| 1 | //===- CodeLayout.cpp - Implementation of code layout algorithms ----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // The file implements "cache-aware" layout algorithms of basic blocks and |
| 10 | // functions in a binary. |
| 11 | // |
| 12 | // The algorithm tries to find a layout of nodes (basic blocks) of a given CFG |
| 13 | // optimizing jump locality and thus processor I-cache utilization. This is |
| 14 | // achieved via increasing the number of fall-through jumps and co-locating |
| 15 | // frequently executed nodes together. The name follows the underlying |
| 16 | // optimization problem, Extended-TSP, which is a generalization of classical |
| 17 | // (maximum) Traveling Salesmen Problem. |
| 18 | // |
| 19 | // The algorithm is a greedy heuristic that works with chains (ordered lists) |
| 20 | // of basic blocks. Initially all chains are isolated basic blocks. On every |
| 21 | // iteration, we pick a pair of chains whose merging yields the biggest increase |
| 22 | // in the ExtTSP score, which models how i-cache "friendly" a specific chain is. |
| 23 | // A pair of chains giving the maximum gain is merged into a new chain. The |
| 24 | // procedure stops when there is only one chain left, or when merging does not |
| 25 | // increase ExtTSP. In the latter case, the remaining chains are sorted by |
| 26 | // density in the decreasing order. |
| 27 | // |
| 28 | // An important aspect is the way two chains are merged. Unlike earlier |
| 29 | // algorithms (e.g., based on the approach of Pettis-Hansen), two |
| 30 | // chains, X and Y, are first split into three, X1, X2, and Y. Then we |
| 31 | // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y, |
| 32 | // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score. |
| 33 | // This improves the quality of the final result (the search space is larger) |
| 34 | // while keeping the implementation sufficiently fast. |
| 35 | // |
| 36 | // Reference: |
| 37 | // * A. Newell and S. Pupyrev, Improved Basic Block Reordering, |
| 38 | // IEEE Transactions on Computers, 2020 |
| 39 | // https://arxiv.org/abs/1809.04676 |
| 40 | // |
| 41 | //===----------------------------------------------------------------------===// |
| 42 | |
| 43 | #include "llvm/Transforms/Utils/CodeLayout.h" |
| 44 | #include "llvm/Support/CommandLine.h" |
| 45 | #include "llvm/Support/Debug.h" |
| 46 | |
| 47 | #include <cmath> |
| 48 | #include <set> |
| 49 | |
| 50 | using namespace llvm; |
| 51 | using namespace llvm::codelayout; |
| 52 | |
| 53 | #define DEBUG_TYPE "code-layout" |
| 54 | |
| 55 | namespace llvm { |
| 56 | cl::opt<bool> EnableExtTspBlockPlacement( |
| 57 | "enable-ext-tsp-block-placement" , cl::Hidden, cl::init(Val: false), |
| 58 | cl::desc("Enable machine block placement based on the ext-tsp model, " |
| 59 | "optimizing I-cache utilization." )); |
| 60 | |
| 61 | cl::opt<bool> ApplyExtTspWithoutProfile( |
| 62 | "ext-tsp-apply-without-profile" , |
| 63 | cl::desc("Whether to apply ext-tsp placement for instances w/o profile" ), |
| 64 | cl::init(Val: true), cl::Hidden); |
| 65 | } // namespace llvm |
| 66 | |
| 67 | // Algorithm-specific params for Ext-TSP. The values are tuned for the best |
| 68 | // performance of large-scale front-end bound binaries. |
| 69 | static cl::opt<double> ForwardWeightCond( |
| 70 | "ext-tsp-forward-weight-cond" , cl::ReallyHidden, cl::init(Val: 0.1), |
| 71 | cl::desc("The weight of conditional forward jumps for ExtTSP value" )); |
| 72 | |
| 73 | static cl::opt<double> ForwardWeightUncond( |
| 74 | "ext-tsp-forward-weight-uncond" , cl::ReallyHidden, cl::init(Val: 0.1), |
| 75 | cl::desc("The weight of unconditional forward jumps for ExtTSP value" )); |
| 76 | |
| 77 | static cl::opt<double> BackwardWeightCond( |
| 78 | "ext-tsp-backward-weight-cond" , cl::ReallyHidden, cl::init(Val: 0.1), |
| 79 | cl::desc("The weight of conditional backward jumps for ExtTSP value" )); |
| 80 | |
| 81 | static cl::opt<double> BackwardWeightUncond( |
| 82 | "ext-tsp-backward-weight-uncond" , cl::ReallyHidden, cl::init(Val: 0.1), |
| 83 | cl::desc("The weight of unconditional backward jumps for ExtTSP value" )); |
| 84 | |
| 85 | static cl::opt<double> FallthroughWeightCond( |
| 86 | "ext-tsp-fallthrough-weight-cond" , cl::ReallyHidden, cl::init(Val: 1.0), |
| 87 | cl::desc("The weight of conditional fallthrough jumps for ExtTSP value" )); |
| 88 | |
| 89 | static cl::opt<double> FallthroughWeightUncond( |
| 90 | "ext-tsp-fallthrough-weight-uncond" , cl::ReallyHidden, cl::init(Val: 1.05), |
| 91 | cl::desc("The weight of unconditional fallthrough jumps for ExtTSP value" )); |
| 92 | |
| 93 | static cl::opt<unsigned> ForwardDistance( |
| 94 | "ext-tsp-forward-distance" , cl::ReallyHidden, cl::init(Val: 1024), |
| 95 | cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP" )); |
| 96 | |
| 97 | static cl::opt<unsigned> BackwardDistance( |
| 98 | "ext-tsp-backward-distance" , cl::ReallyHidden, cl::init(Val: 640), |
| 99 | cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP" )); |
| 100 | |
| 101 | // The maximum size of a chain created by the algorithm. The size is bounded |
| 102 | // so that the algorithm can efficiently process extremely large instances. |
| 103 | static cl::opt<unsigned> |
| 104 | MaxChainSize("ext-tsp-max-chain-size" , cl::ReallyHidden, cl::init(Val: 512), |
| 105 | cl::desc("The maximum size of a chain to create" )); |
| 106 | |
| 107 | // The maximum size of a chain for splitting. Larger values of the threshold |
| 108 | // may yield better quality at the cost of worsen run-time. |
| 109 | static cl::opt<unsigned> ChainSplitThreshold( |
| 110 | "ext-tsp-chain-split-threshold" , cl::ReallyHidden, cl::init(Val: 128), |
| 111 | cl::desc("The maximum size of a chain to apply splitting" )); |
| 112 | |
| 113 | // The maximum ratio between densities of two chains for merging. |
| 114 | static cl::opt<double> MaxMergeDensityRatio( |
| 115 | "ext-tsp-max-merge-density-ratio" , cl::ReallyHidden, cl::init(Val: 100), |
| 116 | cl::desc("The maximum ratio between densities of two chains for merging" )); |
| 117 | |
| 118 | // Algorithm-specific options for CDSort. |
| 119 | static cl::opt<unsigned> CacheEntries("cdsort-cache-entries" , cl::ReallyHidden, |
| 120 | cl::desc("The size of the cache" )); |
| 121 | |
| 122 | static cl::opt<unsigned> CacheSize("cdsort-cache-size" , cl::ReallyHidden, |
| 123 | cl::desc("The size of a line in the cache" )); |
| 124 | |
| 125 | static cl::opt<unsigned> |
| 126 | CDMaxChainSize("cdsort-max-chain-size" , cl::ReallyHidden, |
| 127 | cl::desc("The maximum size of a chain to create" )); |
| 128 | |
| 129 | static cl::opt<double> DistancePower( |
| 130 | "cdsort-distance-power" , cl::ReallyHidden, |
| 131 | cl::desc("The power exponent for the distance-based locality" )); |
| 132 | |
| 133 | static cl::opt<double> FrequencyScale( |
| 134 | "cdsort-frequency-scale" , cl::ReallyHidden, |
| 135 | cl::desc("The scale factor for the frequency-based locality" )); |
| 136 | |
| 137 | namespace { |
| 138 | |
| 139 | // Epsilon for comparison of doubles. |
| 140 | constexpr double EPS = 1e-8; |
| 141 | |
| 142 | // Compute the Ext-TSP score for a given jump. |
| 143 | double jumpExtTSPScore(uint64_t JumpDist, uint64_t JumpMaxDist, uint64_t Count, |
| 144 | double Weight) { |
| 145 | if (JumpDist > JumpMaxDist) |
| 146 | return 0; |
| 147 | double Prob = 1.0 - static_cast<double>(JumpDist) / JumpMaxDist; |
| 148 | return Weight * Prob * Count; |
| 149 | } |
| 150 | |
| 151 | // Compute the Ext-TSP score for a jump between a given pair of blocks, |
| 152 | // using their sizes, (estimated) addresses and the jump execution count. |
| 153 | double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr, |
| 154 | uint64_t Count, bool IsConditional) { |
| 155 | // Fallthrough |
| 156 | if (SrcAddr + SrcSize == DstAddr) { |
| 157 | return jumpExtTSPScore(JumpDist: 0, JumpMaxDist: 1, Count, |
| 158 | Weight: IsConditional ? FallthroughWeightCond |
| 159 | : FallthroughWeightUncond); |
| 160 | } |
| 161 | // Forward |
| 162 | if (SrcAddr + SrcSize < DstAddr) { |
| 163 | const uint64_t Dist = DstAddr - (SrcAddr + SrcSize); |
| 164 | return jumpExtTSPScore(JumpDist: Dist, JumpMaxDist: ForwardDistance, Count, |
| 165 | Weight: IsConditional ? ForwardWeightCond |
| 166 | : ForwardWeightUncond); |
| 167 | } |
| 168 | // Backward |
| 169 | const uint64_t Dist = SrcAddr + SrcSize - DstAddr; |
| 170 | return jumpExtTSPScore(JumpDist: Dist, JumpMaxDist: BackwardDistance, Count, |
| 171 | Weight: IsConditional ? BackwardWeightCond |
| 172 | : BackwardWeightUncond); |
| 173 | } |
| 174 | |
| 175 | /// A type of merging two chains, X and Y. The former chain is split into |
| 176 | /// X1 and X2 and then concatenated with Y in the order specified by the type. |
| 177 | enum class MergeTypeT : int { X_Y, Y_X, X1_Y_X2, Y_X2_X1, X2_X1_Y }; |
| 178 | |
| 179 | /// The gain of merging two chains, that is, the Ext-TSP score of the merge |
| 180 | /// together with the corresponding merge 'type' and 'offset'. |
| 181 | struct MergeGainT { |
| 182 | explicit MergeGainT() = default; |
| 183 | explicit MergeGainT(double Score, size_t MergeOffset, MergeTypeT MergeType) |
| 184 | : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {} |
| 185 | |
| 186 | double score() const { return Score; } |
| 187 | |
| 188 | size_t mergeOffset() const { return MergeOffset; } |
| 189 | |
| 190 | MergeTypeT mergeType() const { return MergeType; } |
| 191 | |
| 192 | void setMergeType(MergeTypeT Ty) { MergeType = Ty; } |
| 193 | |
| 194 | // Returns 'true' iff Other is preferred over this. |
| 195 | bool operator<(const MergeGainT &Other) const { |
| 196 | return (Other.Score > EPS && Other.Score > Score + EPS); |
| 197 | } |
| 198 | |
| 199 | // Update the current gain if Other is preferred over this. |
| 200 | void updateIfLessThan(const MergeGainT &Other) { |
| 201 | if (*this < Other) |
| 202 | *this = Other; |
| 203 | } |
| 204 | |
| 205 | private: |
| 206 | double Score{-1.0}; |
| 207 | size_t MergeOffset{0}; |
| 208 | MergeTypeT MergeType{MergeTypeT::X_Y}; |
| 209 | }; |
| 210 | |
| 211 | struct JumpT; |
| 212 | struct ChainT; |
| 213 | struct ChainEdge; |
| 214 | |
| 215 | /// A node in the graph, typically corresponding to a basic block in the CFG or |
| 216 | /// a function in the call graph. |
| 217 | struct NodeT { |
| 218 | NodeT(const NodeT &) = delete; |
| 219 | NodeT(NodeT &&) = default; |
| 220 | NodeT &operator=(const NodeT &) = delete; |
| 221 | NodeT &operator=(NodeT &&) = default; |
| 222 | |
| 223 | explicit NodeT(size_t Index, uint64_t Size, uint64_t Count) |
| 224 | : Index(Index), Size(Size), ExecutionCount(Count) {} |
| 225 | |
| 226 | bool isEntry() const { return Index == 0; } |
| 227 | |
| 228 | // Check if Other is a successor of the node. |
| 229 | bool isSuccessor(const NodeT *Other) const; |
| 230 | |
| 231 | // The total execution count of outgoing jumps. |
| 232 | uint64_t outCount() const; |
| 233 | |
| 234 | // The total execution count of incoming jumps. |
| 235 | uint64_t inCount() const; |
| 236 | |
| 237 | // The original index of the node in graph. |
| 238 | size_t Index{0}; |
| 239 | // The index of the node in the current chain. |
| 240 | size_t CurIndex{0}; |
| 241 | // The size of the node in the binary. |
| 242 | uint64_t Size{0}; |
| 243 | // The execution count of the node in the profile data. |
| 244 | uint64_t ExecutionCount{0}; |
| 245 | // The current chain of the node. |
| 246 | ChainT *CurChain{nullptr}; |
| 247 | // The offset of the node in the current chain. |
| 248 | mutable uint64_t EstimatedAddr{0}; |
| 249 | // Forced successor of the node in the graph. |
| 250 | NodeT *ForcedSucc{nullptr}; |
| 251 | // Forced predecessor of the node in the graph. |
| 252 | NodeT *ForcedPred{nullptr}; |
| 253 | // Outgoing jumps from the node. |
| 254 | std::vector<JumpT *> OutJumps; |
| 255 | // Incoming jumps to the node. |
| 256 | std::vector<JumpT *> InJumps; |
| 257 | }; |
| 258 | |
| 259 | /// An arc in the graph, typically corresponding to a jump between two nodes. |
| 260 | struct JumpT { |
| 261 | JumpT(const JumpT &) = delete; |
| 262 | JumpT(JumpT &&) = default; |
| 263 | JumpT &operator=(const JumpT &) = delete; |
| 264 | JumpT &operator=(JumpT &&) = default; |
| 265 | |
| 266 | explicit JumpT(NodeT *Source, NodeT *Target, uint64_t ExecutionCount) |
| 267 | : Source(Source), Target(Target), ExecutionCount(ExecutionCount) {} |
| 268 | |
| 269 | // Source node of the jump. |
| 270 | NodeT *Source; |
| 271 | // Target node of the jump. |
| 272 | NodeT *Target; |
| 273 | // Execution count of the arc in the profile data. |
| 274 | uint64_t ExecutionCount{0}; |
| 275 | // Whether the jump corresponds to a conditional branch. |
| 276 | bool IsConditional{false}; |
| 277 | // The offset of the jump from the source node. |
| 278 | uint64_t Offset{0}; |
| 279 | }; |
| 280 | |
| 281 | /// A chain (ordered sequence) of nodes in the graph. |
| 282 | struct ChainT { |
| 283 | ChainT(const ChainT &) = delete; |
| 284 | ChainT(ChainT &&) = default; |
| 285 | ChainT &operator=(const ChainT &) = delete; |
| 286 | ChainT &operator=(ChainT &&) = default; |
| 287 | |
| 288 | explicit ChainT(uint64_t Id, NodeT *Node) |
| 289 | : Id(Id), ExecutionCount(Node->ExecutionCount), Size(Node->Size), |
| 290 | Nodes(1, Node) {} |
| 291 | |
| 292 | size_t numBlocks() const { return Nodes.size(); } |
| 293 | |
| 294 | double density() const { return ExecutionCount / Size; } |
| 295 | |
| 296 | bool isEntry() const { return Nodes[0]->Index == 0; } |
| 297 | |
| 298 | bool isCold() const { |
| 299 | for (NodeT *Node : Nodes) { |
| 300 | if (Node->ExecutionCount > 0) |
| 301 | return false; |
| 302 | } |
| 303 | return true; |
| 304 | } |
| 305 | |
| 306 | ChainEdge *getEdge(ChainT *Other) const { |
| 307 | for (const auto &[Chain, ChainEdge] : Edges) { |
| 308 | if (Chain == Other) |
| 309 | return ChainEdge; |
| 310 | } |
| 311 | return nullptr; |
| 312 | } |
| 313 | |
| 314 | void removeEdge(ChainT *Other) { |
| 315 | auto It = Edges.begin(); |
| 316 | while (It != Edges.end()) { |
| 317 | if (It->first == Other) { |
| 318 | Edges.erase(position: It); |
| 319 | return; |
| 320 | } |
| 321 | It++; |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | void addEdge(ChainT *Other, ChainEdge *Edge) { |
| 326 | Edges.push_back(x: std::make_pair(x&: Other, y&: Edge)); |
| 327 | } |
| 328 | |
| 329 | void merge(ChainT *Other, std::vector<NodeT *> MergedBlocks) { |
| 330 | Nodes = std::move(MergedBlocks); |
| 331 | // Update the chain's data. |
| 332 | ExecutionCount += Other->ExecutionCount; |
| 333 | Size += Other->Size; |
| 334 | Id = Nodes[0]->Index; |
| 335 | // Update the node's data. |
| 336 | for (size_t Idx = 0; Idx < Nodes.size(); Idx++) { |
| 337 | Nodes[Idx]->CurChain = this; |
| 338 | Nodes[Idx]->CurIndex = Idx; |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | void mergeEdges(ChainT *Other); |
| 343 | |
| 344 | void clear() { |
| 345 | Nodes.clear(); |
| 346 | Nodes.shrink_to_fit(); |
| 347 | Edges.clear(); |
| 348 | Edges.shrink_to_fit(); |
| 349 | } |
| 350 | |
| 351 | // Unique chain identifier. |
| 352 | uint64_t Id; |
| 353 | // Cached ext-tsp score for the chain. |
| 354 | double Score{0}; |
| 355 | // The total execution count of the chain. Since the execution count of |
| 356 | // a basic block is uint64_t, using doubles here to avoid overflow. |
| 357 | double ExecutionCount{0}; |
| 358 | // The total size of the chain. |
| 359 | uint64_t Size{0}; |
| 360 | // Nodes of the chain. |
| 361 | std::vector<NodeT *> Nodes; |
| 362 | // Adjacent chains and corresponding edges (lists of jumps). |
| 363 | std::vector<std::pair<ChainT *, ChainEdge *>> Edges; |
| 364 | }; |
| 365 | |
| 366 | /// An edge in the graph representing jumps between two chains. |
| 367 | /// When nodes are merged into chains, the edges are combined too so that |
| 368 | /// there is always at most one edge between a pair of chains. |
| 369 | struct ChainEdge { |
| 370 | ChainEdge(const ChainEdge &) = delete; |
| 371 | ChainEdge(ChainEdge &&) = default; |
| 372 | ChainEdge &operator=(const ChainEdge &) = delete; |
| 373 | ChainEdge &operator=(ChainEdge &&) = delete; |
| 374 | |
| 375 | explicit ChainEdge(JumpT *Jump) |
| 376 | : SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain), |
| 377 | Jumps(1, Jump) {} |
| 378 | |
| 379 | ChainT *srcChain() const { return SrcChain; } |
| 380 | |
| 381 | ChainT *dstChain() const { return DstChain; } |
| 382 | |
| 383 | bool isSelfEdge() const { return SrcChain == DstChain; } |
| 384 | |
| 385 | const std::vector<JumpT *> &jumps() const { return Jumps; } |
| 386 | |
| 387 | void appendJump(JumpT *Jump) { Jumps.push_back(x: Jump); } |
| 388 | |
| 389 | void moveJumps(ChainEdge *Other) { |
| 390 | llvm::append_range(C&: Jumps, R&: Other->Jumps); |
| 391 | Other->Jumps.clear(); |
| 392 | Other->Jumps.shrink_to_fit(); |
| 393 | } |
| 394 | |
| 395 | void changeEndpoint(ChainT *From, ChainT *To) { |
| 396 | if (From == SrcChain) |
| 397 | SrcChain = To; |
| 398 | if (From == DstChain) |
| 399 | DstChain = To; |
| 400 | } |
| 401 | |
| 402 | bool hasCachedMergeGain(ChainT *Src, ChainT *Dst) const { |
| 403 | return Src == SrcChain ? CacheValidForward : CacheValidBackward; |
| 404 | } |
| 405 | |
| 406 | MergeGainT getCachedMergeGain(ChainT *Src, ChainT *Dst) const { |
| 407 | return Src == SrcChain ? CachedGainForward : CachedGainBackward; |
| 408 | } |
| 409 | |
| 410 | void setCachedMergeGain(ChainT *Src, ChainT *Dst, MergeGainT MergeGain) { |
| 411 | if (Src == SrcChain) { |
| 412 | CachedGainForward = MergeGain; |
| 413 | CacheValidForward = true; |
| 414 | } else { |
| 415 | CachedGainBackward = MergeGain; |
| 416 | CacheValidBackward = true; |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | void invalidateCache() { |
| 421 | CacheValidForward = false; |
| 422 | CacheValidBackward = false; |
| 423 | } |
| 424 | |
| 425 | void setMergeGain(MergeGainT Gain) { CachedGain = Gain; } |
| 426 | |
| 427 | MergeGainT getMergeGain() const { return CachedGain; } |
| 428 | |
| 429 | double gain() const { return CachedGain.score(); } |
| 430 | |
| 431 | private: |
| 432 | // Source chain. |
| 433 | ChainT *SrcChain{nullptr}; |
| 434 | // Destination chain. |
| 435 | ChainT *DstChain{nullptr}; |
| 436 | // Original jumps in the binary with corresponding execution counts. |
| 437 | std::vector<JumpT *> Jumps; |
| 438 | // Cached gain value for merging the pair of chains. |
| 439 | MergeGainT CachedGain; |
| 440 | |
| 441 | // Cached gain values for merging the pair of chains. Since the gain of |
| 442 | // merging (Src, Dst) and (Dst, Src) might be different, we store both values |
| 443 | // here and a flag indicating which of the options results in a higher gain. |
| 444 | // Cached gain values. |
| 445 | MergeGainT CachedGainForward; |
| 446 | MergeGainT CachedGainBackward; |
| 447 | // Whether the cached value must be recomputed. |
| 448 | bool CacheValidForward{false}; |
| 449 | bool CacheValidBackward{false}; |
| 450 | }; |
| 451 | |
| 452 | bool NodeT::isSuccessor(const NodeT *Other) const { |
| 453 | for (JumpT *Jump : OutJumps) |
| 454 | if (Jump->Target == Other) |
| 455 | return true; |
| 456 | return false; |
| 457 | } |
| 458 | |
| 459 | uint64_t NodeT::outCount() const { |
| 460 | uint64_t Count = 0; |
| 461 | for (JumpT *Jump : OutJumps) |
| 462 | Count += Jump->ExecutionCount; |
| 463 | return Count; |
| 464 | } |
| 465 | |
| 466 | uint64_t NodeT::inCount() const { |
| 467 | uint64_t Count = 0; |
| 468 | for (JumpT *Jump : InJumps) |
| 469 | Count += Jump->ExecutionCount; |
| 470 | return Count; |
| 471 | } |
| 472 | |
| 473 | void ChainT::mergeEdges(ChainT *Other) { |
| 474 | // Update edges adjacent to chain Other. |
| 475 | for (const auto &[DstChain, DstEdge] : Other->Edges) { |
| 476 | ChainT *TargetChain = DstChain == Other ? this : DstChain; |
| 477 | ChainEdge *CurEdge = getEdge(Other: TargetChain); |
| 478 | if (CurEdge == nullptr) { |
| 479 | DstEdge->changeEndpoint(From: Other, To: this); |
| 480 | this->addEdge(Other: TargetChain, Edge: DstEdge); |
| 481 | if (DstChain != this && DstChain != Other) |
| 482 | DstChain->addEdge(Other: this, Edge: DstEdge); |
| 483 | } else { |
| 484 | CurEdge->moveJumps(Other: DstEdge); |
| 485 | } |
| 486 | // Cleanup leftover edge. |
| 487 | if (DstChain != Other) |
| 488 | DstChain->removeEdge(Other); |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | using NodeIter = std::vector<NodeT *>::const_iterator; |
| 493 | static std::vector<NodeT *> EmptyList; |
| 494 | |
| 495 | /// A wrapper around three concatenated vectors (chains) of nodes; it is used |
| 496 | /// to avoid extra instantiation of the vectors. |
| 497 | struct MergedNodesT { |
| 498 | MergedNodesT(NodeIter Begin1, NodeIter End1, |
| 499 | NodeIter Begin2 = EmptyList.begin(), |
| 500 | NodeIter End2 = EmptyList.end(), |
| 501 | NodeIter Begin3 = EmptyList.begin(), |
| 502 | NodeIter End3 = EmptyList.end()) |
| 503 | : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3), |
| 504 | End3(End3) {} |
| 505 | |
| 506 | template <typename F> void forEach(const F &Func) const { |
| 507 | for (auto It = Begin1; It != End1; It++) |
| 508 | Func(*It); |
| 509 | for (auto It = Begin2; It != End2; It++) |
| 510 | Func(*It); |
| 511 | for (auto It = Begin3; It != End3; It++) |
| 512 | Func(*It); |
| 513 | } |
| 514 | |
| 515 | std::vector<NodeT *> getNodes() const { |
| 516 | std::vector<NodeT *> Result; |
| 517 | Result.reserve(n: std::distance(first: Begin1, last: End1) + std::distance(first: Begin2, last: End2) + |
| 518 | std::distance(first: Begin3, last: End3)); |
| 519 | Result.insert(position: Result.end(), first: Begin1, last: End1); |
| 520 | Result.insert(position: Result.end(), first: Begin2, last: End2); |
| 521 | Result.insert(position: Result.end(), first: Begin3, last: End3); |
| 522 | return Result; |
| 523 | } |
| 524 | |
| 525 | const NodeT *getFirstNode() const { return *Begin1; } |
| 526 | |
| 527 | private: |
| 528 | NodeIter Begin1; |
| 529 | NodeIter End1; |
| 530 | NodeIter Begin2; |
| 531 | NodeIter End2; |
| 532 | NodeIter Begin3; |
| 533 | NodeIter End3; |
| 534 | }; |
| 535 | |
| 536 | /// A wrapper around two concatenated vectors (chains) of jumps. |
| 537 | struct MergedJumpsT { |
| 538 | MergedJumpsT(const std::vector<JumpT *> *Jumps1, |
| 539 | const std::vector<JumpT *> *Jumps2 = nullptr) { |
| 540 | assert(!Jumps1->empty() && "cannot merge empty jump list" ); |
| 541 | JumpArray[0] = Jumps1; |
| 542 | JumpArray[1] = Jumps2; |
| 543 | } |
| 544 | |
| 545 | template <typename F> void forEach(const F &Func) const { |
| 546 | for (auto Jumps : JumpArray) |
| 547 | if (Jumps != nullptr) |
| 548 | for (JumpT *Jump : *Jumps) |
| 549 | Func(Jump); |
| 550 | } |
| 551 | |
| 552 | private: |
| 553 | std::array<const std::vector<JumpT *> *, 2> JumpArray{nullptr, nullptr}; |
| 554 | }; |
| 555 | |
| 556 | /// Merge two chains of nodes respecting a given 'type' and 'offset'. |
| 557 | /// |
| 558 | /// If MergeType == 0, then the result is a concatenation of two chains. |
| 559 | /// Otherwise, the first chain is cut into two sub-chains at the offset, |
| 560 | /// and merged using all possible ways of concatenating three chains. |
| 561 | MergedNodesT mergeNodes(const std::vector<NodeT *> &X, |
| 562 | const std::vector<NodeT *> &Y, size_t MergeOffset, |
| 563 | MergeTypeT MergeType) { |
| 564 | // Split the first chain, X, into X1 and X2. |
| 565 | NodeIter BeginX1 = X.begin(); |
| 566 | NodeIter EndX1 = X.begin() + MergeOffset; |
| 567 | NodeIter BeginX2 = X.begin() + MergeOffset; |
| 568 | NodeIter EndX2 = X.end(); |
| 569 | NodeIter BeginY = Y.begin(); |
| 570 | NodeIter EndY = Y.end(); |
| 571 | |
| 572 | // Construct a new chain from the three existing ones. |
| 573 | switch (MergeType) { |
| 574 | case MergeTypeT::X_Y: |
| 575 | return MergedNodesT(BeginX1, EndX2, BeginY, EndY); |
| 576 | case MergeTypeT::Y_X: |
| 577 | return MergedNodesT(BeginY, EndY, BeginX1, EndX2); |
| 578 | case MergeTypeT::X1_Y_X2: |
| 579 | return MergedNodesT(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2); |
| 580 | case MergeTypeT::Y_X2_X1: |
| 581 | return MergedNodesT(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1); |
| 582 | case MergeTypeT::X2_X1_Y: |
| 583 | return MergedNodesT(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY); |
| 584 | } |
| 585 | llvm_unreachable("unexpected chain merge type" ); |
| 586 | } |
| 587 | |
| 588 | /// The implementation of the ExtTSP algorithm. |
| 589 | class ExtTSPImpl { |
| 590 | public: |
| 591 | ExtTSPImpl(ArrayRef<uint64_t> NodeSizes, ArrayRef<uint64_t> NodeCounts, |
| 592 | ArrayRef<EdgeCount> EdgeCounts) |
| 593 | : NumNodes(NodeSizes.size()) { |
| 594 | initialize(NodeSizes, NodeCounts, EdgeCounts); |
| 595 | } |
| 596 | |
| 597 | /// Run the algorithm and return an optimized ordering of nodes. |
| 598 | std::vector<uint64_t> run() { |
| 599 | // Pass 1: Merge nodes with their mutually forced successors |
| 600 | mergeForcedPairs(); |
| 601 | |
| 602 | // Pass 2: Merge pairs of chains while improving the ExtTSP objective |
| 603 | mergeChainPairs(); |
| 604 | |
| 605 | // Pass 3: Merge cold nodes to reduce code size |
| 606 | mergeColdChains(); |
| 607 | |
| 608 | // Collect nodes from all chains |
| 609 | return concatChains(); |
| 610 | } |
| 611 | |
| 612 | private: |
| 613 | /// Initialize the algorithm's data structures. |
| 614 | void initialize(const ArrayRef<uint64_t> &NodeSizes, |
| 615 | const ArrayRef<uint64_t> &NodeCounts, |
| 616 | const ArrayRef<EdgeCount> &EdgeCounts) { |
| 617 | // Initialize nodes. |
| 618 | AllNodes.reserve(n: NumNodes); |
| 619 | for (uint64_t Idx = 0; Idx < NumNodes; Idx++) { |
| 620 | uint64_t Size = std::max<uint64_t>(a: NodeSizes[Idx], b: 1ULL); |
| 621 | uint64_t ExecutionCount = NodeCounts[Idx]; |
| 622 | // The execution count of the entry node is set to at least one. |
| 623 | if (Idx == 0 && ExecutionCount == 0) |
| 624 | ExecutionCount = 1; |
| 625 | AllNodes.emplace_back(args&: Idx, args&: Size, args&: ExecutionCount); |
| 626 | } |
| 627 | |
| 628 | // Initialize jumps between the nodes. |
| 629 | SuccNodes.resize(new_size: NumNodes); |
| 630 | PredNodes.resize(new_size: NumNodes); |
| 631 | std::vector<uint64_t> OutDegree(NumNodes, 0); |
| 632 | AllJumps.reserve(n: EdgeCounts.size()); |
| 633 | for (auto Edge : EdgeCounts) { |
| 634 | ++OutDegree[Edge.src]; |
| 635 | // Ignore self-edges. |
| 636 | if (Edge.src == Edge.dst) |
| 637 | continue; |
| 638 | |
| 639 | SuccNodes[Edge.src].push_back(x: Edge.dst); |
| 640 | PredNodes[Edge.dst].push_back(x: Edge.src); |
| 641 | if (Edge.count > 0) { |
| 642 | NodeT &PredNode = AllNodes[Edge.src]; |
| 643 | NodeT &SuccNode = AllNodes[Edge.dst]; |
| 644 | AllJumps.emplace_back(args: &PredNode, args: &SuccNode, args&: Edge.count); |
| 645 | SuccNode.InJumps.push_back(x: &AllJumps.back()); |
| 646 | PredNode.OutJumps.push_back(x: &AllJumps.back()); |
| 647 | // Adjust execution counts. |
| 648 | PredNode.ExecutionCount = std::max(a: PredNode.ExecutionCount, b: Edge.count); |
| 649 | SuccNode.ExecutionCount = std::max(a: SuccNode.ExecutionCount, b: Edge.count); |
| 650 | } |
| 651 | } |
| 652 | for (JumpT &Jump : AllJumps) { |
| 653 | assert(OutDegree[Jump.Source->Index] > 0 && |
| 654 | "incorrectly computed out-degree of the block" ); |
| 655 | Jump.IsConditional = OutDegree[Jump.Source->Index] > 1; |
| 656 | } |
| 657 | |
| 658 | // Initialize chains. |
| 659 | AllChains.reserve(n: NumNodes); |
| 660 | HotChains.reserve(n: NumNodes); |
| 661 | for (NodeT &Node : AllNodes) { |
| 662 | // Create a chain. |
| 663 | AllChains.emplace_back(args&: Node.Index, args: &Node); |
| 664 | Node.CurChain = &AllChains.back(); |
| 665 | if (Node.ExecutionCount > 0) |
| 666 | HotChains.push_back(x: &AllChains.back()); |
| 667 | } |
| 668 | |
| 669 | // Initialize chain edges. |
| 670 | AllEdges.reserve(n: AllJumps.size()); |
| 671 | for (NodeT &PredNode : AllNodes) { |
| 672 | for (JumpT *Jump : PredNode.OutJumps) { |
| 673 | assert(Jump->ExecutionCount > 0 && "incorrectly initialized jump" ); |
| 674 | NodeT *SuccNode = Jump->Target; |
| 675 | ChainEdge *CurEdge = PredNode.CurChain->getEdge(Other: SuccNode->CurChain); |
| 676 | // This edge is already present in the graph. |
| 677 | if (CurEdge != nullptr) { |
| 678 | assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr); |
| 679 | CurEdge->appendJump(Jump); |
| 680 | continue; |
| 681 | } |
| 682 | // This is a new edge. |
| 683 | AllEdges.emplace_back(args&: Jump); |
| 684 | PredNode.CurChain->addEdge(Other: SuccNode->CurChain, Edge: &AllEdges.back()); |
| 685 | SuccNode->CurChain->addEdge(Other: PredNode.CurChain, Edge: &AllEdges.back()); |
| 686 | } |
| 687 | } |
| 688 | } |
| 689 | |
| 690 | /// For a pair of nodes, A and B, node B is the forced successor of A, |
| 691 | /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps |
| 692 | /// to B are from A. Such nodes should be adjacent in the optimal ordering; |
| 693 | /// the method finds and merges such pairs of nodes. |
| 694 | void mergeForcedPairs() { |
| 695 | // Find forced pairs of blocks. |
| 696 | for (NodeT &Node : AllNodes) { |
| 697 | if (SuccNodes[Node.Index].size() == 1 && |
| 698 | PredNodes[SuccNodes[Node.Index][0]].size() == 1 && |
| 699 | SuccNodes[Node.Index][0] != 0) { |
| 700 | size_t SuccIndex = SuccNodes[Node.Index][0]; |
| 701 | Node.ForcedSucc = &AllNodes[SuccIndex]; |
| 702 | AllNodes[SuccIndex].ForcedPred = &Node; |
| 703 | } |
| 704 | } |
| 705 | |
| 706 | // There might be 'cycles' in the forced dependencies, since profile |
| 707 | // data isn't 100% accurate. Typically this is observed in loops, when the |
| 708 | // loop edges are the hottest successors for the basic blocks of the loop. |
| 709 | // Break the cycles by choosing the node with the smallest index as the |
| 710 | // head. This helps to keep the original order of the loops, which likely |
| 711 | // have already been rotated in the optimized manner. |
| 712 | for (NodeT &Node : AllNodes) { |
| 713 | if (Node.ForcedSucc == nullptr || Node.ForcedPred == nullptr) |
| 714 | continue; |
| 715 | |
| 716 | NodeT *SuccNode = Node.ForcedSucc; |
| 717 | while (SuccNode != nullptr && SuccNode != &Node) { |
| 718 | SuccNode = SuccNode->ForcedSucc; |
| 719 | } |
| 720 | if (SuccNode == nullptr) |
| 721 | continue; |
| 722 | // Break the cycle. |
| 723 | AllNodes[Node.ForcedPred->Index].ForcedSucc = nullptr; |
| 724 | Node.ForcedPred = nullptr; |
| 725 | } |
| 726 | |
| 727 | // Merge nodes with their fallthrough successors. |
| 728 | for (NodeT &Node : AllNodes) { |
| 729 | if (Node.ForcedPred == nullptr && Node.ForcedSucc != nullptr) { |
| 730 | const NodeT *CurBlock = &Node; |
| 731 | while (CurBlock->ForcedSucc != nullptr) { |
| 732 | const NodeT *NextBlock = CurBlock->ForcedSucc; |
| 733 | mergeChains(Into: Node.CurChain, From: NextBlock->CurChain, MergeOffset: 0, MergeType: MergeTypeT::X_Y); |
| 734 | CurBlock = NextBlock; |
| 735 | } |
| 736 | } |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | /// Merge pairs of chains while improving the ExtTSP objective. |
| 741 | void mergeChainPairs() { |
| 742 | /// Deterministically compare pairs of chains. |
| 743 | auto compareChainPairs = [](const ChainT *A1, const ChainT *B1, |
| 744 | const ChainT *A2, const ChainT *B2) { |
| 745 | return std::make_tuple(args: A1->Id, args: B1->Id) < std::make_tuple(args: A2->Id, args: B2->Id); |
| 746 | }; |
| 747 | |
| 748 | while (HotChains.size() > 1) { |
| 749 | ChainT *BestChainPred = nullptr; |
| 750 | ChainT *BestChainSucc = nullptr; |
| 751 | MergeGainT BestGain; |
| 752 | // Iterate over all pairs of chains. |
| 753 | for (ChainT *ChainPred : HotChains) { |
| 754 | // Get candidates for merging with the current chain. |
| 755 | for (const auto &[ChainSucc, Edge] : ChainPred->Edges) { |
| 756 | // Ignore loop edges. |
| 757 | if (Edge->isSelfEdge()) |
| 758 | continue; |
| 759 | // Skip the merge if the combined chain violates the maximum specified |
| 760 | // size. |
| 761 | if (ChainPred->numBlocks() + ChainSucc->numBlocks() >= MaxChainSize) |
| 762 | continue; |
| 763 | // Don't merge the chains if they have vastly different densities. |
| 764 | // Skip the merge if the ratio between the densities exceeds |
| 765 | // MaxMergeDensityRatio. Smaller values of the option result in fewer |
| 766 | // merges, and hence, more chains. |
| 767 | const double ChainPredDensity = ChainPred->density(); |
| 768 | const double ChainSuccDensity = ChainSucc->density(); |
| 769 | assert(ChainPredDensity > 0.0 && ChainSuccDensity > 0.0 && |
| 770 | "incorrectly computed chain densities" ); |
| 771 | auto [MinDensity, MaxDensity] = |
| 772 | std::minmax(a: ChainPredDensity, b: ChainSuccDensity); |
| 773 | const double Ratio = MaxDensity / MinDensity; |
| 774 | if (Ratio > MaxMergeDensityRatio) |
| 775 | continue; |
| 776 | |
| 777 | // Compute the gain of merging the two chains. |
| 778 | MergeGainT CurGain = getBestMergeGain(ChainPred, ChainSucc, Edge); |
| 779 | if (CurGain.score() <= EPS) |
| 780 | continue; |
| 781 | |
| 782 | if (BestGain < CurGain || |
| 783 | (std::abs(x: CurGain.score() - BestGain.score()) < EPS && |
| 784 | compareChainPairs(ChainPred, ChainSucc, BestChainPred, |
| 785 | BestChainSucc))) { |
| 786 | BestGain = CurGain; |
| 787 | BestChainPred = ChainPred; |
| 788 | BestChainSucc = ChainSucc; |
| 789 | } |
| 790 | } |
| 791 | } |
| 792 | |
| 793 | // Stop merging when there is no improvement. |
| 794 | if (BestGain.score() <= EPS) |
| 795 | break; |
| 796 | |
| 797 | // Merge the best pair of chains. |
| 798 | mergeChains(Into: BestChainPred, From: BestChainSucc, MergeOffset: BestGain.mergeOffset(), |
| 799 | MergeType: BestGain.mergeType()); |
| 800 | } |
| 801 | } |
| 802 | |
| 803 | /// Merge remaining nodes into chains w/o taking jump counts into |
| 804 | /// consideration. This allows to maintain the original node order in the |
| 805 | /// absence of profile data. |
| 806 | void mergeColdChains() { |
| 807 | for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) { |
| 808 | // Iterating in reverse order to make sure original fallthrough jumps are |
| 809 | // merged first; this might be beneficial for code size. |
| 810 | size_t NumSuccs = SuccNodes[SrcBB].size(); |
| 811 | for (size_t Idx = 0; Idx < NumSuccs; Idx++) { |
| 812 | size_t DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1]; |
| 813 | ChainT *SrcChain = AllNodes[SrcBB].CurChain; |
| 814 | ChainT *DstChain = AllNodes[DstBB].CurChain; |
| 815 | if (SrcChain != DstChain && !DstChain->isEntry() && |
| 816 | SrcChain->Nodes.back()->Index == SrcBB && |
| 817 | DstChain->Nodes.front()->Index == DstBB && |
| 818 | SrcChain->isCold() == DstChain->isCold()) { |
| 819 | mergeChains(Into: SrcChain, From: DstChain, MergeOffset: 0, MergeType: MergeTypeT::X_Y); |
| 820 | } |
| 821 | } |
| 822 | } |
| 823 | } |
| 824 | |
| 825 | /// Compute the Ext-TSP score for a given node order and a list of jumps. |
| 826 | double extTSPScore(const MergedNodesT &Nodes, |
| 827 | const MergedJumpsT &Jumps) const { |
| 828 | uint64_t CurAddr = 0; |
| 829 | Nodes.forEach(Func: [&](const NodeT *Node) { |
| 830 | Node->EstimatedAddr = CurAddr; |
| 831 | CurAddr += Node->Size; |
| 832 | }); |
| 833 | |
| 834 | double Score = 0; |
| 835 | Jumps.forEach(Func: [&](const JumpT *Jump) { |
| 836 | const NodeT *SrcBlock = Jump->Source; |
| 837 | const NodeT *DstBlock = Jump->Target; |
| 838 | Score += ::extTSPScore(SrcAddr: SrcBlock->EstimatedAddr, SrcSize: SrcBlock->Size, |
| 839 | DstAddr: DstBlock->EstimatedAddr, Count: Jump->ExecutionCount, |
| 840 | IsConditional: Jump->IsConditional); |
| 841 | }); |
| 842 | return Score; |
| 843 | } |
| 844 | |
| 845 | /// Compute the gain of merging two chains. |
| 846 | /// |
| 847 | /// The function considers all possible ways of merging two chains and |
| 848 | /// computes the one having the largest increase in ExtTSP objective. The |
| 849 | /// result is a pair with the first element being the gain and the second |
| 850 | /// element being the corresponding merging type. |
| 851 | MergeGainT getBestMergeGain(ChainT *ChainPred, ChainT *ChainSucc, |
| 852 | ChainEdge *Edge) const { |
| 853 | if (Edge->hasCachedMergeGain(Src: ChainPred, Dst: ChainSucc)) |
| 854 | return Edge->getCachedMergeGain(Src: ChainPred, Dst: ChainSucc); |
| 855 | |
| 856 | assert(!Edge->jumps().empty() && "trying to merge chains w/o jumps" ); |
| 857 | // Precompute jumps between ChainPred and ChainSucc. |
| 858 | ChainEdge *EdgePP = ChainPred->getEdge(Other: ChainPred); |
| 859 | MergedJumpsT Jumps(&Edge->jumps(), EdgePP ? &EdgePP->jumps() : nullptr); |
| 860 | |
| 861 | // This object holds the best chosen gain of merging two chains. |
| 862 | MergeGainT Gain = MergeGainT(); |
| 863 | |
| 864 | /// Given a merge offset and a list of merge types, try to merge two chains |
| 865 | /// and update Gain with a better alternative. |
| 866 | auto tryChainMerging = [&](size_t Offset, |
| 867 | const std::vector<MergeTypeT> &MergeTypes) { |
| 868 | // Skip merging corresponding to concatenation w/o splitting. |
| 869 | if (Offset == 0 || Offset == ChainPred->Nodes.size()) |
| 870 | return; |
| 871 | // Skip merging if it breaks Forced successors. |
| 872 | NodeT *Node = ChainPred->Nodes[Offset - 1]; |
| 873 | if (Node->ForcedSucc != nullptr) |
| 874 | return; |
| 875 | // Apply the merge, compute the corresponding gain, and update the best |
| 876 | // value, if the merge is beneficial. |
| 877 | for (const MergeTypeT &MergeType : MergeTypes) { |
| 878 | Gain.updateIfLessThan( |
| 879 | Other: computeMergeGain(ChainPred, ChainSucc, Jumps, MergeOffset: Offset, MergeType)); |
| 880 | } |
| 881 | }; |
| 882 | |
| 883 | // Try to concatenate two chains w/o splitting. |
| 884 | Gain.updateIfLessThan( |
| 885 | Other: computeMergeGain(ChainPred, ChainSucc, Jumps, MergeOffset: 0, MergeType: MergeTypeT::X_Y)); |
| 886 | |
| 887 | // Attach (a part of) ChainPred before the first node of ChainSucc. |
| 888 | for (JumpT *Jump : ChainSucc->Nodes.front()->InJumps) { |
| 889 | const NodeT *SrcBlock = Jump->Source; |
| 890 | if (SrcBlock->CurChain != ChainPred) |
| 891 | continue; |
| 892 | size_t Offset = SrcBlock->CurIndex + 1; |
| 893 | tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::X2_X1_Y}); |
| 894 | } |
| 895 | |
| 896 | // Attach (a part of) ChainPred after the last node of ChainSucc. |
| 897 | for (JumpT *Jump : ChainSucc->Nodes.back()->OutJumps) { |
| 898 | const NodeT *DstBlock = Jump->Target; |
| 899 | if (DstBlock->CurChain != ChainPred) |
| 900 | continue; |
| 901 | size_t Offset = DstBlock->CurIndex; |
| 902 | tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1}); |
| 903 | } |
| 904 | |
| 905 | // Try to break ChainPred in various ways and concatenate with ChainSucc. |
| 906 | if (ChainPred->Nodes.size() <= ChainSplitThreshold) { |
| 907 | for (size_t Offset = 1; Offset < ChainPred->Nodes.size(); Offset++) { |
| 908 | // Do not split the chain along a fall-through jump. One of the two |
| 909 | // loops above may still "break" such a jump whenever it results in a |
| 910 | // new fall-through. |
| 911 | const NodeT *BB = ChainPred->Nodes[Offset - 1]; |
| 912 | const NodeT *BB2 = ChainPred->Nodes[Offset]; |
| 913 | if (BB->isSuccessor(Other: BB2)) |
| 914 | continue; |
| 915 | |
| 916 | // In practice, applying X2_Y_X1 merging almost never provides benefits; |
| 917 | // thus, we exclude it from consideration to reduce the search space. |
| 918 | tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1, |
| 919 | MergeTypeT::X2_X1_Y}); |
| 920 | } |
| 921 | } |
| 922 | |
| 923 | Edge->setCachedMergeGain(Src: ChainPred, Dst: ChainSucc, MergeGain: Gain); |
| 924 | return Gain; |
| 925 | } |
| 926 | |
| 927 | /// Compute the score gain of merging two chains, respecting a given |
| 928 | /// merge 'type' and 'offset'. |
| 929 | /// |
| 930 | /// The two chains are not modified in the method. |
| 931 | MergeGainT computeMergeGain(const ChainT *ChainPred, const ChainT *ChainSucc, |
| 932 | const MergedJumpsT &Jumps, size_t MergeOffset, |
| 933 | MergeTypeT MergeType) const { |
| 934 | MergedNodesT MergedNodes = |
| 935 | mergeNodes(X: ChainPred->Nodes, Y: ChainSucc->Nodes, MergeOffset, MergeType); |
| 936 | |
| 937 | // Do not allow a merge that does not preserve the original entry point. |
| 938 | if ((ChainPred->isEntry() || ChainSucc->isEntry()) && |
| 939 | !MergedNodes.getFirstNode()->isEntry()) |
| 940 | return MergeGainT(); |
| 941 | |
| 942 | // The gain for the new chain. |
| 943 | double NewScore = extTSPScore(Nodes: MergedNodes, Jumps); |
| 944 | double CurScore = ChainPred->Score; |
| 945 | return MergeGainT(NewScore - CurScore, MergeOffset, MergeType); |
| 946 | } |
| 947 | |
| 948 | /// Merge chain From into chain Into, update the list of active chains, |
| 949 | /// adjacency information, and the corresponding cached values. |
| 950 | void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset, |
| 951 | MergeTypeT MergeType) { |
| 952 | assert(Into != From && "a chain cannot be merged with itself" ); |
| 953 | |
| 954 | // Merge the nodes. |
| 955 | MergedNodesT MergedNodes = |
| 956 | mergeNodes(X: Into->Nodes, Y: From->Nodes, MergeOffset, MergeType); |
| 957 | Into->merge(Other: From, MergedBlocks: MergedNodes.getNodes()); |
| 958 | |
| 959 | // Merge the edges. |
| 960 | Into->mergeEdges(Other: From); |
| 961 | From->clear(); |
| 962 | |
| 963 | // Update cached ext-tsp score for the new chain. |
| 964 | ChainEdge *SelfEdge = Into->getEdge(Other: Into); |
| 965 | if (SelfEdge != nullptr) { |
| 966 | MergedNodes = MergedNodesT(Into->Nodes.begin(), Into->Nodes.end()); |
| 967 | MergedJumpsT MergedJumps(&SelfEdge->jumps()); |
| 968 | Into->Score = extTSPScore(Nodes: MergedNodes, Jumps: MergedJumps); |
| 969 | } |
| 970 | |
| 971 | // Remove the chain from the list of active chains. |
| 972 | llvm::erase(C&: HotChains, V: From); |
| 973 | |
| 974 | // Invalidate caches. |
| 975 | for (auto EdgeIt : Into->Edges) |
| 976 | EdgeIt.second->invalidateCache(); |
| 977 | } |
| 978 | |
| 979 | /// Concatenate all chains into the final order. |
| 980 | std::vector<uint64_t> concatChains() { |
| 981 | // Collect non-empty chains. |
| 982 | std::vector<const ChainT *> SortedChains; |
| 983 | for (ChainT &Chain : AllChains) { |
| 984 | if (!Chain.Nodes.empty()) |
| 985 | SortedChains.push_back(x: &Chain); |
| 986 | } |
| 987 | |
| 988 | // Sorting chains by density in the decreasing order. |
| 989 | std::sort(first: SortedChains.begin(), last: SortedChains.end(), |
| 990 | comp: [&](const ChainT *L, const ChainT *R) { |
| 991 | // Place the entry point at the beginning of the order. |
| 992 | if (L->isEntry() != R->isEntry()) |
| 993 | return L->isEntry(); |
| 994 | |
| 995 | // Compare by density and break ties by chain identifiers. |
| 996 | return std::make_tuple(args: -L->density(), args: L->Id) < |
| 997 | std::make_tuple(args: -R->density(), args: R->Id); |
| 998 | }); |
| 999 | |
| 1000 | // Collect the nodes in the order specified by their chains. |
| 1001 | std::vector<uint64_t> Order; |
| 1002 | Order.reserve(n: NumNodes); |
| 1003 | for (const ChainT *Chain : SortedChains) |
| 1004 | for (NodeT *Node : Chain->Nodes) |
| 1005 | Order.push_back(x: Node->Index); |
| 1006 | return Order; |
| 1007 | } |
| 1008 | |
| 1009 | private: |
| 1010 | /// The number of nodes in the graph. |
| 1011 | const size_t NumNodes; |
| 1012 | |
| 1013 | /// Successors of each node. |
| 1014 | std::vector<std::vector<uint64_t>> SuccNodes; |
| 1015 | |
| 1016 | /// Predecessors of each node. |
| 1017 | std::vector<std::vector<uint64_t>> PredNodes; |
| 1018 | |
| 1019 | /// All nodes (basic blocks) in the graph. |
| 1020 | std::vector<NodeT> AllNodes; |
| 1021 | |
| 1022 | /// All jumps between the nodes. |
| 1023 | std::vector<JumpT> AllJumps; |
| 1024 | |
| 1025 | /// All chains of nodes. |
| 1026 | std::vector<ChainT> AllChains; |
| 1027 | |
| 1028 | /// All edges between the chains. |
| 1029 | std::vector<ChainEdge> AllEdges; |
| 1030 | |
| 1031 | /// Active chains. The vector gets updated at runtime when chains are merged. |
| 1032 | std::vector<ChainT *> HotChains; |
| 1033 | }; |
| 1034 | |
| 1035 | /// The implementation of the Cache-Directed Sort (CDSort) algorithm for |
| 1036 | /// ordering functions represented by a call graph. |
| 1037 | class CDSortImpl { |
| 1038 | public: |
| 1039 | CDSortImpl(const CDSortConfig &Config, ArrayRef<uint64_t> NodeSizes, |
| 1040 | ArrayRef<uint64_t> NodeCounts, ArrayRef<EdgeCount> EdgeCounts, |
| 1041 | ArrayRef<uint64_t> EdgeOffsets) |
| 1042 | : Config(Config), NumNodes(NodeSizes.size()) { |
| 1043 | initialize(NodeSizes, NodeCounts, EdgeCounts, EdgeOffsets); |
| 1044 | } |
| 1045 | |
| 1046 | /// Run the algorithm and return an ordered set of function clusters. |
| 1047 | std::vector<uint64_t> run() { |
| 1048 | // Merge pairs of chains while improving the objective. |
| 1049 | mergeChainPairs(); |
| 1050 | |
| 1051 | // Collect nodes from all the chains. |
| 1052 | return concatChains(); |
| 1053 | } |
| 1054 | |
| 1055 | private: |
| 1056 | /// Initialize the algorithm's data structures. |
| 1057 | void initialize(const ArrayRef<uint64_t> &NodeSizes, |
| 1058 | const ArrayRef<uint64_t> &NodeCounts, |
| 1059 | const ArrayRef<EdgeCount> &EdgeCounts, |
| 1060 | const ArrayRef<uint64_t> &EdgeOffsets) { |
| 1061 | // Initialize nodes. |
| 1062 | AllNodes.reserve(n: NumNodes); |
| 1063 | for (uint64_t Node = 0; Node < NumNodes; Node++) { |
| 1064 | uint64_t Size = std::max<uint64_t>(a: NodeSizes[Node], b: 1ULL); |
| 1065 | uint64_t ExecutionCount = NodeCounts[Node]; |
| 1066 | AllNodes.emplace_back(args&: Node, args&: Size, args&: ExecutionCount); |
| 1067 | TotalSamples += ExecutionCount; |
| 1068 | if (ExecutionCount > 0) |
| 1069 | TotalSize += Size; |
| 1070 | } |
| 1071 | |
| 1072 | // Initialize jumps between the nodes. |
| 1073 | SuccNodes.resize(new_size: NumNodes); |
| 1074 | PredNodes.resize(new_size: NumNodes); |
| 1075 | AllJumps.reserve(n: EdgeCounts.size()); |
| 1076 | for (size_t I = 0; I < EdgeCounts.size(); I++) { |
| 1077 | auto [Pred, Succ, Count] = EdgeCounts[I]; |
| 1078 | // Ignore recursive calls. |
| 1079 | if (Pred == Succ) |
| 1080 | continue; |
| 1081 | |
| 1082 | SuccNodes[Pred].push_back(x: Succ); |
| 1083 | PredNodes[Succ].push_back(x: Pred); |
| 1084 | if (Count > 0) { |
| 1085 | NodeT &PredNode = AllNodes[Pred]; |
| 1086 | NodeT &SuccNode = AllNodes[Succ]; |
| 1087 | AllJumps.emplace_back(args: &PredNode, args: &SuccNode, args&: Count); |
| 1088 | AllJumps.back().Offset = EdgeOffsets[I]; |
| 1089 | SuccNode.InJumps.push_back(x: &AllJumps.back()); |
| 1090 | PredNode.OutJumps.push_back(x: &AllJumps.back()); |
| 1091 | // Adjust execution counts. |
| 1092 | PredNode.ExecutionCount = std::max(a: PredNode.ExecutionCount, b: Count); |
| 1093 | SuccNode.ExecutionCount = std::max(a: SuccNode.ExecutionCount, b: Count); |
| 1094 | } |
| 1095 | } |
| 1096 | |
| 1097 | // Initialize chains. |
| 1098 | AllChains.reserve(n: NumNodes); |
| 1099 | for (NodeT &Node : AllNodes) { |
| 1100 | // Adjust execution counts. |
| 1101 | Node.ExecutionCount = std::max(a: Node.ExecutionCount, b: Node.inCount()); |
| 1102 | Node.ExecutionCount = std::max(a: Node.ExecutionCount, b: Node.outCount()); |
| 1103 | // Create chain. |
| 1104 | AllChains.emplace_back(args&: Node.Index, args: &Node); |
| 1105 | Node.CurChain = &AllChains.back(); |
| 1106 | } |
| 1107 | |
| 1108 | // Initialize chain edges. |
| 1109 | AllEdges.reserve(n: AllJumps.size()); |
| 1110 | for (NodeT &PredNode : AllNodes) { |
| 1111 | for (JumpT *Jump : PredNode.OutJumps) { |
| 1112 | NodeT *SuccNode = Jump->Target; |
| 1113 | ChainEdge *CurEdge = PredNode.CurChain->getEdge(Other: SuccNode->CurChain); |
| 1114 | // This edge is already present in the graph. |
| 1115 | if (CurEdge != nullptr) { |
| 1116 | assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr); |
| 1117 | CurEdge->appendJump(Jump); |
| 1118 | continue; |
| 1119 | } |
| 1120 | // This is a new edge. |
| 1121 | AllEdges.emplace_back(args&: Jump); |
| 1122 | PredNode.CurChain->addEdge(Other: SuccNode->CurChain, Edge: &AllEdges.back()); |
| 1123 | SuccNode->CurChain->addEdge(Other: PredNode.CurChain, Edge: &AllEdges.back()); |
| 1124 | } |
| 1125 | } |
| 1126 | } |
| 1127 | |
| 1128 | /// Merge pairs of chains while there is an improvement in the objective. |
| 1129 | void mergeChainPairs() { |
| 1130 | // Create a priority queue containing all edges ordered by the merge gain. |
| 1131 | auto GainComparator = [](ChainEdge *L, ChainEdge *R) { |
| 1132 | return std::make_tuple(args: -L->gain(), args&: L->srcChain()->Id, args&: L->dstChain()->Id) < |
| 1133 | std::make_tuple(args: -R->gain(), args&: R->srcChain()->Id, args&: R->dstChain()->Id); |
| 1134 | }; |
| 1135 | std::set<ChainEdge *, decltype(GainComparator)> Queue(GainComparator); |
| 1136 | |
| 1137 | // Insert the edges into the queue. |
| 1138 | [[maybe_unused]] size_t NumActiveChains = 0; |
| 1139 | for (NodeT &Node : AllNodes) { |
| 1140 | if (Node.ExecutionCount == 0) |
| 1141 | continue; |
| 1142 | ++NumActiveChains; |
| 1143 | for (const auto &[_, Edge] : Node.CurChain->Edges) { |
| 1144 | // Ignore self-edges. |
| 1145 | if (Edge->isSelfEdge()) |
| 1146 | continue; |
| 1147 | // Ignore already processed edges. |
| 1148 | if (Edge->gain() != -1.0) |
| 1149 | continue; |
| 1150 | |
| 1151 | // Compute the gain of merging the two chains. |
| 1152 | MergeGainT Gain = getBestMergeGain(Edge); |
| 1153 | Edge->setMergeGain(Gain); |
| 1154 | |
| 1155 | if (Edge->gain() > EPS) |
| 1156 | Queue.insert(x: Edge); |
| 1157 | } |
| 1158 | } |
| 1159 | |
| 1160 | // Merge the chains while the gain of merging is positive. |
| 1161 | while (!Queue.empty()) { |
| 1162 | // Extract the best (top) edge for merging. |
| 1163 | ChainEdge *BestEdge = *Queue.begin(); |
| 1164 | Queue.erase(position: Queue.begin()); |
| 1165 | ChainT *BestSrcChain = BestEdge->srcChain(); |
| 1166 | ChainT *BestDstChain = BestEdge->dstChain(); |
| 1167 | |
| 1168 | // Remove outdated edges from the queue. |
| 1169 | for (const auto &[_, ChainEdge] : BestSrcChain->Edges) |
| 1170 | Queue.erase(x: ChainEdge); |
| 1171 | for (const auto &[_, ChainEdge] : BestDstChain->Edges) |
| 1172 | Queue.erase(x: ChainEdge); |
| 1173 | |
| 1174 | // Merge the best pair of chains. |
| 1175 | MergeGainT BestGain = BestEdge->getMergeGain(); |
| 1176 | mergeChains(Into: BestSrcChain, From: BestDstChain, MergeOffset: BestGain.mergeOffset(), |
| 1177 | MergeType: BestGain.mergeType()); |
| 1178 | --NumActiveChains; |
| 1179 | |
| 1180 | // Insert newly created edges into the queue. |
| 1181 | for (const auto &[_, Edge] : BestSrcChain->Edges) { |
| 1182 | // Ignore loop edges. |
| 1183 | if (Edge->isSelfEdge()) |
| 1184 | continue; |
| 1185 | if (Edge->srcChain()->numBlocks() + Edge->dstChain()->numBlocks() > |
| 1186 | Config.MaxChainSize) |
| 1187 | continue; |
| 1188 | |
| 1189 | // Compute the gain of merging the two chains. |
| 1190 | MergeGainT Gain = getBestMergeGain(Edge); |
| 1191 | Edge->setMergeGain(Gain); |
| 1192 | |
| 1193 | if (Edge->gain() > EPS) |
| 1194 | Queue.insert(x: Edge); |
| 1195 | } |
| 1196 | } |
| 1197 | |
| 1198 | LLVM_DEBUG(dbgs() << "Cache-directed function sorting reduced the number" |
| 1199 | << " of chains from " << NumNodes << " to " |
| 1200 | << NumActiveChains << "\n" ); |
| 1201 | } |
| 1202 | |
| 1203 | /// Compute the gain of merging two chains. |
| 1204 | /// |
| 1205 | /// The function considers all possible ways of merging two chains and |
| 1206 | /// computes the one having the largest increase in ExtTSP objective. The |
| 1207 | /// result is a pair with the first element being the gain and the second |
| 1208 | /// element being the corresponding merging type. |
| 1209 | MergeGainT getBestMergeGain(ChainEdge *Edge) const { |
| 1210 | assert(!Edge->jumps().empty() && "trying to merge chains w/o jumps" ); |
| 1211 | // Precompute jumps between ChainPred and ChainSucc. |
| 1212 | MergedJumpsT Jumps(&Edge->jumps()); |
| 1213 | ChainT *SrcChain = Edge->srcChain(); |
| 1214 | ChainT *DstChain = Edge->dstChain(); |
| 1215 | |
| 1216 | // This object holds the best currently chosen gain of merging two chains. |
| 1217 | MergeGainT Gain = MergeGainT(); |
| 1218 | |
| 1219 | /// Given a list of merge types, try to merge two chains and update Gain |
| 1220 | /// with a better alternative. |
| 1221 | auto tryChainMerging = [&](const std::vector<MergeTypeT> &MergeTypes) { |
| 1222 | // Apply the merge, compute the corresponding gain, and update the best |
| 1223 | // value, if the merge is beneficial. |
| 1224 | for (const MergeTypeT &MergeType : MergeTypes) { |
| 1225 | MergeGainT NewGain = |
| 1226 | computeMergeGain(ChainPred: SrcChain, ChainSucc: DstChain, Jumps, MergeType); |
| 1227 | |
| 1228 | // When forward and backward gains are the same, prioritize merging that |
| 1229 | // preserves the original order of the functions in the binary. |
| 1230 | if (std::abs(x: Gain.score() - NewGain.score()) < EPS) { |
| 1231 | if ((MergeType == MergeTypeT::X_Y && SrcChain->Id < DstChain->Id) || |
| 1232 | (MergeType == MergeTypeT::Y_X && SrcChain->Id > DstChain->Id)) { |
| 1233 | Gain = NewGain; |
| 1234 | } |
| 1235 | } else if (NewGain.score() > Gain.score() + EPS) { |
| 1236 | Gain = NewGain; |
| 1237 | } |
| 1238 | } |
| 1239 | }; |
| 1240 | |
| 1241 | // Try to concatenate two chains w/o splitting. |
| 1242 | tryChainMerging({MergeTypeT::X_Y, MergeTypeT::Y_X}); |
| 1243 | |
| 1244 | return Gain; |
| 1245 | } |
| 1246 | |
| 1247 | /// Compute the score gain of merging two chains, respecting a given type. |
| 1248 | /// |
| 1249 | /// The two chains are not modified in the method. |
| 1250 | MergeGainT computeMergeGain(ChainT *ChainPred, ChainT *ChainSucc, |
| 1251 | const MergedJumpsT &Jumps, |
| 1252 | MergeTypeT MergeType) const { |
| 1253 | // This doesn't depend on the ordering of the nodes |
| 1254 | double FreqGain = freqBasedLocalityGain(ChainPred, ChainSucc); |
| 1255 | |
| 1256 | // Merge offset is always 0, as the chains are not split. |
| 1257 | size_t MergeOffset = 0; |
| 1258 | auto MergedBlocks = |
| 1259 | mergeNodes(X: ChainPred->Nodes, Y: ChainSucc->Nodes, MergeOffset, MergeType); |
| 1260 | double DistGain = distBasedLocalityGain(Nodes: MergedBlocks, Jumps); |
| 1261 | |
| 1262 | double GainScore = DistGain + Config.FrequencyScale * FreqGain; |
| 1263 | // Scale the result to increase the importance of merging short chains. |
| 1264 | if (GainScore >= 0.0) |
| 1265 | GainScore /= std::min(a: ChainPred->Size, b: ChainSucc->Size); |
| 1266 | |
| 1267 | return MergeGainT(GainScore, MergeOffset, MergeType); |
| 1268 | } |
| 1269 | |
| 1270 | /// Compute the change of the frequency locality after merging the chains. |
| 1271 | double freqBasedLocalityGain(ChainT *ChainPred, ChainT *ChainSucc) const { |
| 1272 | auto missProbability = [&](double ChainDensity) { |
| 1273 | double PageSamples = ChainDensity * Config.CacheSize; |
| 1274 | if (PageSamples >= TotalSamples) |
| 1275 | return 0.0; |
| 1276 | double P = PageSamples / TotalSamples; |
| 1277 | return pow(x: 1.0 - P, y: static_cast<double>(Config.CacheEntries)); |
| 1278 | }; |
| 1279 | |
| 1280 | // Cache misses on the chains before merging. |
| 1281 | double CurScore = |
| 1282 | ChainPred->ExecutionCount * missProbability(ChainPred->density()) + |
| 1283 | ChainSucc->ExecutionCount * missProbability(ChainSucc->density()); |
| 1284 | |
| 1285 | // Cache misses on the merged chain |
| 1286 | double MergedCounts = ChainPred->ExecutionCount + ChainSucc->ExecutionCount; |
| 1287 | double MergedSize = ChainPred->Size + ChainSucc->Size; |
| 1288 | double MergedDensity = static_cast<double>(MergedCounts) / MergedSize; |
| 1289 | double NewScore = MergedCounts * missProbability(MergedDensity); |
| 1290 | |
| 1291 | return CurScore - NewScore; |
| 1292 | } |
| 1293 | |
| 1294 | /// Compute the distance locality for a jump / call. |
| 1295 | double distScore(uint64_t SrcAddr, uint64_t DstAddr, uint64_t Count) const { |
| 1296 | uint64_t Dist = SrcAddr <= DstAddr ? DstAddr - SrcAddr : SrcAddr - DstAddr; |
| 1297 | double D = Dist == 0 ? 0.1 : static_cast<double>(Dist); |
| 1298 | return static_cast<double>(Count) * std::pow(x: D, y: -Config.DistancePower); |
| 1299 | } |
| 1300 | |
| 1301 | /// Compute the change of the distance locality after merging the chains. |
| 1302 | double distBasedLocalityGain(const MergedNodesT &Nodes, |
| 1303 | const MergedJumpsT &Jumps) const { |
| 1304 | uint64_t CurAddr = 0; |
| 1305 | Nodes.forEach(Func: [&](const NodeT *Node) { |
| 1306 | Node->EstimatedAddr = CurAddr; |
| 1307 | CurAddr += Node->Size; |
| 1308 | }); |
| 1309 | |
| 1310 | double CurScore = 0; |
| 1311 | double NewScore = 0; |
| 1312 | Jumps.forEach(Func: [&](const JumpT *Jump) { |
| 1313 | uint64_t SrcAddr = Jump->Source->EstimatedAddr + Jump->Offset; |
| 1314 | uint64_t DstAddr = Jump->Target->EstimatedAddr; |
| 1315 | NewScore += distScore(SrcAddr, DstAddr, Count: Jump->ExecutionCount); |
| 1316 | CurScore += distScore(SrcAddr: 0, DstAddr: TotalSize, Count: Jump->ExecutionCount); |
| 1317 | }); |
| 1318 | return NewScore - CurScore; |
| 1319 | } |
| 1320 | |
| 1321 | /// Merge chain From into chain Into, update the list of active chains, |
| 1322 | /// adjacency information, and the corresponding cached values. |
| 1323 | void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset, |
| 1324 | MergeTypeT MergeType) { |
| 1325 | assert(Into != From && "a chain cannot be merged with itself" ); |
| 1326 | |
| 1327 | // Merge the nodes. |
| 1328 | MergedNodesT MergedNodes = |
| 1329 | mergeNodes(X: Into->Nodes, Y: From->Nodes, MergeOffset, MergeType); |
| 1330 | Into->merge(Other: From, MergedBlocks: MergedNodes.getNodes()); |
| 1331 | |
| 1332 | // Merge the edges. |
| 1333 | Into->mergeEdges(Other: From); |
| 1334 | From->clear(); |
| 1335 | } |
| 1336 | |
| 1337 | /// Concatenate all chains into the final order. |
| 1338 | std::vector<uint64_t> concatChains() { |
| 1339 | // Collect chains and calculate density stats for their sorting. |
| 1340 | std::vector<const ChainT *> SortedChains; |
| 1341 | DenseMap<const ChainT *, double> ChainDensity; |
| 1342 | for (ChainT &Chain : AllChains) { |
| 1343 | if (!Chain.Nodes.empty()) { |
| 1344 | SortedChains.push_back(x: &Chain); |
| 1345 | // Using doubles to avoid overflow of ExecutionCounts. |
| 1346 | double Size = 0; |
| 1347 | double ExecutionCount = 0; |
| 1348 | for (NodeT *Node : Chain.Nodes) { |
| 1349 | Size += static_cast<double>(Node->Size); |
| 1350 | ExecutionCount += static_cast<double>(Node->ExecutionCount); |
| 1351 | } |
| 1352 | assert(Size > 0 && "a chain of zero size" ); |
| 1353 | ChainDensity[&Chain] = ExecutionCount / Size; |
| 1354 | } |
| 1355 | } |
| 1356 | |
| 1357 | // Sort chains by density in the decreasing order. |
| 1358 | std::sort(first: SortedChains.begin(), last: SortedChains.end(), |
| 1359 | comp: [&](const ChainT *L, const ChainT *R) { |
| 1360 | const double DL = ChainDensity[L]; |
| 1361 | const double DR = ChainDensity[R]; |
| 1362 | // Compare by density and break ties by chain identifiers. |
| 1363 | return std::make_tuple(args: -DL, args: L->Id) < |
| 1364 | std::make_tuple(args: -DR, args: R->Id); |
| 1365 | }); |
| 1366 | |
| 1367 | // Collect the nodes in the order specified by their chains. |
| 1368 | std::vector<uint64_t> Order; |
| 1369 | Order.reserve(n: NumNodes); |
| 1370 | for (const ChainT *Chain : SortedChains) |
| 1371 | for (NodeT *Node : Chain->Nodes) |
| 1372 | Order.push_back(x: Node->Index); |
| 1373 | return Order; |
| 1374 | } |
| 1375 | |
| 1376 | private: |
| 1377 | /// Config for the algorithm. |
| 1378 | const CDSortConfig Config; |
| 1379 | |
| 1380 | /// The number of nodes in the graph. |
| 1381 | const size_t NumNodes; |
| 1382 | |
| 1383 | /// Successors of each node. |
| 1384 | std::vector<std::vector<uint64_t>> SuccNodes; |
| 1385 | |
| 1386 | /// Predecessors of each node. |
| 1387 | std::vector<std::vector<uint64_t>> PredNodes; |
| 1388 | |
| 1389 | /// All nodes (functions) in the graph. |
| 1390 | std::vector<NodeT> AllNodes; |
| 1391 | |
| 1392 | /// All jumps (function calls) between the nodes. |
| 1393 | std::vector<JumpT> AllJumps; |
| 1394 | |
| 1395 | /// All chains of nodes. |
| 1396 | std::vector<ChainT> AllChains; |
| 1397 | |
| 1398 | /// All edges between the chains. |
| 1399 | std::vector<ChainEdge> AllEdges; |
| 1400 | |
| 1401 | /// The total number of samples in the graph. |
| 1402 | uint64_t TotalSamples{0}; |
| 1403 | |
| 1404 | /// The total size of the nodes in the graph. |
| 1405 | uint64_t TotalSize{0}; |
| 1406 | }; |
| 1407 | |
| 1408 | } // end of anonymous namespace |
| 1409 | |
| 1410 | std::vector<uint64_t> |
| 1411 | codelayout::computeExtTspLayout(ArrayRef<uint64_t> NodeSizes, |
| 1412 | ArrayRef<uint64_t> NodeCounts, |
| 1413 | ArrayRef<EdgeCount> EdgeCounts) { |
| 1414 | // Verify correctness of the input data. |
| 1415 | assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input" ); |
| 1416 | assert(NodeSizes.size() > 2 && "Incorrect input" ); |
| 1417 | |
| 1418 | // Apply the reordering algorithm. |
| 1419 | ExtTSPImpl Alg(NodeSizes, NodeCounts, EdgeCounts); |
| 1420 | std::vector<uint64_t> Result = Alg.run(); |
| 1421 | |
| 1422 | // Verify correctness of the output. |
| 1423 | assert(Result.front() == 0 && "Original entry point is not preserved" ); |
| 1424 | assert(Result.size() == NodeSizes.size() && "Incorrect size of layout" ); |
| 1425 | return Result; |
| 1426 | } |
| 1427 | |
| 1428 | double codelayout::calcExtTspScore(ArrayRef<uint64_t> Order, |
| 1429 | ArrayRef<uint64_t> NodeSizes, |
| 1430 | ArrayRef<EdgeCount> EdgeCounts) { |
| 1431 | // Estimate addresses of the blocks in memory. |
| 1432 | SmallVector<uint64_t> Addr(NodeSizes.size(), 0); |
| 1433 | for (uint64_t Idx = 1; Idx < Order.size(); Idx++) |
| 1434 | Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]]; |
| 1435 | SmallVector<uint64_t> OutDegree(NodeSizes.size(), 0); |
| 1436 | for (auto &Edge : EdgeCounts) |
| 1437 | ++OutDegree[Edge.src]; |
| 1438 | |
| 1439 | // Increase the score for each jump. |
| 1440 | double Score = 0; |
| 1441 | for (auto &Edge : EdgeCounts) { |
| 1442 | bool IsConditional = OutDegree[Edge.src] > 1; |
| 1443 | Score += ::extTSPScore(SrcAddr: Addr[Edge.src], SrcSize: NodeSizes[Edge.src], DstAddr: Addr[Edge.dst], |
| 1444 | Count: Edge.count, IsConditional); |
| 1445 | } |
| 1446 | return Score; |
| 1447 | } |
| 1448 | |
| 1449 | double codelayout::calcExtTspScore(ArrayRef<uint64_t> NodeSizes, |
| 1450 | ArrayRef<EdgeCount> EdgeCounts) { |
| 1451 | SmallVector<uint64_t> Order(NodeSizes.size()); |
| 1452 | for (uint64_t Idx = 0; Idx < NodeSizes.size(); Idx++) |
| 1453 | Order[Idx] = Idx; |
| 1454 | return calcExtTspScore(Order, NodeSizes, EdgeCounts); |
| 1455 | } |
| 1456 | |
| 1457 | std::vector<uint64_t> codelayout::computeCacheDirectedLayout( |
| 1458 | const CDSortConfig &Config, ArrayRef<uint64_t> FuncSizes, |
| 1459 | ArrayRef<uint64_t> FuncCounts, ArrayRef<EdgeCount> CallCounts, |
| 1460 | ArrayRef<uint64_t> CallOffsets) { |
| 1461 | // Verify correctness of the input data. |
| 1462 | assert(FuncCounts.size() == FuncSizes.size() && "Incorrect input" ); |
| 1463 | |
| 1464 | // Apply the reordering algorithm. |
| 1465 | CDSortImpl Alg(Config, FuncSizes, FuncCounts, CallCounts, CallOffsets); |
| 1466 | std::vector<uint64_t> Result = Alg.run(); |
| 1467 | assert(Result.size() == FuncSizes.size() && "Incorrect size of layout" ); |
| 1468 | return Result; |
| 1469 | } |
| 1470 | |
| 1471 | std::vector<uint64_t> codelayout::computeCacheDirectedLayout( |
| 1472 | ArrayRef<uint64_t> FuncSizes, ArrayRef<uint64_t> FuncCounts, |
| 1473 | ArrayRef<EdgeCount> CallCounts, ArrayRef<uint64_t> CallOffsets) { |
| 1474 | CDSortConfig Config; |
| 1475 | // Populate the config from the command-line options. |
| 1476 | if (CacheEntries.getNumOccurrences() > 0) |
| 1477 | Config.CacheEntries = CacheEntries; |
| 1478 | if (CacheSize.getNumOccurrences() > 0) |
| 1479 | Config.CacheSize = CacheSize; |
| 1480 | if (CDMaxChainSize.getNumOccurrences() > 0) |
| 1481 | Config.MaxChainSize = CDMaxChainSize; |
| 1482 | if (DistancePower.getNumOccurrences() > 0) |
| 1483 | Config.DistancePower = DistancePower; |
| 1484 | if (FrequencyScale.getNumOccurrences() > 0) |
| 1485 | Config.FrequencyScale = FrequencyScale; |
| 1486 | return computeCacheDirectedLayout(Config, FuncSizes, FuncCounts, CallCounts, |
| 1487 | CallOffsets); |
| 1488 | } |
| 1489 | |