| 1 | //===- SSAUpdaterBulk.cpp - Unstructured SSA Update Tool ------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the SSAUpdaterBulk class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/Transforms/Utils/SSAUpdaterBulk.h" |
| 14 | #include "llvm/Analysis/IteratedDominanceFrontier.h" |
| 15 | #include "llvm/IR/BasicBlock.h" |
| 16 | #include "llvm/IR/Dominators.h" |
| 17 | #include "llvm/IR/IRBuilder.h" |
| 18 | #include "llvm/IR/Instructions.h" |
| 19 | #include "llvm/IR/Use.h" |
| 20 | #include "llvm/IR/Value.h" |
| 21 | |
| 22 | using namespace llvm; |
| 23 | |
| 24 | #define DEBUG_TYPE "ssaupdaterbulk" |
| 25 | |
| 26 | /// Helper function for finding a block which should have a value for the given |
| 27 | /// user. For PHI-nodes this block is the corresponding predecessor, for other |
| 28 | /// instructions it's their parent block. |
| 29 | static BasicBlock *getUserBB(Use *U) { |
| 30 | auto *User = cast<Instruction>(Val: U->getUser()); |
| 31 | |
| 32 | if (auto *UserPN = dyn_cast<PHINode>(Val: User)) |
| 33 | return UserPN->getIncomingBlock(U: *U); |
| 34 | else |
| 35 | return User->getParent(); |
| 36 | } |
| 37 | |
| 38 | /// Add a new variable to the SSA rewriter. This needs to be called before |
| 39 | /// AddAvailableValue or AddUse calls. |
| 40 | unsigned SSAUpdaterBulk::AddVariable(StringRef Name, Type *Ty) { |
| 41 | unsigned Var = Rewrites.size(); |
| 42 | LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": initialized with Ty = " |
| 43 | << *Ty << ", Name = " << Name << "\n" ); |
| 44 | RewriteInfo RI(Name, Ty); |
| 45 | Rewrites.push_back(Elt: RI); |
| 46 | return Var; |
| 47 | } |
| 48 | |
| 49 | /// Indicate that a rewritten value is available in the specified block with the |
| 50 | /// specified value. |
| 51 | void SSAUpdaterBulk::AddAvailableValue(unsigned Var, BasicBlock *BB, Value *V) { |
| 52 | assert(Var < Rewrites.size() && "Variable not found!" ); |
| 53 | LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var |
| 54 | << ": added new available value " << *V << " in " |
| 55 | << BB->getName() << "\n" ); |
| 56 | Rewrites[Var].Defines.emplace_back(Args&: BB, Args&: V); |
| 57 | } |
| 58 | |
| 59 | /// Record a use of the symbolic value. This use will be updated with a |
| 60 | /// rewritten value when RewriteAllUses is called. |
| 61 | void SSAUpdaterBulk::AddUse(unsigned Var, Use *U) { |
| 62 | assert(Var < Rewrites.size() && "Variable not found!" ); |
| 63 | LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": added a use" << *U->get() |
| 64 | << " in " << getUserBB(U)->getName() << "\n" ); |
| 65 | Rewrites[Var].Uses.push_back(Elt: U); |
| 66 | } |
| 67 | |
| 68 | /// Given sets of UsingBlocks and DefBlocks, compute the set of LiveInBlocks. |
| 69 | /// This is basically a subgraph limited by DefBlocks and UsingBlocks. |
| 70 | static void |
| 71 | ComputeLiveInBlocks(const SmallPtrSetImpl<BasicBlock *> &UsingBlocks, |
| 72 | const SmallPtrSetImpl<BasicBlock *> &DefBlocks, |
| 73 | SmallPtrSetImpl<BasicBlock *> &LiveInBlocks, |
| 74 | PredIteratorCache &PredCache) { |
| 75 | // To determine liveness, we must iterate through the predecessors of blocks |
| 76 | // where the def is live. Blocks are added to the worklist if we need to |
| 77 | // check their predecessors. Start with all the using blocks. |
| 78 | SmallVector<BasicBlock *, 64> LiveInBlockWorklist(UsingBlocks.begin(), |
| 79 | UsingBlocks.end()); |
| 80 | |
| 81 | // Now that we have a set of blocks where the phi is live-in, recursively add |
| 82 | // their predecessors until we find the full region the value is live. |
| 83 | while (!LiveInBlockWorklist.empty()) { |
| 84 | BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); |
| 85 | |
| 86 | // The block really is live in here, insert it into the set. If already in |
| 87 | // the set, then it has already been processed. |
| 88 | if (!LiveInBlocks.insert(Ptr: BB).second) |
| 89 | continue; |
| 90 | |
| 91 | // Since the value is live into BB, it is either defined in a predecessor or |
| 92 | // live into it to. Add the preds to the worklist unless they are a |
| 93 | // defining block. |
| 94 | for (BasicBlock *P : PredCache.get(BB)) { |
| 95 | // The value is not live into a predecessor if it defines the value. |
| 96 | if (DefBlocks.count(Ptr: P)) |
| 97 | continue; |
| 98 | |
| 99 | // Otherwise it is, add to the worklist. |
| 100 | LiveInBlockWorklist.push_back(Elt: P); |
| 101 | } |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | struct BBValueInfo { |
| 106 | Value *LiveInValue = nullptr; |
| 107 | Value *LiveOutValue = nullptr; |
| 108 | }; |
| 109 | |
| 110 | /// Perform all the necessary updates, including new PHI-nodes insertion and the |
| 111 | /// requested uses update. |
| 112 | void SSAUpdaterBulk::RewriteAllUses(DominatorTree *DT, |
| 113 | SmallVectorImpl<PHINode *> *InsertedPHIs) { |
| 114 | DenseMap<BasicBlock *, BBValueInfo> BBInfos; |
| 115 | for (auto &R : Rewrites) { |
| 116 | BBInfos.clear(); |
| 117 | |
| 118 | // Compute locations for new phi-nodes. |
| 119 | // For that we need to initialize DefBlocks from definitions in R.Defines, |
| 120 | // UsingBlocks from uses in R.Uses, then compute LiveInBlocks, and then use |
| 121 | // this set for computing iterated dominance frontier (IDF). |
| 122 | // The IDF blocks are the blocks where we need to insert new phi-nodes. |
| 123 | ForwardIDFCalculator IDF(*DT); |
| 124 | LLVM_DEBUG(dbgs() << "SSAUpdater: rewriting " << R.Uses.size() |
| 125 | << " use(s)\n" ); |
| 126 | |
| 127 | SmallPtrSet<BasicBlock *, 2> DefBlocks(llvm::from_range, |
| 128 | llvm::make_first_range(c&: R.Defines)); |
| 129 | IDF.setDefiningBlocks(DefBlocks); |
| 130 | |
| 131 | SmallPtrSet<BasicBlock *, 2> UsingBlocks; |
| 132 | for (Use *U : R.Uses) |
| 133 | UsingBlocks.insert(Ptr: getUserBB(U)); |
| 134 | |
| 135 | SmallVector<BasicBlock *, 32> IDFBlocks; |
| 136 | SmallPtrSet<BasicBlock *, 32> LiveInBlocks; |
| 137 | ComputeLiveInBlocks(UsingBlocks, DefBlocks, LiveInBlocks, PredCache); |
| 138 | IDF.setLiveInBlocks(LiveInBlocks); |
| 139 | IDF.calculate(IDFBlocks); |
| 140 | |
| 141 | // Reserve sufficient buckets to prevent map growth. [1] |
| 142 | BBInfos.reserve(NumEntries: LiveInBlocks.size() + DefBlocks.size()); |
| 143 | |
| 144 | for (auto [BB, V] : R.Defines) |
| 145 | BBInfos[BB].LiveOutValue = V; |
| 146 | |
| 147 | // We've computed IDF, now insert new phi-nodes there. |
| 148 | for (auto *FrontierBB : IDFBlocks) { |
| 149 | IRBuilder<> B(FrontierBB, FrontierBB->begin()); |
| 150 | PHINode *PN = B.CreatePHI(Ty: R.Ty, NumReservedValues: 0, Name: R.Name); |
| 151 | BBInfos[FrontierBB].LiveInValue = PN; |
| 152 | if (InsertedPHIs) |
| 153 | InsertedPHIs->push_back(Elt: PN); |
| 154 | } |
| 155 | |
| 156 | // IsLiveOut indicates whether we are computing live-out values (true) or |
| 157 | // live-in values (false). |
| 158 | auto ComputeValue = [&](BasicBlock *BB, bool IsLiveOut) -> Value * { |
| 159 | auto *BBInfo = &BBInfos[BB]; |
| 160 | |
| 161 | if (IsLiveOut && BBInfo->LiveOutValue) |
| 162 | return BBInfo->LiveOutValue; |
| 163 | |
| 164 | if (BBInfo->LiveInValue) |
| 165 | return BBInfo->LiveInValue; |
| 166 | |
| 167 | SmallVector<BBValueInfo *, 4> Stack = {BBInfo}; |
| 168 | Value *V = nullptr; |
| 169 | |
| 170 | while (DT->isReachableFromEntry(A: BB) && !PredCache.get(BB).empty() && |
| 171 | (BB = DT->getNode(BB)->getIDom()->getBlock())) { |
| 172 | BBInfo = &BBInfos[BB]; |
| 173 | |
| 174 | if (BBInfo->LiveOutValue) { |
| 175 | V = BBInfo->LiveOutValue; |
| 176 | break; |
| 177 | } |
| 178 | |
| 179 | if (BBInfo->LiveInValue) { |
| 180 | V = BBInfo->LiveInValue; |
| 181 | break; |
| 182 | } |
| 183 | |
| 184 | Stack.emplace_back(Args&: BBInfo); |
| 185 | } |
| 186 | |
| 187 | if (!V) |
| 188 | V = UndefValue::get(T: R.Ty); |
| 189 | |
| 190 | for (auto *BBInfo : Stack) |
| 191 | // Loop above can insert new entries into the BBInfos map: assume the |
| 192 | // map shouldn't grow due to [1] and BBInfo references are valid. |
| 193 | BBInfo->LiveInValue = V; |
| 194 | |
| 195 | return V; |
| 196 | }; |
| 197 | |
| 198 | // Fill in arguments of the inserted PHIs. |
| 199 | for (auto *BB : IDFBlocks) { |
| 200 | auto *PHI = cast<PHINode>(Val: &BB->front()); |
| 201 | for (BasicBlock *Pred : PredCache.get(BB)) |
| 202 | PHI->addIncoming(V: ComputeValue(Pred, /*IsLiveOut=*/true), BB: Pred); |
| 203 | } |
| 204 | |
| 205 | // Rewrite actual uses with the inserted definitions. |
| 206 | SmallPtrSet<Use *, 4> ProcessedUses; |
| 207 | for (Use *U : R.Uses) { |
| 208 | if (!ProcessedUses.insert(Ptr: U).second) |
| 209 | continue; |
| 210 | |
| 211 | auto *User = cast<Instruction>(Val: U->getUser()); |
| 212 | BasicBlock *BB = getUserBB(U); |
| 213 | Value *V = ComputeValue(BB, /*IsLiveOut=*/BB != User->getParent()); |
| 214 | Value *OldVal = U->get(); |
| 215 | assert(OldVal && "Invalid use!" ); |
| 216 | // Notify that users of the existing value that it is being replaced. |
| 217 | if (OldVal != V && OldVal->hasValueHandle()) |
| 218 | ValueHandleBase::ValueIsRAUWd(Old: OldVal, New: V); |
| 219 | LLVM_DEBUG(dbgs() << "SSAUpdater: replacing " << *OldVal << " with " << *V |
| 220 | << "\n" ); |
| 221 | U->set(V); |
| 222 | } |
| 223 | } |
| 224 | } |
| 225 | |