| 1 | //===- CloneFunction.cpp - Clone a function into another function ---------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the CloneFunctionInto interface, which is used as the |
| 10 | // low-level function cloner. This is used by the CloneFunction and function |
| 11 | // inliner to do the dirty work of copying the body of a function around. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/ADT/SmallVector.h" |
| 16 | #include "llvm/ADT/Statistic.h" |
| 17 | #include "llvm/Analysis/ConstantFolding.h" |
| 18 | #include "llvm/Analysis/DomTreeUpdater.h" |
| 19 | #include "llvm/Analysis/InstructionSimplify.h" |
| 20 | #include "llvm/Analysis/LoopInfo.h" |
| 21 | #include "llvm/IR/AttributeMask.h" |
| 22 | #include "llvm/IR/CFG.h" |
| 23 | #include "llvm/IR/Constants.h" |
| 24 | #include "llvm/IR/DebugInfo.h" |
| 25 | #include "llvm/IR/DerivedTypes.h" |
| 26 | #include "llvm/IR/Function.h" |
| 27 | #include "llvm/IR/InstIterator.h" |
| 28 | #include "llvm/IR/Instructions.h" |
| 29 | #include "llvm/IR/IntrinsicInst.h" |
| 30 | #include "llvm/IR/LLVMContext.h" |
| 31 | #include "llvm/IR/MDBuilder.h" |
| 32 | #include "llvm/IR/Metadata.h" |
| 33 | #include "llvm/IR/Module.h" |
| 34 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 35 | #include "llvm/Transforms/Utils/Cloning.h" |
| 36 | #include "llvm/Transforms/Utils/Local.h" |
| 37 | #include "llvm/Transforms/Utils/ValueMapper.h" |
| 38 | #include <map> |
| 39 | #include <optional> |
| 40 | using namespace llvm; |
| 41 | |
| 42 | #define DEBUG_TYPE "clone-function" |
| 43 | |
| 44 | STATISTIC(RemappedAtomMax, "Highest global NextAtomGroup (after mapping)" ); |
| 45 | |
| 46 | void llvm::mapAtomInstance(const DebugLoc &DL, ValueToValueMapTy &VMap) { |
| 47 | auto CurGroup = DL->getAtomGroup(); |
| 48 | if (!CurGroup) |
| 49 | return; |
| 50 | |
| 51 | // Try inserting a new entry. If there's already a mapping for this atom |
| 52 | // then there's nothing to do. |
| 53 | auto [It, Inserted] = VMap.AtomMap.insert(KV: {{DL.getInlinedAt(), CurGroup}, 0}); |
| 54 | if (!Inserted) |
| 55 | return; |
| 56 | |
| 57 | // Map entry to a new atom group. |
| 58 | uint64_t NewGroup = DL->getContext().incNextDILocationAtomGroup(); |
| 59 | assert(NewGroup > CurGroup && "Next should always be greater than current" ); |
| 60 | It->second = NewGroup; |
| 61 | |
| 62 | RemappedAtomMax = std::max<uint64_t>(a: NewGroup, b: RemappedAtomMax); |
| 63 | } |
| 64 | |
| 65 | namespace { |
| 66 | void collectDebugInfoFromInstructions(const Function &F, |
| 67 | DebugInfoFinder &DIFinder) { |
| 68 | const Module *M = F.getParent(); |
| 69 | if (M) { |
| 70 | // Inspect instructions to process e.g. DILexicalBlocks of inlined functions |
| 71 | for (const auto &I : instructions(F)) |
| 72 | DIFinder.processInstruction(M: *M, I); |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | // Create a predicate that matches the metadata that should be identity mapped |
| 77 | // during function cloning. |
| 78 | MetadataPredicate createIdentityMDPredicate(const Function &F, |
| 79 | CloneFunctionChangeType Changes) { |
| 80 | if (Changes >= CloneFunctionChangeType::DifferentModule) |
| 81 | return [](const Metadata *MD) { return false; }; |
| 82 | |
| 83 | DISubprogram *SPClonedWithinModule = F.getSubprogram(); |
| 84 | |
| 85 | // Don't clone inlined subprograms. |
| 86 | auto ShouldKeep = [SPClonedWithinModule](const DISubprogram *SP) -> bool { |
| 87 | return SP != SPClonedWithinModule; |
| 88 | }; |
| 89 | |
| 90 | return [=](const Metadata *MD) { |
| 91 | // Avoid cloning types, compile units, and (other) subprograms. |
| 92 | if (isa<DICompileUnit>(Val: MD) || isa<DIType>(Val: MD)) |
| 93 | return true; |
| 94 | |
| 95 | if (auto *SP = dyn_cast<DISubprogram>(Val: MD)) |
| 96 | return ShouldKeep(SP); |
| 97 | |
| 98 | // If a subprogram isn't going to be cloned skip its lexical blocks as well. |
| 99 | if (auto *LScope = dyn_cast<DILocalScope>(Val: MD)) |
| 100 | return ShouldKeep(LScope->getSubprogram()); |
| 101 | |
| 102 | // Avoid cloning local variables of subprograms that won't be cloned. |
| 103 | if (auto *DV = dyn_cast<DILocalVariable>(Val: MD)) |
| 104 | if (auto *S = dyn_cast_or_null<DILocalScope>(Val: DV->getScope())) |
| 105 | return ShouldKeep(S->getSubprogram()); |
| 106 | |
| 107 | return false; |
| 108 | }; |
| 109 | } |
| 110 | } // namespace |
| 111 | |
| 112 | /// See comments in Cloning.h. |
| 113 | BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, |
| 114 | const Twine &NameSuffix, Function *F, |
| 115 | ClonedCodeInfo *CodeInfo, bool MapAtoms) { |
| 116 | BasicBlock *NewBB = BasicBlock::Create(Context&: BB->getContext(), Name: "" , Parent: F); |
| 117 | if (BB->hasName()) |
| 118 | NewBB->setName(BB->getName() + NameSuffix); |
| 119 | |
| 120 | bool hasCalls = false, hasDynamicAllocas = false, hasMemProfMetadata = false; |
| 121 | |
| 122 | // Loop over all instructions, and copy them over. |
| 123 | for (const Instruction &I : *BB) { |
| 124 | Instruction *NewInst = I.clone(); |
| 125 | if (I.hasName()) |
| 126 | NewInst->setName(I.getName() + NameSuffix); |
| 127 | |
| 128 | NewInst->insertBefore(BB&: *NewBB, InsertPos: NewBB->end()); |
| 129 | NewInst->cloneDebugInfoFrom(From: &I); |
| 130 | |
| 131 | VMap[&I] = NewInst; // Add instruction map to value. |
| 132 | |
| 133 | if (MapAtoms) { |
| 134 | if (const DebugLoc &DL = NewInst->getDebugLoc()) |
| 135 | mapAtomInstance(DL: DL.get(), VMap); |
| 136 | } |
| 137 | |
| 138 | if (isa<CallInst>(Val: I) && !I.isDebugOrPseudoInst()) { |
| 139 | hasCalls = true; |
| 140 | hasMemProfMetadata |= I.hasMetadata(KindID: LLVMContext::MD_memprof); |
| 141 | hasMemProfMetadata |= I.hasMetadata(KindID: LLVMContext::MD_callsite); |
| 142 | } |
| 143 | if (const AllocaInst *AI = dyn_cast<AllocaInst>(Val: &I)) { |
| 144 | if (!AI->isStaticAlloca()) { |
| 145 | hasDynamicAllocas = true; |
| 146 | } |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | if (CodeInfo) { |
| 151 | CodeInfo->ContainsCalls |= hasCalls; |
| 152 | CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata; |
| 153 | CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; |
| 154 | } |
| 155 | return NewBB; |
| 156 | } |
| 157 | |
| 158 | void llvm::CloneFunctionAttributesInto(Function *NewFunc, |
| 159 | const Function *OldFunc, |
| 160 | ValueToValueMapTy &VMap, |
| 161 | bool ModuleLevelChanges, |
| 162 | ValueMapTypeRemapper *TypeMapper, |
| 163 | ValueMaterializer *Materializer) { |
| 164 | // Copy all attributes other than those stored in Function's AttributeList |
| 165 | // which holds e.g. parameters and return value attributes. |
| 166 | AttributeList NewAttrs = NewFunc->getAttributes(); |
| 167 | NewFunc->copyAttributesFrom(Src: OldFunc); |
| 168 | NewFunc->setAttributes(NewAttrs); |
| 169 | |
| 170 | const RemapFlags FuncGlobalRefFlags = |
| 171 | ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges; |
| 172 | |
| 173 | // Fix up the personality function that got copied over. |
| 174 | if (OldFunc->hasPersonalityFn()) |
| 175 | NewFunc->setPersonalityFn(MapValue(V: OldFunc->getPersonalityFn(), VM&: VMap, |
| 176 | Flags: FuncGlobalRefFlags, TypeMapper, |
| 177 | Materializer)); |
| 178 | |
| 179 | if (OldFunc->hasPrefixData()) { |
| 180 | NewFunc->setPrefixData(MapValue(V: OldFunc->getPrefixData(), VM&: VMap, |
| 181 | Flags: FuncGlobalRefFlags, TypeMapper, |
| 182 | Materializer)); |
| 183 | } |
| 184 | |
| 185 | if (OldFunc->hasPrologueData()) { |
| 186 | NewFunc->setPrologueData(MapValue(V: OldFunc->getPrologueData(), VM&: VMap, |
| 187 | Flags: FuncGlobalRefFlags, TypeMapper, |
| 188 | Materializer)); |
| 189 | } |
| 190 | |
| 191 | SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size()); |
| 192 | AttributeList OldAttrs = OldFunc->getAttributes(); |
| 193 | |
| 194 | // Clone any argument attributes that are present in the VMap. |
| 195 | for (const Argument &OldArg : OldFunc->args()) { |
| 196 | if (Argument *NewArg = dyn_cast<Argument>(Val&: VMap[&OldArg])) { |
| 197 | // Remap the parameter indices. |
| 198 | NewArgAttrs[NewArg->getArgNo()] = |
| 199 | OldAttrs.getParamAttrs(ArgNo: OldArg.getArgNo()); |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | NewFunc->setAttributes( |
| 204 | AttributeList::get(C&: NewFunc->getContext(), FnAttrs: OldAttrs.getFnAttrs(), |
| 205 | RetAttrs: OldAttrs.getRetAttrs(), ArgAttrs: NewArgAttrs)); |
| 206 | } |
| 207 | |
| 208 | void llvm::CloneFunctionMetadataInto(Function &NewFunc, const Function &OldFunc, |
| 209 | ValueToValueMapTy &VMap, |
| 210 | RemapFlags RemapFlag, |
| 211 | ValueMapTypeRemapper *TypeMapper, |
| 212 | ValueMaterializer *Materializer, |
| 213 | const MetadataPredicate *IdentityMD) { |
| 214 | SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; |
| 215 | OldFunc.getAllMetadata(MDs); |
| 216 | for (auto MD : MDs) { |
| 217 | NewFunc.addMetadata(KindID: MD.first, |
| 218 | MD&: *MapMetadata(MD: MD.second, VM&: VMap, Flags: RemapFlag, TypeMapper, |
| 219 | Materializer, IdentityMD)); |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | void llvm::CloneFunctionBodyInto(Function &NewFunc, const Function &OldFunc, |
| 224 | ValueToValueMapTy &VMap, RemapFlags RemapFlag, |
| 225 | SmallVectorImpl<ReturnInst *> &Returns, |
| 226 | const char *NameSuffix, |
| 227 | ClonedCodeInfo *CodeInfo, |
| 228 | ValueMapTypeRemapper *TypeMapper, |
| 229 | ValueMaterializer *Materializer, |
| 230 | const MetadataPredicate *IdentityMD) { |
| 231 | if (OldFunc.isDeclaration()) |
| 232 | return; |
| 233 | |
| 234 | // Loop over all of the basic blocks in the function, cloning them as |
| 235 | // appropriate. Note that we save BE this way in order to handle cloning of |
| 236 | // recursive functions into themselves. |
| 237 | for (const BasicBlock &BB : OldFunc) { |
| 238 | |
| 239 | // Create a new basic block and copy instructions into it! |
| 240 | BasicBlock *CBB = |
| 241 | CloneBasicBlock(BB: &BB, VMap, NameSuffix, F: &NewFunc, CodeInfo); |
| 242 | |
| 243 | // Add basic block mapping. |
| 244 | VMap[&BB] = CBB; |
| 245 | |
| 246 | // It is only legal to clone a function if a block address within that |
| 247 | // function is never referenced outside of the function. Given that, we |
| 248 | // want to map block addresses from the old function to block addresses in |
| 249 | // the clone. (This is different from the generic ValueMapper |
| 250 | // implementation, which generates an invalid blockaddress when |
| 251 | // cloning a function.) |
| 252 | if (BB.hasAddressTaken()) { |
| 253 | Constant *OldBBAddr = BlockAddress::get(F: const_cast<Function *>(&OldFunc), |
| 254 | BB: const_cast<BasicBlock *>(&BB)); |
| 255 | VMap[OldBBAddr] = BlockAddress::get(F: &NewFunc, BB: CBB); |
| 256 | } |
| 257 | |
| 258 | // Note return instructions for the caller. |
| 259 | if (ReturnInst *RI = dyn_cast<ReturnInst>(Val: CBB->getTerminator())) |
| 260 | Returns.push_back(Elt: RI); |
| 261 | } |
| 262 | |
| 263 | // Loop over all of the instructions in the new function, fixing up operand |
| 264 | // references as we go. This uses VMap to do all the hard work. |
| 265 | for (Function::iterator |
| 266 | BB = cast<BasicBlock>(Val&: VMap[&OldFunc.front()])->getIterator(), |
| 267 | BE = NewFunc.end(); |
| 268 | BB != BE; ++BB) |
| 269 | // Loop over all instructions, fixing each one as we find it, and any |
| 270 | // attached debug-info records. |
| 271 | for (Instruction &II : *BB) { |
| 272 | RemapInstruction(I: &II, VM&: VMap, Flags: RemapFlag, TypeMapper, Materializer, |
| 273 | IdentityMD); |
| 274 | RemapDbgRecordRange(M: II.getModule(), Range: II.getDbgRecordRange(), VM&: VMap, |
| 275 | Flags: RemapFlag, TypeMapper, Materializer, IdentityMD); |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | // Clone OldFunc into NewFunc, transforming the old arguments into references to |
| 280 | // VMap values. |
| 281 | void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, |
| 282 | ValueToValueMapTy &VMap, |
| 283 | CloneFunctionChangeType Changes, |
| 284 | SmallVectorImpl<ReturnInst *> &Returns, |
| 285 | const char *NameSuffix, ClonedCodeInfo *CodeInfo, |
| 286 | ValueMapTypeRemapper *TypeMapper, |
| 287 | ValueMaterializer *Materializer) { |
| 288 | assert(NameSuffix && "NameSuffix cannot be null!" ); |
| 289 | |
| 290 | #ifndef NDEBUG |
| 291 | for (const Argument &I : OldFunc->args()) |
| 292 | assert(VMap.count(&I) && "No mapping from source argument specified!" ); |
| 293 | #endif |
| 294 | |
| 295 | bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly; |
| 296 | |
| 297 | CloneFunctionAttributesInto(NewFunc, OldFunc, VMap, ModuleLevelChanges, |
| 298 | TypeMapper, Materializer); |
| 299 | |
| 300 | // Everything else beyond this point deals with function instructions, |
| 301 | // so if we are dealing with a function declaration, we're done. |
| 302 | if (OldFunc->isDeclaration()) |
| 303 | return; |
| 304 | |
| 305 | if (Changes < CloneFunctionChangeType::DifferentModule) { |
| 306 | assert((NewFunc->getParent() == nullptr || |
| 307 | NewFunc->getParent() == OldFunc->getParent()) && |
| 308 | "Expected NewFunc to have the same parent, or no parent" ); |
| 309 | } else { |
| 310 | assert((NewFunc->getParent() == nullptr || |
| 311 | NewFunc->getParent() != OldFunc->getParent()) && |
| 312 | "Expected NewFunc to have different parents, or no parent" ); |
| 313 | |
| 314 | if (Changes == CloneFunctionChangeType::DifferentModule) { |
| 315 | assert(NewFunc->getParent() && |
| 316 | "Need parent of new function to maintain debug info invariants" ); |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | MetadataPredicate IdentityMD = createIdentityMDPredicate(F: *OldFunc, Changes); |
| 321 | |
| 322 | // Cloning is always a Module level operation, since Metadata needs to be |
| 323 | // cloned. |
| 324 | const auto RemapFlag = RF_None; |
| 325 | |
| 326 | CloneFunctionMetadataInto(NewFunc&: *NewFunc, OldFunc: *OldFunc, VMap, RemapFlag, TypeMapper, |
| 327 | Materializer, IdentityMD: &IdentityMD); |
| 328 | |
| 329 | CloneFunctionBodyInto(NewFunc&: *NewFunc, OldFunc: *OldFunc, VMap, RemapFlag, Returns, |
| 330 | NameSuffix, CodeInfo, TypeMapper, Materializer, |
| 331 | IdentityMD: &IdentityMD); |
| 332 | |
| 333 | // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the |
| 334 | // same module, the compile unit will already be listed (or not). When |
| 335 | // cloning a module, CloneModule() will handle creating the named metadata. |
| 336 | if (Changes != CloneFunctionChangeType::DifferentModule) |
| 337 | return; |
| 338 | |
| 339 | // Update !llvm.dbg.cu with compile units added to the new module if this |
| 340 | // function is being cloned in isolation. |
| 341 | // |
| 342 | // FIXME: This is making global / module-level changes, which doesn't seem |
| 343 | // like the right encapsulation Consider dropping the requirement to update |
| 344 | // !llvm.dbg.cu (either obsoleting the node, or restricting it to |
| 345 | // non-discardable compile units) instead of discovering compile units by |
| 346 | // visiting the metadata attached to global values, which would allow this |
| 347 | // code to be deleted. Alternatively, perhaps give responsibility for this |
| 348 | // update to CloneFunctionInto's callers. |
| 349 | auto *NewModule = NewFunc->getParent(); |
| 350 | auto *NMD = NewModule->getOrInsertNamedMetadata(Name: "llvm.dbg.cu" ); |
| 351 | // Avoid multiple insertions of the same DICompileUnit to NMD. |
| 352 | SmallPtrSet<const void *, 8> Visited(llvm::from_range, NMD->operands()); |
| 353 | |
| 354 | // Collect and clone all the compile units referenced from the instructions in |
| 355 | // the function (e.g. as instructions' scope). |
| 356 | DebugInfoFinder DIFinder; |
| 357 | collectDebugInfoFromInstructions(F: *OldFunc, DIFinder); |
| 358 | for (auto *Unit : DIFinder.compile_units()) { |
| 359 | MDNode *MappedUnit = |
| 360 | MapMetadata(MD: Unit, VM&: VMap, Flags: RF_None, TypeMapper, Materializer); |
| 361 | if (Visited.insert(Ptr: MappedUnit).second) |
| 362 | NMD->addOperand(M: MappedUnit); |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | /// Return a copy of the specified function and add it to that function's |
| 367 | /// module. Also, any references specified in the VMap are changed to refer to |
| 368 | /// their mapped value instead of the original one. If any of the arguments to |
| 369 | /// the function are in the VMap, the arguments are deleted from the resultant |
| 370 | /// function. The VMap is updated to include mappings from all of the |
| 371 | /// instructions and basicblocks in the function from their old to new values. |
| 372 | /// |
| 373 | Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, |
| 374 | ClonedCodeInfo *CodeInfo) { |
| 375 | std::vector<Type *> ArgTypes; |
| 376 | |
| 377 | // The user might be deleting arguments to the function by specifying them in |
| 378 | // the VMap. If so, we need to not add the arguments to the arg ty vector |
| 379 | // |
| 380 | for (const Argument &I : F->args()) |
| 381 | if (VMap.count(Val: &I) == 0) // Haven't mapped the argument to anything yet? |
| 382 | ArgTypes.push_back(x: I.getType()); |
| 383 | |
| 384 | // Create a new function type... |
| 385 | FunctionType *FTy = |
| 386 | FunctionType::get(Result: F->getFunctionType()->getReturnType(), Params: ArgTypes, |
| 387 | isVarArg: F->getFunctionType()->isVarArg()); |
| 388 | |
| 389 | // Create the new function... |
| 390 | Function *NewF = Function::Create(Ty: FTy, Linkage: F->getLinkage(), AddrSpace: F->getAddressSpace(), |
| 391 | N: F->getName(), M: F->getParent()); |
| 392 | |
| 393 | // Loop over the arguments, copying the names of the mapped arguments over... |
| 394 | Function::arg_iterator DestI = NewF->arg_begin(); |
| 395 | for (const Argument &I : F->args()) |
| 396 | if (VMap.count(Val: &I) == 0) { // Is this argument preserved? |
| 397 | DestI->setName(I.getName()); // Copy the name over... |
| 398 | VMap[&I] = &*DestI++; // Add mapping to VMap |
| 399 | } |
| 400 | |
| 401 | SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned. |
| 402 | CloneFunctionInto(NewFunc: NewF, OldFunc: F, VMap, Changes: CloneFunctionChangeType::LocalChangesOnly, |
| 403 | Returns, NameSuffix: "" , CodeInfo); |
| 404 | |
| 405 | return NewF; |
| 406 | } |
| 407 | |
| 408 | namespace { |
| 409 | /// This is a private class used to implement CloneAndPruneFunctionInto. |
| 410 | struct PruningFunctionCloner { |
| 411 | Function *NewFunc; |
| 412 | const Function *OldFunc; |
| 413 | ValueToValueMapTy &VMap; |
| 414 | bool ModuleLevelChanges; |
| 415 | const char *NameSuffix; |
| 416 | ClonedCodeInfo *CodeInfo; |
| 417 | bool HostFuncIsStrictFP; |
| 418 | |
| 419 | Instruction *cloneInstruction(BasicBlock::const_iterator II); |
| 420 | |
| 421 | public: |
| 422 | PruningFunctionCloner(Function *newFunc, const Function *oldFunc, |
| 423 | ValueToValueMapTy &valueMap, bool moduleLevelChanges, |
| 424 | const char *nameSuffix, ClonedCodeInfo *codeInfo) |
| 425 | : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), |
| 426 | ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), |
| 427 | CodeInfo(codeInfo) { |
| 428 | HostFuncIsStrictFP = |
| 429 | newFunc->getAttributes().hasFnAttr(Kind: Attribute::StrictFP); |
| 430 | } |
| 431 | |
| 432 | /// The specified block is found to be reachable, clone it and |
| 433 | /// anything that it can reach. |
| 434 | void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst, |
| 435 | std::vector<const BasicBlock *> &ToClone); |
| 436 | }; |
| 437 | } // namespace |
| 438 | |
| 439 | Instruction * |
| 440 | PruningFunctionCloner::cloneInstruction(BasicBlock::const_iterator II) { |
| 441 | const Instruction &OldInst = *II; |
| 442 | Instruction *NewInst = nullptr; |
| 443 | if (HostFuncIsStrictFP) { |
| 444 | Intrinsic::ID CIID = getConstrainedIntrinsicID(Instr: OldInst); |
| 445 | if (CIID != Intrinsic::not_intrinsic) { |
| 446 | // Instead of cloning the instruction, a call to constrained intrinsic |
| 447 | // should be created. |
| 448 | // Assume the first arguments of constrained intrinsics are the same as |
| 449 | // the operands of original instruction. |
| 450 | |
| 451 | // Determine overloaded types of the intrinsic. |
| 452 | SmallVector<Type *, 2> TParams; |
| 453 | SmallVector<Intrinsic::IITDescriptor, 8> Descriptor; |
| 454 | getIntrinsicInfoTableEntries(id: CIID, T&: Descriptor); |
| 455 | for (unsigned I = 0, E = Descriptor.size(); I != E; ++I) { |
| 456 | Intrinsic::IITDescriptor Operand = Descriptor[I]; |
| 457 | switch (Operand.Kind) { |
| 458 | case Intrinsic::IITDescriptor::Argument: |
| 459 | if (Operand.getArgumentKind() != |
| 460 | Intrinsic::IITDescriptor::AK_MatchType) { |
| 461 | if (I == 0) |
| 462 | TParams.push_back(Elt: OldInst.getType()); |
| 463 | else |
| 464 | TParams.push_back(Elt: OldInst.getOperand(i: I - 1)->getType()); |
| 465 | } |
| 466 | break; |
| 467 | case Intrinsic::IITDescriptor::SameVecWidthArgument: |
| 468 | ++I; |
| 469 | break; |
| 470 | default: |
| 471 | break; |
| 472 | } |
| 473 | } |
| 474 | |
| 475 | // Create intrinsic call. |
| 476 | LLVMContext &Ctx = NewFunc->getContext(); |
| 477 | Function *IFn = Intrinsic::getOrInsertDeclaration(M: NewFunc->getParent(), |
| 478 | id: CIID, Tys: TParams); |
| 479 | SmallVector<Value *, 4> Args; |
| 480 | unsigned NumOperands = OldInst.getNumOperands(); |
| 481 | if (isa<CallInst>(Val: OldInst)) |
| 482 | --NumOperands; |
| 483 | for (unsigned I = 0; I < NumOperands; ++I) { |
| 484 | Value *Op = OldInst.getOperand(i: I); |
| 485 | Args.push_back(Elt: Op); |
| 486 | } |
| 487 | if (const auto *CmpI = dyn_cast<FCmpInst>(Val: &OldInst)) { |
| 488 | FCmpInst::Predicate Pred = CmpI->getPredicate(); |
| 489 | StringRef PredName = FCmpInst::getPredicateName(P: Pred); |
| 490 | Args.push_back(Elt: MetadataAsValue::get(Context&: Ctx, MD: MDString::get(Context&: Ctx, Str: PredName))); |
| 491 | } |
| 492 | |
| 493 | // The last arguments of a constrained intrinsic are metadata that |
| 494 | // represent rounding mode (absents in some intrinsics) and exception |
| 495 | // behavior. The inlined function uses default settings. |
| 496 | if (Intrinsic::hasConstrainedFPRoundingModeOperand(QID: CIID)) |
| 497 | Args.push_back( |
| 498 | Elt: MetadataAsValue::get(Context&: Ctx, MD: MDString::get(Context&: Ctx, Str: "round.tonearest" ))); |
| 499 | Args.push_back( |
| 500 | Elt: MetadataAsValue::get(Context&: Ctx, MD: MDString::get(Context&: Ctx, Str: "fpexcept.ignore" ))); |
| 501 | |
| 502 | NewInst = CallInst::Create(Func: IFn, Args, NameStr: OldInst.getName() + ".strict" ); |
| 503 | } |
| 504 | } |
| 505 | if (!NewInst) |
| 506 | NewInst = II->clone(); |
| 507 | return NewInst; |
| 508 | } |
| 509 | |
| 510 | /// The specified block is found to be reachable, clone it and |
| 511 | /// anything that it can reach. |
| 512 | void PruningFunctionCloner::CloneBlock( |
| 513 | const BasicBlock *BB, BasicBlock::const_iterator StartingInst, |
| 514 | std::vector<const BasicBlock *> &ToClone) { |
| 515 | WeakTrackingVH &BBEntry = VMap[BB]; |
| 516 | |
| 517 | // Have we already cloned this block? |
| 518 | if (BBEntry) |
| 519 | return; |
| 520 | |
| 521 | // Nope, clone it now. |
| 522 | BasicBlock *NewBB; |
| 523 | Twine NewName(BB->hasName() ? Twine(BB->getName()) + NameSuffix : "" ); |
| 524 | BBEntry = NewBB = BasicBlock::Create(Context&: BB->getContext(), Name: NewName, Parent: NewFunc); |
| 525 | |
| 526 | // It is only legal to clone a function if a block address within that |
| 527 | // function is never referenced outside of the function. Given that, we |
| 528 | // want to map block addresses from the old function to block addresses in |
| 529 | // the clone. (This is different from the generic ValueMapper |
| 530 | // implementation, which generates an invalid blockaddress when |
| 531 | // cloning a function.) |
| 532 | // |
| 533 | // Note that we don't need to fix the mapping for unreachable blocks; |
| 534 | // the default mapping there is safe. |
| 535 | if (BB->hasAddressTaken()) { |
| 536 | Constant *OldBBAddr = BlockAddress::get(F: const_cast<Function *>(OldFunc), |
| 537 | BB: const_cast<BasicBlock *>(BB)); |
| 538 | VMap[OldBBAddr] = BlockAddress::get(F: NewFunc, BB: NewBB); |
| 539 | } |
| 540 | |
| 541 | bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; |
| 542 | bool hasMemProfMetadata = false; |
| 543 | |
| 544 | // Keep a cursor pointing at the last place we cloned debug-info records from. |
| 545 | BasicBlock::const_iterator DbgCursor = StartingInst; |
| 546 | auto CloneDbgRecordsToHere = |
| 547 | [&DbgCursor](Instruction *NewInst, BasicBlock::const_iterator II) { |
| 548 | // Clone debug-info records onto this instruction. Iterate through any |
| 549 | // source-instructions we've cloned and then subsequently optimised |
| 550 | // away, so that their debug-info doesn't go missing. |
| 551 | for (; DbgCursor != II; ++DbgCursor) |
| 552 | NewInst->cloneDebugInfoFrom(From: &*DbgCursor, FromHere: std::nullopt, InsertAtHead: false); |
| 553 | NewInst->cloneDebugInfoFrom(From: &*II); |
| 554 | DbgCursor = std::next(x: II); |
| 555 | }; |
| 556 | |
| 557 | // Loop over all instructions, and copy them over, DCE'ing as we go. This |
| 558 | // loop doesn't include the terminator. |
| 559 | for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE; |
| 560 | ++II) { |
| 561 | |
| 562 | // Don't clone fake_use as it may suppress many optimizations |
| 563 | // due to inlining, especially SROA. |
| 564 | if (auto *IntrInst = dyn_cast<IntrinsicInst>(Val&: II)) |
| 565 | if (IntrInst->getIntrinsicID() == Intrinsic::fake_use) |
| 566 | continue; |
| 567 | |
| 568 | Instruction *NewInst = cloneInstruction(II); |
| 569 | NewInst->insertInto(ParentBB: NewBB, It: NewBB->end()); |
| 570 | |
| 571 | if (HostFuncIsStrictFP) { |
| 572 | // All function calls in the inlined function must get 'strictfp' |
| 573 | // attribute to prevent undesirable optimizations. |
| 574 | if (auto *Call = dyn_cast<CallInst>(Val: NewInst)) |
| 575 | Call->addFnAttr(Kind: Attribute::StrictFP); |
| 576 | } |
| 577 | |
| 578 | // Eagerly remap operands to the newly cloned instruction, except for PHI |
| 579 | // nodes for which we defer processing until we update the CFG. Also defer |
| 580 | // debug intrinsic processing because they may contain use-before-defs. |
| 581 | if (!isa<PHINode>(Val: NewInst) && !isa<DbgVariableIntrinsic>(Val: NewInst)) { |
| 582 | RemapInstruction(I: NewInst, VM&: VMap, |
| 583 | Flags: ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); |
| 584 | |
| 585 | // Eagerly constant fold the newly cloned instruction. If successful, add |
| 586 | // a mapping to the new value. Non-constant operands may be incomplete at |
| 587 | // this stage, thus instruction simplification is performed after |
| 588 | // processing phi-nodes. |
| 589 | if (Value *V = ConstantFoldInstruction( |
| 590 | I: NewInst, DL: BB->getDataLayout())) { |
| 591 | if (isInstructionTriviallyDead(I: NewInst)) { |
| 592 | VMap[&*II] = V; |
| 593 | NewInst->eraseFromParent(); |
| 594 | continue; |
| 595 | } |
| 596 | } |
| 597 | } |
| 598 | |
| 599 | if (II->hasName()) |
| 600 | NewInst->setName(II->getName() + NameSuffix); |
| 601 | VMap[&*II] = NewInst; // Add instruction map to value. |
| 602 | if (isa<CallInst>(Val: II) && !II->isDebugOrPseudoInst()) { |
| 603 | hasCalls = true; |
| 604 | hasMemProfMetadata |= II->hasMetadata(KindID: LLVMContext::MD_memprof); |
| 605 | hasMemProfMetadata |= II->hasMetadata(KindID: LLVMContext::MD_callsite); |
| 606 | } |
| 607 | |
| 608 | CloneDbgRecordsToHere(NewInst, II); |
| 609 | |
| 610 | if (CodeInfo) { |
| 611 | CodeInfo->OrigVMap[&*II] = NewInst; |
| 612 | if (auto *CB = dyn_cast<CallBase>(Val: &*II)) |
| 613 | if (CB->hasOperandBundles()) |
| 614 | CodeInfo->OperandBundleCallSites.push_back(x: NewInst); |
| 615 | } |
| 616 | |
| 617 | if (const AllocaInst *AI = dyn_cast<AllocaInst>(Val&: II)) { |
| 618 | if (isa<ConstantInt>(Val: AI->getArraySize())) |
| 619 | hasStaticAllocas = true; |
| 620 | else |
| 621 | hasDynamicAllocas = true; |
| 622 | } |
| 623 | } |
| 624 | |
| 625 | // Finally, clone over the terminator. |
| 626 | const Instruction *OldTI = BB->getTerminator(); |
| 627 | bool TerminatorDone = false; |
| 628 | if (const BranchInst *BI = dyn_cast<BranchInst>(Val: OldTI)) { |
| 629 | if (BI->isConditional()) { |
| 630 | // If the condition was a known constant in the callee... |
| 631 | ConstantInt *Cond = dyn_cast<ConstantInt>(Val: BI->getCondition()); |
| 632 | // Or is a known constant in the caller... |
| 633 | if (!Cond) { |
| 634 | Value *V = VMap.lookup(Val: BI->getCondition()); |
| 635 | Cond = dyn_cast_or_null<ConstantInt>(Val: V); |
| 636 | } |
| 637 | |
| 638 | // Constant fold to uncond branch! |
| 639 | if (Cond) { |
| 640 | BasicBlock *Dest = BI->getSuccessor(i: !Cond->getZExtValue()); |
| 641 | auto *NewBI = BranchInst::Create(IfTrue: Dest, InsertBefore: NewBB); |
| 642 | NewBI->setDebugLoc(BI->getDebugLoc()); |
| 643 | VMap[OldTI] = NewBI; |
| 644 | ToClone.push_back(x: Dest); |
| 645 | TerminatorDone = true; |
| 646 | } |
| 647 | } |
| 648 | } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(Val: OldTI)) { |
| 649 | // If switching on a value known constant in the caller. |
| 650 | ConstantInt *Cond = dyn_cast<ConstantInt>(Val: SI->getCondition()); |
| 651 | if (!Cond) { // Or known constant after constant prop in the callee... |
| 652 | Value *V = VMap.lookup(Val: SI->getCondition()); |
| 653 | Cond = dyn_cast_or_null<ConstantInt>(Val: V); |
| 654 | } |
| 655 | if (Cond) { // Constant fold to uncond branch! |
| 656 | SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(C: Cond); |
| 657 | BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor()); |
| 658 | auto *NewBI = BranchInst::Create(IfTrue: Dest, InsertBefore: NewBB); |
| 659 | NewBI->setDebugLoc(SI->getDebugLoc()); |
| 660 | VMap[OldTI] = NewBI; |
| 661 | ToClone.push_back(x: Dest); |
| 662 | TerminatorDone = true; |
| 663 | } |
| 664 | } |
| 665 | |
| 666 | if (!TerminatorDone) { |
| 667 | Instruction *NewInst = OldTI->clone(); |
| 668 | if (OldTI->hasName()) |
| 669 | NewInst->setName(OldTI->getName() + NameSuffix); |
| 670 | NewInst->insertInto(ParentBB: NewBB, It: NewBB->end()); |
| 671 | |
| 672 | CloneDbgRecordsToHere(NewInst, OldTI->getIterator()); |
| 673 | |
| 674 | VMap[OldTI] = NewInst; // Add instruction map to value. |
| 675 | |
| 676 | if (CodeInfo) { |
| 677 | CodeInfo->OrigVMap[OldTI] = NewInst; |
| 678 | if (auto *CB = dyn_cast<CallBase>(Val: OldTI)) |
| 679 | if (CB->hasOperandBundles()) |
| 680 | CodeInfo->OperandBundleCallSites.push_back(x: NewInst); |
| 681 | } |
| 682 | |
| 683 | // Recursively clone any reachable successor blocks. |
| 684 | append_range(C&: ToClone, R: successors(I: BB->getTerminator())); |
| 685 | } else { |
| 686 | // If we didn't create a new terminator, clone DbgVariableRecords from the |
| 687 | // old terminator onto the new terminator. |
| 688 | Instruction *NewInst = NewBB->getTerminator(); |
| 689 | assert(NewInst); |
| 690 | |
| 691 | CloneDbgRecordsToHere(NewInst, OldTI->getIterator()); |
| 692 | } |
| 693 | |
| 694 | if (CodeInfo) { |
| 695 | CodeInfo->ContainsCalls |= hasCalls; |
| 696 | CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata; |
| 697 | CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; |
| 698 | CodeInfo->ContainsDynamicAllocas |= |
| 699 | hasStaticAllocas && BB != &BB->getParent()->front(); |
| 700 | } |
| 701 | } |
| 702 | |
| 703 | /// This works like CloneAndPruneFunctionInto, except that it does not clone the |
| 704 | /// entire function. Instead it starts at an instruction provided by the caller |
| 705 | /// and copies (and prunes) only the code reachable from that instruction. |
| 706 | void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, |
| 707 | const Instruction *StartingInst, |
| 708 | ValueToValueMapTy &VMap, |
| 709 | bool ModuleLevelChanges, |
| 710 | SmallVectorImpl<ReturnInst *> &Returns, |
| 711 | const char *NameSuffix, |
| 712 | ClonedCodeInfo *CodeInfo) { |
| 713 | assert(NameSuffix && "NameSuffix cannot be null!" ); |
| 714 | |
| 715 | ValueMapTypeRemapper *TypeMapper = nullptr; |
| 716 | ValueMaterializer *Materializer = nullptr; |
| 717 | |
| 718 | #ifndef NDEBUG |
| 719 | // If the cloning starts at the beginning of the function, verify that |
| 720 | // the function arguments are mapped. |
| 721 | if (!StartingInst) |
| 722 | for (const Argument &II : OldFunc->args()) |
| 723 | assert(VMap.count(&II) && "No mapping from source argument specified!" ); |
| 724 | #endif |
| 725 | |
| 726 | PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, |
| 727 | NameSuffix, CodeInfo); |
| 728 | const BasicBlock *StartingBB; |
| 729 | if (StartingInst) |
| 730 | StartingBB = StartingInst->getParent(); |
| 731 | else { |
| 732 | StartingBB = &OldFunc->getEntryBlock(); |
| 733 | StartingInst = &StartingBB->front(); |
| 734 | } |
| 735 | |
| 736 | // Collect debug intrinsics for remapping later. |
| 737 | SmallVector<const DbgVariableIntrinsic *, 8> DbgIntrinsics; |
| 738 | for (const auto &BB : *OldFunc) { |
| 739 | for (const auto &I : BB) { |
| 740 | if (const auto *DVI = dyn_cast<DbgVariableIntrinsic>(Val: &I)) |
| 741 | DbgIntrinsics.push_back(Elt: DVI); |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | // Clone the entry block, and anything recursively reachable from it. |
| 746 | std::vector<const BasicBlock *> CloneWorklist; |
| 747 | PFC.CloneBlock(BB: StartingBB, StartingInst: StartingInst->getIterator(), ToClone&: CloneWorklist); |
| 748 | while (!CloneWorklist.empty()) { |
| 749 | const BasicBlock *BB = CloneWorklist.back(); |
| 750 | CloneWorklist.pop_back(); |
| 751 | PFC.CloneBlock(BB, StartingInst: BB->begin(), ToClone&: CloneWorklist); |
| 752 | } |
| 753 | |
| 754 | // Loop over all of the basic blocks in the old function. If the block was |
| 755 | // reachable, we have cloned it and the old block is now in the value map: |
| 756 | // insert it into the new function in the right order. If not, ignore it. |
| 757 | // |
| 758 | // Defer PHI resolution until rest of function is resolved. |
| 759 | SmallVector<const PHINode *, 16> PHIToResolve; |
| 760 | for (const BasicBlock &BI : *OldFunc) { |
| 761 | Value *V = VMap.lookup(Val: &BI); |
| 762 | BasicBlock *NewBB = cast_or_null<BasicBlock>(Val: V); |
| 763 | if (!NewBB) |
| 764 | continue; // Dead block. |
| 765 | |
| 766 | // Move the new block to preserve the order in the original function. |
| 767 | NewBB->moveBefore(MovePos: NewFunc->end()); |
| 768 | |
| 769 | // Handle PHI nodes specially, as we have to remove references to dead |
| 770 | // blocks. |
| 771 | for (const PHINode &PN : BI.phis()) { |
| 772 | // PHI nodes may have been remapped to non-PHI nodes by the caller or |
| 773 | // during the cloning process. |
| 774 | if (isa<PHINode>(Val: VMap[&PN])) |
| 775 | PHIToResolve.push_back(Elt: &PN); |
| 776 | else |
| 777 | break; |
| 778 | } |
| 779 | |
| 780 | // Finally, remap the terminator instructions, as those can't be remapped |
| 781 | // until all BBs are mapped. |
| 782 | RemapInstruction(I: NewBB->getTerminator(), VM&: VMap, |
| 783 | Flags: ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, |
| 784 | TypeMapper, Materializer); |
| 785 | } |
| 786 | |
| 787 | // Defer PHI resolution until rest of function is resolved, PHI resolution |
| 788 | // requires the CFG to be up-to-date. |
| 789 | for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) { |
| 790 | const PHINode *OPN = PHIToResolve[phino]; |
| 791 | unsigned NumPreds = OPN->getNumIncomingValues(); |
| 792 | const BasicBlock *OldBB = OPN->getParent(); |
| 793 | BasicBlock *NewBB = cast<BasicBlock>(Val&: VMap[OldBB]); |
| 794 | |
| 795 | // Map operands for blocks that are live and remove operands for blocks |
| 796 | // that are dead. |
| 797 | for (; phino != PHIToResolve.size() && |
| 798 | PHIToResolve[phino]->getParent() == OldBB; |
| 799 | ++phino) { |
| 800 | OPN = PHIToResolve[phino]; |
| 801 | PHINode *PN = cast<PHINode>(Val&: VMap[OPN]); |
| 802 | for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { |
| 803 | Value *V = VMap.lookup(Val: PN->getIncomingBlock(i: pred)); |
| 804 | if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(Val: V)) { |
| 805 | Value *InVal = |
| 806 | MapValue(V: PN->getIncomingValue(i: pred), VM&: VMap, |
| 807 | Flags: ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); |
| 808 | assert(InVal && "Unknown input value?" ); |
| 809 | PN->setIncomingValue(i: pred, V: InVal); |
| 810 | PN->setIncomingBlock(i: pred, BB: MappedBlock); |
| 811 | } else { |
| 812 | PN->removeIncomingValue(Idx: pred, DeletePHIIfEmpty: false); |
| 813 | --pred; // Revisit the next entry. |
| 814 | --e; |
| 815 | } |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | // The loop above has removed PHI entries for those blocks that are dead |
| 820 | // and has updated others. However, if a block is live (i.e. copied over) |
| 821 | // but its terminator has been changed to not go to this block, then our |
| 822 | // phi nodes will have invalid entries. Update the PHI nodes in this |
| 823 | // case. |
| 824 | PHINode *PN = cast<PHINode>(Val: NewBB->begin()); |
| 825 | NumPreds = pred_size(BB: NewBB); |
| 826 | if (NumPreds != PN->getNumIncomingValues()) { |
| 827 | assert(NumPreds < PN->getNumIncomingValues()); |
| 828 | // Count how many times each predecessor comes to this block. |
| 829 | std::map<BasicBlock *, unsigned> PredCount; |
| 830 | for (BasicBlock *Pred : predecessors(BB: NewBB)) |
| 831 | --PredCount[Pred]; |
| 832 | |
| 833 | // Figure out how many entries to remove from each PHI. |
| 834 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| 835 | ++PredCount[PN->getIncomingBlock(i)]; |
| 836 | |
| 837 | // At this point, the excess predecessor entries are positive in the |
| 838 | // map. Loop over all of the PHIs and remove excess predecessor |
| 839 | // entries. |
| 840 | BasicBlock::iterator I = NewBB->begin(); |
| 841 | for (; (PN = dyn_cast<PHINode>(Val&: I)); ++I) { |
| 842 | for (const auto &PCI : PredCount) { |
| 843 | BasicBlock *Pred = PCI.first; |
| 844 | for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) |
| 845 | PN->removeIncomingValue(BB: Pred, DeletePHIIfEmpty: false); |
| 846 | } |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | // If the loops above have made these phi nodes have 0 or 1 operand, |
| 851 | // replace them with poison or the input value. We must do this for |
| 852 | // correctness, because 0-operand phis are not valid. |
| 853 | PN = cast<PHINode>(Val: NewBB->begin()); |
| 854 | if (PN->getNumIncomingValues() == 0) { |
| 855 | BasicBlock::iterator I = NewBB->begin(); |
| 856 | BasicBlock::const_iterator OldI = OldBB->begin(); |
| 857 | while ((PN = dyn_cast<PHINode>(Val: I++))) { |
| 858 | Value *NV = PoisonValue::get(T: PN->getType()); |
| 859 | PN->replaceAllUsesWith(V: NV); |
| 860 | assert(VMap[&*OldI] == PN && "VMap mismatch" ); |
| 861 | VMap[&*OldI] = NV; |
| 862 | PN->eraseFromParent(); |
| 863 | ++OldI; |
| 864 | } |
| 865 | } |
| 866 | } |
| 867 | |
| 868 | // Drop all incompatible return attributes that cannot be applied to NewFunc |
| 869 | // during cloning, so as to allow instruction simplification to reason on the |
| 870 | // old state of the function. The original attributes are restored later. |
| 871 | AttributeList Attrs = NewFunc->getAttributes(); |
| 872 | AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible( |
| 873 | Ty: OldFunc->getReturnType(), AS: Attrs.getRetAttrs()); |
| 874 | NewFunc->removeRetAttrs(Attrs: IncompatibleAttrs); |
| 875 | |
| 876 | // As phi-nodes have been now remapped, allow incremental simplification of |
| 877 | // newly-cloned instructions. |
| 878 | const DataLayout &DL = NewFunc->getDataLayout(); |
| 879 | for (const auto &BB : *OldFunc) { |
| 880 | for (const auto &I : BB) { |
| 881 | auto *NewI = dyn_cast_or_null<Instruction>(Val: VMap.lookup(Val: &I)); |
| 882 | if (!NewI) |
| 883 | continue; |
| 884 | |
| 885 | if (Value *V = simplifyInstruction(I: NewI, Q: DL)) { |
| 886 | NewI->replaceAllUsesWith(V); |
| 887 | |
| 888 | if (isInstructionTriviallyDead(I: NewI)) { |
| 889 | NewI->eraseFromParent(); |
| 890 | } else { |
| 891 | // Did not erase it? Restore the new instruction into VMap previously |
| 892 | // dropped by `ValueIsRAUWd`. |
| 893 | VMap[&I] = NewI; |
| 894 | } |
| 895 | } |
| 896 | } |
| 897 | } |
| 898 | |
| 899 | // Restore attributes. |
| 900 | NewFunc->setAttributes(Attrs); |
| 901 | |
| 902 | // Remap debug intrinsic operands now that all values have been mapped. |
| 903 | // Doing this now (late) preserves use-before-defs in debug intrinsics. If |
| 904 | // we didn't do this, ValueAsMetadata(use-before-def) operands would be |
| 905 | // replaced by empty metadata. This would signal later cleanup passes to |
| 906 | // remove the debug intrinsics, potentially causing incorrect locations. |
| 907 | for (const auto *DVI : DbgIntrinsics) { |
| 908 | if (DbgVariableIntrinsic *NewDVI = |
| 909 | cast_or_null<DbgVariableIntrinsic>(Val: VMap.lookup(Val: DVI))) |
| 910 | RemapInstruction(I: NewDVI, VM&: VMap, |
| 911 | Flags: ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, |
| 912 | TypeMapper, Materializer); |
| 913 | } |
| 914 | |
| 915 | // Do the same for DbgVariableRecords, touching all the instructions in the |
| 916 | // cloned range of blocks. |
| 917 | Function::iterator Begin = cast<BasicBlock>(Val&: VMap[StartingBB])->getIterator(); |
| 918 | for (BasicBlock &BB : make_range(x: Begin, y: NewFunc->end())) { |
| 919 | for (Instruction &I : BB) { |
| 920 | RemapDbgRecordRange(M: I.getModule(), Range: I.getDbgRecordRange(), VM&: VMap, |
| 921 | Flags: ModuleLevelChanges ? RF_None |
| 922 | : RF_NoModuleLevelChanges, |
| 923 | TypeMapper, Materializer); |
| 924 | } |
| 925 | } |
| 926 | |
| 927 | // Simplify conditional branches and switches with a constant operand. We try |
| 928 | // to prune these out when cloning, but if the simplification required |
| 929 | // looking through PHI nodes, those are only available after forming the full |
| 930 | // basic block. That may leave some here, and we still want to prune the dead |
| 931 | // code as early as possible. |
| 932 | for (BasicBlock &BB : make_range(x: Begin, y: NewFunc->end())) |
| 933 | ConstantFoldTerminator(BB: &BB); |
| 934 | |
| 935 | // Some blocks may have become unreachable as a result. Find and delete them. |
| 936 | { |
| 937 | SmallPtrSet<BasicBlock *, 16> ReachableBlocks; |
| 938 | SmallVector<BasicBlock *, 16> Worklist; |
| 939 | Worklist.push_back(Elt: &*Begin); |
| 940 | while (!Worklist.empty()) { |
| 941 | BasicBlock *BB = Worklist.pop_back_val(); |
| 942 | if (ReachableBlocks.insert(Ptr: BB).second) |
| 943 | append_range(C&: Worklist, R: successors(BB)); |
| 944 | } |
| 945 | |
| 946 | SmallVector<BasicBlock *, 16> UnreachableBlocks; |
| 947 | for (BasicBlock &BB : make_range(x: Begin, y: NewFunc->end())) |
| 948 | if (!ReachableBlocks.contains(Ptr: &BB)) |
| 949 | UnreachableBlocks.push_back(Elt: &BB); |
| 950 | DeleteDeadBlocks(BBs: UnreachableBlocks); |
| 951 | } |
| 952 | |
| 953 | // Now that the inlined function body has been fully constructed, go through |
| 954 | // and zap unconditional fall-through branches. This happens all the time when |
| 955 | // specializing code: code specialization turns conditional branches into |
| 956 | // uncond branches, and this code folds them. |
| 957 | Function::iterator I = Begin; |
| 958 | while (I != NewFunc->end()) { |
| 959 | BranchInst *BI = dyn_cast<BranchInst>(Val: I->getTerminator()); |
| 960 | if (!BI || BI->isConditional()) { |
| 961 | ++I; |
| 962 | continue; |
| 963 | } |
| 964 | |
| 965 | BasicBlock *Dest = BI->getSuccessor(i: 0); |
| 966 | if (!Dest->getSinglePredecessor() || Dest->hasAddressTaken()) { |
| 967 | ++I; |
| 968 | continue; |
| 969 | } |
| 970 | |
| 971 | // We shouldn't be able to get single-entry PHI nodes here, as instsimplify |
| 972 | // above should have zapped all of them.. |
| 973 | assert(!isa<PHINode>(Dest->begin())); |
| 974 | |
| 975 | // We know all single-entry PHI nodes in the inlined function have been |
| 976 | // removed, so we just need to splice the blocks. |
| 977 | BI->eraseFromParent(); |
| 978 | |
| 979 | // Make all PHI nodes that referred to Dest now refer to I as their source. |
| 980 | Dest->replaceAllUsesWith(V: &*I); |
| 981 | |
| 982 | // Move all the instructions in the succ to the pred. |
| 983 | I->splice(ToIt: I->end(), FromBB: Dest); |
| 984 | |
| 985 | // Remove the dest block. |
| 986 | Dest->eraseFromParent(); |
| 987 | |
| 988 | // Do not increment I, iteratively merge all things this block branches to. |
| 989 | } |
| 990 | |
| 991 | // Make a final pass over the basic blocks from the old function to gather |
| 992 | // any return instructions which survived folding. We have to do this here |
| 993 | // because we can iteratively remove and merge returns above. |
| 994 | for (Function::iterator I = cast<BasicBlock>(Val&: VMap[StartingBB])->getIterator(), |
| 995 | E = NewFunc->end(); |
| 996 | I != E; ++I) |
| 997 | if (ReturnInst *RI = dyn_cast<ReturnInst>(Val: I->getTerminator())) |
| 998 | Returns.push_back(Elt: RI); |
| 999 | } |
| 1000 | |
| 1001 | /// This works exactly like CloneFunctionInto, |
| 1002 | /// except that it does some simple constant prop and DCE on the fly. The |
| 1003 | /// effect of this is to copy significantly less code in cases where (for |
| 1004 | /// example) a function call with constant arguments is inlined, and those |
| 1005 | /// constant arguments cause a significant amount of code in the callee to be |
| 1006 | /// dead. Since this doesn't produce an exact copy of the input, it can't be |
| 1007 | /// used for things like CloneFunction or CloneModule. |
| 1008 | void llvm::CloneAndPruneFunctionInto( |
| 1009 | Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, |
| 1010 | bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns, |
| 1011 | const char *NameSuffix, ClonedCodeInfo *CodeInfo) { |
| 1012 | CloneAndPruneIntoFromInst(NewFunc, OldFunc, StartingInst: &OldFunc->front().front(), VMap, |
| 1013 | ModuleLevelChanges, Returns, NameSuffix, CodeInfo); |
| 1014 | } |
| 1015 | |
| 1016 | /// Remaps instructions in \p Blocks using the mapping in \p VMap. |
| 1017 | void llvm::remapInstructionsInBlocks(ArrayRef<BasicBlock *> Blocks, |
| 1018 | ValueToValueMapTy &VMap) { |
| 1019 | // Rewrite the code to refer to itself. |
| 1020 | for (auto *BB : Blocks) { |
| 1021 | for (auto &Inst : *BB) { |
| 1022 | RemapDbgRecordRange(M: Inst.getModule(), Range: Inst.getDbgRecordRange(), VM&: VMap, |
| 1023 | Flags: RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
| 1024 | RemapInstruction(I: &Inst, VM&: VMap, |
| 1025 | Flags: RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
| 1026 | } |
| 1027 | } |
| 1028 | } |
| 1029 | |
| 1030 | /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p |
| 1031 | /// Blocks. |
| 1032 | /// |
| 1033 | /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block |
| 1034 | /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. |
| 1035 | Loop *llvm::(BasicBlock *Before, BasicBlock *LoopDomBB, |
| 1036 | Loop *OrigLoop, ValueToValueMapTy &VMap, |
| 1037 | const Twine &NameSuffix, LoopInfo *LI, |
| 1038 | DominatorTree *DT, |
| 1039 | SmallVectorImpl<BasicBlock *> &Blocks) { |
| 1040 | Function *F = OrigLoop->getHeader()->getParent(); |
| 1041 | Loop *ParentLoop = OrigLoop->getParentLoop(); |
| 1042 | DenseMap<Loop *, Loop *> LMap; |
| 1043 | |
| 1044 | Loop *NewLoop = LI->AllocateLoop(); |
| 1045 | LMap[OrigLoop] = NewLoop; |
| 1046 | if (ParentLoop) |
| 1047 | ParentLoop->addChildLoop(NewChild: NewLoop); |
| 1048 | else |
| 1049 | LI->addTopLevelLoop(New: NewLoop); |
| 1050 | |
| 1051 | BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); |
| 1052 | assert(OrigPH && "No preheader" ); |
| 1053 | BasicBlock *NewPH = CloneBasicBlock(BB: OrigPH, VMap, NameSuffix, F); |
| 1054 | // To rename the loop PHIs. |
| 1055 | VMap[OrigPH] = NewPH; |
| 1056 | Blocks.push_back(Elt: NewPH); |
| 1057 | |
| 1058 | // Update LoopInfo. |
| 1059 | if (ParentLoop) |
| 1060 | ParentLoop->addBasicBlockToLoop(NewBB: NewPH, LI&: *LI); |
| 1061 | |
| 1062 | // Update DominatorTree. |
| 1063 | DT->addNewBlock(BB: NewPH, DomBB: LoopDomBB); |
| 1064 | |
| 1065 | for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) { |
| 1066 | Loop *&NewLoop = LMap[CurLoop]; |
| 1067 | if (!NewLoop) { |
| 1068 | NewLoop = LI->AllocateLoop(); |
| 1069 | |
| 1070 | // Establish the parent/child relationship. |
| 1071 | Loop *OrigParent = CurLoop->getParentLoop(); |
| 1072 | assert(OrigParent && "Could not find the original parent loop" ); |
| 1073 | Loop *NewParentLoop = LMap[OrigParent]; |
| 1074 | assert(NewParentLoop && "Could not find the new parent loop" ); |
| 1075 | |
| 1076 | NewParentLoop->addChildLoop(NewChild: NewLoop); |
| 1077 | } |
| 1078 | } |
| 1079 | |
| 1080 | for (BasicBlock *BB : OrigLoop->getBlocks()) { |
| 1081 | Loop *CurLoop = LI->getLoopFor(BB); |
| 1082 | Loop *&NewLoop = LMap[CurLoop]; |
| 1083 | assert(NewLoop && "Expecting new loop to be allocated" ); |
| 1084 | |
| 1085 | BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); |
| 1086 | VMap[BB] = NewBB; |
| 1087 | |
| 1088 | // Update LoopInfo. |
| 1089 | NewLoop->addBasicBlockToLoop(NewBB, LI&: *LI); |
| 1090 | |
| 1091 | // Add DominatorTree node. After seeing all blocks, update to correct |
| 1092 | // IDom. |
| 1093 | DT->addNewBlock(BB: NewBB, DomBB: NewPH); |
| 1094 | |
| 1095 | Blocks.push_back(Elt: NewBB); |
| 1096 | } |
| 1097 | |
| 1098 | for (BasicBlock *BB : OrigLoop->getBlocks()) { |
| 1099 | // Update loop headers. |
| 1100 | Loop *CurLoop = LI->getLoopFor(BB); |
| 1101 | if (BB == CurLoop->getHeader()) |
| 1102 | LMap[CurLoop]->moveToHeader(BB: cast<BasicBlock>(Val&: VMap[BB])); |
| 1103 | |
| 1104 | // Update DominatorTree. |
| 1105 | BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); |
| 1106 | DT->changeImmediateDominator(BB: cast<BasicBlock>(Val&: VMap[BB]), |
| 1107 | NewBB: cast<BasicBlock>(Val&: VMap[IDomBB])); |
| 1108 | } |
| 1109 | |
| 1110 | // Move them physically from the end of the block list. |
| 1111 | F->splice(ToIt: Before->getIterator(), FromF: F, FromIt: NewPH->getIterator()); |
| 1112 | F->splice(ToIt: Before->getIterator(), FromF: F, FromBeginIt: NewLoop->getHeader()->getIterator(), |
| 1113 | FromEndIt: F->end()); |
| 1114 | |
| 1115 | return NewLoop; |
| 1116 | } |
| 1117 | |
| 1118 | /// Duplicate non-Phi instructions from the beginning of block up to |
| 1119 | /// StopAt instruction into a split block between BB and its predecessor. |
| 1120 | BasicBlock *llvm::DuplicateInstructionsInSplitBetween( |
| 1121 | BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, |
| 1122 | ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) { |
| 1123 | |
| 1124 | assert(count(successors(PredBB), BB) == 1 && |
| 1125 | "There must be a single edge between PredBB and BB!" ); |
| 1126 | // We are going to have to map operands from the original BB block to the new |
| 1127 | // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to |
| 1128 | // account for entry from PredBB. |
| 1129 | BasicBlock::iterator BI = BB->begin(); |
| 1130 | for (; PHINode *PN = dyn_cast<PHINode>(Val&: BI); ++BI) |
| 1131 | ValueMapping[PN] = PN->getIncomingValueForBlock(BB: PredBB); |
| 1132 | |
| 1133 | BasicBlock *NewBB = SplitEdge(From: PredBB, To: BB); |
| 1134 | NewBB->setName(PredBB->getName() + ".split" ); |
| 1135 | Instruction *NewTerm = NewBB->getTerminator(); |
| 1136 | |
| 1137 | // FIXME: SplitEdge does not yet take a DTU, so we include the split edge |
| 1138 | // in the update set here. |
| 1139 | DTU.applyUpdates(Updates: {{DominatorTree::Delete, PredBB, BB}, |
| 1140 | {DominatorTree::Insert, PredBB, NewBB}, |
| 1141 | {DominatorTree::Insert, NewBB, BB}}); |
| 1142 | |
| 1143 | // Clone the non-phi instructions of BB into NewBB, keeping track of the |
| 1144 | // mapping and using it to remap operands in the cloned instructions. |
| 1145 | // Stop once we see the terminator too. This covers the case where BB's |
| 1146 | // terminator gets replaced and StopAt == BB's terminator. |
| 1147 | for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) { |
| 1148 | Instruction *New = BI->clone(); |
| 1149 | New->setName(BI->getName()); |
| 1150 | New->insertBefore(InsertPos: NewTerm->getIterator()); |
| 1151 | New->cloneDebugInfoFrom(From: &*BI); |
| 1152 | ValueMapping[&*BI] = New; |
| 1153 | |
| 1154 | // Remap operands to patch up intra-block references. |
| 1155 | for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) |
| 1156 | if (Instruction *Inst = dyn_cast<Instruction>(Val: New->getOperand(i))) { |
| 1157 | auto I = ValueMapping.find(Val: Inst); |
| 1158 | if (I != ValueMapping.end()) |
| 1159 | New->setOperand(i, Val: I->second); |
| 1160 | } |
| 1161 | |
| 1162 | // Remap debug variable operands. |
| 1163 | remapDebugVariable(Mapping&: ValueMapping, Inst: New); |
| 1164 | } |
| 1165 | |
| 1166 | return NewBB; |
| 1167 | } |
| 1168 | |
| 1169 | void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, |
| 1170 | DenseMap<MDNode *, MDNode *> &ClonedScopes, |
| 1171 | StringRef Ext, LLVMContext &Context) { |
| 1172 | MDBuilder MDB(Context); |
| 1173 | |
| 1174 | for (auto *ScopeList : NoAliasDeclScopes) { |
| 1175 | for (const auto &MDOperand : ScopeList->operands()) { |
| 1176 | if (MDNode *MD = dyn_cast<MDNode>(Val: MDOperand)) { |
| 1177 | AliasScopeNode SNANode(MD); |
| 1178 | |
| 1179 | std::string Name; |
| 1180 | auto ScopeName = SNANode.getName(); |
| 1181 | if (!ScopeName.empty()) |
| 1182 | Name = (Twine(ScopeName) + ":" + Ext).str(); |
| 1183 | else |
| 1184 | Name = std::string(Ext); |
| 1185 | |
| 1186 | MDNode *NewScope = MDB.createAnonymousAliasScope( |
| 1187 | Domain: const_cast<MDNode *>(SNANode.getDomain()), Name); |
| 1188 | ClonedScopes.insert(KV: std::make_pair(x&: MD, y&: NewScope)); |
| 1189 | } |
| 1190 | } |
| 1191 | } |
| 1192 | } |
| 1193 | |
| 1194 | void llvm::adaptNoAliasScopes(Instruction *I, |
| 1195 | const DenseMap<MDNode *, MDNode *> &ClonedScopes, |
| 1196 | LLVMContext &Context) { |
| 1197 | auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * { |
| 1198 | bool NeedsReplacement = false; |
| 1199 | SmallVector<Metadata *, 8> NewScopeList; |
| 1200 | for (const auto &MDOp : ScopeList->operands()) { |
| 1201 | if (MDNode *MD = dyn_cast<MDNode>(Val: MDOp)) { |
| 1202 | if (auto *NewMD = ClonedScopes.lookup(Val: MD)) { |
| 1203 | NewScopeList.push_back(Elt: NewMD); |
| 1204 | NeedsReplacement = true; |
| 1205 | continue; |
| 1206 | } |
| 1207 | NewScopeList.push_back(Elt: MD); |
| 1208 | } |
| 1209 | } |
| 1210 | if (NeedsReplacement) |
| 1211 | return MDNode::get(Context, MDs: NewScopeList); |
| 1212 | return nullptr; |
| 1213 | }; |
| 1214 | |
| 1215 | if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(Val: I)) |
| 1216 | if (auto *NewScopeList = CloneScopeList(Decl->getScopeList())) |
| 1217 | Decl->setScopeList(NewScopeList); |
| 1218 | |
| 1219 | auto replaceWhenNeeded = [&](unsigned MD_ID) { |
| 1220 | if (const MDNode *CSNoAlias = I->getMetadata(KindID: MD_ID)) |
| 1221 | if (auto *NewScopeList = CloneScopeList(CSNoAlias)) |
| 1222 | I->setMetadata(KindID: MD_ID, Node: NewScopeList); |
| 1223 | }; |
| 1224 | replaceWhenNeeded(LLVMContext::MD_noalias); |
| 1225 | replaceWhenNeeded(LLVMContext::MD_alias_scope); |
| 1226 | } |
| 1227 | |
| 1228 | void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, |
| 1229 | ArrayRef<BasicBlock *> NewBlocks, |
| 1230 | LLVMContext &Context, StringRef Ext) { |
| 1231 | if (NoAliasDeclScopes.empty()) |
| 1232 | return; |
| 1233 | |
| 1234 | DenseMap<MDNode *, MDNode *> ClonedScopes; |
| 1235 | LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning " |
| 1236 | << NoAliasDeclScopes.size() << " node(s)\n" ); |
| 1237 | |
| 1238 | cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context); |
| 1239 | // Identify instructions using metadata that needs adaptation |
| 1240 | for (BasicBlock *NewBlock : NewBlocks) |
| 1241 | for (Instruction &I : *NewBlock) |
| 1242 | adaptNoAliasScopes(I: &I, ClonedScopes, Context); |
| 1243 | } |
| 1244 | |
| 1245 | void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, |
| 1246 | Instruction *IStart, Instruction *IEnd, |
| 1247 | LLVMContext &Context, StringRef Ext) { |
| 1248 | if (NoAliasDeclScopes.empty()) |
| 1249 | return; |
| 1250 | |
| 1251 | DenseMap<MDNode *, MDNode *> ClonedScopes; |
| 1252 | LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning " |
| 1253 | << NoAliasDeclScopes.size() << " node(s)\n" ); |
| 1254 | |
| 1255 | cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context); |
| 1256 | // Identify instructions using metadata that needs adaptation |
| 1257 | assert(IStart->getParent() == IEnd->getParent() && "different basic block ?" ); |
| 1258 | auto ItStart = IStart->getIterator(); |
| 1259 | auto ItEnd = IEnd->getIterator(); |
| 1260 | ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range |
| 1261 | for (auto &I : llvm::make_range(x: ItStart, y: ItEnd)) |
| 1262 | adaptNoAliasScopes(I: &I, ClonedScopes, Context); |
| 1263 | } |
| 1264 | |
| 1265 | void llvm::identifyNoAliasScopesToClone( |
| 1266 | ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) { |
| 1267 | for (BasicBlock *BB : BBs) |
| 1268 | for (Instruction &I : *BB) |
| 1269 | if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(Val: &I)) |
| 1270 | NoAliasDeclScopes.push_back(Elt: Decl->getScopeList()); |
| 1271 | } |
| 1272 | |
| 1273 | void llvm::identifyNoAliasScopesToClone( |
| 1274 | BasicBlock::iterator Start, BasicBlock::iterator End, |
| 1275 | SmallVectorImpl<MDNode *> &NoAliasDeclScopes) { |
| 1276 | for (Instruction &I : make_range(x: Start, y: End)) |
| 1277 | if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(Val: &I)) |
| 1278 | NoAliasDeclScopes.push_back(Elt: Decl->getScopeList()); |
| 1279 | } |
| 1280 | |