| 1 | //===--------------------- BottleneckAnalysis.h -----------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file |
| 9 | /// |
| 10 | /// This file implements the bottleneck analysis view. |
| 11 | /// |
| 12 | /// This view internally observes backend pressure increase events in order to |
| 13 | /// identify problematic data dependencies and processor resource interferences. |
| 14 | /// |
| 15 | /// Example of bottleneck analysis report for a dot-product on X86 btver2: |
| 16 | /// |
| 17 | /// Cycles with backend pressure increase [ 40.76% ] |
| 18 | /// Throughput Bottlenecks: |
| 19 | /// Resource Pressure [ 39.34% ] |
| 20 | /// - JFPA [ 39.34% ] |
| 21 | /// - JFPU0 [ 39.34% ] |
| 22 | /// Data Dependencies: [ 1.42% ] |
| 23 | /// - Register Dependencies [ 1.42% ] |
| 24 | /// - Memory Dependencies [ 0.00% ] |
| 25 | /// |
| 26 | /// According to the example, backend pressure increased during the 40.76% of |
| 27 | /// the simulated cycles. In particular, the major cause of backend pressure |
| 28 | /// increases was the contention on floating point adder JFPA accessible from |
| 29 | /// pipeline resource JFPU0. |
| 30 | /// |
| 31 | /// At the end of each cycle, if pressure on the simulated out-of-order buffers |
| 32 | /// has increased, a backend pressure event is reported. |
| 33 | /// In particular, this occurs when there is a delta between the number of uOps |
| 34 | /// dispatched and the number of uOps issued to the underlying pipelines. |
| 35 | /// |
| 36 | /// The bottleneck analysis view is also responsible for identifying and |
| 37 | /// printing the most "critical" sequence of dependent instructions according to |
| 38 | /// the simulated run. |
| 39 | /// |
| 40 | /// Below is the critical sequence computed for the dot-product example on |
| 41 | /// btver2: |
| 42 | /// |
| 43 | /// Instruction Dependency Information |
| 44 | /// +----< 2. vhaddps %xmm3, %xmm3, %xmm4 |
| 45 | /// | |
| 46 | /// | < loop carried > |
| 47 | /// | |
| 48 | /// | 0. vmulps %xmm0, %xmm0, %xmm2 |
| 49 | /// +----> 1. vhaddps %xmm2, %xmm2, %xmm3 ## RESOURCE interference: JFPA [ probability: 73% ] |
| 50 | /// +----> 2. vhaddps %xmm3, %xmm3, %xmm4 ## REGISTER dependency: %xmm3 |
| 51 | /// | |
| 52 | /// | < loop carried > |
| 53 | /// | |
| 54 | /// +----> 1. vhaddps %xmm2, %xmm2, %xmm3 ## RESOURCE interference: JFPA [ probability: 73% ] |
| 55 | /// |
| 56 | /// |
| 57 | /// The algorithm that computes the critical sequence is very similar to a |
| 58 | /// critical path analysis. |
| 59 | /// |
| 60 | /// A dependency graph is used internally to track dependencies between nodes. |
| 61 | /// Nodes of the graph represent instructions from the input assembly sequence, |
| 62 | /// and edges of the graph represent data dependencies or processor resource |
| 63 | /// interferences. |
| 64 | /// |
| 65 | /// Edges are dynamically 'discovered' by observing instruction state |
| 66 | /// transitions and backend pressure increase events. Edges are internally |
| 67 | /// ranked based on their "criticality". A dependency is considered to be |
| 68 | /// critical if it takes a long time to execute, and if it contributes to |
| 69 | /// backend pressure increases. Criticality is internally measured in terms of |
| 70 | /// cycles; it is computed for every edge in the graph as a function of the edge |
| 71 | /// latency and the number of backend pressure increase cycles contributed by |
| 72 | /// that edge. |
| 73 | /// |
| 74 | /// At the end of simulation, costs are propagated to nodes through the edges of |
| 75 | /// the graph, and the most expensive path connecting the root-set (a |
| 76 | /// set of nodes with no predecessors) to a leaf node is reported as critical |
| 77 | /// sequence. |
| 78 | // |
| 79 | //===----------------------------------------------------------------------===// |
| 80 | |
| 81 | #ifndef LLVM_TOOLS_LLVM_MCA_BOTTLENECK_ANALYSIS_H |
| 82 | #define LLVM_TOOLS_LLVM_MCA_BOTTLENECK_ANALYSIS_H |
| 83 | |
| 84 | #include "Views/InstructionView.h" |
| 85 | #include "llvm/ADT/DenseMap.h" |
| 86 | #include "llvm/ADT/SmallVector.h" |
| 87 | #include "llvm/MC/MCInstPrinter.h" |
| 88 | #include "llvm/MC/MCSchedule.h" |
| 89 | #include "llvm/MC/MCSubtargetInfo.h" |
| 90 | #include "llvm/Support/FormattedStream.h" |
| 91 | #include "llvm/Support/raw_ostream.h" |
| 92 | |
| 93 | namespace llvm { |
| 94 | namespace mca { |
| 95 | |
| 96 | class PressureTracker { |
| 97 | const MCSchedModel &SM; |
| 98 | |
| 99 | // Resource pressure distribution. There is an element for every processor |
| 100 | // resource declared by the scheduling model. Quantities are number of cycles. |
| 101 | SmallVector<unsigned, 4> ResourcePressureDistribution; |
| 102 | |
| 103 | // Each processor resource is associated with a so-called processor resource |
| 104 | // mask. This vector allows to correlate processor resource IDs with processor |
| 105 | // resource masks. There is exactly one element per each processor resource |
| 106 | // declared by the scheduling model. |
| 107 | SmallVector<uint64_t, 4> ProcResID2Mask; |
| 108 | |
| 109 | // Maps processor resource state indices (returned by calls to |
| 110 | // `getResourceStateIndex(Mask)` to processor resource identifiers. |
| 111 | SmallVector<unsigned, 4> ResIdx2ProcResID; |
| 112 | |
| 113 | // Maps Processor Resource identifiers to ResourceUsers indices. |
| 114 | SmallVector<unsigned, 4> ProcResID2ResourceUsersIndex; |
| 115 | |
| 116 | // Identifies the last user of a processor resource unit. |
| 117 | // This vector is updated on every instruction issued event. |
| 118 | // There is one entry for every processor resource unit declared by the |
| 119 | // processor model. An all_ones value is treated like an invalid instruction |
| 120 | // identifier. |
| 121 | using User = std::pair<unsigned, unsigned>; |
| 122 | SmallVector<User, 4> ResourceUsers; |
| 123 | |
| 124 | struct InstructionPressureInfo { |
| 125 | unsigned RegisterPressureCycles; |
| 126 | unsigned MemoryPressureCycles; |
| 127 | unsigned ResourcePressureCycles; |
| 128 | }; |
| 129 | DenseMap<unsigned, InstructionPressureInfo> IPI; |
| 130 | |
| 131 | void updateResourcePressureDistribution(uint64_t CumulativeMask); |
| 132 | |
| 133 | User getResourceUser(unsigned ProcResID, unsigned UnitID) const { |
| 134 | unsigned Index = ProcResID2ResourceUsersIndex[ProcResID]; |
| 135 | return ResourceUsers[Index + UnitID]; |
| 136 | } |
| 137 | |
| 138 | public: |
| 139 | PressureTracker(const MCSchedModel &Model); |
| 140 | |
| 141 | ArrayRef<unsigned> getResourcePressureDistribution() const { |
| 142 | return ResourcePressureDistribution; |
| 143 | } |
| 144 | |
| 145 | void getResourceUsers(uint64_t ResourceMask, |
| 146 | SmallVectorImpl<User> &Users) const; |
| 147 | |
| 148 | unsigned getRegisterPressureCycles(unsigned IID) const { |
| 149 | assert(IPI.contains(IID) && "Instruction is not tracked!" ); |
| 150 | const InstructionPressureInfo &Info = IPI.find(Val: IID)->second; |
| 151 | return Info.RegisterPressureCycles; |
| 152 | } |
| 153 | |
| 154 | unsigned getMemoryPressureCycles(unsigned IID) const { |
| 155 | assert(IPI.contains(IID) && "Instruction is not tracked!" ); |
| 156 | const InstructionPressureInfo &Info = IPI.find(Val: IID)->second; |
| 157 | return Info.MemoryPressureCycles; |
| 158 | } |
| 159 | |
| 160 | unsigned getResourcePressureCycles(unsigned IID) const { |
| 161 | assert(IPI.contains(IID) && "Instruction is not tracked!" ); |
| 162 | const InstructionPressureInfo &Info = IPI.find(Val: IID)->second; |
| 163 | return Info.ResourcePressureCycles; |
| 164 | } |
| 165 | |
| 166 | const char *resolveResourceName(uint64_t ResourceMask) const { |
| 167 | unsigned Index = getResourceStateIndex(Mask: ResourceMask); |
| 168 | unsigned ProcResID = ResIdx2ProcResID[Index]; |
| 169 | const MCProcResourceDesc &PRDesc = *SM.getProcResource(ProcResourceIdx: ProcResID); |
| 170 | return PRDesc.Name; |
| 171 | } |
| 172 | |
| 173 | void onInstructionDispatched(unsigned IID); |
| 174 | void onInstructionExecuted(unsigned IID); |
| 175 | |
| 176 | void handlePressureEvent(const HWPressureEvent &Event); |
| 177 | void handleInstructionIssuedEvent(const HWInstructionIssuedEvent &Event); |
| 178 | }; |
| 179 | |
| 180 | // A dependency edge. |
| 181 | struct DependencyEdge { |
| 182 | enum DependencyType { DT_INVALID, DT_REGISTER, DT_MEMORY, DT_RESOURCE }; |
| 183 | |
| 184 | // Dependency edge descriptor. |
| 185 | // |
| 186 | // It specifies the dependency type, as well as the edge cost in cycles. |
| 187 | struct Dependency { |
| 188 | DependencyType Type; |
| 189 | uint64_t ResourceOrRegID; |
| 190 | uint64_t Cost; |
| 191 | }; |
| 192 | Dependency Dep; |
| 193 | |
| 194 | unsigned FromIID; |
| 195 | unsigned ToIID; |
| 196 | |
| 197 | // Used by the bottleneck analysis to compute the interference |
| 198 | // probability for processor resources. |
| 199 | unsigned Frequency; |
| 200 | }; |
| 201 | |
| 202 | // A dependency graph used by the bottleneck analysis to describe data |
| 203 | // dependencies and processor resource interferences between instructions. |
| 204 | // |
| 205 | // There is a node (an instance of struct DGNode) for every instruction in the |
| 206 | // input assembly sequence. Edges of the graph represent dependencies between |
| 207 | // instructions. |
| 208 | // |
| 209 | // Each edge of the graph is associated with a cost value which is used |
| 210 | // internally to rank dependency based on their impact on the runtime |
| 211 | // performance (see field DependencyEdge::Dependency::Cost). In general, the |
| 212 | // higher the cost of an edge, the higher the impact on performance. |
| 213 | // |
| 214 | // The cost of a dependency is a function of both the latency and the number of |
| 215 | // cycles where the dependency has been seen as critical (i.e. contributing to |
| 216 | // back-pressure increases). |
| 217 | // |
| 218 | // Loop carried dependencies are carefully expanded by the bottleneck analysis |
| 219 | // to guarantee that the graph stays acyclic. To this end, extra nodes are |
| 220 | // pre-allocated at construction time to describe instructions from "past and |
| 221 | // future" iterations. The graph is kept acyclic mainly because it simplifies |
| 222 | // the complexity of the algorithm that computes the critical sequence. |
| 223 | class DependencyGraph { |
| 224 | struct DGNode { |
| 225 | unsigned NumPredecessors; |
| 226 | unsigned NumVisitedPredecessors; |
| 227 | uint64_t Cost; |
| 228 | unsigned Depth; |
| 229 | |
| 230 | DependencyEdge CriticalPredecessor; |
| 231 | // Measurements show that more than 90% of nodes have no outgoing edges. To |
| 232 | // minimize memory consumption we use SmallVector with zero inline elements |
| 233 | // that is preferred version of std::vector. |
| 234 | SmallVector<DependencyEdge, 0> OutgoingEdges; |
| 235 | }; |
| 236 | SmallVector<DGNode, 16> Nodes; |
| 237 | |
| 238 | DependencyGraph(const DependencyGraph &) = delete; |
| 239 | DependencyGraph &operator=(const DependencyGraph &) = delete; |
| 240 | |
| 241 | void addDependency(unsigned From, unsigned To, |
| 242 | DependencyEdge::Dependency &&DE); |
| 243 | |
| 244 | void pruneEdges(unsigned Iterations); |
| 245 | void initializeRootSet(SmallVectorImpl<unsigned> &RootSet) const; |
| 246 | void propagateThroughEdges(SmallVectorImpl<unsigned> &RootSet, |
| 247 | unsigned Iterations); |
| 248 | |
| 249 | #ifndef NDEBUG |
| 250 | void dumpDependencyEdge(raw_ostream &OS, const DependencyEdge &DE, |
| 251 | MCInstPrinter &MCIP) const; |
| 252 | #endif |
| 253 | |
| 254 | public: |
| 255 | DependencyGraph(unsigned Size) : Nodes(Size) {} |
| 256 | |
| 257 | void addRegisterDep(unsigned From, unsigned To, unsigned RegID, |
| 258 | unsigned Cost) { |
| 259 | addDependency(From, To, DE: {.Type: DependencyEdge::DT_REGISTER, .ResourceOrRegID: RegID, .Cost: Cost}); |
| 260 | } |
| 261 | |
| 262 | void addMemoryDep(unsigned From, unsigned To, unsigned Cost) { |
| 263 | addDependency(From, To, DE: {.Type: DependencyEdge::DT_MEMORY, /* unused */ .ResourceOrRegID: 0, .Cost: Cost}); |
| 264 | } |
| 265 | |
| 266 | void addResourceDep(unsigned From, unsigned To, uint64_t Mask, |
| 267 | unsigned Cost) { |
| 268 | addDependency(From, To, DE: {.Type: DependencyEdge::DT_RESOURCE, .ResourceOrRegID: Mask, .Cost: Cost}); |
| 269 | } |
| 270 | |
| 271 | // Called by the bottleneck analysis at the end of simulation to propagate |
| 272 | // costs through the edges of the graph, and compute a critical path. |
| 273 | void finalizeGraph(unsigned Iterations) { |
| 274 | SmallVector<unsigned, 16> RootSet; |
| 275 | pruneEdges(Iterations); |
| 276 | initializeRootSet(RootSet); |
| 277 | propagateThroughEdges(RootSet, Iterations); |
| 278 | } |
| 279 | |
| 280 | // Returns a sequence of edges representing the critical sequence based on the |
| 281 | // simulated run. It assumes that the graph has already been finalized (i.e. |
| 282 | // method `finalizeGraph()` has already been called on this graph). |
| 283 | void getCriticalSequence(SmallVectorImpl<const DependencyEdge *> &Seq) const; |
| 284 | |
| 285 | #ifndef NDEBUG |
| 286 | void dump(raw_ostream &OS, MCInstPrinter &MCIP) const; |
| 287 | #endif |
| 288 | }; |
| 289 | |
| 290 | /// A view that collects and prints a few performance numbers. |
| 291 | class BottleneckAnalysis : public InstructionView { |
| 292 | PressureTracker Tracker; |
| 293 | DependencyGraph DG; |
| 294 | |
| 295 | unsigned Iterations; |
| 296 | unsigned TotalCycles; |
| 297 | |
| 298 | bool PressureIncreasedBecauseOfResources; |
| 299 | bool PressureIncreasedBecauseOfRegisterDependencies; |
| 300 | bool PressureIncreasedBecauseOfMemoryDependencies; |
| 301 | // True if throughput was affected by dispatch stalls. |
| 302 | bool SeenStallCycles; |
| 303 | |
| 304 | struct BackPressureInfo { |
| 305 | // Cycles where backpressure increased. |
| 306 | unsigned PressureIncreaseCycles; |
| 307 | // Cycles where backpressure increased because of pipeline pressure. |
| 308 | unsigned ResourcePressureCycles; |
| 309 | // Cycles where backpressure increased because of data dependencies. |
| 310 | unsigned DataDependencyCycles; |
| 311 | // Cycles where backpressure increased because of register dependencies. |
| 312 | unsigned RegisterDependencyCycles; |
| 313 | // Cycles where backpressure increased because of memory dependencies. |
| 314 | unsigned MemoryDependencyCycles; |
| 315 | }; |
| 316 | BackPressureInfo BPI; |
| 317 | |
| 318 | // Used to populate the dependency graph DG. |
| 319 | void addRegisterDep(unsigned From, unsigned To, unsigned RegID, unsigned Cy); |
| 320 | void addMemoryDep(unsigned From, unsigned To, unsigned Cy); |
| 321 | void addResourceDep(unsigned From, unsigned To, uint64_t Mask, unsigned Cy); |
| 322 | |
| 323 | void printInstruction(formatted_raw_ostream &FOS, const MCInst &MCI, |
| 324 | bool UseDifferentColor = false) const; |
| 325 | |
| 326 | // Prints a bottleneck message to OS. |
| 327 | void printBottleneckHints(raw_ostream &OS) const; |
| 328 | void printCriticalSequence(raw_ostream &OS) const; |
| 329 | |
| 330 | public: |
| 331 | BottleneckAnalysis(const MCSubtargetInfo &STI, MCInstPrinter &MCIP, |
| 332 | ArrayRef<MCInst> Sequence, unsigned Iterations); |
| 333 | |
| 334 | void onCycleEnd() override; |
| 335 | void onEvent(const HWStallEvent &Event) override { SeenStallCycles = true; } |
| 336 | void onEvent(const HWPressureEvent &Event) override; |
| 337 | void onEvent(const HWInstructionEvent &Event) override; |
| 338 | |
| 339 | void printView(raw_ostream &OS) const override; |
| 340 | StringRef getNameAsString() const override { return "BottleneckAnalysis" ; } |
| 341 | bool isSerializable() const override { return true; } |
| 342 | json::Value toJSON() const override; |
| 343 | |
| 344 | #ifndef NDEBUG |
| 345 | void dump(raw_ostream &OS, MCInstPrinter &MCIP) const { DG.dump(OS, MCIP); } |
| 346 | #endif |
| 347 | }; |
| 348 | |
| 349 | } // namespace mca |
| 350 | } // namespace llvm |
| 351 | |
| 352 | #endif |
| 353 | |