1//===- lli.cpp - LLVM Interpreter / Dynamic compiler ----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This utility provides a simple wrapper around the LLVM Execution Engines,
10// which allow the direct execution of LLVM programs through a Just-In-Time
11// compiler, or through an interpreter if no JIT is available for this platform.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ForwardingMemoryManager.h"
16#include "llvm/ADT/StringExtras.h"
17#include "llvm/Bitcode/BitcodeReader.h"
18#include "llvm/CodeGen/CommandFlags.h"
19#include "llvm/CodeGen/LinkAllCodegenComponents.h"
20#include "llvm/Config/llvm-config.h"
21#include "llvm/ExecutionEngine/GenericValue.h"
22#include "llvm/ExecutionEngine/Interpreter.h"
23#include "llvm/ExecutionEngine/JITEventListener.h"
24#include "llvm/ExecutionEngine/JITSymbol.h"
25#include "llvm/ExecutionEngine/MCJIT.h"
26#include "llvm/ExecutionEngine/ObjectCache.h"
27#include "llvm/ExecutionEngine/Orc/AbsoluteSymbols.h"
28#include "llvm/ExecutionEngine/Orc/DebugUtils.h"
29#include "llvm/ExecutionEngine/Orc/Debugging/DebuggerSupport.h"
30#include "llvm/ExecutionEngine/Orc/EPCDynamicLibrarySearchGenerator.h"
31#include "llvm/ExecutionEngine/Orc/EPCGenericRTDyldMemoryManager.h"
32#include "llvm/ExecutionEngine/Orc/ExecutionUtils.h"
33#include "llvm/ExecutionEngine/Orc/IRPartitionLayer.h"
34#include "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h"
35#include "llvm/ExecutionEngine/Orc/LLJIT.h"
36#include "llvm/ExecutionEngine/Orc/ObjectTransformLayer.h"
37#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
38#include "llvm/ExecutionEngine/Orc/SelfExecutorProcessControl.h"
39#include "llvm/ExecutionEngine/Orc/SimpleRemoteEPC.h"
40#include "llvm/ExecutionEngine/Orc/SymbolStringPool.h"
41#include "llvm/ExecutionEngine/Orc/TargetProcess/JITLoaderGDB.h"
42#include "llvm/ExecutionEngine/Orc/TargetProcess/RegisterEHFrames.h"
43#include "llvm/ExecutionEngine/Orc/TargetProcess/TargetExecutionUtils.h"
44#include "llvm/ExecutionEngine/SectionMemoryManager.h"
45#include "llvm/IR/IRBuilder.h"
46#include "llvm/IR/LLVMContext.h"
47#include "llvm/IR/Module.h"
48#include "llvm/IR/Type.h"
49#include "llvm/IR/Verifier.h"
50#include "llvm/IRReader/IRReader.h"
51#include "llvm/Object/Archive.h"
52#include "llvm/Object/ObjectFile.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/DynamicLibrary.h"
57#include "llvm/Support/Format.h"
58#include "llvm/Support/InitLLVM.h"
59#include "llvm/Support/MathExtras.h"
60#include "llvm/Support/Memory.h"
61#include "llvm/Support/MemoryBuffer.h"
62#include "llvm/Support/Path.h"
63#include "llvm/Support/PluginLoader.h"
64#include "llvm/Support/Process.h"
65#include "llvm/Support/Program.h"
66#include "llvm/Support/SourceMgr.h"
67#include "llvm/Support/TargetSelect.h"
68#include "llvm/Support/ToolOutputFile.h"
69#include "llvm/Support/WithColor.h"
70#include "llvm/Support/raw_ostream.h"
71#include "llvm/TargetParser/Triple.h"
72#include <cerrno>
73#include <optional>
74
75#if !defined(_MSC_VER) && !defined(__MINGW32__)
76#include <unistd.h>
77#else
78#include <io.h>
79#endif
80
81#ifdef __CYGWIN__
82#include <cygwin/version.h>
83#if defined(CYGWIN_VERSION_DLL_MAJOR) && CYGWIN_VERSION_DLL_MAJOR<1007
84#define DO_NOTHING_ATEXIT 1
85#endif
86#endif
87
88using namespace llvm;
89
90static codegen::RegisterCodeGenFlags CGF;
91
92#define DEBUG_TYPE "lli"
93
94namespace {
95
96 enum class JITKind { MCJIT, Orc, OrcLazy };
97 enum class JITLinkerKind { Default, RuntimeDyld, JITLink };
98
99 cl::opt<std::string>
100 InputFile(cl::desc("<input bitcode>"), cl::Positional, cl::init(Val: "-"));
101
102 cl::list<std::string>
103 InputArgv(cl::ConsumeAfter, cl::desc("<program arguments>..."));
104
105 cl::opt<bool> ForceInterpreter("force-interpreter",
106 cl::desc("Force interpretation: disable JIT"),
107 cl::init(Val: false));
108
109 cl::opt<JITKind> UseJITKind(
110 "jit-kind", cl::desc("Choose underlying JIT kind."),
111 cl::init(Val: JITKind::Orc),
112 cl::values(clEnumValN(JITKind::MCJIT, "mcjit", "MCJIT"),
113 clEnumValN(JITKind::Orc, "orc", "Orc JIT"),
114 clEnumValN(JITKind::OrcLazy, "orc-lazy",
115 "Orc-based lazy JIT.")));
116
117 cl::opt<JITLinkerKind>
118 JITLinker("jit-linker", cl::desc("Choose the dynamic linker/loader."),
119 cl::init(Val: JITLinkerKind::Default),
120 cl::values(clEnumValN(JITLinkerKind::Default, "default",
121 "Default for platform and JIT-kind"),
122 clEnumValN(JITLinkerKind::RuntimeDyld, "rtdyld",
123 "RuntimeDyld"),
124 clEnumValN(JITLinkerKind::JITLink, "jitlink",
125 "Orc-specific linker")));
126 cl::opt<std::string> OrcRuntime("orc-runtime",
127 cl::desc("Use ORC runtime from given path"),
128 cl::init(Val: ""));
129
130 cl::opt<unsigned>
131 LazyJITCompileThreads("compile-threads",
132 cl::desc("Choose the number of compile threads "
133 "(jit-kind=orc-lazy only)"),
134 cl::init(Val: 0));
135
136 cl::list<std::string>
137 ThreadEntryPoints("thread-entry",
138 cl::desc("calls the given entry-point on a new thread "
139 "(jit-kind=orc-lazy only)"));
140
141 cl::opt<bool> PerModuleLazy(
142 "per-module-lazy",
143 cl::desc("Performs lazy compilation on whole module boundaries "
144 "rather than individual functions"),
145 cl::init(Val: false));
146
147 cl::list<std::string>
148 JITDylibs("jd",
149 cl::desc("Specifies the JITDylib to be used for any subsequent "
150 "-extra-module arguments."));
151
152 cl::list<std::string>
153 Dylibs("dlopen", cl::desc("Dynamic libraries to load before linking"));
154
155 // The MCJIT supports building for a target address space separate from
156 // the JIT compilation process. Use a forked process and a copying
157 // memory manager with IPC to execute using this functionality.
158 cl::opt<bool> RemoteMCJIT("remote-mcjit",
159 cl::desc("Execute MCJIT'ed code in a separate process."),
160 cl::init(Val: false));
161
162 // Manually specify the child process for remote execution. This overrides
163 // the simulated remote execution that allocates address space for child
164 // execution. The child process will be executed and will communicate with
165 // lli via stdin/stdout pipes.
166 cl::opt<std::string>
167 ChildExecPath("mcjit-remote-process",
168 cl::desc("Specify the filename of the process to launch "
169 "for remote MCJIT execution. If none is specified,"
170 "\n\tremote execution will be simulated in-process."),
171 cl::value_desc("filename"), cl::init(Val: ""));
172
173 // Determine optimization level.
174 cl::opt<char> OptLevel("O",
175 cl::desc("Optimization level. [-O0, -O1, -O2, or -O3] "
176 "(default = '-O2')"),
177 cl::Prefix, cl::init(Val: '2'));
178
179 cl::opt<std::string>
180 TargetTriple("mtriple", cl::desc("Override target triple for module"));
181
182 cl::opt<std::string>
183 EntryFunc("entry-function",
184 cl::desc("Specify the entry function (default = 'main') "
185 "of the executable"),
186 cl::value_desc("function"),
187 cl::init(Val: "main"));
188
189 cl::list<std::string>
190 ExtraModules("extra-module",
191 cl::desc("Extra modules to be loaded"),
192 cl::value_desc("input bitcode"));
193
194 cl::list<std::string>
195 ExtraObjects("extra-object",
196 cl::desc("Extra object files to be loaded"),
197 cl::value_desc("input object"));
198
199 cl::list<std::string>
200 ExtraArchives("extra-archive",
201 cl::desc("Extra archive files to be loaded"),
202 cl::value_desc("input archive"));
203
204 cl::opt<bool>
205 EnableCacheManager("enable-cache-manager",
206 cl::desc("Use cache manager to save/load modules"),
207 cl::init(Val: false));
208
209 cl::opt<std::string>
210 ObjectCacheDir("object-cache-dir",
211 cl::desc("Directory to store cached object files "
212 "(must be user writable)"),
213 cl::init(Val: ""));
214
215 cl::opt<std::string>
216 FakeArgv0("fake-argv0",
217 cl::desc("Override the 'argv[0]' value passed into the executing"
218 " program"), cl::value_desc("executable"));
219
220 cl::opt<bool>
221 DisableCoreFiles("disable-core-files", cl::Hidden,
222 cl::desc("Disable emission of core files if possible"));
223
224 cl::opt<bool>
225 NoLazyCompilation("disable-lazy-compilation",
226 cl::desc("Disable JIT lazy compilation"),
227 cl::init(Val: false));
228
229 cl::opt<bool>
230 GenerateSoftFloatCalls("soft-float",
231 cl::desc("Generate software floating point library calls"),
232 cl::init(Val: false));
233
234 cl::opt<bool> NoProcessSymbols(
235 "no-process-syms",
236 cl::desc("Do not resolve lli process symbols in JIT'd code"),
237 cl::init(Val: false));
238
239 enum class LLJITPlatform { Inactive, Auto, ExecutorNative, GenericIR };
240
241 cl::opt<LLJITPlatform> Platform(
242 "lljit-platform", cl::desc("Platform to use with LLJIT"),
243 cl::init(Val: LLJITPlatform::Auto),
244 cl::values(clEnumValN(LLJITPlatform::Auto, "Auto",
245 "Like 'ExecutorNative' if ORC runtime "
246 "provided, otherwise like 'GenericIR'"),
247 clEnumValN(LLJITPlatform::ExecutorNative, "ExecutorNative",
248 "Use the native platform for the executor."
249 "Requires -orc-runtime"),
250 clEnumValN(LLJITPlatform::GenericIR, "GenericIR",
251 "Use LLJITGenericIRPlatform"),
252 clEnumValN(LLJITPlatform::Inactive, "Inactive",
253 "Disable platform support explicitly")),
254 cl::Hidden);
255
256 enum class DumpKind {
257 NoDump,
258 DumpFuncsToStdOut,
259 DumpModsToStdOut,
260 DumpModsToDisk,
261 DumpDebugDescriptor,
262 DumpDebugObjects,
263 };
264
265 cl::opt<DumpKind> OrcDumpKind(
266 "orc-lazy-debug", cl::desc("Debug dumping for the orc-lazy JIT."),
267 cl::init(Val: DumpKind::NoDump),
268 cl::values(
269 clEnumValN(DumpKind::NoDump, "no-dump", "Don't dump anything."),
270 clEnumValN(DumpKind::DumpFuncsToStdOut, "funcs-to-stdout",
271 "Dump function names to stdout."),
272 clEnumValN(DumpKind::DumpModsToStdOut, "mods-to-stdout",
273 "Dump modules to stdout."),
274 clEnumValN(DumpKind::DumpModsToDisk, "mods-to-disk",
275 "Dump modules to the current "
276 "working directory. (WARNING: "
277 "will overwrite existing files)."),
278 clEnumValN(DumpKind::DumpDebugDescriptor, "jit-debug-descriptor",
279 "Dump __jit_debug_descriptor contents to stdout"),
280 clEnumValN(DumpKind::DumpDebugObjects, "jit-debug-objects",
281 "Dump __jit_debug_descriptor in-memory debug "
282 "objects as tool output")),
283 cl::Hidden);
284
285 ExitOnError ExitOnErr;
286}
287
288LLVM_ATTRIBUTE_USED void linkComponents() {
289 errs() << (void *)&llvm_orc_registerEHFrameSectionAllocAction
290 << (void *)&llvm_orc_deregisterEHFrameSectionAllocAction
291 << (void *)&llvm_orc_registerJITLoaderGDBWrapper
292 << (void *)&llvm_orc_registerJITLoaderGDBAllocAction;
293}
294
295//===----------------------------------------------------------------------===//
296// Object cache
297//
298// This object cache implementation writes cached objects to disk to the
299// directory specified by CacheDir, using a filename provided in the module
300// descriptor. The cache tries to load a saved object using that path if the
301// file exists. CacheDir defaults to "", in which case objects are cached
302// alongside their originating bitcodes.
303//
304class LLIObjectCache : public ObjectCache {
305public:
306 LLIObjectCache(const std::string& CacheDir) : CacheDir(CacheDir) {
307 // Add trailing '/' to cache dir if necessary.
308 if (!this->CacheDir.empty() &&
309 this->CacheDir[this->CacheDir.size() - 1] != '/')
310 this->CacheDir += '/';
311 }
312 ~LLIObjectCache() override {}
313
314 void notifyObjectCompiled(const Module *M, MemoryBufferRef Obj) override {
315 const std::string &ModuleID = M->getModuleIdentifier();
316 std::string CacheName;
317 if (!getCacheFilename(ModID: ModuleID, CacheName))
318 return;
319 if (!CacheDir.empty()) { // Create user-defined cache dir.
320 SmallString<128> dir(sys::path::parent_path(path: CacheName));
321 sys::fs::create_directories(path: Twine(dir));
322 }
323
324 std::error_code EC;
325 raw_fd_ostream outfile(CacheName, EC, sys::fs::OF_None);
326 outfile.write(Ptr: Obj.getBufferStart(), Size: Obj.getBufferSize());
327 outfile.close();
328 }
329
330 std::unique_ptr<MemoryBuffer> getObject(const Module* M) override {
331 const std::string &ModuleID = M->getModuleIdentifier();
332 std::string CacheName;
333 if (!getCacheFilename(ModID: ModuleID, CacheName))
334 return nullptr;
335 // Load the object from the cache filename
336 ErrorOr<std::unique_ptr<MemoryBuffer>> IRObjectBuffer =
337 MemoryBuffer::getFile(Filename: CacheName, /*IsText=*/false,
338 /*RequiresNullTerminator=*/false);
339 // If the file isn't there, that's OK.
340 if (!IRObjectBuffer)
341 return nullptr;
342 // MCJIT will want to write into this buffer, and we don't want that
343 // because the file has probably just been mmapped. Instead we make
344 // a copy. The filed-based buffer will be released when it goes
345 // out of scope.
346 return MemoryBuffer::getMemBufferCopy(InputData: IRObjectBuffer.get()->getBuffer());
347 }
348
349private:
350 std::string CacheDir;
351
352 bool getCacheFilename(StringRef ModID, std::string &CacheName) {
353 if (!ModID.consume_front(Prefix: "file:"))
354 return false;
355
356 std::string CacheSubdir = std::string(ModID);
357 // Transform "X:\foo" => "/X\foo" for convenience on Windows.
358 if (is_style_windows(S: llvm::sys::path::Style::native) &&
359 isalpha(CacheSubdir[0]) && CacheSubdir[1] == ':') {
360 CacheSubdir[1] = CacheSubdir[0];
361 CacheSubdir[0] = '/';
362 }
363
364 CacheName = CacheDir + CacheSubdir;
365 size_t pos = CacheName.rfind(c: '.');
366 CacheName.replace(pos: pos, n1: CacheName.length() - pos, s: ".o");
367 return true;
368 }
369};
370
371// On Mingw and Cygwin, an external symbol named '__main' is called from the
372// generated 'main' function to allow static initialization. To avoid linking
373// problems with remote targets (because lli's remote target support does not
374// currently handle external linking) we add a secondary module which defines
375// an empty '__main' function.
376static void addCygMingExtraModule(ExecutionEngine &EE, LLVMContext &Context,
377 const Triple &TargetTriple) {
378 IRBuilder<> Builder(Context);
379
380 // Create a new module.
381 std::unique_ptr<Module> M = std::make_unique<Module>(args: "CygMingHelper", args&: Context);
382 M->setTargetTriple(TargetTriple);
383
384 // Create an empty function named "__main".
385 Type *ReturnTy;
386 if (TargetTriple.isArch64Bit())
387 ReturnTy = Type::getInt64Ty(C&: Context);
388 else
389 ReturnTy = Type::getInt32Ty(C&: Context);
390 Function *Result =
391 Function::Create(Ty: FunctionType::get(Result: ReturnTy, Params: {}, isVarArg: false),
392 Linkage: GlobalValue::ExternalLinkage, N: "__main", M: M.get());
393
394 BasicBlock *BB = BasicBlock::Create(Context, Name: "__main", Parent: Result);
395 Builder.SetInsertPoint(BB);
396 Value *ReturnVal = ConstantInt::get(Ty: ReturnTy, V: 0);
397 Builder.CreateRet(V: ReturnVal);
398
399 // Add this new module to the ExecutionEngine.
400 EE.addModule(M: std::move(M));
401}
402
403CodeGenOptLevel getOptLevel() {
404 if (auto Level = CodeGenOpt::parseLevel(C: OptLevel))
405 return *Level;
406 WithColor::error(OS&: errs(), Prefix: "lli") << "invalid optimization level.\n";
407 exit(status: 1);
408}
409
410[[noreturn]] static void reportError(SMDiagnostic Err, const char *ProgName) {
411 Err.print(ProgName, S&: errs());
412 exit(status: 1);
413}
414
415Error loadDylibs();
416int runOrcJIT(const char *ProgName);
417void disallowOrcOptions();
418Expected<std::unique_ptr<orc::ExecutorProcessControl>> launchRemote();
419
420//===----------------------------------------------------------------------===//
421// main Driver function
422//
423int main(int argc, char **argv, char * const *envp) {
424 InitLLVM X(argc, argv);
425
426 if (argc > 1)
427 ExitOnErr.setBanner(std::string(argv[0]) + ": ");
428
429 // If we have a native target, initialize it to ensure it is linked in and
430 // usable by the JIT.
431 InitializeNativeTarget();
432 InitializeNativeTargetAsmPrinter();
433 InitializeNativeTargetAsmParser();
434
435 cl::ParseCommandLineOptions(argc, argv,
436 Overview: "llvm interpreter & dynamic compiler\n");
437
438 // If the user doesn't want core files, disable them.
439 if (DisableCoreFiles)
440 sys::Process::PreventCoreFiles();
441
442 ExitOnErr(loadDylibs());
443
444 if (EntryFunc.empty()) {
445 WithColor::error(OS&: errs(), Prefix: argv[0])
446 << "--entry-function name cannot be empty\n";
447 exit(status: 1);
448 }
449
450 if (UseJITKind == JITKind::MCJIT || ForceInterpreter)
451 disallowOrcOptions();
452 else
453 return runOrcJIT(ProgName: argv[0]);
454
455 // Old lli implementation based on ExecutionEngine and MCJIT.
456 LLVMContext Context;
457
458 // Load the bitcode...
459 SMDiagnostic Err;
460 std::unique_ptr<Module> Owner = parseIRFile(Filename: InputFile, Err, Context);
461 Module *Mod = Owner.get();
462 if (!Mod)
463 reportError(Err, ProgName: argv[0]);
464
465 if (EnableCacheManager) {
466 std::string CacheName("file:");
467 CacheName.append(str: InputFile);
468 Mod->setModuleIdentifier(CacheName);
469 }
470
471 // If not jitting lazily, load the whole bitcode file eagerly too.
472 if (NoLazyCompilation) {
473 // Use *argv instead of argv[0] to work around a wrong GCC warning.
474 ExitOnError ExitOnErr(std::string(*argv) +
475 ": bitcode didn't read correctly: ");
476 ExitOnErr(Mod->materializeAll());
477 }
478
479 std::string ErrorMsg;
480 EngineBuilder builder(std::move(Owner));
481 builder.setMArch(codegen::getMArch());
482 builder.setMCPU(codegen::getCPUStr());
483 builder.setMAttrs(codegen::getFeatureList());
484 if (auto RM = codegen::getExplicitRelocModel())
485 builder.setRelocationModel(*RM);
486 if (auto CM = codegen::getExplicitCodeModel())
487 builder.setCodeModel(*CM);
488 builder.setErrorStr(&ErrorMsg);
489 builder.setEngineKind(ForceInterpreter
490 ? EngineKind::Interpreter
491 : EngineKind::JIT);
492
493 // If we are supposed to override the target triple, do so now.
494 if (!TargetTriple.empty())
495 Mod->setTargetTriple(Triple(Triple::normalize(Str: TargetTriple)));
496
497 // Enable MCJIT if desired.
498 RTDyldMemoryManager *RTDyldMM = nullptr;
499 if (!ForceInterpreter) {
500 if (RemoteMCJIT)
501 RTDyldMM = new ForwardingMemoryManager();
502 else
503 RTDyldMM = new SectionMemoryManager();
504
505 // Deliberately construct a temp std::unique_ptr to pass in. Do not null out
506 // RTDyldMM: We still use it below, even though we don't own it.
507 builder.setMCJITMemoryManager(
508 std::unique_ptr<RTDyldMemoryManager>(RTDyldMM));
509 } else if (RemoteMCJIT) {
510 WithColor::error(OS&: errs(), Prefix: argv[0])
511 << "remote process execution does not work with the interpreter.\n";
512 exit(status: 1);
513 }
514
515 builder.setOptLevel(getOptLevel());
516
517 TargetOptions Options =
518 codegen::InitTargetOptionsFromCodeGenFlags(TheTriple: Triple(TargetTriple));
519 if (codegen::getFloatABIForCalls() != FloatABI::Default)
520 Options.FloatABIType = codegen::getFloatABIForCalls();
521
522 builder.setTargetOptions(Options);
523
524 std::unique_ptr<ExecutionEngine> EE(builder.create());
525 if (!EE) {
526 if (!ErrorMsg.empty())
527 WithColor::error(OS&: errs(), Prefix: argv[0])
528 << "error creating EE: " << ErrorMsg << "\n";
529 else
530 WithColor::error(OS&: errs(), Prefix: argv[0]) << "unknown error creating EE!\n";
531 exit(status: 1);
532 }
533
534 std::unique_ptr<LLIObjectCache> CacheManager;
535 if (EnableCacheManager) {
536 CacheManager.reset(p: new LLIObjectCache(ObjectCacheDir));
537 EE->setObjectCache(CacheManager.get());
538 }
539
540 // Load any additional modules specified on the command line.
541 for (unsigned i = 0, e = ExtraModules.size(); i != e; ++i) {
542 std::unique_ptr<Module> XMod = parseIRFile(Filename: ExtraModules[i], Err, Context);
543 if (!XMod)
544 reportError(Err, ProgName: argv[0]);
545 if (EnableCacheManager) {
546 std::string CacheName("file:");
547 CacheName.append(str: ExtraModules[i]);
548 XMod->setModuleIdentifier(CacheName);
549 }
550 EE->addModule(M: std::move(XMod));
551 }
552
553 for (unsigned i = 0, e = ExtraObjects.size(); i != e; ++i) {
554 Expected<object::OwningBinary<object::ObjectFile>> Obj =
555 object::ObjectFile::createObjectFile(ObjectPath: ExtraObjects[i]);
556 if (!Obj) {
557 // TODO: Actually report errors helpfully.
558 consumeError(Err: Obj.takeError());
559 reportError(Err, ProgName: argv[0]);
560 }
561 object::OwningBinary<object::ObjectFile> &O = Obj.get();
562 EE->addObjectFile(O: std::move(O));
563 }
564
565 for (unsigned i = 0, e = ExtraArchives.size(); i != e; ++i) {
566 ErrorOr<std::unique_ptr<MemoryBuffer>> ArBufOrErr =
567 MemoryBuffer::getFileOrSTDIN(Filename: ExtraArchives[i]);
568 if (!ArBufOrErr)
569 reportError(Err, ProgName: argv[0]);
570 std::unique_ptr<MemoryBuffer> &ArBuf = ArBufOrErr.get();
571
572 Expected<std::unique_ptr<object::Archive>> ArOrErr =
573 object::Archive::create(Source: ArBuf->getMemBufferRef());
574 if (!ArOrErr) {
575 std::string Buf;
576 raw_string_ostream OS(Buf);
577 logAllUnhandledErrors(E: ArOrErr.takeError(), OS);
578 OS.flush();
579 errs() << Buf;
580 exit(status: 1);
581 }
582 std::unique_ptr<object::Archive> &Ar = ArOrErr.get();
583
584 object::OwningBinary<object::Archive> OB(std::move(Ar), std::move(ArBuf));
585
586 EE->addArchive(A: std::move(OB));
587 }
588
589 // If the target is Cygwin/MingW and we are generating remote code, we
590 // need an extra module to help out with linking.
591 if (RemoteMCJIT && Mod->getTargetTriple().isOSCygMing()) {
592 addCygMingExtraModule(EE&: *EE, Context, TargetTriple: Mod->getTargetTriple());
593 }
594
595 // The following functions have no effect if their respective profiling
596 // support wasn't enabled in the build configuration.
597 EE->RegisterJITEventListener(
598 JITEventListener::createOProfileJITEventListener());
599 EE->RegisterJITEventListener(
600 JITEventListener::createIntelJITEventListener());
601 if (!RemoteMCJIT)
602 EE->RegisterJITEventListener(
603 JITEventListener::createPerfJITEventListener());
604
605 if (!NoLazyCompilation && RemoteMCJIT) {
606 WithColor::warning(OS&: errs(), Prefix: argv[0])
607 << "remote mcjit does not support lazy compilation\n";
608 NoLazyCompilation = true;
609 }
610 EE->DisableLazyCompilation(Disabled: NoLazyCompilation);
611
612 // If the user specifically requested an argv[0] to pass into the program,
613 // do it now.
614 if (!FakeArgv0.empty()) {
615 InputFile = static_cast<std::string>(FakeArgv0);
616 } else {
617 // Otherwise, if there is a .bc suffix on the executable strip it off, it
618 // might confuse the program.
619 if (StringRef(InputFile).ends_with(Suffix: ".bc"))
620 InputFile.erase(pos: InputFile.length() - 3);
621 }
622
623 // Add the module's name to the start of the vector of arguments to main().
624 InputArgv.insert(pos: InputArgv.begin(), value: InputFile);
625
626 // Call the main function from M as if its signature were:
627 // int main (int argc, char **argv, const char **envp)
628 // using the contents of Args to determine argc & argv, and the contents of
629 // EnvVars to determine envp.
630 //
631 Function *EntryFn = Mod->getFunction(Name: EntryFunc);
632 if (!EntryFn) {
633 WithColor::error(OS&: errs(), Prefix: argv[0])
634 << '\'' << EntryFunc << "\' function not found in module.\n";
635 return -1;
636 }
637
638 // Reset errno to zero on entry to main.
639 errno = 0;
640
641 int Result = -1;
642
643 // Sanity check use of remote-jit: LLI currently only supports use of the
644 // remote JIT on Unix platforms.
645 if (RemoteMCJIT) {
646#ifndef LLVM_ON_UNIX
647 WithColor::warning(errs(), argv[0])
648 << "host does not support external remote targets.\n";
649 WithColor::note() << "defaulting to local execution\n";
650 return -1;
651#else
652 if (ChildExecPath.empty()) {
653 WithColor::error(OS&: errs(), Prefix: argv[0])
654 << "-remote-mcjit requires -mcjit-remote-process.\n";
655 exit(status: 1);
656 } else if (!sys::fs::can_execute(Path: ChildExecPath)) {
657 WithColor::error(OS&: errs(), Prefix: argv[0])
658 << "unable to find usable child executable: '" << ChildExecPath
659 << "'\n";
660 return -1;
661 }
662#endif
663 }
664
665 if (!RemoteMCJIT) {
666 // If the program doesn't explicitly call exit, we will need the Exit
667 // function later on to make an explicit call, so get the function now.
668 FunctionCallee Exit = Mod->getOrInsertFunction(
669 Name: "exit", RetTy: Type::getVoidTy(C&: Context), Args: Type::getInt32Ty(C&: Context));
670
671 // Run static constructors.
672 if (!ForceInterpreter) {
673 // Give MCJIT a chance to apply relocations and set page permissions.
674 EE->finalizeObject();
675 }
676 EE->runStaticConstructorsDestructors(isDtors: false);
677
678 // Trigger compilation separately so code regions that need to be
679 // invalidated will be known.
680 (void)EE->getPointerToFunction(F: EntryFn);
681 // Clear instruction cache before code will be executed.
682 if (RTDyldMM)
683 static_cast<SectionMemoryManager*>(RTDyldMM)->invalidateInstructionCache();
684
685 // Run main.
686 Result = EE->runFunctionAsMain(Fn: EntryFn, argv: InputArgv, envp);
687
688 // Run static destructors.
689 EE->runStaticConstructorsDestructors(isDtors: true);
690
691 // If the program didn't call exit explicitly, we should call it now.
692 // This ensures that any atexit handlers get called correctly.
693 if (Function *ExitF =
694 dyn_cast<Function>(Val: Exit.getCallee()->stripPointerCasts())) {
695 if (ExitF->getFunctionType() == Exit.getFunctionType()) {
696 std::vector<GenericValue> Args;
697 GenericValue ResultGV;
698 ResultGV.IntVal = APInt(32, Result);
699 Args.push_back(x: ResultGV);
700 EE->runFunction(F: ExitF, ArgValues: Args);
701 WithColor::error(OS&: errs(), Prefix: argv[0])
702 << "exit(" << Result << ") returned!\n";
703 abort();
704 }
705 }
706 WithColor::error(OS&: errs(), Prefix: argv[0]) << "exit defined with wrong prototype!\n";
707 abort();
708 } else {
709 // else == "if (RemoteMCJIT)"
710 std::unique_ptr<orc::ExecutorProcessControl> EPC = ExitOnErr(launchRemote());
711
712 // Remote target MCJIT doesn't (yet) support static constructors. No reason
713 // it couldn't. This is a limitation of the LLI implementation, not the
714 // MCJIT itself. FIXME.
715
716 // Create a remote memory manager.
717 auto RemoteMM = ExitOnErr(
718 orc::EPCGenericRTDyldMemoryManager::CreateWithDefaultBootstrapSymbols(
719 EPC&: *EPC));
720
721 // Forward MCJIT's memory manager calls to the remote memory manager.
722 static_cast<ForwardingMemoryManager*>(RTDyldMM)->setMemMgr(
723 std::move(RemoteMM));
724
725 // Forward MCJIT's symbol resolution calls to the remote.
726 static_cast<ForwardingMemoryManager *>(RTDyldMM)->setResolver(
727 ExitOnErr(RemoteResolver::Create(EPC&: *EPC)));
728 // Grab the target address of the JIT'd main function on the remote and call
729 // it.
730 // FIXME: argv and envp handling.
731 auto Entry =
732 orc::ExecutorAddr(EE->getFunctionAddress(Name: EntryFn->getName().str()));
733 EE->finalizeObject();
734 LLVM_DEBUG(dbgs() << "Executing '" << EntryFn->getName() << "' at 0x"
735 << format("%llx", Entry.getValue()) << "\n");
736 Result = ExitOnErr(EPC->runAsMain(MainFnAddr: Entry, Args: {}));
737
738 // Like static constructors, the remote target MCJIT support doesn't handle
739 // this yet. It could. FIXME.
740
741 // Delete the EE - we need to tear it down *before* we terminate the session
742 // with the remote, otherwise it'll crash when it tries to release resources
743 // on a remote that has already been disconnected.
744 EE.reset();
745
746 // Signal the remote target that we're done JITing.
747 ExitOnErr(EPC->disconnect());
748 }
749
750 return Result;
751}
752
753// JITLink debug support plugins put information about JITed code in this GDB
754// JIT Interface global from OrcTargetProcess.
755extern "C" LLVM_ABI struct jit_descriptor __jit_debug_descriptor;
756
757static struct jit_code_entry *
758findNextDebugDescriptorEntry(struct jit_code_entry *Latest) {
759 if (Latest == nullptr)
760 return __jit_debug_descriptor.first_entry;
761 if (Latest->next_entry)
762 return Latest->next_entry;
763 return nullptr;
764}
765
766static ToolOutputFile &claimToolOutput() {
767 static std::unique_ptr<ToolOutputFile> ToolOutput = nullptr;
768 if (ToolOutput) {
769 WithColor::error(OS&: errs(), Prefix: "lli")
770 << "Can not claim stdout for tool output twice\n";
771 exit(status: 1);
772 }
773 std::error_code EC;
774 ToolOutput = std::make_unique<ToolOutputFile>(args: "-", args&: EC, args: sys::fs::OF_None);
775 if (EC) {
776 WithColor::error(OS&: errs(), Prefix: "lli")
777 << "Failed to create tool output file: " << EC.message() << "\n";
778 exit(status: 1);
779 }
780 return *ToolOutput;
781}
782
783static std::function<void(Module &)> createIRDebugDumper() {
784 switch (OrcDumpKind) {
785 case DumpKind::NoDump:
786 case DumpKind::DumpDebugDescriptor:
787 case DumpKind::DumpDebugObjects:
788 return [](Module &M) {};
789
790 case DumpKind::DumpFuncsToStdOut:
791 return [](Module &M) {
792 printf(format: "[ ");
793
794 for (const auto &F : M) {
795 if (F.isDeclaration())
796 continue;
797
798 if (F.hasName()) {
799 std::string Name(std::string(F.getName()));
800 printf(format: "%s ", Name.c_str());
801 } else
802 printf(format: "<anon> ");
803 }
804
805 printf(format: "]\n");
806 };
807
808 case DumpKind::DumpModsToStdOut:
809 return [](Module &M) {
810 outs() << "----- Module Start -----\n" << M << "----- Module End -----\n";
811 };
812
813 case DumpKind::DumpModsToDisk:
814 return [](Module &M) {
815 std::error_code EC;
816 raw_fd_ostream Out(M.getModuleIdentifier() + ".ll", EC,
817 sys::fs::OF_TextWithCRLF);
818 if (EC) {
819 errs() << "Couldn't open " << M.getModuleIdentifier()
820 << " for dumping.\nError:" << EC.message() << "\n";
821 exit(status: 1);
822 }
823 Out << M;
824 };
825 }
826 llvm_unreachable("Unknown DumpKind");
827}
828
829static std::function<void(MemoryBuffer &)> createObjDebugDumper() {
830 switch (OrcDumpKind) {
831 case DumpKind::NoDump:
832 case DumpKind::DumpFuncsToStdOut:
833 case DumpKind::DumpModsToStdOut:
834 case DumpKind::DumpModsToDisk:
835 return [](MemoryBuffer &) {};
836
837 case DumpKind::DumpDebugDescriptor: {
838 // Dump the empty descriptor at startup once
839 fprintf(stderr, format: "jit_debug_descriptor 0x%016" PRIx64 "\n",
840 pointerToJITTargetAddress(Ptr: __jit_debug_descriptor.first_entry));
841 return [](MemoryBuffer &) {
842 // Dump new entries as they appear
843 static struct jit_code_entry *Latest = nullptr;
844 while (auto *NewEntry = findNextDebugDescriptorEntry(Latest)) {
845 fprintf(stderr, format: "jit_debug_descriptor 0x%016" PRIx64 "\n",
846 pointerToJITTargetAddress(Ptr: NewEntry));
847 Latest = NewEntry;
848 }
849 };
850 }
851
852 case DumpKind::DumpDebugObjects: {
853 return [](MemoryBuffer &Obj) {
854 static struct jit_code_entry *Latest = nullptr;
855 static ToolOutputFile &ToolOutput = claimToolOutput();
856 while (auto *NewEntry = findNextDebugDescriptorEntry(Latest)) {
857 ToolOutput.os().write(Ptr: NewEntry->symfile_addr, Size: NewEntry->symfile_size);
858 Latest = NewEntry;
859 }
860 };
861 }
862 }
863 llvm_unreachable("Unknown DumpKind");
864}
865
866Error loadDylibs() {
867 for (const auto &Dylib : Dylibs) {
868 std::string ErrMsg;
869 if (sys::DynamicLibrary::LoadLibraryPermanently(Filename: Dylib.c_str(), ErrMsg: &ErrMsg))
870 return make_error<StringError>(Args&: ErrMsg, Args: inconvertibleErrorCode());
871 }
872
873 return Error::success();
874}
875
876static void exitOnLazyCallThroughFailure() { exit(status: 1); }
877
878Expected<orc::ThreadSafeModule>
879loadModule(StringRef Path, orc::ThreadSafeContext TSCtx) {
880 SMDiagnostic Err;
881 auto M = TSCtx.withContextDo(
882 F: [&](LLVMContext *Ctx) { return parseIRFile(Filename: Path, Err, Context&: *Ctx); });
883 if (!M) {
884 std::string ErrMsg;
885 {
886 raw_string_ostream ErrMsgStream(ErrMsg);
887 Err.print(ProgName: "lli", S&: ErrMsgStream);
888 }
889 return make_error<StringError>(Args: std::move(ErrMsg), Args: inconvertibleErrorCode());
890 }
891
892 if (EnableCacheManager)
893 M->setModuleIdentifier("file:" + M->getModuleIdentifier());
894
895 return orc::ThreadSafeModule(std::move(M), std::move(TSCtx));
896}
897
898int mingw_noop_main(void) {
899 // Cygwin and MinGW insert calls from the main function to the runtime
900 // function __main. The __main function is responsible for setting up main's
901 // environment (e.g. running static constructors), however this is not needed
902 // when running under lli: the executor process will have run non-JIT ctors,
903 // and ORC will take care of running JIT'd ctors. To avoid a missing symbol
904 // error we just implement __main as a no-op.
905 //
906 // FIXME: Move this to ORC-RT (and the ORC-RT substitution library once it
907 // exists). That will allow it to work out-of-process, and for all
908 // ORC tools (the problem isn't lli specific).
909 return 0;
910}
911
912// Try to enable debugger support for the given instance.
913// This alway returns success, but prints a warning if it's not able to enable
914// debugger support.
915Error tryEnableDebugSupport(orc::LLJIT &J) {
916 if (auto Err = enableDebuggerSupport(J)) {
917 [[maybe_unused]] std::string ErrMsg = toString(E: std::move(Err));
918 LLVM_DEBUG(dbgs() << "lli: " << ErrMsg << "\n");
919 }
920 return Error::success();
921}
922
923int runOrcJIT(const char *ProgName) {
924 // Start setting up the JIT environment.
925
926 // Parse the main module.
927 orc::ThreadSafeContext TSCtx(std::make_unique<LLVMContext>());
928 auto MainModule = ExitOnErr(loadModule(Path: InputFile, TSCtx));
929
930 // Get TargetTriple and DataLayout from the main module if they're explicitly
931 // set.
932 std::optional<Triple> TT;
933 std::optional<DataLayout> DL;
934 MainModule.withModuleDo(F: [&](Module &M) {
935 if (!M.getTargetTriple().empty())
936 TT = M.getTargetTriple();
937 if (!M.getDataLayout().isDefault())
938 DL = M.getDataLayout();
939 });
940
941 orc::LLLazyJITBuilder Builder;
942
943 Builder.setJITTargetMachineBuilder(
944 TT ? orc::JITTargetMachineBuilder(*TT)
945 : ExitOnErr(orc::JITTargetMachineBuilder::detectHost()));
946
947 TT = Builder.getJITTargetMachineBuilder()->getTargetTriple();
948 if (DL)
949 Builder.setDataLayout(DL);
950
951 if (!codegen::getMArch().empty())
952 Builder.getJITTargetMachineBuilder()->getTargetTriple().setArchName(
953 codegen::getMArch());
954
955 Builder.getJITTargetMachineBuilder()
956 ->setCPU(codegen::getCPUStr())
957 .addFeatures(FeatureVec: codegen::getFeatureList())
958 .setRelocationModel(codegen::getExplicitRelocModel())
959 .setCodeModel(codegen::getExplicitCodeModel());
960
961 // Link process symbols unless NoProcessSymbols is set.
962 Builder.setLinkProcessSymbolsByDefault(!NoProcessSymbols);
963
964 // FIXME: Setting a dummy call-through manager in non-lazy mode prevents the
965 // JIT builder to instantiate a default (which would fail with an error for
966 // unsupported architectures).
967 if (UseJITKind != JITKind::OrcLazy) {
968 auto ES = std::make_unique<orc::ExecutionSession>(
969 args: ExitOnErr(orc::SelfExecutorProcessControl::Create()));
970 Builder.setLazyCallthroughManager(
971 std::make_unique<orc::LazyCallThroughManager>(args&: *ES, args: orc::ExecutorAddr(),
972 args: nullptr));
973 Builder.setExecutionSession(std::move(ES));
974 }
975
976 Builder.setLazyCompileFailureAddr(
977 orc::ExecutorAddr::fromPtr(Ptr: exitOnLazyCallThroughFailure));
978 Builder.setNumCompileThreads(LazyJITCompileThreads);
979
980 // If the object cache is enabled then set a custom compile function
981 // creator to use the cache.
982 std::unique_ptr<LLIObjectCache> CacheManager;
983 if (EnableCacheManager) {
984
985 CacheManager = std::make_unique<LLIObjectCache>(args&: ObjectCacheDir);
986
987 Builder.setCompileFunctionCreator(
988 [&](orc::JITTargetMachineBuilder JTMB)
989 -> Expected<std::unique_ptr<orc::IRCompileLayer::IRCompiler>> {
990 if (LazyJITCompileThreads > 0)
991 return std::make_unique<orc::ConcurrentIRCompiler>(args: std::move(JTMB),
992 args: CacheManager.get());
993
994 auto TM = JTMB.createTargetMachine();
995 if (!TM)
996 return TM.takeError();
997
998 return std::make_unique<orc::TMOwningSimpleCompiler>(args: std::move(*TM),
999 args: CacheManager.get());
1000 });
1001 }
1002
1003 // Enable debugging of JIT'd code (only works on JITLink for ELF and MachO).
1004 Builder.setPrePlatformSetup(tryEnableDebugSupport);
1005
1006 // Set up LLJIT platform.
1007 LLJITPlatform P = Platform;
1008 if (P == LLJITPlatform::Auto)
1009 P = OrcRuntime.empty() ? LLJITPlatform::GenericIR
1010 : LLJITPlatform::ExecutorNative;
1011
1012 switch (P) {
1013 case LLJITPlatform::ExecutorNative: {
1014 Builder.setPlatformSetUp(orc::ExecutorNativePlatform(OrcRuntime));
1015 break;
1016 }
1017 case LLJITPlatform::GenericIR:
1018 // Nothing to do: LLJITBuilder will use this by default.
1019 break;
1020 case LLJITPlatform::Inactive:
1021 Builder.setPlatformSetUp(orc::setUpInactivePlatform);
1022 break;
1023 default:
1024 llvm_unreachable("Unrecognized platform value");
1025 }
1026
1027 std::unique_ptr<orc::ExecutorProcessControl> EPC = nullptr;
1028 if (JITLinker == JITLinkerKind::JITLink) {
1029 EPC = ExitOnErr(orc::SelfExecutorProcessControl::Create(
1030 SSP: std::make_shared<orc::SymbolStringPool>()));
1031
1032 Builder.getJITTargetMachineBuilder()
1033 ->setRelocationModel(Reloc::PIC_)
1034 .setCodeModel(CodeModel::Small);
1035 Builder.setObjectLinkingLayerCreator([&](orc::ExecutionSession &ES) {
1036 return std::make_unique<orc::ObjectLinkingLayer>(args&: ES);
1037 });
1038 }
1039
1040 auto J = ExitOnErr(Builder.create());
1041
1042 auto *ObjLayer = &J->getObjLinkingLayer();
1043 if (auto *RTDyldObjLayer = dyn_cast<orc::RTDyldObjectLinkingLayer>(Val: ObjLayer)) {
1044 RTDyldObjLayer->registerJITEventListener(
1045 L&: *JITEventListener::createGDBRegistrationListener());
1046#if LLVM_USE_OPROFILE
1047 RTDyldObjLayer->registerJITEventListener(
1048 *JITEventListener::createOProfileJITEventListener());
1049#endif
1050#if LLVM_USE_INTEL_JITEVENTS
1051 RTDyldObjLayer->registerJITEventListener(
1052 *JITEventListener::createIntelJITEventListener());
1053#endif
1054#if LLVM_USE_PERF
1055 RTDyldObjLayer->registerJITEventListener(
1056 *JITEventListener::createPerfJITEventListener());
1057#endif
1058 }
1059
1060 if (PerModuleLazy)
1061 J->setPartitionFunction(orc::IRPartitionLayer::compileWholeModule);
1062
1063 auto IRDump = createIRDebugDumper();
1064 J->getIRTransformLayer().setTransform(
1065 [&](orc::ThreadSafeModule TSM,
1066 const orc::MaterializationResponsibility &R) {
1067 TSM.withModuleDo(F: [&](Module &M) {
1068 if (verifyModule(M, OS: &dbgs())) {
1069 dbgs() << "Bad module: " << &M << "\n";
1070 exit(status: 1);
1071 }
1072 IRDump(M);
1073 });
1074 return TSM;
1075 });
1076
1077 auto ObjDump = createObjDebugDumper();
1078 J->getObjTransformLayer().setTransform(
1079 [&](std::unique_ptr<MemoryBuffer> Obj)
1080 -> Expected<std::unique_ptr<MemoryBuffer>> {
1081 ObjDump(*Obj);
1082 return std::move(Obj);
1083 });
1084
1085 // If this is a Mingw or Cygwin executor then we need to alias __main to
1086 // orc_rt_int_void_return_0.
1087 if (J->getTargetTriple().isOSCygMing())
1088 ExitOnErr(J->getProcessSymbolsJITDylib()->define(
1089 MU: orc::absoluteSymbols(Symbols: {{J->mangleAndIntern(UnmangledName: "__main"),
1090 {orc::ExecutorAddr::fromPtr(Ptr: mingw_noop_main),
1091 JITSymbolFlags::Exported}}})));
1092
1093 // Regular modules are greedy: They materialize as a whole and trigger
1094 // materialization for all required symbols recursively. Lazy modules go
1095 // through partitioning and they replace outgoing calls with reexport stubs
1096 // that resolve on call-through.
1097 auto AddModule = [&](orc::JITDylib &JD, orc::ThreadSafeModule M) {
1098 return UseJITKind == JITKind::OrcLazy ? J->addLazyIRModule(JD, M: std::move(M))
1099 : J->addIRModule(JD, TSM: std::move(M));
1100 };
1101
1102 // Add the main module.
1103 ExitOnErr(AddModule(J->getMainJITDylib(), std::move(MainModule)));
1104
1105 // Create JITDylibs and add any extra modules.
1106 {
1107 // Create JITDylibs, keep a map from argument index to dylib. We will use
1108 // -extra-module argument indexes to determine what dylib to use for each
1109 // -extra-module.
1110 std::map<unsigned, orc::JITDylib *> IdxToDylib;
1111 IdxToDylib[0] = &J->getMainJITDylib();
1112 for (auto JDItr = JITDylibs.begin(), JDEnd = JITDylibs.end();
1113 JDItr != JDEnd; ++JDItr) {
1114 orc::JITDylib *JD = J->getJITDylibByName(Name: *JDItr);
1115 if (!JD) {
1116 JD = &ExitOnErr(J->createJITDylib(Name: *JDItr));
1117 J->getMainJITDylib().addToLinkOrder(JD&: *JD);
1118 JD->addToLinkOrder(JD&: J->getMainJITDylib());
1119 }
1120 IdxToDylib[JITDylibs.getPosition(optnum: JDItr - JITDylibs.begin())] = JD;
1121 }
1122
1123 for (auto EMItr = ExtraModules.begin(), EMEnd = ExtraModules.end();
1124 EMItr != EMEnd; ++EMItr) {
1125 auto M = ExitOnErr(loadModule(Path: *EMItr, TSCtx));
1126
1127 auto EMIdx = ExtraModules.getPosition(optnum: EMItr - ExtraModules.begin());
1128 assert(EMIdx != 0 && "ExtraModule should have index > 0");
1129 auto JDItr = std::prev(x: IdxToDylib.lower_bound(x: EMIdx));
1130 auto &JD = *JDItr->second;
1131 ExitOnErr(AddModule(JD, std::move(M)));
1132 }
1133
1134 for (auto EAItr = ExtraArchives.begin(), EAEnd = ExtraArchives.end();
1135 EAItr != EAEnd; ++EAItr) {
1136 auto EAIdx = ExtraArchives.getPosition(optnum: EAItr - ExtraArchives.begin());
1137 assert(EAIdx != 0 && "ExtraArchive should have index > 0");
1138 auto JDItr = std::prev(x: IdxToDylib.lower_bound(x: EAIdx));
1139 auto &JD = *JDItr->second;
1140 ExitOnErr(J->linkStaticLibraryInto(JD, Path: EAItr->c_str()));
1141 }
1142 }
1143
1144 // Add the objects.
1145 for (auto &ObjPath : ExtraObjects) {
1146 auto Obj = ExitOnErr(errorOrToExpected(EO: MemoryBuffer::getFile(Filename: ObjPath)));
1147 ExitOnErr(J->addObjectFile(Obj: std::move(Obj)));
1148 }
1149
1150 // Run any static constructors.
1151 ExitOnErr(J->initialize(JD&: J->getMainJITDylib()));
1152
1153 // Run any -thread-entry points.
1154 std::vector<std::thread> AltEntryThreads;
1155 for (auto &ThreadEntryPoint : ThreadEntryPoints) {
1156 auto EntryPointSym = ExitOnErr(J->lookup(UnmangledName: ThreadEntryPoint));
1157 typedef void (*EntryPointPtr)();
1158 auto EntryPoint = EntryPointSym.toPtr<EntryPointPtr>();
1159 AltEntryThreads.push_back(x: std::thread([EntryPoint]() { EntryPoint(); }));
1160 }
1161
1162 // Resolve and run the main function.
1163 auto MainAddr = ExitOnErr(J->lookup(UnmangledName: EntryFunc));
1164 int Result;
1165
1166 if (EPC) {
1167 // ExecutorProcessControl-based execution with JITLink.
1168 Result = ExitOnErr(EPC->runAsMain(MainFnAddr: MainAddr, Args: InputArgv));
1169 } else {
1170 // Manual in-process execution with RuntimeDyld.
1171 using MainFnTy = int(int, char *[]);
1172 auto MainFn = MainAddr.toPtr<MainFnTy *>();
1173 Result = orc::runAsMain(Main: MainFn, Args: InputArgv, ProgramName: StringRef(InputFile));
1174 }
1175
1176 // Wait for -entry-point threads.
1177 for (auto &AltEntryThread : AltEntryThreads)
1178 AltEntryThread.join();
1179
1180 // Run destructors.
1181 ExitOnErr(J->deinitialize(JD&: J->getMainJITDylib()));
1182
1183 return Result;
1184}
1185
1186void disallowOrcOptions() {
1187 // Make sure nobody used an orc-lazy specific option accidentally.
1188
1189 if (LazyJITCompileThreads != 0) {
1190 errs() << "-compile-threads requires -jit-kind=orc-lazy\n";
1191 exit(status: 1);
1192 }
1193
1194 if (!ThreadEntryPoints.empty()) {
1195 errs() << "-thread-entry requires -jit-kind=orc-lazy\n";
1196 exit(status: 1);
1197 }
1198
1199 if (PerModuleLazy) {
1200 errs() << "-per-module-lazy requires -jit-kind=orc-lazy\n";
1201 exit(status: 1);
1202 }
1203}
1204
1205Expected<std::unique_ptr<orc::ExecutorProcessControl>> launchRemote() {
1206#ifndef LLVM_ON_UNIX
1207 llvm_unreachable("launchRemote not supported on non-Unix platforms");
1208#else
1209 int PipeFD[2][2];
1210 pid_t ChildPID;
1211
1212 // Create two pipes.
1213 if (pipe(pipedes: PipeFD[0]) != 0 || pipe(pipedes: PipeFD[1]) != 0)
1214 perror(s: "Error creating pipe: ");
1215
1216 ChildPID = fork();
1217
1218 if (ChildPID == 0) {
1219 // In the child...
1220
1221 // Close the parent ends of the pipes
1222 close(fd: PipeFD[0][1]);
1223 close(fd: PipeFD[1][0]);
1224
1225
1226 // Execute the child process.
1227 std::unique_ptr<char[]> ChildPath, ChildIn, ChildOut;
1228 {
1229 ChildPath.reset(p: new char[ChildExecPath.size() + 1]);
1230 std::copy(first: ChildExecPath.begin(), last: ChildExecPath.end(), result: &ChildPath[0]);
1231 ChildPath[ChildExecPath.size()] = '\0';
1232 std::string ChildInStr = utostr(X: PipeFD[0][0]);
1233 ChildIn.reset(p: new char[ChildInStr.size() + 1]);
1234 std::copy(first: ChildInStr.begin(), last: ChildInStr.end(), result: &ChildIn[0]);
1235 ChildIn[ChildInStr.size()] = '\0';
1236 std::string ChildOutStr = utostr(X: PipeFD[1][1]);
1237 ChildOut.reset(p: new char[ChildOutStr.size() + 1]);
1238 std::copy(first: ChildOutStr.begin(), last: ChildOutStr.end(), result: &ChildOut[0]);
1239 ChildOut[ChildOutStr.size()] = '\0';
1240 }
1241
1242 char * const args[] = { &ChildPath[0], &ChildIn[0], &ChildOut[0], nullptr };
1243 int rc = execv(path: ChildExecPath.c_str(), argv: args);
1244 if (rc != 0)
1245 perror(s: "Error executing child process: ");
1246 llvm_unreachable("Error executing child process");
1247 }
1248 // else we're the parent...
1249
1250 // Close the child ends of the pipes
1251 close(fd: PipeFD[0][0]);
1252 close(fd: PipeFD[1][1]);
1253
1254 // Return a SimpleRemoteEPC instance connected to our end of the pipes.
1255 return orc::SimpleRemoteEPC::Create<orc::FDSimpleRemoteEPCTransport>(
1256 D: std::make_unique<llvm::orc::InPlaceTaskDispatcher>(),
1257 S: llvm::orc::SimpleRemoteEPC::Setup(), TransportTCtorArgs&: PipeFD[1][0], TransportTCtorArgs&: PipeFD[0][1]);
1258#endif
1259}
1260
1261// For MinGW environments, manually export the __chkstk function from the lli
1262// executable.
1263//
1264// Normally, this function is provided by compiler-rt builtins or libgcc.
1265// It is named "_alloca" on i386, "___chkstk_ms" on x86_64, and "__chkstk" on
1266// arm/aarch64. In MSVC configurations, it's named "__chkstk" in all
1267// configurations.
1268//
1269// When Orc tries to resolve symbols at runtime, this succeeds in MSVC
1270// configurations, somewhat by accident/luck; kernelbase.dll does export a
1271// symbol named "__chkstk" which gets found by Orc, even if regular applications
1272// never link against that function from that DLL (it's linked in statically
1273// from a compiler support library).
1274//
1275// The MinGW specific symbol names aren't available in that DLL though.
1276// Therefore, manually export the relevant symbol from lli, to let it be
1277// found at runtime during tests.
1278//
1279// For real JIT uses, the real compiler support libraries should be linked
1280// in, somehow; this is a workaround to let tests pass.
1281//
1282// We need to make sure that this symbol actually is linked in when we
1283// try to export it; if no functions allocate a large enough stack area,
1284// nothing would reference it. Therefore, manually declare it and add a
1285// reference to it. (Note, the declarations of _alloca/___chkstk_ms/__chkstk
1286// are somewhat bogus, these functions use a different custom calling
1287// convention.)
1288//
1289// TODO: Move this into libORC at some point, see
1290// https://github.com/llvm/llvm-project/issues/56603.
1291#ifdef __MINGW32__
1292// This is a MinGW version of #pragma comment(linker, "...") that doesn't
1293// require compiling with -fms-extensions.
1294#if defined(__i386__)
1295#undef _alloca
1296extern "C" void _alloca(void);
1297static __attribute__((used)) void (*const ref_func)(void) = _alloca;
1298static __attribute__((section(".drectve"), used)) const char export_chkstk[] =
1299 "-export:_alloca";
1300#elif defined(__x86_64__)
1301extern "C" void ___chkstk_ms(void);
1302static __attribute__((used)) void (*const ref_func)(void) = ___chkstk_ms;
1303static __attribute__((section(".drectve"), used)) const char export_chkstk[] =
1304 "-export:___chkstk_ms";
1305#else
1306extern "C" void __chkstk(void);
1307static __attribute__((used)) void (*const ref_func)(void) = __chkstk;
1308static __attribute__((section(".drectve"), used)) const char export_chkstk[] =
1309 "-export:__chkstk";
1310#endif
1311#endif
1312