| 1 | //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This program is a utility that works like binutils "objdump", that is, it |
| 10 | // dumps out a plethora of information about an object file depending on the |
| 11 | // flags. |
| 12 | // |
| 13 | // The flags and output of this program should be near identical to those of |
| 14 | // binutils objdump. |
| 15 | // |
| 16 | //===----------------------------------------------------------------------===// |
| 17 | |
| 18 | #include "llvm-objdump.h" |
| 19 | #include "COFFDump.h" |
| 20 | #include "ELFDump.h" |
| 21 | #include "MachODump.h" |
| 22 | #include "ObjdumpOptID.h" |
| 23 | #include "OffloadDump.h" |
| 24 | #include "SourcePrinter.h" |
| 25 | #include "WasmDump.h" |
| 26 | #include "XCOFFDump.h" |
| 27 | #include "llvm/ADT/STLExtras.h" |
| 28 | #include "llvm/ADT/SetOperations.h" |
| 29 | #include "llvm/ADT/StringExtras.h" |
| 30 | #include "llvm/ADT/Twine.h" |
| 31 | #include "llvm/BinaryFormat/Wasm.h" |
| 32 | #include "llvm/DebugInfo/BTF/BTFParser.h" |
| 33 | #include "llvm/DebugInfo/DWARF/DWARFContext.h" |
| 34 | #include "llvm/DebugInfo/Symbolize/Symbolize.h" |
| 35 | #include "llvm/Debuginfod/BuildIDFetcher.h" |
| 36 | #include "llvm/Debuginfod/Debuginfod.h" |
| 37 | #include "llvm/Debuginfod/HTTPClient.h" |
| 38 | #include "llvm/Demangle/Demangle.h" |
| 39 | #include "llvm/MC/MCAsmInfo.h" |
| 40 | #include "llvm/MC/MCContext.h" |
| 41 | #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" |
| 42 | #include "llvm/MC/MCInst.h" |
| 43 | #include "llvm/MC/MCInstPrinter.h" |
| 44 | #include "llvm/MC/MCInstrAnalysis.h" |
| 45 | #include "llvm/MC/MCInstrInfo.h" |
| 46 | #include "llvm/MC/MCObjectFileInfo.h" |
| 47 | #include "llvm/MC/MCRegisterInfo.h" |
| 48 | #include "llvm/MC/MCTargetOptions.h" |
| 49 | #include "llvm/MC/TargetRegistry.h" |
| 50 | #include "llvm/Object/BuildID.h" |
| 51 | #include "llvm/Object/COFF.h" |
| 52 | #include "llvm/Object/COFFImportFile.h" |
| 53 | #include "llvm/Object/ELFObjectFile.h" |
| 54 | #include "llvm/Object/ELFTypes.h" |
| 55 | #include "llvm/Object/FaultMapParser.h" |
| 56 | #include "llvm/Object/MachO.h" |
| 57 | #include "llvm/Object/MachOUniversal.h" |
| 58 | #include "llvm/Object/OffloadBinary.h" |
| 59 | #include "llvm/Object/Wasm.h" |
| 60 | #include "llvm/Option/Arg.h" |
| 61 | #include "llvm/Option/ArgList.h" |
| 62 | #include "llvm/Option/Option.h" |
| 63 | #include "llvm/Support/Casting.h" |
| 64 | #include "llvm/Support/Debug.h" |
| 65 | #include "llvm/Support/Errc.h" |
| 66 | #include "llvm/Support/FileSystem.h" |
| 67 | #include "llvm/Support/Format.h" |
| 68 | #include "llvm/Support/LLVMDriver.h" |
| 69 | #include "llvm/Support/MemoryBuffer.h" |
| 70 | #include "llvm/Support/SourceMgr.h" |
| 71 | #include "llvm/Support/StringSaver.h" |
| 72 | #include "llvm/Support/TargetSelect.h" |
| 73 | #include "llvm/Support/WithColor.h" |
| 74 | #include "llvm/Support/raw_ostream.h" |
| 75 | #include "llvm/TargetParser/Host.h" |
| 76 | #include "llvm/TargetParser/Triple.h" |
| 77 | #include <algorithm> |
| 78 | #include <cctype> |
| 79 | #include <cstring> |
| 80 | #include <optional> |
| 81 | #include <set> |
| 82 | #include <system_error> |
| 83 | #include <unordered_map> |
| 84 | #include <utility> |
| 85 | |
| 86 | using namespace llvm; |
| 87 | using namespace llvm::object; |
| 88 | using namespace llvm::objdump; |
| 89 | using namespace llvm::opt; |
| 90 | |
| 91 | namespace { |
| 92 | |
| 93 | class CommonOptTable : public opt::GenericOptTable { |
| 94 | public: |
| 95 | CommonOptTable(const StringTable &StrTable, |
| 96 | ArrayRef<StringTable::Offset> PrefixesTable, |
| 97 | ArrayRef<Info> OptionInfos, const char *Usage, |
| 98 | const char *Description) |
| 99 | : opt::GenericOptTable(StrTable, PrefixesTable, OptionInfos), |
| 100 | Usage(Usage), Description(Description) { |
| 101 | setGroupedShortOptions(true); |
| 102 | } |
| 103 | |
| 104 | void printHelp(StringRef Argv0, bool ShowHidden = false) const { |
| 105 | Argv0 = sys::path::filename(path: Argv0); |
| 106 | opt::GenericOptTable::printHelp(OS&: outs(), Usage: (Argv0 + Usage).str().c_str(), |
| 107 | Title: Description, ShowHidden, ShowAllAliases: ShowHidden); |
| 108 | // TODO Replace this with OptTable API once it adds extrahelp support. |
| 109 | outs() << "\nPass @FILE as argument to read options from FILE.\n" ; |
| 110 | } |
| 111 | |
| 112 | private: |
| 113 | const char *Usage; |
| 114 | const char *Description; |
| 115 | }; |
| 116 | |
| 117 | // ObjdumpOptID is in ObjdumpOptID.h |
| 118 | namespace objdump_opt { |
| 119 | #define OPTTABLE_STR_TABLE_CODE |
| 120 | #include "ObjdumpOpts.inc" |
| 121 | #undef OPTTABLE_STR_TABLE_CODE |
| 122 | |
| 123 | #define OPTTABLE_PREFIXES_TABLE_CODE |
| 124 | #include "ObjdumpOpts.inc" |
| 125 | #undef OPTTABLE_PREFIXES_TABLE_CODE |
| 126 | |
| 127 | static constexpr opt::OptTable::Info ObjdumpInfoTable[] = { |
| 128 | #define OPTION(...) \ |
| 129 | LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OBJDUMP_, __VA_ARGS__), |
| 130 | #include "ObjdumpOpts.inc" |
| 131 | #undef OPTION |
| 132 | }; |
| 133 | } // namespace objdump_opt |
| 134 | |
| 135 | class ObjdumpOptTable : public CommonOptTable { |
| 136 | public: |
| 137 | ObjdumpOptTable() |
| 138 | : CommonOptTable( |
| 139 | objdump_opt::OptionStrTable, objdump_opt::OptionPrefixesTable, |
| 140 | objdump_opt::ObjdumpInfoTable, " [options] <input object files>" , |
| 141 | "llvm object file dumper" ) {} |
| 142 | }; |
| 143 | |
| 144 | enum OtoolOptID { |
| 145 | OTOOL_INVALID = 0, // This is not an option ID. |
| 146 | #define OPTION(...) LLVM_MAKE_OPT_ID_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__), |
| 147 | #include "OtoolOpts.inc" |
| 148 | #undef OPTION |
| 149 | }; |
| 150 | |
| 151 | namespace otool { |
| 152 | #define OPTTABLE_STR_TABLE_CODE |
| 153 | #include "OtoolOpts.inc" |
| 154 | #undef OPTTABLE_STR_TABLE_CODE |
| 155 | |
| 156 | #define OPTTABLE_PREFIXES_TABLE_CODE |
| 157 | #include "OtoolOpts.inc" |
| 158 | #undef OPTTABLE_PREFIXES_TABLE_CODE |
| 159 | |
| 160 | static constexpr opt::OptTable::Info OtoolInfoTable[] = { |
| 161 | #define OPTION(...) LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__), |
| 162 | #include "OtoolOpts.inc" |
| 163 | #undef OPTION |
| 164 | }; |
| 165 | } // namespace otool |
| 166 | |
| 167 | class OtoolOptTable : public CommonOptTable { |
| 168 | public: |
| 169 | OtoolOptTable() |
| 170 | : CommonOptTable(otool::OptionStrTable, otool::OptionPrefixesTable, |
| 171 | otool::OtoolInfoTable, " [option...] [file...]" , |
| 172 | "Mach-O object file displaying tool" ) {} |
| 173 | }; |
| 174 | |
| 175 | struct BBAddrMapLabel { |
| 176 | std::string BlockLabel; |
| 177 | std::string PGOAnalysis; |
| 178 | }; |
| 179 | |
| 180 | // This class represents the BBAddrMap and PGOMap associated with a single |
| 181 | // function. |
| 182 | class BBAddrMapFunctionEntry { |
| 183 | public: |
| 184 | BBAddrMapFunctionEntry(BBAddrMap AddrMap, PGOAnalysisMap PGOMap) |
| 185 | : AddrMap(std::move(AddrMap)), PGOMap(std::move(PGOMap)) {} |
| 186 | |
| 187 | const BBAddrMap &getAddrMap() const { return AddrMap; } |
| 188 | |
| 189 | // Returns the PGO string associated with the entry of index `PGOBBEntryIndex` |
| 190 | // in `PGOMap`. If PrettyPGOAnalysis is true, prints BFI as relative frequency |
| 191 | // and BPI as percentage. Otherwise raw values are displayed. |
| 192 | std::string constructPGOLabelString(size_t PGOBBEntryIndex, |
| 193 | bool PrettyPGOAnalysis) const { |
| 194 | if (!PGOMap.FeatEnable.hasPGOAnalysis()) |
| 195 | return "" ; |
| 196 | std::string PGOString; |
| 197 | raw_string_ostream PGOSS(PGOString); |
| 198 | |
| 199 | PGOSS << " (" ; |
| 200 | if (PGOMap.FeatEnable.FuncEntryCount && PGOBBEntryIndex == 0) { |
| 201 | PGOSS << "Entry count: " << Twine(PGOMap.FuncEntryCount); |
| 202 | if (PGOMap.FeatEnable.hasPGOAnalysisBBData()) { |
| 203 | PGOSS << ", " ; |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | if (PGOMap.FeatEnable.hasPGOAnalysisBBData()) { |
| 208 | |
| 209 | assert(PGOBBEntryIndex < PGOMap.BBEntries.size() && |
| 210 | "Expected PGOAnalysisMap and BBAddrMap to have the same entries" ); |
| 211 | const PGOAnalysisMap::PGOBBEntry &PGOBBEntry = |
| 212 | PGOMap.BBEntries[PGOBBEntryIndex]; |
| 213 | |
| 214 | if (PGOMap.FeatEnable.BBFreq) { |
| 215 | PGOSS << "Frequency: " ; |
| 216 | if (PrettyPGOAnalysis) |
| 217 | printRelativeBlockFreq(OS&: PGOSS, EntryFreq: PGOMap.BBEntries.front().BlockFreq, |
| 218 | Freq: PGOBBEntry.BlockFreq); |
| 219 | else |
| 220 | PGOSS << Twine(PGOBBEntry.BlockFreq.getFrequency()); |
| 221 | if (PGOMap.FeatEnable.BrProb && PGOBBEntry.Successors.size() > 0) { |
| 222 | PGOSS << ", " ; |
| 223 | } |
| 224 | } |
| 225 | if (PGOMap.FeatEnable.BrProb && PGOBBEntry.Successors.size() > 0) { |
| 226 | PGOSS << "Successors: " ; |
| 227 | interleaveComma( |
| 228 | c: PGOBBEntry.Successors, os&: PGOSS, |
| 229 | each_fn: [&](const PGOAnalysisMap::PGOBBEntry::SuccessorEntry &SE) { |
| 230 | PGOSS << "BB" << SE.ID << ":" ; |
| 231 | if (PrettyPGOAnalysis) |
| 232 | PGOSS << "[" << SE.Prob << "]" ; |
| 233 | else |
| 234 | PGOSS.write_hex(N: SE.Prob.getNumerator()); |
| 235 | }); |
| 236 | } |
| 237 | } |
| 238 | PGOSS << ")" ; |
| 239 | |
| 240 | return PGOString; |
| 241 | } |
| 242 | |
| 243 | private: |
| 244 | const BBAddrMap AddrMap; |
| 245 | const PGOAnalysisMap PGOMap; |
| 246 | }; |
| 247 | |
| 248 | // This class represents the BBAddrMap and PGOMap of potentially multiple |
| 249 | // functions in a section. |
| 250 | class BBAddrMapInfo { |
| 251 | public: |
| 252 | void clear() { |
| 253 | FunctionAddrToMap.clear(); |
| 254 | RangeBaseAddrToFunctionAddr.clear(); |
| 255 | } |
| 256 | |
| 257 | bool empty() const { return FunctionAddrToMap.empty(); } |
| 258 | |
| 259 | void AddFunctionEntry(BBAddrMap AddrMap, PGOAnalysisMap PGOMap) { |
| 260 | uint64_t FunctionAddr = AddrMap.getFunctionAddress(); |
| 261 | for (size_t I = 1; I < AddrMap.BBRanges.size(); ++I) |
| 262 | RangeBaseAddrToFunctionAddr.emplace(args&: AddrMap.BBRanges[I].BaseAddress, |
| 263 | args&: FunctionAddr); |
| 264 | [[maybe_unused]] auto R = FunctionAddrToMap.try_emplace( |
| 265 | k: FunctionAddr, args: std::move(AddrMap), args: std::move(PGOMap)); |
| 266 | assert(R.second && "duplicate function address" ); |
| 267 | } |
| 268 | |
| 269 | // Returns the BBAddrMap entry for the function associated with `BaseAddress`. |
| 270 | // `BaseAddress` could be the function address or the address of a range |
| 271 | // associated with that function. Returns `nullptr` if `BaseAddress` is not |
| 272 | // mapped to any entry. |
| 273 | const BBAddrMapFunctionEntry *getEntryForAddress(uint64_t BaseAddress) const { |
| 274 | uint64_t FunctionAddr = BaseAddress; |
| 275 | auto S = RangeBaseAddrToFunctionAddr.find(x: BaseAddress); |
| 276 | if (S != RangeBaseAddrToFunctionAddr.end()) |
| 277 | FunctionAddr = S->second; |
| 278 | auto R = FunctionAddrToMap.find(x: FunctionAddr); |
| 279 | if (R == FunctionAddrToMap.end()) |
| 280 | return nullptr; |
| 281 | return &R->second; |
| 282 | } |
| 283 | |
| 284 | private: |
| 285 | std::unordered_map<uint64_t, BBAddrMapFunctionEntry> FunctionAddrToMap; |
| 286 | std::unordered_map<uint64_t, uint64_t> RangeBaseAddrToFunctionAddr; |
| 287 | }; |
| 288 | |
| 289 | } // namespace |
| 290 | |
| 291 | #define DEBUG_TYPE "objdump" |
| 292 | |
| 293 | enum class ColorOutput { |
| 294 | Auto, |
| 295 | Enable, |
| 296 | Disable, |
| 297 | Invalid, |
| 298 | }; |
| 299 | |
| 300 | static uint64_t AdjustVMA; |
| 301 | static bool ; |
| 302 | static std::string ArchName; |
| 303 | bool objdump::; |
| 304 | bool objdump::Demangle; |
| 305 | bool objdump::Disassemble; |
| 306 | bool objdump::DisassembleAll; |
| 307 | std::vector<std::string> objdump::DisassemblerOptions; |
| 308 | bool objdump::SymbolDescription; |
| 309 | bool objdump::TracebackTable; |
| 310 | static std::vector<std::string> DisassembleSymbols; |
| 311 | static bool DisassembleZeroes; |
| 312 | static ColorOutput DisassemblyColor; |
| 313 | DIDumpType objdump::DwarfDumpType; |
| 314 | static bool DynamicRelocations; |
| 315 | static bool FaultMapSection; |
| 316 | static bool ; |
| 317 | bool objdump::SectionContents; |
| 318 | static std::vector<std::string> InputFilenames; |
| 319 | bool objdump::PrintLines; |
| 320 | static bool MachOOpt; |
| 321 | std::string objdump::MCPU; |
| 322 | std::vector<std::string> objdump::MAttrs; |
| 323 | bool objdump::ShowRawInsn; |
| 324 | bool objdump::LeadingAddr; |
| 325 | static bool Offloading; |
| 326 | static bool RawClangAST; |
| 327 | bool objdump::Relocations; |
| 328 | bool objdump::PrintImmHex; |
| 329 | bool objdump::; |
| 330 | std::vector<std::string> objdump::FilterSections; |
| 331 | bool objdump::; |
| 332 | static bool ShowAllSymbols; |
| 333 | static bool ShowLMA; |
| 334 | bool objdump::PrintSource; |
| 335 | |
| 336 | static uint64_t StartAddress; |
| 337 | static bool HasStartAddressFlag; |
| 338 | static uint64_t StopAddress = UINT64_MAX; |
| 339 | static bool HasStopAddressFlag; |
| 340 | |
| 341 | bool objdump::SymbolTable; |
| 342 | static bool SymbolizeOperands; |
| 343 | static bool PrettyPGOAnalysisMap; |
| 344 | static bool DynamicSymbolTable; |
| 345 | std::string objdump::TripleName; |
| 346 | bool objdump::UnwindInfo; |
| 347 | static bool Wide; |
| 348 | std::string objdump::Prefix; |
| 349 | uint32_t objdump::PrefixStrip; |
| 350 | |
| 351 | DebugVarsFormat objdump::DbgVariables = DVDisabled; |
| 352 | |
| 353 | int objdump::DbgIndent = 52; |
| 354 | |
| 355 | static StringSet<> DisasmSymbolSet; |
| 356 | StringSet<> objdump::FoundSectionSet; |
| 357 | static StringRef ToolName; |
| 358 | |
| 359 | std::unique_ptr<BuildIDFetcher> BIDFetcher; |
| 360 | |
| 361 | Dumper::Dumper(const object::ObjectFile &O) : O(O), OS(outs()) { |
| 362 | WarningHandler = [this](const Twine &Msg) { |
| 363 | if (Warnings.insert(key: Msg.str()).second) |
| 364 | reportWarning(Message: Msg, File: this->O.getFileName()); |
| 365 | return Error::success(); |
| 366 | }; |
| 367 | } |
| 368 | |
| 369 | void Dumper::reportUniqueWarning(Error Err) { |
| 370 | reportUniqueWarning(Msg: toString(E: std::move(Err))); |
| 371 | } |
| 372 | |
| 373 | void Dumper::reportUniqueWarning(const Twine &Msg) { |
| 374 | cantFail(Err: WarningHandler(Msg)); |
| 375 | } |
| 376 | |
| 377 | static Expected<std::unique_ptr<Dumper>> createDumper(const ObjectFile &Obj) { |
| 378 | if (const auto *O = dyn_cast<COFFObjectFile>(Val: &Obj)) |
| 379 | return createCOFFDumper(Obj: *O); |
| 380 | if (const auto *O = dyn_cast<ELFObjectFileBase>(Val: &Obj)) |
| 381 | return createELFDumper(Obj: *O); |
| 382 | if (const auto *O = dyn_cast<MachOObjectFile>(Val: &Obj)) |
| 383 | return createMachODumper(Obj: *O); |
| 384 | if (const auto *O = dyn_cast<WasmObjectFile>(Val: &Obj)) |
| 385 | return createWasmDumper(Obj: *O); |
| 386 | if (const auto *O = dyn_cast<XCOFFObjectFile>(Val: &Obj)) |
| 387 | return createXCOFFDumper(Obj: *O); |
| 388 | |
| 389 | return createStringError(EC: errc::invalid_argument, |
| 390 | S: "unsupported object file format" ); |
| 391 | } |
| 392 | |
| 393 | namespace { |
| 394 | struct FilterResult { |
| 395 | // True if the section should not be skipped. |
| 396 | bool Keep; |
| 397 | |
| 398 | // True if the index counter should be incremented, even if the section should |
| 399 | // be skipped. For example, sections may be skipped if they are not included |
| 400 | // in the --section flag, but we still want those to count toward the section |
| 401 | // count. |
| 402 | bool IncrementIndex; |
| 403 | }; |
| 404 | } // namespace |
| 405 | |
| 406 | static FilterResult checkSectionFilter(object::SectionRef S) { |
| 407 | if (FilterSections.empty()) |
| 408 | return {/*Keep=*/true, /*IncrementIndex=*/true}; |
| 409 | |
| 410 | Expected<StringRef> SecNameOrErr = S.getName(); |
| 411 | if (!SecNameOrErr) { |
| 412 | consumeError(Err: SecNameOrErr.takeError()); |
| 413 | return {/*Keep=*/false, /*IncrementIndex=*/false}; |
| 414 | } |
| 415 | StringRef SecName = *SecNameOrErr; |
| 416 | |
| 417 | // StringSet does not allow empty key so avoid adding sections with |
| 418 | // no name (such as the section with index 0) here. |
| 419 | if (!SecName.empty()) |
| 420 | FoundSectionSet.insert(key: SecName); |
| 421 | |
| 422 | // Only show the section if it's in the FilterSections list, but always |
| 423 | // increment so the indexing is stable. |
| 424 | return {/*Keep=*/is_contained(Range&: FilterSections, Element: SecName), |
| 425 | /*IncrementIndex=*/true}; |
| 426 | } |
| 427 | |
| 428 | SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O, |
| 429 | uint64_t *Idx) { |
| 430 | // Start at UINT64_MAX so that the first index returned after an increment is |
| 431 | // zero (after the unsigned wrap). |
| 432 | if (Idx) |
| 433 | *Idx = UINT64_MAX; |
| 434 | return SectionFilter( |
| 435 | [Idx](object::SectionRef S) { |
| 436 | FilterResult Result = checkSectionFilter(S); |
| 437 | if (Idx != nullptr && Result.IncrementIndex) |
| 438 | *Idx += 1; |
| 439 | return Result.Keep; |
| 440 | }, |
| 441 | O); |
| 442 | } |
| 443 | |
| 444 | std::string objdump::getFileNameForError(const object::Archive::Child &C, |
| 445 | unsigned Index) { |
| 446 | Expected<StringRef> NameOrErr = C.getName(); |
| 447 | if (NameOrErr) |
| 448 | return std::string(NameOrErr.get()); |
| 449 | // If we have an error getting the name then we print the index of the archive |
| 450 | // member. Since we are already in an error state, we just ignore this error. |
| 451 | consumeError(Err: NameOrErr.takeError()); |
| 452 | return "<file index: " + std::to_string(val: Index) + ">" ; |
| 453 | } |
| 454 | |
| 455 | void objdump::reportWarning(const Twine &Message, StringRef File) { |
| 456 | // Output order between errs() and outs() matters especially for archive |
| 457 | // files where the output is per member object. |
| 458 | outs().flush(); |
| 459 | WithColor::warning(OS&: errs(), Prefix: ToolName) |
| 460 | << "'" << File << "': " << Message << "\n" ; |
| 461 | } |
| 462 | |
| 463 | [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) { |
| 464 | outs().flush(); |
| 465 | WithColor::error(OS&: errs(), Prefix: ToolName) << "'" << File << "': " << Message << "\n" ; |
| 466 | exit(status: 1); |
| 467 | } |
| 468 | |
| 469 | [[noreturn]] void objdump::reportError(Error E, StringRef FileName, |
| 470 | StringRef ArchiveName, |
| 471 | StringRef ArchitectureName) { |
| 472 | assert(E); |
| 473 | outs().flush(); |
| 474 | WithColor::error(OS&: errs(), Prefix: ToolName); |
| 475 | if (ArchiveName != "" ) |
| 476 | errs() << ArchiveName << "(" << FileName << ")" ; |
| 477 | else |
| 478 | errs() << "'" << FileName << "'" ; |
| 479 | if (!ArchitectureName.empty()) |
| 480 | errs() << " (for architecture " << ArchitectureName << ")" ; |
| 481 | errs() << ": " ; |
| 482 | logAllUnhandledErrors(E: std::move(E), OS&: errs()); |
| 483 | exit(status: 1); |
| 484 | } |
| 485 | |
| 486 | static void reportCmdLineWarning(const Twine &Message) { |
| 487 | WithColor::warning(OS&: errs(), Prefix: ToolName) << Message << "\n" ; |
| 488 | } |
| 489 | |
| 490 | [[noreturn]] static void reportCmdLineError(const Twine &Message) { |
| 491 | WithColor::error(OS&: errs(), Prefix: ToolName) << Message << "\n" ; |
| 492 | exit(status: 1); |
| 493 | } |
| 494 | |
| 495 | static void warnOnNoMatchForSections() { |
| 496 | SetVector<StringRef> MissingSections; |
| 497 | for (StringRef S : FilterSections) { |
| 498 | if (FoundSectionSet.count(Key: S)) |
| 499 | return; |
| 500 | // User may specify a unnamed section. Don't warn for it. |
| 501 | if (!S.empty()) |
| 502 | MissingSections.insert(X: S); |
| 503 | } |
| 504 | |
| 505 | // Warn only if no section in FilterSections is matched. |
| 506 | for (StringRef S : MissingSections) |
| 507 | reportCmdLineWarning(Message: "section '" + S + |
| 508 | "' mentioned in a -j/--section option, but not " |
| 509 | "found in any input file" ); |
| 510 | } |
| 511 | |
| 512 | static const Target *getTarget(const ObjectFile *Obj) { |
| 513 | // Figure out the target triple. |
| 514 | Triple TheTriple("unknown-unknown-unknown" ); |
| 515 | if (TripleName.empty()) { |
| 516 | TheTriple = Obj->makeTriple(); |
| 517 | } else { |
| 518 | TheTriple.setTriple(Triple::normalize(Str: TripleName)); |
| 519 | auto Arch = Obj->getArch(); |
| 520 | if (Arch == Triple::arm || Arch == Triple::armeb) |
| 521 | Obj->setARMSubArch(TheTriple); |
| 522 | } |
| 523 | |
| 524 | // Get the target specific parser. |
| 525 | std::string Error; |
| 526 | const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, |
| 527 | Error); |
| 528 | if (!TheTarget) |
| 529 | reportError(File: Obj->getFileName(), Message: "can't find target: " + Error); |
| 530 | |
| 531 | // Update the triple name and return the found target. |
| 532 | TripleName = TheTriple.getTriple(); |
| 533 | return TheTarget; |
| 534 | } |
| 535 | |
| 536 | bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) { |
| 537 | return A.getOffset() < B.getOffset(); |
| 538 | } |
| 539 | |
| 540 | static Error getRelocationValueString(const RelocationRef &Rel, |
| 541 | bool SymbolDescription, |
| 542 | SmallVectorImpl<char> &Result) { |
| 543 | const ObjectFile *Obj = Rel.getObject(); |
| 544 | if (auto *ELF = dyn_cast<ELFObjectFileBase>(Val: Obj)) |
| 545 | return getELFRelocationValueString(Obj: ELF, Rel, Result); |
| 546 | if (auto *COFF = dyn_cast<COFFObjectFile>(Val: Obj)) |
| 547 | return getCOFFRelocationValueString(Obj: COFF, Rel, Result); |
| 548 | if (auto *Wasm = dyn_cast<WasmObjectFile>(Val: Obj)) |
| 549 | return getWasmRelocationValueString(Obj: Wasm, RelRef: Rel, Result); |
| 550 | if (auto *MachO = dyn_cast<MachOObjectFile>(Val: Obj)) |
| 551 | return getMachORelocationValueString(Obj: MachO, RelRef: Rel, Result); |
| 552 | if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Val: Obj)) |
| 553 | return getXCOFFRelocationValueString(Obj: *XCOFF, RelRef: Rel, SymbolDescription, |
| 554 | Result); |
| 555 | llvm_unreachable("unknown object file format" ); |
| 556 | } |
| 557 | |
| 558 | /// Indicates whether this relocation should hidden when listing |
| 559 | /// relocations, usually because it is the trailing part of a multipart |
| 560 | /// relocation that will be printed as part of the leading relocation. |
| 561 | static bool getHidden(RelocationRef RelRef) { |
| 562 | auto *MachO = dyn_cast<MachOObjectFile>(Val: RelRef.getObject()); |
| 563 | if (!MachO) |
| 564 | return false; |
| 565 | |
| 566 | unsigned Arch = MachO->getArch(); |
| 567 | DataRefImpl Rel = RelRef.getRawDataRefImpl(); |
| 568 | uint64_t Type = MachO->getRelocationType(Rel); |
| 569 | |
| 570 | // On arches that use the generic relocations, GENERIC_RELOC_PAIR |
| 571 | // is always hidden. |
| 572 | if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) |
| 573 | return Type == MachO::GENERIC_RELOC_PAIR; |
| 574 | |
| 575 | if (Arch == Triple::x86_64) { |
| 576 | // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows |
| 577 | // an X86_64_RELOC_SUBTRACTOR. |
| 578 | if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { |
| 579 | DataRefImpl RelPrev = Rel; |
| 580 | RelPrev.d.a--; |
| 581 | uint64_t PrevType = MachO->getRelocationType(Rel: RelPrev); |
| 582 | if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) |
| 583 | return true; |
| 584 | } |
| 585 | } |
| 586 | |
| 587 | return false; |
| 588 | } |
| 589 | |
| 590 | /// Get the column at which we want to start printing the instruction |
| 591 | /// disassembly, taking into account anything which appears to the left of it. |
| 592 | unsigned objdump::getInstStartColumn(const MCSubtargetInfo &STI) { |
| 593 | return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24; |
| 594 | } |
| 595 | |
| 596 | static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI, |
| 597 | raw_ostream &OS) { |
| 598 | // The output of printInst starts with a tab. Print some spaces so that |
| 599 | // the tab has 1 column and advances to the target tab stop. |
| 600 | unsigned TabStop = getInstStartColumn(STI); |
| 601 | unsigned Column = OS.tell() - Start; |
| 602 | OS.indent(NumSpaces: Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); |
| 603 | } |
| 604 | |
| 605 | void objdump::printRawData(ArrayRef<uint8_t> Bytes, uint64_t Address, |
| 606 | formatted_raw_ostream &OS, |
| 607 | MCSubtargetInfo const &STI) { |
| 608 | size_t Start = OS.tell(); |
| 609 | if (LeadingAddr) |
| 610 | OS << format(Fmt: "%8" PRIx64 ":" , Vals: Address); |
| 611 | if (ShowRawInsn) { |
| 612 | OS << ' '; |
| 613 | dumpBytes(Bytes, OS); |
| 614 | } |
| 615 | AlignToInstStartColumn(Start, STI, OS); |
| 616 | } |
| 617 | |
| 618 | namespace { |
| 619 | |
| 620 | static bool isAArch64Elf(const ObjectFile &Obj) { |
| 621 | const auto *Elf = dyn_cast<ELFObjectFileBase>(Val: &Obj); |
| 622 | return Elf && Elf->getEMachine() == ELF::EM_AARCH64; |
| 623 | } |
| 624 | |
| 625 | static bool isArmElf(const ObjectFile &Obj) { |
| 626 | const auto *Elf = dyn_cast<ELFObjectFileBase>(Val: &Obj); |
| 627 | return Elf && Elf->getEMachine() == ELF::EM_ARM; |
| 628 | } |
| 629 | |
| 630 | static bool isCSKYElf(const ObjectFile &Obj) { |
| 631 | const auto *Elf = dyn_cast<ELFObjectFileBase>(Val: &Obj); |
| 632 | return Elf && Elf->getEMachine() == ELF::EM_CSKY; |
| 633 | } |
| 634 | |
| 635 | static bool hasMappingSymbols(const ObjectFile &Obj) { |
| 636 | return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ; |
| 637 | } |
| 638 | |
| 639 | static void printRelocation(formatted_raw_ostream &OS, StringRef FileName, |
| 640 | const RelocationRef &Rel, uint64_t Address, |
| 641 | bool Is64Bits) { |
| 642 | StringRef Fmt = Is64Bits ? "%016" PRIx64 ": " : "%08" PRIx64 ": " ; |
| 643 | SmallString<16> Name; |
| 644 | SmallString<32> Val; |
| 645 | Rel.getTypeName(Result&: Name); |
| 646 | if (Error E = getRelocationValueString(Rel, SymbolDescription, Result&: Val)) |
| 647 | reportError(E: std::move(E), FileName); |
| 648 | OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t" ); |
| 649 | if (LeadingAddr) |
| 650 | OS << format(Fmt: Fmt.data(), Vals: Address); |
| 651 | OS << Name << "\t" << Val; |
| 652 | } |
| 653 | |
| 654 | static void printBTFRelocation(formatted_raw_ostream &FOS, llvm::BTFParser &BTF, |
| 655 | object::SectionedAddress Address, |
| 656 | LiveVariablePrinter &LVP) { |
| 657 | const llvm::BTF::BPFFieldReloc *Reloc = BTF.findFieldReloc(Address); |
| 658 | if (!Reloc) |
| 659 | return; |
| 660 | |
| 661 | SmallString<64> Val; |
| 662 | BTF.symbolize(Reloc, Result&: Val); |
| 663 | FOS << "\t\t" ; |
| 664 | if (LeadingAddr) |
| 665 | FOS << format(Fmt: "%016" PRIx64 ": " , Vals: Address.Address + AdjustVMA); |
| 666 | FOS << "CO-RE " << Val; |
| 667 | LVP.printAfterOtherLine(OS&: FOS, AfterInst: true); |
| 668 | } |
| 669 | |
| 670 | class PrettyPrinter { |
| 671 | public: |
| 672 | virtual ~PrettyPrinter() = default; |
| 673 | virtual void |
| 674 | printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, |
| 675 | object::SectionedAddress Address, formatted_raw_ostream &OS, |
| 676 | StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, |
| 677 | StringRef ObjectFilename, std::vector<RelocationRef> *Rels, |
| 678 | LiveVariablePrinter &LVP) { |
| 679 | if (SP && (PrintSource || PrintLines)) |
| 680 | SP->printSourceLine(OS, Address, ObjectFilename, LVP); |
| 681 | LVP.printBetweenInsts(OS, MustPrint: false); |
| 682 | |
| 683 | printRawData(Bytes, Address: Address.Address, OS, STI); |
| 684 | |
| 685 | if (MI) { |
| 686 | // See MCInstPrinter::printInst. On targets where a PC relative immediate |
| 687 | // is relative to the next instruction and the length of a MCInst is |
| 688 | // difficult to measure (x86), this is the address of the next |
| 689 | // instruction. |
| 690 | uint64_t Addr = |
| 691 | Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0); |
| 692 | IP.printInst(MI, Address: Addr, Annot: "" , STI, OS); |
| 693 | } else |
| 694 | OS << "\t<unknown>" ; |
| 695 | } |
| 696 | }; |
| 697 | PrettyPrinter PrettyPrinterInst; |
| 698 | |
| 699 | class HexagonPrettyPrinter : public PrettyPrinter { |
| 700 | public: |
| 701 | void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, |
| 702 | formatted_raw_ostream &OS) { |
| 703 | if (LeadingAddr) |
| 704 | OS << format(Fmt: "%8" PRIx64 ":" , Vals: Address); |
| 705 | if (ShowRawInsn) { |
| 706 | OS << "\t" ; |
| 707 | if (Bytes.size() >= 4) { |
| 708 | dumpBytes(Bytes: Bytes.slice(N: 0, M: 4), OS); |
| 709 | uint32_t opcode = |
| 710 | (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; |
| 711 | OS << format(Fmt: "\t%08" PRIx32, Vals: opcode); |
| 712 | } else { |
| 713 | dumpBytes(Bytes, OS); |
| 714 | } |
| 715 | } |
| 716 | } |
| 717 | void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, |
| 718 | object::SectionedAddress Address, formatted_raw_ostream &OS, |
| 719 | StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, |
| 720 | StringRef ObjectFilename, std::vector<RelocationRef> *Rels, |
| 721 | LiveVariablePrinter &LVP) override { |
| 722 | if (SP && (PrintSource || PrintLines)) |
| 723 | SP->printSourceLine(OS, Address, ObjectFilename, LVP, Delimiter: "" ); |
| 724 | if (!MI) { |
| 725 | printLead(Bytes, Address: Address.Address, OS); |
| 726 | OS << " <unknown>" ; |
| 727 | return; |
| 728 | } |
| 729 | std::string Buffer; |
| 730 | { |
| 731 | raw_string_ostream TempStream(Buffer); |
| 732 | IP.printInst(MI, Address: Address.Address, Annot: "" , STI, OS&: TempStream); |
| 733 | } |
| 734 | StringRef Contents(Buffer); |
| 735 | // Split off bundle attributes |
| 736 | auto PacketBundle = Contents.rsplit(Separator: '\n'); |
| 737 | // Split off first instruction from the rest |
| 738 | auto HeadTail = PacketBundle.first.split(Separator: '\n'); |
| 739 | auto Preamble = " { " ; |
| 740 | auto Separator = "" ; |
| 741 | |
| 742 | // Hexagon's packets require relocations to be inline rather than |
| 743 | // clustered at the end of the packet. |
| 744 | std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); |
| 745 | std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); |
| 746 | auto PrintReloc = [&]() -> void { |
| 747 | while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { |
| 748 | if (RelCur->getOffset() == Address.Address) { |
| 749 | printRelocation(OS, FileName: ObjectFilename, Rel: *RelCur, Address: Address.Address, Is64Bits: false); |
| 750 | return; |
| 751 | } |
| 752 | ++RelCur; |
| 753 | } |
| 754 | }; |
| 755 | |
| 756 | while (!HeadTail.first.empty()) { |
| 757 | OS << Separator; |
| 758 | Separator = "\n" ; |
| 759 | if (SP && (PrintSource || PrintLines)) |
| 760 | SP->printSourceLine(OS, Address, ObjectFilename, LVP, Delimiter: "" ); |
| 761 | printLead(Bytes, Address: Address.Address, OS); |
| 762 | OS << Preamble; |
| 763 | Preamble = " " ; |
| 764 | StringRef Inst; |
| 765 | auto Duplex = HeadTail.first.split(Separator: '\v'); |
| 766 | if (!Duplex.second.empty()) { |
| 767 | OS << Duplex.first; |
| 768 | OS << "; " ; |
| 769 | Inst = Duplex.second; |
| 770 | } |
| 771 | else |
| 772 | Inst = HeadTail.first; |
| 773 | OS << Inst; |
| 774 | HeadTail = HeadTail.second.split(Separator: '\n'); |
| 775 | if (HeadTail.first.empty()) |
| 776 | OS << " } " << PacketBundle.second; |
| 777 | PrintReloc(); |
| 778 | Bytes = Bytes.slice(N: 4); |
| 779 | Address.Address += 4; |
| 780 | } |
| 781 | } |
| 782 | }; |
| 783 | HexagonPrettyPrinter HexagonPrettyPrinterInst; |
| 784 | |
| 785 | class AMDGCNPrettyPrinter : public PrettyPrinter { |
| 786 | public: |
| 787 | void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, |
| 788 | object::SectionedAddress Address, formatted_raw_ostream &OS, |
| 789 | StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, |
| 790 | StringRef ObjectFilename, std::vector<RelocationRef> *Rels, |
| 791 | LiveVariablePrinter &LVP) override { |
| 792 | if (SP && (PrintSource || PrintLines)) |
| 793 | SP->printSourceLine(OS, Address, ObjectFilename, LVP); |
| 794 | |
| 795 | if (MI) { |
| 796 | SmallString<40> InstStr; |
| 797 | raw_svector_ostream IS(InstStr); |
| 798 | |
| 799 | IP.printInst(MI, Address: Address.Address, Annot: "" , STI, OS&: IS); |
| 800 | |
| 801 | OS << left_justify(Str: IS.str(), Width: 60); |
| 802 | } else { |
| 803 | // an unrecognized encoding - this is probably data so represent it |
| 804 | // using the .long directive, or .byte directive if fewer than 4 bytes |
| 805 | // remaining |
| 806 | if (Bytes.size() >= 4) { |
| 807 | OS << format( |
| 808 | Fmt: "\t.long 0x%08" PRIx32 " " , |
| 809 | Vals: support::endian::read32<llvm::endianness::little>(P: Bytes.data())); |
| 810 | OS.indent(NumSpaces: 42); |
| 811 | } else { |
| 812 | OS << format(Fmt: "\t.byte 0x%02" PRIx8, Vals: Bytes[0]); |
| 813 | for (unsigned int i = 1; i < Bytes.size(); i++) |
| 814 | OS << format(Fmt: ", 0x%02" PRIx8, Vals: Bytes[i]); |
| 815 | OS.indent(NumSpaces: 55 - (6 * Bytes.size())); |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | OS << format(Fmt: "// %012" PRIX64 ":" , Vals: Address.Address); |
| 820 | if (Bytes.size() >= 4) { |
| 821 | // D should be casted to uint32_t here as it is passed by format to |
| 822 | // snprintf as vararg. |
| 823 | for (uint32_t D : |
| 824 | ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()), |
| 825 | Bytes.size() / 4)) |
| 826 | OS << format(Fmt: " %08" PRIX32, Vals: D); |
| 827 | } else { |
| 828 | for (unsigned char B : Bytes) |
| 829 | OS << format(Fmt: " %02" PRIX8, Vals: B); |
| 830 | } |
| 831 | |
| 832 | if (!Annot.empty()) |
| 833 | OS << " // " << Annot; |
| 834 | } |
| 835 | }; |
| 836 | AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; |
| 837 | |
| 838 | class BPFPrettyPrinter : public PrettyPrinter { |
| 839 | public: |
| 840 | void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, |
| 841 | object::SectionedAddress Address, formatted_raw_ostream &OS, |
| 842 | StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, |
| 843 | StringRef ObjectFilename, std::vector<RelocationRef> *Rels, |
| 844 | LiveVariablePrinter &LVP) override { |
| 845 | if (SP && (PrintSource || PrintLines)) |
| 846 | SP->printSourceLine(OS, Address, ObjectFilename, LVP); |
| 847 | if (LeadingAddr) |
| 848 | OS << format(Fmt: "%8" PRId64 ":" , Vals: Address.Address / 8); |
| 849 | if (ShowRawInsn) { |
| 850 | OS << "\t" ; |
| 851 | dumpBytes(Bytes, OS); |
| 852 | } |
| 853 | if (MI) |
| 854 | IP.printInst(MI, Address: Address.Address, Annot: "" , STI, OS); |
| 855 | else |
| 856 | OS << "\t<unknown>" ; |
| 857 | } |
| 858 | }; |
| 859 | BPFPrettyPrinter BPFPrettyPrinterInst; |
| 860 | |
| 861 | class ARMPrettyPrinter : public PrettyPrinter { |
| 862 | public: |
| 863 | void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, |
| 864 | object::SectionedAddress Address, formatted_raw_ostream &OS, |
| 865 | StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, |
| 866 | StringRef ObjectFilename, std::vector<RelocationRef> *Rels, |
| 867 | LiveVariablePrinter &LVP) override { |
| 868 | if (SP && (PrintSource || PrintLines)) |
| 869 | SP->printSourceLine(OS, Address, ObjectFilename, LVP); |
| 870 | LVP.printBetweenInsts(OS, MustPrint: false); |
| 871 | |
| 872 | size_t Start = OS.tell(); |
| 873 | if (LeadingAddr) |
| 874 | OS << format(Fmt: "%8" PRIx64 ":" , Vals: Address.Address); |
| 875 | if (ShowRawInsn) { |
| 876 | size_t Pos = 0, End = Bytes.size(); |
| 877 | if (STI.checkFeatures(FS: "+thumb-mode" )) { |
| 878 | for (; Pos + 2 <= End; Pos += 2) |
| 879 | OS << ' ' |
| 880 | << format_hex_no_prefix( |
| 881 | N: llvm::support::endian::read<uint16_t>( |
| 882 | memory: Bytes.data() + Pos, endian: InstructionEndianness), |
| 883 | Width: 4); |
| 884 | } else { |
| 885 | for (; Pos + 4 <= End; Pos += 4) |
| 886 | OS << ' ' |
| 887 | << format_hex_no_prefix( |
| 888 | N: llvm::support::endian::read<uint32_t>( |
| 889 | memory: Bytes.data() + Pos, endian: InstructionEndianness), |
| 890 | Width: 8); |
| 891 | } |
| 892 | if (Pos < End) { |
| 893 | OS << ' '; |
| 894 | dumpBytes(Bytes: Bytes.slice(N: Pos), OS); |
| 895 | } |
| 896 | } |
| 897 | |
| 898 | AlignToInstStartColumn(Start, STI, OS); |
| 899 | |
| 900 | if (MI) { |
| 901 | IP.printInst(MI, Address: Address.Address, Annot: "" , STI, OS); |
| 902 | } else |
| 903 | OS << "\t<unknown>" ; |
| 904 | } |
| 905 | |
| 906 | void setInstructionEndianness(llvm::endianness Endianness) { |
| 907 | InstructionEndianness = Endianness; |
| 908 | } |
| 909 | |
| 910 | private: |
| 911 | llvm::endianness InstructionEndianness = llvm::endianness::little; |
| 912 | }; |
| 913 | ARMPrettyPrinter ARMPrettyPrinterInst; |
| 914 | |
| 915 | class AArch64PrettyPrinter : public PrettyPrinter { |
| 916 | public: |
| 917 | void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, |
| 918 | object::SectionedAddress Address, formatted_raw_ostream &OS, |
| 919 | StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, |
| 920 | StringRef ObjectFilename, std::vector<RelocationRef> *Rels, |
| 921 | LiveVariablePrinter &LVP) override { |
| 922 | if (SP && (PrintSource || PrintLines)) |
| 923 | SP->printSourceLine(OS, Address, ObjectFilename, LVP); |
| 924 | LVP.printBetweenInsts(OS, MustPrint: false); |
| 925 | |
| 926 | size_t Start = OS.tell(); |
| 927 | if (LeadingAddr) |
| 928 | OS << format(Fmt: "%8" PRIx64 ":" , Vals: Address.Address); |
| 929 | if (ShowRawInsn) { |
| 930 | size_t Pos = 0, End = Bytes.size(); |
| 931 | for (; Pos + 4 <= End; Pos += 4) |
| 932 | OS << ' ' |
| 933 | << format_hex_no_prefix( |
| 934 | N: llvm::support::endian::read<uint32_t>( |
| 935 | memory: Bytes.data() + Pos, endian: llvm::endianness::little), |
| 936 | Width: 8); |
| 937 | if (Pos < End) { |
| 938 | OS << ' '; |
| 939 | dumpBytes(Bytes: Bytes.slice(N: Pos), OS); |
| 940 | } |
| 941 | } |
| 942 | |
| 943 | AlignToInstStartColumn(Start, STI, OS); |
| 944 | |
| 945 | if (MI) { |
| 946 | IP.printInst(MI, Address: Address.Address, Annot: "" , STI, OS); |
| 947 | } else |
| 948 | OS << "\t<unknown>" ; |
| 949 | } |
| 950 | }; |
| 951 | AArch64PrettyPrinter AArch64PrettyPrinterInst; |
| 952 | |
| 953 | class RISCVPrettyPrinter : public PrettyPrinter { |
| 954 | public: |
| 955 | void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, |
| 956 | object::SectionedAddress Address, formatted_raw_ostream &OS, |
| 957 | StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, |
| 958 | StringRef ObjectFilename, std::vector<RelocationRef> *Rels, |
| 959 | LiveVariablePrinter &LVP) override { |
| 960 | if (SP && (PrintSource || PrintLines)) |
| 961 | SP->printSourceLine(OS, Address, ObjectFilename, LVP); |
| 962 | LVP.printBetweenInsts(OS, MustPrint: false); |
| 963 | |
| 964 | size_t Start = OS.tell(); |
| 965 | if (LeadingAddr) |
| 966 | OS << format(Fmt: "%8" PRIx64 ":" , Vals: Address.Address); |
| 967 | if (ShowRawInsn) { |
| 968 | size_t Pos = 0, End = Bytes.size(); |
| 969 | if (End % 4 == 0) { |
| 970 | // 32-bit and 64-bit instructions. |
| 971 | for (; Pos + 4 <= End; Pos += 4) |
| 972 | OS << ' ' |
| 973 | << format_hex_no_prefix( |
| 974 | N: llvm::support::endian::read<uint32_t>( |
| 975 | memory: Bytes.data() + Pos, endian: llvm::endianness::little), |
| 976 | Width: 8); |
| 977 | } else if (End % 2 == 0) { |
| 978 | // 16-bit and 48-bits instructions. |
| 979 | for (; Pos + 2 <= End; Pos += 2) |
| 980 | OS << ' ' |
| 981 | << format_hex_no_prefix( |
| 982 | N: llvm::support::endian::read<uint16_t>( |
| 983 | memory: Bytes.data() + Pos, endian: llvm::endianness::little), |
| 984 | Width: 4); |
| 985 | } |
| 986 | if (Pos < End) { |
| 987 | OS << ' '; |
| 988 | dumpBytes(Bytes: Bytes.slice(N: Pos), OS); |
| 989 | } |
| 990 | } |
| 991 | |
| 992 | AlignToInstStartColumn(Start, STI, OS); |
| 993 | |
| 994 | if (MI) { |
| 995 | IP.printInst(MI, Address: Address.Address, Annot: "" , STI, OS); |
| 996 | } else |
| 997 | OS << "\t<unknown>" ; |
| 998 | } |
| 999 | }; |
| 1000 | RISCVPrettyPrinter RISCVPrettyPrinterInst; |
| 1001 | |
| 1002 | PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { |
| 1003 | switch(Triple.getArch()) { |
| 1004 | default: |
| 1005 | return PrettyPrinterInst; |
| 1006 | case Triple::hexagon: |
| 1007 | return HexagonPrettyPrinterInst; |
| 1008 | case Triple::amdgcn: |
| 1009 | return AMDGCNPrettyPrinterInst; |
| 1010 | case Triple::bpfel: |
| 1011 | case Triple::bpfeb: |
| 1012 | return BPFPrettyPrinterInst; |
| 1013 | case Triple::arm: |
| 1014 | case Triple::armeb: |
| 1015 | case Triple::thumb: |
| 1016 | case Triple::thumbeb: |
| 1017 | return ARMPrettyPrinterInst; |
| 1018 | case Triple::aarch64: |
| 1019 | case Triple::aarch64_be: |
| 1020 | case Triple::aarch64_32: |
| 1021 | return AArch64PrettyPrinterInst; |
| 1022 | case Triple::riscv32: |
| 1023 | case Triple::riscv64: |
| 1024 | return RISCVPrettyPrinterInst; |
| 1025 | } |
| 1026 | } |
| 1027 | |
| 1028 | class DisassemblerTarget { |
| 1029 | public: |
| 1030 | const Target *TheTarget; |
| 1031 | std::unique_ptr<const MCSubtargetInfo> SubtargetInfo; |
| 1032 | std::shared_ptr<MCContext> Context; |
| 1033 | std::unique_ptr<MCDisassembler> DisAsm; |
| 1034 | std::shared_ptr<MCInstrAnalysis> InstrAnalysis; |
| 1035 | std::shared_ptr<MCInstPrinter> InstPrinter; |
| 1036 | PrettyPrinter *Printer; |
| 1037 | |
| 1038 | DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj, |
| 1039 | StringRef TripleName, StringRef MCPU, |
| 1040 | SubtargetFeatures &Features); |
| 1041 | DisassemblerTarget(DisassemblerTarget &Other, SubtargetFeatures &Features); |
| 1042 | |
| 1043 | private: |
| 1044 | MCTargetOptions Options; |
| 1045 | std::shared_ptr<const MCRegisterInfo> RegisterInfo; |
| 1046 | std::shared_ptr<const MCAsmInfo> AsmInfo; |
| 1047 | std::shared_ptr<const MCInstrInfo> InstrInfo; |
| 1048 | std::shared_ptr<MCObjectFileInfo> ObjectFileInfo; |
| 1049 | }; |
| 1050 | |
| 1051 | DisassemblerTarget::DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj, |
| 1052 | StringRef TripleName, StringRef MCPU, |
| 1053 | SubtargetFeatures &Features) |
| 1054 | : TheTarget(TheTarget), |
| 1055 | Printer(&selectPrettyPrinter(Triple: Triple(TripleName))), |
| 1056 | RegisterInfo(TheTarget->createMCRegInfo(TT: TripleName)) { |
| 1057 | if (!RegisterInfo) |
| 1058 | reportError(File: Obj.getFileName(), Message: "no register info for target " + TripleName); |
| 1059 | |
| 1060 | // Set up disassembler. |
| 1061 | AsmInfo.reset(p: TheTarget->createMCAsmInfo(MRI: *RegisterInfo, TheTriple: TripleName, Options)); |
| 1062 | if (!AsmInfo) |
| 1063 | reportError(File: Obj.getFileName(), Message: "no assembly info for target " + TripleName); |
| 1064 | |
| 1065 | SubtargetInfo.reset( |
| 1066 | p: TheTarget->createMCSubtargetInfo(TheTriple: TripleName, CPU: MCPU, Features: Features.getString())); |
| 1067 | if (!SubtargetInfo) |
| 1068 | reportError(File: Obj.getFileName(), |
| 1069 | Message: "no subtarget info for target " + TripleName); |
| 1070 | InstrInfo.reset(p: TheTarget->createMCInstrInfo()); |
| 1071 | if (!InstrInfo) |
| 1072 | reportError(File: Obj.getFileName(), |
| 1073 | Message: "no instruction info for target " + TripleName); |
| 1074 | Context = |
| 1075 | std::make_shared<MCContext>(args: Triple(TripleName), args: AsmInfo.get(), |
| 1076 | args: RegisterInfo.get(), args: SubtargetInfo.get()); |
| 1077 | |
| 1078 | // FIXME: for now initialize MCObjectFileInfo with default values |
| 1079 | ObjectFileInfo.reset( |
| 1080 | p: TheTarget->createMCObjectFileInfo(Ctx&: *Context, /*PIC=*/false)); |
| 1081 | Context->setObjectFileInfo(ObjectFileInfo.get()); |
| 1082 | |
| 1083 | DisAsm.reset(p: TheTarget->createMCDisassembler(STI: *SubtargetInfo, Ctx&: *Context)); |
| 1084 | if (!DisAsm) |
| 1085 | reportError(File: Obj.getFileName(), Message: "no disassembler for target " + TripleName); |
| 1086 | |
| 1087 | if (auto *ELFObj = dyn_cast<ELFObjectFileBase>(Val: &Obj)) |
| 1088 | DisAsm->setABIVersion(ELFObj->getEIdentABIVersion()); |
| 1089 | |
| 1090 | InstrAnalysis.reset(p: TheTarget->createMCInstrAnalysis(Info: InstrInfo.get())); |
| 1091 | |
| 1092 | int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); |
| 1093 | InstPrinter.reset(p: TheTarget->createMCInstPrinter(T: Triple(TripleName), |
| 1094 | SyntaxVariant: AsmPrinterVariant, MAI: *AsmInfo, |
| 1095 | MII: *InstrInfo, MRI: *RegisterInfo)); |
| 1096 | if (!InstPrinter) |
| 1097 | reportError(File: Obj.getFileName(), |
| 1098 | Message: "no instruction printer for target " + TripleName); |
| 1099 | InstPrinter->setPrintImmHex(PrintImmHex); |
| 1100 | InstPrinter->setPrintBranchImmAsAddress(true); |
| 1101 | InstPrinter->setSymbolizeOperands(SymbolizeOperands); |
| 1102 | InstPrinter->setMCInstrAnalysis(InstrAnalysis.get()); |
| 1103 | |
| 1104 | switch (DisassemblyColor) { |
| 1105 | case ColorOutput::Enable: |
| 1106 | InstPrinter->setUseColor(true); |
| 1107 | break; |
| 1108 | case ColorOutput::Auto: |
| 1109 | InstPrinter->setUseColor(outs().has_colors()); |
| 1110 | break; |
| 1111 | case ColorOutput::Disable: |
| 1112 | case ColorOutput::Invalid: |
| 1113 | InstPrinter->setUseColor(false); |
| 1114 | break; |
| 1115 | }; |
| 1116 | } |
| 1117 | |
| 1118 | DisassemblerTarget::DisassemblerTarget(DisassemblerTarget &Other, |
| 1119 | SubtargetFeatures &Features) |
| 1120 | : TheTarget(Other.TheTarget), |
| 1121 | SubtargetInfo(TheTarget->createMCSubtargetInfo(TheTriple: TripleName, CPU: MCPU, |
| 1122 | Features: Features.getString())), |
| 1123 | Context(Other.Context), |
| 1124 | DisAsm(TheTarget->createMCDisassembler(STI: *SubtargetInfo, Ctx&: *Context)), |
| 1125 | InstrAnalysis(Other.InstrAnalysis), InstPrinter(Other.InstPrinter), |
| 1126 | Printer(Other.Printer), RegisterInfo(Other.RegisterInfo), |
| 1127 | AsmInfo(Other.AsmInfo), InstrInfo(Other.InstrInfo), |
| 1128 | ObjectFileInfo(Other.ObjectFileInfo) {} |
| 1129 | } // namespace |
| 1130 | |
| 1131 | static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) { |
| 1132 | assert(Obj.isELF()); |
| 1133 | if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Val: &Obj)) |
| 1134 | return unwrapOrError(EO: Elf32LEObj->getSymbol(Sym: Sym.getRawDataRefImpl()), |
| 1135 | Args: Obj.getFileName()) |
| 1136 | ->getType(); |
| 1137 | if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Val: &Obj)) |
| 1138 | return unwrapOrError(EO: Elf64LEObj->getSymbol(Sym: Sym.getRawDataRefImpl()), |
| 1139 | Args: Obj.getFileName()) |
| 1140 | ->getType(); |
| 1141 | if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Val: &Obj)) |
| 1142 | return unwrapOrError(EO: Elf32BEObj->getSymbol(Sym: Sym.getRawDataRefImpl()), |
| 1143 | Args: Obj.getFileName()) |
| 1144 | ->getType(); |
| 1145 | if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Val: &Obj)) |
| 1146 | return unwrapOrError(EO: Elf64BEObj->getSymbol(Sym: Sym.getRawDataRefImpl()), |
| 1147 | Args: Obj.getFileName()) |
| 1148 | ->getType(); |
| 1149 | llvm_unreachable("Unsupported binary format" ); |
| 1150 | } |
| 1151 | |
| 1152 | template <class ELFT> |
| 1153 | static void |
| 1154 | addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj, |
| 1155 | std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { |
| 1156 | for (auto Symbol : Obj.getDynamicSymbolIterators()) { |
| 1157 | uint8_t SymbolType = Symbol.getELFType(); |
| 1158 | if (SymbolType == ELF::STT_SECTION) |
| 1159 | continue; |
| 1160 | |
| 1161 | uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName()); |
| 1162 | // ELFSymbolRef::getAddress() returns size instead of value for common |
| 1163 | // symbols which is not desirable for disassembly output. Overriding. |
| 1164 | if (SymbolType == ELF::STT_COMMON) |
| 1165 | Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()), |
| 1166 | Obj.getFileName()) |
| 1167 | ->st_value; |
| 1168 | |
| 1169 | StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName()); |
| 1170 | if (Name.empty()) |
| 1171 | continue; |
| 1172 | |
| 1173 | section_iterator SecI = |
| 1174 | unwrapOrError(Symbol.getSection(), Obj.getFileName()); |
| 1175 | if (SecI == Obj.section_end()) |
| 1176 | continue; |
| 1177 | |
| 1178 | AllSymbols[*SecI].emplace_back(args&: Address, args&: Name, args&: SymbolType); |
| 1179 | } |
| 1180 | } |
| 1181 | |
| 1182 | static void |
| 1183 | addDynamicElfSymbols(const ELFObjectFileBase &Obj, |
| 1184 | std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { |
| 1185 | if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Val: &Obj)) |
| 1186 | addDynamicElfSymbols(Obj: *Elf32LEObj, AllSymbols); |
| 1187 | else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Val: &Obj)) |
| 1188 | addDynamicElfSymbols(Obj: *Elf64LEObj, AllSymbols); |
| 1189 | else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Val: &Obj)) |
| 1190 | addDynamicElfSymbols(Obj: *Elf32BEObj, AllSymbols); |
| 1191 | else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Val: &Obj)) |
| 1192 | addDynamicElfSymbols(Obj: *Elf64BEObj, AllSymbols); |
| 1193 | else |
| 1194 | llvm_unreachable("Unsupported binary format" ); |
| 1195 | } |
| 1196 | |
| 1197 | static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) { |
| 1198 | for (auto SecI : Obj.sections()) { |
| 1199 | const WasmSection &Section = Obj.getWasmSection(Section: SecI); |
| 1200 | if (Section.Type == wasm::WASM_SEC_CODE) |
| 1201 | return SecI; |
| 1202 | } |
| 1203 | return std::nullopt; |
| 1204 | } |
| 1205 | |
| 1206 | static void |
| 1207 | addMissingWasmCodeSymbols(const WasmObjectFile &Obj, |
| 1208 | std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { |
| 1209 | std::optional<SectionRef> Section = getWasmCodeSection(Obj); |
| 1210 | if (!Section) |
| 1211 | return; |
| 1212 | SectionSymbolsTy &Symbols = AllSymbols[*Section]; |
| 1213 | |
| 1214 | std::set<uint64_t> SymbolAddresses; |
| 1215 | for (const auto &Sym : Symbols) |
| 1216 | SymbolAddresses.insert(x: Sym.Addr); |
| 1217 | |
| 1218 | for (const wasm::WasmFunction &Function : Obj.functions()) { |
| 1219 | // This adjustment mirrors the one in WasmObjectFile::getSymbolAddress. |
| 1220 | uint32_t Adjustment = Obj.isRelocatableObject() || Obj.isSharedObject() |
| 1221 | ? 0 |
| 1222 | : Section->getAddress(); |
| 1223 | uint64_t Address = Function.CodeSectionOffset + Adjustment; |
| 1224 | // Only add fallback symbols for functions not already present in the symbol |
| 1225 | // table. |
| 1226 | if (SymbolAddresses.count(x: Address)) |
| 1227 | continue; |
| 1228 | // This function has no symbol, so it should have no SymbolName. |
| 1229 | assert(Function.SymbolName.empty()); |
| 1230 | // We use DebugName for the name, though it may be empty if there is no |
| 1231 | // "name" custom section, or that section is missing a name for this |
| 1232 | // function. |
| 1233 | StringRef Name = Function.DebugName; |
| 1234 | Symbols.emplace_back(args&: Address, args&: Name, args: ELF::STT_NOTYPE); |
| 1235 | } |
| 1236 | } |
| 1237 | |
| 1238 | static DenseMap<StringRef, SectionRef> getSectionNames(const ObjectFile &Obj) { |
| 1239 | DenseMap<StringRef, SectionRef> Sections; |
| 1240 | for (SectionRef Section : Obj.sections()) { |
| 1241 | Expected<StringRef> SecNameOrErr = Section.getName(); |
| 1242 | if (!SecNameOrErr) { |
| 1243 | consumeError(Err: SecNameOrErr.takeError()); |
| 1244 | continue; |
| 1245 | } |
| 1246 | Sections[*SecNameOrErr] = Section; |
| 1247 | } |
| 1248 | return Sections; |
| 1249 | } |
| 1250 | |
| 1251 | static void addPltEntries(const MCSubtargetInfo &STI, const ObjectFile &Obj, |
| 1252 | DenseMap<StringRef, SectionRef> &SectionNames, |
| 1253 | std::map<SectionRef, SectionSymbolsTy> &AllSymbols, |
| 1254 | StringSaver &Saver) { |
| 1255 | auto *ElfObj = dyn_cast<ELFObjectFileBase>(Val: &Obj); |
| 1256 | if (!ElfObj) |
| 1257 | return; |
| 1258 | for (auto Plt : ElfObj->getPltEntries(STI)) { |
| 1259 | if (Plt.Symbol) { |
| 1260 | SymbolRef Symbol(*Plt.Symbol, ElfObj); |
| 1261 | uint8_t SymbolType = getElfSymbolType(Obj, Sym: Symbol); |
| 1262 | if (Expected<StringRef> NameOrErr = Symbol.getName()) { |
| 1263 | if (!NameOrErr->empty()) |
| 1264 | AllSymbols[SectionNames[Plt.Section]].emplace_back( |
| 1265 | args&: Plt.Address, args: Saver.save(S: (*NameOrErr + "@plt" ).str()), args&: SymbolType); |
| 1266 | continue; |
| 1267 | } else { |
| 1268 | // The warning has been reported in disassembleObject(). |
| 1269 | consumeError(Err: NameOrErr.takeError()); |
| 1270 | } |
| 1271 | } |
| 1272 | reportWarning(Message: "PLT entry at 0x" + Twine::utohexstr(Val: Plt.Address) + |
| 1273 | " references an invalid symbol" , |
| 1274 | File: Obj.getFileName()); |
| 1275 | } |
| 1276 | } |
| 1277 | |
| 1278 | // Normally the disassembly output will skip blocks of zeroes. This function |
| 1279 | // returns the number of zero bytes that can be skipped when dumping the |
| 1280 | // disassembly of the instructions in Buf. |
| 1281 | static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { |
| 1282 | // Find the number of leading zeroes. |
| 1283 | size_t N = 0; |
| 1284 | while (N < Buf.size() && !Buf[N]) |
| 1285 | ++N; |
| 1286 | |
| 1287 | // We may want to skip blocks of zero bytes, but unless we see |
| 1288 | // at least 8 of them in a row. |
| 1289 | if (N < 8) |
| 1290 | return 0; |
| 1291 | |
| 1292 | // We skip zeroes in multiples of 4 because do not want to truncate an |
| 1293 | // instruction if it starts with a zero byte. |
| 1294 | return N & ~0x3; |
| 1295 | } |
| 1296 | |
| 1297 | // Returns a map from sections to their relocations. |
| 1298 | static std::map<SectionRef, std::vector<RelocationRef>> |
| 1299 | getRelocsMap(object::ObjectFile const &Obj) { |
| 1300 | std::map<SectionRef, std::vector<RelocationRef>> Ret; |
| 1301 | uint64_t I = (uint64_t)-1; |
| 1302 | for (SectionRef Sec : Obj.sections()) { |
| 1303 | ++I; |
| 1304 | Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); |
| 1305 | if (!RelocatedOrErr) |
| 1306 | reportError(File: Obj.getFileName(), |
| 1307 | Message: "section (" + Twine(I) + |
| 1308 | "): failed to get a relocated section: " + |
| 1309 | toString(E: RelocatedOrErr.takeError())); |
| 1310 | |
| 1311 | section_iterator Relocated = *RelocatedOrErr; |
| 1312 | if (Relocated == Obj.section_end() || !checkSectionFilter(S: *Relocated).Keep) |
| 1313 | continue; |
| 1314 | std::vector<RelocationRef> &V = Ret[*Relocated]; |
| 1315 | append_range(C&: V, R: Sec.relocations()); |
| 1316 | // Sort relocations by address. |
| 1317 | llvm::stable_sort(Range&: V, C: isRelocAddressLess); |
| 1318 | } |
| 1319 | return Ret; |
| 1320 | } |
| 1321 | |
| 1322 | // Used for --adjust-vma to check if address should be adjusted by the |
| 1323 | // specified value for a given section. |
| 1324 | // For ELF we do not adjust non-allocatable sections like debug ones, |
| 1325 | // because they are not loadable. |
| 1326 | // TODO: implement for other file formats. |
| 1327 | static bool shouldAdjustVA(const SectionRef &Section) { |
| 1328 | const ObjectFile *Obj = Section.getObject(); |
| 1329 | if (Obj->isELF()) |
| 1330 | return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; |
| 1331 | return false; |
| 1332 | } |
| 1333 | |
| 1334 | |
| 1335 | typedef std::pair<uint64_t, char> MappingSymbolPair; |
| 1336 | static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, |
| 1337 | uint64_t Address) { |
| 1338 | auto It = |
| 1339 | partition_point(Range&: MappingSymbols, P: [Address](const MappingSymbolPair &Val) { |
| 1340 | return Val.first <= Address; |
| 1341 | }); |
| 1342 | // Return zero for any address before the first mapping symbol; this means |
| 1343 | // we should use the default disassembly mode, depending on the target. |
| 1344 | if (It == MappingSymbols.begin()) |
| 1345 | return '\x00'; |
| 1346 | return (It - 1)->second; |
| 1347 | } |
| 1348 | |
| 1349 | static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index, |
| 1350 | uint64_t End, const ObjectFile &Obj, |
| 1351 | ArrayRef<uint8_t> Bytes, |
| 1352 | ArrayRef<MappingSymbolPair> MappingSymbols, |
| 1353 | const MCSubtargetInfo &STI, raw_ostream &OS) { |
| 1354 | llvm::endianness Endian = |
| 1355 | Obj.isLittleEndian() ? llvm::endianness::little : llvm::endianness::big; |
| 1356 | size_t Start = OS.tell(); |
| 1357 | OS << format(Fmt: "%8" PRIx64 ": " , Vals: SectionAddr + Index); |
| 1358 | if (Index + 4 <= End) { |
| 1359 | dumpBytes(Bytes: Bytes.slice(N: Index, M: 4), OS); |
| 1360 | AlignToInstStartColumn(Start, STI, OS); |
| 1361 | OS << "\t.word\t" |
| 1362 | << format_hex(N: support::endian::read32(P: Bytes.data() + Index, E: Endian), |
| 1363 | Width: 10); |
| 1364 | return 4; |
| 1365 | } |
| 1366 | if (Index + 2 <= End) { |
| 1367 | dumpBytes(Bytes: Bytes.slice(N: Index, M: 2), OS); |
| 1368 | AlignToInstStartColumn(Start, STI, OS); |
| 1369 | OS << "\t.short\t" |
| 1370 | << format_hex(N: support::endian::read16(P: Bytes.data() + Index, E: Endian), Width: 6); |
| 1371 | return 2; |
| 1372 | } |
| 1373 | dumpBytes(Bytes: Bytes.slice(N: Index, M: 1), OS); |
| 1374 | AlignToInstStartColumn(Start, STI, OS); |
| 1375 | OS << "\t.byte\t" << format_hex(N: Bytes[Index], Width: 4); |
| 1376 | return 1; |
| 1377 | } |
| 1378 | |
| 1379 | static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, |
| 1380 | ArrayRef<uint8_t> Bytes, raw_ostream &OS) { |
| 1381 | // print out data up to 8 bytes at a time in hex and ascii |
| 1382 | uint8_t AsciiData[9] = {'\0'}; |
| 1383 | uint8_t Byte; |
| 1384 | int NumBytes = 0; |
| 1385 | |
| 1386 | for (; Index < End; ++Index) { |
| 1387 | if (NumBytes == 0) |
| 1388 | OS << format(Fmt: "%8" PRIx64 ":" , Vals: SectionAddr + Index); |
| 1389 | Byte = Bytes.slice(N: Index)[0]; |
| 1390 | OS << format(Fmt: " %02x" , Vals: Byte); |
| 1391 | AsciiData[NumBytes] = isPrint(C: Byte) ? Byte : '.'; |
| 1392 | |
| 1393 | uint8_t IndentOffset = 0; |
| 1394 | NumBytes++; |
| 1395 | if (Index == End - 1 || NumBytes > 8) { |
| 1396 | // Indent the space for less than 8 bytes data. |
| 1397 | // 2 spaces for byte and one for space between bytes |
| 1398 | IndentOffset = 3 * (8 - NumBytes); |
| 1399 | for (int Excess = NumBytes; Excess < 8; Excess++) |
| 1400 | AsciiData[Excess] = '\0'; |
| 1401 | NumBytes = 8; |
| 1402 | } |
| 1403 | if (NumBytes == 8) { |
| 1404 | AsciiData[8] = '\0'; |
| 1405 | OS << std::string(IndentOffset, ' ') << " " ; |
| 1406 | OS << reinterpret_cast<char *>(AsciiData); |
| 1407 | OS << '\n'; |
| 1408 | NumBytes = 0; |
| 1409 | } |
| 1410 | } |
| 1411 | } |
| 1412 | |
| 1413 | SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj, |
| 1414 | const SymbolRef &Symbol, |
| 1415 | bool IsMappingSymbol) { |
| 1416 | const StringRef FileName = Obj.getFileName(); |
| 1417 | const uint64_t Addr = unwrapOrError(EO: Symbol.getAddress(), Args: FileName); |
| 1418 | const StringRef Name = unwrapOrError(EO: Symbol.getName(), Args: FileName); |
| 1419 | |
| 1420 | if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) { |
| 1421 | const auto &XCOFFObj = cast<XCOFFObjectFile>(Val: Obj); |
| 1422 | DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl(); |
| 1423 | |
| 1424 | const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymEntPtr: SymbolDRI.p); |
| 1425 | std::optional<XCOFF::StorageMappingClass> Smc = |
| 1426 | getXCOFFSymbolCsectSMC(Obj: XCOFFObj, Sym: Symbol); |
| 1427 | return SymbolInfoTy(Smc, Addr, Name, SymbolIndex, |
| 1428 | isLabel(Obj: XCOFFObj, Sym: Symbol)); |
| 1429 | } else if (Obj.isXCOFF()) { |
| 1430 | const SymbolRef::Type SymType = unwrapOrError(EO: Symbol.getType(), Args: FileName); |
| 1431 | return SymbolInfoTy(Addr, Name, SymType, /*IsMappingSymbol=*/false, |
| 1432 | /*IsXCOFF=*/true); |
| 1433 | } else if (Obj.isWasm()) { |
| 1434 | uint8_t SymType = |
| 1435 | cast<WasmObjectFile>(Val: &Obj)->getWasmSymbol(Symbol).Info.Kind; |
| 1436 | return SymbolInfoTy(Addr, Name, SymType, false); |
| 1437 | } else { |
| 1438 | uint8_t Type = |
| 1439 | Obj.isELF() ? getElfSymbolType(Obj, Sym: Symbol) : (uint8_t)ELF::STT_NOTYPE; |
| 1440 | return SymbolInfoTy(Addr, Name, Type, IsMappingSymbol); |
| 1441 | } |
| 1442 | } |
| 1443 | |
| 1444 | static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj, |
| 1445 | const uint64_t Addr, StringRef &Name, |
| 1446 | uint8_t Type) { |
| 1447 | if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) |
| 1448 | return SymbolInfoTy(std::nullopt, Addr, Name, std::nullopt, false); |
| 1449 | if (Obj.isWasm()) |
| 1450 | return SymbolInfoTy(Addr, Name, wasm::WASM_SYMBOL_TYPE_SECTION); |
| 1451 | return SymbolInfoTy(Addr, Name, Type); |
| 1452 | } |
| 1453 | |
| 1454 | static void collectBBAddrMapLabels( |
| 1455 | const BBAddrMapInfo &FullAddrMap, uint64_t SectionAddr, uint64_t Start, |
| 1456 | uint64_t End, |
| 1457 | std::unordered_map<uint64_t, std::vector<BBAddrMapLabel>> &Labels) { |
| 1458 | if (FullAddrMap.empty()) |
| 1459 | return; |
| 1460 | Labels.clear(); |
| 1461 | uint64_t StartAddress = SectionAddr + Start; |
| 1462 | uint64_t EndAddress = SectionAddr + End; |
| 1463 | const BBAddrMapFunctionEntry *FunctionMap = |
| 1464 | FullAddrMap.getEntryForAddress(BaseAddress: StartAddress); |
| 1465 | if (!FunctionMap) |
| 1466 | return; |
| 1467 | std::optional<size_t> BBRangeIndex = |
| 1468 | FunctionMap->getAddrMap().getBBRangeIndexForBaseAddress(BaseAddress: StartAddress); |
| 1469 | if (!BBRangeIndex) |
| 1470 | return; |
| 1471 | size_t NumBBEntriesBeforeRange = 0; |
| 1472 | for (size_t I = 0; I < *BBRangeIndex; ++I) |
| 1473 | NumBBEntriesBeforeRange += |
| 1474 | FunctionMap->getAddrMap().BBRanges[I].BBEntries.size(); |
| 1475 | const auto &BBRange = FunctionMap->getAddrMap().BBRanges[*BBRangeIndex]; |
| 1476 | for (size_t I = 0; I < BBRange.BBEntries.size(); ++I) { |
| 1477 | const BBAddrMap::BBEntry &BBEntry = BBRange.BBEntries[I]; |
| 1478 | uint64_t BBAddress = BBEntry.Offset + BBRange.BaseAddress; |
| 1479 | if (BBAddress >= EndAddress) |
| 1480 | continue; |
| 1481 | |
| 1482 | std::string LabelString = ("BB" + Twine(BBEntry.ID)).str(); |
| 1483 | Labels[BBAddress].push_back( |
| 1484 | x: {.BlockLabel: LabelString, .PGOAnalysis: FunctionMap->constructPGOLabelString( |
| 1485 | PGOBBEntryIndex: NumBBEntriesBeforeRange + I, PrettyPGOAnalysis: PrettyPGOAnalysisMap)}); |
| 1486 | } |
| 1487 | } |
| 1488 | |
| 1489 | static void |
| 1490 | collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, MCInstrAnalysis *MIA, |
| 1491 | MCDisassembler *DisAsm, MCInstPrinter *IP, |
| 1492 | const MCSubtargetInfo *STI, uint64_t SectionAddr, |
| 1493 | uint64_t Start, uint64_t End, |
| 1494 | std::unordered_map<uint64_t, std::string> &Labels) { |
| 1495 | // Supported by certain targets. |
| 1496 | const bool isPPC = STI->getTargetTriple().isPPC(); |
| 1497 | const bool isX86 = STI->getTargetTriple().isX86(); |
| 1498 | const bool isAArch64 = STI->getTargetTriple().isAArch64(); |
| 1499 | const bool isBPF = STI->getTargetTriple().isBPF(); |
| 1500 | if (!isPPC && !isX86 && !isAArch64 && !isBPF) |
| 1501 | return; |
| 1502 | |
| 1503 | if (MIA) |
| 1504 | MIA->resetState(); |
| 1505 | |
| 1506 | std::set<uint64_t> Targets; |
| 1507 | Start += SectionAddr; |
| 1508 | End += SectionAddr; |
| 1509 | const bool isXCOFF = STI->getTargetTriple().isOSBinFormatXCOFF(); |
| 1510 | for (uint64_t Index = Start; Index < End;) { |
| 1511 | // Disassemble a real instruction and record function-local branch labels. |
| 1512 | MCInst Inst; |
| 1513 | uint64_t Size; |
| 1514 | ArrayRef<uint8_t> ThisBytes = Bytes.slice(N: Index - SectionAddr); |
| 1515 | bool Disassembled = |
| 1516 | DisAsm->getInstruction(Instr&: Inst, Size, Bytes: ThisBytes, Address: Index, CStream&: nulls()); |
| 1517 | if (Size == 0) |
| 1518 | Size = std::min<uint64_t>(a: ThisBytes.size(), |
| 1519 | b: DisAsm->suggestBytesToSkip(Bytes: ThisBytes, Address: Index)); |
| 1520 | |
| 1521 | if (MIA) { |
| 1522 | if (Disassembled) { |
| 1523 | uint64_t Target; |
| 1524 | bool TargetKnown = MIA->evaluateBranch(Inst, Addr: Index, Size, Target); |
| 1525 | if (TargetKnown && (Target >= Start && Target < End) && |
| 1526 | !Targets.count(x: Target)) { |
| 1527 | // On PowerPC and AIX, a function call is encoded as a branch to 0. |
| 1528 | // On other PowerPC platforms (ELF), a function call is encoded as |
| 1529 | // a branch to self. Do not add a label for these cases. |
| 1530 | if (!(isPPC && |
| 1531 | ((Target == 0 && isXCOFF) || (Target == Index && !isXCOFF)))) |
| 1532 | Targets.insert(x: Target); |
| 1533 | } |
| 1534 | MIA->updateState(Inst, Addr: Index); |
| 1535 | } else |
| 1536 | MIA->resetState(); |
| 1537 | } |
| 1538 | Index += Size; |
| 1539 | } |
| 1540 | |
| 1541 | Labels.clear(); |
| 1542 | for (auto [Idx, Target] : enumerate(First&: Targets)) |
| 1543 | Labels[Target] = ("L" + Twine(Idx)).str(); |
| 1544 | } |
| 1545 | |
| 1546 | // Create an MCSymbolizer for the target and add it to the MCDisassembler. |
| 1547 | // This is currently only used on AMDGPU, and assumes the format of the |
| 1548 | // void * argument passed to AMDGPU's createMCSymbolizer. |
| 1549 | static void addSymbolizer( |
| 1550 | MCContext &Ctx, const Target *Target, StringRef TripleName, |
| 1551 | MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes, |
| 1552 | SectionSymbolsTy &Symbols, |
| 1553 | std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) { |
| 1554 | |
| 1555 | std::unique_ptr<MCRelocationInfo> RelInfo( |
| 1556 | Target->createMCRelocationInfo(TT: TripleName, Ctx)); |
| 1557 | if (!RelInfo) |
| 1558 | return; |
| 1559 | std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer( |
| 1560 | TT: TripleName, GetOpInfo: nullptr, SymbolLookUp: nullptr, DisInfo: &Symbols, Ctx: &Ctx, RelInfo: std::move(RelInfo))); |
| 1561 | MCSymbolizer *SymbolizerPtr = &*Symbolizer; |
| 1562 | DisAsm->setSymbolizer(std::move(Symbolizer)); |
| 1563 | |
| 1564 | if (!SymbolizeOperands) |
| 1565 | return; |
| 1566 | |
| 1567 | // Synthesize labels referenced by branch instructions by |
| 1568 | // disassembling, discarding the output, and collecting the referenced |
| 1569 | // addresses from the symbolizer. |
| 1570 | for (size_t Index = 0; Index != Bytes.size();) { |
| 1571 | MCInst Inst; |
| 1572 | uint64_t Size; |
| 1573 | ArrayRef<uint8_t> ThisBytes = Bytes.slice(N: Index); |
| 1574 | const uint64_t ThisAddr = SectionAddr + Index; |
| 1575 | DisAsm->getInstruction(Instr&: Inst, Size, Bytes: ThisBytes, Address: ThisAddr, CStream&: nulls()); |
| 1576 | if (Size == 0) |
| 1577 | Size = std::min<uint64_t>(a: ThisBytes.size(), |
| 1578 | b: DisAsm->suggestBytesToSkip(Bytes: ThisBytes, Address: Index)); |
| 1579 | Index += Size; |
| 1580 | } |
| 1581 | ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses(); |
| 1582 | // Copy and sort to remove duplicates. |
| 1583 | std::vector<uint64_t> LabelAddrs; |
| 1584 | llvm::append_range(C&: LabelAddrs, R&: LabelAddrsRef); |
| 1585 | llvm::sort(C&: LabelAddrs); |
| 1586 | LabelAddrs.resize(new_size: llvm::unique(R&: LabelAddrs) - LabelAddrs.begin()); |
| 1587 | // Add the labels. |
| 1588 | for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) { |
| 1589 | auto Name = std::make_unique<std::string>(); |
| 1590 | *Name = (Twine("L" ) + Twine(LabelNum)).str(); |
| 1591 | SynthesizedLabelNames.push_back(x: std::move(Name)); |
| 1592 | Symbols.push_back(x: SymbolInfoTy( |
| 1593 | LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE)); |
| 1594 | } |
| 1595 | llvm::stable_sort(Range&: Symbols); |
| 1596 | // Recreate the symbolizer with the new symbols list. |
| 1597 | RelInfo.reset(p: Target->createMCRelocationInfo(TT: TripleName, Ctx)); |
| 1598 | Symbolizer.reset(p: Target->createMCSymbolizer( |
| 1599 | TT: TripleName, GetOpInfo: nullptr, SymbolLookUp: nullptr, DisInfo: &Symbols, Ctx: &Ctx, RelInfo: std::move(RelInfo))); |
| 1600 | DisAsm->setSymbolizer(std::move(Symbolizer)); |
| 1601 | } |
| 1602 | |
| 1603 | static StringRef getSegmentName(const MachOObjectFile *MachO, |
| 1604 | const SectionRef &Section) { |
| 1605 | if (MachO) { |
| 1606 | DataRefImpl DR = Section.getRawDataRefImpl(); |
| 1607 | StringRef SegmentName = MachO->getSectionFinalSegmentName(Sec: DR); |
| 1608 | return SegmentName; |
| 1609 | } |
| 1610 | return "" ; |
| 1611 | } |
| 1612 | |
| 1613 | static void emitPostInstructionInfo(formatted_raw_ostream &FOS, |
| 1614 | const MCAsmInfo &MAI, |
| 1615 | const MCSubtargetInfo &STI, |
| 1616 | StringRef , |
| 1617 | LiveVariablePrinter &LVP) { |
| 1618 | do { |
| 1619 | if (!Comments.empty()) { |
| 1620 | // Emit a line of comments. |
| 1621 | StringRef ; |
| 1622 | std::tie(args&: Comment, args&: Comments) = Comments.split(Separator: '\n'); |
| 1623 | // MAI.getCommentColumn() assumes that instructions are printed at the |
| 1624 | // position of 8, while getInstStartColumn() returns the actual position. |
| 1625 | unsigned CommentColumn = |
| 1626 | MAI.getCommentColumn() - 8 + getInstStartColumn(STI); |
| 1627 | FOS.PadToColumn(NewCol: CommentColumn); |
| 1628 | FOS << MAI.getCommentString() << ' ' << Comment; |
| 1629 | } |
| 1630 | LVP.printAfterInst(OS&: FOS); |
| 1631 | FOS << '\n'; |
| 1632 | } while (!Comments.empty()); |
| 1633 | FOS.flush(); |
| 1634 | } |
| 1635 | |
| 1636 | static void createFakeELFSections(ObjectFile &Obj) { |
| 1637 | assert(Obj.isELF()); |
| 1638 | if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Val: &Obj)) |
| 1639 | Elf32LEObj->createFakeSections(); |
| 1640 | else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Val: &Obj)) |
| 1641 | Elf64LEObj->createFakeSections(); |
| 1642 | else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Val: &Obj)) |
| 1643 | Elf32BEObj->createFakeSections(); |
| 1644 | else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Val: &Obj)) |
| 1645 | Elf64BEObj->createFakeSections(); |
| 1646 | else |
| 1647 | llvm_unreachable("Unsupported binary format" ); |
| 1648 | } |
| 1649 | |
| 1650 | // Tries to fetch a more complete version of the given object file using its |
| 1651 | // Build ID. Returns std::nullopt if nothing was found. |
| 1652 | static std::optional<OwningBinary<Binary>> |
| 1653 | fetchBinaryByBuildID(const ObjectFile &Obj) { |
| 1654 | object::BuildIDRef BuildID = getBuildID(Obj: &Obj); |
| 1655 | if (BuildID.empty()) |
| 1656 | return std::nullopt; |
| 1657 | std::optional<std::string> Path = BIDFetcher->fetch(BuildID); |
| 1658 | if (!Path) |
| 1659 | return std::nullopt; |
| 1660 | Expected<OwningBinary<Binary>> DebugBinary = createBinary(Path: *Path); |
| 1661 | if (!DebugBinary) { |
| 1662 | reportWarning(Message: toString(E: DebugBinary.takeError()), File: *Path); |
| 1663 | return std::nullopt; |
| 1664 | } |
| 1665 | return std::move(*DebugBinary); |
| 1666 | } |
| 1667 | |
| 1668 | static void |
| 1669 | disassembleObject(ObjectFile &Obj, const ObjectFile &DbgObj, |
| 1670 | DisassemblerTarget &PrimaryTarget, |
| 1671 | std::optional<DisassemblerTarget> &SecondaryTarget, |
| 1672 | SourcePrinter &SP, bool InlineRelocs, raw_ostream &OS) { |
| 1673 | DisassemblerTarget *DT = &PrimaryTarget; |
| 1674 | bool PrimaryIsThumb = false; |
| 1675 | SmallVector<std::pair<uint64_t, uint64_t>, 0> CHPECodeMap; |
| 1676 | |
| 1677 | if (SecondaryTarget) { |
| 1678 | if (isArmElf(Obj)) { |
| 1679 | PrimaryIsThumb = |
| 1680 | PrimaryTarget.SubtargetInfo->checkFeatures(FS: "+thumb-mode" ); |
| 1681 | } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Val: &Obj)) { |
| 1682 | const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata(); |
| 1683 | if (CHPEMetadata && CHPEMetadata->CodeMapCount) { |
| 1684 | uintptr_t CodeMapInt; |
| 1685 | cantFail(Err: COFFObj->getRvaPtr(Rva: CHPEMetadata->CodeMap, Res&: CodeMapInt)); |
| 1686 | auto CodeMap = reinterpret_cast<const chpe_range_entry *>(CodeMapInt); |
| 1687 | |
| 1688 | for (uint32_t i = 0; i < CHPEMetadata->CodeMapCount; ++i) { |
| 1689 | if (CodeMap[i].getType() == chpe_range_type::Amd64 && |
| 1690 | CodeMap[i].Length) { |
| 1691 | // Store x86_64 CHPE code ranges. |
| 1692 | uint64_t Start = CodeMap[i].getStart() + COFFObj->getImageBase(); |
| 1693 | CHPECodeMap.emplace_back(Args&: Start, Args: Start + CodeMap[i].Length); |
| 1694 | } |
| 1695 | } |
| 1696 | llvm::sort(C&: CHPECodeMap); |
| 1697 | } |
| 1698 | } |
| 1699 | } |
| 1700 | |
| 1701 | std::map<SectionRef, std::vector<RelocationRef>> RelocMap; |
| 1702 | if (InlineRelocs || Obj.isXCOFF()) |
| 1703 | RelocMap = getRelocsMap(Obj); |
| 1704 | bool Is64Bits = Obj.getBytesInAddress() > 4; |
| 1705 | |
| 1706 | // Create a mapping from virtual address to symbol name. This is used to |
| 1707 | // pretty print the symbols while disassembling. |
| 1708 | std::map<SectionRef, SectionSymbolsTy> AllSymbols; |
| 1709 | std::map<SectionRef, SmallVector<MappingSymbolPair, 0>> AllMappingSymbols; |
| 1710 | SectionSymbolsTy AbsoluteSymbols; |
| 1711 | const StringRef FileName = Obj.getFileName(); |
| 1712 | const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Val: &Obj); |
| 1713 | for (const SymbolRef &Symbol : Obj.symbols()) { |
| 1714 | Expected<StringRef> NameOrErr = Symbol.getName(); |
| 1715 | if (!NameOrErr) { |
| 1716 | reportWarning(Message: toString(E: NameOrErr.takeError()), File: FileName); |
| 1717 | continue; |
| 1718 | } |
| 1719 | if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription)) |
| 1720 | continue; |
| 1721 | |
| 1722 | if (Obj.isELF() && |
| 1723 | (cantFail(ValOrErr: Symbol.getFlags()) & SymbolRef::SF_FormatSpecific)) { |
| 1724 | // Symbol is intended not to be displayed by default (STT_FILE, |
| 1725 | // STT_SECTION, or a mapping symbol). Ignore STT_SECTION symbols. We will |
| 1726 | // synthesize a section symbol if no symbol is defined at offset 0. |
| 1727 | // |
| 1728 | // For a mapping symbol, store it within both AllSymbols and |
| 1729 | // AllMappingSymbols. If --show-all-symbols is unspecified, its label will |
| 1730 | // not be printed in disassembly listing. |
| 1731 | if (getElfSymbolType(Obj, Sym: Symbol) != ELF::STT_SECTION && |
| 1732 | hasMappingSymbols(Obj)) { |
| 1733 | section_iterator SecI = unwrapOrError(EO: Symbol.getSection(), Args: FileName); |
| 1734 | if (SecI != Obj.section_end()) { |
| 1735 | uint64_t SectionAddr = SecI->getAddress(); |
| 1736 | uint64_t Address = cantFail(ValOrErr: Symbol.getAddress()); |
| 1737 | StringRef Name = *NameOrErr; |
| 1738 | if (Name.consume_front(Prefix: "$" ) && Name.size() && |
| 1739 | strchr(s: "adtx" , c: Name[0])) { |
| 1740 | AllMappingSymbols[*SecI].emplace_back(Args: Address - SectionAddr, |
| 1741 | Args: Name[0]); |
| 1742 | AllSymbols[*SecI].push_back( |
| 1743 | x: createSymbolInfo(Obj, Symbol, /*MappingSymbol=*/IsMappingSymbol: true)); |
| 1744 | } |
| 1745 | } |
| 1746 | } |
| 1747 | continue; |
| 1748 | } |
| 1749 | |
| 1750 | if (MachO) { |
| 1751 | // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special |
| 1752 | // symbols that support MachO header introspection. They do not bind to |
| 1753 | // code locations and are irrelevant for disassembly. |
| 1754 | if (NameOrErr->starts_with(Prefix: "__mh_" ) && NameOrErr->ends_with(Suffix: "_header" )) |
| 1755 | continue; |
| 1756 | // Don't ask a Mach-O STAB symbol for its section unless you know that |
| 1757 | // STAB symbol's section field refers to a valid section index. Otherwise |
| 1758 | // the symbol may error trying to load a section that does not exist. |
| 1759 | DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); |
| 1760 | uint8_t NType = (MachO->is64Bit() ? |
| 1761 | MachO->getSymbol64TableEntry(DRI: SymDRI).n_type: |
| 1762 | MachO->getSymbolTableEntry(DRI: SymDRI).n_type); |
| 1763 | if (NType & MachO::N_STAB) |
| 1764 | continue; |
| 1765 | } |
| 1766 | |
| 1767 | section_iterator SecI = unwrapOrError(EO: Symbol.getSection(), Args: FileName); |
| 1768 | if (SecI != Obj.section_end()) |
| 1769 | AllSymbols[*SecI].push_back(x: createSymbolInfo(Obj, Symbol)); |
| 1770 | else |
| 1771 | AbsoluteSymbols.push_back(x: createSymbolInfo(Obj, Symbol)); |
| 1772 | } |
| 1773 | |
| 1774 | if (AllSymbols.empty() && Obj.isELF()) |
| 1775 | addDynamicElfSymbols(Obj: cast<ELFObjectFileBase>(Val&: Obj), AllSymbols); |
| 1776 | |
| 1777 | if (Obj.isWasm()) |
| 1778 | addMissingWasmCodeSymbols(Obj: cast<WasmObjectFile>(Val&: Obj), AllSymbols); |
| 1779 | |
| 1780 | if (Obj.isELF() && Obj.sections().empty()) |
| 1781 | createFakeELFSections(Obj); |
| 1782 | |
| 1783 | DisassemblerTarget *PltTarget = DT; |
| 1784 | auto SectionNames = getSectionNames(Obj); |
| 1785 | if (SecondaryTarget && isArmElf(Obj)) { |
| 1786 | auto PltSectionRef = SectionNames.find(Val: ".plt" ); |
| 1787 | if (PltSectionRef != SectionNames.end()) { |
| 1788 | bool PltIsThumb = false; |
| 1789 | for (auto [Addr, SymbolName] : AllMappingSymbols[PltSectionRef->second]) { |
| 1790 | if (Addr != 0) |
| 1791 | continue; |
| 1792 | |
| 1793 | if (SymbolName == 't') { |
| 1794 | PltIsThumb = true; |
| 1795 | break; |
| 1796 | } |
| 1797 | if (SymbolName == 'a') |
| 1798 | break; |
| 1799 | } |
| 1800 | |
| 1801 | if (PrimaryTarget.SubtargetInfo->checkFeatures(FS: "+thumb-mode" )) |
| 1802 | PltTarget = PltIsThumb ? &PrimaryTarget : &*SecondaryTarget; |
| 1803 | else |
| 1804 | PltTarget = PltIsThumb ? &*SecondaryTarget : &PrimaryTarget; |
| 1805 | } |
| 1806 | } |
| 1807 | BumpPtrAllocator A; |
| 1808 | StringSaver Saver(A); |
| 1809 | addPltEntries(STI: *PltTarget->SubtargetInfo, Obj, SectionNames, AllSymbols, |
| 1810 | Saver); |
| 1811 | |
| 1812 | // Create a mapping from virtual address to section. An empty section can |
| 1813 | // cause more than one section at the same address. Sort such sections to be |
| 1814 | // before same-addressed non-empty sections so that symbol lookups prefer the |
| 1815 | // non-empty section. |
| 1816 | std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; |
| 1817 | for (SectionRef Sec : Obj.sections()) |
| 1818 | SectionAddresses.emplace_back(args: Sec.getAddress(), args&: Sec); |
| 1819 | llvm::stable_sort(Range&: SectionAddresses, C: [](const auto &LHS, const auto &RHS) { |
| 1820 | if (LHS.first != RHS.first) |
| 1821 | return LHS.first < RHS.first; |
| 1822 | return LHS.second.getSize() < RHS.second.getSize(); |
| 1823 | }); |
| 1824 | |
| 1825 | // Linked executables (.exe and .dll files) typically don't include a real |
| 1826 | // symbol table but they might contain an export table. |
| 1827 | if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Val: &Obj)) { |
| 1828 | for (const auto &ExportEntry : COFFObj->export_directories()) { |
| 1829 | StringRef Name; |
| 1830 | if (Error E = ExportEntry.getSymbolName(Result&: Name)) |
| 1831 | reportError(E: std::move(E), FileName: Obj.getFileName()); |
| 1832 | if (Name.empty()) |
| 1833 | continue; |
| 1834 | |
| 1835 | uint32_t RVA; |
| 1836 | if (Error E = ExportEntry.getExportRVA(Result&: RVA)) |
| 1837 | reportError(E: std::move(E), FileName: Obj.getFileName()); |
| 1838 | |
| 1839 | uint64_t VA = COFFObj->getImageBase() + RVA; |
| 1840 | auto Sec = partition_point( |
| 1841 | Range&: SectionAddresses, P: [VA](const std::pair<uint64_t, SectionRef> &O) { |
| 1842 | return O.first <= VA; |
| 1843 | }); |
| 1844 | if (Sec != SectionAddresses.begin()) { |
| 1845 | --Sec; |
| 1846 | AllSymbols[Sec->second].emplace_back(args&: VA, args&: Name, args: ELF::STT_NOTYPE); |
| 1847 | } else |
| 1848 | AbsoluteSymbols.emplace_back(args&: VA, args&: Name, args: ELF::STT_NOTYPE); |
| 1849 | } |
| 1850 | } |
| 1851 | |
| 1852 | // Sort all the symbols, this allows us to use a simple binary search to find |
| 1853 | // Multiple symbols can have the same address. Use a stable sort to stabilize |
| 1854 | // the output. |
| 1855 | StringSet<> FoundDisasmSymbolSet; |
| 1856 | for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) |
| 1857 | llvm::stable_sort(Range&: SecSyms.second); |
| 1858 | llvm::stable_sort(Range&: AbsoluteSymbols); |
| 1859 | |
| 1860 | std::unique_ptr<DWARFContext> DICtx; |
| 1861 | LiveVariablePrinter LVP(*DT->Context->getRegisterInfo(), *DT->SubtargetInfo); |
| 1862 | |
| 1863 | if (DbgVariables != DVDisabled) { |
| 1864 | DICtx = DWARFContext::create(Obj: DbgObj); |
| 1865 | for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units()) |
| 1866 | LVP.addCompileUnit(D: CU->getUnitDIE(ExtractUnitDIEOnly: false)); |
| 1867 | } |
| 1868 | |
| 1869 | LLVM_DEBUG(LVP.dump()); |
| 1870 | |
| 1871 | BBAddrMapInfo FullAddrMap; |
| 1872 | auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex = |
| 1873 | std::nullopt) { |
| 1874 | FullAddrMap.clear(); |
| 1875 | if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Val: &Obj)) { |
| 1876 | std::vector<PGOAnalysisMap> PGOAnalyses; |
| 1877 | auto BBAddrMapsOrErr = Elf->readBBAddrMap(TextSectionIndex: SectionIndex, PGOAnalyses: &PGOAnalyses); |
| 1878 | if (!BBAddrMapsOrErr) { |
| 1879 | reportWarning(Message: toString(E: BBAddrMapsOrErr.takeError()), File: Obj.getFileName()); |
| 1880 | return; |
| 1881 | } |
| 1882 | for (auto &&[FunctionBBAddrMap, FunctionPGOAnalysis] : |
| 1883 | zip_equal(t&: *std::move(BBAddrMapsOrErr), u: std::move(PGOAnalyses))) { |
| 1884 | FullAddrMap.AddFunctionEntry(AddrMap: std::move(FunctionBBAddrMap), |
| 1885 | PGOMap: std::move(FunctionPGOAnalysis)); |
| 1886 | } |
| 1887 | } |
| 1888 | }; |
| 1889 | |
| 1890 | // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a |
| 1891 | // single mapping, since they don't have any conflicts. |
| 1892 | if (SymbolizeOperands && !Obj.isRelocatableObject()) |
| 1893 | ReadBBAddrMap(); |
| 1894 | |
| 1895 | std::optional<llvm::BTFParser> BTF; |
| 1896 | if (InlineRelocs && BTFParser::hasBTFSections(Obj)) { |
| 1897 | BTF.emplace(); |
| 1898 | BTFParser::ParseOptions Opts = {}; |
| 1899 | Opts.LoadTypes = true; |
| 1900 | Opts.LoadRelocs = true; |
| 1901 | if (Error E = BTF->parse(Obj, Opts)) |
| 1902 | WithColor::defaultErrorHandler(Err: std::move(E)); |
| 1903 | } |
| 1904 | |
| 1905 | for (const SectionRef &Section : ToolSectionFilter(O: Obj)) { |
| 1906 | if (FilterSections.empty() && !DisassembleAll && |
| 1907 | (!Section.isText() || Section.isVirtual())) |
| 1908 | continue; |
| 1909 | |
| 1910 | uint64_t SectionAddr = Section.getAddress(); |
| 1911 | uint64_t SectSize = Section.getSize(); |
| 1912 | if (!SectSize) |
| 1913 | continue; |
| 1914 | |
| 1915 | // For relocatable object files, read the LLVM_BB_ADDR_MAP section |
| 1916 | // corresponding to this section, if present. |
| 1917 | if (SymbolizeOperands && Obj.isRelocatableObject()) |
| 1918 | ReadBBAddrMap(Section.getIndex()); |
| 1919 | |
| 1920 | // Get the list of all the symbols in this section. |
| 1921 | SectionSymbolsTy &Symbols = AllSymbols[Section]; |
| 1922 | auto &MappingSymbols = AllMappingSymbols[Section]; |
| 1923 | llvm::sort(C&: MappingSymbols); |
| 1924 | |
| 1925 | ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( |
| 1926 | Input: unwrapOrError(EO: Section.getContents(), Args: Obj.getFileName())); |
| 1927 | |
| 1928 | std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames; |
| 1929 | if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) { |
| 1930 | // AMDGPU disassembler uses symbolizer for printing labels |
| 1931 | addSymbolizer(Ctx&: *DT->Context, Target: DT->TheTarget, TripleName, DisAsm: DT->DisAsm.get(), |
| 1932 | SectionAddr, Bytes, Symbols, SynthesizedLabelNames); |
| 1933 | } |
| 1934 | |
| 1935 | StringRef SegmentName = getSegmentName(MachO, Section); |
| 1936 | StringRef SectionName = unwrapOrError(EO: Section.getName(), Args: Obj.getFileName()); |
| 1937 | // If the section has no symbol at the start, just insert a dummy one. |
| 1938 | // Without --show-all-symbols, also insert one if all symbols at the start |
| 1939 | // are mapping symbols. |
| 1940 | bool CreateDummy = Symbols.empty(); |
| 1941 | if (!CreateDummy) { |
| 1942 | CreateDummy = true; |
| 1943 | for (auto &Sym : Symbols) { |
| 1944 | if (Sym.Addr != SectionAddr) |
| 1945 | break; |
| 1946 | if (!Sym.IsMappingSymbol || ShowAllSymbols) |
| 1947 | CreateDummy = false; |
| 1948 | } |
| 1949 | } |
| 1950 | if (CreateDummy) { |
| 1951 | SymbolInfoTy Sym = createDummySymbolInfo( |
| 1952 | Obj, Addr: SectionAddr, Name&: SectionName, |
| 1953 | Type: Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT); |
| 1954 | if (Obj.isXCOFF()) |
| 1955 | Symbols.insert(position: Symbols.begin(), x: Sym); |
| 1956 | else |
| 1957 | Symbols.insert(position: llvm::lower_bound(Range&: Symbols, Value&: Sym), x: Sym); |
| 1958 | } |
| 1959 | |
| 1960 | SmallString<40> ; |
| 1961 | raw_svector_ostream (Comments); |
| 1962 | |
| 1963 | uint64_t VMAAdjustment = 0; |
| 1964 | if (shouldAdjustVA(Section)) |
| 1965 | VMAAdjustment = AdjustVMA; |
| 1966 | |
| 1967 | // In executable and shared objects, r_offset holds a virtual address. |
| 1968 | // Subtract SectionAddr from the r_offset field of a relocation to get |
| 1969 | // the section offset. |
| 1970 | uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr; |
| 1971 | uint64_t Size; |
| 1972 | uint64_t Index; |
| 1973 | bool PrintedSection = false; |
| 1974 | std::vector<RelocationRef> Rels = RelocMap[Section]; |
| 1975 | std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); |
| 1976 | std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); |
| 1977 | |
| 1978 | // Loop over each chunk of code between two points where at least |
| 1979 | // one symbol is defined. |
| 1980 | for (size_t SI = 0, SE = Symbols.size(); SI != SE;) { |
| 1981 | // Advance SI past all the symbols starting at the same address, |
| 1982 | // and make an ArrayRef of them. |
| 1983 | unsigned FirstSI = SI; |
| 1984 | uint64_t Start = Symbols[SI].Addr; |
| 1985 | ArrayRef<SymbolInfoTy> SymbolsHere; |
| 1986 | while (SI != SE && Symbols[SI].Addr == Start) |
| 1987 | ++SI; |
| 1988 | SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI); |
| 1989 | |
| 1990 | // Get the demangled names of all those symbols. We end up with a vector |
| 1991 | // of StringRef that holds the names we're going to use, and a vector of |
| 1992 | // std::string that stores the new strings returned by demangle(), if |
| 1993 | // any. If we don't call demangle() then that vector can stay empty. |
| 1994 | std::vector<StringRef> SymNamesHere; |
| 1995 | std::vector<std::string> DemangledSymNamesHere; |
| 1996 | if (Demangle) { |
| 1997 | // Fetch the demangled names and store them locally. |
| 1998 | for (const SymbolInfoTy &Symbol : SymbolsHere) |
| 1999 | DemangledSymNamesHere.push_back(x: demangle(MangledName: Symbol.Name)); |
| 2000 | // Now we've finished modifying that vector, it's safe to make |
| 2001 | // a vector of StringRefs pointing into it. |
| 2002 | SymNamesHere.insert(position: SymNamesHere.begin(), first: DemangledSymNamesHere.begin(), |
| 2003 | last: DemangledSymNamesHere.end()); |
| 2004 | } else { |
| 2005 | for (const SymbolInfoTy &Symbol : SymbolsHere) |
| 2006 | SymNamesHere.push_back(x: Symbol.Name); |
| 2007 | } |
| 2008 | |
| 2009 | // Distinguish ELF data from code symbols, which will be used later on to |
| 2010 | // decide whether to 'disassemble' this chunk as a data declaration via |
| 2011 | // dumpELFData(), or whether to treat it as code. |
| 2012 | // |
| 2013 | // If data _and_ code symbols are defined at the same address, the code |
| 2014 | // takes priority, on the grounds that disassembling code is our main |
| 2015 | // purpose here, and it would be a worse failure to _not_ interpret |
| 2016 | // something that _was_ meaningful as code than vice versa. |
| 2017 | // |
| 2018 | // Any ELF symbol type that is not clearly data will be regarded as code. |
| 2019 | // In particular, one of the uses of STT_NOTYPE is for branch targets |
| 2020 | // inside functions, for which STT_FUNC would be inaccurate. |
| 2021 | // |
| 2022 | // So here, we spot whether there's any non-data symbol present at all, |
| 2023 | // and only set the DisassembleAsELFData flag if there isn't. Also, we use |
| 2024 | // this distinction to inform the decision of which symbol to print at |
| 2025 | // the head of the section, so that if we're printing code, we print a |
| 2026 | // code-related symbol name to go with it. |
| 2027 | bool DisassembleAsELFData = false; |
| 2028 | size_t DisplaySymIndex = SymbolsHere.size() - 1; |
| 2029 | if (Obj.isELF() && !DisassembleAll && Section.isText()) { |
| 2030 | DisassembleAsELFData = true; // unless we find a code symbol below |
| 2031 | |
| 2032 | for (size_t i = 0; i < SymbolsHere.size(); ++i) { |
| 2033 | uint8_t SymTy = SymbolsHere[i].Type; |
| 2034 | if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) { |
| 2035 | DisassembleAsELFData = false; |
| 2036 | DisplaySymIndex = i; |
| 2037 | } |
| 2038 | } |
| 2039 | } |
| 2040 | |
| 2041 | // Decide which symbol(s) from this collection we're going to print. |
| 2042 | std::vector<bool> SymsToPrint(SymbolsHere.size(), false); |
| 2043 | // If the user has given the --disassemble-symbols option, then we must |
| 2044 | // display every symbol in that set, and no others. |
| 2045 | if (!DisasmSymbolSet.empty()) { |
| 2046 | bool FoundAny = false; |
| 2047 | for (size_t i = 0; i < SymbolsHere.size(); ++i) { |
| 2048 | if (DisasmSymbolSet.count(Key: SymNamesHere[i])) { |
| 2049 | SymsToPrint[i] = true; |
| 2050 | FoundAny = true; |
| 2051 | } |
| 2052 | } |
| 2053 | |
| 2054 | // And if none of the symbols here is one that the user asked for, skip |
| 2055 | // disassembling this entire chunk of code. |
| 2056 | if (!FoundAny) |
| 2057 | continue; |
| 2058 | } else if (!SymbolsHere[DisplaySymIndex].IsMappingSymbol) { |
| 2059 | // Otherwise, print whichever symbol at this location is last in the |
| 2060 | // Symbols array, because that array is pre-sorted in a way intended to |
| 2061 | // correlate with priority of which symbol to display. |
| 2062 | SymsToPrint[DisplaySymIndex] = true; |
| 2063 | } |
| 2064 | |
| 2065 | // Now that we know we're disassembling this section, override the choice |
| 2066 | // of which symbols to display by printing _all_ of them at this address |
| 2067 | // if the user asked for all symbols. |
| 2068 | // |
| 2069 | // That way, '--show-all-symbols --disassemble-symbol=foo' will print |
| 2070 | // only the chunk of code headed by 'foo', but also show any other |
| 2071 | // symbols defined at that address, such as aliases for 'foo', or the ARM |
| 2072 | // mapping symbol preceding its code. |
| 2073 | if (ShowAllSymbols) { |
| 2074 | for (size_t i = 0; i < SymbolsHere.size(); ++i) |
| 2075 | SymsToPrint[i] = true; |
| 2076 | } |
| 2077 | |
| 2078 | if (Start < SectionAddr || StopAddress <= Start) |
| 2079 | continue; |
| 2080 | |
| 2081 | FoundDisasmSymbolSet.insert_range(R&: SymNamesHere); |
| 2082 | |
| 2083 | // The end is the section end, the beginning of the next symbol, or |
| 2084 | // --stop-address. |
| 2085 | uint64_t End = std::min<uint64_t>(a: SectionAddr + SectSize, b: StopAddress); |
| 2086 | if (SI < SE) |
| 2087 | End = std::min(a: End, b: Symbols[SI].Addr); |
| 2088 | if (Start >= End || End <= StartAddress) |
| 2089 | continue; |
| 2090 | Start -= SectionAddr; |
| 2091 | End -= SectionAddr; |
| 2092 | |
| 2093 | if (!PrintedSection) { |
| 2094 | PrintedSection = true; |
| 2095 | OS << "\nDisassembly of section " ; |
| 2096 | if (!SegmentName.empty()) |
| 2097 | OS << SegmentName << "," ; |
| 2098 | OS << SectionName << ":\n" ; |
| 2099 | } |
| 2100 | |
| 2101 | bool PrintedLabel = false; |
| 2102 | for (size_t i = 0; i < SymbolsHere.size(); ++i) { |
| 2103 | if (!SymsToPrint[i]) |
| 2104 | continue; |
| 2105 | |
| 2106 | const SymbolInfoTy &Symbol = SymbolsHere[i]; |
| 2107 | const StringRef SymbolName = SymNamesHere[i]; |
| 2108 | |
| 2109 | if (!PrintedLabel) { |
| 2110 | OS << '\n'; |
| 2111 | PrintedLabel = true; |
| 2112 | } |
| 2113 | if (LeadingAddr) |
| 2114 | OS << format(Fmt: Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " " , |
| 2115 | Vals: SectionAddr + Start + VMAAdjustment); |
| 2116 | if (Obj.isXCOFF() && SymbolDescription) { |
| 2117 | OS << getXCOFFSymbolDescription(SymbolInfo: Symbol, SymbolName) << ":\n" ; |
| 2118 | } else |
| 2119 | OS << '<' << SymbolName << ">:\n" ; |
| 2120 | } |
| 2121 | |
| 2122 | // Don't print raw contents of a virtual section. A virtual section |
| 2123 | // doesn't have any contents in the file. |
| 2124 | if (Section.isVirtual()) { |
| 2125 | OS << "...\n" ; |
| 2126 | continue; |
| 2127 | } |
| 2128 | |
| 2129 | // See if any of the symbols defined at this location triggers target- |
| 2130 | // specific disassembly behavior, e.g. of special descriptors or function |
| 2131 | // prelude information. |
| 2132 | // |
| 2133 | // We stop this loop at the first symbol that triggers some kind of |
| 2134 | // interesting behavior (if any), on the assumption that if two symbols |
| 2135 | // defined at the same address trigger two conflicting symbol handlers, |
| 2136 | // the object file is probably confused anyway, and it would make even |
| 2137 | // less sense to present the output of _both_ handlers, because that |
| 2138 | // would describe the same data twice. |
| 2139 | for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) { |
| 2140 | SymbolInfoTy Symbol = SymbolsHere[SHI]; |
| 2141 | |
| 2142 | Expected<bool> RespondedOrErr = DT->DisAsm->onSymbolStart( |
| 2143 | Symbol, Size, Bytes: Bytes.slice(N: Start, M: End - Start), Address: SectionAddr + Start); |
| 2144 | |
| 2145 | if (RespondedOrErr && !*RespondedOrErr) { |
| 2146 | // This symbol didn't trigger any interesting handling. Try the other |
| 2147 | // symbols defined at this address. |
| 2148 | continue; |
| 2149 | } |
| 2150 | |
| 2151 | // If onSymbolStart returned an Error, that means it identified some |
| 2152 | // kind of special data at this address, but wasn't able to disassemble |
| 2153 | // it meaningfully. So we fall back to printing the error out and |
| 2154 | // disassembling the failed region as bytes, assuming that the target |
| 2155 | // detected the failure before printing anything. |
| 2156 | if (!RespondedOrErr) { |
| 2157 | std::string ErrMsgStr = toString(E: RespondedOrErr.takeError()); |
| 2158 | StringRef ErrMsg = ErrMsgStr; |
| 2159 | do { |
| 2160 | StringRef Line; |
| 2161 | std::tie(args&: Line, args&: ErrMsg) = ErrMsg.split(Separator: '\n'); |
| 2162 | OS << DT->Context->getAsmInfo()->getCommentString() |
| 2163 | << " error decoding " << SymNamesHere[SHI] << ": " << Line |
| 2164 | << '\n'; |
| 2165 | } while (!ErrMsg.empty()); |
| 2166 | |
| 2167 | if (Size) { |
| 2168 | OS << DT->Context->getAsmInfo()->getCommentString() |
| 2169 | << " decoding failed region as bytes\n" ; |
| 2170 | for (uint64_t I = 0; I < Size; ++I) |
| 2171 | OS << "\t.byte\t " << format_hex(N: Bytes[I], Width: 1, /*Upper=*/true) |
| 2172 | << '\n'; |
| 2173 | } |
| 2174 | } |
| 2175 | |
| 2176 | // Regardless of whether onSymbolStart returned an Error or true, 'Size' |
| 2177 | // will have been set to the amount of data covered by whatever prologue |
| 2178 | // the target identified. So we advance our own position to beyond that. |
| 2179 | // Sometimes that will be the entire distance to the next symbol, and |
| 2180 | // sometimes it will be just a prologue and we should start |
| 2181 | // disassembling instructions from where it left off. |
| 2182 | Start += Size; |
| 2183 | break; |
| 2184 | } |
| 2185 | formatted_raw_ostream FOS(OS); |
| 2186 | Index = Start; |
| 2187 | if (SectionAddr < StartAddress) |
| 2188 | Index = std::max<uint64_t>(a: Index, b: StartAddress - SectionAddr); |
| 2189 | |
| 2190 | if (DisassembleAsELFData) { |
| 2191 | dumpELFData(SectionAddr, Index, End, Bytes, OS&: FOS); |
| 2192 | Index = End; |
| 2193 | continue; |
| 2194 | } |
| 2195 | |
| 2196 | // Skip relocations from symbols that are not dumped. |
| 2197 | for (; RelCur != RelEnd; ++RelCur) { |
| 2198 | uint64_t Offset = RelCur->getOffset() - RelAdjustment; |
| 2199 | if (Index <= Offset) |
| 2200 | break; |
| 2201 | } |
| 2202 | |
| 2203 | bool DumpARMELFData = false; |
| 2204 | bool DumpTracebackTableForXCOFFFunction = |
| 2205 | Obj.isXCOFF() && Section.isText() && TracebackTable && |
| 2206 | Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass && |
| 2207 | (*Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass == XCOFF::XMC_PR); |
| 2208 | |
| 2209 | std::unordered_map<uint64_t, std::string> AllLabels; |
| 2210 | std::unordered_map<uint64_t, std::vector<BBAddrMapLabel>> BBAddrMapLabels; |
| 2211 | if (SymbolizeOperands) { |
| 2212 | collectLocalBranchTargets(Bytes, MIA: DT->InstrAnalysis.get(), |
| 2213 | DisAsm: DT->DisAsm.get(), IP: DT->InstPrinter.get(), |
| 2214 | STI: PrimaryTarget.SubtargetInfo.get(), |
| 2215 | SectionAddr, Start: Index, End, Labels&: AllLabels); |
| 2216 | collectBBAddrMapLabels(FullAddrMap, SectionAddr, Start: Index, End, |
| 2217 | Labels&: BBAddrMapLabels); |
| 2218 | } |
| 2219 | |
| 2220 | if (DT->InstrAnalysis) |
| 2221 | DT->InstrAnalysis->resetState(); |
| 2222 | |
| 2223 | while (Index < End) { |
| 2224 | uint64_t RelOffset; |
| 2225 | |
| 2226 | // ARM and AArch64 ELF binaries can interleave data and text in the |
| 2227 | // same section. We rely on the markers introduced to understand what |
| 2228 | // we need to dump. If the data marker is within a function, it is |
| 2229 | // denoted as a word/short etc. |
| 2230 | if (!MappingSymbols.empty()) { |
| 2231 | char Kind = getMappingSymbolKind(MappingSymbols, Address: Index); |
| 2232 | DumpARMELFData = Kind == 'd'; |
| 2233 | if (SecondaryTarget) { |
| 2234 | if (Kind == 'a') { |
| 2235 | DT = PrimaryIsThumb ? &*SecondaryTarget : &PrimaryTarget; |
| 2236 | } else if (Kind == 't') { |
| 2237 | DT = PrimaryIsThumb ? &PrimaryTarget : &*SecondaryTarget; |
| 2238 | } |
| 2239 | } |
| 2240 | } else if (!CHPECodeMap.empty()) { |
| 2241 | uint64_t Address = SectionAddr + Index; |
| 2242 | auto It = partition_point( |
| 2243 | Range&: CHPECodeMap, |
| 2244 | P: [Address](const std::pair<uint64_t, uint64_t> &Entry) { |
| 2245 | return Entry.first <= Address; |
| 2246 | }); |
| 2247 | if (It != CHPECodeMap.begin() && Address < (It - 1)->second) { |
| 2248 | DT = &*SecondaryTarget; |
| 2249 | } else { |
| 2250 | DT = &PrimaryTarget; |
| 2251 | // X64 disassembler range may have left Index unaligned, so |
| 2252 | // make sure that it's aligned when we switch back to ARM64 |
| 2253 | // code. |
| 2254 | Index = llvm::alignTo(Value: Index, Align: 4); |
| 2255 | if (Index >= End) |
| 2256 | break; |
| 2257 | } |
| 2258 | } |
| 2259 | |
| 2260 | auto findRel = [&]() { |
| 2261 | while (RelCur != RelEnd) { |
| 2262 | RelOffset = RelCur->getOffset() - RelAdjustment; |
| 2263 | // If this relocation is hidden, skip it. |
| 2264 | if (getHidden(RelRef: *RelCur) || SectionAddr + RelOffset < StartAddress) { |
| 2265 | ++RelCur; |
| 2266 | continue; |
| 2267 | } |
| 2268 | |
| 2269 | // Stop when RelCur's offset is past the disassembled |
| 2270 | // instruction/data. |
| 2271 | if (RelOffset >= Index + Size) |
| 2272 | return false; |
| 2273 | if (RelOffset >= Index) |
| 2274 | return true; |
| 2275 | ++RelCur; |
| 2276 | } |
| 2277 | return false; |
| 2278 | }; |
| 2279 | |
| 2280 | // When -z or --disassemble-zeroes are given we always dissasemble |
| 2281 | // them. Otherwise we might want to skip zero bytes we see. |
| 2282 | if (!DisassembleZeroes) { |
| 2283 | uint64_t MaxOffset = End - Index; |
| 2284 | // For --reloc: print zero blocks patched by relocations, so that |
| 2285 | // relocations can be shown in the dump. |
| 2286 | if (InlineRelocs && RelCur != RelEnd) |
| 2287 | MaxOffset = std::min(a: RelCur->getOffset() - RelAdjustment - Index, |
| 2288 | b: MaxOffset); |
| 2289 | |
| 2290 | if (size_t N = |
| 2291 | countSkippableZeroBytes(Buf: Bytes.slice(N: Index, M: MaxOffset))) { |
| 2292 | FOS << "\t\t..." << '\n'; |
| 2293 | Index += N; |
| 2294 | continue; |
| 2295 | } |
| 2296 | } |
| 2297 | |
| 2298 | if (DumpARMELFData) { |
| 2299 | Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, |
| 2300 | MappingSymbols, STI: *DT->SubtargetInfo, OS&: FOS); |
| 2301 | } else { |
| 2302 | |
| 2303 | if (DumpTracebackTableForXCOFFFunction && |
| 2304 | doesXCOFFTracebackTableBegin(Bytes: Bytes.slice(N: Index, M: 4))) { |
| 2305 | dumpTracebackTable(Bytes: Bytes.slice(N: Index), |
| 2306 | Address: SectionAddr + Index + VMAAdjustment, OS&: FOS, |
| 2307 | End: SectionAddr + End + VMAAdjustment, |
| 2308 | STI: *DT->SubtargetInfo, Obj: cast<XCOFFObjectFile>(Val: &Obj)); |
| 2309 | Index = End; |
| 2310 | continue; |
| 2311 | } |
| 2312 | |
| 2313 | // Print local label if there's any. |
| 2314 | auto Iter1 = BBAddrMapLabels.find(x: SectionAddr + Index); |
| 2315 | if (Iter1 != BBAddrMapLabels.end()) { |
| 2316 | for (const auto &BBLabel : Iter1->second) |
| 2317 | FOS << "<" << BBLabel.BlockLabel << ">" << BBLabel.PGOAnalysis |
| 2318 | << ":\n" ; |
| 2319 | } else { |
| 2320 | auto Iter2 = AllLabels.find(x: SectionAddr + Index); |
| 2321 | if (Iter2 != AllLabels.end()) |
| 2322 | FOS << "<" << Iter2->second << ">:\n" ; |
| 2323 | } |
| 2324 | |
| 2325 | // Disassemble a real instruction or a data when disassemble all is |
| 2326 | // provided |
| 2327 | MCInst Inst; |
| 2328 | ArrayRef<uint8_t> ThisBytes = Bytes.slice(N: Index); |
| 2329 | uint64_t ThisAddr = SectionAddr + Index + VMAAdjustment; |
| 2330 | bool Disassembled = DT->DisAsm->getInstruction( |
| 2331 | Instr&: Inst, Size, Bytes: ThisBytes, Address: ThisAddr, CStream&: CommentStream); |
| 2332 | if (Size == 0) |
| 2333 | Size = std::min<uint64_t>( |
| 2334 | a: ThisBytes.size(), |
| 2335 | b: DT->DisAsm->suggestBytesToSkip(Bytes: ThisBytes, Address: ThisAddr)); |
| 2336 | |
| 2337 | LVP.update(ThisAddr: {.Address: Index, .SectionIndex: Section.getIndex()}, |
| 2338 | NextAddr: {.Address: Index + Size, .SectionIndex: Section.getIndex()}, IncludeDefinedVars: Index + Size != End); |
| 2339 | |
| 2340 | DT->InstPrinter->setCommentStream(CommentStream); |
| 2341 | |
| 2342 | DT->Printer->printInst( |
| 2343 | IP&: *DT->InstPrinter, MI: Disassembled ? &Inst : nullptr, |
| 2344 | Bytes: Bytes.slice(N: Index, M: Size), |
| 2345 | Address: {.Address: SectionAddr + Index + VMAAdjustment, .SectionIndex: Section.getIndex()}, OS&: FOS, |
| 2346 | Annot: "" , STI: *DT->SubtargetInfo, SP: &SP, ObjectFilename: Obj.getFileName(), Rels: &Rels, LVP); |
| 2347 | |
| 2348 | DT->InstPrinter->setCommentStream(llvm::nulls()); |
| 2349 | |
| 2350 | // If disassembly succeeds, we try to resolve the target address |
| 2351 | // (jump target or memory operand address) and print it to the |
| 2352 | // right of the instruction. |
| 2353 | // |
| 2354 | // Otherwise, we don't print anything else so that we avoid |
| 2355 | // analyzing invalid or incomplete instruction information. |
| 2356 | if (Disassembled && DT->InstrAnalysis) { |
| 2357 | llvm::raw_ostream *TargetOS = &FOS; |
| 2358 | uint64_t Target; |
| 2359 | bool PrintTarget = DT->InstrAnalysis->evaluateBranch( |
| 2360 | Inst, Addr: SectionAddr + Index, Size, Target); |
| 2361 | |
| 2362 | if (!PrintTarget) { |
| 2363 | if (std::optional<uint64_t> MaybeTarget = |
| 2364 | DT->InstrAnalysis->evaluateMemoryOperandAddress( |
| 2365 | Inst, STI: DT->SubtargetInfo.get(), Addr: SectionAddr + Index, |
| 2366 | Size)) { |
| 2367 | Target = *MaybeTarget; |
| 2368 | PrintTarget = true; |
| 2369 | // Do not print real address when symbolizing. |
| 2370 | if (!SymbolizeOperands) { |
| 2371 | // Memory operand addresses are printed as comments. |
| 2372 | TargetOS = &CommentStream; |
| 2373 | *TargetOS << "0x" << Twine::utohexstr(Val: Target); |
| 2374 | } |
| 2375 | } |
| 2376 | } |
| 2377 | |
| 2378 | if (PrintTarget) { |
| 2379 | // In a relocatable object, the target's section must reside in |
| 2380 | // the same section as the call instruction or it is accessed |
| 2381 | // through a relocation. |
| 2382 | // |
| 2383 | // In a non-relocatable object, the target may be in any section. |
| 2384 | // In that case, locate the section(s) containing the target |
| 2385 | // address and find the symbol in one of those, if possible. |
| 2386 | // |
| 2387 | // N.B. Except for XCOFF, we don't walk the relocations in the |
| 2388 | // relocatable case yet. |
| 2389 | std::vector<const SectionSymbolsTy *> TargetSectionSymbols; |
| 2390 | if (!Obj.isRelocatableObject()) { |
| 2391 | auto It = llvm::partition_point( |
| 2392 | Range&: SectionAddresses, |
| 2393 | P: [=](const std::pair<uint64_t, SectionRef> &O) { |
| 2394 | return O.first <= Target; |
| 2395 | }); |
| 2396 | uint64_t TargetSecAddr = 0; |
| 2397 | while (It != SectionAddresses.begin()) { |
| 2398 | --It; |
| 2399 | if (TargetSecAddr == 0) |
| 2400 | TargetSecAddr = It->first; |
| 2401 | if (It->first != TargetSecAddr) |
| 2402 | break; |
| 2403 | TargetSectionSymbols.push_back(x: &AllSymbols[It->second]); |
| 2404 | } |
| 2405 | } else { |
| 2406 | TargetSectionSymbols.push_back(x: &Symbols); |
| 2407 | } |
| 2408 | TargetSectionSymbols.push_back(x: &AbsoluteSymbols); |
| 2409 | |
| 2410 | // Find the last symbol in the first candidate section whose |
| 2411 | // offset is less than or equal to the target. If there are no |
| 2412 | // such symbols, try in the next section and so on, before finally |
| 2413 | // using the nearest preceding absolute symbol (if any), if there |
| 2414 | // are no other valid symbols. |
| 2415 | const SymbolInfoTy *TargetSym = nullptr; |
| 2416 | for (const SectionSymbolsTy *TargetSymbols : |
| 2417 | TargetSectionSymbols) { |
| 2418 | auto It = llvm::partition_point( |
| 2419 | Range: *TargetSymbols, |
| 2420 | P: [=](const SymbolInfoTy &O) { return O.Addr <= Target; }); |
| 2421 | while (It != TargetSymbols->begin()) { |
| 2422 | --It; |
| 2423 | // Skip mapping symbols to avoid possible ambiguity as they |
| 2424 | // do not allow uniquely identifying the target address. |
| 2425 | if (!It->IsMappingSymbol) { |
| 2426 | TargetSym = &*It; |
| 2427 | break; |
| 2428 | } |
| 2429 | } |
| 2430 | if (TargetSym) |
| 2431 | break; |
| 2432 | } |
| 2433 | |
| 2434 | // Branch targets are printed just after the instructions. |
| 2435 | // Print the labels corresponding to the target if there's any. |
| 2436 | bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(x: Target); |
| 2437 | bool LabelAvailable = AllLabels.count(x: Target); |
| 2438 | |
| 2439 | if (TargetSym != nullptr) { |
| 2440 | uint64_t TargetAddress = TargetSym->Addr; |
| 2441 | uint64_t Disp = Target - TargetAddress; |
| 2442 | std::string TargetName = Demangle ? demangle(MangledName: TargetSym->Name) |
| 2443 | : TargetSym->Name.str(); |
| 2444 | bool RelFixedUp = false; |
| 2445 | SmallString<32> Val; |
| 2446 | |
| 2447 | *TargetOS << " <" ; |
| 2448 | // On XCOFF, we use relocations, even without -r, so we |
| 2449 | // can print the correct name for an extern function call. |
| 2450 | if (Obj.isXCOFF() && findRel()) { |
| 2451 | // Check for possible branch relocations and |
| 2452 | // branches to fixup code. |
| 2453 | bool BranchRelocationType = true; |
| 2454 | XCOFF::RelocationType RelocType; |
| 2455 | if (Obj.is64Bit()) { |
| 2456 | const XCOFFRelocation64 *Reloc = |
| 2457 | reinterpret_cast<XCOFFRelocation64 *>( |
| 2458 | RelCur->getRawDataRefImpl().p); |
| 2459 | RelFixedUp = Reloc->isFixupIndicated(); |
| 2460 | RelocType = Reloc->Type; |
| 2461 | } else { |
| 2462 | const XCOFFRelocation32 *Reloc = |
| 2463 | reinterpret_cast<XCOFFRelocation32 *>( |
| 2464 | RelCur->getRawDataRefImpl().p); |
| 2465 | RelFixedUp = Reloc->isFixupIndicated(); |
| 2466 | RelocType = Reloc->Type; |
| 2467 | } |
| 2468 | BranchRelocationType = |
| 2469 | RelocType == XCOFF::R_BA || RelocType == XCOFF::R_BR || |
| 2470 | RelocType == XCOFF::R_RBA || RelocType == XCOFF::R_RBR; |
| 2471 | |
| 2472 | // If we have a valid relocation, try to print its |
| 2473 | // corresponding symbol name. Multiple relocations on the |
| 2474 | // same instruction are not handled. |
| 2475 | // Branches to fixup code will have the RelFixedUp flag set in |
| 2476 | // the RLD. For these instructions, we print the correct |
| 2477 | // branch target, but print the referenced symbol as a |
| 2478 | // comment. |
| 2479 | if (Error E = getRelocationValueString(Rel: *RelCur, SymbolDescription: false, Result&: Val)) { |
| 2480 | // If -r was used, this error will be printed later. |
| 2481 | // Otherwise, we ignore the error and print what |
| 2482 | // would have been printed without using relocations. |
| 2483 | consumeError(Err: std::move(E)); |
| 2484 | *TargetOS << TargetName; |
| 2485 | RelFixedUp = false; // Suppress comment for RLD sym name |
| 2486 | } else if (BranchRelocationType && !RelFixedUp) |
| 2487 | *TargetOS << Val; |
| 2488 | else |
| 2489 | *TargetOS << TargetName; |
| 2490 | if (Disp) |
| 2491 | *TargetOS << "+0x" << Twine::utohexstr(Val: Disp); |
| 2492 | } else if (!Disp) { |
| 2493 | *TargetOS << TargetName; |
| 2494 | } else if (BBAddrMapLabelAvailable) { |
| 2495 | *TargetOS << BBAddrMapLabels[Target].front().BlockLabel; |
| 2496 | } else if (LabelAvailable) { |
| 2497 | *TargetOS << AllLabels[Target]; |
| 2498 | } else { |
| 2499 | // Always Print the binary symbol plus an offset if there's no |
| 2500 | // local label corresponding to the target address. |
| 2501 | *TargetOS << TargetName << "+0x" << Twine::utohexstr(Val: Disp); |
| 2502 | } |
| 2503 | *TargetOS << ">" ; |
| 2504 | if (RelFixedUp && !InlineRelocs) { |
| 2505 | // We have fixup code for a relocation. We print the |
| 2506 | // referenced symbol as a comment. |
| 2507 | *TargetOS << "\t# " << Val; |
| 2508 | } |
| 2509 | |
| 2510 | } else if (BBAddrMapLabelAvailable) { |
| 2511 | *TargetOS << " <" << BBAddrMapLabels[Target].front().BlockLabel |
| 2512 | << ">" ; |
| 2513 | } else if (LabelAvailable) { |
| 2514 | *TargetOS << " <" << AllLabels[Target] << ">" ; |
| 2515 | } |
| 2516 | // By convention, each record in the comment stream should be |
| 2517 | // terminated. |
| 2518 | if (TargetOS == &CommentStream) |
| 2519 | *TargetOS << "\n" ; |
| 2520 | } |
| 2521 | |
| 2522 | DT->InstrAnalysis->updateState(Inst, Addr: SectionAddr + Index); |
| 2523 | } else if (!Disassembled && DT->InstrAnalysis) { |
| 2524 | DT->InstrAnalysis->resetState(); |
| 2525 | } |
| 2526 | } |
| 2527 | |
| 2528 | assert(DT->Context->getAsmInfo()); |
| 2529 | emitPostInstructionInfo(FOS, MAI: *DT->Context->getAsmInfo(), |
| 2530 | STI: *DT->SubtargetInfo, Comments: CommentStream.str(), LVP); |
| 2531 | Comments.clear(); |
| 2532 | |
| 2533 | if (BTF) |
| 2534 | printBTFRelocation(FOS, BTF&: *BTF, Address: {.Address: Index, .SectionIndex: Section.getIndex()}, LVP); |
| 2535 | |
| 2536 | // Hexagon handles relocs in pretty printer |
| 2537 | if (InlineRelocs && Obj.getArch() != Triple::hexagon) { |
| 2538 | while (findRel()) { |
| 2539 | // When --adjust-vma is used, update the address printed. |
| 2540 | printRelocation(OS&: FOS, FileName: Obj.getFileName(), Rel: *RelCur, |
| 2541 | Address: SectionAddr + RelOffset + VMAAdjustment, Is64Bits); |
| 2542 | LVP.printAfterOtherLine(OS&: FOS, AfterInst: true); |
| 2543 | ++RelCur; |
| 2544 | } |
| 2545 | } |
| 2546 | |
| 2547 | Index += Size; |
| 2548 | } |
| 2549 | } |
| 2550 | } |
| 2551 | StringSet<> MissingDisasmSymbolSet = |
| 2552 | set_difference(S1: DisasmSymbolSet, S2: FoundDisasmSymbolSet); |
| 2553 | for (StringRef Sym : MissingDisasmSymbolSet.keys()) |
| 2554 | reportWarning(Message: "failed to disassemble missing symbol " + Sym, File: FileName); |
| 2555 | } |
| 2556 | |
| 2557 | static void disassembleObject(ObjectFile *Obj, bool InlineRelocs, |
| 2558 | raw_ostream &OS) { |
| 2559 | // If information useful for showing the disassembly is missing, try to find a |
| 2560 | // more complete binary and disassemble that instead. |
| 2561 | OwningBinary<Binary> FetchedBinary; |
| 2562 | if (Obj->symbols().empty()) { |
| 2563 | if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt = |
| 2564 | fetchBinaryByBuildID(Obj: *Obj)) { |
| 2565 | if (auto *O = dyn_cast<ObjectFile>(Val: FetchedBinaryOpt->getBinary())) { |
| 2566 | if (!O->symbols().empty() || |
| 2567 | (!O->sections().empty() && Obj->sections().empty())) { |
| 2568 | FetchedBinary = std::move(*FetchedBinaryOpt); |
| 2569 | Obj = O; |
| 2570 | } |
| 2571 | } |
| 2572 | } |
| 2573 | } |
| 2574 | |
| 2575 | const Target *TheTarget = getTarget(Obj); |
| 2576 | |
| 2577 | // Package up features to be passed to target/subtarget |
| 2578 | Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures(); |
| 2579 | if (!FeaturesValue) |
| 2580 | reportError(E: FeaturesValue.takeError(), FileName: Obj->getFileName()); |
| 2581 | SubtargetFeatures Features = *FeaturesValue; |
| 2582 | if (!MAttrs.empty()) { |
| 2583 | for (unsigned I = 0; I != MAttrs.size(); ++I) |
| 2584 | Features.AddFeature(String: MAttrs[I]); |
| 2585 | } else if (MCPU.empty() && Obj->makeTriple().isAArch64()) { |
| 2586 | Features.AddFeature(String: "+all" ); |
| 2587 | } |
| 2588 | |
| 2589 | if (MCPU.empty()) |
| 2590 | MCPU = Obj->tryGetCPUName().value_or(u: "" ).str(); |
| 2591 | |
| 2592 | if (isArmElf(Obj: *Obj)) { |
| 2593 | // When disassembling big-endian Arm ELF, the instruction endianness is |
| 2594 | // determined in a complex way. In relocatable objects, AAELF32 mandates |
| 2595 | // that instruction endianness matches the ELF file endianness; in |
| 2596 | // executable images, that's true unless the file header has the EF_ARM_BE8 |
| 2597 | // flag, in which case instructions are little-endian regardless of data |
| 2598 | // endianness. |
| 2599 | // |
| 2600 | // We must set the big-endian-instructions SubtargetFeature to make the |
| 2601 | // disassembler read the instructions the right way round, and also tell |
| 2602 | // our own prettyprinter to retrieve the encodings the same way to print in |
| 2603 | // hex. |
| 2604 | const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Val: Obj); |
| 2605 | |
| 2606 | if (Elf32BE && (Elf32BE->isRelocatableObject() || |
| 2607 | !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) { |
| 2608 | Features.AddFeature(String: "+big-endian-instructions" ); |
| 2609 | ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::big); |
| 2610 | } else { |
| 2611 | ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::little); |
| 2612 | } |
| 2613 | } |
| 2614 | |
| 2615 | DisassemblerTarget PrimaryTarget(TheTarget, *Obj, TripleName, MCPU, Features); |
| 2616 | |
| 2617 | // If we have an ARM object file, we need a second disassembler, because |
| 2618 | // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. |
| 2619 | // We use mapping symbols to switch between the two assemblers, where |
| 2620 | // appropriate. |
| 2621 | std::optional<DisassemblerTarget> SecondaryTarget; |
| 2622 | |
| 2623 | if (isArmElf(Obj: *Obj)) { |
| 2624 | if (!PrimaryTarget.SubtargetInfo->checkFeatures(FS: "+mclass" )) { |
| 2625 | if (PrimaryTarget.SubtargetInfo->checkFeatures(FS: "+thumb-mode" )) |
| 2626 | Features.AddFeature(String: "-thumb-mode" ); |
| 2627 | else |
| 2628 | Features.AddFeature(String: "+thumb-mode" ); |
| 2629 | SecondaryTarget.emplace(args&: PrimaryTarget, args&: Features); |
| 2630 | } |
| 2631 | } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Val: Obj)) { |
| 2632 | const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata(); |
| 2633 | if (CHPEMetadata && CHPEMetadata->CodeMapCount) { |
| 2634 | // Set up x86_64 disassembler for ARM64EC binaries. |
| 2635 | Triple X64Triple(TripleName); |
| 2636 | X64Triple.setArch(Kind: Triple::ArchType::x86_64); |
| 2637 | |
| 2638 | std::string Error; |
| 2639 | const Target *X64Target = |
| 2640 | TargetRegistry::lookupTarget(ArchName: "" , TheTriple&: X64Triple, Error); |
| 2641 | if (X64Target) { |
| 2642 | SubtargetFeatures X64Features; |
| 2643 | SecondaryTarget.emplace(args&: X64Target, args&: *Obj, args: X64Triple.getTriple(), args: "" , |
| 2644 | args&: X64Features); |
| 2645 | } else { |
| 2646 | reportWarning(Message: Error, File: Obj->getFileName()); |
| 2647 | } |
| 2648 | } |
| 2649 | } |
| 2650 | |
| 2651 | const ObjectFile *DbgObj = Obj; |
| 2652 | if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) { |
| 2653 | if (std::optional<OwningBinary<Binary>> DebugBinaryOpt = |
| 2654 | fetchBinaryByBuildID(Obj: *Obj)) { |
| 2655 | if (auto *FetchedObj = |
| 2656 | dyn_cast<const ObjectFile>(Val: DebugBinaryOpt->getBinary())) { |
| 2657 | if (FetchedObj->hasDebugInfo()) { |
| 2658 | FetchedBinary = std::move(*DebugBinaryOpt); |
| 2659 | DbgObj = FetchedObj; |
| 2660 | } |
| 2661 | } |
| 2662 | } |
| 2663 | } |
| 2664 | |
| 2665 | std::unique_ptr<object::Binary> DSYMBinary; |
| 2666 | std::unique_ptr<MemoryBuffer> DSYMBuf; |
| 2667 | if (!DbgObj->hasDebugInfo()) { |
| 2668 | if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(Val: &*Obj)) { |
| 2669 | DbgObj = objdump::getMachODSymObject(O: MachOOF, Filename: Obj->getFileName(), |
| 2670 | DSYMBinary, DSYMBuf); |
| 2671 | if (!DbgObj) |
| 2672 | return; |
| 2673 | } |
| 2674 | } |
| 2675 | |
| 2676 | SourcePrinter SP(DbgObj, TheTarget->getName()); |
| 2677 | |
| 2678 | for (StringRef Opt : DisassemblerOptions) |
| 2679 | if (!PrimaryTarget.InstPrinter->applyTargetSpecificCLOption(Opt)) |
| 2680 | reportError(File: Obj->getFileName(), |
| 2681 | Message: "Unrecognized disassembler option: " + Opt); |
| 2682 | |
| 2683 | disassembleObject(Obj&: *Obj, DbgObj: *DbgObj, PrimaryTarget, SecondaryTarget, SP, |
| 2684 | InlineRelocs, OS); |
| 2685 | } |
| 2686 | |
| 2687 | void Dumper::printRelocations() { |
| 2688 | StringRef Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; |
| 2689 | |
| 2690 | // Build a mapping from relocation target to a vector of relocation |
| 2691 | // sections. Usually, there is an only one relocation section for |
| 2692 | // each relocated section. |
| 2693 | MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; |
| 2694 | uint64_t Ndx; |
| 2695 | for (const SectionRef &Section : ToolSectionFilter(O, Idx: &Ndx)) { |
| 2696 | if (O.isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC)) |
| 2697 | continue; |
| 2698 | if (Section.relocation_begin() == Section.relocation_end()) |
| 2699 | continue; |
| 2700 | Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); |
| 2701 | if (!SecOrErr) |
| 2702 | reportError(File: O.getFileName(), |
| 2703 | Message: "section (" + Twine(Ndx) + |
| 2704 | "): unable to get a relocation target: " + |
| 2705 | toString(E: SecOrErr.takeError())); |
| 2706 | SecToRelSec[**SecOrErr].push_back(x: Section); |
| 2707 | } |
| 2708 | |
| 2709 | for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { |
| 2710 | StringRef SecName = unwrapOrError(EO: P.first.getName(), Args: O.getFileName()); |
| 2711 | outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n" ; |
| 2712 | uint32_t OffsetPadding = (O.getBytesInAddress() > 4 ? 16 : 8); |
| 2713 | uint32_t TypePadding = 24; |
| 2714 | outs() << left_justify(Str: "OFFSET" , Width: OffsetPadding) << " " |
| 2715 | << left_justify(Str: "TYPE" , Width: TypePadding) << " " |
| 2716 | << "VALUE\n" ; |
| 2717 | |
| 2718 | for (SectionRef Section : P.second) { |
| 2719 | // CREL sections require decoding, each section may have its own specific |
| 2720 | // decode problems. |
| 2721 | if (O.isELF() && ELFSectionRef(Section).getType() == ELF::SHT_CREL) { |
| 2722 | StringRef Err = |
| 2723 | cast<const ELFObjectFileBase>(Val: O).getCrelDecodeProblem(Sec: Section); |
| 2724 | if (!Err.empty()) { |
| 2725 | reportUniqueWarning(Msg: Err); |
| 2726 | continue; |
| 2727 | } |
| 2728 | } |
| 2729 | for (const RelocationRef &Reloc : Section.relocations()) { |
| 2730 | uint64_t Address = Reloc.getOffset(); |
| 2731 | SmallString<32> RelocName; |
| 2732 | SmallString<32> ValueStr; |
| 2733 | if (Address < StartAddress || Address > StopAddress || getHidden(RelRef: Reloc)) |
| 2734 | continue; |
| 2735 | Reloc.getTypeName(Result&: RelocName); |
| 2736 | if (Error E = |
| 2737 | getRelocationValueString(Rel: Reloc, SymbolDescription, Result&: ValueStr)) |
| 2738 | reportUniqueWarning(Err: std::move(E)); |
| 2739 | |
| 2740 | outs() << format(Fmt: Fmt.data(), Vals: Address) << " " |
| 2741 | << left_justify(Str: RelocName, Width: TypePadding) << " " << ValueStr |
| 2742 | << "\n" ; |
| 2743 | } |
| 2744 | } |
| 2745 | } |
| 2746 | } |
| 2747 | |
| 2748 | // Returns true if we need to show LMA column when dumping section headers. We |
| 2749 | // show it only when the platform is ELF and either we have at least one section |
| 2750 | // whose VMA and LMA are different and/or when --show-lma flag is used. |
| 2751 | static bool shouldDisplayLMA(const ObjectFile &Obj) { |
| 2752 | if (!Obj.isELF()) |
| 2753 | return false; |
| 2754 | for (const SectionRef &S : ToolSectionFilter(O: Obj)) |
| 2755 | if (S.getAddress() != getELFSectionLMA(Sec: S)) |
| 2756 | return true; |
| 2757 | return ShowLMA; |
| 2758 | } |
| 2759 | |
| 2760 | static size_t getMaxSectionNameWidth(const ObjectFile &Obj) { |
| 2761 | // Default column width for names is 13 even if no names are that long. |
| 2762 | size_t MaxWidth = 13; |
| 2763 | for (const SectionRef &Section : ToolSectionFilter(O: Obj)) { |
| 2764 | StringRef Name = unwrapOrError(EO: Section.getName(), Args: Obj.getFileName()); |
| 2765 | MaxWidth = std::max(a: MaxWidth, b: Name.size()); |
| 2766 | } |
| 2767 | return MaxWidth; |
| 2768 | } |
| 2769 | |
| 2770 | void objdump::(ObjectFile &Obj) { |
| 2771 | if (Obj.isELF() && Obj.sections().empty()) |
| 2772 | createFakeELFSections(Obj); |
| 2773 | |
| 2774 | size_t NameWidth = getMaxSectionNameWidth(Obj); |
| 2775 | size_t AddressWidth = 2 * Obj.getBytesInAddress(); |
| 2776 | bool HasLMAColumn = shouldDisplayLMA(Obj); |
| 2777 | outs() << "\nSections:\n" ; |
| 2778 | if (HasLMAColumn) |
| 2779 | outs() << "Idx " << left_justify(Str: "Name" , Width: NameWidth) << " Size " |
| 2780 | << left_justify(Str: "VMA" , Width: AddressWidth) << " " |
| 2781 | << left_justify(Str: "LMA" , Width: AddressWidth) << " Type\n" ; |
| 2782 | else |
| 2783 | outs() << "Idx " << left_justify(Str: "Name" , Width: NameWidth) << " Size " |
| 2784 | << left_justify(Str: "VMA" , Width: AddressWidth) << " Type\n" ; |
| 2785 | |
| 2786 | uint64_t Idx; |
| 2787 | for (const SectionRef &Section : ToolSectionFilter(O: Obj, Idx: &Idx)) { |
| 2788 | StringRef Name = unwrapOrError(EO: Section.getName(), Args: Obj.getFileName()); |
| 2789 | uint64_t VMA = Section.getAddress(); |
| 2790 | if (shouldAdjustVA(Section)) |
| 2791 | VMA += AdjustVMA; |
| 2792 | |
| 2793 | uint64_t Size = Section.getSize(); |
| 2794 | |
| 2795 | std::string Type = Section.isText() ? "TEXT" : "" ; |
| 2796 | if (Section.isData()) |
| 2797 | Type += Type.empty() ? "DATA" : ", DATA" ; |
| 2798 | if (Section.isBSS()) |
| 2799 | Type += Type.empty() ? "BSS" : ", BSS" ; |
| 2800 | if (Section.isDebugSection()) |
| 2801 | Type += Type.empty() ? "DEBUG" : ", DEBUG" ; |
| 2802 | |
| 2803 | if (HasLMAColumn) |
| 2804 | outs() << format(Fmt: "%3" PRIu64 " %-*s %08" PRIx64 " " , Vals: Idx, Vals: NameWidth, |
| 2805 | Vals: Name.str().c_str(), Vals: Size) |
| 2806 | << format_hex_no_prefix(N: VMA, Width: AddressWidth) << " " |
| 2807 | << format_hex_no_prefix(N: getELFSectionLMA(Sec: Section), Width: AddressWidth) |
| 2808 | << " " << Type << "\n" ; |
| 2809 | else |
| 2810 | outs() << format(Fmt: "%3" PRIu64 " %-*s %08" PRIx64 " " , Vals: Idx, Vals: NameWidth, |
| 2811 | Vals: Name.str().c_str(), Vals: Size) |
| 2812 | << format_hex_no_prefix(N: VMA, Width: AddressWidth) << " " << Type << "\n" ; |
| 2813 | } |
| 2814 | } |
| 2815 | |
| 2816 | void objdump::printSectionContents(const ObjectFile *Obj) { |
| 2817 | const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Val: Obj); |
| 2818 | |
| 2819 | for (const SectionRef &Section : ToolSectionFilter(O: *Obj)) { |
| 2820 | StringRef Name = unwrapOrError(EO: Section.getName(), Args: Obj->getFileName()); |
| 2821 | uint64_t BaseAddr = Section.getAddress(); |
| 2822 | uint64_t Size = Section.getSize(); |
| 2823 | if (!Size) |
| 2824 | continue; |
| 2825 | |
| 2826 | outs() << "Contents of section " ; |
| 2827 | StringRef SegmentName = getSegmentName(MachO, Section); |
| 2828 | if (!SegmentName.empty()) |
| 2829 | outs() << SegmentName << "," ; |
| 2830 | outs() << Name << ":\n" ; |
| 2831 | if (Section.isBSS()) { |
| 2832 | outs() << format(Fmt: "<skipping contents of bss section at [%04" PRIx64 |
| 2833 | ", %04" PRIx64 ")>\n" , |
| 2834 | Vals: BaseAddr, Vals: BaseAddr + Size); |
| 2835 | continue; |
| 2836 | } |
| 2837 | |
| 2838 | StringRef Contents = unwrapOrError(EO: Section.getContents(), Args: Obj->getFileName()); |
| 2839 | |
| 2840 | // Dump out the content as hex and printable ascii characters. |
| 2841 | for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { |
| 2842 | outs() << format(Fmt: " %04" PRIx64 " " , Vals: BaseAddr + Addr); |
| 2843 | // Dump line of hex. |
| 2844 | for (std::size_t I = 0; I < 16; ++I) { |
| 2845 | if (I != 0 && I % 4 == 0) |
| 2846 | outs() << ' '; |
| 2847 | if (Addr + I < End) |
| 2848 | outs() << hexdigit(X: (Contents[Addr + I] >> 4) & 0xF, LowerCase: true) |
| 2849 | << hexdigit(X: Contents[Addr + I] & 0xF, LowerCase: true); |
| 2850 | else |
| 2851 | outs() << " " ; |
| 2852 | } |
| 2853 | // Print ascii. |
| 2854 | outs() << " " ; |
| 2855 | for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { |
| 2856 | if (isPrint(C: static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) |
| 2857 | outs() << Contents[Addr + I]; |
| 2858 | else |
| 2859 | outs() << "." ; |
| 2860 | } |
| 2861 | outs() << "\n" ; |
| 2862 | } |
| 2863 | } |
| 2864 | } |
| 2865 | |
| 2866 | void Dumper::printSymbolTable(StringRef ArchiveName, StringRef ArchitectureName, |
| 2867 | bool DumpDynamic) { |
| 2868 | if (O.isCOFF() && !DumpDynamic) { |
| 2869 | outs() << "\nSYMBOL TABLE:\n" ; |
| 2870 | printCOFFSymbolTable(O: cast<const COFFObjectFile>(Val: O)); |
| 2871 | return; |
| 2872 | } |
| 2873 | |
| 2874 | const StringRef FileName = O.getFileName(); |
| 2875 | |
| 2876 | if (!DumpDynamic) { |
| 2877 | outs() << "\nSYMBOL TABLE:\n" ; |
| 2878 | for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I) |
| 2879 | printSymbol(Symbol: *I, SymbolVersions: {}, FileName, ArchiveName, ArchitectureName, DumpDynamic); |
| 2880 | return; |
| 2881 | } |
| 2882 | |
| 2883 | outs() << "\nDYNAMIC SYMBOL TABLE:\n" ; |
| 2884 | if (!O.isELF()) { |
| 2885 | reportWarning( |
| 2886 | Message: "this operation is not currently supported for this file format" , |
| 2887 | File: FileName); |
| 2888 | return; |
| 2889 | } |
| 2890 | |
| 2891 | const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(Val: &O); |
| 2892 | auto Symbols = ELF->getDynamicSymbolIterators(); |
| 2893 | Expected<std::vector<VersionEntry>> SymbolVersionsOrErr = |
| 2894 | ELF->readDynsymVersions(); |
| 2895 | if (!SymbolVersionsOrErr) { |
| 2896 | reportWarning(Message: toString(E: SymbolVersionsOrErr.takeError()), File: FileName); |
| 2897 | SymbolVersionsOrErr = std::vector<VersionEntry>(); |
| 2898 | (void)!SymbolVersionsOrErr; |
| 2899 | } |
| 2900 | for (auto &Sym : Symbols) |
| 2901 | printSymbol(Symbol: Sym, SymbolVersions: *SymbolVersionsOrErr, FileName, ArchiveName, |
| 2902 | ArchitectureName, DumpDynamic); |
| 2903 | } |
| 2904 | |
| 2905 | void Dumper::printSymbol(const SymbolRef &Symbol, |
| 2906 | ArrayRef<VersionEntry> SymbolVersions, |
| 2907 | StringRef FileName, StringRef ArchiveName, |
| 2908 | StringRef ArchitectureName, bool DumpDynamic) { |
| 2909 | const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Val: &O); |
| 2910 | Expected<uint64_t> AddrOrErr = Symbol.getAddress(); |
| 2911 | if (!AddrOrErr) { |
| 2912 | reportUniqueWarning(Err: AddrOrErr.takeError()); |
| 2913 | return; |
| 2914 | } |
| 2915 | |
| 2916 | // Don't ask a Mach-O STAB symbol for its section unless you know that |
| 2917 | // STAB symbol's section field refers to a valid section index. Otherwise |
| 2918 | // the symbol may error trying to load a section that does not exist. |
| 2919 | bool IsSTAB = false; |
| 2920 | if (MachO) { |
| 2921 | DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); |
| 2922 | uint8_t NType = |
| 2923 | (MachO->is64Bit() ? MachO->getSymbol64TableEntry(DRI: SymDRI).n_type |
| 2924 | : MachO->getSymbolTableEntry(DRI: SymDRI).n_type); |
| 2925 | if (NType & MachO::N_STAB) |
| 2926 | IsSTAB = true; |
| 2927 | } |
| 2928 | section_iterator Section = IsSTAB |
| 2929 | ? O.section_end() |
| 2930 | : unwrapOrError(EO: Symbol.getSection(), Args&: FileName, |
| 2931 | Args&: ArchiveName, Args&: ArchitectureName); |
| 2932 | |
| 2933 | uint64_t Address = *AddrOrErr; |
| 2934 | if (Section != O.section_end() && shouldAdjustVA(Section: *Section)) |
| 2935 | Address += AdjustVMA; |
| 2936 | if ((Address < StartAddress) || (Address > StopAddress)) |
| 2937 | return; |
| 2938 | SymbolRef::Type Type = |
| 2939 | unwrapOrError(EO: Symbol.getType(), Args&: FileName, Args&: ArchiveName, Args&: ArchitectureName); |
| 2940 | uint32_t Flags = |
| 2941 | unwrapOrError(EO: Symbol.getFlags(), Args&: FileName, Args&: ArchiveName, Args&: ArchitectureName); |
| 2942 | |
| 2943 | StringRef Name; |
| 2944 | if (Type == SymbolRef::ST_Debug && Section != O.section_end()) { |
| 2945 | if (Expected<StringRef> NameOrErr = Section->getName()) |
| 2946 | Name = *NameOrErr; |
| 2947 | else |
| 2948 | consumeError(Err: NameOrErr.takeError()); |
| 2949 | |
| 2950 | } else { |
| 2951 | Name = unwrapOrError(EO: Symbol.getName(), Args&: FileName, Args&: ArchiveName, |
| 2952 | Args&: ArchitectureName); |
| 2953 | } |
| 2954 | |
| 2955 | bool Global = Flags & SymbolRef::SF_Global; |
| 2956 | bool Weak = Flags & SymbolRef::SF_Weak; |
| 2957 | bool Absolute = Flags & SymbolRef::SF_Absolute; |
| 2958 | bool Common = Flags & SymbolRef::SF_Common; |
| 2959 | bool Hidden = Flags & SymbolRef::SF_Hidden; |
| 2960 | |
| 2961 | char GlobLoc = ' '; |
| 2962 | if ((Section != O.section_end() || Absolute) && !Weak) |
| 2963 | GlobLoc = Global ? 'g' : 'l'; |
| 2964 | char IFunc = ' '; |
| 2965 | if (O.isELF()) { |
| 2966 | if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC) |
| 2967 | IFunc = 'i'; |
| 2968 | if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE) |
| 2969 | GlobLoc = 'u'; |
| 2970 | } |
| 2971 | |
| 2972 | char Debug = ' '; |
| 2973 | if (DumpDynamic) |
| 2974 | Debug = 'D'; |
| 2975 | else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) |
| 2976 | Debug = 'd'; |
| 2977 | |
| 2978 | char FileFunc = ' '; |
| 2979 | if (Type == SymbolRef::ST_File) |
| 2980 | FileFunc = 'f'; |
| 2981 | else if (Type == SymbolRef::ST_Function) |
| 2982 | FileFunc = 'F'; |
| 2983 | else if (Type == SymbolRef::ST_Data) |
| 2984 | FileFunc = 'O'; |
| 2985 | |
| 2986 | const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; |
| 2987 | |
| 2988 | outs() << format(Fmt, Vals: Address) << " " |
| 2989 | << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' |
| 2990 | << (Weak ? 'w' : ' ') // Weak? |
| 2991 | << ' ' // Constructor. Not supported yet. |
| 2992 | << ' ' // Warning. Not supported yet. |
| 2993 | << IFunc // Indirect reference to another symbol. |
| 2994 | << Debug // Debugging (d) or dynamic (D) symbol. |
| 2995 | << FileFunc // Name of function (F), file (f) or object (O). |
| 2996 | << ' '; |
| 2997 | if (Absolute) { |
| 2998 | outs() << "*ABS*" ; |
| 2999 | } else if (Common) { |
| 3000 | outs() << "*COM*" ; |
| 3001 | } else if (Section == O.section_end()) { |
| 3002 | if (O.isXCOFF()) { |
| 3003 | XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(Val: O).toSymbolRef( |
| 3004 | Ref: Symbol.getRawDataRefImpl()); |
| 3005 | if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber()) |
| 3006 | outs() << "*DEBUG*" ; |
| 3007 | else |
| 3008 | outs() << "*UND*" ; |
| 3009 | } else |
| 3010 | outs() << "*UND*" ; |
| 3011 | } else { |
| 3012 | StringRef SegmentName = getSegmentName(MachO, Section: *Section); |
| 3013 | if (!SegmentName.empty()) |
| 3014 | outs() << SegmentName << "," ; |
| 3015 | StringRef SectionName = unwrapOrError(EO: Section->getName(), Args&: FileName); |
| 3016 | outs() << SectionName; |
| 3017 | if (O.isXCOFF()) { |
| 3018 | std::optional<SymbolRef> SymRef = |
| 3019 | getXCOFFSymbolContainingSymbolRef(Obj: cast<XCOFFObjectFile>(Val: O), Sym: Symbol); |
| 3020 | if (SymRef) { |
| 3021 | |
| 3022 | Expected<StringRef> NameOrErr = SymRef->getName(); |
| 3023 | |
| 3024 | if (NameOrErr) { |
| 3025 | outs() << " (csect:" ; |
| 3026 | std::string SymName = |
| 3027 | Demangle ? demangle(MangledName: *NameOrErr) : NameOrErr->str(); |
| 3028 | |
| 3029 | if (SymbolDescription) |
| 3030 | SymName = getXCOFFSymbolDescription(SymbolInfo: createSymbolInfo(Obj: O, Symbol: *SymRef), |
| 3031 | SymbolName: SymName); |
| 3032 | |
| 3033 | outs() << ' ' << SymName; |
| 3034 | outs() << ") " ; |
| 3035 | } else |
| 3036 | reportWarning(Message: toString(E: NameOrErr.takeError()), File: FileName); |
| 3037 | } |
| 3038 | } |
| 3039 | } |
| 3040 | |
| 3041 | if (Common) |
| 3042 | outs() << '\t' << format(Fmt, Vals: static_cast<uint64_t>(Symbol.getAlignment())); |
| 3043 | else if (O.isXCOFF()) |
| 3044 | outs() << '\t' |
| 3045 | << format(Fmt, Vals: cast<XCOFFObjectFile>(Val: O).getSymbolSize( |
| 3046 | Symb: Symbol.getRawDataRefImpl())); |
| 3047 | else if (O.isELF()) |
| 3048 | outs() << '\t' << format(Fmt, Vals: ELFSymbolRef(Symbol).getSize()); |
| 3049 | else if (O.isWasm()) |
| 3050 | outs() << '\t' |
| 3051 | << format(Fmt, Vals: static_cast<uint64_t>( |
| 3052 | cast<WasmObjectFile>(Val: O).getSymbolSize(Sym: Symbol))); |
| 3053 | |
| 3054 | if (O.isELF()) { |
| 3055 | if (!SymbolVersions.empty()) { |
| 3056 | const VersionEntry &Ver = |
| 3057 | SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1]; |
| 3058 | std::string Str; |
| 3059 | if (!Ver.Name.empty()) |
| 3060 | Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')'; |
| 3061 | outs() << ' ' << left_justify(Str, Width: 12); |
| 3062 | } |
| 3063 | |
| 3064 | uint8_t Other = ELFSymbolRef(Symbol).getOther(); |
| 3065 | switch (Other) { |
| 3066 | case ELF::STV_DEFAULT: |
| 3067 | break; |
| 3068 | case ELF::STV_INTERNAL: |
| 3069 | outs() << " .internal" ; |
| 3070 | break; |
| 3071 | case ELF::STV_HIDDEN: |
| 3072 | outs() << " .hidden" ; |
| 3073 | break; |
| 3074 | case ELF::STV_PROTECTED: |
| 3075 | outs() << " .protected" ; |
| 3076 | break; |
| 3077 | default: |
| 3078 | outs() << format(Fmt: " 0x%02x" , Vals: Other); |
| 3079 | break; |
| 3080 | } |
| 3081 | } else if (Hidden) { |
| 3082 | outs() << " .hidden" ; |
| 3083 | } |
| 3084 | |
| 3085 | std::string SymName = Demangle ? demangle(MangledName: Name) : Name.str(); |
| 3086 | if (O.isXCOFF() && SymbolDescription) |
| 3087 | SymName = getXCOFFSymbolDescription(SymbolInfo: createSymbolInfo(Obj: O, Symbol), SymbolName: SymName); |
| 3088 | |
| 3089 | outs() << ' ' << SymName << '\n'; |
| 3090 | } |
| 3091 | |
| 3092 | static void printUnwindInfo(const ObjectFile *O) { |
| 3093 | outs() << "Unwind info:\n\n" ; |
| 3094 | |
| 3095 | if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(Val: O)) |
| 3096 | printCOFFUnwindInfo(O: Coff); |
| 3097 | else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(Val: O)) |
| 3098 | printMachOUnwindInfo(O: MachO); |
| 3099 | else |
| 3100 | // TODO: Extract DWARF dump tool to objdump. |
| 3101 | WithColor::error(OS&: errs(), Prefix: ToolName) |
| 3102 | << "This operation is only currently supported " |
| 3103 | "for COFF and MachO object files.\n" ; |
| 3104 | } |
| 3105 | |
| 3106 | /// Dump the raw contents of the __clangast section so the output can be piped |
| 3107 | /// into llvm-bcanalyzer. |
| 3108 | static void printRawClangAST(const ObjectFile *Obj) { |
| 3109 | if (outs().is_displayed()) { |
| 3110 | WithColor::error(OS&: errs(), Prefix: ToolName) |
| 3111 | << "The -raw-clang-ast option will dump the raw binary contents of " |
| 3112 | "the clang ast section.\n" |
| 3113 | "Please redirect the output to a file or another program such as " |
| 3114 | "llvm-bcanalyzer.\n" ; |
| 3115 | return; |
| 3116 | } |
| 3117 | |
| 3118 | StringRef ClangASTSectionName("__clangast" ); |
| 3119 | if (Obj->isCOFF()) { |
| 3120 | ClangASTSectionName = "clangast" ; |
| 3121 | } |
| 3122 | |
| 3123 | std::optional<object::SectionRef> ClangASTSection; |
| 3124 | for (auto Sec : ToolSectionFilter(O: *Obj)) { |
| 3125 | StringRef Name; |
| 3126 | if (Expected<StringRef> NameOrErr = Sec.getName()) |
| 3127 | Name = *NameOrErr; |
| 3128 | else |
| 3129 | consumeError(Err: NameOrErr.takeError()); |
| 3130 | |
| 3131 | if (Name == ClangASTSectionName) { |
| 3132 | ClangASTSection = Sec; |
| 3133 | break; |
| 3134 | } |
| 3135 | } |
| 3136 | if (!ClangASTSection) |
| 3137 | return; |
| 3138 | |
| 3139 | StringRef ClangASTContents = |
| 3140 | unwrapOrError(EO: ClangASTSection->getContents(), Args: Obj->getFileName()); |
| 3141 | outs().write(Ptr: ClangASTContents.data(), Size: ClangASTContents.size()); |
| 3142 | } |
| 3143 | |
| 3144 | static void printFaultMaps(const ObjectFile *Obj) { |
| 3145 | StringRef FaultMapSectionName; |
| 3146 | |
| 3147 | if (Obj->isELF()) { |
| 3148 | FaultMapSectionName = ".llvm_faultmaps" ; |
| 3149 | } else if (Obj->isMachO()) { |
| 3150 | FaultMapSectionName = "__llvm_faultmaps" ; |
| 3151 | } else { |
| 3152 | WithColor::error(OS&: errs(), Prefix: ToolName) |
| 3153 | << "This operation is only currently supported " |
| 3154 | "for ELF and Mach-O executable files.\n" ; |
| 3155 | return; |
| 3156 | } |
| 3157 | |
| 3158 | std::optional<object::SectionRef> FaultMapSection; |
| 3159 | |
| 3160 | for (auto Sec : ToolSectionFilter(O: *Obj)) { |
| 3161 | StringRef Name; |
| 3162 | if (Expected<StringRef> NameOrErr = Sec.getName()) |
| 3163 | Name = *NameOrErr; |
| 3164 | else |
| 3165 | consumeError(Err: NameOrErr.takeError()); |
| 3166 | |
| 3167 | if (Name == FaultMapSectionName) { |
| 3168 | FaultMapSection = Sec; |
| 3169 | break; |
| 3170 | } |
| 3171 | } |
| 3172 | |
| 3173 | outs() << "FaultMap table:\n" ; |
| 3174 | |
| 3175 | if (!FaultMapSection) { |
| 3176 | outs() << "<not found>\n" ; |
| 3177 | return; |
| 3178 | } |
| 3179 | |
| 3180 | StringRef FaultMapContents = |
| 3181 | unwrapOrError(EO: FaultMapSection->getContents(), Args: Obj->getFileName()); |
| 3182 | FaultMapParser FMP(FaultMapContents.bytes_begin(), |
| 3183 | FaultMapContents.bytes_end()); |
| 3184 | |
| 3185 | outs() << FMP; |
| 3186 | } |
| 3187 | |
| 3188 | void Dumper::() { |
| 3189 | reportError(File: O.getFileName(), Message: "Invalid/Unsupported object file format" ); |
| 3190 | } |
| 3191 | |
| 3192 | static void (const ObjectFile *O) { |
| 3193 | if (!O->isELF() && !O->isCOFF() && !O->isXCOFF()) |
| 3194 | reportError(File: O->getFileName(), Message: "Invalid/Unsupported object file format" ); |
| 3195 | |
| 3196 | Triple::ArchType AT = O->getArch(); |
| 3197 | outs() << "architecture: " << Triple::getArchTypeName(Kind: AT) << "\n" ; |
| 3198 | uint64_t Address = unwrapOrError(EO: O->getStartAddress(), Args: O->getFileName()); |
| 3199 | |
| 3200 | StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; |
| 3201 | outs() << "start address: " |
| 3202 | << "0x" << format(Fmt: Fmt.data(), Vals: Address) << "\n" ; |
| 3203 | } |
| 3204 | |
| 3205 | static void printArchiveChild(StringRef Filename, const Archive::Child &C) { |
| 3206 | Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); |
| 3207 | if (!ModeOrErr) { |
| 3208 | WithColor::error(OS&: errs(), Prefix: ToolName) << "ill-formed archive entry.\n" ; |
| 3209 | consumeError(Err: ModeOrErr.takeError()); |
| 3210 | return; |
| 3211 | } |
| 3212 | sys::fs::perms Mode = ModeOrErr.get(); |
| 3213 | outs() << ((Mode & sys::fs::owner_read) ? "r" : "-" ); |
| 3214 | outs() << ((Mode & sys::fs::owner_write) ? "w" : "-" ); |
| 3215 | outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-" ); |
| 3216 | outs() << ((Mode & sys::fs::group_read) ? "r" : "-" ); |
| 3217 | outs() << ((Mode & sys::fs::group_write) ? "w" : "-" ); |
| 3218 | outs() << ((Mode & sys::fs::group_exe) ? "x" : "-" ); |
| 3219 | outs() << ((Mode & sys::fs::others_read) ? "r" : "-" ); |
| 3220 | outs() << ((Mode & sys::fs::others_write) ? "w" : "-" ); |
| 3221 | outs() << ((Mode & sys::fs::others_exe) ? "x" : "-" ); |
| 3222 | |
| 3223 | outs() << " " ; |
| 3224 | |
| 3225 | outs() << format(Fmt: "%d/%d %6" PRId64 " " , Vals: unwrapOrError(EO: C.getUID(), Args&: Filename), |
| 3226 | Vals: unwrapOrError(EO: C.getGID(), Args&: Filename), |
| 3227 | Vals: unwrapOrError(EO: C.getRawSize(), Args&: Filename)); |
| 3228 | |
| 3229 | StringRef RawLastModified = C.getRawLastModified(); |
| 3230 | unsigned Seconds; |
| 3231 | if (RawLastModified.getAsInteger(Radix: 10, Result&: Seconds)) |
| 3232 | outs() << "(date: \"" << RawLastModified |
| 3233 | << "\" contains non-decimal chars) " ; |
| 3234 | else { |
| 3235 | // Since ctime(3) returns a 26 character string of the form: |
| 3236 | // "Sun Sep 16 01:03:52 1973\n\0" |
| 3237 | // just print 24 characters. |
| 3238 | time_t t = Seconds; |
| 3239 | outs() << format(Fmt: "%.24s " , Vals: ctime(timer: &t)); |
| 3240 | } |
| 3241 | |
| 3242 | StringRef Name = "" ; |
| 3243 | Expected<StringRef> NameOrErr = C.getName(); |
| 3244 | if (!NameOrErr) { |
| 3245 | consumeError(Err: NameOrErr.takeError()); |
| 3246 | Name = unwrapOrError(EO: C.getRawName(), Args&: Filename); |
| 3247 | } else { |
| 3248 | Name = NameOrErr.get(); |
| 3249 | } |
| 3250 | outs() << Name << "\n" ; |
| 3251 | } |
| 3252 | |
| 3253 | // For ELF only now. |
| 3254 | static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { |
| 3255 | if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Val: Obj)) { |
| 3256 | if (Elf->getEType() != ELF::ET_REL) |
| 3257 | return true; |
| 3258 | } |
| 3259 | return false; |
| 3260 | } |
| 3261 | |
| 3262 | static void checkForInvalidStartStopAddress(ObjectFile *Obj, |
| 3263 | uint64_t Start, uint64_t Stop) { |
| 3264 | if (!shouldWarnForInvalidStartStopAddress(Obj)) |
| 3265 | return; |
| 3266 | |
| 3267 | for (const SectionRef &Section : Obj->sections()) |
| 3268 | if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { |
| 3269 | uint64_t BaseAddr = Section.getAddress(); |
| 3270 | uint64_t Size = Section.getSize(); |
| 3271 | if ((Start < BaseAddr + Size) && Stop > BaseAddr) |
| 3272 | return; |
| 3273 | } |
| 3274 | |
| 3275 | if (!HasStartAddressFlag) |
| 3276 | reportWarning(Message: "no section has address less than 0x" + |
| 3277 | Twine::utohexstr(Val: Stop) + " specified by --stop-address" , |
| 3278 | File: Obj->getFileName()); |
| 3279 | else if (!HasStopAddressFlag) |
| 3280 | reportWarning(Message: "no section has address greater than or equal to 0x" + |
| 3281 | Twine::utohexstr(Val: Start) + " specified by --start-address" , |
| 3282 | File: Obj->getFileName()); |
| 3283 | else |
| 3284 | reportWarning(Message: "no section overlaps the range [0x" + |
| 3285 | Twine::utohexstr(Val: Start) + ",0x" + Twine::utohexstr(Val: Stop) + |
| 3286 | ") specified by --start-address/--stop-address" , |
| 3287 | File: Obj->getFileName()); |
| 3288 | } |
| 3289 | |
| 3290 | static void dumpObject(ObjectFile *O, const Archive *A = nullptr, |
| 3291 | const Archive::Child *C = nullptr) { |
| 3292 | Expected<std::unique_ptr<Dumper>> DumperOrErr = createDumper(Obj: *O); |
| 3293 | if (!DumperOrErr) { |
| 3294 | reportError(E: DumperOrErr.takeError(), FileName: O->getFileName(), |
| 3295 | ArchiveName: A ? A->getFileName() : "" ); |
| 3296 | return; |
| 3297 | } |
| 3298 | Dumper &D = **DumperOrErr; |
| 3299 | |
| 3300 | // Avoid other output when using a raw option. |
| 3301 | if (!RawClangAST) { |
| 3302 | outs() << '\n'; |
| 3303 | if (A) |
| 3304 | outs() << A->getFileName() << "(" << O->getFileName() << ")" ; |
| 3305 | else |
| 3306 | outs() << O->getFileName(); |
| 3307 | outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n" ; |
| 3308 | } |
| 3309 | |
| 3310 | if (HasStartAddressFlag || HasStopAddressFlag) |
| 3311 | checkForInvalidStartStopAddress(Obj: O, Start: StartAddress, Stop: StopAddress); |
| 3312 | |
| 3313 | // TODO: Change print* free functions to Dumper member functions to utilitize |
| 3314 | // stateful functions like reportUniqueWarning. |
| 3315 | |
| 3316 | // Note: the order here matches GNU objdump for compatability. |
| 3317 | StringRef ArchiveName = A ? A->getFileName() : "" ; |
| 3318 | if (ArchiveHeaders && !MachOOpt && C) |
| 3319 | printArchiveChild(Filename: ArchiveName, C: *C); |
| 3320 | if (FileHeaders) |
| 3321 | printFileHeaders(O); |
| 3322 | if (PrivateHeaders || FirstPrivateHeader) |
| 3323 | D.printPrivateHeaders(); |
| 3324 | if (SectionHeaders) |
| 3325 | printSectionHeaders(Obj&: *O); |
| 3326 | if (SymbolTable) |
| 3327 | D.printSymbolTable(ArchiveName); |
| 3328 | if (DynamicSymbolTable) |
| 3329 | D.printSymbolTable(ArchiveName, /*ArchitectureName=*/"" , |
| 3330 | /*DumpDynamic=*/true); |
| 3331 | if (DwarfDumpType != DIDT_Null) { |
| 3332 | std::unique_ptr<DIContext> DICtx = DWARFContext::create(Obj: *O); |
| 3333 | // Dump the complete DWARF structure. |
| 3334 | DIDumpOptions DumpOpts; |
| 3335 | DumpOpts.DumpType = DwarfDumpType; |
| 3336 | DICtx->dump(OS&: outs(), DumpOpts); |
| 3337 | } |
| 3338 | if (Relocations && !Disassemble) |
| 3339 | D.printRelocations(); |
| 3340 | if (DynamicRelocations) |
| 3341 | D.printDynamicRelocations(); |
| 3342 | if (SectionContents) |
| 3343 | printSectionContents(Obj: O); |
| 3344 | if (Disassemble) |
| 3345 | disassembleObject(Obj: O, InlineRelocs: Relocations, OS&: outs()); |
| 3346 | if (UnwindInfo) |
| 3347 | printUnwindInfo(O); |
| 3348 | |
| 3349 | // Mach-O specific options: |
| 3350 | if (ExportsTrie) |
| 3351 | printExportsTrie(O); |
| 3352 | if (Rebase) |
| 3353 | printRebaseTable(O); |
| 3354 | if (Bind) |
| 3355 | printBindTable(O); |
| 3356 | if (LazyBind) |
| 3357 | printLazyBindTable(O); |
| 3358 | if (WeakBind) |
| 3359 | printWeakBindTable(O); |
| 3360 | |
| 3361 | // Other special sections: |
| 3362 | if (RawClangAST) |
| 3363 | printRawClangAST(Obj: O); |
| 3364 | if (FaultMapSection) |
| 3365 | printFaultMaps(Obj: O); |
| 3366 | if (Offloading) |
| 3367 | dumpOffloadBinary(O: *O, ArchName: StringRef(ArchName)); |
| 3368 | } |
| 3369 | |
| 3370 | static void dumpObject(const COFFImportFile *I, const Archive *A, |
| 3371 | const Archive::Child *C = nullptr) { |
| 3372 | StringRef ArchiveName = A ? A->getFileName() : "" ; |
| 3373 | |
| 3374 | // Avoid other output when using a raw option. |
| 3375 | if (!RawClangAST) |
| 3376 | outs() << '\n' |
| 3377 | << ArchiveName << "(" << I->getFileName() << ")" |
| 3378 | << ":\tfile format COFF-import-file" |
| 3379 | << "\n\n" ; |
| 3380 | |
| 3381 | if (ArchiveHeaders && !MachOOpt && C) |
| 3382 | printArchiveChild(Filename: ArchiveName, C: *C); |
| 3383 | if (SymbolTable) |
| 3384 | printCOFFSymbolTable(I: *I); |
| 3385 | } |
| 3386 | |
| 3387 | /// Dump each object file in \a a; |
| 3388 | static void dumpArchive(const Archive *A) { |
| 3389 | Error Err = Error::success(); |
| 3390 | unsigned I = -1; |
| 3391 | for (auto &C : A->children(Err)) { |
| 3392 | ++I; |
| 3393 | Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); |
| 3394 | if (!ChildOrErr) { |
| 3395 | if (auto E = isNotObjectErrorInvalidFileType(Err: ChildOrErr.takeError())) |
| 3396 | reportError(E: std::move(E), FileName: getFileNameForError(C, Index: I), ArchiveName: A->getFileName()); |
| 3397 | continue; |
| 3398 | } |
| 3399 | if (ObjectFile *O = dyn_cast<ObjectFile>(Val: &*ChildOrErr.get())) |
| 3400 | dumpObject(O, A, C: &C); |
| 3401 | else if (COFFImportFile *I = dyn_cast<COFFImportFile>(Val: &*ChildOrErr.get())) |
| 3402 | dumpObject(I, A, C: &C); |
| 3403 | else |
| 3404 | reportError(E: errorCodeToError(EC: object_error::invalid_file_type), |
| 3405 | FileName: A->getFileName()); |
| 3406 | } |
| 3407 | if (Err) |
| 3408 | reportError(E: std::move(Err), FileName: A->getFileName()); |
| 3409 | } |
| 3410 | |
| 3411 | /// Open file and figure out how to dump it. |
| 3412 | static void dumpInput(StringRef file) { |
| 3413 | // If we are using the Mach-O specific object file parser, then let it parse |
| 3414 | // the file and process the command line options. So the -arch flags can |
| 3415 | // be used to select specific slices, etc. |
| 3416 | if (MachOOpt) { |
| 3417 | parseInputMachO(Filename: file); |
| 3418 | return; |
| 3419 | } |
| 3420 | |
| 3421 | // Attempt to open the binary. |
| 3422 | OwningBinary<Binary> OBinary = unwrapOrError(EO: createBinary(Path: file), Args&: file); |
| 3423 | Binary &Binary = *OBinary.getBinary(); |
| 3424 | |
| 3425 | if (Archive *A = dyn_cast<Archive>(Val: &Binary)) |
| 3426 | dumpArchive(A); |
| 3427 | else if (ObjectFile *O = dyn_cast<ObjectFile>(Val: &Binary)) |
| 3428 | dumpObject(O); |
| 3429 | else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(Val: &Binary)) |
| 3430 | parseInputMachO(UB); |
| 3431 | else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(Val: &Binary)) |
| 3432 | dumpOffloadSections(OB: *OB); |
| 3433 | else |
| 3434 | reportError(E: errorCodeToError(EC: object_error::invalid_file_type), FileName: file); |
| 3435 | } |
| 3436 | |
| 3437 | template <typename T> |
| 3438 | static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID, |
| 3439 | T &Value) { |
| 3440 | if (const opt::Arg *A = InputArgs.getLastArg(Ids: ID)) { |
| 3441 | StringRef V(A->getValue()); |
| 3442 | if (!llvm::to_integer(V, Value, 0)) { |
| 3443 | reportCmdLineError(Message: A->getSpelling() + |
| 3444 | ": expected a non-negative integer, but got '" + V + |
| 3445 | "'" ); |
| 3446 | } |
| 3447 | } |
| 3448 | } |
| 3449 | |
| 3450 | static object::BuildID parseBuildIDArg(const opt::Arg *A) { |
| 3451 | StringRef V(A->getValue()); |
| 3452 | object::BuildID BID = parseBuildID(Str: V); |
| 3453 | if (BID.empty()) |
| 3454 | reportCmdLineError(Message: A->getSpelling() + ": expected a build ID, but got '" + |
| 3455 | V + "'" ); |
| 3456 | return BID; |
| 3457 | } |
| 3458 | |
| 3459 | void objdump::invalidArgValue(const opt::Arg *A) { |
| 3460 | reportCmdLineError(Message: "'" + StringRef(A->getValue()) + |
| 3461 | "' is not a valid value for '" + A->getSpelling() + "'" ); |
| 3462 | } |
| 3463 | |
| 3464 | static std::vector<std::string> |
| 3465 | commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) { |
| 3466 | std::vector<std::string> Values; |
| 3467 | for (StringRef Value : InputArgs.getAllArgValues(Id: ID)) { |
| 3468 | llvm::SmallVector<StringRef, 2> SplitValues; |
| 3469 | llvm::SplitString(Source: Value, OutFragments&: SplitValues, Delimiters: "," ); |
| 3470 | for (StringRef SplitValue : SplitValues) |
| 3471 | Values.push_back(x: SplitValue.str()); |
| 3472 | } |
| 3473 | return Values; |
| 3474 | } |
| 3475 | |
| 3476 | static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) { |
| 3477 | MachOOpt = true; |
| 3478 | FullLeadingAddr = true; |
| 3479 | PrintImmHex = true; |
| 3480 | |
| 3481 | ArchName = InputArgs.getLastArgValue(Id: OTOOL_arch).str(); |
| 3482 | LinkOptHints = InputArgs.hasArg(Ids: OTOOL_C); |
| 3483 | if (InputArgs.hasArg(Ids: OTOOL_d)) |
| 3484 | FilterSections.push_back(x: "__DATA,__data" ); |
| 3485 | DylibId = InputArgs.hasArg(Ids: OTOOL_D); |
| 3486 | UniversalHeaders = InputArgs.hasArg(Ids: OTOOL_f); |
| 3487 | DataInCode = InputArgs.hasArg(Ids: OTOOL_G); |
| 3488 | FirstPrivateHeader = InputArgs.hasArg(Ids: OTOOL_h); |
| 3489 | IndirectSymbols = InputArgs.hasArg(Ids: OTOOL_I); |
| 3490 | ShowRawInsn = InputArgs.hasArg(Ids: OTOOL_j); |
| 3491 | PrivateHeaders = InputArgs.hasArg(Ids: OTOOL_l); |
| 3492 | DylibsUsed = InputArgs.hasArg(Ids: OTOOL_L); |
| 3493 | MCPU = InputArgs.getLastArgValue(Id: OTOOL_mcpu_EQ).str(); |
| 3494 | ObjcMetaData = InputArgs.hasArg(Ids: OTOOL_o); |
| 3495 | DisSymName = InputArgs.getLastArgValue(Id: OTOOL_p).str(); |
| 3496 | InfoPlist = InputArgs.hasArg(Ids: OTOOL_P); |
| 3497 | Relocations = InputArgs.hasArg(Ids: OTOOL_r); |
| 3498 | if (const Arg *A = InputArgs.getLastArg(Ids: OTOOL_s)) { |
| 3499 | auto Filter = (A->getValue(N: 0) + StringRef("," ) + A->getValue(N: 1)).str(); |
| 3500 | FilterSections.push_back(x: Filter); |
| 3501 | } |
| 3502 | if (InputArgs.hasArg(Ids: OTOOL_t)) |
| 3503 | FilterSections.push_back(x: "__TEXT,__text" ); |
| 3504 | Verbose = InputArgs.hasArg(Ids: OTOOL_v) || InputArgs.hasArg(Ids: OTOOL_V) || |
| 3505 | InputArgs.hasArg(Ids: OTOOL_o); |
| 3506 | SymbolicOperands = InputArgs.hasArg(Ids: OTOOL_V); |
| 3507 | if (InputArgs.hasArg(Ids: OTOOL_x)) |
| 3508 | FilterSections.push_back(x: ",__text" ); |
| 3509 | LeadingAddr = LeadingHeaders = !InputArgs.hasArg(Ids: OTOOL_X); |
| 3510 | |
| 3511 | ChainedFixups = InputArgs.hasArg(Ids: OTOOL_chained_fixups); |
| 3512 | DyldInfo = InputArgs.hasArg(Ids: OTOOL_dyld_info); |
| 3513 | |
| 3514 | InputFilenames = InputArgs.getAllArgValues(Id: OTOOL_INPUT); |
| 3515 | if (InputFilenames.empty()) |
| 3516 | reportCmdLineError(Message: "no input file" ); |
| 3517 | |
| 3518 | for (const Arg *A : InputArgs) { |
| 3519 | const Option &O = A->getOption(); |
| 3520 | if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) { |
| 3521 | reportCmdLineWarning(Message: O.getPrefixedName() + |
| 3522 | " is obsolete and not implemented" ); |
| 3523 | } |
| 3524 | } |
| 3525 | } |
| 3526 | |
| 3527 | static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) { |
| 3528 | parseIntArg(InputArgs, ID: OBJDUMP_adjust_vma_EQ, Value&: AdjustVMA); |
| 3529 | AllHeaders = InputArgs.hasArg(Ids: OBJDUMP_all_headers); |
| 3530 | ArchName = InputArgs.getLastArgValue(Id: OBJDUMP_arch_name_EQ).str(); |
| 3531 | ArchiveHeaders = InputArgs.hasArg(Ids: OBJDUMP_archive_headers); |
| 3532 | Demangle = InputArgs.hasArg(Ids: OBJDUMP_demangle); |
| 3533 | Disassemble = InputArgs.hasArg(Ids: OBJDUMP_disassemble); |
| 3534 | DisassembleAll = InputArgs.hasArg(Ids: OBJDUMP_disassemble_all); |
| 3535 | SymbolDescription = InputArgs.hasArg(Ids: OBJDUMP_symbol_description); |
| 3536 | TracebackTable = InputArgs.hasArg(Ids: OBJDUMP_traceback_table); |
| 3537 | DisassembleSymbols = |
| 3538 | commaSeparatedValues(InputArgs, ID: OBJDUMP_disassemble_symbols_EQ); |
| 3539 | DisassembleZeroes = InputArgs.hasArg(Ids: OBJDUMP_disassemble_zeroes); |
| 3540 | if (const opt::Arg *A = InputArgs.getLastArg(Ids: OBJDUMP_dwarf_EQ)) { |
| 3541 | DwarfDumpType = StringSwitch<DIDumpType>(A->getValue()) |
| 3542 | .Case(S: "frames" , Value: DIDT_DebugFrame) |
| 3543 | .Default(Value: DIDT_Null); |
| 3544 | if (DwarfDumpType == DIDT_Null) |
| 3545 | invalidArgValue(A); |
| 3546 | } |
| 3547 | DynamicRelocations = InputArgs.hasArg(Ids: OBJDUMP_dynamic_reloc); |
| 3548 | FaultMapSection = InputArgs.hasArg(Ids: OBJDUMP_fault_map_section); |
| 3549 | Offloading = InputArgs.hasArg(Ids: OBJDUMP_offloading); |
| 3550 | FileHeaders = InputArgs.hasArg(Ids: OBJDUMP_file_headers); |
| 3551 | SectionContents = InputArgs.hasArg(Ids: OBJDUMP_full_contents); |
| 3552 | PrintLines = InputArgs.hasArg(Ids: OBJDUMP_line_numbers); |
| 3553 | InputFilenames = InputArgs.getAllArgValues(Id: OBJDUMP_INPUT); |
| 3554 | MachOOpt = InputArgs.hasArg(Ids: OBJDUMP_macho); |
| 3555 | MCPU = InputArgs.getLastArgValue(Id: OBJDUMP_mcpu_EQ).str(); |
| 3556 | MAttrs = commaSeparatedValues(InputArgs, ID: OBJDUMP_mattr_EQ); |
| 3557 | ShowRawInsn = !InputArgs.hasArg(Ids: OBJDUMP_no_show_raw_insn); |
| 3558 | LeadingAddr = !InputArgs.hasArg(Ids: OBJDUMP_no_leading_addr); |
| 3559 | RawClangAST = InputArgs.hasArg(Ids: OBJDUMP_raw_clang_ast); |
| 3560 | Relocations = InputArgs.hasArg(Ids: OBJDUMP_reloc); |
| 3561 | PrintImmHex = |
| 3562 | InputArgs.hasFlag(Pos: OBJDUMP_print_imm_hex, Neg: OBJDUMP_no_print_imm_hex, Default: true); |
| 3563 | PrivateHeaders = InputArgs.hasArg(Ids: OBJDUMP_private_headers); |
| 3564 | FilterSections = InputArgs.getAllArgValues(Id: OBJDUMP_section_EQ); |
| 3565 | SectionHeaders = InputArgs.hasArg(Ids: OBJDUMP_section_headers); |
| 3566 | ShowAllSymbols = InputArgs.hasArg(Ids: OBJDUMP_show_all_symbols); |
| 3567 | ShowLMA = InputArgs.hasArg(Ids: OBJDUMP_show_lma); |
| 3568 | PrintSource = InputArgs.hasArg(Ids: OBJDUMP_source); |
| 3569 | parseIntArg(InputArgs, ID: OBJDUMP_start_address_EQ, Value&: StartAddress); |
| 3570 | HasStartAddressFlag = InputArgs.hasArg(Ids: OBJDUMP_start_address_EQ); |
| 3571 | parseIntArg(InputArgs, ID: OBJDUMP_stop_address_EQ, Value&: StopAddress); |
| 3572 | HasStopAddressFlag = InputArgs.hasArg(Ids: OBJDUMP_stop_address_EQ); |
| 3573 | SymbolTable = InputArgs.hasArg(Ids: OBJDUMP_syms); |
| 3574 | SymbolizeOperands = InputArgs.hasArg(Ids: OBJDUMP_symbolize_operands); |
| 3575 | PrettyPGOAnalysisMap = InputArgs.hasArg(Ids: OBJDUMP_pretty_pgo_analysis_map); |
| 3576 | if (PrettyPGOAnalysisMap && !SymbolizeOperands) |
| 3577 | reportCmdLineWarning(Message: "--symbolize-operands must be enabled for " |
| 3578 | "--pretty-pgo-analysis-map to have an effect" ); |
| 3579 | DynamicSymbolTable = InputArgs.hasArg(Ids: OBJDUMP_dynamic_syms); |
| 3580 | TripleName = InputArgs.getLastArgValue(Id: OBJDUMP_triple_EQ).str(); |
| 3581 | UnwindInfo = InputArgs.hasArg(Ids: OBJDUMP_unwind_info); |
| 3582 | Wide = InputArgs.hasArg(Ids: OBJDUMP_wide); |
| 3583 | Prefix = InputArgs.getLastArgValue(Id: OBJDUMP_prefix).str(); |
| 3584 | parseIntArg(InputArgs, ID: OBJDUMP_prefix_strip, Value&: PrefixStrip); |
| 3585 | if (const opt::Arg *A = InputArgs.getLastArg(Ids: OBJDUMP_debug_vars_EQ)) { |
| 3586 | DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue()) |
| 3587 | .Case(S: "ascii" , Value: DVASCII) |
| 3588 | .Case(S: "unicode" , Value: DVUnicode) |
| 3589 | .Default(Value: DVInvalid); |
| 3590 | if (DbgVariables == DVInvalid) |
| 3591 | invalidArgValue(A); |
| 3592 | } |
| 3593 | if (const opt::Arg *A = InputArgs.getLastArg(Ids: OBJDUMP_disassembler_color_EQ)) { |
| 3594 | DisassemblyColor = StringSwitch<ColorOutput>(A->getValue()) |
| 3595 | .Case(S: "on" , Value: ColorOutput::Enable) |
| 3596 | .Case(S: "off" , Value: ColorOutput::Disable) |
| 3597 | .Case(S: "terminal" , Value: ColorOutput::Auto) |
| 3598 | .Default(Value: ColorOutput::Invalid); |
| 3599 | if (DisassemblyColor == ColorOutput::Invalid) |
| 3600 | invalidArgValue(A); |
| 3601 | } |
| 3602 | |
| 3603 | parseIntArg(InputArgs, ID: OBJDUMP_debug_vars_indent_EQ, Value&: DbgIndent); |
| 3604 | |
| 3605 | parseMachOOptions(InputArgs); |
| 3606 | |
| 3607 | // Parse -M (--disassembler-options) and deprecated |
| 3608 | // --x86-asm-syntax={att,intel}. |
| 3609 | // |
| 3610 | // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the |
| 3611 | // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is |
| 3612 | // called too late. For now we have to use the internal cl::opt option. |
| 3613 | const char *AsmSyntax = nullptr; |
| 3614 | for (const auto *A : InputArgs.filtered(Ids: OBJDUMP_disassembler_options_EQ, |
| 3615 | Ids: OBJDUMP_x86_asm_syntax_att, |
| 3616 | Ids: OBJDUMP_x86_asm_syntax_intel)) { |
| 3617 | switch (A->getOption().getID()) { |
| 3618 | case OBJDUMP_x86_asm_syntax_att: |
| 3619 | AsmSyntax = "--x86-asm-syntax=att" ; |
| 3620 | continue; |
| 3621 | case OBJDUMP_x86_asm_syntax_intel: |
| 3622 | AsmSyntax = "--x86-asm-syntax=intel" ; |
| 3623 | continue; |
| 3624 | } |
| 3625 | |
| 3626 | SmallVector<StringRef, 2> Values; |
| 3627 | llvm::SplitString(Source: A->getValue(), OutFragments&: Values, Delimiters: "," ); |
| 3628 | for (StringRef V : Values) { |
| 3629 | if (V == "att" ) |
| 3630 | AsmSyntax = "--x86-asm-syntax=att" ; |
| 3631 | else if (V == "intel" ) |
| 3632 | AsmSyntax = "--x86-asm-syntax=intel" ; |
| 3633 | else |
| 3634 | DisassemblerOptions.push_back(x: V.str()); |
| 3635 | } |
| 3636 | } |
| 3637 | SmallVector<const char *> Args = {"llvm-objdump" }; |
| 3638 | for (const opt::Arg *A : InputArgs.filtered(Ids: OBJDUMP_mllvm)) |
| 3639 | Args.push_back(Elt: A->getValue()); |
| 3640 | if (AsmSyntax) |
| 3641 | Args.push_back(Elt: AsmSyntax); |
| 3642 | if (Args.size() > 1) |
| 3643 | llvm::cl::ParseCommandLineOptions(argc: Args.size(), argv: Args.data()); |
| 3644 | |
| 3645 | // Look up any provided build IDs, then append them to the input filenames. |
| 3646 | for (const opt::Arg *A : InputArgs.filtered(Ids: OBJDUMP_build_id)) { |
| 3647 | object::BuildID BuildID = parseBuildIDArg(A); |
| 3648 | std::optional<std::string> Path = BIDFetcher->fetch(BuildID); |
| 3649 | if (!Path) { |
| 3650 | reportCmdLineError(Message: A->getSpelling() + ": could not find build ID '" + |
| 3651 | A->getValue() + "'" ); |
| 3652 | } |
| 3653 | InputFilenames.push_back(x: std::move(*Path)); |
| 3654 | } |
| 3655 | |
| 3656 | // objdump defaults to a.out if no filenames specified. |
| 3657 | if (InputFilenames.empty()) |
| 3658 | InputFilenames.push_back(x: "a.out" ); |
| 3659 | } |
| 3660 | |
| 3661 | int llvm_objdump_main(int argc, char **argv, const llvm::ToolContext &) { |
| 3662 | using namespace llvm; |
| 3663 | |
| 3664 | ToolName = argv[0]; |
| 3665 | std::unique_ptr<CommonOptTable> T; |
| 3666 | OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag; |
| 3667 | |
| 3668 | StringRef Stem = sys::path::stem(path: ToolName); |
| 3669 | auto Is = [=](StringRef Tool) { |
| 3670 | // We need to recognize the following filenames: |
| 3671 | // |
| 3672 | // llvm-objdump -> objdump |
| 3673 | // llvm-otool-10.exe -> otool |
| 3674 | // powerpc64-unknown-freebsd13-objdump -> objdump |
| 3675 | auto I = Stem.rfind_insensitive(Str: Tool); |
| 3676 | return I != StringRef::npos && |
| 3677 | (I + Tool.size() == Stem.size() || !isAlnum(C: Stem[I + Tool.size()])); |
| 3678 | }; |
| 3679 | if (Is("otool" )) { |
| 3680 | T = std::make_unique<OtoolOptTable>(); |
| 3681 | Unknown = OTOOL_UNKNOWN; |
| 3682 | HelpFlag = OTOOL_help; |
| 3683 | HelpHiddenFlag = OTOOL_help_hidden; |
| 3684 | VersionFlag = OTOOL_version; |
| 3685 | } else { |
| 3686 | T = std::make_unique<ObjdumpOptTable>(); |
| 3687 | Unknown = OBJDUMP_UNKNOWN; |
| 3688 | HelpFlag = OBJDUMP_help; |
| 3689 | HelpHiddenFlag = OBJDUMP_help_hidden; |
| 3690 | VersionFlag = OBJDUMP_version; |
| 3691 | } |
| 3692 | |
| 3693 | BumpPtrAllocator A; |
| 3694 | StringSaver Saver(A); |
| 3695 | opt::InputArgList InputArgs = |
| 3696 | T->parseArgs(Argc: argc, Argv: argv, Unknown, Saver, |
| 3697 | ErrorFn: [&](StringRef Msg) { reportCmdLineError(Message: Msg); }); |
| 3698 | |
| 3699 | if (InputArgs.size() == 0 || InputArgs.hasArg(Ids: HelpFlag)) { |
| 3700 | T->printHelp(Argv0: ToolName); |
| 3701 | return 0; |
| 3702 | } |
| 3703 | if (InputArgs.hasArg(Ids: HelpHiddenFlag)) { |
| 3704 | T->printHelp(Argv0: ToolName, /*ShowHidden=*/true); |
| 3705 | return 0; |
| 3706 | } |
| 3707 | |
| 3708 | // Initialize targets and assembly printers/parsers. |
| 3709 | InitializeAllTargetInfos(); |
| 3710 | InitializeAllTargetMCs(); |
| 3711 | InitializeAllDisassemblers(); |
| 3712 | |
| 3713 | if (InputArgs.hasArg(Ids: VersionFlag)) { |
| 3714 | cl::PrintVersionMessage(); |
| 3715 | if (!Is("otool" )) { |
| 3716 | outs() << '\n'; |
| 3717 | TargetRegistry::printRegisteredTargetsForVersion(OS&: outs()); |
| 3718 | } |
| 3719 | return 0; |
| 3720 | } |
| 3721 | |
| 3722 | // Initialize debuginfod. |
| 3723 | const bool ShouldUseDebuginfodByDefault = |
| 3724 | InputArgs.hasArg(Ids: OBJDUMP_build_id) || canUseDebuginfod(); |
| 3725 | std::vector<std::string> DebugFileDirectories = |
| 3726 | InputArgs.getAllArgValues(Id: OBJDUMP_debug_file_directory); |
| 3727 | if (InputArgs.hasFlag(Pos: OBJDUMP_debuginfod, Neg: OBJDUMP_no_debuginfod, |
| 3728 | Default: ShouldUseDebuginfodByDefault)) { |
| 3729 | HTTPClient::initialize(); |
| 3730 | BIDFetcher = |
| 3731 | std::make_unique<DebuginfodFetcher>(args: std::move(DebugFileDirectories)); |
| 3732 | } else { |
| 3733 | BIDFetcher = |
| 3734 | std::make_unique<BuildIDFetcher>(args: std::move(DebugFileDirectories)); |
| 3735 | } |
| 3736 | |
| 3737 | if (Is("otool" )) |
| 3738 | parseOtoolOptions(InputArgs); |
| 3739 | else |
| 3740 | parseObjdumpOptions(InputArgs); |
| 3741 | |
| 3742 | if (StartAddress >= StopAddress) |
| 3743 | reportCmdLineError(Message: "start address should be less than stop address" ); |
| 3744 | |
| 3745 | // Removes trailing separators from prefix. |
| 3746 | while (!Prefix.empty() && sys::path::is_separator(value: Prefix.back())) |
| 3747 | Prefix.pop_back(); |
| 3748 | |
| 3749 | if (AllHeaders) |
| 3750 | ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = |
| 3751 | SectionHeaders = SymbolTable = true; |
| 3752 | |
| 3753 | if (DisassembleAll || PrintSource || PrintLines || TracebackTable || |
| 3754 | !DisassembleSymbols.empty()) |
| 3755 | Disassemble = true; |
| 3756 | |
| 3757 | if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && |
| 3758 | !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && |
| 3759 | !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && |
| 3760 | !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading && |
| 3761 | !(MachOOpt && |
| 3762 | (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId || |
| 3763 | DylibsUsed || ExportsTrie || FirstPrivateHeader || |
| 3764 | FunctionStartsType != FunctionStartsMode::None || IndirectSymbols || |
| 3765 | InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase || |
| 3766 | Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) { |
| 3767 | T->printHelp(Argv0: ToolName); |
| 3768 | return 2; |
| 3769 | } |
| 3770 | |
| 3771 | DisasmSymbolSet.insert_range(R&: DisassembleSymbols); |
| 3772 | |
| 3773 | llvm::for_each(Range&: InputFilenames, F: dumpInput); |
| 3774 | |
| 3775 | warnOnNoMatchForSections(); |
| 3776 | |
| 3777 | return EXIT_SUCCESS; |
| 3778 | } |
| 3779 | |