| 1 | //===-- DifferenceEngine.cpp - Structural function/module comparison ------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This header defines the implementation of the LLVM difference |
| 10 | // engine, which structurally compares global values within a module. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "DifferenceEngine.h" |
| 15 | #include "llvm/ADT/DenseMap.h" |
| 16 | #include "llvm/ADT/DenseSet.h" |
| 17 | #include "llvm/ADT/SmallString.h" |
| 18 | #include "llvm/ADT/SmallVector.h" |
| 19 | #include "llvm/ADT/StringSet.h" |
| 20 | #include "llvm/IR/BasicBlock.h" |
| 21 | #include "llvm/IR/CFG.h" |
| 22 | #include "llvm/IR/Constants.h" |
| 23 | #include "llvm/IR/Function.h" |
| 24 | #include "llvm/IR/Instructions.h" |
| 25 | #include "llvm/IR/Module.h" |
| 26 | #include "llvm/Support/ErrorHandling.h" |
| 27 | #include "llvm/Support/raw_ostream.h" |
| 28 | #include "llvm/Support/type_traits.h" |
| 29 | #include <utility> |
| 30 | |
| 31 | using namespace llvm; |
| 32 | |
| 33 | namespace { |
| 34 | |
| 35 | /// A priority queue, implemented as a heap. |
| 36 | template <class T, class Sorter, unsigned InlineCapacity> |
| 37 | class PriorityQueue { |
| 38 | Sorter Precedes; |
| 39 | llvm::SmallVector<T, InlineCapacity> Storage; |
| 40 | |
| 41 | public: |
| 42 | PriorityQueue(const Sorter &Precedes) : Precedes(Precedes) {} |
| 43 | |
| 44 | /// Checks whether the heap is empty. |
| 45 | bool empty() const { return Storage.empty(); } |
| 46 | |
| 47 | /// Insert a new value on the heap. |
| 48 | void insert(const T &V) { |
| 49 | unsigned Index = Storage.size(); |
| 50 | Storage.push_back(V); |
| 51 | if (Index == 0) return; |
| 52 | |
| 53 | T *data = Storage.data(); |
| 54 | while (true) { |
| 55 | unsigned Target = (Index + 1) / 2 - 1; |
| 56 | if (!Precedes(data[Index], data[Target])) return; |
| 57 | std::swap(data[Index], data[Target]); |
| 58 | if (Target == 0) return; |
| 59 | Index = Target; |
| 60 | } |
| 61 | } |
| 62 | |
| 63 | /// Remove the minimum value in the heap. Only valid on a non-empty heap. |
| 64 | T remove_min() { |
| 65 | assert(!empty()); |
| 66 | T tmp = Storage[0]; |
| 67 | |
| 68 | unsigned NewSize = Storage.size() - 1; |
| 69 | if (NewSize) { |
| 70 | // Move the slot at the end to the beginning. |
| 71 | if (std::is_trivially_copyable<T>::value) |
| 72 | Storage[0] = Storage[NewSize]; |
| 73 | else |
| 74 | std::swap(Storage[0], Storage[NewSize]); |
| 75 | |
| 76 | // Bubble the root up as necessary. |
| 77 | unsigned Index = 0; |
| 78 | while (true) { |
| 79 | // With a 1-based index, the children would be Index*2 and Index*2+1. |
| 80 | unsigned R = (Index + 1) * 2; |
| 81 | unsigned L = R - 1; |
| 82 | |
| 83 | // If R is out of bounds, we're done after this in any case. |
| 84 | if (R >= NewSize) { |
| 85 | // If L is also out of bounds, we're done immediately. |
| 86 | if (L >= NewSize) break; |
| 87 | |
| 88 | // Otherwise, test whether we should swap L and Index. |
| 89 | if (Precedes(Storage[L], Storage[Index])) |
| 90 | std::swap(Storage[L], Storage[Index]); |
| 91 | break; |
| 92 | } |
| 93 | |
| 94 | // Otherwise, we need to compare with the smaller of L and R. |
| 95 | // Prefer R because it's closer to the end of the array. |
| 96 | unsigned IndexToTest = (Precedes(Storage[L], Storage[R]) ? L : R); |
| 97 | |
| 98 | // If Index is >= the min of L and R, then heap ordering is restored. |
| 99 | if (!Precedes(Storage[IndexToTest], Storage[Index])) |
| 100 | break; |
| 101 | |
| 102 | // Otherwise, keep bubbling up. |
| 103 | std::swap(Storage[IndexToTest], Storage[Index]); |
| 104 | Index = IndexToTest; |
| 105 | } |
| 106 | } |
| 107 | Storage.pop_back(); |
| 108 | |
| 109 | return tmp; |
| 110 | } |
| 111 | }; |
| 112 | |
| 113 | /// A function-scope difference engine. |
| 114 | class FunctionDifferenceEngine { |
| 115 | DifferenceEngine &Engine; |
| 116 | |
| 117 | // Some initializers may reference the variable we're currently checking. This |
| 118 | // can cause an infinite loop. The Saved[LR]HS ivars can be checked to prevent |
| 119 | // recursing. |
| 120 | const Value *SavedLHS; |
| 121 | const Value *SavedRHS; |
| 122 | |
| 123 | // The current mapping from old local values to new local values. |
| 124 | DenseMap<const Value *, const Value *> Values; |
| 125 | |
| 126 | // The current mapping from old blocks to new blocks. |
| 127 | DenseMap<const BasicBlock *, const BasicBlock *> Blocks; |
| 128 | |
| 129 | // The tentative mapping from old local values while comparing a pair of |
| 130 | // basic blocks. Once the pair has been processed, the tentative mapping is |
| 131 | // committed to the Values map. |
| 132 | DenseSet<std::pair<const Value *, const Value *>> TentativeValues; |
| 133 | |
| 134 | // Equivalence Assumptions |
| 135 | // |
| 136 | // For basic blocks in loops, some values in phi nodes may depend on |
| 137 | // values from not yet processed basic blocks in the loop. When encountering |
| 138 | // such values, we optimistically asssume their equivalence and store this |
| 139 | // assumption in a BlockDiffCandidate for the pair of compared BBs. |
| 140 | // |
| 141 | // Once we have diffed all BBs, for every BlockDiffCandidate, we check all |
| 142 | // stored assumptions using the Values map that stores proven equivalences |
| 143 | // between the old and new values, and report a diff if an assumption cannot |
| 144 | // be proven to be true. |
| 145 | // |
| 146 | // Note that after having made an assumption, all further determined |
| 147 | // equivalences implicitly depend on that assumption. These will not be |
| 148 | // reverted or reported if the assumption proves to be false, because these |
| 149 | // are considered indirect diffs caused by earlier direct diffs. |
| 150 | // |
| 151 | // We aim to avoid false negatives in llvm-diff, that is, ensure that |
| 152 | // whenever no diff is reported, the functions are indeed equal. If |
| 153 | // assumptions were made, this is not entirely clear, because in principle we |
| 154 | // could end up with a circular proof where the proof of equivalence of two |
| 155 | // nodes is depending on the assumption of their equivalence. |
| 156 | // |
| 157 | // To see that assumptions do not add false negatives, note that if we do not |
| 158 | // report a diff, this means that there is an equivalence mapping between old |
| 159 | // and new values that is consistent with all assumptions made. The circular |
| 160 | // dependency that exists on an IR value level does not exist at run time, |
| 161 | // because the values selected by the phi nodes must always already have been |
| 162 | // computed. Hence, we can prove equivalence of the old and new functions by |
| 163 | // considering step-wise parallel execution, and incrementally proving |
| 164 | // equivalence of every new computed value. Another way to think about it is |
| 165 | // to imagine cloning the loop BBs for every iteration, turning the loops |
| 166 | // into (possibly infinite) DAGs, and proving equivalence by induction on the |
| 167 | // iteration, using the computed value mapping. |
| 168 | |
| 169 | // The class BlockDiffCandidate stores pairs which either have already been |
| 170 | // proven to differ, or pairs whose equivalence depends on assumptions to be |
| 171 | // verified later. |
| 172 | struct BlockDiffCandidate { |
| 173 | const BasicBlock *LBB; |
| 174 | const BasicBlock *RBB; |
| 175 | // Maps old values to assumed-to-be-equivalent new values |
| 176 | SmallDenseMap<const Value *, const Value *> EquivalenceAssumptions; |
| 177 | // If set, we already know the blocks differ. |
| 178 | bool KnownToDiffer; |
| 179 | }; |
| 180 | |
| 181 | // List of block diff candidates in the order found by processing. |
| 182 | // We generate reports in this order. |
| 183 | // For every LBB, there may only be one corresponding RBB. |
| 184 | SmallVector<BlockDiffCandidate> BlockDiffCandidates; |
| 185 | // Maps LBB to the index of its BlockDiffCandidate, if existing. |
| 186 | DenseMap<const BasicBlock *, uint64_t> BlockDiffCandidateIndices; |
| 187 | |
| 188 | // Note: Every LBB must always be queried together with the same RBB. |
| 189 | // The returned reference is not permanently valid and should not be stored. |
| 190 | BlockDiffCandidate &getOrCreateBlockDiffCandidate(const BasicBlock *LBB, |
| 191 | const BasicBlock *RBB) { |
| 192 | auto [It, Inserted] = |
| 193 | BlockDiffCandidateIndices.try_emplace(Key: LBB, Args: BlockDiffCandidates.size()); |
| 194 | // Check if LBB already has a diff candidate |
| 195 | if (Inserted) { |
| 196 | // Add new one |
| 197 | BlockDiffCandidates.push_back( |
| 198 | Elt: {.LBB: LBB, .RBB: RBB, .EquivalenceAssumptions: SmallDenseMap<const Value *, const Value *>(), .KnownToDiffer: false}); |
| 199 | return BlockDiffCandidates.back(); |
| 200 | } |
| 201 | // Use existing one |
| 202 | BlockDiffCandidate &Result = BlockDiffCandidates[It->second]; |
| 203 | assert(Result.RBB == RBB && "Inconsistent basic block pairing!" ); |
| 204 | return Result; |
| 205 | } |
| 206 | |
| 207 | // Optionally passed to equivalence checker functions, so these can add |
| 208 | // assumptions in BlockDiffCandidates. Its presence controls whether |
| 209 | // assumptions are generated. |
| 210 | struct AssumptionContext { |
| 211 | // The two basic blocks that need the two compared values to be equivalent. |
| 212 | const BasicBlock *LBB; |
| 213 | const BasicBlock *RBB; |
| 214 | }; |
| 215 | |
| 216 | unsigned getUnprocPredCount(const BasicBlock *Block) const { |
| 217 | return llvm::count_if(Range: predecessors(BB: Block), P: [&](const BasicBlock *Pred) { |
| 218 | return !Blocks.contains(Val: Pred); |
| 219 | }); |
| 220 | } |
| 221 | |
| 222 | typedef std::pair<const BasicBlock *, const BasicBlock *> BlockPair; |
| 223 | |
| 224 | /// A type which sorts a priority queue by the number of unprocessed |
| 225 | /// predecessor blocks it has remaining. |
| 226 | /// |
| 227 | /// This is actually really expensive to calculate. |
| 228 | struct QueueSorter { |
| 229 | const FunctionDifferenceEngine &fde; |
| 230 | explicit QueueSorter(const FunctionDifferenceEngine &fde) : fde(fde) {} |
| 231 | |
| 232 | bool operator()(BlockPair &Old, BlockPair &New) { |
| 233 | return fde.getUnprocPredCount(Block: Old.first) |
| 234 | < fde.getUnprocPredCount(Block: New.first); |
| 235 | } |
| 236 | }; |
| 237 | |
| 238 | /// A queue of unified blocks to process. |
| 239 | PriorityQueue<BlockPair, QueueSorter, 20> Queue; |
| 240 | |
| 241 | /// Try to unify the given two blocks. Enqueues them for processing |
| 242 | /// if they haven't already been processed. |
| 243 | /// |
| 244 | /// Returns true if there was a problem unifying them. |
| 245 | bool tryUnify(const BasicBlock *L, const BasicBlock *R) { |
| 246 | const BasicBlock *&Ref = Blocks[L]; |
| 247 | |
| 248 | if (Ref) { |
| 249 | if (Ref == R) return false; |
| 250 | |
| 251 | Engine.logf(text: "successor %l cannot be equivalent to %r; " |
| 252 | "it's already equivalent to %r" ) |
| 253 | << L << R << Ref; |
| 254 | return true; |
| 255 | } |
| 256 | |
| 257 | Ref = R; |
| 258 | Queue.insert(V: BlockPair(L, R)); |
| 259 | return false; |
| 260 | } |
| 261 | |
| 262 | /// Unifies two instructions, given that they're known not to have |
| 263 | /// structural differences. |
| 264 | void unify(const Instruction *L, const Instruction *R) { |
| 265 | DifferenceEngine::Context C(Engine, L, R); |
| 266 | |
| 267 | bool Result = diff(L, R, Complain: true, TryUnify: true, AllowAssumptions: true); |
| 268 | assert(!Result && "structural differences second time around?" ); |
| 269 | (void) Result; |
| 270 | if (!L->use_empty()) |
| 271 | Values[L] = R; |
| 272 | } |
| 273 | |
| 274 | void processQueue() { |
| 275 | while (!Queue.empty()) { |
| 276 | BlockPair Pair = Queue.remove_min(); |
| 277 | diff(L: Pair.first, R: Pair.second); |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | void checkAndReportDiffCandidates() { |
| 282 | for (BlockDiffCandidate &BDC : BlockDiffCandidates) { |
| 283 | |
| 284 | // Check assumptions |
| 285 | for (const auto &[L, R] : BDC.EquivalenceAssumptions) { |
| 286 | auto It = Values.find(Val: L); |
| 287 | if (It == Values.end() || It->second != R) { |
| 288 | BDC.KnownToDiffer = true; |
| 289 | break; |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | // Run block diff if the BBs differ |
| 294 | if (BDC.KnownToDiffer) { |
| 295 | DifferenceEngine::Context C(Engine, BDC.LBB, BDC.RBB); |
| 296 | runBlockDiff(LI: BDC.LBB->begin(), RI: BDC.RBB->begin()); |
| 297 | } |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | void diff(const BasicBlock *L, const BasicBlock *R) { |
| 302 | DifferenceEngine::Context C(Engine, L, R); |
| 303 | |
| 304 | BasicBlock::const_iterator LI = L->begin(), LE = L->end(); |
| 305 | BasicBlock::const_iterator RI = R->begin(); |
| 306 | |
| 307 | do { |
| 308 | assert(LI != LE && RI != R->end()); |
| 309 | const Instruction *LeftI = &*LI, *RightI = &*RI; |
| 310 | |
| 311 | // If the instructions differ, start the more sophisticated diff |
| 312 | // algorithm at the start of the block. |
| 313 | if (diff(L: LeftI, R: RightI, Complain: false, TryUnify: false, AllowAssumptions: true)) { |
| 314 | TentativeValues.clear(); |
| 315 | // Register (L, R) as diffing pair. Note that we could directly emit a |
| 316 | // block diff here, but this way we ensure all diffs are emitted in one |
| 317 | // consistent order, independent of whether the diffs were detected |
| 318 | // immediately or via invalid assumptions. |
| 319 | getOrCreateBlockDiffCandidate(LBB: L, RBB: R).KnownToDiffer = true; |
| 320 | return; |
| 321 | } |
| 322 | |
| 323 | // Otherwise, tentatively unify them. |
| 324 | if (!LeftI->use_empty()) |
| 325 | TentativeValues.insert(V: std::make_pair(x&: LeftI, y&: RightI)); |
| 326 | |
| 327 | ++LI; |
| 328 | ++RI; |
| 329 | } while (LI != LE); // This is sufficient: we can't get equality of |
| 330 | // terminators if there are residual instructions. |
| 331 | |
| 332 | // Unify everything in the block, non-tentatively this time. |
| 333 | TentativeValues.clear(); |
| 334 | for (LI = L->begin(), RI = R->begin(); LI != LE; ++LI, ++RI) |
| 335 | unify(L: &*LI, R: &*RI); |
| 336 | } |
| 337 | |
| 338 | bool matchForBlockDiff(const Instruction *L, const Instruction *R); |
| 339 | void runBlockDiff(BasicBlock::const_iterator LI, |
| 340 | BasicBlock::const_iterator RI); |
| 341 | |
| 342 | bool diffCallSites(const CallBase &L, const CallBase &R, bool Complain) { |
| 343 | // FIXME: call attributes |
| 344 | AssumptionContext AC = {.LBB: L.getParent(), .RBB: R.getParent()}; |
| 345 | if (!equivalentAsOperands(L: L.getCalledOperand(), R: R.getCalledOperand(), |
| 346 | AC: &AC)) { |
| 347 | if (Complain) Engine.log(text: "called functions differ" ); |
| 348 | return true; |
| 349 | } |
| 350 | if (L.arg_size() != R.arg_size()) { |
| 351 | if (Complain) Engine.log(text: "argument counts differ" ); |
| 352 | return true; |
| 353 | } |
| 354 | for (unsigned I = 0, E = L.arg_size(); I != E; ++I) |
| 355 | if (!equivalentAsOperands(L: L.getArgOperand(i: I), R: R.getArgOperand(i: I), AC: &AC)) { |
| 356 | if (Complain) |
| 357 | Engine.logf(text: "arguments %l and %r differ" ) |
| 358 | << L.getArgOperand(i: I) << R.getArgOperand(i: I); |
| 359 | return true; |
| 360 | } |
| 361 | return false; |
| 362 | } |
| 363 | |
| 364 | // If AllowAssumptions is enabled, whenever we encounter a pair of values |
| 365 | // that we cannot prove to be equivalent, we assume equivalence and store that |
| 366 | // assumption to be checked later in BlockDiffCandidates. |
| 367 | bool diff(const Instruction *L, const Instruction *R, bool Complain, |
| 368 | bool TryUnify, bool AllowAssumptions) { |
| 369 | // FIXME: metadata (if Complain is set) |
| 370 | AssumptionContext ACValue = {.LBB: L->getParent(), .RBB: R->getParent()}; |
| 371 | // nullptr AssumptionContext disables assumption generation. |
| 372 | const AssumptionContext *AC = AllowAssumptions ? &ACValue : nullptr; |
| 373 | |
| 374 | // Different opcodes always imply different operations. |
| 375 | if (L->getOpcode() != R->getOpcode()) { |
| 376 | if (Complain) Engine.log(text: "different instruction types" ); |
| 377 | return true; |
| 378 | } |
| 379 | |
| 380 | if (isa<CmpInst>(Val: L)) { |
| 381 | if (cast<CmpInst>(Val: L)->getPredicate() |
| 382 | != cast<CmpInst>(Val: R)->getPredicate()) { |
| 383 | if (Complain) Engine.log(text: "different predicates" ); |
| 384 | return true; |
| 385 | } |
| 386 | } else if (isa<CallInst>(Val: L)) { |
| 387 | return diffCallSites(L: cast<CallInst>(Val: *L), R: cast<CallInst>(Val: *R), Complain); |
| 388 | } else if (isa<PHINode>(Val: L)) { |
| 389 | const PHINode &LI = cast<PHINode>(Val: *L); |
| 390 | const PHINode &RI = cast<PHINode>(Val: *R); |
| 391 | |
| 392 | // This is really weird; type uniquing is broken? |
| 393 | if (LI.getType() != RI.getType()) { |
| 394 | if (!LI.getType()->isPointerTy() || !RI.getType()->isPointerTy()) { |
| 395 | if (Complain) Engine.log(text: "different phi types" ); |
| 396 | return true; |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | if (LI.getNumIncomingValues() != RI.getNumIncomingValues()) { |
| 401 | if (Complain) |
| 402 | Engine.log(text: "PHI node # of incoming values differ" ); |
| 403 | return true; |
| 404 | } |
| 405 | |
| 406 | for (unsigned I = 0; I < LI.getNumIncomingValues(); ++I) { |
| 407 | if (TryUnify) |
| 408 | tryUnify(L: LI.getIncomingBlock(i: I), R: RI.getIncomingBlock(i: I)); |
| 409 | |
| 410 | if (!equivalentAsOperands(L: LI.getIncomingValue(i: I), |
| 411 | R: RI.getIncomingValue(i: I), AC)) { |
| 412 | if (Complain) |
| 413 | Engine.log(text: "PHI node incoming values differ" ); |
| 414 | return true; |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | return false; |
| 419 | |
| 420 | // Terminators. |
| 421 | } else if (isa<InvokeInst>(Val: L)) { |
| 422 | const InvokeInst &LI = cast<InvokeInst>(Val: *L); |
| 423 | const InvokeInst &RI = cast<InvokeInst>(Val: *R); |
| 424 | if (diffCallSites(L: LI, R: RI, Complain)) |
| 425 | return true; |
| 426 | |
| 427 | if (TryUnify) { |
| 428 | tryUnify(L: LI.getNormalDest(), R: RI.getNormalDest()); |
| 429 | tryUnify(L: LI.getUnwindDest(), R: RI.getUnwindDest()); |
| 430 | } |
| 431 | return false; |
| 432 | |
| 433 | } else if (isa<CallBrInst>(Val: L)) { |
| 434 | const CallBrInst &LI = cast<CallBrInst>(Val: *L); |
| 435 | const CallBrInst &RI = cast<CallBrInst>(Val: *R); |
| 436 | if (LI.getNumIndirectDests() != RI.getNumIndirectDests()) { |
| 437 | if (Complain) |
| 438 | Engine.log(text: "callbr # of indirect destinations differ" ); |
| 439 | return true; |
| 440 | } |
| 441 | |
| 442 | // Perform the "try unify" step so that we can equate the indirect |
| 443 | // destinations before checking the call site. |
| 444 | for (unsigned I = 0; I < LI.getNumIndirectDests(); I++) |
| 445 | tryUnify(L: LI.getIndirectDest(i: I), R: RI.getIndirectDest(i: I)); |
| 446 | |
| 447 | if (diffCallSites(L: LI, R: RI, Complain)) |
| 448 | return true; |
| 449 | |
| 450 | if (TryUnify) |
| 451 | tryUnify(L: LI.getDefaultDest(), R: RI.getDefaultDest()); |
| 452 | return false; |
| 453 | |
| 454 | } else if (isa<BranchInst>(Val: L)) { |
| 455 | const BranchInst *LI = cast<BranchInst>(Val: L); |
| 456 | const BranchInst *RI = cast<BranchInst>(Val: R); |
| 457 | if (LI->isConditional() != RI->isConditional()) { |
| 458 | if (Complain) Engine.log(text: "branch conditionality differs" ); |
| 459 | return true; |
| 460 | } |
| 461 | |
| 462 | if (LI->isConditional()) { |
| 463 | if (!equivalentAsOperands(L: LI->getCondition(), R: RI->getCondition(), AC)) { |
| 464 | if (Complain) Engine.log(text: "branch conditions differ" ); |
| 465 | return true; |
| 466 | } |
| 467 | if (TryUnify) tryUnify(L: LI->getSuccessor(i: 1), R: RI->getSuccessor(i: 1)); |
| 468 | } |
| 469 | if (TryUnify) tryUnify(L: LI->getSuccessor(i: 0), R: RI->getSuccessor(i: 0)); |
| 470 | return false; |
| 471 | |
| 472 | } else if (isa<IndirectBrInst>(Val: L)) { |
| 473 | const IndirectBrInst *LI = cast<IndirectBrInst>(Val: L); |
| 474 | const IndirectBrInst *RI = cast<IndirectBrInst>(Val: R); |
| 475 | if (LI->getNumDestinations() != RI->getNumDestinations()) { |
| 476 | if (Complain) Engine.log(text: "indirectbr # of destinations differ" ); |
| 477 | return true; |
| 478 | } |
| 479 | |
| 480 | if (!equivalentAsOperands(L: LI->getAddress(), R: RI->getAddress(), AC)) { |
| 481 | if (Complain) Engine.log(text: "indirectbr addresses differ" ); |
| 482 | return true; |
| 483 | } |
| 484 | |
| 485 | if (TryUnify) { |
| 486 | for (unsigned i = 0; i < LI->getNumDestinations(); i++) { |
| 487 | tryUnify(L: LI->getDestination(i), R: RI->getDestination(i)); |
| 488 | } |
| 489 | } |
| 490 | return false; |
| 491 | |
| 492 | } else if (isa<SwitchInst>(Val: L)) { |
| 493 | const SwitchInst *LI = cast<SwitchInst>(Val: L); |
| 494 | const SwitchInst *RI = cast<SwitchInst>(Val: R); |
| 495 | if (!equivalentAsOperands(L: LI->getCondition(), R: RI->getCondition(), AC)) { |
| 496 | if (Complain) Engine.log(text: "switch conditions differ" ); |
| 497 | return true; |
| 498 | } |
| 499 | if (TryUnify) tryUnify(L: LI->getDefaultDest(), R: RI->getDefaultDest()); |
| 500 | |
| 501 | bool Difference = false; |
| 502 | |
| 503 | DenseMap<const ConstantInt *, const BasicBlock *> LCases; |
| 504 | for (auto Case : LI->cases()) |
| 505 | LCases[Case.getCaseValue()] = Case.getCaseSuccessor(); |
| 506 | |
| 507 | for (auto Case : RI->cases()) { |
| 508 | const ConstantInt *CaseValue = Case.getCaseValue(); |
| 509 | const BasicBlock *LCase = LCases[CaseValue]; |
| 510 | if (LCase) { |
| 511 | if (TryUnify) |
| 512 | tryUnify(L: LCase, R: Case.getCaseSuccessor()); |
| 513 | LCases.erase(Val: CaseValue); |
| 514 | } else if (Complain || !Difference) { |
| 515 | if (Complain) |
| 516 | Engine.logf(text: "right switch has extra case %r" ) << CaseValue; |
| 517 | Difference = true; |
| 518 | } |
| 519 | } |
| 520 | if (!Difference) |
| 521 | for (DenseMap<const ConstantInt *, const BasicBlock *>::iterator |
| 522 | I = LCases.begin(), |
| 523 | E = LCases.end(); |
| 524 | I != E; ++I) { |
| 525 | if (Complain) |
| 526 | Engine.logf(text: "left switch has extra case %l" ) << I->first; |
| 527 | Difference = true; |
| 528 | } |
| 529 | return Difference; |
| 530 | } else if (isa<UnreachableInst>(Val: L)) { |
| 531 | return false; |
| 532 | } |
| 533 | |
| 534 | if (L->getNumOperands() != R->getNumOperands()) { |
| 535 | if (Complain) Engine.log(text: "instructions have different operand counts" ); |
| 536 | return true; |
| 537 | } |
| 538 | |
| 539 | for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) { |
| 540 | Value *LO = L->getOperand(i: I), *RO = R->getOperand(i: I); |
| 541 | if (!equivalentAsOperands(L: LO, R: RO, AC)) { |
| 542 | if (Complain) Engine.logf(text: "operands %l and %r differ" ) << LO << RO; |
| 543 | return true; |
| 544 | } |
| 545 | } |
| 546 | |
| 547 | return false; |
| 548 | } |
| 549 | |
| 550 | public: |
| 551 | bool equivalentAsOperands(const Constant *L, const Constant *R, |
| 552 | const AssumptionContext *AC) { |
| 553 | // Use equality as a preliminary filter. |
| 554 | if (L == R) |
| 555 | return true; |
| 556 | |
| 557 | if (L->getValueID() != R->getValueID()) |
| 558 | return false; |
| 559 | |
| 560 | // Ask the engine about global values. |
| 561 | if (isa<GlobalValue>(Val: L)) |
| 562 | return Engine.equivalentAsOperands(L: cast<GlobalValue>(Val: L), |
| 563 | R: cast<GlobalValue>(Val: R)); |
| 564 | |
| 565 | // Compare constant expressions structurally. |
| 566 | if (isa<ConstantExpr>(Val: L)) |
| 567 | return equivalentAsOperands(L: cast<ConstantExpr>(Val: L), R: cast<ConstantExpr>(Val: R), |
| 568 | AC); |
| 569 | |
| 570 | // Constants of the "same type" don't always actually have the same |
| 571 | // type; I don't know why. Just white-list them. |
| 572 | if (isa<ConstantPointerNull>(Val: L) || isa<UndefValue>(Val: L) || isa<ConstantAggregateZero>(Val: L)) |
| 573 | return true; |
| 574 | |
| 575 | // Block addresses only match if we've already encountered the |
| 576 | // block. FIXME: tentative matches? |
| 577 | if (isa<BlockAddress>(Val: L)) |
| 578 | return Blocks[cast<BlockAddress>(Val: L)->getBasicBlock()] |
| 579 | == cast<BlockAddress>(Val: R)->getBasicBlock(); |
| 580 | |
| 581 | // If L and R are ConstantVectors, compare each element |
| 582 | if (isa<ConstantVector>(Val: L)) { |
| 583 | const ConstantVector *CVL = cast<ConstantVector>(Val: L); |
| 584 | const ConstantVector *CVR = cast<ConstantVector>(Val: R); |
| 585 | if (CVL->getType()->getNumElements() != CVR->getType()->getNumElements()) |
| 586 | return false; |
| 587 | for (unsigned i = 0; i < CVL->getType()->getNumElements(); i++) { |
| 588 | if (!equivalentAsOperands(L: CVL->getOperand(i_nocapture: i), R: CVR->getOperand(i_nocapture: i), AC)) |
| 589 | return false; |
| 590 | } |
| 591 | return true; |
| 592 | } |
| 593 | |
| 594 | // If L and R are ConstantArrays, compare the element count and types. |
| 595 | if (isa<ConstantArray>(Val: L)) { |
| 596 | const ConstantArray *CAL = cast<ConstantArray>(Val: L); |
| 597 | const ConstantArray *CAR = cast<ConstantArray>(Val: R); |
| 598 | // Sometimes a type may be equivalent, but not uniquified---e.g. it may |
| 599 | // contain a GEP instruction. Do a deeper comparison of the types. |
| 600 | if (CAL->getType()->getNumElements() != CAR->getType()->getNumElements()) |
| 601 | return false; |
| 602 | |
| 603 | for (unsigned I = 0; I < CAL->getType()->getNumElements(); ++I) { |
| 604 | if (!equivalentAsOperands(L: CAL->getAggregateElement(Elt: I), |
| 605 | R: CAR->getAggregateElement(Elt: I), AC)) |
| 606 | return false; |
| 607 | } |
| 608 | |
| 609 | return true; |
| 610 | } |
| 611 | |
| 612 | // If L and R are ConstantStructs, compare each field and type. |
| 613 | if (isa<ConstantStruct>(Val: L)) { |
| 614 | const ConstantStruct *CSL = cast<ConstantStruct>(Val: L); |
| 615 | const ConstantStruct *CSR = cast<ConstantStruct>(Val: R); |
| 616 | |
| 617 | const StructType *LTy = cast<StructType>(Val: CSL->getType()); |
| 618 | const StructType *RTy = cast<StructType>(Val: CSR->getType()); |
| 619 | |
| 620 | // The StructTypes should have the same attributes. Don't use |
| 621 | // isLayoutIdentical(), because that just checks the element pointers, |
| 622 | // which may not work here. |
| 623 | if (LTy->getNumElements() != RTy->getNumElements() || |
| 624 | LTy->isPacked() != RTy->isPacked()) |
| 625 | return false; |
| 626 | |
| 627 | for (unsigned I = 0; I < LTy->getNumElements(); I++) { |
| 628 | const Value *LAgg = CSL->getAggregateElement(Elt: I); |
| 629 | const Value *RAgg = CSR->getAggregateElement(Elt: I); |
| 630 | |
| 631 | if (LAgg == SavedLHS || RAgg == SavedRHS) { |
| 632 | if (LAgg != SavedLHS || RAgg != SavedRHS) |
| 633 | // If the left and right operands aren't both re-analyzing the |
| 634 | // variable, then the initialiers don't match, so report "false". |
| 635 | // Otherwise, we skip these operands.. |
| 636 | return false; |
| 637 | |
| 638 | continue; |
| 639 | } |
| 640 | |
| 641 | if (!equivalentAsOperands(L: LAgg, R: RAgg, AC)) { |
| 642 | return false; |
| 643 | } |
| 644 | } |
| 645 | |
| 646 | return true; |
| 647 | } |
| 648 | |
| 649 | return false; |
| 650 | } |
| 651 | |
| 652 | bool equivalentAsOperands(const ConstantExpr *L, const ConstantExpr *R, |
| 653 | const AssumptionContext *AC) { |
| 654 | if (L == R) |
| 655 | return true; |
| 656 | |
| 657 | if (L->getOpcode() != R->getOpcode()) |
| 658 | return false; |
| 659 | |
| 660 | switch (L->getOpcode()) { |
| 661 | case Instruction::GetElementPtr: |
| 662 | // FIXME: inbounds? |
| 663 | break; |
| 664 | |
| 665 | default: |
| 666 | break; |
| 667 | } |
| 668 | |
| 669 | if (L->getNumOperands() != R->getNumOperands()) |
| 670 | return false; |
| 671 | |
| 672 | for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) { |
| 673 | const auto *LOp = L->getOperand(i_nocapture: I); |
| 674 | const auto *ROp = R->getOperand(i_nocapture: I); |
| 675 | |
| 676 | if (LOp == SavedLHS || ROp == SavedRHS) { |
| 677 | if (LOp != SavedLHS || ROp != SavedRHS) |
| 678 | // If the left and right operands aren't both re-analyzing the |
| 679 | // variable, then the initialiers don't match, so report "false". |
| 680 | // Otherwise, we skip these operands.. |
| 681 | return false; |
| 682 | |
| 683 | continue; |
| 684 | } |
| 685 | |
| 686 | if (!equivalentAsOperands(L: LOp, R: ROp, AC)) |
| 687 | return false; |
| 688 | } |
| 689 | |
| 690 | return true; |
| 691 | } |
| 692 | |
| 693 | // There are cases where we cannot determine whether two values are |
| 694 | // equivalent, because it depends on not yet processed basic blocks -- see the |
| 695 | // documentation on assumptions. |
| 696 | // |
| 697 | // AC is the context in which we are currently performing a diff. |
| 698 | // When we encounter a pair of values for which we can neither prove |
| 699 | // equivalence nor the opposite, we do the following: |
| 700 | // * If AC is nullptr, we treat the pair as non-equivalent. |
| 701 | // * If AC is set, we add an assumption for the basic blocks given by AC, |
| 702 | // and treat the pair as equivalent. The assumption is checked later. |
| 703 | bool equivalentAsOperands(const Value *L, const Value *R, |
| 704 | const AssumptionContext *AC) { |
| 705 | // Fall out if the values have different kind. |
| 706 | // This possibly shouldn't take priority over oracles. |
| 707 | if (L->getValueID() != R->getValueID()) |
| 708 | return false; |
| 709 | |
| 710 | // Value subtypes: Argument, Constant, Instruction, BasicBlock, |
| 711 | // InlineAsm, MDNode, MDString, PseudoSourceValue |
| 712 | |
| 713 | if (isa<Constant>(Val: L)) |
| 714 | return equivalentAsOperands(L: cast<Constant>(Val: L), R: cast<Constant>(Val: R), AC); |
| 715 | |
| 716 | if (isa<Instruction>(Val: L)) { |
| 717 | auto It = Values.find(Val: L); |
| 718 | if (It != Values.end()) |
| 719 | return It->second == R; |
| 720 | |
| 721 | if (TentativeValues.count(V: std::make_pair(x&: L, y&: R))) |
| 722 | return true; |
| 723 | |
| 724 | // L and R might be equivalent, this could depend on not yet processed |
| 725 | // basic blocks, so we cannot decide here. |
| 726 | if (AC) { |
| 727 | // Add an assumption, unless there is a conflict with an existing one |
| 728 | BlockDiffCandidate &BDC = |
| 729 | getOrCreateBlockDiffCandidate(LBB: AC->LBB, RBB: AC->RBB); |
| 730 | auto InsertionResult = BDC.EquivalenceAssumptions.insert(KV: {L, R}); |
| 731 | if (!InsertionResult.second && InsertionResult.first->second != R) { |
| 732 | // We already have a conflicting equivalence assumption for L, so at |
| 733 | // least one must be wrong, and we know that there is a diff. |
| 734 | BDC.KnownToDiffer = true; |
| 735 | BDC.EquivalenceAssumptions.clear(); |
| 736 | return false; |
| 737 | } |
| 738 | // Optimistically assume equivalence, and check later once all BBs |
| 739 | // have been processed. |
| 740 | return true; |
| 741 | } |
| 742 | |
| 743 | // Assumptions disabled, so pessimistically assume non-equivalence. |
| 744 | return false; |
| 745 | } |
| 746 | |
| 747 | if (isa<Argument>(Val: L)) |
| 748 | return Values[L] == R; |
| 749 | |
| 750 | if (isa<BasicBlock>(Val: L)) |
| 751 | return Blocks[cast<BasicBlock>(Val: L)] != R; |
| 752 | |
| 753 | // Pretend everything else is identical. |
| 754 | return true; |
| 755 | } |
| 756 | |
| 757 | // Avoid a gcc warning about accessing 'this' in an initializer. |
| 758 | FunctionDifferenceEngine *this_() { return this; } |
| 759 | |
| 760 | public: |
| 761 | FunctionDifferenceEngine(DifferenceEngine &Engine, |
| 762 | const Value *SavedLHS = nullptr, |
| 763 | const Value *SavedRHS = nullptr) |
| 764 | : Engine(Engine), SavedLHS(SavedLHS), SavedRHS(SavedRHS), |
| 765 | Queue(QueueSorter(*this_())) {} |
| 766 | |
| 767 | void diff(const Function *L, const Function *R) { |
| 768 | assert(Values.empty() && "Multiple diffs per engine are not supported!" ); |
| 769 | |
| 770 | if (L->arg_size() != R->arg_size()) |
| 771 | Engine.log(text: "different argument counts" ); |
| 772 | |
| 773 | // Map the arguments. |
| 774 | for (Function::const_arg_iterator LI = L->arg_begin(), LE = L->arg_end(), |
| 775 | RI = R->arg_begin(), RE = R->arg_end(); |
| 776 | LI != LE && RI != RE; ++LI, ++RI) |
| 777 | Values[&*LI] = &*RI; |
| 778 | |
| 779 | tryUnify(L: &*L->begin(), R: &*R->begin()); |
| 780 | processQueue(); |
| 781 | checkAndReportDiffCandidates(); |
| 782 | } |
| 783 | }; |
| 784 | |
| 785 | struct DiffEntry { |
| 786 | DiffEntry() = default; |
| 787 | |
| 788 | unsigned Cost = 0; |
| 789 | llvm::SmallVector<char, 8> Path; // actually of DifferenceEngine::DiffChange |
| 790 | }; |
| 791 | |
| 792 | bool FunctionDifferenceEngine::matchForBlockDiff(const Instruction *L, |
| 793 | const Instruction *R) { |
| 794 | return !diff(L, R, Complain: false, TryUnify: false, AllowAssumptions: false); |
| 795 | } |
| 796 | |
| 797 | void FunctionDifferenceEngine::runBlockDiff(BasicBlock::const_iterator LStart, |
| 798 | BasicBlock::const_iterator RStart) { |
| 799 | BasicBlock::const_iterator LE = LStart->getParent()->end(); |
| 800 | BasicBlock::const_iterator RE = RStart->getParent()->end(); |
| 801 | |
| 802 | unsigned NL = std::distance(first: LStart, last: LE); |
| 803 | |
| 804 | SmallVector<DiffEntry, 20> Paths1(NL+1); |
| 805 | SmallVector<DiffEntry, 20> Paths2(NL+1); |
| 806 | |
| 807 | DiffEntry *Cur = Paths1.data(); |
| 808 | DiffEntry *Next = Paths2.data(); |
| 809 | |
| 810 | const unsigned LeftCost = 2; |
| 811 | const unsigned RightCost = 2; |
| 812 | const unsigned MatchCost = 0; |
| 813 | |
| 814 | assert(TentativeValues.empty()); |
| 815 | |
| 816 | // Initialize the first column. |
| 817 | for (unsigned I = 0; I != NL+1; ++I) { |
| 818 | Cur[I].Cost = I * LeftCost; |
| 819 | for (unsigned J = 0; J != I; ++J) |
| 820 | Cur[I].Path.push_back(Elt: DC_left); |
| 821 | } |
| 822 | |
| 823 | for (BasicBlock::const_iterator RI = RStart; RI != RE; ++RI) { |
| 824 | // Initialize the first row. |
| 825 | Next[0] = Cur[0]; |
| 826 | Next[0].Cost += RightCost; |
| 827 | Next[0].Path.push_back(Elt: DC_right); |
| 828 | |
| 829 | unsigned Index = 1; |
| 830 | for (BasicBlock::const_iterator LI = LStart; LI != LE; ++LI, ++Index) { |
| 831 | if (matchForBlockDiff(L: &*LI, R: &*RI)) { |
| 832 | Next[Index] = Cur[Index-1]; |
| 833 | Next[Index].Cost += MatchCost; |
| 834 | Next[Index].Path.push_back(Elt: DC_match); |
| 835 | TentativeValues.insert(V: std::make_pair(x: &*LI, y: &*RI)); |
| 836 | } else if (Next[Index-1].Cost <= Cur[Index].Cost) { |
| 837 | Next[Index] = Next[Index-1]; |
| 838 | Next[Index].Cost += LeftCost; |
| 839 | Next[Index].Path.push_back(Elt: DC_left); |
| 840 | } else { |
| 841 | Next[Index] = Cur[Index]; |
| 842 | Next[Index].Cost += RightCost; |
| 843 | Next[Index].Path.push_back(Elt: DC_right); |
| 844 | } |
| 845 | } |
| 846 | |
| 847 | std::swap(a&: Cur, b&: Next); |
| 848 | } |
| 849 | |
| 850 | // We don't need the tentative values anymore; everything from here |
| 851 | // on out should be non-tentative. |
| 852 | TentativeValues.clear(); |
| 853 | |
| 854 | SmallVectorImpl<char> &Path = Cur[NL].Path; |
| 855 | BasicBlock::const_iterator LI = LStart, RI = RStart; |
| 856 | |
| 857 | DiffLogBuilder Diff(Engine.getConsumer()); |
| 858 | |
| 859 | // Drop trailing matches. |
| 860 | while (Path.size() && Path.back() == DC_match) |
| 861 | Path.pop_back(); |
| 862 | |
| 863 | // Skip leading matches. |
| 864 | SmallVectorImpl<char>::iterator |
| 865 | PI = Path.begin(), PE = Path.end(); |
| 866 | while (PI != PE && *PI == DC_match) { |
| 867 | unify(L: &*LI, R: &*RI); |
| 868 | ++PI; |
| 869 | ++LI; |
| 870 | ++RI; |
| 871 | } |
| 872 | |
| 873 | for (; PI != PE; ++PI) { |
| 874 | switch (static_cast<DiffChange>(*PI)) { |
| 875 | case DC_match: |
| 876 | assert(LI != LE && RI != RE); |
| 877 | { |
| 878 | const Instruction *L = &*LI, *R = &*RI; |
| 879 | unify(L, R); |
| 880 | Diff.addMatch(L, R); |
| 881 | } |
| 882 | ++LI; ++RI; |
| 883 | break; |
| 884 | |
| 885 | case DC_left: |
| 886 | assert(LI != LE); |
| 887 | Diff.addLeft(L: &*LI); |
| 888 | ++LI; |
| 889 | break; |
| 890 | |
| 891 | case DC_right: |
| 892 | assert(RI != RE); |
| 893 | Diff.addRight(R: &*RI); |
| 894 | ++RI; |
| 895 | break; |
| 896 | } |
| 897 | } |
| 898 | |
| 899 | // Finishing unifying and complaining about the tails of the block, |
| 900 | // which should be matches all the way through. |
| 901 | while (LI != LE) { |
| 902 | assert(RI != RE); |
| 903 | unify(L: &*LI, R: &*RI); |
| 904 | ++LI; |
| 905 | ++RI; |
| 906 | } |
| 907 | |
| 908 | // If the terminators have different kinds, but one is an invoke and the |
| 909 | // other is an unconditional branch immediately following a call, unify |
| 910 | // the results and the destinations. |
| 911 | const Instruction *LTerm = LStart->getParent()->getTerminator(); |
| 912 | const Instruction *RTerm = RStart->getParent()->getTerminator(); |
| 913 | if (isa<BranchInst>(Val: LTerm) && isa<InvokeInst>(Val: RTerm)) { |
| 914 | if (cast<BranchInst>(Val: LTerm)->isConditional()) return; |
| 915 | BasicBlock::const_iterator I = LTerm->getIterator(); |
| 916 | if (I == LStart->getParent()->begin()) return; |
| 917 | --I; |
| 918 | if (!isa<CallInst>(Val: *I)) return; |
| 919 | const CallInst *LCall = cast<CallInst>(Val: &*I); |
| 920 | const InvokeInst *RInvoke = cast<InvokeInst>(Val: RTerm); |
| 921 | if (!equivalentAsOperands(L: LCall->getCalledOperand(), |
| 922 | R: RInvoke->getCalledOperand(), AC: nullptr)) |
| 923 | return; |
| 924 | if (!LCall->use_empty()) |
| 925 | Values[LCall] = RInvoke; |
| 926 | tryUnify(L: LTerm->getSuccessor(Idx: 0), R: RInvoke->getNormalDest()); |
| 927 | } else if (isa<InvokeInst>(Val: LTerm) && isa<BranchInst>(Val: RTerm)) { |
| 928 | if (cast<BranchInst>(Val: RTerm)->isConditional()) return; |
| 929 | BasicBlock::const_iterator I = RTerm->getIterator(); |
| 930 | if (I == RStart->getParent()->begin()) return; |
| 931 | --I; |
| 932 | if (!isa<CallInst>(Val: *I)) return; |
| 933 | const CallInst *RCall = cast<CallInst>(Val&: I); |
| 934 | const InvokeInst *LInvoke = cast<InvokeInst>(Val: LTerm); |
| 935 | if (!equivalentAsOperands(L: LInvoke->getCalledOperand(), |
| 936 | R: RCall->getCalledOperand(), AC: nullptr)) |
| 937 | return; |
| 938 | if (!LInvoke->use_empty()) |
| 939 | Values[LInvoke] = RCall; |
| 940 | tryUnify(L: LInvoke->getNormalDest(), R: RTerm->getSuccessor(Idx: 0)); |
| 941 | } |
| 942 | } |
| 943 | } |
| 944 | |
| 945 | void DifferenceEngine::Oracle::anchor() { } |
| 946 | |
| 947 | void DifferenceEngine::diff(const Function *L, const Function *R) { |
| 948 | Context C(*this, L, R); |
| 949 | |
| 950 | // FIXME: types |
| 951 | // FIXME: attributes and CC |
| 952 | // FIXME: parameter attributes |
| 953 | |
| 954 | // If both are declarations, we're done. |
| 955 | if (L->empty() && R->empty()) |
| 956 | return; |
| 957 | else if (L->empty()) |
| 958 | log(text: "left function is declaration, right function is definition" ); |
| 959 | else if (R->empty()) |
| 960 | log(text: "right function is declaration, left function is definition" ); |
| 961 | else |
| 962 | FunctionDifferenceEngine(*this).diff(L, R); |
| 963 | } |
| 964 | |
| 965 | void DifferenceEngine::diff(const Module *L, const Module *R) { |
| 966 | StringSet<> LNames; |
| 967 | SmallVector<std::pair<const Function *, const Function *>, 20> Queue; |
| 968 | |
| 969 | unsigned LeftAnonCount = 0; |
| 970 | unsigned RightAnonCount = 0; |
| 971 | |
| 972 | for (Module::const_iterator I = L->begin(), E = L->end(); I != E; ++I) { |
| 973 | const Function *LFn = &*I; |
| 974 | StringRef Name = LFn->getName(); |
| 975 | if (Name.empty()) { |
| 976 | ++LeftAnonCount; |
| 977 | continue; |
| 978 | } |
| 979 | |
| 980 | LNames.insert(key: Name); |
| 981 | |
| 982 | if (Function *RFn = R->getFunction(Name: LFn->getName())) |
| 983 | Queue.push_back(Elt: std::make_pair(x&: LFn, y&: RFn)); |
| 984 | else |
| 985 | logf(text: "function %l exists only in left module" ) << LFn; |
| 986 | } |
| 987 | |
| 988 | for (Module::const_iterator I = R->begin(), E = R->end(); I != E; ++I) { |
| 989 | const Function *RFn = &*I; |
| 990 | StringRef Name = RFn->getName(); |
| 991 | if (Name.empty()) { |
| 992 | ++RightAnonCount; |
| 993 | continue; |
| 994 | } |
| 995 | |
| 996 | if (!LNames.count(Key: Name)) |
| 997 | logf(text: "function %r exists only in right module" ) << RFn; |
| 998 | } |
| 999 | |
| 1000 | if (LeftAnonCount != 0 || RightAnonCount != 0) { |
| 1001 | SmallString<32> Tmp; |
| 1002 | logf(text: ("not comparing " + Twine(LeftAnonCount) + |
| 1003 | " anonymous functions in the left module and " + |
| 1004 | Twine(RightAnonCount) + " in the right module" ) |
| 1005 | .toStringRef(Out&: Tmp)); |
| 1006 | } |
| 1007 | |
| 1008 | for (SmallVectorImpl<std::pair<const Function *, const Function *>>::iterator |
| 1009 | I = Queue.begin(), |
| 1010 | E = Queue.end(); |
| 1011 | I != E; ++I) |
| 1012 | diff(L: I->first, R: I->second); |
| 1013 | } |
| 1014 | |
| 1015 | bool DifferenceEngine::equivalentAsOperands(const GlobalValue *L, |
| 1016 | const GlobalValue *R) { |
| 1017 | if (globalValueOracle) return (*globalValueOracle)(L, R); |
| 1018 | |
| 1019 | if (isa<GlobalVariable>(Val: L) && isa<GlobalVariable>(Val: R)) { |
| 1020 | const GlobalVariable *GVL = cast<GlobalVariable>(Val: L); |
| 1021 | const GlobalVariable *GVR = cast<GlobalVariable>(Val: R); |
| 1022 | if (GVL->hasLocalLinkage() && GVL->hasUniqueInitializer() && |
| 1023 | GVR->hasLocalLinkage() && GVR->hasUniqueInitializer()) |
| 1024 | return FunctionDifferenceEngine(*this, GVL, GVR) |
| 1025 | .equivalentAsOperands(L: GVL->getInitializer(), R: GVR->getInitializer(), |
| 1026 | AC: nullptr); |
| 1027 | } |
| 1028 | |
| 1029 | return L->getName() == R->getName(); |
| 1030 | } |
| 1031 | |