR/Dominators.h" |
30 | #include "llvm/IR/Function.h" |
31 | #include "llvm/IR/IRBuilder.h" |
32 | #include "llvm/IR/InstrTypes.h" |
33 | #include "llvm/IR/Instruction.h" |
34 | #include "llvm/IR/Instructions.h" |
35 | #include "llvm/IR/LLVMContext.h" |
36 | #include "llvm/IR/Type.h" |
37 | #include "llvm/IR/User.h" |
38 | #include "llvm/IR/Value.h" |
39 | #include "llvm/IR/ValueHandle.h" |
40 | #include "llvm/Support/Casting.h" |
41 | #include "llvm/Support/CommandLine.h" |
42 | #include "llvm/Support/Debug.h" |
43 | #include "llvm/Support/raw_ostream.h" |
44 | #include "llvm/Transforms/Utils/Local.h" |
45 | #include <cassert> |
46 | #include <cstdint> |
47 | #include <string> |
48 | #include <utility> |
49 | #include <vector> |
50 | |
51 | using namespace llvm; |
52 | |
53 | #define DEBUG_TYPE "basicblock-utils" |
54 | |
55 | static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth( |
56 | "max-deopt-or-unreachable-succ-check-depth" , cl::init(Val: 8), cl::Hidden, |
57 | cl::desc("Set the maximum path length when checking whether a basic block " |
58 | "is followed by a block that either has a terminating " |
59 | "deoptimizing call or is terminated with an unreachable" )); |
60 | |
61 | void llvm::detachDeadBlocks( |
62 | ArrayRef<BasicBlock *> BBs, |
63 | SmallVectorImpl<DominatorTree::UpdateType> *Updates, |
64 | bool KeepOneInputPHIs) { |
65 | for (auto *BB : BBs) { |
66 | // Loop through all of our successors and make sure they know that one |
67 | // of their predecessors is going away. |
68 | SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; |
69 | for (BasicBlock *Succ : successors(BB)) { |
70 | Succ->removePredecessor(Pred: BB, KeepOneInputPHIs); |
71 | if (Updates && UniqueSuccessors.insert(Ptr: Succ).second) |
72 | Updates->push_back(Elt: {DominatorTree::Delete, BB, Succ}); |
73 | } |
74 | |
75 | // Zap all the instructions in the block. |
76 | while (!BB->empty()) { |
77 | Instruction &I = BB->back(); |
78 | // If this instruction is used, replace uses with an arbitrary value. |
79 | // Because control flow can't get here, we don't care what we replace the |
80 | // value with. Note that since this block is unreachable, and all values |
81 | // contained within it must dominate their uses, that all uses will |
82 | // eventually be removed (they are themselves dead). |
83 | if (!I.use_empty()) |
84 | I.replaceAllUsesWith(V: PoisonValue::get(T: I.getType())); |
85 | BB->back().eraseFromParent(); |
86 | } |
87 | new UnreachableInst(BB->getContext(), BB); |
88 | assert(BB->size() == 1 && |
89 | isa<UnreachableInst>(BB->getTerminator()) && |
90 | "The successor list of BB isn't empty before " |
91 | "applying corresponding DTU updates." ); |
92 | } |
93 | } |
94 | |
95 | void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, |
96 | bool KeepOneInputPHIs) { |
97 | DeleteDeadBlocks(BBs: {BB}, DTU, KeepOneInputPHIs); |
98 | } |
99 | |
100 | void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, |
101 | bool KeepOneInputPHIs) { |
102 | #ifndef NDEBUG |
103 | // Make sure that all predecessors of each dead block is also dead. |
104 | SmallPtrSet<BasicBlock *, 4> Dead(llvm::from_range, BBs); |
105 | assert(Dead.size() == BBs.size() && "Duplicating blocks?" ); |
106 | for (auto *BB : Dead) |
107 | for (BasicBlock *Pred : predecessors(BB)) |
108 | assert(Dead.count(Pred) && "All predecessors must be dead!" ); |
109 | #endif |
110 | |
111 | SmallVector<DominatorTree::UpdateType, 4> Updates; |
112 | detachDeadBlocks(BBs, Updates: DTU ? &Updates : nullptr, KeepOneInputPHIs); |
113 | |
114 | if (DTU) |
115 | DTU->applyUpdates(Updates); |
116 | |
117 | for (BasicBlock *BB : BBs) |
118 | if (DTU) |
119 | DTU->deleteBB(DelBB: BB); |
120 | else |
121 | BB->eraseFromParent(); |
122 | } |
123 | |
124 | bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, |
125 | bool KeepOneInputPHIs) { |
126 | df_iterator_default_set<BasicBlock*> Reachable; |
127 | |
128 | // Mark all reachable blocks. |
129 | for (BasicBlock *BB : depth_first_ext(G: &F, S&: Reachable)) |
130 | (void)BB/* Mark all reachable blocks */; |
131 | |
132 | // Collect all dead blocks. |
133 | std::vector<BasicBlock*> DeadBlocks; |
134 | for (BasicBlock &BB : F) |
135 | if (!Reachable.count(Ptr: &BB)) |
136 | DeadBlocks.push_back(x: &BB); |
137 | |
138 | // Delete the dead blocks. |
139 | DeleteDeadBlocks(BBs: DeadBlocks, DTU, KeepOneInputPHIs); |
140 | |
141 | return !DeadBlocks.empty(); |
142 | } |
143 | |
144 | bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB, |
145 | MemoryDependenceResults *MemDep) { |
146 | if (!isa<PHINode>(Val: BB->begin())) |
147 | return false; |
148 | |
149 | while (PHINode *PN = dyn_cast<PHINode>(Val: BB->begin())) { |
150 | if (PN->getIncomingValue(i: 0) != PN) |
151 | PN->replaceAllUsesWith(V: PN->getIncomingValue(i: 0)); |
152 | else |
153 | PN->replaceAllUsesWith(V: PoisonValue::get(T: PN->getType())); |
154 | |
155 | if (MemDep) |
156 | MemDep->removeInstruction(InstToRemove: PN); // Memdep updates AA itself. |
157 | |
158 | PN->eraseFromParent(); |
159 | } |
160 | return true; |
161 | } |
162 | |
163 | bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI, |
164 | MemorySSAUpdater *MSSAU) { |
165 | // Recursively deleting a PHI may cause multiple PHIs to be deleted |
166 | // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. |
167 | SmallVector<WeakTrackingVH, 8> PHIs(llvm::make_pointer_range(Range: BB->phis())); |
168 | |
169 | bool Changed = false; |
170 | for (const auto &PHI : PHIs) |
171 | if (PHINode *PN = dyn_cast_or_null<PHINode>(Val: PHI.operator Value *())) |
172 | Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU); |
173 | |
174 | return Changed; |
175 | } |
176 | |
177 | bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, |
178 | LoopInfo *LI, MemorySSAUpdater *MSSAU, |
179 | MemoryDependenceResults *MemDep, |
180 | bool PredecessorWithTwoSuccessors, |
181 | DominatorTree *DT) { |
182 | if (BB->hasAddressTaken()) |
183 | return false; |
184 | |
185 | // Can't merge if there are multiple predecessors, or no predecessors. |
186 | BasicBlock *PredBB = BB->getUniquePredecessor(); |
187 | if (!PredBB) return false; |
188 | |
189 | // Don't break self-loops. |
190 | if (PredBB == BB) return false; |
191 | |
192 | // Don't break unwinding instructions or terminators with other side-effects. |
193 | Instruction *PTI = PredBB->getTerminator(); |
194 | if (PTI->isSpecialTerminator() || PTI->mayHaveSideEffects()) |
195 | return false; |
196 | |
197 | // Can't merge if there are multiple distinct successors. |
198 | if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) |
199 | return false; |
200 | |
201 | // Currently only allow PredBB to have two predecessors, one being BB. |
202 | // Update BI to branch to BB's only successor instead of BB. |
203 | BranchInst *PredBB_BI; |
204 | BasicBlock *NewSucc = nullptr; |
205 | unsigned FallThruPath; |
206 | if (PredecessorWithTwoSuccessors) { |
207 | if (!(PredBB_BI = dyn_cast<BranchInst>(Val: PTI))) |
208 | return false; |
209 | BranchInst *BB_JmpI = dyn_cast<BranchInst>(Val: BB->getTerminator()); |
210 | if (!BB_JmpI || !BB_JmpI->isUnconditional()) |
211 | return false; |
212 | NewSucc = BB_JmpI->getSuccessor(i: 0); |
213 | FallThruPath = PredBB_BI->getSuccessor(i: 0) == BB ? 0 : 1; |
214 | } |
215 | |
216 | // Can't merge if there is PHI loop. |
217 | for (PHINode &PN : BB->phis()) |
218 | if (llvm::is_contained(Range: PN.incoming_values(), Element: &PN)) |
219 | return false; |
220 | |
221 | LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " |
222 | << PredBB->getName() << "\n" ); |
223 | |
224 | // Begin by getting rid of unneeded PHIs. |
225 | SmallVector<AssertingVH<Value>, 4> IncomingValues; |
226 | if (isa<PHINode>(Val: BB->front())) { |
227 | for (PHINode &PN : BB->phis()) |
228 | if (!isa<PHINode>(Val: PN.getIncomingValue(i: 0)) || |
229 | cast<PHINode>(Val: PN.getIncomingValue(i: 0))->getParent() != BB) |
230 | IncomingValues.push_back(Elt: PN.getIncomingValue(i: 0)); |
231 | FoldSingleEntryPHINodes(BB, MemDep); |
232 | } |
233 | |
234 | if (DT) { |
235 | assert(!DTU && "cannot use both DT and DTU for updates" ); |
236 | DomTreeNode *PredNode = DT->getNode(BB: PredBB); |
237 | DomTreeNode *BBNode = DT->getNode(BB); |
238 | if (PredNode) { |
239 | assert(BBNode && "PredNode unreachable but BBNode reachable?" ); |
240 | for (DomTreeNode *C : to_vector(Range: BBNode->children())) |
241 | C->setIDom(PredNode); |
242 | } |
243 | } |
244 | // DTU update: Collect all the edges that exit BB. |
245 | // These dominator edges will be redirected from Pred. |
246 | std::vector<DominatorTree::UpdateType> Updates; |
247 | if (DTU) { |
248 | assert(!DT && "cannot use both DT and DTU for updates" ); |
249 | // To avoid processing the same predecessor more than once. |
250 | SmallPtrSet<BasicBlock *, 8> SeenSuccs; |
251 | SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(llvm::from_range, |
252 | successors(BB: PredBB)); |
253 | Updates.reserve(n: Updates.size() + 2 * succ_size(BB) + 1); |
254 | // Add insert edges first. Experimentally, for the particular case of two |
255 | // blocks that can be merged, with a single successor and single predecessor |
256 | // respectively, it is beneficial to have all insert updates first. Deleting |
257 | // edges first may lead to unreachable blocks, followed by inserting edges |
258 | // making the blocks reachable again. Such DT updates lead to high compile |
259 | // times. We add inserts before deletes here to reduce compile time. |
260 | for (BasicBlock *SuccOfBB : successors(BB)) |
261 | // This successor of BB may already be a PredBB's successor. |
262 | if (!SuccsOfPredBB.contains(Ptr: SuccOfBB)) |
263 | if (SeenSuccs.insert(Ptr: SuccOfBB).second) |
264 | Updates.push_back(x: {DominatorTree::Insert, PredBB, SuccOfBB}); |
265 | SeenSuccs.clear(); |
266 | for (BasicBlock *SuccOfBB : successors(BB)) |
267 | if (SeenSuccs.insert(Ptr: SuccOfBB).second) |
268 | Updates.push_back(x: {DominatorTree::Delete, BB, SuccOfBB}); |
269 | Updates.push_back(x: {DominatorTree::Delete, PredBB, BB}); |
270 | } |
271 | |
272 | Instruction *STI = BB->getTerminator(); |
273 | Instruction *Start = &*BB->begin(); |
274 | // If there's nothing to move, mark the starting instruction as the last |
275 | // instruction in the block. Terminator instruction is handled separately. |
276 | if (Start == STI) |
277 | Start = PTI; |
278 | |
279 | // Move all definitions in the successor to the predecessor... |
280 | PredBB->splice(ToIt: PTI->getIterator(), FromBB: BB, FromBeginIt: BB->begin(), FromEndIt: STI->getIterator()); |
281 | |
282 | if (MSSAU) |
283 | MSSAU->moveAllAfterMergeBlocks(From: BB, To: PredBB, Start); |
284 | |
285 | // Make all PHI nodes that referred to BB now refer to Pred as their |
286 | // source... |
287 | BB->replaceAllUsesWith(V: PredBB); |
288 | |
289 | if (PredecessorWithTwoSuccessors) { |
290 | // Delete the unconditional branch from BB. |
291 | BB->back().eraseFromParent(); |
292 | |
293 | // Update branch in the predecessor. |
294 | PredBB_BI->setSuccessor(idx: FallThruPath, NewSucc); |
295 | } else { |
296 | // Delete the unconditional branch from the predecessor. |
297 | PredBB->back().eraseFromParent(); |
298 | |
299 | // Move terminator instruction. |
300 | BB->back().moveBeforePreserving(BB&: *PredBB, I: PredBB->end()); |
301 | |
302 | // Terminator may be a memory accessing instruction too. |
303 | if (MSSAU) |
304 | if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>( |
305 | Val: MSSAU->getMemorySSA()->getMemoryAccess(I: PredBB->getTerminator()))) |
306 | MSSAU->moveToPlace(What: MUD, BB: PredBB, Where: MemorySSA::End); |
307 | } |
308 | // Add unreachable to now empty BB. |
309 | new UnreachableInst(BB->getContext(), BB); |
310 | |
311 | // Inherit predecessors name if it exists. |
312 | if (!PredBB->hasName()) |
313 | PredBB->takeName(V: BB); |
314 | |
315 | if (LI) |
316 | LI->removeBlock(BB); |
317 | |
318 | if (MemDep) |
319 | MemDep->invalidateCachedPredecessors(); |
320 | |
321 | if (DTU) |
322 | DTU->applyUpdates(Updates); |
323 | |
324 | if (DT) { |
325 | assert(succ_empty(BB) && |
326 | "successors should have been transferred to PredBB" ); |
327 | DT->eraseNode(BB); |
328 | } |
329 | |
330 | // Finally, erase the old block and update dominator info. |
331 | DeleteDeadBlock(BB, DTU); |
332 | |
333 | return true; |
334 | } |
335 | |
336 | bool llvm::MergeBlockSuccessorsIntoGivenBlocks( |
337 | SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU, |
338 | LoopInfo *LI) { |
339 | assert(!MergeBlocks.empty() && "MergeBlocks should not be empty" ); |
340 | |
341 | bool BlocksHaveBeenMerged = false; |
342 | while (!MergeBlocks.empty()) { |
343 | BasicBlock *BB = *MergeBlocks.begin(); |
344 | BasicBlock *Dest = BB->getSingleSuccessor(); |
345 | if (Dest && (!L || L->contains(BB: Dest))) { |
346 | BasicBlock *Fold = Dest->getUniquePredecessor(); |
347 | (void)Fold; |
348 | if (MergeBlockIntoPredecessor(BB: Dest, DTU, LI)) { |
349 | assert(Fold == BB && |
350 | "Expecting BB to be unique predecessor of the Dest block" ); |
351 | MergeBlocks.erase(Ptr: Dest); |
352 | BlocksHaveBeenMerged = true; |
353 | } else |
354 | MergeBlocks.erase(Ptr: BB); |
355 | } else |
356 | MergeBlocks.erase(Ptr: BB); |
357 | } |
358 | return BlocksHaveBeenMerged; |
359 | } |
360 | |
361 | /// Remove redundant instructions within sequences of consecutive dbg.value |
362 | /// instructions. This is done using a backward scan to keep the last dbg.value |
363 | /// describing a specific variable/fragment. |
364 | /// |
365 | /// BackwardScan strategy: |
366 | /// ---------------------- |
367 | /// Given a sequence of consecutive DbgValueInst like this |
368 | /// |
369 | /// dbg.value ..., "x", FragmentX1 (*) |
370 | /// dbg.value ..., "y", FragmentY1 |
371 | /// dbg.value ..., "x", FragmentX2 |
372 | /// dbg.value ..., "x", FragmentX1 (**) |
373 | /// |
374 | /// then the instruction marked with (*) can be removed (it is guaranteed to be |
375 | /// obsoleted by the instruction marked with (**) as the latter instruction is |
376 | /// describing the same variable using the same fragment info). |
377 | /// |
378 | /// Possible improvements: |
379 | /// - Check fully overlapping fragments and not only identical fragments. |
380 | static bool |
381 | DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { |
382 | SmallVector<DbgVariableRecord *, 8> ToBeRemoved; |
383 | SmallDenseSet<DebugVariable> VariableSet; |
384 | for (auto &I : reverse(C&: *BB)) { |
385 | for (DbgVariableRecord &DR : |
386 | reverse(C: filterDbgVars(R: I.getDbgRecordRange()))) { |
387 | DbgVariableRecord &DVR = cast<DbgVariableRecord>(Val&: DR); |
388 | |
389 | DebugVariable Key(DVR.getVariable(), DVR.getExpression(), |
390 | DVR.getDebugLoc()->getInlinedAt()); |
391 | auto R = VariableSet.insert(V: Key); |
392 | // If the same variable fragment is described more than once it is enough |
393 | // to keep the last one (i.e. the first found since we for reverse |
394 | // iteration). |
395 | if (R.second) |
396 | continue; |
397 | |
398 | if (DVR.isDbgAssign()) { |
399 | // Don't delete dbg.assign intrinsics that are linked to instructions. |
400 | if (!at::getAssignmentInsts(DVR: &DVR).empty()) |
401 | continue; |
402 | // Unlinked dbg.assign intrinsics can be treated like dbg.values. |
403 | } |
404 | |
405 | ToBeRemoved.push_back(Elt: &DVR); |
406 | } |
407 | // Sequence with consecutive dbg.value instrs ended. Clear the map to |
408 | // restart identifying redundant instructions if case we find another |
409 | // dbg.value sequence. |
410 | VariableSet.clear(); |
411 | } |
412 | |
413 | for (auto &DVR : ToBeRemoved) |
414 | DVR->eraseFromParent(); |
415 | |
416 | return !ToBeRemoved.empty(); |
417 | } |
418 | |
419 | static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { |
420 | return DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BB); |
421 | } |
422 | |
423 | /// Remove redundant dbg.value instructions using a forward scan. This can |
424 | /// remove a dbg.value instruction that is redundant due to indicating that a |
425 | /// variable has the same value as already being indicated by an earlier |
426 | /// dbg.value. |
427 | /// |
428 | /// ForwardScan strategy: |
429 | /// --------------------- |
430 | /// Given two identical dbg.value instructions, separated by a block of |
431 | /// instructions that isn't describing the same variable, like this |
432 | /// |
433 | /// dbg.value X1, "x", FragmentX1 (**) |
434 | /// <block of instructions, none being "dbg.value ..., "x", ..."> |
435 | /// dbg.value X1, "x", FragmentX1 (*) |
436 | /// |
437 | /// then the instruction marked with (*) can be removed. Variable "x" is already |
438 | /// described as being mapped to the SSA value X1. |
439 | /// |
440 | /// Possible improvements: |
441 | /// - Keep track of non-overlapping fragments. |
442 | static bool |
443 | DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { |
444 | SmallVector<DbgVariableRecord *, 8> ToBeRemoved; |
445 | SmallDenseMap<DebugVariable, |
446 | std::pair<SmallVector<Value *, 4>, DIExpression *>, 4> |
447 | VariableMap; |
448 | for (auto &I : *BB) { |
449 | for (DbgVariableRecord &DVR : filterDbgVars(R: I.getDbgRecordRange())) { |
450 | if (DVR.getType() == DbgVariableRecord::LocationType::Declare) |
451 | continue; |
452 | DebugVariable Key(DVR.getVariable(), std::nullopt, |
453 | DVR.getDebugLoc()->getInlinedAt()); |
454 | auto [VMI, Inserted] = VariableMap.try_emplace(Key); |
455 | // A dbg.assign with no linked instructions can be treated like a |
456 | // dbg.value (i.e. can be deleted). |
457 | bool IsDbgValueKind = |
458 | (!DVR.isDbgAssign() || at::getAssignmentInsts(DVR: &DVR).empty()); |
459 | |
460 | // Update the map if we found a new value/expression describing the |
461 | // variable, or if the variable wasn't mapped already. |
462 | SmallVector<Value *, 4> Values(DVR.location_ops()); |
463 | if (Inserted || VMI->second.first != Values || |
464 | VMI->second.second != DVR.getExpression()) { |
465 | if (IsDbgValueKind) |
466 | VMI->second = {Values, DVR.getExpression()}; |
467 | else |
468 | VMI->second = {Values, nullptr}; |
469 | continue; |
470 | } |
471 | // Don't delete dbg.assign intrinsics that are linked to instructions. |
472 | if (!IsDbgValueKind) |
473 | continue; |
474 | // Found an identical mapping. Remember the instruction for later removal. |
475 | ToBeRemoved.push_back(Elt: &DVR); |
476 | } |
477 | } |
478 | |
479 | for (auto *DVR : ToBeRemoved) |
480 | DVR->eraseFromParent(); |
481 | |
482 | return !ToBeRemoved.empty(); |
483 | } |
484 | |
485 | static bool |
486 | DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) { |
487 | assert(BB->isEntryBlock() && "expected entry block" ); |
488 | SmallVector<DbgVariableRecord *, 8> ToBeRemoved; |
489 | DenseSet<DebugVariable> SeenDefForAggregate; |
490 | // Returns the DebugVariable for DVI with no fragment info. |
491 | auto GetAggregateVariable = [](const DbgVariableRecord &DVR) { |
492 | return DebugVariable(DVR.getVariable(), std::nullopt, |
493 | DVR.getDebugLoc().getInlinedAt()); |
494 | }; |
495 | |
496 | // Remove undef dbg.assign intrinsics that are encountered before |
497 | // any non-undef intrinsics from the entry block. |
498 | for (auto &I : *BB) { |
499 | for (DbgVariableRecord &DVR : filterDbgVars(R: I.getDbgRecordRange())) { |
500 | if (!DVR.isDbgValue() && !DVR.isDbgAssign()) |
501 | continue; |
502 | bool IsDbgValueKind = |
503 | (DVR.isDbgValue() || at::getAssignmentInsts(DVR: &DVR).empty()); |
504 | DebugVariable Aggregate = GetAggregateVariable(DVR); |
505 | if (!SeenDefForAggregate.contains(V: Aggregate)) { |
506 | bool IsKill = DVR.isKillLocation() && IsDbgValueKind; |
507 | if (!IsKill) { |
508 | SeenDefForAggregate.insert(V: Aggregate); |
509 | } else if (DVR.isDbgAssign()) { |
510 | ToBeRemoved.push_back(Elt: &DVR); |
511 | } |
512 | } |
513 | } |
514 | } |
515 | |
516 | for (DbgVariableRecord *DVR : ToBeRemoved) |
517 | DVR->eraseFromParent(); |
518 | |
519 | return !ToBeRemoved.empty(); |
520 | } |
521 | |
522 | static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { |
523 | return DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BB); |
524 | } |
525 | |
526 | /// Remove redundant undef dbg.assign intrinsic from an entry block using a |
527 | /// forward scan. |
528 | /// Strategy: |
529 | /// --------------------- |
530 | /// Scanning forward, delete dbg.assign intrinsics iff they are undef, not |
531 | /// linked to an intrinsic, and don't share an aggregate variable with a debug |
532 | /// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns |
533 | /// that come before non-undef debug intrinsics for the variable are |
534 | /// deleted. Given: |
535 | /// |
536 | /// dbg.assign undef, "x", FragmentX1 (*) |
537 | /// <block of instructions, none being "dbg.value ..., "x", ..."> |
538 | /// dbg.value %V, "x", FragmentX2 |
539 | /// <block of instructions, none being "dbg.value ..., "x", ..."> |
540 | /// dbg.assign undef, "x", FragmentX1 |
541 | /// |
542 | /// then (only) the instruction marked with (*) can be removed. |
543 | /// Possible improvements: |
544 | /// - Keep track of non-overlapping fragments. |
545 | static bool removeUndefDbgAssignsFromEntryBlock(BasicBlock *BB) { |
546 | return DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BB); |
547 | } |
548 | |
549 | bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) { |
550 | bool MadeChanges = false; |
551 | // By using the "backward scan" strategy before the "forward scan" strategy we |
552 | // can remove both dbg.value (2) and (3) in a situation like this: |
553 | // |
554 | // (1) dbg.value V1, "x", DIExpression() |
555 | // ... |
556 | // (2) dbg.value V2, "x", DIExpression() |
557 | // (3) dbg.value V1, "x", DIExpression() |
558 | // |
559 | // The backward scan will remove (2), it is made obsolete by (3). After |
560 | // getting (2) out of the way, the foward scan will remove (3) since "x" |
561 | // already is described as having the value V1 at (1). |
562 | MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB); |
563 | if (BB->isEntryBlock() && |
564 | isAssignmentTrackingEnabled(M: *BB->getParent()->getParent())) |
565 | MadeChanges |= removeUndefDbgAssignsFromEntryBlock(BB); |
566 | MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB); |
567 | |
568 | if (MadeChanges) |
569 | LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: " |
570 | << BB->getName() << "\n" ); |
571 | return MadeChanges; |
572 | } |
573 | |
574 | void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) { |
575 | Instruction &I = *BI; |
576 | // Replaces all of the uses of the instruction with uses of the value |
577 | I.replaceAllUsesWith(V); |
578 | |
579 | // Make sure to propagate a name if there is one already. |
580 | if (I.hasName() && !V->hasName()) |
581 | V->takeName(V: &I); |
582 | |
583 | // Delete the unnecessary instruction now... |
584 | BI = BI->eraseFromParent(); |
585 | } |
586 | |
587 | void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, |
588 | Instruction *I) { |
589 | assert(I->getParent() == nullptr && |
590 | "ReplaceInstWithInst: Instruction already inserted into basic block!" ); |
591 | |
592 | // Copy debug location to newly added instruction, if it wasn't already set |
593 | // by the caller. |
594 | if (!I->getDebugLoc()) |
595 | I->setDebugLoc(BI->getDebugLoc()); |
596 | |
597 | // Insert the new instruction into the basic block... |
598 | BasicBlock::iterator New = I->insertInto(ParentBB: BB, It: BI); |
599 | |
600 | // Replace all uses of the old instruction, and delete it. |
601 | ReplaceInstWithValue(BI, V: I); |
602 | |
603 | // Move BI back to point to the newly inserted instruction |
604 | BI = New; |
605 | } |
606 | |
607 | bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) { |
608 | // Remember visited blocks to avoid infinite loop |
609 | SmallPtrSet<const BasicBlock *, 8> VisitedBlocks; |
610 | unsigned Depth = 0; |
611 | while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth && |
612 | VisitedBlocks.insert(Ptr: BB).second) { |
613 | if (isa<UnreachableInst>(Val: BB->getTerminator()) || |
614 | BB->getTerminatingDeoptimizeCall()) |
615 | return true; |
616 | BB = BB->getUniqueSuccessor(); |
617 | } |
618 | return false; |
619 | } |
620 | |
621 | void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { |
622 | BasicBlock::iterator BI(From); |
623 | ReplaceInstWithInst(BB: From->getParent(), BI, I: To); |
624 | } |
625 | |
626 | BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, |
627 | LoopInfo *LI, MemorySSAUpdater *MSSAU, |
628 | const Twine &BBName) { |
629 | unsigned SuccNum = GetSuccessorNumber(BB, Succ); |
630 | |
631 | Instruction *LatchTerm = BB->getTerminator(); |
632 | |
633 | CriticalEdgeSplittingOptions Options = |
634 | CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(); |
635 | |
636 | if ((isCriticalEdge(TI: LatchTerm, SuccNum, AllowIdenticalEdges: Options.MergeIdenticalEdges))) { |
637 | // If this is a critical edge, let SplitKnownCriticalEdge do it. |
638 | return SplitKnownCriticalEdge(TI: LatchTerm, SuccNum, Options, BBName); |
639 | } |
640 | |
641 | // If the edge isn't critical, then BB has a single successor or Succ has a |
642 | // single pred. Split the block. |
643 | if (BasicBlock *SP = Succ->getSinglePredecessor()) { |
644 | // If the successor only has a single pred, split the top of the successor |
645 | // block. |
646 | assert(SP == BB && "CFG broken" ); |
647 | (void)SP; |
648 | return SplitBlock(Old: Succ, SplitPt: &Succ->front(), DT, LI, MSSAU, BBName, |
649 | /*Before=*/true); |
650 | } |
651 | |
652 | // Otherwise, if BB has a single successor, split it at the bottom of the |
653 | // block. |
654 | assert(BB->getTerminator()->getNumSuccessors() == 1 && |
655 | "Should have a single succ!" ); |
656 | return SplitBlock(Old: BB, SplitPt: BB->getTerminator(), DT, LI, MSSAU, BBName); |
657 | } |
658 | |
659 | void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) { |
660 | if (auto *II = dyn_cast<InvokeInst>(Val: TI)) |
661 | II->setUnwindDest(Succ); |
662 | else if (auto *CS = dyn_cast<CatchSwitchInst>(Val: TI)) |
663 | CS->setUnwindDest(Succ); |
664 | else if (auto *CR = dyn_cast<CleanupReturnInst>(Val: TI)) |
665 | CR->setUnwindDest(Succ); |
666 | else |
667 | llvm_unreachable("unexpected terminator instruction" ); |
668 | } |
669 | |
670 | void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, |
671 | BasicBlock *NewPred, PHINode *Until) { |
672 | int BBIdx = 0; |
673 | for (PHINode &PN : DestBB->phis()) { |
674 | // We manually update the LandingPadReplacement PHINode and it is the last |
675 | // PHI Node. So, if we find it, we are done. |
676 | if (Until == &PN) |
677 | break; |
678 | |
679 | // Reuse the previous value of BBIdx if it lines up. In cases where we |
680 | // have multiple phi nodes with *lots* of predecessors, this is a speed |
681 | // win because we don't have to scan the PHI looking for TIBB. This |
682 | // happens because the BB list of PHI nodes are usually in the same |
683 | // order. |
684 | if (PN.getIncomingBlock(i: BBIdx) != OldPred) |
685 | BBIdx = PN.getBasicBlockIndex(BB: OldPred); |
686 | |
687 | assert(BBIdx != -1 && "Invalid PHI Index!" ); |
688 | PN.setIncomingBlock(i: BBIdx, BB: NewPred); |
689 | } |
690 | } |
691 | |
692 | BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, |
693 | LandingPadInst *OriginalPad, |
694 | PHINode *LandingPadReplacement, |
695 | const CriticalEdgeSplittingOptions &Options, |
696 | const Twine &BBName) { |
697 | |
698 | auto PadInst = Succ->getFirstNonPHIIt(); |
699 | if (!LandingPadReplacement && !PadInst->isEHPad()) |
700 | return SplitEdge(BB, Succ, DT: Options.DT, LI: Options.LI, MSSAU: Options.MSSAU, BBName); |
701 | |
702 | auto *LI = Options.LI; |
703 | SmallVector<BasicBlock *, 4> LoopPreds; |
704 | // Check if extra modifications will be required to preserve loop-simplify |
705 | // form after splitting. If it would require splitting blocks with IndirectBr |
706 | // terminators, bail out if preserving loop-simplify form is requested. |
707 | if (Options.PreserveLoopSimplify && LI) { |
708 | if (Loop *BBLoop = LI->getLoopFor(BB)) { |
709 | |
710 | // The only way that we can break LoopSimplify form by splitting a |
711 | // critical edge is when there exists some edge from BBLoop to Succ *and* |
712 | // the only edge into Succ from outside of BBLoop is that of NewBB after |
713 | // the split. If the first isn't true, then LoopSimplify still holds, |
714 | // NewBB is the new exit block and it has no non-loop predecessors. If the |
715 | // second isn't true, then Succ was not in LoopSimplify form prior to |
716 | // the split as it had a non-loop predecessor. In both of these cases, |
717 | // the predecessor must be directly in BBLoop, not in a subloop, or again |
718 | // LoopSimplify doesn't hold. |
719 | for (BasicBlock *P : predecessors(BB: Succ)) { |
720 | if (P == BB) |
721 | continue; // The new block is known. |
722 | if (LI->getLoopFor(BB: P) != BBLoop) { |
723 | // Loop is not in LoopSimplify form, no need to re simplify after |
724 | // splitting edge. |
725 | LoopPreds.clear(); |
726 | break; |
727 | } |
728 | LoopPreds.push_back(Elt: P); |
729 | } |
730 | // Loop-simplify form can be preserved, if we can split all in-loop |
731 | // predecessors. |
732 | if (any_of(Range&: LoopPreds, P: [](BasicBlock *Pred) { |
733 | return isa<IndirectBrInst>(Val: Pred->getTerminator()); |
734 | })) { |
735 | return nullptr; |
736 | } |
737 | } |
738 | } |
739 | |
740 | auto *NewBB = |
741 | BasicBlock::Create(Context&: BB->getContext(), Name: BBName, Parent: BB->getParent(), InsertBefore: Succ); |
742 | setUnwindEdgeTo(TI: BB->getTerminator(), Succ: NewBB); |
743 | updatePhiNodes(DestBB: Succ, OldPred: BB, NewPred: NewBB, Until: LandingPadReplacement); |
744 | |
745 | if (LandingPadReplacement) { |
746 | auto *NewLP = OriginalPad->clone(); |
747 | auto *Terminator = BranchInst::Create(IfTrue: Succ, InsertBefore: NewBB); |
748 | NewLP->insertBefore(InsertPos: Terminator->getIterator()); |
749 | LandingPadReplacement->addIncoming(V: NewLP, BB: NewBB); |
750 | } else { |
751 | Value *ParentPad = nullptr; |
752 | if (auto *FuncletPad = dyn_cast<FuncletPadInst>(Val&: PadInst)) |
753 | ParentPad = FuncletPad->getParentPad(); |
754 | else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val&: PadInst)) |
755 | ParentPad = CatchSwitch->getParentPad(); |
756 | else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(Val&: PadInst)) |
757 | ParentPad = CleanupPad->getParentPad(); |
758 | else if (auto *LandingPad = dyn_cast<LandingPadInst>(Val&: PadInst)) |
759 | ParentPad = LandingPad->getParent(); |
760 | else |
761 | llvm_unreachable("handling for other EHPads not implemented yet" ); |
762 | |
763 | auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, Args: {}, NameStr: BBName, InsertBefore: NewBB); |
764 | CleanupReturnInst::Create(CleanupPad: NewCleanupPad, UnwindBB: Succ, InsertBefore: NewBB); |
765 | } |
766 | |
767 | auto *DT = Options.DT; |
768 | auto *MSSAU = Options.MSSAU; |
769 | if (!DT && !LI) |
770 | return NewBB; |
771 | |
772 | if (DT) { |
773 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
774 | SmallVector<DominatorTree::UpdateType, 3> Updates; |
775 | |
776 | Updates.push_back(Elt: {DominatorTree::Insert, BB, NewBB}); |
777 | Updates.push_back(Elt: {DominatorTree::Insert, NewBB, Succ}); |
778 | Updates.push_back(Elt: {DominatorTree::Delete, BB, Succ}); |
779 | |
780 | DTU.applyUpdates(Updates); |
781 | DTU.flush(); |
782 | |
783 | if (MSSAU) { |
784 | MSSAU->applyUpdates(Updates, DT&: *DT); |
785 | if (VerifyMemorySSA) |
786 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
787 | } |
788 | } |
789 | |
790 | if (LI) { |
791 | if (Loop *BBLoop = LI->getLoopFor(BB)) { |
792 | // If one or the other blocks were not in a loop, the new block is not |
793 | // either, and thus LI doesn't need to be updated. |
794 | if (Loop *SuccLoop = LI->getLoopFor(BB: Succ)) { |
795 | if (BBLoop == SuccLoop) { |
796 | // Both in the same loop, the NewBB joins loop. |
797 | SuccLoop->addBasicBlockToLoop(NewBB, LI&: *LI); |
798 | } else if (BBLoop->contains(L: SuccLoop)) { |
799 | // Edge from an outer loop to an inner loop. Add to the outer loop. |
800 | BBLoop->addBasicBlockToLoop(NewBB, LI&: *LI); |
801 | } else if (SuccLoop->contains(L: BBLoop)) { |
802 | // Edge from an inner loop to an outer loop. Add to the outer loop. |
803 | SuccLoop->addBasicBlockToLoop(NewBB, LI&: *LI); |
804 | } else { |
805 | // Edge from two loops with no containment relation. Because these |
806 | // are natural loops, we know that the destination block must be the |
807 | // header of its loop (adding a branch into a loop elsewhere would |
808 | // create an irreducible loop). |
809 | assert(SuccLoop->getHeader() == Succ && |
810 | "Should not create irreducible loops!" ); |
811 | if (Loop *P = SuccLoop->getParentLoop()) |
812 | P->addBasicBlockToLoop(NewBB, LI&: *LI); |
813 | } |
814 | } |
815 | |
816 | // If BB is in a loop and Succ is outside of that loop, we may need to |
817 | // update LoopSimplify form and LCSSA form. |
818 | if (!BBLoop->contains(BB: Succ)) { |
819 | assert(!BBLoop->contains(NewBB) && |
820 | "Split point for loop exit is contained in loop!" ); |
821 | |
822 | // Update LCSSA form in the newly created exit block. |
823 | if (Options.PreserveLCSSA) { |
824 | createPHIsForSplitLoopExit(Preds: BB, SplitBB: NewBB, DestBB: Succ); |
825 | } |
826 | |
827 | if (!LoopPreds.empty()) { |
828 | BasicBlock *NewExitBB = SplitBlockPredecessors( |
829 | BB: Succ, Preds: LoopPreds, Suffix: "split" , DT, LI, MSSAU, PreserveLCSSA: Options.PreserveLCSSA); |
830 | if (Options.PreserveLCSSA) |
831 | createPHIsForSplitLoopExit(Preds: LoopPreds, SplitBB: NewExitBB, DestBB: Succ); |
832 | } |
833 | } |
834 | } |
835 | } |
836 | |
837 | return NewBB; |
838 | } |
839 | |
840 | void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, |
841 | BasicBlock *SplitBB, BasicBlock *DestBB) { |
842 | // SplitBB shouldn't have anything non-trivial in it yet. |
843 | assert((&*SplitBB->getFirstNonPHIIt() == SplitBB->getTerminator() || |
844 | SplitBB->isLandingPad()) && |
845 | "SplitBB has non-PHI nodes!" ); |
846 | |
847 | // For each PHI in the destination block. |
848 | for (PHINode &PN : DestBB->phis()) { |
849 | int Idx = PN.getBasicBlockIndex(BB: SplitBB); |
850 | assert(Idx >= 0 && "Invalid Block Index" ); |
851 | Value *V = PN.getIncomingValue(i: Idx); |
852 | |
853 | // If the input is a PHI which already satisfies LCSSA, don't create |
854 | // a new one. |
855 | if (const PHINode *VP = dyn_cast<PHINode>(Val: V)) |
856 | if (VP->getParent() == SplitBB) |
857 | continue; |
858 | |
859 | // Otherwise a new PHI is needed. Create one and populate it. |
860 | PHINode *NewPN = PHINode::Create(Ty: PN.getType(), NumReservedValues: Preds.size(), NameStr: "split" ); |
861 | BasicBlock::iterator InsertPos = |
862 | SplitBB->isLandingPad() ? SplitBB->begin() |
863 | : SplitBB->getTerminator()->getIterator(); |
864 | NewPN->insertBefore(InsertPos); |
865 | for (BasicBlock *BB : Preds) |
866 | NewPN->addIncoming(V, BB); |
867 | |
868 | // Update the original PHI. |
869 | PN.setIncomingValue(i: Idx, V: NewPN); |
870 | } |
871 | } |
872 | |
873 | unsigned |
874 | llvm::SplitAllCriticalEdges(Function &F, |
875 | const CriticalEdgeSplittingOptions &Options) { |
876 | unsigned NumBroken = 0; |
877 | for (BasicBlock &BB : F) { |
878 | Instruction *TI = BB.getTerminator(); |
879 | if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(Val: TI)) |
880 | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) |
881 | if (SplitCriticalEdge(TI, SuccNum: i, Options)) |
882 | ++NumBroken; |
883 | } |
884 | return NumBroken; |
885 | } |
886 | |
887 | static BasicBlock *SplitBlockImpl(BasicBlock *Old, BasicBlock::iterator SplitPt, |
888 | DomTreeUpdater *DTU, DominatorTree *DT, |
889 | LoopInfo *LI, MemorySSAUpdater *MSSAU, |
890 | const Twine &BBName, bool Before) { |
891 | if (Before) { |
892 | DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
893 | return splitBlockBefore(Old, SplitPt, |
894 | DTU: DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU, |
895 | BBName); |
896 | } |
897 | BasicBlock::iterator SplitIt = SplitPt; |
898 | while (isa<PHINode>(Val: SplitIt) || SplitIt->isEHPad()) { |
899 | ++SplitIt; |
900 | assert(SplitIt != SplitPt->getParent()->end()); |
901 | } |
902 | std::string Name = BBName.str(); |
903 | BasicBlock *New = Old->splitBasicBlock( |
904 | I: SplitIt, BBName: Name.empty() ? Old->getName() + ".split" : Name); |
905 | |
906 | // The new block lives in whichever loop the old one did. This preserves |
907 | // LCSSA as well, because we force the split point to be after any PHI nodes. |
908 | if (LI) |
909 | if (Loop *L = LI->getLoopFor(BB: Old)) |
910 | L->addBasicBlockToLoop(NewBB: New, LI&: *LI); |
911 | |
912 | if (DTU) { |
913 | SmallVector<DominatorTree::UpdateType, 8> Updates; |
914 | // Old dominates New. New node dominates all other nodes dominated by Old. |
915 | SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld; |
916 | Updates.push_back(Elt: {DominatorTree::Insert, Old, New}); |
917 | Updates.reserve(N: Updates.size() + 2 * succ_size(BB: New)); |
918 | for (BasicBlock *SuccessorOfOld : successors(BB: New)) |
919 | if (UniqueSuccessorsOfOld.insert(Ptr: SuccessorOfOld).second) { |
920 | Updates.push_back(Elt: {DominatorTree::Insert, New, SuccessorOfOld}); |
921 | Updates.push_back(Elt: {DominatorTree::Delete, Old, SuccessorOfOld}); |
922 | } |
923 | |
924 | DTU->applyUpdates(Updates); |
925 | } else if (DT) |
926 | // Old dominates New. New node dominates all other nodes dominated by Old. |
927 | if (DomTreeNode *OldNode = DT->getNode(BB: Old)) { |
928 | std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); |
929 | |
930 | DomTreeNode *NewNode = DT->addNewBlock(BB: New, DomBB: Old); |
931 | for (DomTreeNode *I : Children) |
932 | DT->changeImmediateDominator(N: I, NewIDom: NewNode); |
933 | } |
934 | |
935 | // Move MemoryAccesses still tracked in Old, but part of New now. |
936 | // Update accesses in successor blocks accordingly. |
937 | if (MSSAU) |
938 | MSSAU->moveAllAfterSpliceBlocks(From: Old, To: New, Start: &*(New->begin())); |
939 | |
940 | return New; |
941 | } |
942 | |
943 | BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, |
944 | DominatorTree *DT, LoopInfo *LI, |
945 | MemorySSAUpdater *MSSAU, const Twine &BBName, |
946 | bool Before) { |
947 | return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName, |
948 | Before); |
949 | } |
950 | BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, |
951 | DomTreeUpdater *DTU, LoopInfo *LI, |
952 | MemorySSAUpdater *MSSAU, const Twine &BBName, |
953 | bool Before) { |
954 | return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName, |
955 | Before); |
956 | } |
957 | |
958 | BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, BasicBlock::iterator SplitPt, |
959 | DomTreeUpdater *DTU, LoopInfo *LI, |
960 | MemorySSAUpdater *MSSAU, |
961 | const Twine &BBName) { |
962 | |
963 | BasicBlock::iterator SplitIt = SplitPt; |
964 | while (isa<PHINode>(Val: SplitIt) || SplitIt->isEHPad()) |
965 | ++SplitIt; |
966 | std::string Name = BBName.str(); |
967 | BasicBlock *New = Old->splitBasicBlock( |
968 | I: SplitIt, BBName: Name.empty() ? Old->getName() + ".split" : Name, |
969 | /* Before=*/true); |
970 | |
971 | // The new block lives in whichever loop the old one did. This preserves |
972 | // LCSSA as well, because we force the split point to be after any PHI nodes. |
973 | if (LI) |
974 | if (Loop *L = LI->getLoopFor(BB: Old)) |
975 | L->addBasicBlockToLoop(NewBB: New, LI&: *LI); |
976 | |
977 | if (DTU) { |
978 | SmallVector<DominatorTree::UpdateType, 8> DTUpdates; |
979 | // New dominates Old. The predecessor nodes of the Old node dominate |
980 | // New node. |
981 | SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld; |
982 | DTUpdates.push_back(Elt: {DominatorTree::Insert, New, Old}); |
983 | DTUpdates.reserve(N: DTUpdates.size() + 2 * pred_size(BB: New)); |
984 | for (BasicBlock *PredecessorOfOld : predecessors(BB: New)) |
985 | if (UniquePredecessorsOfOld.insert(Ptr: PredecessorOfOld).second) { |
986 | DTUpdates.push_back(Elt: {DominatorTree::Insert, PredecessorOfOld, New}); |
987 | DTUpdates.push_back(Elt: {DominatorTree::Delete, PredecessorOfOld, Old}); |
988 | } |
989 | |
990 | DTU->applyUpdates(Updates: DTUpdates); |
991 | |
992 | // Move MemoryAccesses still tracked in Old, but part of New now. |
993 | // Update accesses in successor blocks accordingly. |
994 | if (MSSAU) { |
995 | MSSAU->applyUpdates(Updates: DTUpdates, DT&: DTU->getDomTree()); |
996 | if (VerifyMemorySSA) |
997 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
998 | } |
999 | } |
1000 | return New; |
1001 | } |
1002 | |
1003 | /// Update DominatorTree, LoopInfo, and LCCSA analysis information. |
1004 | /// Invalidates DFS Numbering when DTU or DT is provided. |
1005 | static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, |
1006 | ArrayRef<BasicBlock *> Preds, |
1007 | DomTreeUpdater *DTU, DominatorTree *DT, |
1008 | LoopInfo *LI, MemorySSAUpdater *MSSAU, |
1009 | bool PreserveLCSSA, bool &HasLoopExit) { |
1010 | // Update dominator tree if available. |
1011 | if (DTU) { |
1012 | // Recalculation of DomTree is needed when updating a forward DomTree and |
1013 | // the Entry BB is replaced. |
1014 | if (NewBB->isEntryBlock() && DTU->hasDomTree()) { |
1015 | // The entry block was removed and there is no external interface for |
1016 | // the dominator tree to be notified of this change. In this corner-case |
1017 | // we recalculate the entire tree. |
1018 | DTU->recalculate(F&: *NewBB->getParent()); |
1019 | } else { |
1020 | // Split block expects NewBB to have a non-empty set of predecessors. |
1021 | SmallVector<DominatorTree::UpdateType, 8> Updates; |
1022 | SmallPtrSet<BasicBlock *, 8> UniquePreds; |
1023 | Updates.push_back(Elt: {DominatorTree::Insert, NewBB, OldBB}); |
1024 | Updates.reserve(N: Updates.size() + 2 * Preds.size()); |
1025 | for (auto *Pred : Preds) |
1026 | if (UniquePreds.insert(Ptr: Pred).second) { |
1027 | Updates.push_back(Elt: {DominatorTree::Insert, Pred, NewBB}); |
1028 | Updates.push_back(Elt: {DominatorTree::Delete, Pred, OldBB}); |
1029 | } |
1030 | DTU->applyUpdates(Updates); |
1031 | } |
1032 | } else if (DT) { |
1033 | if (OldBB == DT->getRootNode()->getBlock()) { |
1034 | assert(NewBB->isEntryBlock()); |
1035 | DT->setNewRoot(NewBB); |
1036 | } else { |
1037 | // Split block expects NewBB to have a non-empty set of predecessors. |
1038 | DT->splitBlock(NewBB); |
1039 | } |
1040 | } |
1041 | |
1042 | // Update MemoryPhis after split if MemorySSA is available |
1043 | if (MSSAU) |
1044 | MSSAU->wireOldPredecessorsToNewImmediatePredecessor(Old: OldBB, New: NewBB, Preds); |
1045 | |
1046 | // The rest of the logic is only relevant for updating the loop structures. |
1047 | if (!LI) |
1048 | return; |
1049 | |
1050 | if (DTU && DTU->hasDomTree()) |
1051 | DT = &DTU->getDomTree(); |
1052 | assert(DT && "DT should be available to update LoopInfo!" ); |
1053 | Loop *L = LI->getLoopFor(BB: OldBB); |
1054 | |
1055 | // If we need to preserve loop analyses, collect some information about how |
1056 | // this split will affect loops. |
1057 | bool IsLoopEntry = !!L; |
1058 | bool = false; |
1059 | for (BasicBlock *Pred : Preds) { |
1060 | // Preds that are not reachable from entry should not be used to identify if |
1061 | // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks |
1062 | // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader |
1063 | // as true and make the NewBB the header of some loop. This breaks LI. |
1064 | if (!DT->isReachableFromEntry(A: Pred)) |
1065 | continue; |
1066 | // If we need to preserve LCSSA, determine if any of the preds is a loop |
1067 | // exit. |
1068 | if (PreserveLCSSA) |
1069 | if (Loop *PL = LI->getLoopFor(BB: Pred)) |
1070 | if (!PL->contains(BB: OldBB)) |
1071 | HasLoopExit = true; |
1072 | |
1073 | // If we need to preserve LoopInfo, note whether any of the preds crosses |
1074 | // an interesting loop boundary. |
1075 | if (!L) |
1076 | continue; |
1077 | if (L->contains(BB: Pred)) |
1078 | IsLoopEntry = false; |
1079 | else |
1080 | SplitMakesNewLoopHeader = true; |
1081 | } |
1082 | |
1083 | // Unless we have a loop for OldBB, nothing else to do here. |
1084 | if (!L) |
1085 | return; |
1086 | |
1087 | if (IsLoopEntry) { |
1088 | // Add the new block to the nearest enclosing loop (and not an adjacent |
1089 | // loop). To find this, examine each of the predecessors and determine which |
1090 | // loops enclose them, and select the most-nested loop which contains the |
1091 | // loop containing the block being split. |
1092 | Loop *InnermostPredLoop = nullptr; |
1093 | for (BasicBlock *Pred : Preds) { |
1094 | if (Loop *PredLoop = LI->getLoopFor(BB: Pred)) { |
1095 | // Seek a loop which actually contains the block being split (to avoid |
1096 | // adjacent loops). |
1097 | while (PredLoop && !PredLoop->contains(BB: OldBB)) |
1098 | PredLoop = PredLoop->getParentLoop(); |
1099 | |
1100 | // Select the most-nested of these loops which contains the block. |
1101 | if (PredLoop && PredLoop->contains(BB: OldBB) && |
1102 | (!InnermostPredLoop || |
1103 | InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) |
1104 | InnermostPredLoop = PredLoop; |
1105 | } |
1106 | } |
1107 | |
1108 | if (InnermostPredLoop) |
1109 | InnermostPredLoop->addBasicBlockToLoop(NewBB, LI&: *LI); |
1110 | } else { |
1111 | L->addBasicBlockToLoop(NewBB, LI&: *LI); |
1112 | if (SplitMakesNewLoopHeader) |
1113 | L->moveToHeader(BB: NewBB); |
1114 | } |
1115 | } |
1116 | |
1117 | /// Update the PHI nodes in OrigBB to include the values coming from NewBB. |
1118 | /// This also updates AliasAnalysis, if available. |
1119 | static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, |
1120 | ArrayRef<BasicBlock *> Preds, BranchInst *BI, |
1121 | bool HasLoopExit) { |
1122 | // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. |
1123 | SmallPtrSet<BasicBlock *, 16> PredSet(llvm::from_range, Preds); |
1124 | for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(Val: I); ) { |
1125 | PHINode *PN = cast<PHINode>(Val: I++); |
1126 | |
1127 | // Check to see if all of the values coming in are the same. If so, we |
1128 | // don't need to create a new PHI node, unless it's needed for LCSSA. |
1129 | Value *InVal = nullptr; |
1130 | if (!HasLoopExit) { |
1131 | InVal = PN->getIncomingValueForBlock(BB: Preds[0]); |
1132 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
1133 | if (!PredSet.count(Ptr: PN->getIncomingBlock(i))) |
1134 | continue; |
1135 | if (!InVal) |
1136 | InVal = PN->getIncomingValue(i); |
1137 | else if (InVal != PN->getIncomingValue(i)) { |
1138 | InVal = nullptr; |
1139 | break; |
1140 | } |
1141 | } |
1142 | } |
1143 | |
1144 | if (InVal) { |
1145 | // If all incoming values for the new PHI would be the same, just don't |
1146 | // make a new PHI. Instead, just remove the incoming values from the old |
1147 | // PHI. |
1148 | PN->removeIncomingValueIf( |
1149 | Predicate: [&](unsigned Idx) { |
1150 | return PredSet.contains(Ptr: PN->getIncomingBlock(i: Idx)); |
1151 | }, |
1152 | /* DeletePHIIfEmpty */ false); |
1153 | |
1154 | // Add an incoming value to the PHI node in the loop for the preheader |
1155 | // edge. |
1156 | PN->addIncoming(V: InVal, BB: NewBB); |
1157 | continue; |
1158 | } |
1159 | |
1160 | // If the values coming into the block are not the same, we need a new |
1161 | // PHI. |
1162 | // Create the new PHI node, insert it into NewBB at the end of the block |
1163 | PHINode *NewPHI = |
1164 | PHINode::Create(Ty: PN->getType(), NumReservedValues: Preds.size(), NameStr: PN->getName() + ".ph" , InsertBefore: BI->getIterator()); |
1165 | |
1166 | // NOTE! This loop walks backwards for a reason! First off, this minimizes |
1167 | // the cost of removal if we end up removing a large number of values, and |
1168 | // second off, this ensures that the indices for the incoming values aren't |
1169 | // invalidated when we remove one. |
1170 | for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { |
1171 | BasicBlock *IncomingBB = PN->getIncomingBlock(i); |
1172 | if (PredSet.count(Ptr: IncomingBB)) { |
1173 | Value *V = PN->removeIncomingValue(Idx: i, DeletePHIIfEmpty: false); |
1174 | NewPHI->addIncoming(V, BB: IncomingBB); |
1175 | } |
1176 | } |
1177 | |
1178 | PN->addIncoming(V: NewPHI, BB: NewBB); |
1179 | } |
1180 | } |
1181 | |
1182 | static void SplitLandingPadPredecessorsImpl( |
1183 | BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, |
1184 | const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, |
1185 | DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, |
1186 | MemorySSAUpdater *MSSAU, bool PreserveLCSSA); |
1187 | |
1188 | static BasicBlock * |
1189 | SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, |
1190 | const char *Suffix, DomTreeUpdater *DTU, |
1191 | DominatorTree *DT, LoopInfo *LI, |
1192 | MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { |
1193 | // Do not attempt to split that which cannot be split. |
1194 | if (!BB->canSplitPredecessors()) |
1195 | return nullptr; |
1196 | |
1197 | // For the landingpads we need to act a bit differently. |
1198 | // Delegate this work to the SplitLandingPadPredecessors. |
1199 | if (BB->isLandingPad()) { |
1200 | SmallVector<BasicBlock*, 2> NewBBs; |
1201 | std::string NewName = std::string(Suffix) + ".split-lp" ; |
1202 | |
1203 | SplitLandingPadPredecessorsImpl(OrigBB: BB, Preds, Suffix1: Suffix, Suffix2: NewName.c_str(), NewBBs, |
1204 | DTU, DT, LI, MSSAU, PreserveLCSSA); |
1205 | return NewBBs[0]; |
1206 | } |
1207 | |
1208 | // Create new basic block, insert right before the original block. |
1209 | BasicBlock *NewBB = BasicBlock::Create( |
1210 | Context&: BB->getContext(), Name: BB->getName() + Suffix, Parent: BB->getParent(), InsertBefore: BB); |
1211 | |
1212 | // The new block unconditionally branches to the old block. |
1213 | BranchInst *BI = BranchInst::Create(IfTrue: BB, InsertBefore: NewBB); |
1214 | |
1215 | Loop *L = nullptr; |
1216 | BasicBlock *OldLatch = nullptr; |
1217 | // Splitting the predecessors of a loop header creates a preheader block. |
1218 | if (LI && LI->isLoopHeader(BB)) { |
1219 | L = LI->getLoopFor(BB); |
1220 | // Using the loop start line number prevents debuggers stepping into the |
1221 | // loop body for this instruction. |
1222 | BI->setDebugLoc(L->getStartLoc()); |
1223 | |
1224 | // If BB is the header of the Loop, it is possible that the loop is |
1225 | // modified, such that the current latch does not remain the latch of the |
1226 | // loop. If that is the case, the loop metadata from the current latch needs |
1227 | // to be applied to the new latch. |
1228 | OldLatch = L->getLoopLatch(); |
1229 | } else |
1230 | BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); |
1231 | |
1232 | // Move the edges from Preds to point to NewBB instead of BB. |
1233 | for (BasicBlock *Pred : Preds) { |
1234 | // This is slightly more strict than necessary; the minimum requirement |
1235 | // is that there be no more than one indirectbr branching to BB. And |
1236 | // all BlockAddress uses would need to be updated. |
1237 | assert(!isa<IndirectBrInst>(Pred->getTerminator()) && |
1238 | "Cannot split an edge from an IndirectBrInst" ); |
1239 | Pred->getTerminator()->replaceSuccessorWith(OldBB: BB, NewBB); |
1240 | } |
1241 | |
1242 | // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI |
1243 | // node becomes an incoming value for BB's phi node. However, if the Preds |
1244 | // list is empty, we need to insert dummy entries into the PHI nodes in BB to |
1245 | // account for the newly created predecessor. |
1246 | if (Preds.empty()) { |
1247 | // Insert dummy values as the incoming value. |
1248 | for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(Val: I); ++I) |
1249 | cast<PHINode>(Val&: I)->addIncoming(V: PoisonValue::get(T: I->getType()), BB: NewBB); |
1250 | } |
1251 | |
1252 | // Update DominatorTree, LoopInfo, and LCCSA analysis information. |
1253 | bool HasLoopExit = false; |
1254 | UpdateAnalysisInformation(OldBB: BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA, |
1255 | HasLoopExit); |
1256 | |
1257 | if (!Preds.empty()) { |
1258 | // Update the PHI nodes in BB with the values coming from NewBB. |
1259 | UpdatePHINodes(OrigBB: BB, NewBB, Preds, BI, HasLoopExit); |
1260 | } |
1261 | |
1262 | if (OldLatch) { |
1263 | BasicBlock *NewLatch = L->getLoopLatch(); |
1264 | if (NewLatch != OldLatch) { |
1265 | MDNode *MD = OldLatch->getTerminator()->getMetadata(KindID: LLVMContext::MD_loop); |
1266 | NewLatch->getTerminator()->setMetadata(KindID: LLVMContext::MD_loop, Node: MD); |
1267 | // It's still possible that OldLatch is the latch of another inner loop, |
1268 | // in which case we do not remove the metadata. |
1269 | Loop *IL = LI->getLoopFor(BB: OldLatch); |
1270 | if (IL && IL->getLoopLatch() != OldLatch) |
1271 | OldLatch->getTerminator()->setMetadata(KindID: LLVMContext::MD_loop, Node: nullptr); |
1272 | } |
1273 | } |
1274 | |
1275 | return NewBB; |
1276 | } |
1277 | |
1278 | BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, |
1279 | ArrayRef<BasicBlock *> Preds, |
1280 | const char *Suffix, DominatorTree *DT, |
1281 | LoopInfo *LI, MemorySSAUpdater *MSSAU, |
1282 | bool PreserveLCSSA) { |
1283 | return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI, |
1284 | MSSAU, PreserveLCSSA); |
1285 | } |
1286 | BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, |
1287 | ArrayRef<BasicBlock *> Preds, |
1288 | const char *Suffix, |
1289 | DomTreeUpdater *DTU, LoopInfo *LI, |
1290 | MemorySSAUpdater *MSSAU, |
1291 | bool PreserveLCSSA) { |
1292 | return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU, |
1293 | /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA); |
1294 | } |
1295 | |
1296 | static void SplitLandingPadPredecessorsImpl( |
1297 | BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, |
1298 | const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, |
1299 | DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, |
1300 | MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { |
1301 | assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!" ); |
1302 | |
1303 | // Create a new basic block for OrigBB's predecessors listed in Preds. Insert |
1304 | // it right before the original block. |
1305 | BasicBlock *NewBB1 = BasicBlock::Create(Context&: OrigBB->getContext(), |
1306 | Name: OrigBB->getName() + Suffix1, |
1307 | Parent: OrigBB->getParent(), InsertBefore: OrigBB); |
1308 | NewBBs.push_back(Elt: NewBB1); |
1309 | |
1310 | // The new block unconditionally branches to the old block. |
1311 | BranchInst *BI1 = BranchInst::Create(IfTrue: OrigBB, InsertBefore: NewBB1); |
1312 | BI1->setDebugLoc(OrigBB->getFirstNonPHIIt()->getDebugLoc()); |
1313 | |
1314 | // Move the edges from Preds to point to NewBB1 instead of OrigBB. |
1315 | for (BasicBlock *Pred : Preds) { |
1316 | // This is slightly more strict than necessary; the minimum requirement |
1317 | // is that there be no more than one indirectbr branching to BB. And |
1318 | // all BlockAddress uses would need to be updated. |
1319 | assert(!isa<IndirectBrInst>(Pred->getTerminator()) && |
1320 | "Cannot split an edge from an IndirectBrInst" ); |
1321 | Pred->getTerminator()->replaceUsesOfWith(From: OrigBB, To: NewBB1); |
1322 | } |
1323 | |
1324 | bool HasLoopExit = false; |
1325 | UpdateAnalysisInformation(OldBB: OrigBB, NewBB: NewBB1, Preds, DTU, DT, LI, MSSAU, |
1326 | PreserveLCSSA, HasLoopExit); |
1327 | |
1328 | // Update the PHI nodes in OrigBB with the values coming from NewBB1. |
1329 | UpdatePHINodes(OrigBB, NewBB: NewBB1, Preds, BI: BI1, HasLoopExit); |
1330 | |
1331 | // Move the remaining edges from OrigBB to point to NewBB2. |
1332 | SmallVector<BasicBlock*, 8> NewBB2Preds; |
1333 | for (pred_iterator i = pred_begin(BB: OrigBB), e = pred_end(BB: OrigBB); |
1334 | i != e; ) { |
1335 | BasicBlock *Pred = *i++; |
1336 | if (Pred == NewBB1) continue; |
1337 | assert(!isa<IndirectBrInst>(Pred->getTerminator()) && |
1338 | "Cannot split an edge from an IndirectBrInst" ); |
1339 | NewBB2Preds.push_back(Elt: Pred); |
1340 | e = pred_end(BB: OrigBB); |
1341 | } |
1342 | |
1343 | BasicBlock *NewBB2 = nullptr; |
1344 | if (!NewBB2Preds.empty()) { |
1345 | // Create another basic block for the rest of OrigBB's predecessors. |
1346 | NewBB2 = BasicBlock::Create(Context&: OrigBB->getContext(), |
1347 | Name: OrigBB->getName() + Suffix2, |
1348 | Parent: OrigBB->getParent(), InsertBefore: OrigBB); |
1349 | NewBBs.push_back(Elt: NewBB2); |
1350 | |
1351 | // The new block unconditionally branches to the old block. |
1352 | BranchInst *BI2 = BranchInst::Create(IfTrue: OrigBB, InsertBefore: NewBB2); |
1353 | BI2->setDebugLoc(OrigBB->getFirstNonPHIIt()->getDebugLoc()); |
1354 | |
1355 | // Move the remaining edges from OrigBB to point to NewBB2. |
1356 | for (BasicBlock *NewBB2Pred : NewBB2Preds) |
1357 | NewBB2Pred->getTerminator()->replaceUsesOfWith(From: OrigBB, To: NewBB2); |
1358 | |
1359 | // Update DominatorTree, LoopInfo, and LCCSA analysis information. |
1360 | HasLoopExit = false; |
1361 | UpdateAnalysisInformation(OldBB: OrigBB, NewBB: NewBB2, Preds: NewBB2Preds, DTU, DT, LI, MSSAU, |
1362 | PreserveLCSSA, HasLoopExit); |
1363 | |
1364 | // Update the PHI nodes in OrigBB with the values coming from NewBB2. |
1365 | UpdatePHINodes(OrigBB, NewBB: NewBB2, Preds: NewBB2Preds, BI: BI2, HasLoopExit); |
1366 | } |
1367 | |
1368 | LandingPadInst *LPad = OrigBB->getLandingPadInst(); |
1369 | Instruction *Clone1 = LPad->clone(); |
1370 | Clone1->setName(Twine("lpad" ) + Suffix1); |
1371 | Clone1->insertInto(ParentBB: NewBB1, It: NewBB1->getFirstInsertionPt()); |
1372 | |
1373 | if (NewBB2) { |
1374 | Instruction *Clone2 = LPad->clone(); |
1375 | Clone2->setName(Twine("lpad" ) + Suffix2); |
1376 | Clone2->insertInto(ParentBB: NewBB2, It: NewBB2->getFirstInsertionPt()); |
1377 | |
1378 | // Create a PHI node for the two cloned landingpad instructions only |
1379 | // if the original landingpad instruction has some uses. |
1380 | if (!LPad->use_empty()) { |
1381 | assert(!LPad->getType()->isTokenTy() && |
1382 | "Split cannot be applied if LPad is token type. Otherwise an " |
1383 | "invalid PHINode of token type would be created." ); |
1384 | PHINode *PN = PHINode::Create(Ty: LPad->getType(), NumReservedValues: 2, NameStr: "lpad.phi" , InsertBefore: LPad->getIterator()); |
1385 | PN->addIncoming(V: Clone1, BB: NewBB1); |
1386 | PN->addIncoming(V: Clone2, BB: NewBB2); |
1387 | LPad->replaceAllUsesWith(V: PN); |
1388 | } |
1389 | LPad->eraseFromParent(); |
1390 | } else { |
1391 | // There is no second clone. Just replace the landing pad with the first |
1392 | // clone. |
1393 | LPad->replaceAllUsesWith(V: Clone1); |
1394 | LPad->eraseFromParent(); |
1395 | } |
1396 | } |
1397 | |
1398 | void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, |
1399 | ArrayRef<BasicBlock *> Preds, |
1400 | const char *Suffix1, const char *Suffix2, |
1401 | SmallVectorImpl<BasicBlock *> &NewBBs, |
1402 | DomTreeUpdater *DTU, LoopInfo *LI, |
1403 | MemorySSAUpdater *MSSAU, |
1404 | bool PreserveLCSSA) { |
1405 | return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2, |
1406 | NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU, |
1407 | PreserveLCSSA); |
1408 | } |
1409 | |
1410 | ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, |
1411 | BasicBlock *Pred, |
1412 | DomTreeUpdater *DTU) { |
1413 | Instruction *UncondBranch = Pred->getTerminator(); |
1414 | // Clone the return and add it to the end of the predecessor. |
1415 | Instruction *NewRet = RI->clone(); |
1416 | NewRet->insertInto(ParentBB: Pred, It: Pred->end()); |
1417 | |
1418 | // If the return instruction returns a value, and if the value was a |
1419 | // PHI node in "BB", propagate the right value into the return. |
1420 | for (Use &Op : NewRet->operands()) { |
1421 | Value *V = Op; |
1422 | Instruction *NewBC = nullptr; |
1423 | if (BitCastInst *BCI = dyn_cast<BitCastInst>(Val: V)) { |
1424 | // Return value might be bitcasted. Clone and insert it before the |
1425 | // return instruction. |
1426 | V = BCI->getOperand(i_nocapture: 0); |
1427 | NewBC = BCI->clone(); |
1428 | NewBC->insertInto(ParentBB: Pred, It: NewRet->getIterator()); |
1429 | Op = NewBC; |
1430 | } |
1431 | |
1432 | Instruction *NewEV = nullptr; |
1433 | if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Val: V)) { |
1434 | V = EVI->getOperand(i_nocapture: 0); |
1435 | NewEV = EVI->clone(); |
1436 | if (NewBC) { |
1437 | NewBC->setOperand(i: 0, Val: NewEV); |
1438 | NewEV->insertInto(ParentBB: Pred, It: NewBC->getIterator()); |
1439 | } else { |
1440 | NewEV->insertInto(ParentBB: Pred, It: NewRet->getIterator()); |
1441 | Op = NewEV; |
1442 | } |
1443 | } |
1444 | |
1445 | if (PHINode *PN = dyn_cast<PHINode>(Val: V)) { |
1446 | if (PN->getParent() == BB) { |
1447 | if (NewEV) { |
1448 | NewEV->setOperand(i: 0, Val: PN->getIncomingValueForBlock(BB: Pred)); |
1449 | } else if (NewBC) |
1450 | NewBC->setOperand(i: 0, Val: PN->getIncomingValueForBlock(BB: Pred)); |
1451 | else |
1452 | Op = PN->getIncomingValueForBlock(BB: Pred); |
1453 | } |
1454 | } |
1455 | } |
1456 | |
1457 | // Update any PHI nodes in the returning block to realize that we no |
1458 | // longer branch to them. |
1459 | BB->removePredecessor(Pred); |
1460 | UncondBranch->eraseFromParent(); |
1461 | |
1462 | if (DTU) |
1463 | DTU->applyUpdates(Updates: {{DominatorTree::Delete, Pred, BB}}); |
1464 | |
1465 | return cast<ReturnInst>(Val: NewRet); |
1466 | } |
1467 | |
1468 | Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, |
1469 | BasicBlock::iterator SplitBefore, |
1470 | bool Unreachable, |
1471 | MDNode *BranchWeights, |
1472 | DomTreeUpdater *DTU, LoopInfo *LI, |
1473 | BasicBlock *ThenBlock) { |
1474 | SplitBlockAndInsertIfThenElse( |
1475 | Cond, SplitBefore, ThenBlock: &ThenBlock, /* ElseBlock */ nullptr, |
1476 | /* UnreachableThen */ Unreachable, |
1477 | /* UnreachableElse */ false, BranchWeights, DTU, LI); |
1478 | return ThenBlock->getTerminator(); |
1479 | } |
1480 | |
1481 | Instruction *llvm::SplitBlockAndInsertIfElse(Value *Cond, |
1482 | BasicBlock::iterator SplitBefore, |
1483 | bool Unreachable, |
1484 | MDNode *BranchWeights, |
1485 | DomTreeUpdater *DTU, LoopInfo *LI, |
1486 | BasicBlock *ElseBlock) { |
1487 | SplitBlockAndInsertIfThenElse( |
1488 | Cond, SplitBefore, /* ThenBlock */ nullptr, ElseBlock: &ElseBlock, |
1489 | /* UnreachableThen */ false, |
1490 | /* UnreachableElse */ Unreachable, BranchWeights, DTU, LI); |
1491 | return ElseBlock->getTerminator(); |
1492 | } |
1493 | |
1494 | void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore, |
1495 | Instruction **ThenTerm, |
1496 | Instruction **ElseTerm, |
1497 | MDNode *BranchWeights, |
1498 | DomTreeUpdater *DTU, LoopInfo *LI) { |
1499 | BasicBlock *ThenBlock = nullptr; |
1500 | BasicBlock *ElseBlock = nullptr; |
1501 | SplitBlockAndInsertIfThenElse( |
1502 | Cond, SplitBefore, ThenBlock: &ThenBlock, ElseBlock: &ElseBlock, /* UnreachableThen */ false, |
1503 | /* UnreachableElse */ false, BranchWeights, DTU, LI); |
1504 | |
1505 | *ThenTerm = ThenBlock->getTerminator(); |
1506 | *ElseTerm = ElseBlock->getTerminator(); |
1507 | } |
1508 | |
1509 | void llvm::SplitBlockAndInsertIfThenElse( |
1510 | Value *Cond, BasicBlock::iterator SplitBefore, BasicBlock **ThenBlock, |
1511 | BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse, |
1512 | MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) { |
1513 | assert((ThenBlock || ElseBlock) && |
1514 | "At least one branch block must be created" ); |
1515 | assert((!UnreachableThen || !UnreachableElse) && |
1516 | "Split block tail must be reachable" ); |
1517 | |
1518 | SmallVector<DominatorTree::UpdateType, 8> Updates; |
1519 | SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors; |
1520 | BasicBlock *Head = SplitBefore->getParent(); |
1521 | if (DTU) { |
1522 | UniqueOrigSuccessors.insert_range(R: successors(BB: Head)); |
1523 | Updates.reserve(N: 4 + 2 * UniqueOrigSuccessors.size()); |
1524 | } |
1525 | |
1526 | LLVMContext &C = Head->getContext(); |
1527 | BasicBlock *Tail = Head->splitBasicBlock(I: SplitBefore); |
1528 | BasicBlock *TrueBlock = Tail; |
1529 | BasicBlock *FalseBlock = Tail; |
1530 | bool ThenToTailEdge = false; |
1531 | bool ElseToTailEdge = false; |
1532 | |
1533 | // Encapsulate the logic around creation/insertion/etc of a new block. |
1534 | auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB, |
1535 | bool &ToTailEdge) { |
1536 | if (PBB == nullptr) |
1537 | return; // Do not create/insert a block. |
1538 | |
1539 | if (*PBB) |
1540 | BB = *PBB; // Caller supplied block, use it. |
1541 | else { |
1542 | // Create a new block. |
1543 | BB = BasicBlock::Create(Context&: C, Name: "" , Parent: Head->getParent(), InsertBefore: Tail); |
1544 | if (Unreachable) |
1545 | (void)new UnreachableInst(C, BB); |
1546 | else { |
1547 | (void)BranchInst::Create(IfTrue: Tail, InsertBefore: BB); |
1548 | ToTailEdge = true; |
1549 | } |
1550 | BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc()); |
1551 | // Pass the new block back to the caller. |
1552 | *PBB = BB; |
1553 | } |
1554 | }; |
1555 | |
1556 | handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge); |
1557 | handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge); |
1558 | |
1559 | Instruction *HeadOldTerm = Head->getTerminator(); |
1560 | BranchInst *HeadNewTerm = |
1561 | BranchInst::Create(/*ifTrue*/ IfTrue: TrueBlock, /*ifFalse*/ IfFalse: FalseBlock, Cond); |
1562 | HeadNewTerm->setMetadata(KindID: LLVMContext::MD_prof, Node: BranchWeights); |
1563 | ReplaceInstWithInst(From: HeadOldTerm, To: HeadNewTerm); |
1564 | |
1565 | if (DTU) { |
1566 | Updates.emplace_back(Args: DominatorTree::Insert, Args&: Head, Args&: TrueBlock); |
1567 | Updates.emplace_back(Args: DominatorTree::Insert, Args&: Head, Args&: FalseBlock); |
1568 | if (ThenToTailEdge) |
1569 | Updates.emplace_back(Args: DominatorTree::Insert, Args&: TrueBlock, Args&: Tail); |
1570 | if (ElseToTailEdge) |
1571 | Updates.emplace_back(Args: DominatorTree::Insert, Args&: FalseBlock, Args&: Tail); |
1572 | for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) |
1573 | Updates.emplace_back(Args: DominatorTree::Insert, Args&: Tail, Args&: UniqueOrigSuccessor); |
1574 | for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) |
1575 | Updates.emplace_back(Args: DominatorTree::Delete, Args&: Head, Args&: UniqueOrigSuccessor); |
1576 | DTU->applyUpdates(Updates); |
1577 | } |
1578 | |
1579 | if (LI) { |
1580 | if (Loop *L = LI->getLoopFor(BB: Head); L) { |
1581 | if (ThenToTailEdge) |
1582 | L->addBasicBlockToLoop(NewBB: TrueBlock, LI&: *LI); |
1583 | if (ElseToTailEdge) |
1584 | L->addBasicBlockToLoop(NewBB: FalseBlock, LI&: *LI); |
1585 | L->addBasicBlockToLoop(NewBB: Tail, LI&: *LI); |
1586 | } |
1587 | } |
1588 | } |
1589 | |
1590 | std::pair<Instruction *, Value *> |
1591 | llvm::SplitBlockAndInsertSimpleForLoop(Value *End, |
1592 | BasicBlock::iterator SplitBefore) { |
1593 | BasicBlock *LoopPred = SplitBefore->getParent(); |
1594 | BasicBlock *LoopBody = SplitBlock(Old: SplitBefore->getParent(), SplitPt: SplitBefore); |
1595 | BasicBlock *LoopExit = SplitBlock(Old: SplitBefore->getParent(), SplitPt: SplitBefore); |
1596 | |
1597 | auto *Ty = End->getType(); |
1598 | auto &DL = SplitBefore->getDataLayout(); |
1599 | const unsigned Bitwidth = DL.getTypeSizeInBits(Ty); |
1600 | |
1601 | IRBuilder<> Builder(LoopBody->getTerminator()); |
1602 | auto *IV = Builder.CreatePHI(Ty, NumReservedValues: 2, Name: "iv" ); |
1603 | auto *IVNext = |
1604 | Builder.CreateAdd(LHS: IV, RHS: ConstantInt::get(Ty, V: 1), Name: IV->getName() + ".next" , |
1605 | /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); |
1606 | auto *IVCheck = Builder.CreateICmpEQ(LHS: IVNext, RHS: End, |
1607 | Name: IV->getName() + ".check" ); |
1608 | Builder.CreateCondBr(Cond: IVCheck, True: LoopExit, False: LoopBody); |
1609 | LoopBody->getTerminator()->eraseFromParent(); |
1610 | |
1611 | // Populate the IV PHI. |
1612 | IV->addIncoming(V: ConstantInt::get(Ty, V: 0), BB: LoopPred); |
1613 | IV->addIncoming(V: IVNext, BB: LoopBody); |
1614 | |
1615 | return std::make_pair(x: &*LoopBody->getFirstNonPHIIt(), y&: IV); |
1616 | } |
1617 | |
1618 | void llvm::SplitBlockAndInsertForEachLane( |
1619 | ElementCount EC, Type *IndexTy, BasicBlock::iterator InsertBefore, |
1620 | std::function<void(IRBuilderBase &, Value *)> Func) { |
1621 | |
1622 | IRBuilder<> IRB(InsertBefore->getParent(), InsertBefore); |
1623 | |
1624 | if (EC.isScalable()) { |
1625 | Value *NumElements = IRB.CreateElementCount(Ty: IndexTy, EC); |
1626 | |
1627 | auto [BodyIP, Index] = |
1628 | SplitBlockAndInsertSimpleForLoop(End: NumElements, SplitBefore: InsertBefore); |
1629 | |
1630 | IRB.SetInsertPoint(BodyIP); |
1631 | Func(IRB, Index); |
1632 | return; |
1633 | } |
1634 | |
1635 | unsigned Num = EC.getFixedValue(); |
1636 | for (unsigned Idx = 0; Idx < Num; ++Idx) { |
1637 | IRB.SetInsertPoint(InsertBefore); |
1638 | Func(IRB, ConstantInt::get(Ty: IndexTy, V: Idx)); |
1639 | } |
1640 | } |
1641 | |
1642 | void llvm::SplitBlockAndInsertForEachLane( |
1643 | Value *EVL, BasicBlock::iterator InsertBefore, |
1644 | std::function<void(IRBuilderBase &, Value *)> Func) { |
1645 | |
1646 | IRBuilder<> IRB(InsertBefore->getParent(), InsertBefore); |
1647 | Type *Ty = EVL->getType(); |
1648 | |
1649 | if (!isa<ConstantInt>(Val: EVL)) { |
1650 | auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(End: EVL, SplitBefore: InsertBefore); |
1651 | IRB.SetInsertPoint(BodyIP); |
1652 | Func(IRB, Index); |
1653 | return; |
1654 | } |
1655 | |
1656 | unsigned Num = cast<ConstantInt>(Val: EVL)->getZExtValue(); |
1657 | for (unsigned Idx = 0; Idx < Num; ++Idx) { |
1658 | IRB.SetInsertPoint(InsertBefore); |
1659 | Func(IRB, ConstantInt::get(Ty, V: Idx)); |
1660 | } |
1661 | } |
1662 | |
1663 | BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, |
1664 | BasicBlock *&IfFalse) { |
1665 | PHINode *SomePHI = dyn_cast<PHINode>(Val: BB->begin()); |
1666 | BasicBlock *Pred1 = nullptr; |
1667 | BasicBlock *Pred2 = nullptr; |
1668 | |
1669 | if (SomePHI) { |
1670 | if (SomePHI->getNumIncomingValues() != 2) |
1671 | return nullptr; |
1672 | Pred1 = SomePHI->getIncomingBlock(i: 0); |
1673 | Pred2 = SomePHI->getIncomingBlock(i: 1); |
1674 | } else { |
1675 | pred_iterator PI = pred_begin(BB), PE = pred_end(BB); |
1676 | if (PI == PE) // No predecessor |
1677 | return nullptr; |
1678 | Pred1 = *PI++; |
1679 | if (PI == PE) // Only one predecessor |
1680 | return nullptr; |
1681 | Pred2 = *PI++; |
1682 | if (PI != PE) // More than two predecessors |
1683 | return nullptr; |
1684 | } |
1685 | |
1686 | // We can only handle branches. Other control flow will be lowered to |
1687 | // branches if possible anyway. |
1688 | BranchInst *Pred1Br = dyn_cast<BranchInst>(Val: Pred1->getTerminator()); |
1689 | BranchInst *Pred2Br = dyn_cast<BranchInst>(Val: Pred2->getTerminator()); |
1690 | if (!Pred1Br || !Pred2Br) |
1691 | return nullptr; |
1692 | |
1693 | // Eliminate code duplication by ensuring that Pred1Br is conditional if |
1694 | // either are. |
1695 | if (Pred2Br->isConditional()) { |
1696 | // If both branches are conditional, we don't have an "if statement". In |
1697 | // reality, we could transform this case, but since the condition will be |
1698 | // required anyway, we stand no chance of eliminating it, so the xform is |
1699 | // probably not profitable. |
1700 | if (Pred1Br->isConditional()) |
1701 | return nullptr; |
1702 | |
1703 | std::swap(a&: Pred1, b&: Pred2); |
1704 | std::swap(a&: Pred1Br, b&: Pred2Br); |
1705 | } |
1706 | |
1707 | if (Pred1Br->isConditional()) { |
1708 | // The only thing we have to watch out for here is to make sure that Pred2 |
1709 | // doesn't have incoming edges from other blocks. If it does, the condition |
1710 | // doesn't dominate BB. |
1711 | if (!Pred2->getSinglePredecessor()) |
1712 | return nullptr; |
1713 | |
1714 | // If we found a conditional branch predecessor, make sure that it branches |
1715 | // to BB and Pred2Br. If it doesn't, this isn't an "if statement". |
1716 | if (Pred1Br->getSuccessor(i: 0) == BB && |
1717 | Pred1Br->getSuccessor(i: 1) == Pred2) { |
1718 | IfTrue = Pred1; |
1719 | IfFalse = Pred2; |
1720 | } else if (Pred1Br->getSuccessor(i: 0) == Pred2 && |
1721 | Pred1Br->getSuccessor(i: 1) == BB) { |
1722 | IfTrue = Pred2; |
1723 | IfFalse = Pred1; |
1724 | } else { |
1725 | // We know that one arm of the conditional goes to BB, so the other must |
1726 | // go somewhere unrelated, and this must not be an "if statement". |
1727 | return nullptr; |
1728 | } |
1729 | |
1730 | return Pred1Br; |
1731 | } |
1732 | |
1733 | // Ok, if we got here, both predecessors end with an unconditional branch to |
1734 | // BB. Don't panic! If both blocks only have a single (identical) |
1735 | // predecessor, and THAT is a conditional branch, then we're all ok! |
1736 | BasicBlock *CommonPred = Pred1->getSinglePredecessor(); |
1737 | if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) |
1738 | return nullptr; |
1739 | |
1740 | // Otherwise, if this is a conditional branch, then we can use it! |
1741 | BranchInst *BI = dyn_cast<BranchInst>(Val: CommonPred->getTerminator()); |
1742 | if (!BI) return nullptr; |
1743 | |
1744 | assert(BI->isConditional() && "Two successors but not conditional?" ); |
1745 | if (BI->getSuccessor(i: 0) == Pred1) { |
1746 | IfTrue = Pred1; |
1747 | IfFalse = Pred2; |
1748 | } else { |
1749 | IfTrue = Pred2; |
1750 | IfFalse = Pred1; |
1751 | } |
1752 | return BI; |
1753 | } |
1754 | |
1755 | void llvm::InvertBranch(BranchInst *PBI, IRBuilderBase &Builder) { |
1756 | Value *NewCond = PBI->getCondition(); |
1757 | // If this is a "cmp" instruction, only used for branching (and nowhere |
1758 | // else), then we can simply invert the predicate. |
1759 | if (NewCond->hasOneUse() && isa<CmpInst>(Val: NewCond)) { |
1760 | CmpInst *CI = cast<CmpInst>(Val: NewCond); |
1761 | CI->setPredicate(CI->getInversePredicate()); |
1762 | } else |
1763 | NewCond = Builder.CreateNot(V: NewCond, Name: NewCond->getName() + ".not" ); |
1764 | |
1765 | PBI->setCondition(NewCond); |
1766 | PBI->swapSuccessors(); |
1767 | } |
1768 | |
1769 | bool llvm::hasOnlySimpleTerminator(const Function &F) { |
1770 | for (auto &BB : F) { |
1771 | auto *Term = BB.getTerminator(); |
1772 | if (!(isa<ReturnInst>(Val: Term) || isa<UnreachableInst>(Val: Term) || |
1773 | isa<BranchInst>(Val: Term))) |
1774 | return false; |
1775 | } |
1776 | return true; |
1777 | } |
1778 | |