1 | //===- SSAUpdaterBulk.cpp - Unstructured SSA Update Tool ------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the SSAUpdaterBulk class. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/Transforms/Utils/SSAUpdaterBulk.h" |
14 | #include "llvm/Analysis/IteratedDominanceFrontier.h" |
15 | #include "llvm/IR/BasicBlock.h" |
16 | #include "llvm/IR/Dominators.h" |
17 | #include "llvm/IR/IRBuilder.h" |
18 | #include "llvm/IR/Instructions.h" |
19 | #include "llvm/IR/Use.h" |
20 | #include "llvm/IR/Value.h" |
21 | |
22 | using namespace llvm; |
23 | |
24 | #define DEBUG_TYPE "ssaupdaterbulk" |
25 | |
26 | /// Helper function for finding a block which should have a value for the given |
27 | /// user. For PHI-nodes this block is the corresponding predecessor, for other |
28 | /// instructions it's their parent block. |
29 | static BasicBlock *getUserBB(Use *U) { |
30 | auto *User = cast<Instruction>(Val: U->getUser()); |
31 | |
32 | if (auto *UserPN = dyn_cast<PHINode>(Val: User)) |
33 | return UserPN->getIncomingBlock(U: *U); |
34 | else |
35 | return User->getParent(); |
36 | } |
37 | |
38 | /// Add a new variable to the SSA rewriter. This needs to be called before |
39 | /// AddAvailableValue or AddUse calls. |
40 | unsigned SSAUpdaterBulk::AddVariable(StringRef Name, Type *Ty) { |
41 | unsigned Var = Rewrites.size(); |
42 | LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": initialized with Ty = " |
43 | << *Ty << ", Name = " << Name << "\n" ); |
44 | RewriteInfo RI(Name, Ty); |
45 | Rewrites.push_back(Elt: RI); |
46 | return Var; |
47 | } |
48 | |
49 | /// Indicate that a rewritten value is available in the specified block with the |
50 | /// specified value. |
51 | void SSAUpdaterBulk::AddAvailableValue(unsigned Var, BasicBlock *BB, Value *V) { |
52 | assert(Var < Rewrites.size() && "Variable not found!" ); |
53 | LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var |
54 | << ": added new available value " << *V << " in " |
55 | << BB->getName() << "\n" ); |
56 | Rewrites[Var].Defines.emplace_back(Args&: BB, Args&: V); |
57 | } |
58 | |
59 | /// Record a use of the symbolic value. This use will be updated with a |
60 | /// rewritten value when RewriteAllUses is called. |
61 | void SSAUpdaterBulk::AddUse(unsigned Var, Use *U) { |
62 | assert(Var < Rewrites.size() && "Variable not found!" ); |
63 | LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": added a use" << *U->get() |
64 | << " in " << getUserBB(U)->getName() << "\n" ); |
65 | Rewrites[Var].Uses.push_back(Elt: U); |
66 | } |
67 | |
68 | /// Given sets of UsingBlocks and DefBlocks, compute the set of LiveInBlocks. |
69 | /// This is basically a subgraph limited by DefBlocks and UsingBlocks. |
70 | static void |
71 | ComputeLiveInBlocks(const SmallPtrSetImpl<BasicBlock *> &UsingBlocks, |
72 | const SmallPtrSetImpl<BasicBlock *> &DefBlocks, |
73 | SmallPtrSetImpl<BasicBlock *> &LiveInBlocks, |
74 | PredIteratorCache &PredCache) { |
75 | // To determine liveness, we must iterate through the predecessors of blocks |
76 | // where the def is live. Blocks are added to the worklist if we need to |
77 | // check their predecessors. Start with all the using blocks. |
78 | SmallVector<BasicBlock *, 64> LiveInBlockWorklist(UsingBlocks.begin(), |
79 | UsingBlocks.end()); |
80 | |
81 | // Now that we have a set of blocks where the phi is live-in, recursively add |
82 | // their predecessors until we find the full region the value is live. |
83 | while (!LiveInBlockWorklist.empty()) { |
84 | BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); |
85 | |
86 | // The block really is live in here, insert it into the set. If already in |
87 | // the set, then it has already been processed. |
88 | if (!LiveInBlocks.insert(Ptr: BB).second) |
89 | continue; |
90 | |
91 | // Since the value is live into BB, it is either defined in a predecessor or |
92 | // live into it to. Add the preds to the worklist unless they are a |
93 | // defining block. |
94 | for (BasicBlock *P : PredCache.get(BB)) { |
95 | // The value is not live into a predecessor if it defines the value. |
96 | if (DefBlocks.count(Ptr: P)) |
97 | continue; |
98 | |
99 | // Otherwise it is, add to the worklist. |
100 | LiveInBlockWorklist.push_back(Elt: P); |
101 | } |
102 | } |
103 | } |
104 | |
105 | struct BBValueInfo { |
106 | Value *LiveInValue = nullptr; |
107 | Value *LiveOutValue = nullptr; |
108 | }; |
109 | |
110 | /// Perform all the necessary updates, including new PHI-nodes insertion and the |
111 | /// requested uses update. |
112 | void SSAUpdaterBulk::RewriteAllUses(DominatorTree *DT, |
113 | SmallVectorImpl<PHINode *> *InsertedPHIs) { |
114 | DenseMap<BasicBlock *, BBValueInfo> BBInfos; |
115 | for (auto &R : Rewrites) { |
116 | BBInfos.clear(); |
117 | |
118 | // Compute locations for new phi-nodes. |
119 | // For that we need to initialize DefBlocks from definitions in R.Defines, |
120 | // UsingBlocks from uses in R.Uses, then compute LiveInBlocks, and then use |
121 | // this set for computing iterated dominance frontier (IDF). |
122 | // The IDF blocks are the blocks where we need to insert new phi-nodes. |
123 | ForwardIDFCalculator IDF(*DT); |
124 | LLVM_DEBUG(dbgs() << "SSAUpdater: rewriting " << R.Uses.size() |
125 | << " use(s)\n" ); |
126 | |
127 | SmallPtrSet<BasicBlock *, 2> DefBlocks(llvm::from_range, |
128 | llvm::make_first_range(c&: R.Defines)); |
129 | IDF.setDefiningBlocks(DefBlocks); |
130 | |
131 | SmallPtrSet<BasicBlock *, 2> UsingBlocks; |
132 | for (Use *U : R.Uses) |
133 | UsingBlocks.insert(Ptr: getUserBB(U)); |
134 | |
135 | SmallVector<BasicBlock *, 32> IDFBlocks; |
136 | SmallPtrSet<BasicBlock *, 32> LiveInBlocks; |
137 | ComputeLiveInBlocks(UsingBlocks, DefBlocks, LiveInBlocks, PredCache); |
138 | IDF.setLiveInBlocks(LiveInBlocks); |
139 | IDF.calculate(IDFBlocks); |
140 | |
141 | // Reserve sufficient buckets to prevent map growth. [1] |
142 | BBInfos.reserve(NumEntries: LiveInBlocks.size() + DefBlocks.size()); |
143 | |
144 | for (auto [BB, V] : R.Defines) |
145 | BBInfos[BB].LiveOutValue = V; |
146 | |
147 | // We've computed IDF, now insert new phi-nodes there. |
148 | for (auto *FrontierBB : IDFBlocks) { |
149 | IRBuilder<> B(FrontierBB, FrontierBB->begin()); |
150 | PHINode *PN = B.CreatePHI(Ty: R.Ty, NumReservedValues: 0, Name: R.Name); |
151 | BBInfos[FrontierBB].LiveInValue = PN; |
152 | if (InsertedPHIs) |
153 | InsertedPHIs->push_back(Elt: PN); |
154 | } |
155 | |
156 | // IsLiveOut indicates whether we are computing live-out values (true) or |
157 | // live-in values (false). |
158 | auto ComputeValue = [&](BasicBlock *BB, bool IsLiveOut) -> Value * { |
159 | auto *BBInfo = &BBInfos[BB]; |
160 | |
161 | if (IsLiveOut && BBInfo->LiveOutValue) |
162 | return BBInfo->LiveOutValue; |
163 | |
164 | if (BBInfo->LiveInValue) |
165 | return BBInfo->LiveInValue; |
166 | |
167 | SmallVector<BBValueInfo *, 4> Stack = {BBInfo}; |
168 | Value *V = nullptr; |
169 | |
170 | while (DT->isReachableFromEntry(A: BB) && !PredCache.get(BB).empty() && |
171 | (BB = DT->getNode(BB)->getIDom()->getBlock())) { |
172 | BBInfo = &BBInfos[BB]; |
173 | |
174 | if (BBInfo->LiveOutValue) { |
175 | V = BBInfo->LiveOutValue; |
176 | break; |
177 | } |
178 | |
179 | if (BBInfo->LiveInValue) { |
180 | V = BBInfo->LiveInValue; |
181 | break; |
182 | } |
183 | |
184 | Stack.emplace_back(Args&: BBInfo); |
185 | } |
186 | |
187 | if (!V) |
188 | V = UndefValue::get(T: R.Ty); |
189 | |
190 | for (auto *BBInfo : Stack) |
191 | // Loop above can insert new entries into the BBInfos map: assume the |
192 | // map shouldn't grow due to [1] and BBInfo references are valid. |
193 | BBInfo->LiveInValue = V; |
194 | |
195 | return V; |
196 | }; |
197 | |
198 | // Fill in arguments of the inserted PHIs. |
199 | for (auto *BB : IDFBlocks) { |
200 | auto *PHI = cast<PHINode>(Val: &BB->front()); |
201 | for (BasicBlock *Pred : PredCache.get(BB)) |
202 | PHI->addIncoming(V: ComputeValue(Pred, /*IsLiveOut=*/true), BB: Pred); |
203 | } |
204 | |
205 | // Rewrite actual uses with the inserted definitions. |
206 | SmallPtrSet<Use *, 4> ProcessedUses; |
207 | for (Use *U : R.Uses) { |
208 | if (!ProcessedUses.insert(Ptr: U).second) |
209 | continue; |
210 | |
211 | auto *User = cast<Instruction>(Val: U->getUser()); |
212 | BasicBlock *BB = getUserBB(U); |
213 | Value *V = ComputeValue(BB, /*IsLiveOut=*/BB != User->getParent()); |
214 | Value *OldVal = U->get(); |
215 | assert(OldVal && "Invalid use!" ); |
216 | // Notify that users of the existing value that it is being replaced. |
217 | if (OldVal != V && OldVal->hasValueHandle()) |
218 | ValueHandleBase::ValueIsRAUWd(Old: OldVal, New: V); |
219 | LLVM_DEBUG(dbgs() << "SSAUpdater: replacing " << *OldVal << " with " << *V |
220 | << "\n" ); |
221 | U->set(V); |
222 | } |
223 | } |
224 | } |
225 | |