| 1 | //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the MapValue function, which is shared by various parts of |
| 10 | // the lib/Transforms/Utils library. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Transforms/Utils/ValueMapper.h" |
| 15 | #include "llvm/ADT/ArrayRef.h" |
| 16 | #include "llvm/ADT/DenseMap.h" |
| 17 | #include "llvm/ADT/DenseSet.h" |
| 18 | #include "llvm/ADT/STLExtras.h" |
| 19 | #include "llvm/ADT/SmallVector.h" |
| 20 | #include "llvm/IR/Argument.h" |
| 21 | #include "llvm/IR/BasicBlock.h" |
| 22 | #include "llvm/IR/Constant.h" |
| 23 | #include "llvm/IR/Constants.h" |
| 24 | #include "llvm/IR/DebugInfoMetadata.h" |
| 25 | #include "llvm/IR/DerivedTypes.h" |
| 26 | #include "llvm/IR/Function.h" |
| 27 | #include "llvm/IR/GlobalAlias.h" |
| 28 | #include "llvm/IR/GlobalIFunc.h" |
| 29 | #include "llvm/IR/GlobalObject.h" |
| 30 | #include "llvm/IR/GlobalVariable.h" |
| 31 | #include "llvm/IR/InlineAsm.h" |
| 32 | #include "llvm/IR/Instruction.h" |
| 33 | #include "llvm/IR/Instructions.h" |
| 34 | #include "llvm/IR/IntrinsicInst.h" |
| 35 | #include "llvm/IR/Metadata.h" |
| 36 | #include "llvm/IR/Operator.h" |
| 37 | #include "llvm/IR/Type.h" |
| 38 | #include "llvm/IR/Value.h" |
| 39 | #include "llvm/Support/Casting.h" |
| 40 | #include "llvm/Support/Debug.h" |
| 41 | #include <cassert> |
| 42 | #include <limits> |
| 43 | #include <memory> |
| 44 | #include <utility> |
| 45 | |
| 46 | using namespace llvm; |
| 47 | |
| 48 | #define DEBUG_TYPE "value-mapper" |
| 49 | |
| 50 | // Out of line method to get vtable etc for class. |
| 51 | void ValueMapTypeRemapper::anchor() {} |
| 52 | void ValueMaterializer::anchor() {} |
| 53 | |
| 54 | namespace { |
| 55 | |
| 56 | /// A basic block used in a BlockAddress whose function body is not yet |
| 57 | /// materialized. |
| 58 | struct DelayedBasicBlock { |
| 59 | BasicBlock *OldBB; |
| 60 | std::unique_ptr<BasicBlock> TempBB; |
| 61 | |
| 62 | DelayedBasicBlock(const BlockAddress &Old) |
| 63 | : OldBB(Old.getBasicBlock()), |
| 64 | TempBB(BasicBlock::Create(Context&: Old.getContext())) {} |
| 65 | }; |
| 66 | |
| 67 | struct WorklistEntry { |
| 68 | enum EntryKind { |
| 69 | MapGlobalInit, |
| 70 | MapAppendingVar, |
| 71 | MapAliasOrIFunc, |
| 72 | RemapFunction |
| 73 | }; |
| 74 | struct GVInitTy { |
| 75 | GlobalVariable *GV; |
| 76 | Constant *Init; |
| 77 | }; |
| 78 | struct AppendingGVTy { |
| 79 | GlobalVariable *GV; |
| 80 | Constant *InitPrefix; |
| 81 | }; |
| 82 | struct AliasOrIFuncTy { |
| 83 | GlobalValue *GV; |
| 84 | Constant *Target; |
| 85 | }; |
| 86 | |
| 87 | unsigned Kind : 2; |
| 88 | unsigned MCID : 29; |
| 89 | unsigned AppendingGVIsOldCtorDtor : 1; |
| 90 | unsigned AppendingGVNumNewMembers; |
| 91 | union { |
| 92 | GVInitTy GVInit; |
| 93 | AppendingGVTy AppendingGV; |
| 94 | AliasOrIFuncTy AliasOrIFunc; |
| 95 | Function *RemapF; |
| 96 | } Data; |
| 97 | }; |
| 98 | |
| 99 | struct MappingContext { |
| 100 | ValueToValueMapTy *VM; |
| 101 | ValueMaterializer *Materializer = nullptr; |
| 102 | |
| 103 | /// Construct a MappingContext with a value map and materializer. |
| 104 | explicit MappingContext(ValueToValueMapTy &VM, |
| 105 | ValueMaterializer *Materializer = nullptr) |
| 106 | : VM(&VM), Materializer(Materializer) {} |
| 107 | }; |
| 108 | |
| 109 | class Mapper { |
| 110 | friend class MDNodeMapper; |
| 111 | |
| 112 | #ifndef NDEBUG |
| 113 | DenseSet<GlobalValue *> AlreadyScheduled; |
| 114 | #endif |
| 115 | |
| 116 | RemapFlags Flags; |
| 117 | ValueMapTypeRemapper *TypeMapper; |
| 118 | unsigned CurrentMCID = 0; |
| 119 | SmallVector<MappingContext, 2> MCs; |
| 120 | SmallVector<WorklistEntry, 4> Worklist; |
| 121 | SmallVector<DelayedBasicBlock, 1> DelayedBBs; |
| 122 | SmallVector<Constant *, 16> AppendingInits; |
| 123 | const MetadataPredicate *IdentityMD; |
| 124 | |
| 125 | public: |
| 126 | Mapper(ValueToValueMapTy &VM, RemapFlags Flags, |
| 127 | ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer, |
| 128 | const MetadataPredicate *IdentityMD) |
| 129 | : Flags(Flags), TypeMapper(TypeMapper), |
| 130 | MCs(1, MappingContext(VM, Materializer)), IdentityMD(IdentityMD) {} |
| 131 | |
| 132 | /// ValueMapper should explicitly call \a flush() before destruction. |
| 133 | ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed" ); } |
| 134 | |
| 135 | bool hasWorkToDo() const { return !Worklist.empty(); } |
| 136 | |
| 137 | unsigned |
| 138 | registerAlternateMappingContext(ValueToValueMapTy &VM, |
| 139 | ValueMaterializer *Materializer = nullptr) { |
| 140 | MCs.push_back(Elt: MappingContext(VM, Materializer)); |
| 141 | return MCs.size() - 1; |
| 142 | } |
| 143 | |
| 144 | void addFlags(RemapFlags Flags); |
| 145 | |
| 146 | void remapGlobalObjectMetadata(GlobalObject &GO); |
| 147 | |
| 148 | Value *mapValue(const Value *V); |
| 149 | void remapInstruction(Instruction *I); |
| 150 | void remapFunction(Function &F); |
| 151 | void remapDbgRecord(DbgRecord &DVR); |
| 152 | |
| 153 | Constant *mapConstant(const Constant *C) { |
| 154 | return cast_or_null<Constant>(Val: mapValue(V: C)); |
| 155 | } |
| 156 | |
| 157 | /// Map metadata. |
| 158 | /// |
| 159 | /// Find the mapping for MD. Guarantees that the return will be resolved |
| 160 | /// (not an MDNode, or MDNode::isResolved() returns true). |
| 161 | Metadata *mapMetadata(const Metadata *MD); |
| 162 | |
| 163 | void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, |
| 164 | unsigned MCID); |
| 165 | void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, |
| 166 | bool IsOldCtorDtor, |
| 167 | ArrayRef<Constant *> NewMembers, |
| 168 | unsigned MCID); |
| 169 | void scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, |
| 170 | unsigned MCID); |
| 171 | void scheduleRemapFunction(Function &F, unsigned MCID); |
| 172 | |
| 173 | void flush(); |
| 174 | |
| 175 | private: |
| 176 | void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, |
| 177 | bool IsOldCtorDtor, |
| 178 | ArrayRef<Constant *> NewMembers); |
| 179 | |
| 180 | ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } |
| 181 | ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } |
| 182 | |
| 183 | Value *mapBlockAddress(const BlockAddress &BA); |
| 184 | |
| 185 | /// Map metadata that doesn't require visiting operands. |
| 186 | std::optional<Metadata *> mapSimpleMetadata(const Metadata *MD); |
| 187 | |
| 188 | Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); |
| 189 | Metadata *mapToSelf(const Metadata *MD); |
| 190 | }; |
| 191 | |
| 192 | class MDNodeMapper { |
| 193 | Mapper &M; |
| 194 | |
| 195 | /// Data about a node in \a UniquedGraph. |
| 196 | struct Data { |
| 197 | bool HasChanged = false; |
| 198 | unsigned ID = std::numeric_limits<unsigned>::max(); |
| 199 | TempMDNode Placeholder; |
| 200 | }; |
| 201 | |
| 202 | /// A graph of uniqued nodes. |
| 203 | struct UniquedGraph { |
| 204 | SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. |
| 205 | SmallVector<MDNode *, 16> POT; // Post-order traversal. |
| 206 | |
| 207 | /// Propagate changed operands through the post-order traversal. |
| 208 | /// |
| 209 | /// Iteratively update \a Data::HasChanged for each node based on \a |
| 210 | /// Data::HasChanged of its operands, until fixed point. |
| 211 | void propagateChanges(); |
| 212 | |
| 213 | /// Get a forward reference to a node to use as an operand. |
| 214 | Metadata &getFwdReference(MDNode &Op); |
| 215 | }; |
| 216 | |
| 217 | /// Worklist of distinct nodes whose operands need to be remapped. |
| 218 | SmallVector<MDNode *, 16> DistinctWorklist; |
| 219 | |
| 220 | // Storage for a UniquedGraph. |
| 221 | SmallDenseMap<const Metadata *, Data, 32> InfoStorage; |
| 222 | SmallVector<MDNode *, 16> POTStorage; |
| 223 | |
| 224 | public: |
| 225 | MDNodeMapper(Mapper &M) : M(M) {} |
| 226 | |
| 227 | /// Map a metadata node (and its transitive operands). |
| 228 | /// |
| 229 | /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative |
| 230 | /// algorithm handles distinct nodes and uniqued node subgraphs using |
| 231 | /// different strategies. |
| 232 | /// |
| 233 | /// Distinct nodes are immediately mapped and added to \a DistinctWorklist |
| 234 | /// using \a mapDistinctNode(). Their mapping can always be computed |
| 235 | /// immediately without visiting operands, even if their operands change. |
| 236 | /// |
| 237 | /// The mapping for uniqued nodes depends on whether their operands change. |
| 238 | /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of |
| 239 | /// a node to calculate uniqued node mappings in bulk. Distinct leafs are |
| 240 | /// added to \a DistinctWorklist with \a mapDistinctNode(). |
| 241 | /// |
| 242 | /// After mapping \c N itself, this function remaps the operands of the |
| 243 | /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c |
| 244 | /// N has been mapped. |
| 245 | Metadata *map(const MDNode &N); |
| 246 | |
| 247 | private: |
| 248 | /// Map a top-level uniqued node and the uniqued subgraph underneath it. |
| 249 | /// |
| 250 | /// This builds up a post-order traversal of the (unmapped) uniqued subgraph |
| 251 | /// underneath \c FirstN and calculates the nodes' mapping. Each node uses |
| 252 | /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its |
| 253 | /// operands uses the identity mapping. |
| 254 | /// |
| 255 | /// The algorithm works as follows: |
| 256 | /// |
| 257 | /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and |
| 258 | /// save the post-order traversal in the given \a UniquedGraph, tracking |
| 259 | /// nodes' operands change. |
| 260 | /// |
| 261 | /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands |
| 262 | /// through the \a UniquedGraph until fixed point, following the rule |
| 263 | /// that if a node changes, any node that references must also change. |
| 264 | /// |
| 265 | /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes |
| 266 | /// (referencing new operands) where necessary. |
| 267 | Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); |
| 268 | |
| 269 | /// Try to map the operand of an \a MDNode. |
| 270 | /// |
| 271 | /// If \c Op is already mapped, return the mapping. If it's not an \a |
| 272 | /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, |
| 273 | /// return the result of \a mapDistinctNode(). |
| 274 | /// |
| 275 | /// \return std::nullopt if \c Op is an unmapped uniqued \a MDNode. |
| 276 | /// \post getMappedOp(Op) only returns std::nullopt if this returns |
| 277 | /// std::nullopt. |
| 278 | std::optional<Metadata *> tryToMapOperand(const Metadata *Op); |
| 279 | |
| 280 | /// Map a distinct node. |
| 281 | /// |
| 282 | /// Return the mapping for the distinct node \c N, saving the result in \a |
| 283 | /// DistinctWorklist for later remapping. |
| 284 | /// |
| 285 | /// \pre \c N is not yet mapped. |
| 286 | /// \pre \c N.isDistinct(). |
| 287 | MDNode *mapDistinctNode(const MDNode &N); |
| 288 | |
| 289 | /// Get a previously mapped node. |
| 290 | std::optional<Metadata *> getMappedOp(const Metadata *Op) const; |
| 291 | |
| 292 | /// Create a post-order traversal of an unmapped uniqued node subgraph. |
| 293 | /// |
| 294 | /// This traverses the metadata graph deeply enough to map \c FirstN. It |
| 295 | /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any |
| 296 | /// metadata that has already been mapped will not be part of the POT. |
| 297 | /// |
| 298 | /// Each node that has a changed operand from outside the graph (e.g., a |
| 299 | /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) |
| 300 | /// is marked with \a Data::HasChanged. |
| 301 | /// |
| 302 | /// \return \c true if any nodes in \c G have \a Data::HasChanged. |
| 303 | /// \post \c G.POT is a post-order traversal ending with \c FirstN. |
| 304 | /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs |
| 305 | /// to change because of operands outside the graph. |
| 306 | bool createPOT(UniquedGraph &G, const MDNode &FirstN); |
| 307 | |
| 308 | /// Visit the operands of a uniqued node in the POT. |
| 309 | /// |
| 310 | /// Visit the operands in the range from \c I to \c E, returning the first |
| 311 | /// uniqued node we find that isn't yet in \c G. \c I is always advanced to |
| 312 | /// where to continue the loop through the operands. |
| 313 | /// |
| 314 | /// This sets \c HasChanged if any of the visited operands change. |
| 315 | MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, |
| 316 | MDNode::op_iterator E, bool &HasChanged); |
| 317 | |
| 318 | /// Map all the nodes in the given uniqued graph. |
| 319 | /// |
| 320 | /// This visits all the nodes in \c G in post-order, using the identity |
| 321 | /// mapping or creating a new node depending on \a Data::HasChanged. |
| 322 | /// |
| 323 | /// \pre \a getMappedOp() returns std::nullopt for nodes in \c G, but not for |
| 324 | /// any of their operands outside of \c G. \pre \a Data::HasChanged is true |
| 325 | /// for a node in \c G iff any of its operands have changed. \post \a |
| 326 | /// getMappedOp() returns the mapped node for every node in \c G. |
| 327 | void mapNodesInPOT(UniquedGraph &G); |
| 328 | |
| 329 | /// Remap a node's operands using the given functor. |
| 330 | /// |
| 331 | /// Iterate through the operands of \c N and update them in place using \c |
| 332 | /// mapOperand. |
| 333 | /// |
| 334 | /// \pre N.isDistinct() or N.isTemporary(). |
| 335 | template <class OperandMapper> |
| 336 | void remapOperands(MDNode &N, OperandMapper mapOperand); |
| 337 | }; |
| 338 | |
| 339 | } // end anonymous namespace |
| 340 | |
| 341 | Value *Mapper::mapValue(const Value *V) { |
| 342 | ValueToValueMapTy::iterator I = getVM().find(Val: V); |
| 343 | |
| 344 | // If the value already exists in the map, use it. |
| 345 | if (I != getVM().end()) { |
| 346 | assert(I->second && "Unexpected null mapping" ); |
| 347 | return I->second; |
| 348 | } |
| 349 | |
| 350 | // If we have a materializer and it can materialize a value, use that. |
| 351 | if (auto *Materializer = getMaterializer()) { |
| 352 | if (Value *NewV = Materializer->materialize(V: const_cast<Value *>(V))) { |
| 353 | getVM()[V] = NewV; |
| 354 | return NewV; |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | // Global values do not need to be seeded into the VM if they |
| 359 | // are using the identity mapping. |
| 360 | if (isa<GlobalValue>(Val: V)) { |
| 361 | if (Flags & RF_NullMapMissingGlobalValues) |
| 362 | return nullptr; |
| 363 | return getVM()[V] = const_cast<Value *>(V); |
| 364 | } |
| 365 | |
| 366 | if (const InlineAsm *IA = dyn_cast<InlineAsm>(Val: V)) { |
| 367 | // Inline asm may need *type* remapping. |
| 368 | FunctionType *NewTy = IA->getFunctionType(); |
| 369 | if (TypeMapper) { |
| 370 | NewTy = cast<FunctionType>(Val: TypeMapper->remapType(SrcTy: NewTy)); |
| 371 | |
| 372 | if (NewTy != IA->getFunctionType()) |
| 373 | V = InlineAsm::get(Ty: NewTy, AsmString: IA->getAsmString(), Constraints: IA->getConstraintString(), |
| 374 | hasSideEffects: IA->hasSideEffects(), isAlignStack: IA->isAlignStack(), |
| 375 | asmDialect: IA->getDialect(), canThrow: IA->canThrow()); |
| 376 | } |
| 377 | |
| 378 | return getVM()[V] = const_cast<Value *>(V); |
| 379 | } |
| 380 | |
| 381 | if (const auto *MDV = dyn_cast<MetadataAsValue>(Val: V)) { |
| 382 | const Metadata *MD = MDV->getMetadata(); |
| 383 | |
| 384 | if (auto *LAM = dyn_cast<LocalAsMetadata>(Val: MD)) { |
| 385 | // Look through to grab the local value. |
| 386 | if (Value *LV = mapValue(V: LAM->getValue())) { |
| 387 | if (V == LAM->getValue()) |
| 388 | return const_cast<Value *>(V); |
| 389 | return MetadataAsValue::get(Context&: V->getContext(), MD: ValueAsMetadata::get(V: LV)); |
| 390 | } |
| 391 | |
| 392 | // FIXME: always return nullptr once Verifier::verifyDominatesUse() |
| 393 | // ensures metadata operands only reference defined SSA values. |
| 394 | return (Flags & RF_IgnoreMissingLocals) |
| 395 | ? nullptr |
| 396 | : MetadataAsValue::get(Context&: V->getContext(), |
| 397 | MD: MDTuple::get(Context&: V->getContext(), MDs: {})); |
| 398 | } |
| 399 | if (auto *AL = dyn_cast<DIArgList>(Val: MD)) { |
| 400 | SmallVector<ValueAsMetadata *, 4> MappedArgs; |
| 401 | for (auto *VAM : AL->getArgs()) { |
| 402 | // Map both Local and Constant VAMs here; they will both ultimately |
| 403 | // be mapped via mapValue. The exceptions are constants when we have no |
| 404 | // module level changes and locals when they have no existing mapped |
| 405 | // value and RF_IgnoreMissingLocals is set; these have identity |
| 406 | // mappings. |
| 407 | if ((Flags & RF_NoModuleLevelChanges) && isa<ConstantAsMetadata>(Val: VAM)) { |
| 408 | MappedArgs.push_back(Elt: VAM); |
| 409 | } else if (Value *LV = mapValue(V: VAM->getValue())) { |
| 410 | MappedArgs.push_back( |
| 411 | Elt: LV == VAM->getValue() ? VAM : ValueAsMetadata::get(V: LV)); |
| 412 | } else if ((Flags & RF_IgnoreMissingLocals) && isa<LocalAsMetadata>(Val: VAM)) { |
| 413 | MappedArgs.push_back(Elt: VAM); |
| 414 | } else { |
| 415 | // If we cannot map the value, set the argument as poison. |
| 416 | MappedArgs.push_back(Elt: ValueAsMetadata::get( |
| 417 | V: PoisonValue::get(T: VAM->getValue()->getType()))); |
| 418 | } |
| 419 | } |
| 420 | return MetadataAsValue::get(Context&: V->getContext(), |
| 421 | MD: DIArgList::get(Context&: V->getContext(), Args: MappedArgs)); |
| 422 | } |
| 423 | |
| 424 | // If this is a module-level metadata and we know that nothing at the module |
| 425 | // level is changing, then use an identity mapping. |
| 426 | if (Flags & RF_NoModuleLevelChanges) |
| 427 | return getVM()[V] = const_cast<Value *>(V); |
| 428 | |
| 429 | // Map the metadata and turn it into a value. |
| 430 | auto *MappedMD = mapMetadata(MD); |
| 431 | if (MD == MappedMD) |
| 432 | return getVM()[V] = const_cast<Value *>(V); |
| 433 | return getVM()[V] = MetadataAsValue::get(Context&: V->getContext(), MD: MappedMD); |
| 434 | } |
| 435 | |
| 436 | // Okay, this either must be a constant (which may or may not be mappable) or |
| 437 | // is something that is not in the mapping table. |
| 438 | Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val: V)); |
| 439 | if (!C) |
| 440 | return nullptr; |
| 441 | |
| 442 | if (BlockAddress *BA = dyn_cast<BlockAddress>(Val: C)) |
| 443 | return mapBlockAddress(BA: *BA); |
| 444 | |
| 445 | if (const auto *E = dyn_cast<DSOLocalEquivalent>(Val: C)) { |
| 446 | auto *Val = mapValue(V: E->getGlobalValue()); |
| 447 | GlobalValue *GV = dyn_cast<GlobalValue>(Val); |
| 448 | if (GV) |
| 449 | return getVM()[E] = DSOLocalEquivalent::get(GV); |
| 450 | |
| 451 | auto *Func = cast<Function>(Val: Val->stripPointerCastsAndAliases()); |
| 452 | Type *NewTy = E->getType(); |
| 453 | if (TypeMapper) |
| 454 | NewTy = TypeMapper->remapType(SrcTy: NewTy); |
| 455 | return getVM()[E] = llvm::ConstantExpr::getBitCast( |
| 456 | C: DSOLocalEquivalent::get(GV: Func), Ty: NewTy); |
| 457 | } |
| 458 | |
| 459 | if (const auto *NC = dyn_cast<NoCFIValue>(Val: C)) { |
| 460 | auto *Val = mapValue(V: NC->getGlobalValue()); |
| 461 | GlobalValue *GV = cast<GlobalValue>(Val); |
| 462 | return getVM()[NC] = NoCFIValue::get(GV); |
| 463 | } |
| 464 | |
| 465 | auto mapValueOrNull = [this](Value *V) { |
| 466 | auto Mapped = mapValue(V); |
| 467 | assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && |
| 468 | "Unexpected null mapping for constant operand without " |
| 469 | "NullMapMissingGlobalValues flag" ); |
| 470 | return Mapped; |
| 471 | }; |
| 472 | |
| 473 | // Otherwise, we have some other constant to remap. Start by checking to see |
| 474 | // if all operands have an identity remapping. |
| 475 | unsigned OpNo = 0, NumOperands = C->getNumOperands(); |
| 476 | Value *Mapped = nullptr; |
| 477 | for (; OpNo != NumOperands; ++OpNo) { |
| 478 | Value *Op = C->getOperand(i: OpNo); |
| 479 | Mapped = mapValueOrNull(Op); |
| 480 | if (!Mapped) |
| 481 | return nullptr; |
| 482 | if (Mapped != Op) |
| 483 | break; |
| 484 | } |
| 485 | |
| 486 | // See if the type mapper wants to remap the type as well. |
| 487 | Type *NewTy = C->getType(); |
| 488 | if (TypeMapper) |
| 489 | NewTy = TypeMapper->remapType(SrcTy: NewTy); |
| 490 | |
| 491 | // If the result type and all operands match up, then just insert an identity |
| 492 | // mapping. |
| 493 | if (OpNo == NumOperands && NewTy == C->getType()) |
| 494 | return getVM()[V] = C; |
| 495 | |
| 496 | // Okay, we need to create a new constant. We've already processed some or |
| 497 | // all of the operands, set them all up now. |
| 498 | SmallVector<Constant*, 8> Ops; |
| 499 | Ops.reserve(N: NumOperands); |
| 500 | for (unsigned j = 0; j != OpNo; ++j) |
| 501 | Ops.push_back(Elt: cast<Constant>(Val: C->getOperand(i: j))); |
| 502 | |
| 503 | // If one of the operands mismatch, push it and the other mapped operands. |
| 504 | if (OpNo != NumOperands) { |
| 505 | Ops.push_back(Elt: cast<Constant>(Val: Mapped)); |
| 506 | |
| 507 | // Map the rest of the operands that aren't processed yet. |
| 508 | for (++OpNo; OpNo != NumOperands; ++OpNo) { |
| 509 | Mapped = mapValueOrNull(C->getOperand(i: OpNo)); |
| 510 | if (!Mapped) |
| 511 | return nullptr; |
| 512 | Ops.push_back(Elt: cast<Constant>(Val: Mapped)); |
| 513 | } |
| 514 | } |
| 515 | Type *NewSrcTy = nullptr; |
| 516 | if (TypeMapper) |
| 517 | if (auto *GEPO = dyn_cast<GEPOperator>(Val: C)) |
| 518 | NewSrcTy = TypeMapper->remapType(SrcTy: GEPO->getSourceElementType()); |
| 519 | |
| 520 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: C)) |
| 521 | return getVM()[V] = CE->getWithOperands(Ops, Ty: NewTy, OnlyIfReduced: false, SrcTy: NewSrcTy); |
| 522 | if (isa<ConstantArray>(Val: C)) |
| 523 | return getVM()[V] = ConstantArray::get(T: cast<ArrayType>(Val: NewTy), V: Ops); |
| 524 | if (isa<ConstantStruct>(Val: C)) |
| 525 | return getVM()[V] = ConstantStruct::get(T: cast<StructType>(Val: NewTy), V: Ops); |
| 526 | if (isa<ConstantVector>(Val: C)) |
| 527 | return getVM()[V] = ConstantVector::get(V: Ops); |
| 528 | if (isa<ConstantPtrAuth>(Val: C)) |
| 529 | return getVM()[V] = ConstantPtrAuth::get(Ptr: Ops[0], Key: cast<ConstantInt>(Val: Ops[1]), |
| 530 | Disc: cast<ConstantInt>(Val: Ops[2]), AddrDisc: Ops[3]); |
| 531 | // If this is a no-operand constant, it must be because the type was remapped. |
| 532 | if (isa<PoisonValue>(Val: C)) |
| 533 | return getVM()[V] = PoisonValue::get(T: NewTy); |
| 534 | if (isa<UndefValue>(Val: C)) |
| 535 | return getVM()[V] = UndefValue::get(T: NewTy); |
| 536 | if (isa<ConstantAggregateZero>(Val: C)) |
| 537 | return getVM()[V] = ConstantAggregateZero::get(Ty: NewTy); |
| 538 | if (isa<ConstantTargetNone>(Val: C)) |
| 539 | return getVM()[V] = Constant::getNullValue(Ty: NewTy); |
| 540 | assert(isa<ConstantPointerNull>(C)); |
| 541 | return getVM()[V] = ConstantPointerNull::get(T: cast<PointerType>(Val: NewTy)); |
| 542 | } |
| 543 | |
| 544 | void Mapper::remapDbgRecord(DbgRecord &DR) { |
| 545 | // Remap DILocations. |
| 546 | auto *MappedDILoc = mapMetadata(MD: DR.getDebugLoc()); |
| 547 | DR.setDebugLoc(DebugLoc(cast<DILocation>(Val: MappedDILoc))); |
| 548 | |
| 549 | if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(Val: &DR)) { |
| 550 | // Remap labels. |
| 551 | DLR->setLabel(cast<DILabel>(Val: mapMetadata(MD: DLR->getLabel()))); |
| 552 | return; |
| 553 | } |
| 554 | |
| 555 | DbgVariableRecord &V = cast<DbgVariableRecord>(Val&: DR); |
| 556 | // Remap variables. |
| 557 | auto *MappedVar = mapMetadata(MD: V.getVariable()); |
| 558 | V.setVariable(cast<DILocalVariable>(Val: MappedVar)); |
| 559 | |
| 560 | bool IgnoreMissingLocals = Flags & RF_IgnoreMissingLocals; |
| 561 | |
| 562 | if (V.isDbgAssign()) { |
| 563 | auto *NewAddr = mapValue(V: V.getAddress()); |
| 564 | if (!IgnoreMissingLocals && !NewAddr) |
| 565 | V.setKillAddress(); |
| 566 | else if (NewAddr) |
| 567 | V.setAddress(NewAddr); |
| 568 | V.setAssignId(cast<DIAssignID>(Val: mapMetadata(MD: V.getAssignID()))); |
| 569 | } |
| 570 | |
| 571 | // Find Value operands and remap those. |
| 572 | SmallVector<Value *, 4> Vals(V.location_ops()); |
| 573 | SmallVector<Value *, 4> NewVals; |
| 574 | for (Value *Val : Vals) |
| 575 | NewVals.push_back(Elt: mapValue(V: Val)); |
| 576 | |
| 577 | // If there are no changes to the Value operands, finished. |
| 578 | if (Vals == NewVals) |
| 579 | return; |
| 580 | |
| 581 | // Otherwise, do some replacement. |
| 582 | if (!IgnoreMissingLocals && llvm::is_contained(Range&: NewVals, Element: nullptr)) { |
| 583 | V.setKillLocation(); |
| 584 | } else { |
| 585 | // Either we have all non-empty NewVals, or we're permitted to ignore |
| 586 | // missing locals. |
| 587 | for (unsigned int I = 0; I < Vals.size(); ++I) |
| 588 | if (NewVals[I]) |
| 589 | V.replaceVariableLocationOp(OpIdx: I, NewValue: NewVals[I]); |
| 590 | } |
| 591 | } |
| 592 | |
| 593 | Value *Mapper::mapBlockAddress(const BlockAddress &BA) { |
| 594 | Function *F = cast<Function>(Val: mapValue(V: BA.getFunction())); |
| 595 | |
| 596 | // F may not have materialized its initializer. In that case, create a |
| 597 | // dummy basic block for now, and replace it once we've materialized all |
| 598 | // the initializers. |
| 599 | BasicBlock *BB; |
| 600 | if (F->empty()) { |
| 601 | DelayedBBs.push_back(Elt: DelayedBasicBlock(BA)); |
| 602 | BB = DelayedBBs.back().TempBB.get(); |
| 603 | } else { |
| 604 | BB = cast_or_null<BasicBlock>(Val: mapValue(V: BA.getBasicBlock())); |
| 605 | } |
| 606 | |
| 607 | return getVM()[&BA] = BlockAddress::get(F, BB: BB ? BB : BA.getBasicBlock()); |
| 608 | } |
| 609 | |
| 610 | Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { |
| 611 | getVM().MD()[Key].reset(MD: Val); |
| 612 | return Val; |
| 613 | } |
| 614 | |
| 615 | Metadata *Mapper::mapToSelf(const Metadata *MD) { |
| 616 | return mapToMetadata(Key: MD, Val: const_cast<Metadata *>(MD)); |
| 617 | } |
| 618 | |
| 619 | std::optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { |
| 620 | if (!Op) |
| 621 | return nullptr; |
| 622 | |
| 623 | if (std::optional<Metadata *> MappedOp = M.mapSimpleMetadata(MD: Op)) { |
| 624 | #ifndef NDEBUG |
| 625 | if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) |
| 626 | assert((!*MappedOp || M.getVM().count(CMD->getValue()) || |
| 627 | M.getVM().getMappedMD(Op)) && |
| 628 | "Expected Value to be memoized" ); |
| 629 | else |
| 630 | assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && |
| 631 | "Expected result to be memoized" ); |
| 632 | #endif |
| 633 | return *MappedOp; |
| 634 | } |
| 635 | |
| 636 | const MDNode &N = *cast<MDNode>(Val: Op); |
| 637 | if (N.isDistinct()) |
| 638 | return mapDistinctNode(N); |
| 639 | return std::nullopt; |
| 640 | } |
| 641 | |
| 642 | MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { |
| 643 | assert(N.isDistinct() && "Expected a distinct node" ); |
| 644 | assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node" ); |
| 645 | Metadata *NewM = nullptr; |
| 646 | |
| 647 | if (M.Flags & RF_ReuseAndMutateDistinctMDs) { |
| 648 | NewM = M.mapToSelf(MD: &N); |
| 649 | } else { |
| 650 | NewM = MDNode::replaceWithDistinct(N: N.clone()); |
| 651 | LLVM_DEBUG(dbgs() << "\nMap " << N << "\n" |
| 652 | << "To " << *NewM << "\n\n" ); |
| 653 | M.mapToMetadata(Key: &N, Val: NewM); |
| 654 | } |
| 655 | DistinctWorklist.push_back(Elt: cast<MDNode>(Val: NewM)); |
| 656 | |
| 657 | return DistinctWorklist.back(); |
| 658 | } |
| 659 | |
| 660 | static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, |
| 661 | Value *MappedV) { |
| 662 | if (CMD.getValue() == MappedV) |
| 663 | return const_cast<ConstantAsMetadata *>(&CMD); |
| 664 | return MappedV ? ConstantAsMetadata::getConstant(C: MappedV) : nullptr; |
| 665 | } |
| 666 | |
| 667 | std::optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { |
| 668 | if (!Op) |
| 669 | return nullptr; |
| 670 | |
| 671 | if (std::optional<Metadata *> MappedOp = M.getVM().getMappedMD(MD: Op)) |
| 672 | return *MappedOp; |
| 673 | |
| 674 | if (isa<MDString>(Val: Op)) |
| 675 | return const_cast<Metadata *>(Op); |
| 676 | |
| 677 | if (auto *CMD = dyn_cast<ConstantAsMetadata>(Val: Op)) |
| 678 | return wrapConstantAsMetadata(CMD: *CMD, MappedV: M.getVM().lookup(Val: CMD->getValue())); |
| 679 | |
| 680 | return std::nullopt; |
| 681 | } |
| 682 | |
| 683 | Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { |
| 684 | auto Where = Info.find(Val: &Op); |
| 685 | assert(Where != Info.end() && "Expected a valid reference" ); |
| 686 | |
| 687 | auto &OpD = Where->second; |
| 688 | if (!OpD.HasChanged) |
| 689 | return Op; |
| 690 | |
| 691 | // Lazily construct a temporary node. |
| 692 | if (!OpD.Placeholder) |
| 693 | OpD.Placeholder = Op.clone(); |
| 694 | |
| 695 | return *OpD.Placeholder; |
| 696 | } |
| 697 | |
| 698 | template <class OperandMapper> |
| 699 | void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { |
| 700 | assert(!N.isUniqued() && "Expected distinct or temporary nodes" ); |
| 701 | for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { |
| 702 | Metadata *Old = N.getOperand(I); |
| 703 | Metadata *New = mapOperand(Old); |
| 704 | if (Old != New) |
| 705 | LLVM_DEBUG(dbgs() << "Replacing Op " << Old << " with " << New << " in " |
| 706 | << N << "\n" ); |
| 707 | |
| 708 | if (Old != New) |
| 709 | N.replaceOperandWith(I, New); |
| 710 | } |
| 711 | } |
| 712 | |
| 713 | namespace { |
| 714 | |
| 715 | /// An entry in the worklist for the post-order traversal. |
| 716 | struct POTWorklistEntry { |
| 717 | MDNode *N; ///< Current node. |
| 718 | MDNode::op_iterator Op; ///< Current operand of \c N. |
| 719 | |
| 720 | /// Keep a flag of whether operands have changed in the worklist to avoid |
| 721 | /// hitting the map in \a UniquedGraph. |
| 722 | bool HasChanged = false; |
| 723 | |
| 724 | POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} |
| 725 | }; |
| 726 | |
| 727 | } // end anonymous namespace |
| 728 | |
| 729 | bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { |
| 730 | assert(G.Info.empty() && "Expected a fresh traversal" ); |
| 731 | assert(FirstN.isUniqued() && "Expected uniqued node in POT" ); |
| 732 | |
| 733 | // Construct a post-order traversal of the uniqued subgraph under FirstN. |
| 734 | bool AnyChanges = false; |
| 735 | SmallVector<POTWorklistEntry, 16> Worklist; |
| 736 | Worklist.push_back(Elt: POTWorklistEntry(const_cast<MDNode &>(FirstN))); |
| 737 | (void)G.Info[&FirstN]; |
| 738 | while (!Worklist.empty()) { |
| 739 | // Start or continue the traversal through the this node's operands. |
| 740 | auto &WE = Worklist.back(); |
| 741 | if (MDNode *N = visitOperands(G, I&: WE.Op, E: WE.N->op_end(), HasChanged&: WE.HasChanged)) { |
| 742 | // Push a new node to traverse first. |
| 743 | Worklist.push_back(Elt: POTWorklistEntry(*N)); |
| 744 | continue; |
| 745 | } |
| 746 | |
| 747 | // Push the node onto the POT. |
| 748 | assert(WE.N->isUniqued() && "Expected only uniqued nodes" ); |
| 749 | assert(WE.Op == WE.N->op_end() && "Expected to visit all operands" ); |
| 750 | auto &D = G.Info[WE.N]; |
| 751 | AnyChanges |= D.HasChanged = WE.HasChanged; |
| 752 | D.ID = G.POT.size(); |
| 753 | G.POT.push_back(Elt: WE.N); |
| 754 | |
| 755 | // Pop the node off the worklist. |
| 756 | Worklist.pop_back(); |
| 757 | } |
| 758 | return AnyChanges; |
| 759 | } |
| 760 | |
| 761 | MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, |
| 762 | MDNode::op_iterator E, bool &HasChanged) { |
| 763 | while (I != E) { |
| 764 | Metadata *Op = *I++; // Increment even on early return. |
| 765 | if (std::optional<Metadata *> MappedOp = tryToMapOperand(Op)) { |
| 766 | // Check if the operand changes. |
| 767 | HasChanged |= Op != *MappedOp; |
| 768 | continue; |
| 769 | } |
| 770 | |
| 771 | // A uniqued metadata node. |
| 772 | MDNode &OpN = *cast<MDNode>(Val: Op); |
| 773 | assert(OpN.isUniqued() && |
| 774 | "Only uniqued operands cannot be mapped immediately" ); |
| 775 | if (G.Info.try_emplace(Key: &OpN).second) |
| 776 | return &OpN; // This is a new one. Return it. |
| 777 | } |
| 778 | return nullptr; |
| 779 | } |
| 780 | |
| 781 | void MDNodeMapper::UniquedGraph::propagateChanges() { |
| 782 | bool AnyChanges; |
| 783 | do { |
| 784 | AnyChanges = false; |
| 785 | for (MDNode *N : POT) { |
| 786 | auto &D = Info[N]; |
| 787 | if (D.HasChanged) |
| 788 | continue; |
| 789 | |
| 790 | if (llvm::none_of(Range: N->operands(), P: [&](const Metadata *Op) { |
| 791 | auto Where = Info.find(Val: Op); |
| 792 | return Where != Info.end() && Where->second.HasChanged; |
| 793 | })) |
| 794 | continue; |
| 795 | |
| 796 | AnyChanges = D.HasChanged = true; |
| 797 | } |
| 798 | } while (AnyChanges); |
| 799 | } |
| 800 | |
| 801 | void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { |
| 802 | // Construct uniqued nodes, building forward references as necessary. |
| 803 | SmallVector<MDNode *, 16> CyclicNodes; |
| 804 | for (auto *N : G.POT) { |
| 805 | auto &D = G.Info[N]; |
| 806 | if (!D.HasChanged) { |
| 807 | // The node hasn't changed. |
| 808 | M.mapToSelf(MD: N); |
| 809 | continue; |
| 810 | } |
| 811 | |
| 812 | // Remember whether this node had a placeholder. |
| 813 | bool HadPlaceholder(D.Placeholder); |
| 814 | |
| 815 | // Clone the uniqued node and remap the operands. |
| 816 | TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); |
| 817 | remapOperands(N&: *ClonedN, mapOperand: [this, &D, &G](Metadata *Old) { |
| 818 | if (std::optional<Metadata *> MappedOp = getMappedOp(Op: Old)) |
| 819 | return *MappedOp; |
| 820 | (void)D; |
| 821 | assert(G.Info[Old].ID > D.ID && "Expected a forward reference" ); |
| 822 | return &G.getFwdReference(Op&: *cast<MDNode>(Val: Old)); |
| 823 | }); |
| 824 | |
| 825 | auto *NewN = MDNode::replaceWithUniqued(N: std::move(ClonedN)); |
| 826 | if (N && NewN && N != NewN) { |
| 827 | LLVM_DEBUG(dbgs() << "\nMap " << *N << "\n" |
| 828 | << "To " << *NewN << "\n\n" ); |
| 829 | } |
| 830 | |
| 831 | M.mapToMetadata(Key: N, Val: NewN); |
| 832 | |
| 833 | // Nodes that were referenced out of order in the POT are involved in a |
| 834 | // uniquing cycle. |
| 835 | if (HadPlaceholder) |
| 836 | CyclicNodes.push_back(Elt: NewN); |
| 837 | } |
| 838 | |
| 839 | // Resolve cycles. |
| 840 | for (auto *N : CyclicNodes) |
| 841 | if (!N->isResolved()) |
| 842 | N->resolveCycles(); |
| 843 | } |
| 844 | |
| 845 | Metadata *MDNodeMapper::map(const MDNode &N) { |
| 846 | assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive" ); |
| 847 | assert(!(M.Flags & RF_NoModuleLevelChanges) && |
| 848 | "MDNodeMapper::map assumes module-level changes" ); |
| 849 | |
| 850 | // Require resolved nodes whenever metadata might be remapped. |
| 851 | assert(N.isResolved() && "Unexpected unresolved node" ); |
| 852 | |
| 853 | Metadata *MappedN = |
| 854 | N.isUniqued() ? mapTopLevelUniquedNode(FirstN: N) : mapDistinctNode(N); |
| 855 | while (!DistinctWorklist.empty()) |
| 856 | remapOperands(N&: *DistinctWorklist.pop_back_val(), mapOperand: [this](Metadata *Old) { |
| 857 | if (std::optional<Metadata *> MappedOp = tryToMapOperand(Op: Old)) |
| 858 | return *MappedOp; |
| 859 | return mapTopLevelUniquedNode(FirstN: *cast<MDNode>(Val: Old)); |
| 860 | }); |
| 861 | return MappedN; |
| 862 | } |
| 863 | |
| 864 | Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { |
| 865 | assert(FirstN.isUniqued() && "Expected uniqued node" ); |
| 866 | |
| 867 | // Create a post-order traversal of uniqued nodes under FirstN. |
| 868 | UniquedGraph G; |
| 869 | if (!createPOT(G, FirstN)) { |
| 870 | // Return early if no nodes have changed. |
| 871 | for (const MDNode *N : G.POT) |
| 872 | M.mapToSelf(MD: N); |
| 873 | return &const_cast<MDNode &>(FirstN); |
| 874 | } |
| 875 | |
| 876 | // Update graph with all nodes that have changed. |
| 877 | G.propagateChanges(); |
| 878 | |
| 879 | // Map all the nodes in the graph. |
| 880 | mapNodesInPOT(G); |
| 881 | |
| 882 | // Return the original node, remapped. |
| 883 | return *getMappedOp(Op: &FirstN); |
| 884 | } |
| 885 | |
| 886 | std::optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { |
| 887 | // If the value already exists in the map, use it. |
| 888 | if (std::optional<Metadata *> NewMD = getVM().getMappedMD(MD)) |
| 889 | return *NewMD; |
| 890 | |
| 891 | if (isa<MDString>(Val: MD)) |
| 892 | return const_cast<Metadata *>(MD); |
| 893 | |
| 894 | // This is a module-level metadata. If nothing at the module level is |
| 895 | // changing, use an identity mapping. |
| 896 | if ((Flags & RF_NoModuleLevelChanges)) |
| 897 | return const_cast<Metadata *>(MD); |
| 898 | |
| 899 | if (auto *CMD = dyn_cast<ConstantAsMetadata>(Val: MD)) { |
| 900 | // Don't memoize ConstantAsMetadata. Instead of lasting until the |
| 901 | // LLVMContext is destroyed, they can be deleted when the GlobalValue they |
| 902 | // reference is destructed. These aren't super common, so the extra |
| 903 | // indirection isn't that expensive. |
| 904 | return wrapConstantAsMetadata(CMD: *CMD, MappedV: mapValue(V: CMD->getValue())); |
| 905 | } |
| 906 | |
| 907 | // Map metadata matching IdentityMD predicate on first use. We need to add |
| 908 | // these nodes to the mapping as otherwise metadata nodes numbering gets |
| 909 | // messed up. |
| 910 | if (IdentityMD && (*IdentityMD)(MD)) |
| 911 | return getVM().MD()[MD] = TrackingMDRef(const_cast<Metadata *>(MD)); |
| 912 | |
| 913 | assert(isa<MDNode>(MD) && "Expected a metadata node" ); |
| 914 | |
| 915 | return std::nullopt; |
| 916 | } |
| 917 | |
| 918 | Metadata *Mapper::mapMetadata(const Metadata *MD) { |
| 919 | assert(MD && "Expected valid metadata" ); |
| 920 | assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata" ); |
| 921 | |
| 922 | if (std::optional<Metadata *> NewMD = mapSimpleMetadata(MD)) |
| 923 | return *NewMD; |
| 924 | |
| 925 | return MDNodeMapper(*this).map(N: *cast<MDNode>(Val: MD)); |
| 926 | } |
| 927 | |
| 928 | void Mapper::flush() { |
| 929 | // Flush out the worklist of global values. |
| 930 | while (!Worklist.empty()) { |
| 931 | WorklistEntry E = Worklist.pop_back_val(); |
| 932 | CurrentMCID = E.MCID; |
| 933 | switch (E.Kind) { |
| 934 | case WorklistEntry::MapGlobalInit: |
| 935 | E.Data.GVInit.GV->setInitializer(mapConstant(C: E.Data.GVInit.Init)); |
| 936 | remapGlobalObjectMetadata(GO&: *E.Data.GVInit.GV); |
| 937 | break; |
| 938 | case WorklistEntry::MapAppendingVar: { |
| 939 | unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; |
| 940 | // mapAppendingVariable call can change AppendingInits if initalizer for |
| 941 | // the variable depends on another appending global, because of that inits |
| 942 | // need to be extracted and updated before the call. |
| 943 | SmallVector<Constant *, 8> NewInits( |
| 944 | drop_begin(RangeOrContainer&: AppendingInits, N: PrefixSize)); |
| 945 | AppendingInits.resize(N: PrefixSize); |
| 946 | mapAppendingVariable(GV&: *E.Data.AppendingGV.GV, |
| 947 | InitPrefix: E.Data.AppendingGV.InitPrefix, |
| 948 | IsOldCtorDtor: E.AppendingGVIsOldCtorDtor, NewMembers: ArrayRef(NewInits)); |
| 949 | break; |
| 950 | } |
| 951 | case WorklistEntry::MapAliasOrIFunc: { |
| 952 | GlobalValue *GV = E.Data.AliasOrIFunc.GV; |
| 953 | Constant *Target = mapConstant(C: E.Data.AliasOrIFunc.Target); |
| 954 | if (auto *GA = dyn_cast<GlobalAlias>(Val: GV)) |
| 955 | GA->setAliasee(Target); |
| 956 | else if (auto *GI = dyn_cast<GlobalIFunc>(Val: GV)) |
| 957 | GI->setResolver(Target); |
| 958 | else |
| 959 | llvm_unreachable("Not alias or ifunc" ); |
| 960 | break; |
| 961 | } |
| 962 | case WorklistEntry::RemapFunction: |
| 963 | remapFunction(F&: *E.Data.RemapF); |
| 964 | break; |
| 965 | } |
| 966 | } |
| 967 | CurrentMCID = 0; |
| 968 | |
| 969 | // Finish logic for block addresses now that all global values have been |
| 970 | // handled. |
| 971 | while (!DelayedBBs.empty()) { |
| 972 | DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); |
| 973 | BasicBlock *BB = cast_or_null<BasicBlock>(Val: mapValue(V: DBB.OldBB)); |
| 974 | DBB.TempBB->replaceAllUsesWith(V: BB ? BB : DBB.OldBB); |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | void Mapper::remapInstruction(Instruction *I) { |
| 979 | // Remap operands. |
| 980 | for (Use &Op : I->operands()) { |
| 981 | Value *V = mapValue(V: Op); |
| 982 | // If we aren't ignoring missing entries, assert that something happened. |
| 983 | if (V) |
| 984 | Op = V; |
| 985 | else |
| 986 | assert((Flags & RF_IgnoreMissingLocals) && |
| 987 | "Referenced value not in value map!" ); |
| 988 | } |
| 989 | |
| 990 | // Remap phi nodes' incoming blocks. |
| 991 | if (PHINode *PN = dyn_cast<PHINode>(Val: I)) { |
| 992 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| 993 | Value *V = mapValue(V: PN->getIncomingBlock(i)); |
| 994 | // If we aren't ignoring missing entries, assert that something happened. |
| 995 | if (V) |
| 996 | PN->setIncomingBlock(i, BB: cast<BasicBlock>(Val: V)); |
| 997 | else |
| 998 | assert((Flags & RF_IgnoreMissingLocals) && |
| 999 | "Referenced block not in value map!" ); |
| 1000 | } |
| 1001 | } |
| 1002 | |
| 1003 | // Remap attached metadata. |
| 1004 | SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
| 1005 | I->getAllMetadata(MDs); |
| 1006 | for (const auto &MI : MDs) { |
| 1007 | MDNode *Old = MI.second; |
| 1008 | MDNode *New = cast_or_null<MDNode>(Val: mapMetadata(MD: Old)); |
| 1009 | if (New != Old) |
| 1010 | I->setMetadata(KindID: MI.first, Node: New); |
| 1011 | } |
| 1012 | |
| 1013 | // Remap source location atom instance. |
| 1014 | if (!(Flags & RF_DoNotRemapAtoms)) |
| 1015 | RemapSourceAtom(I, VM&: getVM()); |
| 1016 | |
| 1017 | if (!TypeMapper) |
| 1018 | return; |
| 1019 | |
| 1020 | // If the instruction's type is being remapped, do so now. |
| 1021 | if (auto *CB = dyn_cast<CallBase>(Val: I)) { |
| 1022 | SmallVector<Type *, 3> Tys; |
| 1023 | FunctionType *FTy = CB->getFunctionType(); |
| 1024 | Tys.reserve(N: FTy->getNumParams()); |
| 1025 | for (Type *Ty : FTy->params()) |
| 1026 | Tys.push_back(Elt: TypeMapper->remapType(SrcTy: Ty)); |
| 1027 | CB->mutateFunctionType(FTy: FunctionType::get( |
| 1028 | Result: TypeMapper->remapType(SrcTy: I->getType()), Params: Tys, isVarArg: FTy->isVarArg())); |
| 1029 | |
| 1030 | LLVMContext &C = CB->getContext(); |
| 1031 | AttributeList Attrs = CB->getAttributes(); |
| 1032 | for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { |
| 1033 | for (int AttrIdx = Attribute::FirstTypeAttr; |
| 1034 | AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) { |
| 1035 | Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx; |
| 1036 | if (Type *Ty = |
| 1037 | Attrs.getAttributeAtIndex(Index: i, Kind: TypedAttr).getValueAsType()) { |
| 1038 | Attrs = Attrs.replaceAttributeTypeAtIndex(C, ArgNo: i, Kind: TypedAttr, |
| 1039 | ReplacementTy: TypeMapper->remapType(SrcTy: Ty)); |
| 1040 | break; |
| 1041 | } |
| 1042 | } |
| 1043 | } |
| 1044 | CB->setAttributes(Attrs); |
| 1045 | return; |
| 1046 | } |
| 1047 | if (auto *AI = dyn_cast<AllocaInst>(Val: I)) |
| 1048 | AI->setAllocatedType(TypeMapper->remapType(SrcTy: AI->getAllocatedType())); |
| 1049 | if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: I)) { |
| 1050 | GEP->setSourceElementType( |
| 1051 | TypeMapper->remapType(SrcTy: GEP->getSourceElementType())); |
| 1052 | GEP->setResultElementType( |
| 1053 | TypeMapper->remapType(SrcTy: GEP->getResultElementType())); |
| 1054 | } |
| 1055 | I->mutateType(Ty: TypeMapper->remapType(SrcTy: I->getType())); |
| 1056 | } |
| 1057 | |
| 1058 | void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) { |
| 1059 | SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; |
| 1060 | GO.getAllMetadata(MDs); |
| 1061 | GO.clearMetadata(); |
| 1062 | for (const auto &I : MDs) |
| 1063 | GO.addMetadata(KindID: I.first, MD&: *cast<MDNode>(Val: mapMetadata(MD: I.second))); |
| 1064 | } |
| 1065 | |
| 1066 | void Mapper::remapFunction(Function &F) { |
| 1067 | // Remap the operands. |
| 1068 | for (Use &Op : F.operands()) |
| 1069 | if (Op) |
| 1070 | Op = mapValue(V: Op); |
| 1071 | |
| 1072 | // Remap the metadata attachments. |
| 1073 | remapGlobalObjectMetadata(GO&: F); |
| 1074 | |
| 1075 | // Remap the argument types. |
| 1076 | if (TypeMapper) |
| 1077 | for (Argument &A : F.args()) |
| 1078 | A.mutateType(Ty: TypeMapper->remapType(SrcTy: A.getType())); |
| 1079 | |
| 1080 | // Remap the instructions. |
| 1081 | for (BasicBlock &BB : F) { |
| 1082 | for (Instruction &I : BB) { |
| 1083 | remapInstruction(I: &I); |
| 1084 | for (DbgRecord &DR : I.getDbgRecordRange()) |
| 1085 | remapDbgRecord(DR); |
| 1086 | } |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, |
| 1091 | bool IsOldCtorDtor, |
| 1092 | ArrayRef<Constant *> NewMembers) { |
| 1093 | SmallVector<Constant *, 16> Elements; |
| 1094 | if (InitPrefix) { |
| 1095 | unsigned NumElements = |
| 1096 | cast<ArrayType>(Val: InitPrefix->getType())->getNumElements(); |
| 1097 | for (unsigned I = 0; I != NumElements; ++I) |
| 1098 | Elements.push_back(Elt: InitPrefix->getAggregateElement(Elt: I)); |
| 1099 | } |
| 1100 | |
| 1101 | PointerType *VoidPtrTy; |
| 1102 | Type *EltTy; |
| 1103 | if (IsOldCtorDtor) { |
| 1104 | // FIXME: This upgrade is done during linking to support the C API. See |
| 1105 | // also IRLinker::linkAppendingVarProto() in IRMover.cpp. |
| 1106 | VoidPtrTy = PointerType::getUnqual(C&: GV.getContext()); |
| 1107 | auto &ST = *cast<StructType>(Val: NewMembers.front()->getType()); |
| 1108 | Type *Tys[3] = {ST.getElementType(N: 0), ST.getElementType(N: 1), VoidPtrTy}; |
| 1109 | EltTy = StructType::get(Context&: GV.getContext(), Elements: Tys, isPacked: false); |
| 1110 | } |
| 1111 | |
| 1112 | for (auto *V : NewMembers) { |
| 1113 | Constant *NewV; |
| 1114 | if (IsOldCtorDtor) { |
| 1115 | auto *S = cast<ConstantStruct>(Val: V); |
| 1116 | auto *E1 = cast<Constant>(Val: mapValue(V: S->getOperand(i_nocapture: 0))); |
| 1117 | auto *E2 = cast<Constant>(Val: mapValue(V: S->getOperand(i_nocapture: 1))); |
| 1118 | Constant *Null = Constant::getNullValue(Ty: VoidPtrTy); |
| 1119 | NewV = ConstantStruct::get(T: cast<StructType>(Val: EltTy), Vs: E1, Vs: E2, Vs: Null); |
| 1120 | } else { |
| 1121 | NewV = cast_or_null<Constant>(Val: mapValue(V)); |
| 1122 | } |
| 1123 | Elements.push_back(Elt: NewV); |
| 1124 | } |
| 1125 | |
| 1126 | GV.setInitializer( |
| 1127 | ConstantArray::get(T: cast<ArrayType>(Val: GV.getValueType()), V: Elements)); |
| 1128 | } |
| 1129 | |
| 1130 | void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, |
| 1131 | unsigned MCID) { |
| 1132 | assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule" ); |
| 1133 | assert(MCID < MCs.size() && "Invalid mapping context" ); |
| 1134 | |
| 1135 | WorklistEntry WE; |
| 1136 | WE.Kind = WorklistEntry::MapGlobalInit; |
| 1137 | WE.MCID = MCID; |
| 1138 | WE.Data.GVInit.GV = &GV; |
| 1139 | WE.Data.GVInit.Init = &Init; |
| 1140 | Worklist.push_back(Elt: WE); |
| 1141 | } |
| 1142 | |
| 1143 | void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, |
| 1144 | Constant *InitPrefix, |
| 1145 | bool IsOldCtorDtor, |
| 1146 | ArrayRef<Constant *> NewMembers, |
| 1147 | unsigned MCID) { |
| 1148 | assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule" ); |
| 1149 | assert(MCID < MCs.size() && "Invalid mapping context" ); |
| 1150 | |
| 1151 | WorklistEntry WE; |
| 1152 | WE.Kind = WorklistEntry::MapAppendingVar; |
| 1153 | WE.MCID = MCID; |
| 1154 | WE.Data.AppendingGV.GV = &GV; |
| 1155 | WE.Data.AppendingGV.InitPrefix = InitPrefix; |
| 1156 | WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; |
| 1157 | WE.AppendingGVNumNewMembers = NewMembers.size(); |
| 1158 | Worklist.push_back(Elt: WE); |
| 1159 | AppendingInits.append(in_start: NewMembers.begin(), in_end: NewMembers.end()); |
| 1160 | } |
| 1161 | |
| 1162 | void Mapper::scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, |
| 1163 | unsigned MCID) { |
| 1164 | assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule" ); |
| 1165 | assert((isa<GlobalAlias>(GV) || isa<GlobalIFunc>(GV)) && |
| 1166 | "Should be alias or ifunc" ); |
| 1167 | assert(MCID < MCs.size() && "Invalid mapping context" ); |
| 1168 | |
| 1169 | WorklistEntry WE; |
| 1170 | WE.Kind = WorklistEntry::MapAliasOrIFunc; |
| 1171 | WE.MCID = MCID; |
| 1172 | WE.Data.AliasOrIFunc.GV = &GV; |
| 1173 | WE.Data.AliasOrIFunc.Target = &Target; |
| 1174 | Worklist.push_back(Elt: WE); |
| 1175 | } |
| 1176 | |
| 1177 | void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { |
| 1178 | assert(AlreadyScheduled.insert(&F).second && "Should not reschedule" ); |
| 1179 | assert(MCID < MCs.size() && "Invalid mapping context" ); |
| 1180 | |
| 1181 | WorklistEntry WE; |
| 1182 | WE.Kind = WorklistEntry::RemapFunction; |
| 1183 | WE.MCID = MCID; |
| 1184 | WE.Data.RemapF = &F; |
| 1185 | Worklist.push_back(Elt: WE); |
| 1186 | } |
| 1187 | |
| 1188 | void Mapper::addFlags(RemapFlags Flags) { |
| 1189 | assert(!hasWorkToDo() && "Expected to have flushed the worklist" ); |
| 1190 | this->Flags = this->Flags | Flags; |
| 1191 | } |
| 1192 | |
| 1193 | static Mapper *getAsMapper(void *pImpl) { |
| 1194 | return reinterpret_cast<Mapper *>(pImpl); |
| 1195 | } |
| 1196 | |
| 1197 | namespace { |
| 1198 | |
| 1199 | class FlushingMapper { |
| 1200 | Mapper &M; |
| 1201 | |
| 1202 | public: |
| 1203 | explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { |
| 1204 | assert(!M.hasWorkToDo() && "Expected to be flushed" ); |
| 1205 | } |
| 1206 | |
| 1207 | ~FlushingMapper() { M.flush(); } |
| 1208 | |
| 1209 | Mapper *operator->() const { return &M; } |
| 1210 | }; |
| 1211 | |
| 1212 | } // end anonymous namespace |
| 1213 | |
| 1214 | ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, |
| 1215 | ValueMapTypeRemapper *TypeMapper, |
| 1216 | ValueMaterializer *Materializer, |
| 1217 | const MetadataPredicate *IdentityMD) |
| 1218 | : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer, IdentityMD)) {} |
| 1219 | |
| 1220 | ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } |
| 1221 | |
| 1222 | unsigned |
| 1223 | ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, |
| 1224 | ValueMaterializer *Materializer) { |
| 1225 | return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); |
| 1226 | } |
| 1227 | |
| 1228 | void ValueMapper::addFlags(RemapFlags Flags) { |
| 1229 | FlushingMapper(pImpl)->addFlags(Flags); |
| 1230 | } |
| 1231 | |
| 1232 | Value *ValueMapper::mapValue(const Value &V) { |
| 1233 | return FlushingMapper(pImpl)->mapValue(V: &V); |
| 1234 | } |
| 1235 | |
| 1236 | Constant *ValueMapper::mapConstant(const Constant &C) { |
| 1237 | return cast_or_null<Constant>(Val: mapValue(V: C)); |
| 1238 | } |
| 1239 | |
| 1240 | Metadata *ValueMapper::mapMetadata(const Metadata &MD) { |
| 1241 | return FlushingMapper(pImpl)->mapMetadata(MD: &MD); |
| 1242 | } |
| 1243 | |
| 1244 | MDNode *ValueMapper::mapMDNode(const MDNode &N) { |
| 1245 | return cast_or_null<MDNode>(Val: mapMetadata(MD: N)); |
| 1246 | } |
| 1247 | |
| 1248 | void ValueMapper::remapInstruction(Instruction &I) { |
| 1249 | FlushingMapper(pImpl)->remapInstruction(I: &I); |
| 1250 | } |
| 1251 | |
| 1252 | void ValueMapper::remapDbgRecord(Module *M, DbgRecord &DR) { |
| 1253 | FlushingMapper(pImpl)->remapDbgRecord(DR); |
| 1254 | } |
| 1255 | |
| 1256 | void ValueMapper::remapDbgRecordRange( |
| 1257 | Module *M, iterator_range<DbgRecord::self_iterator> Range) { |
| 1258 | for (DbgRecord &DR : Range) { |
| 1259 | remapDbgRecord(M, DR); |
| 1260 | } |
| 1261 | } |
| 1262 | |
| 1263 | void ValueMapper::remapFunction(Function &F) { |
| 1264 | FlushingMapper(pImpl)->remapFunction(F); |
| 1265 | } |
| 1266 | |
| 1267 | void ValueMapper::remapGlobalObjectMetadata(GlobalObject &GO) { |
| 1268 | FlushingMapper(pImpl)->remapGlobalObjectMetadata(GO); |
| 1269 | } |
| 1270 | |
| 1271 | void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, |
| 1272 | Constant &Init, |
| 1273 | unsigned MCID) { |
| 1274 | getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); |
| 1275 | } |
| 1276 | |
| 1277 | void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, |
| 1278 | Constant *InitPrefix, |
| 1279 | bool IsOldCtorDtor, |
| 1280 | ArrayRef<Constant *> NewMembers, |
| 1281 | unsigned MCID) { |
| 1282 | getAsMapper(pImpl)->scheduleMapAppendingVariable( |
| 1283 | GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); |
| 1284 | } |
| 1285 | |
| 1286 | void ValueMapper::scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee, |
| 1287 | unsigned MCID) { |
| 1288 | getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GV&: GA, Target&: Aliasee, MCID); |
| 1289 | } |
| 1290 | |
| 1291 | void ValueMapper::scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver, |
| 1292 | unsigned MCID) { |
| 1293 | getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GV&: GI, Target&: Resolver, MCID); |
| 1294 | } |
| 1295 | |
| 1296 | void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { |
| 1297 | getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); |
| 1298 | } |
| 1299 | |
| 1300 | void llvm::RemapSourceAtom(Instruction *I, ValueToValueMapTy &VM) { |
| 1301 | const DebugLoc &DL = I->getDebugLoc(); |
| 1302 | if (!DL) |
| 1303 | return; |
| 1304 | |
| 1305 | auto AtomGroup = DL->getAtomGroup(); |
| 1306 | if (!AtomGroup) |
| 1307 | return; |
| 1308 | |
| 1309 | auto R = VM.AtomMap.find(Val: {DL->getInlinedAt(), AtomGroup}); |
| 1310 | if (R == VM.AtomMap.end()) |
| 1311 | return; |
| 1312 | AtomGroup = R->second; |
| 1313 | |
| 1314 | // Remap the atom group and copy all other fields. |
| 1315 | DILocation *New = DILocation::get( |
| 1316 | Context&: I->getContext(), Line: DL.getLine(), Column: DL.getCol(), Scope: DL.getScope(), |
| 1317 | InlinedAt: DL.getInlinedAt(), ImplicitCode: DL.isImplicitCode(), AtomGroup, AtomRank: DL->getAtomRank()); |
| 1318 | I->setDebugLoc(New); |
| 1319 | } |
| 1320 | |