1//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the MapValue function, which is shared by various parts of
10// the lib/Transforms/Utils library.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/ValueMapper.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/IR/Argument.h"
21#include "llvm/IR/BasicBlock.h"
22#include "llvm/IR/Constant.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/DebugInfoMetadata.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/GlobalAlias.h"
28#include "llvm/IR/GlobalIFunc.h"
29#include "llvm/IR/GlobalObject.h"
30#include "llvm/IR/GlobalVariable.h"
31#include "llvm/IR/InlineAsm.h"
32#include "llvm/IR/Instruction.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Value.h"
39#include "llvm/Support/Casting.h"
40#include "llvm/Support/Debug.h"
41#include <cassert>
42#include <limits>
43#include <memory>
44#include <utility>
45
46using namespace llvm;
47
48#define DEBUG_TYPE "value-mapper"
49
50// Out of line method to get vtable etc for class.
51void ValueMapTypeRemapper::anchor() {}
52void ValueMaterializer::anchor() {}
53
54namespace {
55
56/// A basic block used in a BlockAddress whose function body is not yet
57/// materialized.
58struct DelayedBasicBlock {
59 BasicBlock *OldBB;
60 std::unique_ptr<BasicBlock> TempBB;
61
62 DelayedBasicBlock(const BlockAddress &Old)
63 : OldBB(Old.getBasicBlock()),
64 TempBB(BasicBlock::Create(Context&: Old.getContext())) {}
65};
66
67struct WorklistEntry {
68 enum EntryKind {
69 MapGlobalInit,
70 MapAppendingVar,
71 MapAliasOrIFunc,
72 RemapFunction
73 };
74 struct GVInitTy {
75 GlobalVariable *GV;
76 Constant *Init;
77 };
78 struct AppendingGVTy {
79 GlobalVariable *GV;
80 Constant *InitPrefix;
81 };
82 struct AliasOrIFuncTy {
83 GlobalValue *GV;
84 Constant *Target;
85 };
86
87 unsigned Kind : 2;
88 unsigned MCID : 29;
89 unsigned AppendingGVIsOldCtorDtor : 1;
90 unsigned AppendingGVNumNewMembers;
91 union {
92 GVInitTy GVInit;
93 AppendingGVTy AppendingGV;
94 AliasOrIFuncTy AliasOrIFunc;
95 Function *RemapF;
96 } Data;
97};
98
99struct MappingContext {
100 ValueToValueMapTy *VM;
101 ValueMaterializer *Materializer = nullptr;
102
103 /// Construct a MappingContext with a value map and materializer.
104 explicit MappingContext(ValueToValueMapTy &VM,
105 ValueMaterializer *Materializer = nullptr)
106 : VM(&VM), Materializer(Materializer) {}
107};
108
109class Mapper {
110 friend class MDNodeMapper;
111
112#ifndef NDEBUG
113 DenseSet<GlobalValue *> AlreadyScheduled;
114#endif
115
116 RemapFlags Flags;
117 ValueMapTypeRemapper *TypeMapper;
118 unsigned CurrentMCID = 0;
119 SmallVector<MappingContext, 2> MCs;
120 SmallVector<WorklistEntry, 4> Worklist;
121 SmallVector<DelayedBasicBlock, 1> DelayedBBs;
122 SmallVector<Constant *, 16> AppendingInits;
123 const MetadataPredicate *IdentityMD;
124
125public:
126 Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
127 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer,
128 const MetadataPredicate *IdentityMD)
129 : Flags(Flags), TypeMapper(TypeMapper),
130 MCs(1, MappingContext(VM, Materializer)), IdentityMD(IdentityMD) {}
131
132 /// ValueMapper should explicitly call \a flush() before destruction.
133 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
134
135 bool hasWorkToDo() const { return !Worklist.empty(); }
136
137 unsigned
138 registerAlternateMappingContext(ValueToValueMapTy &VM,
139 ValueMaterializer *Materializer = nullptr) {
140 MCs.push_back(Elt: MappingContext(VM, Materializer));
141 return MCs.size() - 1;
142 }
143
144 void addFlags(RemapFlags Flags);
145
146 void remapGlobalObjectMetadata(GlobalObject &GO);
147
148 Value *mapValue(const Value *V);
149 void remapInstruction(Instruction *I);
150 void remapFunction(Function &F);
151 void remapDbgRecord(DbgRecord &DVR);
152
153 Constant *mapConstant(const Constant *C) {
154 return cast_or_null<Constant>(Val: mapValue(V: C));
155 }
156
157 /// Map metadata.
158 ///
159 /// Find the mapping for MD. Guarantees that the return will be resolved
160 /// (not an MDNode, or MDNode::isResolved() returns true).
161 Metadata *mapMetadata(const Metadata *MD);
162
163 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
164 unsigned MCID);
165 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
166 bool IsOldCtorDtor,
167 ArrayRef<Constant *> NewMembers,
168 unsigned MCID);
169 void scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target,
170 unsigned MCID);
171 void scheduleRemapFunction(Function &F, unsigned MCID);
172
173 void flush();
174
175private:
176 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
177 bool IsOldCtorDtor,
178 ArrayRef<Constant *> NewMembers);
179
180 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
181 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
182
183 Value *mapBlockAddress(const BlockAddress &BA);
184
185 /// Map metadata that doesn't require visiting operands.
186 std::optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
187
188 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
189 Metadata *mapToSelf(const Metadata *MD);
190};
191
192class MDNodeMapper {
193 Mapper &M;
194
195 /// Data about a node in \a UniquedGraph.
196 struct Data {
197 bool HasChanged = false;
198 unsigned ID = std::numeric_limits<unsigned>::max();
199 TempMDNode Placeholder;
200 };
201
202 /// A graph of uniqued nodes.
203 struct UniquedGraph {
204 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
205 SmallVector<MDNode *, 16> POT; // Post-order traversal.
206
207 /// Propagate changed operands through the post-order traversal.
208 ///
209 /// Iteratively update \a Data::HasChanged for each node based on \a
210 /// Data::HasChanged of its operands, until fixed point.
211 void propagateChanges();
212
213 /// Get a forward reference to a node to use as an operand.
214 Metadata &getFwdReference(MDNode &Op);
215 };
216
217 /// Worklist of distinct nodes whose operands need to be remapped.
218 SmallVector<MDNode *, 16> DistinctWorklist;
219
220 // Storage for a UniquedGraph.
221 SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
222 SmallVector<MDNode *, 16> POTStorage;
223
224public:
225 MDNodeMapper(Mapper &M) : M(M) {}
226
227 /// Map a metadata node (and its transitive operands).
228 ///
229 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative
230 /// algorithm handles distinct nodes and uniqued node subgraphs using
231 /// different strategies.
232 ///
233 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
234 /// using \a mapDistinctNode(). Their mapping can always be computed
235 /// immediately without visiting operands, even if their operands change.
236 ///
237 /// The mapping for uniqued nodes depends on whether their operands change.
238 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
239 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are
240 /// added to \a DistinctWorklist with \a mapDistinctNode().
241 ///
242 /// After mapping \c N itself, this function remaps the operands of the
243 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
244 /// N has been mapped.
245 Metadata *map(const MDNode &N);
246
247private:
248 /// Map a top-level uniqued node and the uniqued subgraph underneath it.
249 ///
250 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
251 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses
252 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
253 /// operands uses the identity mapping.
254 ///
255 /// The algorithm works as follows:
256 ///
257 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
258 /// save the post-order traversal in the given \a UniquedGraph, tracking
259 /// nodes' operands change.
260 ///
261 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands
262 /// through the \a UniquedGraph until fixed point, following the rule
263 /// that if a node changes, any node that references must also change.
264 ///
265 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
266 /// (referencing new operands) where necessary.
267 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
268
269 /// Try to map the operand of an \a MDNode.
270 ///
271 /// If \c Op is already mapped, return the mapping. If it's not an \a
272 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode,
273 /// return the result of \a mapDistinctNode().
274 ///
275 /// \return std::nullopt if \c Op is an unmapped uniqued \a MDNode.
276 /// \post getMappedOp(Op) only returns std::nullopt if this returns
277 /// std::nullopt.
278 std::optional<Metadata *> tryToMapOperand(const Metadata *Op);
279
280 /// Map a distinct node.
281 ///
282 /// Return the mapping for the distinct node \c N, saving the result in \a
283 /// DistinctWorklist for later remapping.
284 ///
285 /// \pre \c N is not yet mapped.
286 /// \pre \c N.isDistinct().
287 MDNode *mapDistinctNode(const MDNode &N);
288
289 /// Get a previously mapped node.
290 std::optional<Metadata *> getMappedOp(const Metadata *Op) const;
291
292 /// Create a post-order traversal of an unmapped uniqued node subgraph.
293 ///
294 /// This traverses the metadata graph deeply enough to map \c FirstN. It
295 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
296 /// metadata that has already been mapped will not be part of the POT.
297 ///
298 /// Each node that has a changed operand from outside the graph (e.g., a
299 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
300 /// is marked with \a Data::HasChanged.
301 ///
302 /// \return \c true if any nodes in \c G have \a Data::HasChanged.
303 /// \post \c G.POT is a post-order traversal ending with \c FirstN.
304 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
305 /// to change because of operands outside the graph.
306 bool createPOT(UniquedGraph &G, const MDNode &FirstN);
307
308 /// Visit the operands of a uniqued node in the POT.
309 ///
310 /// Visit the operands in the range from \c I to \c E, returning the first
311 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to
312 /// where to continue the loop through the operands.
313 ///
314 /// This sets \c HasChanged if any of the visited operands change.
315 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
316 MDNode::op_iterator E, bool &HasChanged);
317
318 /// Map all the nodes in the given uniqued graph.
319 ///
320 /// This visits all the nodes in \c G in post-order, using the identity
321 /// mapping or creating a new node depending on \a Data::HasChanged.
322 ///
323 /// \pre \a getMappedOp() returns std::nullopt for nodes in \c G, but not for
324 /// any of their operands outside of \c G. \pre \a Data::HasChanged is true
325 /// for a node in \c G iff any of its operands have changed. \post \a
326 /// getMappedOp() returns the mapped node for every node in \c G.
327 void mapNodesInPOT(UniquedGraph &G);
328
329 /// Remap a node's operands using the given functor.
330 ///
331 /// Iterate through the operands of \c N and update them in place using \c
332 /// mapOperand.
333 ///
334 /// \pre N.isDistinct() or N.isTemporary().
335 template <class OperandMapper>
336 void remapOperands(MDNode &N, OperandMapper mapOperand);
337};
338
339} // end anonymous namespace
340
341Value *Mapper::mapValue(const Value *V) {
342 ValueToValueMapTy::iterator I = getVM().find(Val: V);
343
344 // If the value already exists in the map, use it.
345 if (I != getVM().end()) {
346 assert(I->second && "Unexpected null mapping");
347 return I->second;
348 }
349
350 // If we have a materializer and it can materialize a value, use that.
351 if (auto *Materializer = getMaterializer()) {
352 if (Value *NewV = Materializer->materialize(V: const_cast<Value *>(V))) {
353 getVM()[V] = NewV;
354 return NewV;
355 }
356 }
357
358 // Global values do not need to be seeded into the VM if they
359 // are using the identity mapping.
360 if (isa<GlobalValue>(Val: V)) {
361 if (Flags & RF_NullMapMissingGlobalValues)
362 return nullptr;
363 return getVM()[V] = const_cast<Value *>(V);
364 }
365
366 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Val: V)) {
367 // Inline asm may need *type* remapping.
368 FunctionType *NewTy = IA->getFunctionType();
369 if (TypeMapper) {
370 NewTy = cast<FunctionType>(Val: TypeMapper->remapType(SrcTy: NewTy));
371
372 if (NewTy != IA->getFunctionType())
373 V = InlineAsm::get(Ty: NewTy, AsmString: IA->getAsmString(), Constraints: IA->getConstraintString(),
374 hasSideEffects: IA->hasSideEffects(), isAlignStack: IA->isAlignStack(),
375 asmDialect: IA->getDialect(), canThrow: IA->canThrow());
376 }
377
378 return getVM()[V] = const_cast<Value *>(V);
379 }
380
381 if (const auto *MDV = dyn_cast<MetadataAsValue>(Val: V)) {
382 const Metadata *MD = MDV->getMetadata();
383
384 if (auto *LAM = dyn_cast<LocalAsMetadata>(Val: MD)) {
385 // Look through to grab the local value.
386 if (Value *LV = mapValue(V: LAM->getValue())) {
387 if (V == LAM->getValue())
388 return const_cast<Value *>(V);
389 return MetadataAsValue::get(Context&: V->getContext(), MD: ValueAsMetadata::get(V: LV));
390 }
391
392 // FIXME: always return nullptr once Verifier::verifyDominatesUse()
393 // ensures metadata operands only reference defined SSA values.
394 return (Flags & RF_IgnoreMissingLocals)
395 ? nullptr
396 : MetadataAsValue::get(Context&: V->getContext(),
397 MD: MDTuple::get(Context&: V->getContext(), MDs: {}));
398 }
399 if (auto *AL = dyn_cast<DIArgList>(Val: MD)) {
400 SmallVector<ValueAsMetadata *, 4> MappedArgs;
401 for (auto *VAM : AL->getArgs()) {
402 // Map both Local and Constant VAMs here; they will both ultimately
403 // be mapped via mapValue. The exceptions are constants when we have no
404 // module level changes and locals when they have no existing mapped
405 // value and RF_IgnoreMissingLocals is set; these have identity
406 // mappings.
407 if ((Flags & RF_NoModuleLevelChanges) && isa<ConstantAsMetadata>(Val: VAM)) {
408 MappedArgs.push_back(Elt: VAM);
409 } else if (Value *LV = mapValue(V: VAM->getValue())) {
410 MappedArgs.push_back(
411 Elt: LV == VAM->getValue() ? VAM : ValueAsMetadata::get(V: LV));
412 } else if ((Flags & RF_IgnoreMissingLocals) && isa<LocalAsMetadata>(Val: VAM)) {
413 MappedArgs.push_back(Elt: VAM);
414 } else {
415 // If we cannot map the value, set the argument as poison.
416 MappedArgs.push_back(Elt: ValueAsMetadata::get(
417 V: PoisonValue::get(T: VAM->getValue()->getType())));
418 }
419 }
420 return MetadataAsValue::get(Context&: V->getContext(),
421 MD: DIArgList::get(Context&: V->getContext(), Args: MappedArgs));
422 }
423
424 // If this is a module-level metadata and we know that nothing at the module
425 // level is changing, then use an identity mapping.
426 if (Flags & RF_NoModuleLevelChanges)
427 return getVM()[V] = const_cast<Value *>(V);
428
429 // Map the metadata and turn it into a value.
430 auto *MappedMD = mapMetadata(MD);
431 if (MD == MappedMD)
432 return getVM()[V] = const_cast<Value *>(V);
433 return getVM()[V] = MetadataAsValue::get(Context&: V->getContext(), MD: MappedMD);
434 }
435
436 // Okay, this either must be a constant (which may or may not be mappable) or
437 // is something that is not in the mapping table.
438 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val: V));
439 if (!C)
440 return nullptr;
441
442 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val: C))
443 return mapBlockAddress(BA: *BA);
444
445 if (const auto *E = dyn_cast<DSOLocalEquivalent>(Val: C)) {
446 auto *Val = mapValue(V: E->getGlobalValue());
447 GlobalValue *GV = dyn_cast<GlobalValue>(Val);
448 if (GV)
449 return getVM()[E] = DSOLocalEquivalent::get(GV);
450
451 auto *Func = cast<Function>(Val: Val->stripPointerCastsAndAliases());
452 Type *NewTy = E->getType();
453 if (TypeMapper)
454 NewTy = TypeMapper->remapType(SrcTy: NewTy);
455 return getVM()[E] = llvm::ConstantExpr::getBitCast(
456 C: DSOLocalEquivalent::get(GV: Func), Ty: NewTy);
457 }
458
459 if (const auto *NC = dyn_cast<NoCFIValue>(Val: C)) {
460 auto *Val = mapValue(V: NC->getGlobalValue());
461 GlobalValue *GV = cast<GlobalValue>(Val);
462 return getVM()[NC] = NoCFIValue::get(GV);
463 }
464
465 auto mapValueOrNull = [this](Value *V) {
466 auto Mapped = mapValue(V);
467 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
468 "Unexpected null mapping for constant operand without "
469 "NullMapMissingGlobalValues flag");
470 return Mapped;
471 };
472
473 // Otherwise, we have some other constant to remap. Start by checking to see
474 // if all operands have an identity remapping.
475 unsigned OpNo = 0, NumOperands = C->getNumOperands();
476 Value *Mapped = nullptr;
477 for (; OpNo != NumOperands; ++OpNo) {
478 Value *Op = C->getOperand(i: OpNo);
479 Mapped = mapValueOrNull(Op);
480 if (!Mapped)
481 return nullptr;
482 if (Mapped != Op)
483 break;
484 }
485
486 // See if the type mapper wants to remap the type as well.
487 Type *NewTy = C->getType();
488 if (TypeMapper)
489 NewTy = TypeMapper->remapType(SrcTy: NewTy);
490
491 // If the result type and all operands match up, then just insert an identity
492 // mapping.
493 if (OpNo == NumOperands && NewTy == C->getType())
494 return getVM()[V] = C;
495
496 // Okay, we need to create a new constant. We've already processed some or
497 // all of the operands, set them all up now.
498 SmallVector<Constant*, 8> Ops;
499 Ops.reserve(N: NumOperands);
500 for (unsigned j = 0; j != OpNo; ++j)
501 Ops.push_back(Elt: cast<Constant>(Val: C->getOperand(i: j)));
502
503 // If one of the operands mismatch, push it and the other mapped operands.
504 if (OpNo != NumOperands) {
505 Ops.push_back(Elt: cast<Constant>(Val: Mapped));
506
507 // Map the rest of the operands that aren't processed yet.
508 for (++OpNo; OpNo != NumOperands; ++OpNo) {
509 Mapped = mapValueOrNull(C->getOperand(i: OpNo));
510 if (!Mapped)
511 return nullptr;
512 Ops.push_back(Elt: cast<Constant>(Val: Mapped));
513 }
514 }
515 Type *NewSrcTy = nullptr;
516 if (TypeMapper)
517 if (auto *GEPO = dyn_cast<GEPOperator>(Val: C))
518 NewSrcTy = TypeMapper->remapType(SrcTy: GEPO->getSourceElementType());
519
520 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: C))
521 return getVM()[V] = CE->getWithOperands(Ops, Ty: NewTy, OnlyIfReduced: false, SrcTy: NewSrcTy);
522 if (isa<ConstantArray>(Val: C))
523 return getVM()[V] = ConstantArray::get(T: cast<ArrayType>(Val: NewTy), V: Ops);
524 if (isa<ConstantStruct>(Val: C))
525 return getVM()[V] = ConstantStruct::get(T: cast<StructType>(Val: NewTy), V: Ops);
526 if (isa<ConstantVector>(Val: C))
527 return getVM()[V] = ConstantVector::get(V: Ops);
528 if (isa<ConstantPtrAuth>(Val: C))
529 return getVM()[V] = ConstantPtrAuth::get(Ptr: Ops[0], Key: cast<ConstantInt>(Val: Ops[1]),
530 Disc: cast<ConstantInt>(Val: Ops[2]), AddrDisc: Ops[3]);
531 // If this is a no-operand constant, it must be because the type was remapped.
532 if (isa<PoisonValue>(Val: C))
533 return getVM()[V] = PoisonValue::get(T: NewTy);
534 if (isa<UndefValue>(Val: C))
535 return getVM()[V] = UndefValue::get(T: NewTy);
536 if (isa<ConstantAggregateZero>(Val: C))
537 return getVM()[V] = ConstantAggregateZero::get(Ty: NewTy);
538 if (isa<ConstantTargetNone>(Val: C))
539 return getVM()[V] = Constant::getNullValue(Ty: NewTy);
540 assert(isa<ConstantPointerNull>(C));
541 return getVM()[V] = ConstantPointerNull::get(T: cast<PointerType>(Val: NewTy));
542}
543
544void Mapper::remapDbgRecord(DbgRecord &DR) {
545 // Remap DILocations.
546 auto *MappedDILoc = mapMetadata(MD: DR.getDebugLoc());
547 DR.setDebugLoc(DebugLoc(cast<DILocation>(Val: MappedDILoc)));
548
549 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(Val: &DR)) {
550 // Remap labels.
551 DLR->setLabel(cast<DILabel>(Val: mapMetadata(MD: DLR->getLabel())));
552 return;
553 }
554
555 DbgVariableRecord &V = cast<DbgVariableRecord>(Val&: DR);
556 // Remap variables.
557 auto *MappedVar = mapMetadata(MD: V.getVariable());
558 V.setVariable(cast<DILocalVariable>(Val: MappedVar));
559
560 bool IgnoreMissingLocals = Flags & RF_IgnoreMissingLocals;
561
562 if (V.isDbgAssign()) {
563 auto *NewAddr = mapValue(V: V.getAddress());
564 if (!IgnoreMissingLocals && !NewAddr)
565 V.setKillAddress();
566 else if (NewAddr)
567 V.setAddress(NewAddr);
568 V.setAssignId(cast<DIAssignID>(Val: mapMetadata(MD: V.getAssignID())));
569 }
570
571 // Find Value operands and remap those.
572 SmallVector<Value *, 4> Vals(V.location_ops());
573 SmallVector<Value *, 4> NewVals;
574 for (Value *Val : Vals)
575 NewVals.push_back(Elt: mapValue(V: Val));
576
577 // If there are no changes to the Value operands, finished.
578 if (Vals == NewVals)
579 return;
580
581 // Otherwise, do some replacement.
582 if (!IgnoreMissingLocals && llvm::is_contained(Range&: NewVals, Element: nullptr)) {
583 V.setKillLocation();
584 } else {
585 // Either we have all non-empty NewVals, or we're permitted to ignore
586 // missing locals.
587 for (unsigned int I = 0; I < Vals.size(); ++I)
588 if (NewVals[I])
589 V.replaceVariableLocationOp(OpIdx: I, NewValue: NewVals[I]);
590 }
591}
592
593Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
594 Function *F = cast<Function>(Val: mapValue(V: BA.getFunction()));
595
596 // F may not have materialized its initializer. In that case, create a
597 // dummy basic block for now, and replace it once we've materialized all
598 // the initializers.
599 BasicBlock *BB;
600 if (F->empty()) {
601 DelayedBBs.push_back(Elt: DelayedBasicBlock(BA));
602 BB = DelayedBBs.back().TempBB.get();
603 } else {
604 BB = cast_or_null<BasicBlock>(Val: mapValue(V: BA.getBasicBlock()));
605 }
606
607 return getVM()[&BA] = BlockAddress::get(F, BB: BB ? BB : BA.getBasicBlock());
608}
609
610Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
611 getVM().MD()[Key].reset(MD: Val);
612 return Val;
613}
614
615Metadata *Mapper::mapToSelf(const Metadata *MD) {
616 return mapToMetadata(Key: MD, Val: const_cast<Metadata *>(MD));
617}
618
619std::optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
620 if (!Op)
621 return nullptr;
622
623 if (std::optional<Metadata *> MappedOp = M.mapSimpleMetadata(MD: Op)) {
624#ifndef NDEBUG
625 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
626 assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
627 M.getVM().getMappedMD(Op)) &&
628 "Expected Value to be memoized");
629 else
630 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
631 "Expected result to be memoized");
632#endif
633 return *MappedOp;
634 }
635
636 const MDNode &N = *cast<MDNode>(Val: Op);
637 if (N.isDistinct())
638 return mapDistinctNode(N);
639 return std::nullopt;
640}
641
642MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
643 assert(N.isDistinct() && "Expected a distinct node");
644 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
645 Metadata *NewM = nullptr;
646
647 if (M.Flags & RF_ReuseAndMutateDistinctMDs) {
648 NewM = M.mapToSelf(MD: &N);
649 } else {
650 NewM = MDNode::replaceWithDistinct(N: N.clone());
651 LLVM_DEBUG(dbgs() << "\nMap " << N << "\n"
652 << "To " << *NewM << "\n\n");
653 M.mapToMetadata(Key: &N, Val: NewM);
654 }
655 DistinctWorklist.push_back(Elt: cast<MDNode>(Val: NewM));
656
657 return DistinctWorklist.back();
658}
659
660static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
661 Value *MappedV) {
662 if (CMD.getValue() == MappedV)
663 return const_cast<ConstantAsMetadata *>(&CMD);
664 return MappedV ? ConstantAsMetadata::getConstant(C: MappedV) : nullptr;
665}
666
667std::optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
668 if (!Op)
669 return nullptr;
670
671 if (std::optional<Metadata *> MappedOp = M.getVM().getMappedMD(MD: Op))
672 return *MappedOp;
673
674 if (isa<MDString>(Val: Op))
675 return const_cast<Metadata *>(Op);
676
677 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Val: Op))
678 return wrapConstantAsMetadata(CMD: *CMD, MappedV: M.getVM().lookup(Val: CMD->getValue()));
679
680 return std::nullopt;
681}
682
683Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
684 auto Where = Info.find(Val: &Op);
685 assert(Where != Info.end() && "Expected a valid reference");
686
687 auto &OpD = Where->second;
688 if (!OpD.HasChanged)
689 return Op;
690
691 // Lazily construct a temporary node.
692 if (!OpD.Placeholder)
693 OpD.Placeholder = Op.clone();
694
695 return *OpD.Placeholder;
696}
697
698template <class OperandMapper>
699void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
700 assert(!N.isUniqued() && "Expected distinct or temporary nodes");
701 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
702 Metadata *Old = N.getOperand(I);
703 Metadata *New = mapOperand(Old);
704 if (Old != New)
705 LLVM_DEBUG(dbgs() << "Replacing Op " << Old << " with " << New << " in "
706 << N << "\n");
707
708 if (Old != New)
709 N.replaceOperandWith(I, New);
710 }
711}
712
713namespace {
714
715/// An entry in the worklist for the post-order traversal.
716struct POTWorklistEntry {
717 MDNode *N; ///< Current node.
718 MDNode::op_iterator Op; ///< Current operand of \c N.
719
720 /// Keep a flag of whether operands have changed in the worklist to avoid
721 /// hitting the map in \a UniquedGraph.
722 bool HasChanged = false;
723
724 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
725};
726
727} // end anonymous namespace
728
729bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
730 assert(G.Info.empty() && "Expected a fresh traversal");
731 assert(FirstN.isUniqued() && "Expected uniqued node in POT");
732
733 // Construct a post-order traversal of the uniqued subgraph under FirstN.
734 bool AnyChanges = false;
735 SmallVector<POTWorklistEntry, 16> Worklist;
736 Worklist.push_back(Elt: POTWorklistEntry(const_cast<MDNode &>(FirstN)));
737 (void)G.Info[&FirstN];
738 while (!Worklist.empty()) {
739 // Start or continue the traversal through the this node's operands.
740 auto &WE = Worklist.back();
741 if (MDNode *N = visitOperands(G, I&: WE.Op, E: WE.N->op_end(), HasChanged&: WE.HasChanged)) {
742 // Push a new node to traverse first.
743 Worklist.push_back(Elt: POTWorklistEntry(*N));
744 continue;
745 }
746
747 // Push the node onto the POT.
748 assert(WE.N->isUniqued() && "Expected only uniqued nodes");
749 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
750 auto &D = G.Info[WE.N];
751 AnyChanges |= D.HasChanged = WE.HasChanged;
752 D.ID = G.POT.size();
753 G.POT.push_back(Elt: WE.N);
754
755 // Pop the node off the worklist.
756 Worklist.pop_back();
757 }
758 return AnyChanges;
759}
760
761MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
762 MDNode::op_iterator E, bool &HasChanged) {
763 while (I != E) {
764 Metadata *Op = *I++; // Increment even on early return.
765 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
766 // Check if the operand changes.
767 HasChanged |= Op != *MappedOp;
768 continue;
769 }
770
771 // A uniqued metadata node.
772 MDNode &OpN = *cast<MDNode>(Val: Op);
773 assert(OpN.isUniqued() &&
774 "Only uniqued operands cannot be mapped immediately");
775 if (G.Info.try_emplace(Key: &OpN).second)
776 return &OpN; // This is a new one. Return it.
777 }
778 return nullptr;
779}
780
781void MDNodeMapper::UniquedGraph::propagateChanges() {
782 bool AnyChanges;
783 do {
784 AnyChanges = false;
785 for (MDNode *N : POT) {
786 auto &D = Info[N];
787 if (D.HasChanged)
788 continue;
789
790 if (llvm::none_of(Range: N->operands(), P: [&](const Metadata *Op) {
791 auto Where = Info.find(Val: Op);
792 return Where != Info.end() && Where->second.HasChanged;
793 }))
794 continue;
795
796 AnyChanges = D.HasChanged = true;
797 }
798 } while (AnyChanges);
799}
800
801void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
802 // Construct uniqued nodes, building forward references as necessary.
803 SmallVector<MDNode *, 16> CyclicNodes;
804 for (auto *N : G.POT) {
805 auto &D = G.Info[N];
806 if (!D.HasChanged) {
807 // The node hasn't changed.
808 M.mapToSelf(MD: N);
809 continue;
810 }
811
812 // Remember whether this node had a placeholder.
813 bool HadPlaceholder(D.Placeholder);
814
815 // Clone the uniqued node and remap the operands.
816 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
817 remapOperands(N&: *ClonedN, mapOperand: [this, &D, &G](Metadata *Old) {
818 if (std::optional<Metadata *> MappedOp = getMappedOp(Op: Old))
819 return *MappedOp;
820 (void)D;
821 assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
822 return &G.getFwdReference(Op&: *cast<MDNode>(Val: Old));
823 });
824
825 auto *NewN = MDNode::replaceWithUniqued(N: std::move(ClonedN));
826 if (N && NewN && N != NewN) {
827 LLVM_DEBUG(dbgs() << "\nMap " << *N << "\n"
828 << "To " << *NewN << "\n\n");
829 }
830
831 M.mapToMetadata(Key: N, Val: NewN);
832
833 // Nodes that were referenced out of order in the POT are involved in a
834 // uniquing cycle.
835 if (HadPlaceholder)
836 CyclicNodes.push_back(Elt: NewN);
837 }
838
839 // Resolve cycles.
840 for (auto *N : CyclicNodes)
841 if (!N->isResolved())
842 N->resolveCycles();
843}
844
845Metadata *MDNodeMapper::map(const MDNode &N) {
846 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
847 assert(!(M.Flags & RF_NoModuleLevelChanges) &&
848 "MDNodeMapper::map assumes module-level changes");
849
850 // Require resolved nodes whenever metadata might be remapped.
851 assert(N.isResolved() && "Unexpected unresolved node");
852
853 Metadata *MappedN =
854 N.isUniqued() ? mapTopLevelUniquedNode(FirstN: N) : mapDistinctNode(N);
855 while (!DistinctWorklist.empty())
856 remapOperands(N&: *DistinctWorklist.pop_back_val(), mapOperand: [this](Metadata *Old) {
857 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Op: Old))
858 return *MappedOp;
859 return mapTopLevelUniquedNode(FirstN: *cast<MDNode>(Val: Old));
860 });
861 return MappedN;
862}
863
864Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
865 assert(FirstN.isUniqued() && "Expected uniqued node");
866
867 // Create a post-order traversal of uniqued nodes under FirstN.
868 UniquedGraph G;
869 if (!createPOT(G, FirstN)) {
870 // Return early if no nodes have changed.
871 for (const MDNode *N : G.POT)
872 M.mapToSelf(MD: N);
873 return &const_cast<MDNode &>(FirstN);
874 }
875
876 // Update graph with all nodes that have changed.
877 G.propagateChanges();
878
879 // Map all the nodes in the graph.
880 mapNodesInPOT(G);
881
882 // Return the original node, remapped.
883 return *getMappedOp(Op: &FirstN);
884}
885
886std::optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
887 // If the value already exists in the map, use it.
888 if (std::optional<Metadata *> NewMD = getVM().getMappedMD(MD))
889 return *NewMD;
890
891 if (isa<MDString>(Val: MD))
892 return const_cast<Metadata *>(MD);
893
894 // This is a module-level metadata. If nothing at the module level is
895 // changing, use an identity mapping.
896 if ((Flags & RF_NoModuleLevelChanges))
897 return const_cast<Metadata *>(MD);
898
899 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Val: MD)) {
900 // Don't memoize ConstantAsMetadata. Instead of lasting until the
901 // LLVMContext is destroyed, they can be deleted when the GlobalValue they
902 // reference is destructed. These aren't super common, so the extra
903 // indirection isn't that expensive.
904 return wrapConstantAsMetadata(CMD: *CMD, MappedV: mapValue(V: CMD->getValue()));
905 }
906
907 // Map metadata matching IdentityMD predicate on first use. We need to add
908 // these nodes to the mapping as otherwise metadata nodes numbering gets
909 // messed up.
910 if (IdentityMD && (*IdentityMD)(MD))
911 return getVM().MD()[MD] = TrackingMDRef(const_cast<Metadata *>(MD));
912
913 assert(isa<MDNode>(MD) && "Expected a metadata node");
914
915 return std::nullopt;
916}
917
918Metadata *Mapper::mapMetadata(const Metadata *MD) {
919 assert(MD && "Expected valid metadata");
920 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
921
922 if (std::optional<Metadata *> NewMD = mapSimpleMetadata(MD))
923 return *NewMD;
924
925 return MDNodeMapper(*this).map(N: *cast<MDNode>(Val: MD));
926}
927
928void Mapper::flush() {
929 // Flush out the worklist of global values.
930 while (!Worklist.empty()) {
931 WorklistEntry E = Worklist.pop_back_val();
932 CurrentMCID = E.MCID;
933 switch (E.Kind) {
934 case WorklistEntry::MapGlobalInit:
935 E.Data.GVInit.GV->setInitializer(mapConstant(C: E.Data.GVInit.Init));
936 remapGlobalObjectMetadata(GO&: *E.Data.GVInit.GV);
937 break;
938 case WorklistEntry::MapAppendingVar: {
939 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
940 // mapAppendingVariable call can change AppendingInits if initalizer for
941 // the variable depends on another appending global, because of that inits
942 // need to be extracted and updated before the call.
943 SmallVector<Constant *, 8> NewInits(
944 drop_begin(RangeOrContainer&: AppendingInits, N: PrefixSize));
945 AppendingInits.resize(N: PrefixSize);
946 mapAppendingVariable(GV&: *E.Data.AppendingGV.GV,
947 InitPrefix: E.Data.AppendingGV.InitPrefix,
948 IsOldCtorDtor: E.AppendingGVIsOldCtorDtor, NewMembers: ArrayRef(NewInits));
949 break;
950 }
951 case WorklistEntry::MapAliasOrIFunc: {
952 GlobalValue *GV = E.Data.AliasOrIFunc.GV;
953 Constant *Target = mapConstant(C: E.Data.AliasOrIFunc.Target);
954 if (auto *GA = dyn_cast<GlobalAlias>(Val: GV))
955 GA->setAliasee(Target);
956 else if (auto *GI = dyn_cast<GlobalIFunc>(Val: GV))
957 GI->setResolver(Target);
958 else
959 llvm_unreachable("Not alias or ifunc");
960 break;
961 }
962 case WorklistEntry::RemapFunction:
963 remapFunction(F&: *E.Data.RemapF);
964 break;
965 }
966 }
967 CurrentMCID = 0;
968
969 // Finish logic for block addresses now that all global values have been
970 // handled.
971 while (!DelayedBBs.empty()) {
972 DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
973 BasicBlock *BB = cast_or_null<BasicBlock>(Val: mapValue(V: DBB.OldBB));
974 DBB.TempBB->replaceAllUsesWith(V: BB ? BB : DBB.OldBB);
975 }
976}
977
978void Mapper::remapInstruction(Instruction *I) {
979 // Remap operands.
980 for (Use &Op : I->operands()) {
981 Value *V = mapValue(V: Op);
982 // If we aren't ignoring missing entries, assert that something happened.
983 if (V)
984 Op = V;
985 else
986 assert((Flags & RF_IgnoreMissingLocals) &&
987 "Referenced value not in value map!");
988 }
989
990 // Remap phi nodes' incoming blocks.
991 if (PHINode *PN = dyn_cast<PHINode>(Val: I)) {
992 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
993 Value *V = mapValue(V: PN->getIncomingBlock(i));
994 // If we aren't ignoring missing entries, assert that something happened.
995 if (V)
996 PN->setIncomingBlock(i, BB: cast<BasicBlock>(Val: V));
997 else
998 assert((Flags & RF_IgnoreMissingLocals) &&
999 "Referenced block not in value map!");
1000 }
1001 }
1002
1003 // Remap attached metadata.
1004 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1005 I->getAllMetadata(MDs);
1006 for (const auto &MI : MDs) {
1007 MDNode *Old = MI.second;
1008 MDNode *New = cast_or_null<MDNode>(Val: mapMetadata(MD: Old));
1009 if (New != Old)
1010 I->setMetadata(KindID: MI.first, Node: New);
1011 }
1012
1013 // Remap source location atom instance.
1014 if (!(Flags & RF_DoNotRemapAtoms))
1015 RemapSourceAtom(I, VM&: getVM());
1016
1017 if (!TypeMapper)
1018 return;
1019
1020 // If the instruction's type is being remapped, do so now.
1021 if (auto *CB = dyn_cast<CallBase>(Val: I)) {
1022 SmallVector<Type *, 3> Tys;
1023 FunctionType *FTy = CB->getFunctionType();
1024 Tys.reserve(N: FTy->getNumParams());
1025 for (Type *Ty : FTy->params())
1026 Tys.push_back(Elt: TypeMapper->remapType(SrcTy: Ty));
1027 CB->mutateFunctionType(FTy: FunctionType::get(
1028 Result: TypeMapper->remapType(SrcTy: I->getType()), Params: Tys, isVarArg: FTy->isVarArg()));
1029
1030 LLVMContext &C = CB->getContext();
1031 AttributeList Attrs = CB->getAttributes();
1032 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
1033 for (int AttrIdx = Attribute::FirstTypeAttr;
1034 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) {
1035 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx;
1036 if (Type *Ty =
1037 Attrs.getAttributeAtIndex(Index: i, Kind: TypedAttr).getValueAsType()) {
1038 Attrs = Attrs.replaceAttributeTypeAtIndex(C, ArgNo: i, Kind: TypedAttr,
1039 ReplacementTy: TypeMapper->remapType(SrcTy: Ty));
1040 break;
1041 }
1042 }
1043 }
1044 CB->setAttributes(Attrs);
1045 return;
1046 }
1047 if (auto *AI = dyn_cast<AllocaInst>(Val: I))
1048 AI->setAllocatedType(TypeMapper->remapType(SrcTy: AI->getAllocatedType()));
1049 if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: I)) {
1050 GEP->setSourceElementType(
1051 TypeMapper->remapType(SrcTy: GEP->getSourceElementType()));
1052 GEP->setResultElementType(
1053 TypeMapper->remapType(SrcTy: GEP->getResultElementType()));
1054 }
1055 I->mutateType(Ty: TypeMapper->remapType(SrcTy: I->getType()));
1056}
1057
1058void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) {
1059 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
1060 GO.getAllMetadata(MDs);
1061 GO.clearMetadata();
1062 for (const auto &I : MDs)
1063 GO.addMetadata(KindID: I.first, MD&: *cast<MDNode>(Val: mapMetadata(MD: I.second)));
1064}
1065
1066void Mapper::remapFunction(Function &F) {
1067 // Remap the operands.
1068 for (Use &Op : F.operands())
1069 if (Op)
1070 Op = mapValue(V: Op);
1071
1072 // Remap the metadata attachments.
1073 remapGlobalObjectMetadata(GO&: F);
1074
1075 // Remap the argument types.
1076 if (TypeMapper)
1077 for (Argument &A : F.args())
1078 A.mutateType(Ty: TypeMapper->remapType(SrcTy: A.getType()));
1079
1080 // Remap the instructions.
1081 for (BasicBlock &BB : F) {
1082 for (Instruction &I : BB) {
1083 remapInstruction(I: &I);
1084 for (DbgRecord &DR : I.getDbgRecordRange())
1085 remapDbgRecord(DR);
1086 }
1087 }
1088}
1089
1090void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
1091 bool IsOldCtorDtor,
1092 ArrayRef<Constant *> NewMembers) {
1093 SmallVector<Constant *, 16> Elements;
1094 if (InitPrefix) {
1095 unsigned NumElements =
1096 cast<ArrayType>(Val: InitPrefix->getType())->getNumElements();
1097 for (unsigned I = 0; I != NumElements; ++I)
1098 Elements.push_back(Elt: InitPrefix->getAggregateElement(Elt: I));
1099 }
1100
1101 PointerType *VoidPtrTy;
1102 Type *EltTy;
1103 if (IsOldCtorDtor) {
1104 // FIXME: This upgrade is done during linking to support the C API. See
1105 // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
1106 VoidPtrTy = PointerType::getUnqual(C&: GV.getContext());
1107 auto &ST = *cast<StructType>(Val: NewMembers.front()->getType());
1108 Type *Tys[3] = {ST.getElementType(N: 0), ST.getElementType(N: 1), VoidPtrTy};
1109 EltTy = StructType::get(Context&: GV.getContext(), Elements: Tys, isPacked: false);
1110 }
1111
1112 for (auto *V : NewMembers) {
1113 Constant *NewV;
1114 if (IsOldCtorDtor) {
1115 auto *S = cast<ConstantStruct>(Val: V);
1116 auto *E1 = cast<Constant>(Val: mapValue(V: S->getOperand(i_nocapture: 0)));
1117 auto *E2 = cast<Constant>(Val: mapValue(V: S->getOperand(i_nocapture: 1)));
1118 Constant *Null = Constant::getNullValue(Ty: VoidPtrTy);
1119 NewV = ConstantStruct::get(T: cast<StructType>(Val: EltTy), Vs: E1, Vs: E2, Vs: Null);
1120 } else {
1121 NewV = cast_or_null<Constant>(Val: mapValue(V));
1122 }
1123 Elements.push_back(Elt: NewV);
1124 }
1125
1126 GV.setInitializer(
1127 ConstantArray::get(T: cast<ArrayType>(Val: GV.getValueType()), V: Elements));
1128}
1129
1130void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
1131 unsigned MCID) {
1132 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1133 assert(MCID < MCs.size() && "Invalid mapping context");
1134
1135 WorklistEntry WE;
1136 WE.Kind = WorklistEntry::MapGlobalInit;
1137 WE.MCID = MCID;
1138 WE.Data.GVInit.GV = &GV;
1139 WE.Data.GVInit.Init = &Init;
1140 Worklist.push_back(Elt: WE);
1141}
1142
1143void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1144 Constant *InitPrefix,
1145 bool IsOldCtorDtor,
1146 ArrayRef<Constant *> NewMembers,
1147 unsigned MCID) {
1148 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1149 assert(MCID < MCs.size() && "Invalid mapping context");
1150
1151 WorklistEntry WE;
1152 WE.Kind = WorklistEntry::MapAppendingVar;
1153 WE.MCID = MCID;
1154 WE.Data.AppendingGV.GV = &GV;
1155 WE.Data.AppendingGV.InitPrefix = InitPrefix;
1156 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
1157 WE.AppendingGVNumNewMembers = NewMembers.size();
1158 Worklist.push_back(Elt: WE);
1159 AppendingInits.append(in_start: NewMembers.begin(), in_end: NewMembers.end());
1160}
1161
1162void Mapper::scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target,
1163 unsigned MCID) {
1164 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1165 assert((isa<GlobalAlias>(GV) || isa<GlobalIFunc>(GV)) &&
1166 "Should be alias or ifunc");
1167 assert(MCID < MCs.size() && "Invalid mapping context");
1168
1169 WorklistEntry WE;
1170 WE.Kind = WorklistEntry::MapAliasOrIFunc;
1171 WE.MCID = MCID;
1172 WE.Data.AliasOrIFunc.GV = &GV;
1173 WE.Data.AliasOrIFunc.Target = &Target;
1174 Worklist.push_back(Elt: WE);
1175}
1176
1177void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1178 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
1179 assert(MCID < MCs.size() && "Invalid mapping context");
1180
1181 WorklistEntry WE;
1182 WE.Kind = WorklistEntry::RemapFunction;
1183 WE.MCID = MCID;
1184 WE.Data.RemapF = &F;
1185 Worklist.push_back(Elt: WE);
1186}
1187
1188void Mapper::addFlags(RemapFlags Flags) {
1189 assert(!hasWorkToDo() && "Expected to have flushed the worklist");
1190 this->Flags = this->Flags | Flags;
1191}
1192
1193static Mapper *getAsMapper(void *pImpl) {
1194 return reinterpret_cast<Mapper *>(pImpl);
1195}
1196
1197namespace {
1198
1199class FlushingMapper {
1200 Mapper &M;
1201
1202public:
1203 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
1204 assert(!M.hasWorkToDo() && "Expected to be flushed");
1205 }
1206
1207 ~FlushingMapper() { M.flush(); }
1208
1209 Mapper *operator->() const { return &M; }
1210};
1211
1212} // end anonymous namespace
1213
1214ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags,
1215 ValueMapTypeRemapper *TypeMapper,
1216 ValueMaterializer *Materializer,
1217 const MetadataPredicate *IdentityMD)
1218 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer, IdentityMD)) {}
1219
1220ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); }
1221
1222unsigned
1223ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM,
1224 ValueMaterializer *Materializer) {
1225 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
1226}
1227
1228void ValueMapper::addFlags(RemapFlags Flags) {
1229 FlushingMapper(pImpl)->addFlags(Flags);
1230}
1231
1232Value *ValueMapper::mapValue(const Value &V) {
1233 return FlushingMapper(pImpl)->mapValue(V: &V);
1234}
1235
1236Constant *ValueMapper::mapConstant(const Constant &C) {
1237 return cast_or_null<Constant>(Val: mapValue(V: C));
1238}
1239
1240Metadata *ValueMapper::mapMetadata(const Metadata &MD) {
1241 return FlushingMapper(pImpl)->mapMetadata(MD: &MD);
1242}
1243
1244MDNode *ValueMapper::mapMDNode(const MDNode &N) {
1245 return cast_or_null<MDNode>(Val: mapMetadata(MD: N));
1246}
1247
1248void ValueMapper::remapInstruction(Instruction &I) {
1249 FlushingMapper(pImpl)->remapInstruction(I: &I);
1250}
1251
1252void ValueMapper::remapDbgRecord(Module *M, DbgRecord &DR) {
1253 FlushingMapper(pImpl)->remapDbgRecord(DR);
1254}
1255
1256void ValueMapper::remapDbgRecordRange(
1257 Module *M, iterator_range<DbgRecord::self_iterator> Range) {
1258 for (DbgRecord &DR : Range) {
1259 remapDbgRecord(M, DR);
1260 }
1261}
1262
1263void ValueMapper::remapFunction(Function &F) {
1264 FlushingMapper(pImpl)->remapFunction(F);
1265}
1266
1267void ValueMapper::remapGlobalObjectMetadata(GlobalObject &GO) {
1268 FlushingMapper(pImpl)->remapGlobalObjectMetadata(GO);
1269}
1270
1271void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV,
1272 Constant &Init,
1273 unsigned MCID) {
1274 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
1275}
1276
1277void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1278 Constant *InitPrefix,
1279 bool IsOldCtorDtor,
1280 ArrayRef<Constant *> NewMembers,
1281 unsigned MCID) {
1282 getAsMapper(pImpl)->scheduleMapAppendingVariable(
1283 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
1284}
1285
1286void ValueMapper::scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee,
1287 unsigned MCID) {
1288 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GV&: GA, Target&: Aliasee, MCID);
1289}
1290
1291void ValueMapper::scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver,
1292 unsigned MCID) {
1293 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GV&: GI, Target&: Resolver, MCID);
1294}
1295
1296void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1297 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
1298}
1299
1300void llvm::RemapSourceAtom(Instruction *I, ValueToValueMapTy &VM) {
1301 const DebugLoc &DL = I->getDebugLoc();
1302 if (!DL)
1303 return;
1304
1305 auto AtomGroup = DL->getAtomGroup();
1306 if (!AtomGroup)
1307 return;
1308
1309 auto R = VM.AtomMap.find(Val: {DL->getInlinedAt(), AtomGroup});
1310 if (R == VM.AtomMap.end())
1311 return;
1312 AtomGroup = R->second;
1313
1314 // Remap the atom group and copy all other fields.
1315 DILocation *New = DILocation::get(
1316 Context&: I->getContext(), Line: DL.getLine(), Column: DL.getCol(), Scope: DL.getScope(),
1317 InlinedAt: DL.getInlinedAt(), ImplicitCode: DL.isImplicitCode(), AtomGroup, AtomRank: DL->getAtomRank());
1318 I->setDebugLoc(New);
1319}
1320