| 1 | //===-- LoopUnrollAndJam.cpp - Loop unrolling utilities -------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements loop unroll and jam as a routine, much like |
| 10 | // LoopUnroll.cpp implements loop unroll. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/ADT/ArrayRef.h" |
| 15 | #include "llvm/ADT/DenseMap.h" |
| 16 | #include "llvm/ADT/STLExtras.h" |
| 17 | #include "llvm/ADT/SmallPtrSet.h" |
| 18 | #include "llvm/ADT/SmallVector.h" |
| 19 | #include "llvm/ADT/Statistic.h" |
| 20 | #include "llvm/ADT/StringRef.h" |
| 21 | #include "llvm/ADT/Twine.h" |
| 22 | #include "llvm/Analysis/AssumptionCache.h" |
| 23 | #include "llvm/Analysis/DependenceAnalysis.h" |
| 24 | #include "llvm/Analysis/DomTreeUpdater.h" |
| 25 | #include "llvm/Analysis/LoopInfo.h" |
| 26 | #include "llvm/Analysis/LoopIterator.h" |
| 27 | #include "llvm/Analysis/MustExecute.h" |
| 28 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 29 | #include "llvm/Analysis/ScalarEvolution.h" |
| 30 | #include "llvm/IR/BasicBlock.h" |
| 31 | #include "llvm/IR/DebugInfoMetadata.h" |
| 32 | #include "llvm/IR/DebugLoc.h" |
| 33 | #include "llvm/IR/DiagnosticInfo.h" |
| 34 | #include "llvm/IR/Dominators.h" |
| 35 | #include "llvm/IR/Function.h" |
| 36 | #include "llvm/IR/Instruction.h" |
| 37 | #include "llvm/IR/Instructions.h" |
| 38 | #include "llvm/IR/IntrinsicInst.h" |
| 39 | #include "llvm/IR/User.h" |
| 40 | #include "llvm/IR/Value.h" |
| 41 | #include "llvm/IR/ValueHandle.h" |
| 42 | #include "llvm/IR/ValueMap.h" |
| 43 | #include "llvm/Support/Casting.h" |
| 44 | #include "llvm/Support/Debug.h" |
| 45 | #include "llvm/Support/ErrorHandling.h" |
| 46 | #include "llvm/Support/GenericDomTree.h" |
| 47 | #include "llvm/Support/raw_ostream.h" |
| 48 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 49 | #include "llvm/Transforms/Utils/Cloning.h" |
| 50 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 51 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
| 52 | #include "llvm/Transforms/Utils/UnrollLoop.h" |
| 53 | #include "llvm/Transforms/Utils/ValueMapper.h" |
| 54 | #include <assert.h> |
| 55 | #include <memory> |
| 56 | #include <type_traits> |
| 57 | #include <vector> |
| 58 | |
| 59 | using namespace llvm; |
| 60 | |
| 61 | #define DEBUG_TYPE "loop-unroll-and-jam" |
| 62 | |
| 63 | STATISTIC(NumUnrolledAndJammed, "Number of loops unroll and jammed" ); |
| 64 | STATISTIC(NumCompletelyUnrolledAndJammed, "Number of loops unroll and jammed" ); |
| 65 | |
| 66 | typedef SmallPtrSet<BasicBlock *, 4> BasicBlockSet; |
| 67 | |
| 68 | // Partition blocks in an outer/inner loop pair into blocks before and after |
| 69 | // the loop |
| 70 | static bool partitionLoopBlocks(Loop &L, BasicBlockSet &ForeBlocks, |
| 71 | BasicBlockSet &AftBlocks, DominatorTree &DT) { |
| 72 | Loop *SubLoop = L.getSubLoops()[0]; |
| 73 | BasicBlock *SubLoopLatch = SubLoop->getLoopLatch(); |
| 74 | |
| 75 | for (BasicBlock *BB : L.blocks()) { |
| 76 | if (!SubLoop->contains(BB)) { |
| 77 | if (DT.dominates(A: SubLoopLatch, B: BB)) |
| 78 | AftBlocks.insert(Ptr: BB); |
| 79 | else |
| 80 | ForeBlocks.insert(Ptr: BB); |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | // Check that all blocks in ForeBlocks together dominate the subloop |
| 85 | // TODO: This might ideally be done better with a dominator/postdominators. |
| 86 | BasicBlock * = SubLoop->getLoopPreheader(); |
| 87 | for (BasicBlock *BB : ForeBlocks) { |
| 88 | if (BB == SubLoopPreHeader) |
| 89 | continue; |
| 90 | Instruction *TI = BB->getTerminator(); |
| 91 | for (BasicBlock *Succ : successors(I: TI)) |
| 92 | if (!ForeBlocks.count(Ptr: Succ)) |
| 93 | return false; |
| 94 | } |
| 95 | |
| 96 | return true; |
| 97 | } |
| 98 | |
| 99 | /// Partition blocks in a loop nest into blocks before and after each inner |
| 100 | /// loop. |
| 101 | static bool partitionOuterLoopBlocks( |
| 102 | Loop &Root, Loop &JamLoop, BasicBlockSet &JamLoopBlocks, |
| 103 | DenseMap<Loop *, BasicBlockSet> &ForeBlocksMap, |
| 104 | DenseMap<Loop *, BasicBlockSet> &AftBlocksMap, DominatorTree &DT) { |
| 105 | JamLoopBlocks.insert_range(R: JamLoop.blocks()); |
| 106 | |
| 107 | for (Loop *L : Root.getLoopsInPreorder()) { |
| 108 | if (L == &JamLoop) |
| 109 | break; |
| 110 | |
| 111 | if (!partitionLoopBlocks(L&: *L, ForeBlocks&: ForeBlocksMap[L], AftBlocks&: AftBlocksMap[L], DT)) |
| 112 | return false; |
| 113 | } |
| 114 | |
| 115 | return true; |
| 116 | } |
| 117 | |
| 118 | // TODO Remove when UnrollAndJamLoop changed to support unroll and jamming more |
| 119 | // than 2 levels loop. |
| 120 | static bool partitionOuterLoopBlocks(Loop *L, Loop *SubLoop, |
| 121 | BasicBlockSet &ForeBlocks, |
| 122 | BasicBlockSet &SubLoopBlocks, |
| 123 | BasicBlockSet &AftBlocks, |
| 124 | DominatorTree *DT) { |
| 125 | SubLoopBlocks.insert_range(R: SubLoop->blocks()); |
| 126 | return partitionLoopBlocks(L&: *L, ForeBlocks, AftBlocks, DT&: *DT); |
| 127 | } |
| 128 | |
| 129 | // Looks at the phi nodes in Header for values coming from Latch. For these |
| 130 | // instructions and all their operands calls Visit on them, keeping going for |
| 131 | // all the operands in AftBlocks. Returns false if Visit returns false, |
| 132 | // otherwise returns true. This is used to process the instructions in the |
| 133 | // Aft blocks that need to be moved before the subloop. It is used in two |
| 134 | // places. One to check that the required set of instructions can be moved |
| 135 | // before the loop. Then to collect the instructions to actually move in |
| 136 | // moveHeaderPhiOperandsToForeBlocks. |
| 137 | template <typename T> |
| 138 | static bool processHeaderPhiOperands(BasicBlock *, BasicBlock *Latch, |
| 139 | BasicBlockSet &AftBlocks, T Visit) { |
| 140 | SmallPtrSet<Instruction *, 8> VisitedInstr; |
| 141 | |
| 142 | std::function<bool(Instruction * I)> ProcessInstr = [&](Instruction *I) { |
| 143 | if (!VisitedInstr.insert(Ptr: I).second) |
| 144 | return true; |
| 145 | |
| 146 | if (AftBlocks.count(Ptr: I->getParent())) |
| 147 | for (auto &U : I->operands()) |
| 148 | if (Instruction *II = dyn_cast<Instruction>(Val&: U)) |
| 149 | if (!ProcessInstr(II)) |
| 150 | return false; |
| 151 | |
| 152 | return Visit(I); |
| 153 | }; |
| 154 | |
| 155 | for (auto &Phi : Header->phis()) { |
| 156 | Value *V = Phi.getIncomingValueForBlock(BB: Latch); |
| 157 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) |
| 158 | if (!ProcessInstr(I)) |
| 159 | return false; |
| 160 | } |
| 161 | |
| 162 | return true; |
| 163 | } |
| 164 | |
| 165 | // Move the phi operands of Header from Latch out of AftBlocks to InsertLoc. |
| 166 | static void moveHeaderPhiOperandsToForeBlocks(BasicBlock *, |
| 167 | BasicBlock *Latch, |
| 168 | BasicBlock::iterator InsertLoc, |
| 169 | BasicBlockSet &AftBlocks) { |
| 170 | // We need to ensure we move the instructions in the correct order, |
| 171 | // starting with the earliest required instruction and moving forward. |
| 172 | processHeaderPhiOperands(Header, Latch, AftBlocks, |
| 173 | Visit: [&AftBlocks, &InsertLoc](Instruction *I) { |
| 174 | if (AftBlocks.count(Ptr: I->getParent())) |
| 175 | I->moveBefore(InsertPos: InsertLoc); |
| 176 | return true; |
| 177 | }); |
| 178 | } |
| 179 | |
| 180 | /* |
| 181 | This method performs Unroll and Jam. For a simple loop like: |
| 182 | for (i = ..) |
| 183 | Fore(i) |
| 184 | for (j = ..) |
| 185 | SubLoop(i, j) |
| 186 | Aft(i) |
| 187 | |
| 188 | Instead of doing normal inner or outer unrolling, we do: |
| 189 | for (i = .., i+=2) |
| 190 | Fore(i) |
| 191 | Fore(i+1) |
| 192 | for (j = ..) |
| 193 | SubLoop(i, j) |
| 194 | SubLoop(i+1, j) |
| 195 | Aft(i) |
| 196 | Aft(i+1) |
| 197 | |
| 198 | So the outer loop is essetially unrolled and then the inner loops are fused |
| 199 | ("jammed") together into a single loop. This can increase speed when there |
| 200 | are loads in SubLoop that are invariant to i, as they become shared between |
| 201 | the now jammed inner loops. |
| 202 | |
| 203 | We do this by spliting the blocks in the loop into Fore, Subloop and Aft. |
| 204 | Fore blocks are those before the inner loop, Aft are those after. Normal |
| 205 | Unroll code is used to copy each of these sets of blocks and the results are |
| 206 | combined together into the final form above. |
| 207 | |
| 208 | isSafeToUnrollAndJam should be used prior to calling this to make sure the |
| 209 | unrolling will be valid. Checking profitablility is also advisable. |
| 210 | |
| 211 | If EpilogueLoop is non-null, it receives the epilogue loop (if it was |
| 212 | necessary to create one and not fully unrolled). |
| 213 | */ |
| 214 | LoopUnrollResult |
| 215 | llvm::UnrollAndJamLoop(Loop *L, unsigned Count, unsigned TripCount, |
| 216 | unsigned TripMultiple, bool UnrollRemainder, |
| 217 | LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, |
| 218 | AssumptionCache *AC, const TargetTransformInfo *TTI, |
| 219 | OptimizationRemarkEmitter *ORE, Loop **EpilogueLoop) { |
| 220 | |
| 221 | // When we enter here we should have already checked that it is safe |
| 222 | BasicBlock * = L->getHeader(); |
| 223 | assert(Header && "No header." ); |
| 224 | assert(L->getSubLoops().size() == 1); |
| 225 | Loop *SubLoop = *L->begin(); |
| 226 | |
| 227 | // Don't enter the unroll code if there is nothing to do. |
| 228 | if (TripCount == 0 && Count < 2) { |
| 229 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; almost nothing to do\n" ); |
| 230 | return LoopUnrollResult::Unmodified; |
| 231 | } |
| 232 | |
| 233 | assert(Count > 0); |
| 234 | assert(TripMultiple > 0); |
| 235 | assert(TripCount == 0 || TripCount % TripMultiple == 0); |
| 236 | |
| 237 | // Are we eliminating the loop control altogether? |
| 238 | bool CompletelyUnroll = (Count == TripCount); |
| 239 | |
| 240 | // We use the runtime remainder in cases where we don't know trip multiple |
| 241 | if (TripMultiple % Count != 0) { |
| 242 | if (!UnrollRuntimeLoopRemainder(L, Count, /*AllowExpensiveTripCount*/ false, |
| 243 | /*UseEpilogRemainder*/ true, |
| 244 | UnrollRemainder, /*ForgetAllSCEV*/ false, |
| 245 | LI, SE, DT, AC, TTI, PreserveLCSSA: true, |
| 246 | SCEVExpansionBudget: SCEVCheapExpansionBudget, RuntimeUnrollMultiExit: EpilogueLoop)) { |
| 247 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; remainder loop could not be " |
| 248 | "generated when assuming runtime trip count\n" ); |
| 249 | return LoopUnrollResult::Unmodified; |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | // Notify ScalarEvolution that the loop will be substantially changed, |
| 254 | // if not outright eliminated. |
| 255 | if (SE) { |
| 256 | SE->forgetLoop(L); |
| 257 | SE->forgetBlockAndLoopDispositions(); |
| 258 | } |
| 259 | |
| 260 | using namespace ore; |
| 261 | // Report the unrolling decision. |
| 262 | if (CompletelyUnroll) { |
| 263 | LLVM_DEBUG(dbgs() << "COMPLETELY UNROLL AND JAMMING loop %" |
| 264 | << Header->getName() << " with trip count " << TripCount |
| 265 | << "!\n" ); |
| 266 | ORE->emit(OptDiag: OptimizationRemark(DEBUG_TYPE, "FullyUnrolled" , L->getStartLoc(), |
| 267 | L->getHeader()) |
| 268 | << "completely unroll and jammed loop with " |
| 269 | << NV("UnrollCount" , TripCount) << " iterations" ); |
| 270 | } else { |
| 271 | auto DiagBuilder = [&]() { |
| 272 | OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled" , L->getStartLoc(), |
| 273 | L->getHeader()); |
| 274 | return Diag << "unroll and jammed loop by a factor of " |
| 275 | << NV("UnrollCount" , Count); |
| 276 | }; |
| 277 | |
| 278 | LLVM_DEBUG(dbgs() << "UNROLL AND JAMMING loop %" << Header->getName() |
| 279 | << " by " << Count); |
| 280 | if (TripMultiple != 1) { |
| 281 | LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch" ); |
| 282 | ORE->emit(RemarkBuilder: [&]() { |
| 283 | return DiagBuilder() << " with " << NV("TripMultiple" , TripMultiple) |
| 284 | << " trips per branch" ; |
| 285 | }); |
| 286 | } else { |
| 287 | LLVM_DEBUG(dbgs() << " with run-time trip count" ); |
| 288 | ORE->emit(RemarkBuilder: [&]() { return DiagBuilder() << " with run-time trip count" ; }); |
| 289 | } |
| 290 | LLVM_DEBUG(dbgs() << "!\n" ); |
| 291 | } |
| 292 | |
| 293 | BasicBlock * = L->getLoopPreheader(); |
| 294 | BasicBlock *LatchBlock = L->getLoopLatch(); |
| 295 | assert(Preheader && "No preheader" ); |
| 296 | assert(LatchBlock && "No latch block" ); |
| 297 | BranchInst *BI = dyn_cast<BranchInst>(Val: LatchBlock->getTerminator()); |
| 298 | assert(BI && !BI->isUnconditional()); |
| 299 | bool ContinueOnTrue = L->contains(BB: BI->getSuccessor(i: 0)); |
| 300 | BasicBlock *LoopExit = BI->getSuccessor(i: ContinueOnTrue); |
| 301 | bool SubLoopContinueOnTrue = SubLoop->contains( |
| 302 | BB: SubLoop->getLoopLatch()->getTerminator()->getSuccessor(Idx: 0)); |
| 303 | |
| 304 | // Partition blocks in an outer/inner loop pair into blocks before and after |
| 305 | // the loop |
| 306 | BasicBlockSet SubLoopBlocks; |
| 307 | BasicBlockSet ForeBlocks; |
| 308 | BasicBlockSet AftBlocks; |
| 309 | partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks, AftBlocks, |
| 310 | DT); |
| 311 | |
| 312 | // We keep track of the entering/first and exiting/last block of each of |
| 313 | // Fore/SubLoop/Aft in each iteration. This helps make the stapling up of |
| 314 | // blocks easier. |
| 315 | std::vector<BasicBlock *> ForeBlocksFirst; |
| 316 | std::vector<BasicBlock *> ForeBlocksLast; |
| 317 | std::vector<BasicBlock *> SubLoopBlocksFirst; |
| 318 | std::vector<BasicBlock *> SubLoopBlocksLast; |
| 319 | std::vector<BasicBlock *> AftBlocksFirst; |
| 320 | std::vector<BasicBlock *> AftBlocksLast; |
| 321 | ForeBlocksFirst.push_back(x: Header); |
| 322 | ForeBlocksLast.push_back(x: SubLoop->getLoopPreheader()); |
| 323 | SubLoopBlocksFirst.push_back(x: SubLoop->getHeader()); |
| 324 | SubLoopBlocksLast.push_back(x: SubLoop->getExitingBlock()); |
| 325 | AftBlocksFirst.push_back(x: SubLoop->getExitBlock()); |
| 326 | AftBlocksLast.push_back(x: L->getExitingBlock()); |
| 327 | // Maps Blocks[0] -> Blocks[It] |
| 328 | ValueToValueMapTy LastValueMap; |
| 329 | |
| 330 | // Move any instructions from fore phi operands from AftBlocks into Fore. |
| 331 | moveHeaderPhiOperandsToForeBlocks( |
| 332 | Header, Latch: LatchBlock, InsertLoc: ForeBlocksLast[0]->getTerminator()->getIterator(), |
| 333 | AftBlocks); |
| 334 | |
| 335 | // The current on-the-fly SSA update requires blocks to be processed in |
| 336 | // reverse postorder so that LastValueMap contains the correct value at each |
| 337 | // exit. |
| 338 | LoopBlocksDFS DFS(L); |
| 339 | DFS.perform(LI); |
| 340 | // Stash the DFS iterators before adding blocks to the loop. |
| 341 | LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); |
| 342 | LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); |
| 343 | |
| 344 | // When a FSDiscriminator is enabled, we don't need to add the multiply |
| 345 | // factors to the discriminators. |
| 346 | if (Header->getParent()->shouldEmitDebugInfoForProfiling() && |
| 347 | !EnableFSDiscriminator) |
| 348 | for (BasicBlock *BB : L->getBlocks()) |
| 349 | for (Instruction &I : *BB) |
| 350 | if (!I.isDebugOrPseudoInst()) |
| 351 | if (const DILocation *DIL = I.getDebugLoc()) { |
| 352 | auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(DF: Count); |
| 353 | if (NewDIL) |
| 354 | I.setDebugLoc(*NewDIL); |
| 355 | else |
| 356 | LLVM_DEBUG(dbgs() |
| 357 | << "Failed to create new discriminator: " |
| 358 | << DIL->getFilename() << " Line: " << DIL->getLine()); |
| 359 | } |
| 360 | |
| 361 | // Copy all blocks |
| 362 | for (unsigned It = 1; It != Count; ++It) { |
| 363 | SmallVector<BasicBlock *, 8> NewBlocks; |
| 364 | // Maps Blocks[It] -> Blocks[It-1] |
| 365 | DenseMap<Value *, Value *> PrevItValueMap; |
| 366 | SmallDenseMap<const Loop *, Loop *, 4> NewLoops; |
| 367 | NewLoops[L] = L; |
| 368 | NewLoops[SubLoop] = SubLoop; |
| 369 | |
| 370 | for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { |
| 371 | ValueToValueMapTy VMap; |
| 372 | BasicBlock *New = CloneBasicBlock(BB: *BB, VMap, NameSuffix: "." + Twine(It)); |
| 373 | Header->getParent()->insert(Position: Header->getParent()->end(), BB: New); |
| 374 | |
| 375 | // Tell LI about New. |
| 376 | addClonedBlockToLoopInfo(OriginalBB: *BB, ClonedBB: New, LI, NewLoops); |
| 377 | |
| 378 | if (ForeBlocks.count(Ptr: *BB)) { |
| 379 | if (*BB == ForeBlocksFirst[0]) |
| 380 | ForeBlocksFirst.push_back(x: New); |
| 381 | if (*BB == ForeBlocksLast[0]) |
| 382 | ForeBlocksLast.push_back(x: New); |
| 383 | } else if (SubLoopBlocks.count(Ptr: *BB)) { |
| 384 | if (*BB == SubLoopBlocksFirst[0]) |
| 385 | SubLoopBlocksFirst.push_back(x: New); |
| 386 | if (*BB == SubLoopBlocksLast[0]) |
| 387 | SubLoopBlocksLast.push_back(x: New); |
| 388 | } else if (AftBlocks.count(Ptr: *BB)) { |
| 389 | if (*BB == AftBlocksFirst[0]) |
| 390 | AftBlocksFirst.push_back(x: New); |
| 391 | if (*BB == AftBlocksLast[0]) |
| 392 | AftBlocksLast.push_back(x: New); |
| 393 | } else { |
| 394 | llvm_unreachable("BB being cloned should be in Fore/Sub/Aft" ); |
| 395 | } |
| 396 | |
| 397 | // Update our running maps of newest clones |
| 398 | auto &Last = LastValueMap[*BB]; |
| 399 | PrevItValueMap[New] = (It == 1 ? *BB : Last); |
| 400 | Last = New; |
| 401 | for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); |
| 402 | VI != VE; ++VI) { |
| 403 | auto &LVM = LastValueMap[VI->first]; |
| 404 | PrevItValueMap[VI->second] = |
| 405 | const_cast<Value *>(It == 1 ? VI->first : LVM); |
| 406 | LVM = VI->second; |
| 407 | } |
| 408 | |
| 409 | NewBlocks.push_back(Elt: New); |
| 410 | |
| 411 | // Update DomTree: |
| 412 | if (*BB == ForeBlocksFirst[0]) |
| 413 | DT->addNewBlock(BB: New, DomBB: ForeBlocksLast[It - 1]); |
| 414 | else if (*BB == SubLoopBlocksFirst[0]) |
| 415 | DT->addNewBlock(BB: New, DomBB: SubLoopBlocksLast[It - 1]); |
| 416 | else if (*BB == AftBlocksFirst[0]) |
| 417 | DT->addNewBlock(BB: New, DomBB: AftBlocksLast[It - 1]); |
| 418 | else { |
| 419 | // Each set of blocks (Fore/Sub/Aft) will have the same internal domtree |
| 420 | // structure. |
| 421 | auto BBDomNode = DT->getNode(BB: *BB); |
| 422 | auto BBIDom = BBDomNode->getIDom(); |
| 423 | BasicBlock *OriginalBBIDom = BBIDom->getBlock(); |
| 424 | assert(OriginalBBIDom); |
| 425 | assert(LastValueMap[cast<Value>(OriginalBBIDom)]); |
| 426 | DT->addNewBlock( |
| 427 | BB: New, DomBB: cast<BasicBlock>(Val&: LastValueMap[cast<Value>(Val: OriginalBBIDom)])); |
| 428 | } |
| 429 | } |
| 430 | |
| 431 | // Remap all instructions in the most recent iteration |
| 432 | remapInstructionsInBlocks(Blocks: NewBlocks, VMap&: LastValueMap); |
| 433 | for (BasicBlock *NewBlock : NewBlocks) { |
| 434 | for (Instruction &I : *NewBlock) { |
| 435 | if (auto *II = dyn_cast<AssumeInst>(Val: &I)) |
| 436 | AC->registerAssumption(CI: II); |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | // Alter the ForeBlocks phi's, pointing them at the latest version of the |
| 441 | // value from the previous iteration's phis |
| 442 | for (PHINode &Phi : ForeBlocksFirst[It]->phis()) { |
| 443 | Value *OldValue = Phi.getIncomingValueForBlock(BB: AftBlocksLast[It]); |
| 444 | assert(OldValue && "should have incoming edge from Aft[It]" ); |
| 445 | Value *NewValue = OldValue; |
| 446 | if (Value *PrevValue = PrevItValueMap[OldValue]) |
| 447 | NewValue = PrevValue; |
| 448 | |
| 449 | assert(Phi.getNumOperands() == 2); |
| 450 | Phi.setIncomingBlock(i: 0, BB: ForeBlocksLast[It - 1]); |
| 451 | Phi.setIncomingValue(i: 0, V: NewValue); |
| 452 | Phi.removeIncomingValue(Idx: 1); |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | // Now that all the basic blocks for the unrolled iterations are in place, |
| 457 | // finish up connecting the blocks and phi nodes. At this point LastValueMap |
| 458 | // is the last unrolled iterations values. |
| 459 | |
| 460 | // Update Phis in BB from OldBB to point to NewBB and use the latest value |
| 461 | // from LastValueMap |
| 462 | auto updatePHIBlocksAndValues = [](BasicBlock *BB, BasicBlock *OldBB, |
| 463 | BasicBlock *NewBB, |
| 464 | ValueToValueMapTy &LastValueMap) { |
| 465 | for (PHINode &Phi : BB->phis()) { |
| 466 | for (unsigned b = 0; b < Phi.getNumIncomingValues(); ++b) { |
| 467 | if (Phi.getIncomingBlock(i: b) == OldBB) { |
| 468 | Value *OldValue = Phi.getIncomingValue(i: b); |
| 469 | if (Value *LastValue = LastValueMap[OldValue]) |
| 470 | Phi.setIncomingValue(i: b, V: LastValue); |
| 471 | Phi.setIncomingBlock(i: b, BB: NewBB); |
| 472 | break; |
| 473 | } |
| 474 | } |
| 475 | } |
| 476 | }; |
| 477 | // Move all the phis from Src into Dest |
| 478 | auto movePHIs = [](BasicBlock *Src, BasicBlock *Dest) { |
| 479 | BasicBlock::iterator insertPoint = Dest->getFirstNonPHIIt(); |
| 480 | while (PHINode *Phi = dyn_cast<PHINode>(Val: Src->begin())) |
| 481 | Phi->moveBefore(BB&: *Dest, I: insertPoint); |
| 482 | }; |
| 483 | |
| 484 | // Update the PHI values outside the loop to point to the last block |
| 485 | updatePHIBlocksAndValues(LoopExit, AftBlocksLast[0], AftBlocksLast.back(), |
| 486 | LastValueMap); |
| 487 | |
| 488 | // Update ForeBlocks successors and phi nodes |
| 489 | BranchInst *ForeTerm = |
| 490 | cast<BranchInst>(Val: ForeBlocksLast.back()->getTerminator()); |
| 491 | assert(ForeTerm->getNumSuccessors() == 1 && "Expecting one successor" ); |
| 492 | ForeTerm->setSuccessor(idx: 0, NewSucc: SubLoopBlocksFirst[0]); |
| 493 | |
| 494 | if (CompletelyUnroll) { |
| 495 | while (PHINode *Phi = dyn_cast<PHINode>(Val: ForeBlocksFirst[0]->begin())) { |
| 496 | Phi->replaceAllUsesWith(V: Phi->getIncomingValueForBlock(BB: Preheader)); |
| 497 | Phi->eraseFromParent(); |
| 498 | } |
| 499 | } else { |
| 500 | // Update the PHI values to point to the last aft block |
| 501 | updatePHIBlocksAndValues(ForeBlocksFirst[0], AftBlocksLast[0], |
| 502 | AftBlocksLast.back(), LastValueMap); |
| 503 | } |
| 504 | |
| 505 | for (unsigned It = 1; It != Count; It++) { |
| 506 | // Remap ForeBlock successors from previous iteration to this |
| 507 | BranchInst *ForeTerm = |
| 508 | cast<BranchInst>(Val: ForeBlocksLast[It - 1]->getTerminator()); |
| 509 | assert(ForeTerm->getNumSuccessors() == 1 && "Expecting one successor" ); |
| 510 | ForeTerm->setSuccessor(idx: 0, NewSucc: ForeBlocksFirst[It]); |
| 511 | } |
| 512 | |
| 513 | // Subloop successors and phis |
| 514 | BranchInst *SubTerm = |
| 515 | cast<BranchInst>(Val: SubLoopBlocksLast.back()->getTerminator()); |
| 516 | SubTerm->setSuccessor(idx: !SubLoopContinueOnTrue, NewSucc: SubLoopBlocksFirst[0]); |
| 517 | SubTerm->setSuccessor(idx: SubLoopContinueOnTrue, NewSucc: AftBlocksFirst[0]); |
| 518 | SubLoopBlocksFirst[0]->replacePhiUsesWith(Old: ForeBlocksLast[0], |
| 519 | New: ForeBlocksLast.back()); |
| 520 | SubLoopBlocksFirst[0]->replacePhiUsesWith(Old: SubLoopBlocksLast[0], |
| 521 | New: SubLoopBlocksLast.back()); |
| 522 | |
| 523 | for (unsigned It = 1; It != Count; It++) { |
| 524 | // Replace the conditional branch of the previous iteration subloop with an |
| 525 | // unconditional one to this one |
| 526 | BranchInst *SubTerm = |
| 527 | cast<BranchInst>(Val: SubLoopBlocksLast[It - 1]->getTerminator()); |
| 528 | BranchInst::Create(IfTrue: SubLoopBlocksFirst[It], InsertBefore: SubTerm->getIterator()); |
| 529 | SubTerm->eraseFromParent(); |
| 530 | |
| 531 | SubLoopBlocksFirst[It]->replacePhiUsesWith(Old: ForeBlocksLast[It], |
| 532 | New: ForeBlocksLast.back()); |
| 533 | SubLoopBlocksFirst[It]->replacePhiUsesWith(Old: SubLoopBlocksLast[It], |
| 534 | New: SubLoopBlocksLast.back()); |
| 535 | movePHIs(SubLoopBlocksFirst[It], SubLoopBlocksFirst[0]); |
| 536 | } |
| 537 | |
| 538 | // Aft blocks successors and phis |
| 539 | BranchInst *AftTerm = cast<BranchInst>(Val: AftBlocksLast.back()->getTerminator()); |
| 540 | if (CompletelyUnroll) { |
| 541 | BranchInst::Create(IfTrue: LoopExit, InsertBefore: AftTerm->getIterator()); |
| 542 | AftTerm->eraseFromParent(); |
| 543 | } else { |
| 544 | AftTerm->setSuccessor(idx: !ContinueOnTrue, NewSucc: ForeBlocksFirst[0]); |
| 545 | assert(AftTerm->getSuccessor(ContinueOnTrue) == LoopExit && |
| 546 | "Expecting the ContinueOnTrue successor of AftTerm to be LoopExit" ); |
| 547 | } |
| 548 | AftBlocksFirst[0]->replacePhiUsesWith(Old: SubLoopBlocksLast[0], |
| 549 | New: SubLoopBlocksLast.back()); |
| 550 | |
| 551 | for (unsigned It = 1; It != Count; It++) { |
| 552 | // Replace the conditional branch of the previous iteration subloop with an |
| 553 | // unconditional one to this one |
| 554 | BranchInst *AftTerm = |
| 555 | cast<BranchInst>(Val: AftBlocksLast[It - 1]->getTerminator()); |
| 556 | BranchInst::Create(IfTrue: AftBlocksFirst[It], InsertBefore: AftTerm->getIterator()); |
| 557 | AftTerm->eraseFromParent(); |
| 558 | |
| 559 | AftBlocksFirst[It]->replacePhiUsesWith(Old: SubLoopBlocksLast[It], |
| 560 | New: SubLoopBlocksLast.back()); |
| 561 | movePHIs(AftBlocksFirst[It], AftBlocksFirst[0]); |
| 562 | } |
| 563 | |
| 564 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
| 565 | // Dominator Tree. Remove the old links between Fore, Sub and Aft, adding the |
| 566 | // new ones required. |
| 567 | if (Count != 1) { |
| 568 | SmallVector<DominatorTree::UpdateType, 4> DTUpdates; |
| 569 | DTUpdates.emplace_back(Args: DominatorTree::UpdateKind::Delete, Args&: ForeBlocksLast[0], |
| 570 | Args&: SubLoopBlocksFirst[0]); |
| 571 | DTUpdates.emplace_back(Args: DominatorTree::UpdateKind::Delete, |
| 572 | Args&: SubLoopBlocksLast[0], Args&: AftBlocksFirst[0]); |
| 573 | |
| 574 | DTUpdates.emplace_back(Args: DominatorTree::UpdateKind::Insert, |
| 575 | Args&: ForeBlocksLast.back(), Args&: SubLoopBlocksFirst[0]); |
| 576 | DTUpdates.emplace_back(Args: DominatorTree::UpdateKind::Insert, |
| 577 | Args&: SubLoopBlocksLast.back(), Args&: AftBlocksFirst[0]); |
| 578 | DTU.applyUpdatesPermissive(Updates: DTUpdates); |
| 579 | } |
| 580 | |
| 581 | // Merge adjacent basic blocks, if possible. |
| 582 | SmallPtrSet<BasicBlock *, 16> MergeBlocks; |
| 583 | MergeBlocks.insert_range(R&: ForeBlocksLast); |
| 584 | MergeBlocks.insert_range(R&: SubLoopBlocksLast); |
| 585 | MergeBlocks.insert_range(R&: AftBlocksLast); |
| 586 | |
| 587 | MergeBlockSuccessorsIntoGivenBlocks(MergeBlocks, L, DTU: &DTU, LI); |
| 588 | |
| 589 | // Apply updates to the DomTree. |
| 590 | DT = &DTU.getDomTree(); |
| 591 | |
| 592 | // At this point, the code is well formed. We now do a quick sweep over the |
| 593 | // inserted code, doing constant propagation and dead code elimination as we |
| 594 | // go. |
| 595 | simplifyLoopAfterUnroll(L: SubLoop, SimplifyIVs: true, LI, SE, DT, AC, TTI); |
| 596 | simplifyLoopAfterUnroll(L, SimplifyIVs: !CompletelyUnroll && Count > 1, LI, SE, DT, AC, |
| 597 | TTI); |
| 598 | |
| 599 | NumCompletelyUnrolledAndJammed += CompletelyUnroll; |
| 600 | ++NumUnrolledAndJammed; |
| 601 | |
| 602 | // Update LoopInfo if the loop is completely removed. |
| 603 | if (CompletelyUnroll) |
| 604 | LI->erase(L); |
| 605 | |
| 606 | #ifndef NDEBUG |
| 607 | // We shouldn't have done anything to break loop simplify form or LCSSA. |
| 608 | Loop *OutestLoop = SubLoop->getParentLoop() |
| 609 | ? SubLoop->getParentLoop()->getParentLoop() |
| 610 | ? SubLoop->getParentLoop()->getParentLoop() |
| 611 | : SubLoop->getParentLoop() |
| 612 | : SubLoop; |
| 613 | assert(DT->verify()); |
| 614 | LI->verify(*DT); |
| 615 | assert(OutestLoop->isRecursivelyLCSSAForm(*DT, *LI)); |
| 616 | if (!CompletelyUnroll) |
| 617 | assert(L->isLoopSimplifyForm()); |
| 618 | assert(SubLoop->isLoopSimplifyForm()); |
| 619 | SE->verify(); |
| 620 | #endif |
| 621 | |
| 622 | return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled |
| 623 | : LoopUnrollResult::PartiallyUnrolled; |
| 624 | } |
| 625 | |
| 626 | static bool getLoadsAndStores(BasicBlockSet &Blocks, |
| 627 | SmallVector<Instruction *, 4> &MemInstr) { |
| 628 | // Scan the BBs and collect legal loads and stores. |
| 629 | // Returns false if non-simple loads/stores are found. |
| 630 | for (BasicBlock *BB : Blocks) { |
| 631 | for (Instruction &I : *BB) { |
| 632 | if (auto *Ld = dyn_cast<LoadInst>(Val: &I)) { |
| 633 | if (!Ld->isSimple()) |
| 634 | return false; |
| 635 | MemInstr.push_back(Elt: &I); |
| 636 | } else if (auto *St = dyn_cast<StoreInst>(Val: &I)) { |
| 637 | if (!St->isSimple()) |
| 638 | return false; |
| 639 | MemInstr.push_back(Elt: &I); |
| 640 | } else if (I.mayReadOrWriteMemory()) { |
| 641 | return false; |
| 642 | } |
| 643 | } |
| 644 | } |
| 645 | return true; |
| 646 | } |
| 647 | |
| 648 | static bool preservesForwardDependence(Instruction *Src, Instruction *Dst, |
| 649 | unsigned UnrollLevel, unsigned JamLevel, |
| 650 | bool Sequentialized, Dependence *D) { |
| 651 | // UnrollLevel might carry the dependency Src --> Dst |
| 652 | // Does a different loop after unrolling? |
| 653 | for (unsigned CurLoopDepth = UnrollLevel + 1; CurLoopDepth <= JamLevel; |
| 654 | ++CurLoopDepth) { |
| 655 | auto JammedDir = D->getDirection(Level: CurLoopDepth); |
| 656 | if (JammedDir == Dependence::DVEntry::LT) |
| 657 | return true; |
| 658 | |
| 659 | if (JammedDir & Dependence::DVEntry::GT) |
| 660 | return false; |
| 661 | } |
| 662 | |
| 663 | return true; |
| 664 | } |
| 665 | |
| 666 | static bool preservesBackwardDependence(Instruction *Src, Instruction *Dst, |
| 667 | unsigned UnrollLevel, unsigned JamLevel, |
| 668 | bool Sequentialized, Dependence *D) { |
| 669 | // UnrollLevel might carry the dependency Dst --> Src |
| 670 | for (unsigned CurLoopDepth = UnrollLevel + 1; CurLoopDepth <= JamLevel; |
| 671 | ++CurLoopDepth) { |
| 672 | auto JammedDir = D->getDirection(Level: CurLoopDepth); |
| 673 | if (JammedDir == Dependence::DVEntry::GT) |
| 674 | return true; |
| 675 | |
| 676 | if (JammedDir & Dependence::DVEntry::LT) |
| 677 | return false; |
| 678 | } |
| 679 | |
| 680 | // Backward dependencies are only preserved if not interleaved. |
| 681 | return Sequentialized; |
| 682 | } |
| 683 | |
| 684 | // Check whether it is semantically safe Src and Dst considering any potential |
| 685 | // dependency between them. |
| 686 | // |
| 687 | // @param UnrollLevel The level of the loop being unrolled |
| 688 | // @param JamLevel The level of the loop being jammed; if Src and Dst are on |
| 689 | // different levels, the outermost common loop counts as jammed level |
| 690 | // |
| 691 | // @return true if is safe and false if there is a dependency violation. |
| 692 | static bool checkDependency(Instruction *Src, Instruction *Dst, |
| 693 | unsigned UnrollLevel, unsigned JamLevel, |
| 694 | bool Sequentialized, DependenceInfo &DI) { |
| 695 | assert(UnrollLevel <= JamLevel && |
| 696 | "Expecting JamLevel to be at least UnrollLevel" ); |
| 697 | |
| 698 | if (Src == Dst) |
| 699 | return true; |
| 700 | // Ignore Input dependencies. |
| 701 | if (isa<LoadInst>(Val: Src) && isa<LoadInst>(Val: Dst)) |
| 702 | return true; |
| 703 | |
| 704 | // Check whether unroll-and-jam may violate a dependency. |
| 705 | // By construction, every dependency will be lexicographically non-negative |
| 706 | // (if it was, it would violate the current execution order), such as |
| 707 | // (0,0,>,*,*) |
| 708 | // Unroll-and-jam changes the GT execution of two executions to the same |
| 709 | // iteration of the chosen unroll level. That is, a GT dependence becomes a GE |
| 710 | // dependence (or EQ, if we fully unrolled the loop) at the loop's position: |
| 711 | // (0,0,>=,*,*) |
| 712 | // Now, the dependency is not necessarily non-negative anymore, i.e. |
| 713 | // unroll-and-jam may violate correctness. |
| 714 | std::unique_ptr<Dependence> D = DI.depends(Src, Dst); |
| 715 | if (!D) |
| 716 | return true; |
| 717 | assert(D->isOrdered() && "Expected an output, flow or anti dep." ); |
| 718 | |
| 719 | if (D->isConfused()) { |
| 720 | LLVM_DEBUG(dbgs() << " Confused dependency between:\n" |
| 721 | << " " << *Src << "\n" |
| 722 | << " " << *Dst << "\n" ); |
| 723 | return false; |
| 724 | } |
| 725 | |
| 726 | // If outer levels (levels enclosing the loop being unroll-and-jammed) have a |
| 727 | // non-equal direction, then the locations accessed in the inner levels cannot |
| 728 | // overlap in memory. We assumes the indexes never overlap into neighboring |
| 729 | // dimensions. |
| 730 | for (unsigned CurLoopDepth = 1; CurLoopDepth < UnrollLevel; ++CurLoopDepth) |
| 731 | if (!(D->getDirection(Level: CurLoopDepth) & Dependence::DVEntry::EQ)) |
| 732 | return true; |
| 733 | |
| 734 | auto UnrollDirection = D->getDirection(Level: UnrollLevel); |
| 735 | |
| 736 | // If the distance carried by the unrolled loop is 0, then after unrolling |
| 737 | // that distance will become non-zero resulting in non-overlapping accesses in |
| 738 | // the inner loops. |
| 739 | if (UnrollDirection == Dependence::DVEntry::EQ) |
| 740 | return true; |
| 741 | |
| 742 | if (UnrollDirection & Dependence::DVEntry::LT && |
| 743 | !preservesForwardDependence(Src, Dst, UnrollLevel, JamLevel, |
| 744 | Sequentialized, D: D.get())) |
| 745 | return false; |
| 746 | |
| 747 | if (UnrollDirection & Dependence::DVEntry::GT && |
| 748 | !preservesBackwardDependence(Src, Dst, UnrollLevel, JamLevel, |
| 749 | Sequentialized, D: D.get())) |
| 750 | return false; |
| 751 | |
| 752 | return true; |
| 753 | } |
| 754 | |
| 755 | static bool |
| 756 | checkDependencies(Loop &Root, const BasicBlockSet &SubLoopBlocks, |
| 757 | const DenseMap<Loop *, BasicBlockSet> &ForeBlocksMap, |
| 758 | const DenseMap<Loop *, BasicBlockSet> &AftBlocksMap, |
| 759 | DependenceInfo &DI, LoopInfo &LI) { |
| 760 | SmallVector<BasicBlockSet, 8> AllBlocks; |
| 761 | for (Loop *L : Root.getLoopsInPreorder()) |
| 762 | if (ForeBlocksMap.contains(Val: L)) |
| 763 | AllBlocks.push_back(Elt: ForeBlocksMap.lookup(Val: L)); |
| 764 | AllBlocks.push_back(Elt: SubLoopBlocks); |
| 765 | for (Loop *L : Root.getLoopsInPreorder()) |
| 766 | if (AftBlocksMap.contains(Val: L)) |
| 767 | AllBlocks.push_back(Elt: AftBlocksMap.lookup(Val: L)); |
| 768 | |
| 769 | unsigned LoopDepth = Root.getLoopDepth(); |
| 770 | SmallVector<Instruction *, 4> EarlierLoadsAndStores; |
| 771 | SmallVector<Instruction *, 4> CurrentLoadsAndStores; |
| 772 | for (BasicBlockSet &Blocks : AllBlocks) { |
| 773 | CurrentLoadsAndStores.clear(); |
| 774 | if (!getLoadsAndStores(Blocks, MemInstr&: CurrentLoadsAndStores)) |
| 775 | return false; |
| 776 | |
| 777 | Loop *CurLoop = LI.getLoopFor(BB: (*Blocks.begin())->front().getParent()); |
| 778 | unsigned CurLoopDepth = CurLoop->getLoopDepth(); |
| 779 | |
| 780 | for (auto *Earlier : EarlierLoadsAndStores) { |
| 781 | Loop *EarlierLoop = LI.getLoopFor(BB: Earlier->getParent()); |
| 782 | unsigned EarlierDepth = EarlierLoop->getLoopDepth(); |
| 783 | unsigned CommonLoopDepth = std::min(a: EarlierDepth, b: CurLoopDepth); |
| 784 | for (auto *Later : CurrentLoadsAndStores) { |
| 785 | if (!checkDependency(Src: Earlier, Dst: Later, UnrollLevel: LoopDepth, JamLevel: CommonLoopDepth, Sequentialized: false, |
| 786 | DI)) |
| 787 | return false; |
| 788 | } |
| 789 | } |
| 790 | |
| 791 | size_t NumInsts = CurrentLoadsAndStores.size(); |
| 792 | for (size_t I = 0; I < NumInsts; ++I) { |
| 793 | for (size_t J = I; J < NumInsts; ++J) { |
| 794 | if (!checkDependency(Src: CurrentLoadsAndStores[I], Dst: CurrentLoadsAndStores[J], |
| 795 | UnrollLevel: LoopDepth, JamLevel: CurLoopDepth, Sequentialized: true, DI)) |
| 796 | return false; |
| 797 | } |
| 798 | } |
| 799 | |
| 800 | EarlierLoadsAndStores.append(in_start: CurrentLoadsAndStores.begin(), |
| 801 | in_end: CurrentLoadsAndStores.end()); |
| 802 | } |
| 803 | return true; |
| 804 | } |
| 805 | |
| 806 | static bool isEligibleLoopForm(const Loop &Root) { |
| 807 | // Root must have a child. |
| 808 | if (Root.getSubLoops().size() != 1) |
| 809 | return false; |
| 810 | |
| 811 | const Loop *L = &Root; |
| 812 | do { |
| 813 | // All loops in Root need to be in simplify and rotated form. |
| 814 | if (!L->isLoopSimplifyForm()) |
| 815 | return false; |
| 816 | |
| 817 | if (!L->isRotatedForm()) |
| 818 | return false; |
| 819 | |
| 820 | if (L->getHeader()->hasAddressTaken()) { |
| 821 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Address taken\n" ); |
| 822 | return false; |
| 823 | } |
| 824 | |
| 825 | unsigned SubLoopsSize = L->getSubLoops().size(); |
| 826 | if (SubLoopsSize == 0) |
| 827 | return true; |
| 828 | |
| 829 | // Only one child is allowed. |
| 830 | if (SubLoopsSize != 1) |
| 831 | return false; |
| 832 | |
| 833 | // Only loops with a single exit block can be unrolled and jammed. |
| 834 | // The function getExitBlock() is used for this check, rather than |
| 835 | // getUniqueExitBlock() to ensure loops with mulitple exit edges are |
| 836 | // disallowed. |
| 837 | if (!L->getExitBlock()) { |
| 838 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; only loops with single exit " |
| 839 | "blocks can be unrolled and jammed.\n" ); |
| 840 | return false; |
| 841 | } |
| 842 | |
| 843 | // Only loops with a single exiting block can be unrolled and jammed. |
| 844 | if (!L->getExitingBlock()) { |
| 845 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; only loops with single " |
| 846 | "exiting blocks can be unrolled and jammed.\n" ); |
| 847 | return false; |
| 848 | } |
| 849 | |
| 850 | L = L->getSubLoops()[0]; |
| 851 | } while (L); |
| 852 | |
| 853 | return true; |
| 854 | } |
| 855 | |
| 856 | static Loop *getInnerMostLoop(Loop *L) { |
| 857 | while (!L->getSubLoops().empty()) |
| 858 | L = L->getSubLoops()[0]; |
| 859 | return L; |
| 860 | } |
| 861 | |
| 862 | bool llvm::isSafeToUnrollAndJam(Loop *L, ScalarEvolution &SE, DominatorTree &DT, |
| 863 | DependenceInfo &DI, LoopInfo &LI) { |
| 864 | if (!isEligibleLoopForm(Root: *L)) { |
| 865 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Ineligible loop form\n" ); |
| 866 | return false; |
| 867 | } |
| 868 | |
| 869 | /* We currently handle outer loops like this: |
| 870 | | |
| 871 | ForeFirst <------\ } |
| 872 | Blocks | } ForeBlocks of L |
| 873 | ForeLast | } |
| 874 | | | |
| 875 | ... | |
| 876 | | | |
| 877 | ForeFirst <----\ | } |
| 878 | Blocks | | } ForeBlocks of a inner loop of L |
| 879 | ForeLast | | } |
| 880 | | | | |
| 881 | JamLoopFirst <\ | | } |
| 882 | Blocks | | | } JamLoopBlocks of the innermost loop |
| 883 | JamLoopLast -/ | | } |
| 884 | | | | |
| 885 | AftFirst | | } |
| 886 | Blocks | | } AftBlocks of a inner loop of L |
| 887 | AftLast ------/ | } |
| 888 | | | |
| 889 | ... | |
| 890 | | | |
| 891 | AftFirst | } |
| 892 | Blocks | } AftBlocks of L |
| 893 | AftLast --------/ } |
| 894 | | |
| 895 | |
| 896 | There are (theoretically) any number of blocks in ForeBlocks, SubLoopBlocks |
| 897 | and AftBlocks, providing that there is one edge from Fores to SubLoops, |
| 898 | one edge from SubLoops to Afts and a single outer loop exit (from Afts). |
| 899 | In practice we currently limit Aft blocks to a single block, and limit |
| 900 | things further in the profitablility checks of the unroll and jam pass. |
| 901 | |
| 902 | Because of the way we rearrange basic blocks, we also require that |
| 903 | the Fore blocks of L on all unrolled iterations are safe to move before the |
| 904 | blocks of the direct child of L of all iterations. So we require that the |
| 905 | phi node looping operands of ForeHeader can be moved to at least the end of |
| 906 | ForeEnd, so that we can arrange cloned Fore Blocks before the subloop and |
| 907 | match up Phi's correctly. |
| 908 | |
| 909 | i.e. The old order of blocks used to be |
| 910 | (F1)1 (F2)1 J1_1 J1_2 (A2)1 (A1)1 (F1)2 (F2)2 J2_1 J2_2 (A2)2 (A1)2. |
| 911 | It needs to be safe to transform this to |
| 912 | (F1)1 (F1)2 (F2)1 (F2)2 J1_1 J1_2 J2_1 J2_2 (A2)1 (A2)2 (A1)1 (A1)2. |
| 913 | |
| 914 | There are then a number of checks along the lines of no calls, no |
| 915 | exceptions, inner loop IV is consistent, etc. Note that for loops requiring |
| 916 | runtime unrolling, UnrollRuntimeLoopRemainder can also fail in |
| 917 | UnrollAndJamLoop if the trip count cannot be easily calculated. |
| 918 | */ |
| 919 | |
| 920 | // Split blocks into Fore/SubLoop/Aft based on dominators |
| 921 | Loop *JamLoop = getInnerMostLoop(L); |
| 922 | BasicBlockSet SubLoopBlocks; |
| 923 | DenseMap<Loop *, BasicBlockSet> ForeBlocksMap; |
| 924 | DenseMap<Loop *, BasicBlockSet> AftBlocksMap; |
| 925 | if (!partitionOuterLoopBlocks(Root&: *L, JamLoop&: *JamLoop, JamLoopBlocks&: SubLoopBlocks, ForeBlocksMap, |
| 926 | AftBlocksMap, DT)) { |
| 927 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Incompatible loop layout\n" ); |
| 928 | return false; |
| 929 | } |
| 930 | |
| 931 | // Aft blocks may need to move instructions to fore blocks, which becomes more |
| 932 | // difficult if there are multiple (potentially conditionally executed) |
| 933 | // blocks. For now we just exclude loops with multiple aft blocks. |
| 934 | if (AftBlocksMap[L].size() != 1) { |
| 935 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Can't currently handle " |
| 936 | "multiple blocks after the loop\n" ); |
| 937 | return false; |
| 938 | } |
| 939 | |
| 940 | // Check inner loop backedge count is consistent on all iterations of the |
| 941 | // outer loop |
| 942 | if (any_of(Range: L->getLoopsInPreorder(), P: [&SE](Loop *SubLoop) { |
| 943 | return !hasIterationCountInvariantInParent(L: SubLoop, SE); |
| 944 | })) { |
| 945 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Inner loop iteration count is " |
| 946 | "not consistent on each iteration\n" ); |
| 947 | return false; |
| 948 | } |
| 949 | |
| 950 | // Check the loop safety info for exceptions. |
| 951 | SimpleLoopSafetyInfo LSI; |
| 952 | LSI.computeLoopSafetyInfo(CurLoop: L); |
| 953 | if (LSI.anyBlockMayThrow()) { |
| 954 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Something may throw\n" ); |
| 955 | return false; |
| 956 | } |
| 957 | |
| 958 | // We've ruled out the easy stuff and now need to check that there are no |
| 959 | // interdependencies which may prevent us from moving the: |
| 960 | // ForeBlocks before Subloop and AftBlocks. |
| 961 | // Subloop before AftBlocks. |
| 962 | // ForeBlock phi operands before the subloop |
| 963 | |
| 964 | // Make sure we can move all instructions we need to before the subloop |
| 965 | BasicBlock * = L->getHeader(); |
| 966 | BasicBlock *Latch = L->getLoopLatch(); |
| 967 | BasicBlockSet AftBlocks = AftBlocksMap[L]; |
| 968 | Loop *SubLoop = L->getSubLoops()[0]; |
| 969 | if (!processHeaderPhiOperands( |
| 970 | Header, Latch, AftBlocks, Visit: [&AftBlocks, &SubLoop](Instruction *I) { |
| 971 | if (SubLoop->contains(BB: I->getParent())) |
| 972 | return false; |
| 973 | if (AftBlocks.count(Ptr: I->getParent())) { |
| 974 | // If we hit a phi node in afts we know we are done (probably |
| 975 | // LCSSA) |
| 976 | if (isa<PHINode>(Val: I)) |
| 977 | return false; |
| 978 | // Can't move instructions with side effects or memory |
| 979 | // reads/writes |
| 980 | if (I->mayHaveSideEffects() || I->mayReadOrWriteMemory()) |
| 981 | return false; |
| 982 | } |
| 983 | // Keep going |
| 984 | return true; |
| 985 | })) { |
| 986 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; can't move required " |
| 987 | "instructions after subloop to before it\n" ); |
| 988 | return false; |
| 989 | } |
| 990 | |
| 991 | // Check for memory dependencies which prohibit the unrolling we are doing. |
| 992 | // Because of the way we are unrolling Fore/Sub/Aft blocks, we need to check |
| 993 | // there are no dependencies between Fore-Sub, Fore-Aft, Sub-Aft and Sub-Sub. |
| 994 | if (!checkDependencies(Root&: *L, SubLoopBlocks, ForeBlocksMap, AftBlocksMap, DI, |
| 995 | LI)) { |
| 996 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; failed dependency check\n" ); |
| 997 | return false; |
| 998 | } |
| 999 | |
| 1000 | return true; |
| 1001 | } |
| 1002 | |