1 | //===-- LoopUnrollAndJam.cpp - Loop unrolling utilities -------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements loop unroll and jam as a routine, much like |
10 | // LoopUnroll.cpp implements loop unroll. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/ADT/ArrayRef.h" |
15 | #include "llvm/ADT/DenseMap.h" |
16 | #include "llvm/ADT/STLExtras.h" |
17 | #include "llvm/ADT/SmallPtrSet.h" |
18 | #include "llvm/ADT/SmallVector.h" |
19 | #include "llvm/ADT/Statistic.h" |
20 | #include "llvm/ADT/StringRef.h" |
21 | #include "llvm/ADT/Twine.h" |
22 | #include "llvm/Analysis/AssumptionCache.h" |
23 | #include "llvm/Analysis/DependenceAnalysis.h" |
24 | #include "llvm/Analysis/DomTreeUpdater.h" |
25 | #include "llvm/Analysis/LoopInfo.h" |
26 | #include "llvm/Analysis/LoopIterator.h" |
27 | #include "llvm/Analysis/MustExecute.h" |
28 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
29 | #include "llvm/Analysis/ScalarEvolution.h" |
30 | #include "llvm/IR/BasicBlock.h" |
31 | #include "llvm/IR/DebugInfoMetadata.h" |
32 | #include "llvm/IR/DebugLoc.h" |
33 | #include "llvm/IR/DiagnosticInfo.h" |
34 | #include "llvm/IR/Dominators.h" |
35 | #include "llvm/IR/Function.h" |
36 | #include "llvm/IR/Instruction.h" |
37 | #include "llvm/IR/Instructions.h" |
38 | #include "llvm/IR/IntrinsicInst.h" |
39 | #include "llvm/IR/User.h" |
40 | #include "llvm/IR/Value.h" |
41 | #include "llvm/IR/ValueHandle.h" |
42 | #include "llvm/IR/ValueMap.h" |
43 | #include "llvm/Support/Casting.h" |
44 | #include "llvm/Support/Debug.h" |
45 | #include "llvm/Support/ErrorHandling.h" |
46 | #include "llvm/Support/GenericDomTree.h" |
47 | #include "llvm/Support/raw_ostream.h" |
48 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
49 | #include "llvm/Transforms/Utils/Cloning.h" |
50 | #include "llvm/Transforms/Utils/LoopUtils.h" |
51 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
52 | #include "llvm/Transforms/Utils/UnrollLoop.h" |
53 | #include "llvm/Transforms/Utils/ValueMapper.h" |
54 | #include <assert.h> |
55 | #include <memory> |
56 | #include <type_traits> |
57 | #include <vector> |
58 | |
59 | using namespace llvm; |
60 | |
61 | #define DEBUG_TYPE "loop-unroll-and-jam" |
62 | |
63 | STATISTIC(NumUnrolledAndJammed, "Number of loops unroll and jammed" ); |
64 | STATISTIC(NumCompletelyUnrolledAndJammed, "Number of loops unroll and jammed" ); |
65 | |
66 | typedef SmallPtrSet<BasicBlock *, 4> BasicBlockSet; |
67 | |
68 | // Partition blocks in an outer/inner loop pair into blocks before and after |
69 | // the loop |
70 | static bool partitionLoopBlocks(Loop &L, BasicBlockSet &ForeBlocks, |
71 | BasicBlockSet &AftBlocks, DominatorTree &DT) { |
72 | Loop *SubLoop = L.getSubLoops()[0]; |
73 | BasicBlock *SubLoopLatch = SubLoop->getLoopLatch(); |
74 | |
75 | for (BasicBlock *BB : L.blocks()) { |
76 | if (!SubLoop->contains(BB)) { |
77 | if (DT.dominates(A: SubLoopLatch, B: BB)) |
78 | AftBlocks.insert(Ptr: BB); |
79 | else |
80 | ForeBlocks.insert(Ptr: BB); |
81 | } |
82 | } |
83 | |
84 | // Check that all blocks in ForeBlocks together dominate the subloop |
85 | // TODO: This might ideally be done better with a dominator/postdominators. |
86 | BasicBlock * = SubLoop->getLoopPreheader(); |
87 | for (BasicBlock *BB : ForeBlocks) { |
88 | if (BB == SubLoopPreHeader) |
89 | continue; |
90 | Instruction *TI = BB->getTerminator(); |
91 | for (BasicBlock *Succ : successors(I: TI)) |
92 | if (!ForeBlocks.count(Ptr: Succ)) |
93 | return false; |
94 | } |
95 | |
96 | return true; |
97 | } |
98 | |
99 | /// Partition blocks in a loop nest into blocks before and after each inner |
100 | /// loop. |
101 | static bool partitionOuterLoopBlocks( |
102 | Loop &Root, Loop &JamLoop, BasicBlockSet &JamLoopBlocks, |
103 | DenseMap<Loop *, BasicBlockSet> &ForeBlocksMap, |
104 | DenseMap<Loop *, BasicBlockSet> &AftBlocksMap, DominatorTree &DT) { |
105 | JamLoopBlocks.insert_range(R: JamLoop.blocks()); |
106 | |
107 | for (Loop *L : Root.getLoopsInPreorder()) { |
108 | if (L == &JamLoop) |
109 | break; |
110 | |
111 | if (!partitionLoopBlocks(L&: *L, ForeBlocks&: ForeBlocksMap[L], AftBlocks&: AftBlocksMap[L], DT)) |
112 | return false; |
113 | } |
114 | |
115 | return true; |
116 | } |
117 | |
118 | // TODO Remove when UnrollAndJamLoop changed to support unroll and jamming more |
119 | // than 2 levels loop. |
120 | static bool partitionOuterLoopBlocks(Loop *L, Loop *SubLoop, |
121 | BasicBlockSet &ForeBlocks, |
122 | BasicBlockSet &SubLoopBlocks, |
123 | BasicBlockSet &AftBlocks, |
124 | DominatorTree *DT) { |
125 | SubLoopBlocks.insert_range(R: SubLoop->blocks()); |
126 | return partitionLoopBlocks(L&: *L, ForeBlocks, AftBlocks, DT&: *DT); |
127 | } |
128 | |
129 | // Looks at the phi nodes in Header for values coming from Latch. For these |
130 | // instructions and all their operands calls Visit on them, keeping going for |
131 | // all the operands in AftBlocks. Returns false if Visit returns false, |
132 | // otherwise returns true. This is used to process the instructions in the |
133 | // Aft blocks that need to be moved before the subloop. It is used in two |
134 | // places. One to check that the required set of instructions can be moved |
135 | // before the loop. Then to collect the instructions to actually move in |
136 | // moveHeaderPhiOperandsToForeBlocks. |
137 | template <typename T> |
138 | static bool processHeaderPhiOperands(BasicBlock *, BasicBlock *Latch, |
139 | BasicBlockSet &AftBlocks, T Visit) { |
140 | SmallPtrSet<Instruction *, 8> VisitedInstr; |
141 | |
142 | std::function<bool(Instruction * I)> ProcessInstr = [&](Instruction *I) { |
143 | if (!VisitedInstr.insert(Ptr: I).second) |
144 | return true; |
145 | |
146 | if (AftBlocks.count(Ptr: I->getParent())) |
147 | for (auto &U : I->operands()) |
148 | if (Instruction *II = dyn_cast<Instruction>(Val&: U)) |
149 | if (!ProcessInstr(II)) |
150 | return false; |
151 | |
152 | return Visit(I); |
153 | }; |
154 | |
155 | for (auto &Phi : Header->phis()) { |
156 | Value *V = Phi.getIncomingValueForBlock(BB: Latch); |
157 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) |
158 | if (!ProcessInstr(I)) |
159 | return false; |
160 | } |
161 | |
162 | return true; |
163 | } |
164 | |
165 | // Move the phi operands of Header from Latch out of AftBlocks to InsertLoc. |
166 | static void moveHeaderPhiOperandsToForeBlocks(BasicBlock *, |
167 | BasicBlock *Latch, |
168 | BasicBlock::iterator InsertLoc, |
169 | BasicBlockSet &AftBlocks) { |
170 | // We need to ensure we move the instructions in the correct order, |
171 | // starting with the earliest required instruction and moving forward. |
172 | processHeaderPhiOperands(Header, Latch, AftBlocks, |
173 | Visit: [&AftBlocks, &InsertLoc](Instruction *I) { |
174 | if (AftBlocks.count(Ptr: I->getParent())) |
175 | I->moveBefore(InsertPos: InsertLoc); |
176 | return true; |
177 | }); |
178 | } |
179 | |
180 | /* |
181 | This method performs Unroll and Jam. For a simple loop like: |
182 | for (i = ..) |
183 | Fore(i) |
184 | for (j = ..) |
185 | SubLoop(i, j) |
186 | Aft(i) |
187 | |
188 | Instead of doing normal inner or outer unrolling, we do: |
189 | for (i = .., i+=2) |
190 | Fore(i) |
191 | Fore(i+1) |
192 | for (j = ..) |
193 | SubLoop(i, j) |
194 | SubLoop(i+1, j) |
195 | Aft(i) |
196 | Aft(i+1) |
197 | |
198 | So the outer loop is essetially unrolled and then the inner loops are fused |
199 | ("jammed") together into a single loop. This can increase speed when there |
200 | are loads in SubLoop that are invariant to i, as they become shared between |
201 | the now jammed inner loops. |
202 | |
203 | We do this by spliting the blocks in the loop into Fore, Subloop and Aft. |
204 | Fore blocks are those before the inner loop, Aft are those after. Normal |
205 | Unroll code is used to copy each of these sets of blocks and the results are |
206 | combined together into the final form above. |
207 | |
208 | isSafeToUnrollAndJam should be used prior to calling this to make sure the |
209 | unrolling will be valid. Checking profitablility is also advisable. |
210 | |
211 | If EpilogueLoop is non-null, it receives the epilogue loop (if it was |
212 | necessary to create one and not fully unrolled). |
213 | */ |
214 | LoopUnrollResult |
215 | llvm::UnrollAndJamLoop(Loop *L, unsigned Count, unsigned TripCount, |
216 | unsigned TripMultiple, bool UnrollRemainder, |
217 | LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, |
218 | AssumptionCache *AC, const TargetTransformInfo *TTI, |
219 | OptimizationRemarkEmitter *ORE, Loop **EpilogueLoop) { |
220 | |
221 | // When we enter here we should have already checked that it is safe |
222 | BasicBlock * = L->getHeader(); |
223 | assert(Header && "No header." ); |
224 | assert(L->getSubLoops().size() == 1); |
225 | Loop *SubLoop = *L->begin(); |
226 | |
227 | // Don't enter the unroll code if there is nothing to do. |
228 | if (TripCount == 0 && Count < 2) { |
229 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; almost nothing to do\n" ); |
230 | return LoopUnrollResult::Unmodified; |
231 | } |
232 | |
233 | assert(Count > 0); |
234 | assert(TripMultiple > 0); |
235 | assert(TripCount == 0 || TripCount % TripMultiple == 0); |
236 | |
237 | // Are we eliminating the loop control altogether? |
238 | bool CompletelyUnroll = (Count == TripCount); |
239 | |
240 | // We use the runtime remainder in cases where we don't know trip multiple |
241 | if (TripMultiple % Count != 0) { |
242 | if (!UnrollRuntimeLoopRemainder(L, Count, /*AllowExpensiveTripCount*/ false, |
243 | /*UseEpilogRemainder*/ true, |
244 | UnrollRemainder, /*ForgetAllSCEV*/ false, |
245 | LI, SE, DT, AC, TTI, PreserveLCSSA: true, |
246 | SCEVExpansionBudget: SCEVCheapExpansionBudget, RuntimeUnrollMultiExit: EpilogueLoop)) { |
247 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; remainder loop could not be " |
248 | "generated when assuming runtime trip count\n" ); |
249 | return LoopUnrollResult::Unmodified; |
250 | } |
251 | } |
252 | |
253 | // Notify ScalarEvolution that the loop will be substantially changed, |
254 | // if not outright eliminated. |
255 | if (SE) { |
256 | SE->forgetLoop(L); |
257 | SE->forgetBlockAndLoopDispositions(); |
258 | } |
259 | |
260 | using namespace ore; |
261 | // Report the unrolling decision. |
262 | if (CompletelyUnroll) { |
263 | LLVM_DEBUG(dbgs() << "COMPLETELY UNROLL AND JAMMING loop %" |
264 | << Header->getName() << " with trip count " << TripCount |
265 | << "!\n" ); |
266 | ORE->emit(OptDiag: OptimizationRemark(DEBUG_TYPE, "FullyUnrolled" , L->getStartLoc(), |
267 | L->getHeader()) |
268 | << "completely unroll and jammed loop with " |
269 | << NV("UnrollCount" , TripCount) << " iterations" ); |
270 | } else { |
271 | auto DiagBuilder = [&]() { |
272 | OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled" , L->getStartLoc(), |
273 | L->getHeader()); |
274 | return Diag << "unroll and jammed loop by a factor of " |
275 | << NV("UnrollCount" , Count); |
276 | }; |
277 | |
278 | LLVM_DEBUG(dbgs() << "UNROLL AND JAMMING loop %" << Header->getName() |
279 | << " by " << Count); |
280 | if (TripMultiple != 1) { |
281 | LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch" ); |
282 | ORE->emit(RemarkBuilder: [&]() { |
283 | return DiagBuilder() << " with " << NV("TripMultiple" , TripMultiple) |
284 | << " trips per branch" ; |
285 | }); |
286 | } else { |
287 | LLVM_DEBUG(dbgs() << " with run-time trip count" ); |
288 | ORE->emit(RemarkBuilder: [&]() { return DiagBuilder() << " with run-time trip count" ; }); |
289 | } |
290 | LLVM_DEBUG(dbgs() << "!\n" ); |
291 | } |
292 | |
293 | BasicBlock * = L->getLoopPreheader(); |
294 | BasicBlock *LatchBlock = L->getLoopLatch(); |
295 | assert(Preheader && "No preheader" ); |
296 | assert(LatchBlock && "No latch block" ); |
297 | BranchInst *BI = dyn_cast<BranchInst>(Val: LatchBlock->getTerminator()); |
298 | assert(BI && !BI->isUnconditional()); |
299 | bool ContinueOnTrue = L->contains(BB: BI->getSuccessor(i: 0)); |
300 | BasicBlock *LoopExit = BI->getSuccessor(i: ContinueOnTrue); |
301 | bool SubLoopContinueOnTrue = SubLoop->contains( |
302 | BB: SubLoop->getLoopLatch()->getTerminator()->getSuccessor(Idx: 0)); |
303 | |
304 | // Partition blocks in an outer/inner loop pair into blocks before and after |
305 | // the loop |
306 | BasicBlockSet SubLoopBlocks; |
307 | BasicBlockSet ForeBlocks; |
308 | BasicBlockSet AftBlocks; |
309 | partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks, AftBlocks, |
310 | DT); |
311 | |
312 | // We keep track of the entering/first and exiting/last block of each of |
313 | // Fore/SubLoop/Aft in each iteration. This helps make the stapling up of |
314 | // blocks easier. |
315 | std::vector<BasicBlock *> ForeBlocksFirst; |
316 | std::vector<BasicBlock *> ForeBlocksLast; |
317 | std::vector<BasicBlock *> SubLoopBlocksFirst; |
318 | std::vector<BasicBlock *> SubLoopBlocksLast; |
319 | std::vector<BasicBlock *> AftBlocksFirst; |
320 | std::vector<BasicBlock *> AftBlocksLast; |
321 | ForeBlocksFirst.push_back(x: Header); |
322 | ForeBlocksLast.push_back(x: SubLoop->getLoopPreheader()); |
323 | SubLoopBlocksFirst.push_back(x: SubLoop->getHeader()); |
324 | SubLoopBlocksLast.push_back(x: SubLoop->getExitingBlock()); |
325 | AftBlocksFirst.push_back(x: SubLoop->getExitBlock()); |
326 | AftBlocksLast.push_back(x: L->getExitingBlock()); |
327 | // Maps Blocks[0] -> Blocks[It] |
328 | ValueToValueMapTy LastValueMap; |
329 | |
330 | // Move any instructions from fore phi operands from AftBlocks into Fore. |
331 | moveHeaderPhiOperandsToForeBlocks( |
332 | Header, Latch: LatchBlock, InsertLoc: ForeBlocksLast[0]->getTerminator()->getIterator(), |
333 | AftBlocks); |
334 | |
335 | // The current on-the-fly SSA update requires blocks to be processed in |
336 | // reverse postorder so that LastValueMap contains the correct value at each |
337 | // exit. |
338 | LoopBlocksDFS DFS(L); |
339 | DFS.perform(LI); |
340 | // Stash the DFS iterators before adding blocks to the loop. |
341 | LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); |
342 | LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); |
343 | |
344 | // When a FSDiscriminator is enabled, we don't need to add the multiply |
345 | // factors to the discriminators. |
346 | if (Header->getParent()->shouldEmitDebugInfoForProfiling() && |
347 | !EnableFSDiscriminator) |
348 | for (BasicBlock *BB : L->getBlocks()) |
349 | for (Instruction &I : *BB) |
350 | if (!I.isDebugOrPseudoInst()) |
351 | if (const DILocation *DIL = I.getDebugLoc()) { |
352 | auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(DF: Count); |
353 | if (NewDIL) |
354 | I.setDebugLoc(*NewDIL); |
355 | else |
356 | LLVM_DEBUG(dbgs() |
357 | << "Failed to create new discriminator: " |
358 | << DIL->getFilename() << " Line: " << DIL->getLine()); |
359 | } |
360 | |
361 | // Copy all blocks |
362 | for (unsigned It = 1; It != Count; ++It) { |
363 | SmallVector<BasicBlock *, 8> NewBlocks; |
364 | // Maps Blocks[It] -> Blocks[It-1] |
365 | DenseMap<Value *, Value *> PrevItValueMap; |
366 | SmallDenseMap<const Loop *, Loop *, 4> NewLoops; |
367 | NewLoops[L] = L; |
368 | NewLoops[SubLoop] = SubLoop; |
369 | |
370 | for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { |
371 | ValueToValueMapTy VMap; |
372 | BasicBlock *New = CloneBasicBlock(BB: *BB, VMap, NameSuffix: "." + Twine(It)); |
373 | Header->getParent()->insert(Position: Header->getParent()->end(), BB: New); |
374 | |
375 | // Tell LI about New. |
376 | addClonedBlockToLoopInfo(OriginalBB: *BB, ClonedBB: New, LI, NewLoops); |
377 | |
378 | if (ForeBlocks.count(Ptr: *BB)) { |
379 | if (*BB == ForeBlocksFirst[0]) |
380 | ForeBlocksFirst.push_back(x: New); |
381 | if (*BB == ForeBlocksLast[0]) |
382 | ForeBlocksLast.push_back(x: New); |
383 | } else if (SubLoopBlocks.count(Ptr: *BB)) { |
384 | if (*BB == SubLoopBlocksFirst[0]) |
385 | SubLoopBlocksFirst.push_back(x: New); |
386 | if (*BB == SubLoopBlocksLast[0]) |
387 | SubLoopBlocksLast.push_back(x: New); |
388 | } else if (AftBlocks.count(Ptr: *BB)) { |
389 | if (*BB == AftBlocksFirst[0]) |
390 | AftBlocksFirst.push_back(x: New); |
391 | if (*BB == AftBlocksLast[0]) |
392 | AftBlocksLast.push_back(x: New); |
393 | } else { |
394 | llvm_unreachable("BB being cloned should be in Fore/Sub/Aft" ); |
395 | } |
396 | |
397 | // Update our running maps of newest clones |
398 | auto &Last = LastValueMap[*BB]; |
399 | PrevItValueMap[New] = (It == 1 ? *BB : Last); |
400 | Last = New; |
401 | for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); |
402 | VI != VE; ++VI) { |
403 | auto &LVM = LastValueMap[VI->first]; |
404 | PrevItValueMap[VI->second] = |
405 | const_cast<Value *>(It == 1 ? VI->first : LVM); |
406 | LVM = VI->second; |
407 | } |
408 | |
409 | NewBlocks.push_back(Elt: New); |
410 | |
411 | // Update DomTree: |
412 | if (*BB == ForeBlocksFirst[0]) |
413 | DT->addNewBlock(BB: New, DomBB: ForeBlocksLast[It - 1]); |
414 | else if (*BB == SubLoopBlocksFirst[0]) |
415 | DT->addNewBlock(BB: New, DomBB: SubLoopBlocksLast[It - 1]); |
416 | else if (*BB == AftBlocksFirst[0]) |
417 | DT->addNewBlock(BB: New, DomBB: AftBlocksLast[It - 1]); |
418 | else { |
419 | // Each set of blocks (Fore/Sub/Aft) will have the same internal domtree |
420 | // structure. |
421 | auto BBDomNode = DT->getNode(BB: *BB); |
422 | auto BBIDom = BBDomNode->getIDom(); |
423 | BasicBlock *OriginalBBIDom = BBIDom->getBlock(); |
424 | assert(OriginalBBIDom); |
425 | assert(LastValueMap[cast<Value>(OriginalBBIDom)]); |
426 | DT->addNewBlock( |
427 | BB: New, DomBB: cast<BasicBlock>(Val&: LastValueMap[cast<Value>(Val: OriginalBBIDom)])); |
428 | } |
429 | } |
430 | |
431 | // Remap all instructions in the most recent iteration |
432 | remapInstructionsInBlocks(Blocks: NewBlocks, VMap&: LastValueMap); |
433 | for (BasicBlock *NewBlock : NewBlocks) { |
434 | for (Instruction &I : *NewBlock) { |
435 | if (auto *II = dyn_cast<AssumeInst>(Val: &I)) |
436 | AC->registerAssumption(CI: II); |
437 | } |
438 | } |
439 | |
440 | // Alter the ForeBlocks phi's, pointing them at the latest version of the |
441 | // value from the previous iteration's phis |
442 | for (PHINode &Phi : ForeBlocksFirst[It]->phis()) { |
443 | Value *OldValue = Phi.getIncomingValueForBlock(BB: AftBlocksLast[It]); |
444 | assert(OldValue && "should have incoming edge from Aft[It]" ); |
445 | Value *NewValue = OldValue; |
446 | if (Value *PrevValue = PrevItValueMap[OldValue]) |
447 | NewValue = PrevValue; |
448 | |
449 | assert(Phi.getNumOperands() == 2); |
450 | Phi.setIncomingBlock(i: 0, BB: ForeBlocksLast[It - 1]); |
451 | Phi.setIncomingValue(i: 0, V: NewValue); |
452 | Phi.removeIncomingValue(Idx: 1); |
453 | } |
454 | } |
455 | |
456 | // Now that all the basic blocks for the unrolled iterations are in place, |
457 | // finish up connecting the blocks and phi nodes. At this point LastValueMap |
458 | // is the last unrolled iterations values. |
459 | |
460 | // Update Phis in BB from OldBB to point to NewBB and use the latest value |
461 | // from LastValueMap |
462 | auto updatePHIBlocksAndValues = [](BasicBlock *BB, BasicBlock *OldBB, |
463 | BasicBlock *NewBB, |
464 | ValueToValueMapTy &LastValueMap) { |
465 | for (PHINode &Phi : BB->phis()) { |
466 | for (unsigned b = 0; b < Phi.getNumIncomingValues(); ++b) { |
467 | if (Phi.getIncomingBlock(i: b) == OldBB) { |
468 | Value *OldValue = Phi.getIncomingValue(i: b); |
469 | if (Value *LastValue = LastValueMap[OldValue]) |
470 | Phi.setIncomingValue(i: b, V: LastValue); |
471 | Phi.setIncomingBlock(i: b, BB: NewBB); |
472 | break; |
473 | } |
474 | } |
475 | } |
476 | }; |
477 | // Move all the phis from Src into Dest |
478 | auto movePHIs = [](BasicBlock *Src, BasicBlock *Dest) { |
479 | BasicBlock::iterator insertPoint = Dest->getFirstNonPHIIt(); |
480 | while (PHINode *Phi = dyn_cast<PHINode>(Val: Src->begin())) |
481 | Phi->moveBefore(BB&: *Dest, I: insertPoint); |
482 | }; |
483 | |
484 | // Update the PHI values outside the loop to point to the last block |
485 | updatePHIBlocksAndValues(LoopExit, AftBlocksLast[0], AftBlocksLast.back(), |
486 | LastValueMap); |
487 | |
488 | // Update ForeBlocks successors and phi nodes |
489 | BranchInst *ForeTerm = |
490 | cast<BranchInst>(Val: ForeBlocksLast.back()->getTerminator()); |
491 | assert(ForeTerm->getNumSuccessors() == 1 && "Expecting one successor" ); |
492 | ForeTerm->setSuccessor(idx: 0, NewSucc: SubLoopBlocksFirst[0]); |
493 | |
494 | if (CompletelyUnroll) { |
495 | while (PHINode *Phi = dyn_cast<PHINode>(Val: ForeBlocksFirst[0]->begin())) { |
496 | Phi->replaceAllUsesWith(V: Phi->getIncomingValueForBlock(BB: Preheader)); |
497 | Phi->eraseFromParent(); |
498 | } |
499 | } else { |
500 | // Update the PHI values to point to the last aft block |
501 | updatePHIBlocksAndValues(ForeBlocksFirst[0], AftBlocksLast[0], |
502 | AftBlocksLast.back(), LastValueMap); |
503 | } |
504 | |
505 | for (unsigned It = 1; It != Count; It++) { |
506 | // Remap ForeBlock successors from previous iteration to this |
507 | BranchInst *ForeTerm = |
508 | cast<BranchInst>(Val: ForeBlocksLast[It - 1]->getTerminator()); |
509 | assert(ForeTerm->getNumSuccessors() == 1 && "Expecting one successor" ); |
510 | ForeTerm->setSuccessor(idx: 0, NewSucc: ForeBlocksFirst[It]); |
511 | } |
512 | |
513 | // Subloop successors and phis |
514 | BranchInst *SubTerm = |
515 | cast<BranchInst>(Val: SubLoopBlocksLast.back()->getTerminator()); |
516 | SubTerm->setSuccessor(idx: !SubLoopContinueOnTrue, NewSucc: SubLoopBlocksFirst[0]); |
517 | SubTerm->setSuccessor(idx: SubLoopContinueOnTrue, NewSucc: AftBlocksFirst[0]); |
518 | SubLoopBlocksFirst[0]->replacePhiUsesWith(Old: ForeBlocksLast[0], |
519 | New: ForeBlocksLast.back()); |
520 | SubLoopBlocksFirst[0]->replacePhiUsesWith(Old: SubLoopBlocksLast[0], |
521 | New: SubLoopBlocksLast.back()); |
522 | |
523 | for (unsigned It = 1; It != Count; It++) { |
524 | // Replace the conditional branch of the previous iteration subloop with an |
525 | // unconditional one to this one |
526 | BranchInst *SubTerm = |
527 | cast<BranchInst>(Val: SubLoopBlocksLast[It - 1]->getTerminator()); |
528 | BranchInst::Create(IfTrue: SubLoopBlocksFirst[It], InsertBefore: SubTerm->getIterator()); |
529 | SubTerm->eraseFromParent(); |
530 | |
531 | SubLoopBlocksFirst[It]->replacePhiUsesWith(Old: ForeBlocksLast[It], |
532 | New: ForeBlocksLast.back()); |
533 | SubLoopBlocksFirst[It]->replacePhiUsesWith(Old: SubLoopBlocksLast[It], |
534 | New: SubLoopBlocksLast.back()); |
535 | movePHIs(SubLoopBlocksFirst[It], SubLoopBlocksFirst[0]); |
536 | } |
537 | |
538 | // Aft blocks successors and phis |
539 | BranchInst *AftTerm = cast<BranchInst>(Val: AftBlocksLast.back()->getTerminator()); |
540 | if (CompletelyUnroll) { |
541 | BranchInst::Create(IfTrue: LoopExit, InsertBefore: AftTerm->getIterator()); |
542 | AftTerm->eraseFromParent(); |
543 | } else { |
544 | AftTerm->setSuccessor(idx: !ContinueOnTrue, NewSucc: ForeBlocksFirst[0]); |
545 | assert(AftTerm->getSuccessor(ContinueOnTrue) == LoopExit && |
546 | "Expecting the ContinueOnTrue successor of AftTerm to be LoopExit" ); |
547 | } |
548 | AftBlocksFirst[0]->replacePhiUsesWith(Old: SubLoopBlocksLast[0], |
549 | New: SubLoopBlocksLast.back()); |
550 | |
551 | for (unsigned It = 1; It != Count; It++) { |
552 | // Replace the conditional branch of the previous iteration subloop with an |
553 | // unconditional one to this one |
554 | BranchInst *AftTerm = |
555 | cast<BranchInst>(Val: AftBlocksLast[It - 1]->getTerminator()); |
556 | BranchInst::Create(IfTrue: AftBlocksFirst[It], InsertBefore: AftTerm->getIterator()); |
557 | AftTerm->eraseFromParent(); |
558 | |
559 | AftBlocksFirst[It]->replacePhiUsesWith(Old: SubLoopBlocksLast[It], |
560 | New: SubLoopBlocksLast.back()); |
561 | movePHIs(AftBlocksFirst[It], AftBlocksFirst[0]); |
562 | } |
563 | |
564 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
565 | // Dominator Tree. Remove the old links between Fore, Sub and Aft, adding the |
566 | // new ones required. |
567 | if (Count != 1) { |
568 | SmallVector<DominatorTree::UpdateType, 4> DTUpdates; |
569 | DTUpdates.emplace_back(Args: DominatorTree::UpdateKind::Delete, Args&: ForeBlocksLast[0], |
570 | Args&: SubLoopBlocksFirst[0]); |
571 | DTUpdates.emplace_back(Args: DominatorTree::UpdateKind::Delete, |
572 | Args&: SubLoopBlocksLast[0], Args&: AftBlocksFirst[0]); |
573 | |
574 | DTUpdates.emplace_back(Args: DominatorTree::UpdateKind::Insert, |
575 | Args&: ForeBlocksLast.back(), Args&: SubLoopBlocksFirst[0]); |
576 | DTUpdates.emplace_back(Args: DominatorTree::UpdateKind::Insert, |
577 | Args&: SubLoopBlocksLast.back(), Args&: AftBlocksFirst[0]); |
578 | DTU.applyUpdatesPermissive(Updates: DTUpdates); |
579 | } |
580 | |
581 | // Merge adjacent basic blocks, if possible. |
582 | SmallPtrSet<BasicBlock *, 16> MergeBlocks; |
583 | MergeBlocks.insert_range(R&: ForeBlocksLast); |
584 | MergeBlocks.insert_range(R&: SubLoopBlocksLast); |
585 | MergeBlocks.insert_range(R&: AftBlocksLast); |
586 | |
587 | MergeBlockSuccessorsIntoGivenBlocks(MergeBlocks, L, DTU: &DTU, LI); |
588 | |
589 | // Apply updates to the DomTree. |
590 | DT = &DTU.getDomTree(); |
591 | |
592 | // At this point, the code is well formed. We now do a quick sweep over the |
593 | // inserted code, doing constant propagation and dead code elimination as we |
594 | // go. |
595 | simplifyLoopAfterUnroll(L: SubLoop, SimplifyIVs: true, LI, SE, DT, AC, TTI); |
596 | simplifyLoopAfterUnroll(L, SimplifyIVs: !CompletelyUnroll && Count > 1, LI, SE, DT, AC, |
597 | TTI); |
598 | |
599 | NumCompletelyUnrolledAndJammed += CompletelyUnroll; |
600 | ++NumUnrolledAndJammed; |
601 | |
602 | // Update LoopInfo if the loop is completely removed. |
603 | if (CompletelyUnroll) |
604 | LI->erase(L); |
605 | |
606 | #ifndef NDEBUG |
607 | // We shouldn't have done anything to break loop simplify form or LCSSA. |
608 | Loop *OutestLoop = SubLoop->getParentLoop() |
609 | ? SubLoop->getParentLoop()->getParentLoop() |
610 | ? SubLoop->getParentLoop()->getParentLoop() |
611 | : SubLoop->getParentLoop() |
612 | : SubLoop; |
613 | assert(DT->verify()); |
614 | LI->verify(*DT); |
615 | assert(OutestLoop->isRecursivelyLCSSAForm(*DT, *LI)); |
616 | if (!CompletelyUnroll) |
617 | assert(L->isLoopSimplifyForm()); |
618 | assert(SubLoop->isLoopSimplifyForm()); |
619 | SE->verify(); |
620 | #endif |
621 | |
622 | return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled |
623 | : LoopUnrollResult::PartiallyUnrolled; |
624 | } |
625 | |
626 | static bool getLoadsAndStores(BasicBlockSet &Blocks, |
627 | SmallVector<Instruction *, 4> &MemInstr) { |
628 | // Scan the BBs and collect legal loads and stores. |
629 | // Returns false if non-simple loads/stores are found. |
630 | for (BasicBlock *BB : Blocks) { |
631 | for (Instruction &I : *BB) { |
632 | if (auto *Ld = dyn_cast<LoadInst>(Val: &I)) { |
633 | if (!Ld->isSimple()) |
634 | return false; |
635 | MemInstr.push_back(Elt: &I); |
636 | } else if (auto *St = dyn_cast<StoreInst>(Val: &I)) { |
637 | if (!St->isSimple()) |
638 | return false; |
639 | MemInstr.push_back(Elt: &I); |
640 | } else if (I.mayReadOrWriteMemory()) { |
641 | return false; |
642 | } |
643 | } |
644 | } |
645 | return true; |
646 | } |
647 | |
648 | static bool preservesForwardDependence(Instruction *Src, Instruction *Dst, |
649 | unsigned UnrollLevel, unsigned JamLevel, |
650 | bool Sequentialized, Dependence *D) { |
651 | // UnrollLevel might carry the dependency Src --> Dst |
652 | // Does a different loop after unrolling? |
653 | for (unsigned CurLoopDepth = UnrollLevel + 1; CurLoopDepth <= JamLevel; |
654 | ++CurLoopDepth) { |
655 | auto JammedDir = D->getDirection(Level: CurLoopDepth); |
656 | if (JammedDir == Dependence::DVEntry::LT) |
657 | return true; |
658 | |
659 | if (JammedDir & Dependence::DVEntry::GT) |
660 | return false; |
661 | } |
662 | |
663 | return true; |
664 | } |
665 | |
666 | static bool preservesBackwardDependence(Instruction *Src, Instruction *Dst, |
667 | unsigned UnrollLevel, unsigned JamLevel, |
668 | bool Sequentialized, Dependence *D) { |
669 | // UnrollLevel might carry the dependency Dst --> Src |
670 | for (unsigned CurLoopDepth = UnrollLevel + 1; CurLoopDepth <= JamLevel; |
671 | ++CurLoopDepth) { |
672 | auto JammedDir = D->getDirection(Level: CurLoopDepth); |
673 | if (JammedDir == Dependence::DVEntry::GT) |
674 | return true; |
675 | |
676 | if (JammedDir & Dependence::DVEntry::LT) |
677 | return false; |
678 | } |
679 | |
680 | // Backward dependencies are only preserved if not interleaved. |
681 | return Sequentialized; |
682 | } |
683 | |
684 | // Check whether it is semantically safe Src and Dst considering any potential |
685 | // dependency between them. |
686 | // |
687 | // @param UnrollLevel The level of the loop being unrolled |
688 | // @param JamLevel The level of the loop being jammed; if Src and Dst are on |
689 | // different levels, the outermost common loop counts as jammed level |
690 | // |
691 | // @return true if is safe and false if there is a dependency violation. |
692 | static bool checkDependency(Instruction *Src, Instruction *Dst, |
693 | unsigned UnrollLevel, unsigned JamLevel, |
694 | bool Sequentialized, DependenceInfo &DI) { |
695 | assert(UnrollLevel <= JamLevel && |
696 | "Expecting JamLevel to be at least UnrollLevel" ); |
697 | |
698 | if (Src == Dst) |
699 | return true; |
700 | // Ignore Input dependencies. |
701 | if (isa<LoadInst>(Val: Src) && isa<LoadInst>(Val: Dst)) |
702 | return true; |
703 | |
704 | // Check whether unroll-and-jam may violate a dependency. |
705 | // By construction, every dependency will be lexicographically non-negative |
706 | // (if it was, it would violate the current execution order), such as |
707 | // (0,0,>,*,*) |
708 | // Unroll-and-jam changes the GT execution of two executions to the same |
709 | // iteration of the chosen unroll level. That is, a GT dependence becomes a GE |
710 | // dependence (or EQ, if we fully unrolled the loop) at the loop's position: |
711 | // (0,0,>=,*,*) |
712 | // Now, the dependency is not necessarily non-negative anymore, i.e. |
713 | // unroll-and-jam may violate correctness. |
714 | std::unique_ptr<Dependence> D = DI.depends(Src, Dst); |
715 | if (!D) |
716 | return true; |
717 | assert(D->isOrdered() && "Expected an output, flow or anti dep." ); |
718 | |
719 | if (D->isConfused()) { |
720 | LLVM_DEBUG(dbgs() << " Confused dependency between:\n" |
721 | << " " << *Src << "\n" |
722 | << " " << *Dst << "\n" ); |
723 | return false; |
724 | } |
725 | |
726 | // If outer levels (levels enclosing the loop being unroll-and-jammed) have a |
727 | // non-equal direction, then the locations accessed in the inner levels cannot |
728 | // overlap in memory. We assumes the indexes never overlap into neighboring |
729 | // dimensions. |
730 | for (unsigned CurLoopDepth = 1; CurLoopDepth < UnrollLevel; ++CurLoopDepth) |
731 | if (!(D->getDirection(Level: CurLoopDepth) & Dependence::DVEntry::EQ)) |
732 | return true; |
733 | |
734 | auto UnrollDirection = D->getDirection(Level: UnrollLevel); |
735 | |
736 | // If the distance carried by the unrolled loop is 0, then after unrolling |
737 | // that distance will become non-zero resulting in non-overlapping accesses in |
738 | // the inner loops. |
739 | if (UnrollDirection == Dependence::DVEntry::EQ) |
740 | return true; |
741 | |
742 | if (UnrollDirection & Dependence::DVEntry::LT && |
743 | !preservesForwardDependence(Src, Dst, UnrollLevel, JamLevel, |
744 | Sequentialized, D: D.get())) |
745 | return false; |
746 | |
747 | if (UnrollDirection & Dependence::DVEntry::GT && |
748 | !preservesBackwardDependence(Src, Dst, UnrollLevel, JamLevel, |
749 | Sequentialized, D: D.get())) |
750 | return false; |
751 | |
752 | return true; |
753 | } |
754 | |
755 | static bool |
756 | checkDependencies(Loop &Root, const BasicBlockSet &SubLoopBlocks, |
757 | const DenseMap<Loop *, BasicBlockSet> &ForeBlocksMap, |
758 | const DenseMap<Loop *, BasicBlockSet> &AftBlocksMap, |
759 | DependenceInfo &DI, LoopInfo &LI) { |
760 | SmallVector<BasicBlockSet, 8> AllBlocks; |
761 | for (Loop *L : Root.getLoopsInPreorder()) |
762 | if (ForeBlocksMap.contains(Val: L)) |
763 | AllBlocks.push_back(Elt: ForeBlocksMap.lookup(Val: L)); |
764 | AllBlocks.push_back(Elt: SubLoopBlocks); |
765 | for (Loop *L : Root.getLoopsInPreorder()) |
766 | if (AftBlocksMap.contains(Val: L)) |
767 | AllBlocks.push_back(Elt: AftBlocksMap.lookup(Val: L)); |
768 | |
769 | unsigned LoopDepth = Root.getLoopDepth(); |
770 | SmallVector<Instruction *, 4> EarlierLoadsAndStores; |
771 | SmallVector<Instruction *, 4> CurrentLoadsAndStores; |
772 | for (BasicBlockSet &Blocks : AllBlocks) { |
773 | CurrentLoadsAndStores.clear(); |
774 | if (!getLoadsAndStores(Blocks, MemInstr&: CurrentLoadsAndStores)) |
775 | return false; |
776 | |
777 | Loop *CurLoop = LI.getLoopFor(BB: (*Blocks.begin())->front().getParent()); |
778 | unsigned CurLoopDepth = CurLoop->getLoopDepth(); |
779 | |
780 | for (auto *Earlier : EarlierLoadsAndStores) { |
781 | Loop *EarlierLoop = LI.getLoopFor(BB: Earlier->getParent()); |
782 | unsigned EarlierDepth = EarlierLoop->getLoopDepth(); |
783 | unsigned CommonLoopDepth = std::min(a: EarlierDepth, b: CurLoopDepth); |
784 | for (auto *Later : CurrentLoadsAndStores) { |
785 | if (!checkDependency(Src: Earlier, Dst: Later, UnrollLevel: LoopDepth, JamLevel: CommonLoopDepth, Sequentialized: false, |
786 | DI)) |
787 | return false; |
788 | } |
789 | } |
790 | |
791 | size_t NumInsts = CurrentLoadsAndStores.size(); |
792 | for (size_t I = 0; I < NumInsts; ++I) { |
793 | for (size_t J = I; J < NumInsts; ++J) { |
794 | if (!checkDependency(Src: CurrentLoadsAndStores[I], Dst: CurrentLoadsAndStores[J], |
795 | UnrollLevel: LoopDepth, JamLevel: CurLoopDepth, Sequentialized: true, DI)) |
796 | return false; |
797 | } |
798 | } |
799 | |
800 | EarlierLoadsAndStores.append(in_start: CurrentLoadsAndStores.begin(), |
801 | in_end: CurrentLoadsAndStores.end()); |
802 | } |
803 | return true; |
804 | } |
805 | |
806 | static bool isEligibleLoopForm(const Loop &Root) { |
807 | // Root must have a child. |
808 | if (Root.getSubLoops().size() != 1) |
809 | return false; |
810 | |
811 | const Loop *L = &Root; |
812 | do { |
813 | // All loops in Root need to be in simplify and rotated form. |
814 | if (!L->isLoopSimplifyForm()) |
815 | return false; |
816 | |
817 | if (!L->isRotatedForm()) |
818 | return false; |
819 | |
820 | if (L->getHeader()->hasAddressTaken()) { |
821 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Address taken\n" ); |
822 | return false; |
823 | } |
824 | |
825 | unsigned SubLoopsSize = L->getSubLoops().size(); |
826 | if (SubLoopsSize == 0) |
827 | return true; |
828 | |
829 | // Only one child is allowed. |
830 | if (SubLoopsSize != 1) |
831 | return false; |
832 | |
833 | // Only loops with a single exit block can be unrolled and jammed. |
834 | // The function getExitBlock() is used for this check, rather than |
835 | // getUniqueExitBlock() to ensure loops with mulitple exit edges are |
836 | // disallowed. |
837 | if (!L->getExitBlock()) { |
838 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; only loops with single exit " |
839 | "blocks can be unrolled and jammed.\n" ); |
840 | return false; |
841 | } |
842 | |
843 | // Only loops with a single exiting block can be unrolled and jammed. |
844 | if (!L->getExitingBlock()) { |
845 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; only loops with single " |
846 | "exiting blocks can be unrolled and jammed.\n" ); |
847 | return false; |
848 | } |
849 | |
850 | L = L->getSubLoops()[0]; |
851 | } while (L); |
852 | |
853 | return true; |
854 | } |
855 | |
856 | static Loop *getInnerMostLoop(Loop *L) { |
857 | while (!L->getSubLoops().empty()) |
858 | L = L->getSubLoops()[0]; |
859 | return L; |
860 | } |
861 | |
862 | bool llvm::isSafeToUnrollAndJam(Loop *L, ScalarEvolution &SE, DominatorTree &DT, |
863 | DependenceInfo &DI, LoopInfo &LI) { |
864 | if (!isEligibleLoopForm(Root: *L)) { |
865 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Ineligible loop form\n" ); |
866 | return false; |
867 | } |
868 | |
869 | /* We currently handle outer loops like this: |
870 | | |
871 | ForeFirst <------\ } |
872 | Blocks | } ForeBlocks of L |
873 | ForeLast | } |
874 | | | |
875 | ... | |
876 | | | |
877 | ForeFirst <----\ | } |
878 | Blocks | | } ForeBlocks of a inner loop of L |
879 | ForeLast | | } |
880 | | | | |
881 | JamLoopFirst <\ | | } |
882 | Blocks | | | } JamLoopBlocks of the innermost loop |
883 | JamLoopLast -/ | | } |
884 | | | | |
885 | AftFirst | | } |
886 | Blocks | | } AftBlocks of a inner loop of L |
887 | AftLast ------/ | } |
888 | | | |
889 | ... | |
890 | | | |
891 | AftFirst | } |
892 | Blocks | } AftBlocks of L |
893 | AftLast --------/ } |
894 | | |
895 | |
896 | There are (theoretically) any number of blocks in ForeBlocks, SubLoopBlocks |
897 | and AftBlocks, providing that there is one edge from Fores to SubLoops, |
898 | one edge from SubLoops to Afts and a single outer loop exit (from Afts). |
899 | In practice we currently limit Aft blocks to a single block, and limit |
900 | things further in the profitablility checks of the unroll and jam pass. |
901 | |
902 | Because of the way we rearrange basic blocks, we also require that |
903 | the Fore blocks of L on all unrolled iterations are safe to move before the |
904 | blocks of the direct child of L of all iterations. So we require that the |
905 | phi node looping operands of ForeHeader can be moved to at least the end of |
906 | ForeEnd, so that we can arrange cloned Fore Blocks before the subloop and |
907 | match up Phi's correctly. |
908 | |
909 | i.e. The old order of blocks used to be |
910 | (F1)1 (F2)1 J1_1 J1_2 (A2)1 (A1)1 (F1)2 (F2)2 J2_1 J2_2 (A2)2 (A1)2. |
911 | It needs to be safe to transform this to |
912 | (F1)1 (F1)2 (F2)1 (F2)2 J1_1 J1_2 J2_1 J2_2 (A2)1 (A2)2 (A1)1 (A1)2. |
913 | |
914 | There are then a number of checks along the lines of no calls, no |
915 | exceptions, inner loop IV is consistent, etc. Note that for loops requiring |
916 | runtime unrolling, UnrollRuntimeLoopRemainder can also fail in |
917 | UnrollAndJamLoop if the trip count cannot be easily calculated. |
918 | */ |
919 | |
920 | // Split blocks into Fore/SubLoop/Aft based on dominators |
921 | Loop *JamLoop = getInnerMostLoop(L); |
922 | BasicBlockSet SubLoopBlocks; |
923 | DenseMap<Loop *, BasicBlockSet> ForeBlocksMap; |
924 | DenseMap<Loop *, BasicBlockSet> AftBlocksMap; |
925 | if (!partitionOuterLoopBlocks(Root&: *L, JamLoop&: *JamLoop, JamLoopBlocks&: SubLoopBlocks, ForeBlocksMap, |
926 | AftBlocksMap, DT)) { |
927 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Incompatible loop layout\n" ); |
928 | return false; |
929 | } |
930 | |
931 | // Aft blocks may need to move instructions to fore blocks, which becomes more |
932 | // difficult if there are multiple (potentially conditionally executed) |
933 | // blocks. For now we just exclude loops with multiple aft blocks. |
934 | if (AftBlocksMap[L].size() != 1) { |
935 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Can't currently handle " |
936 | "multiple blocks after the loop\n" ); |
937 | return false; |
938 | } |
939 | |
940 | // Check inner loop backedge count is consistent on all iterations of the |
941 | // outer loop |
942 | if (any_of(Range: L->getLoopsInPreorder(), P: [&SE](Loop *SubLoop) { |
943 | return !hasIterationCountInvariantInParent(L: SubLoop, SE); |
944 | })) { |
945 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Inner loop iteration count is " |
946 | "not consistent on each iteration\n" ); |
947 | return false; |
948 | } |
949 | |
950 | // Check the loop safety info for exceptions. |
951 | SimpleLoopSafetyInfo LSI; |
952 | LSI.computeLoopSafetyInfo(CurLoop: L); |
953 | if (LSI.anyBlockMayThrow()) { |
954 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Something may throw\n" ); |
955 | return false; |
956 | } |
957 | |
958 | // We've ruled out the easy stuff and now need to check that there are no |
959 | // interdependencies which may prevent us from moving the: |
960 | // ForeBlocks before Subloop and AftBlocks. |
961 | // Subloop before AftBlocks. |
962 | // ForeBlock phi operands before the subloop |
963 | |
964 | // Make sure we can move all instructions we need to before the subloop |
965 | BasicBlock * = L->getHeader(); |
966 | BasicBlock *Latch = L->getLoopLatch(); |
967 | BasicBlockSet AftBlocks = AftBlocksMap[L]; |
968 | Loop *SubLoop = L->getSubLoops()[0]; |
969 | if (!processHeaderPhiOperands( |
970 | Header, Latch, AftBlocks, Visit: [&AftBlocks, &SubLoop](Instruction *I) { |
971 | if (SubLoop->contains(BB: I->getParent())) |
972 | return false; |
973 | if (AftBlocks.count(Ptr: I->getParent())) { |
974 | // If we hit a phi node in afts we know we are done (probably |
975 | // LCSSA) |
976 | if (isa<PHINode>(Val: I)) |
977 | return false; |
978 | // Can't move instructions with side effects or memory |
979 | // reads/writes |
980 | if (I->mayHaveSideEffects() || I->mayReadOrWriteMemory()) |
981 | return false; |
982 | } |
983 | // Keep going |
984 | return true; |
985 | })) { |
986 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; can't move required " |
987 | "instructions after subloop to before it\n" ); |
988 | return false; |
989 | } |
990 | |
991 | // Check for memory dependencies which prohibit the unrolling we are doing. |
992 | // Because of the way we are unrolling Fore/Sub/Aft blocks, we need to check |
993 | // there are no dependencies between Fore-Sub, Fore-Aft, Sub-Aft and Sub-Sub. |
994 | if (!checkDependencies(Root&: *L, SubLoopBlocks, ForeBlocksMap, AftBlocksMap, DI, |
995 | LI)) { |
996 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; failed dependency check\n" ); |
997 | return false; |
998 | } |
999 | |
1000 | return true; |
1001 | } |
1002 | |