| 1 | //===-- ProfiledBinary.cpp - Binary decoder ---------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "ProfiledBinary.h" |
| 10 | #include "ErrorHandling.h" |
| 11 | #include "MissingFrameInferrer.h" |
| 12 | #include "ProfileGenerator.h" |
| 13 | #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h" |
| 14 | #include "llvm/Demangle/Demangle.h" |
| 15 | #include "llvm/IR/DebugInfoMetadata.h" |
| 16 | #include "llvm/MC/TargetRegistry.h" |
| 17 | #include "llvm/Object/COFF.h" |
| 18 | #include "llvm/Support/CommandLine.h" |
| 19 | #include "llvm/Support/Debug.h" |
| 20 | #include "llvm/Support/Format.h" |
| 21 | #include "llvm/Support/TargetSelect.h" |
| 22 | #include "llvm/TargetParser/Triple.h" |
| 23 | #include <optional> |
| 24 | |
| 25 | #define DEBUG_TYPE "load-binary" |
| 26 | |
| 27 | using namespace llvm; |
| 28 | using namespace sampleprof; |
| 29 | |
| 30 | cl::opt<bool> ShowDisassemblyOnly("show-disassembly-only" , |
| 31 | cl::desc("Print disassembled code." )); |
| 32 | |
| 33 | cl::opt<bool> ShowSourceLocations("show-source-locations" , |
| 34 | cl::desc("Print source locations." )); |
| 35 | |
| 36 | static cl::opt<bool> |
| 37 | ShowCanonicalFnName("show-canonical-fname" , |
| 38 | cl::desc("Print canonical function name." )); |
| 39 | |
| 40 | static cl::opt<bool> ShowPseudoProbe( |
| 41 | "show-pseudo-probe" , |
| 42 | cl::desc("Print pseudo probe section and disassembled info." )); |
| 43 | |
| 44 | static cl::opt<bool> UseDwarfCorrelation( |
| 45 | "use-dwarf-correlation" , |
| 46 | cl::desc("Use dwarf for profile correlation even when binary contains " |
| 47 | "pseudo probe." )); |
| 48 | |
| 49 | static cl::opt<std::string> |
| 50 | DWPPath("dwp" , cl::init(Val: "" ), |
| 51 | cl::desc("Path of .dwp file. When not specified, it will be " |
| 52 | "<binary>.dwp in the same directory as the main binary." )); |
| 53 | |
| 54 | static cl::list<std::string> DisassembleFunctions( |
| 55 | "disassemble-functions" , cl::CommaSeparated, |
| 56 | cl::desc("List of functions to print disassembly for. Accept demangled " |
| 57 | "names only. Only work with show-disassembly-only" )); |
| 58 | |
| 59 | static cl::opt<bool> |
| 60 | KernelBinary("kernel" , |
| 61 | cl::desc("Generate the profile for Linux kernel binary." )); |
| 62 | |
| 63 | extern cl::opt<bool> ShowDetailedWarning; |
| 64 | extern cl::opt<bool> InferMissingFrames; |
| 65 | |
| 66 | namespace llvm { |
| 67 | namespace sampleprof { |
| 68 | |
| 69 | static const Target *getTarget(const ObjectFile *Obj) { |
| 70 | Triple TheTriple = Obj->makeTriple(); |
| 71 | std::string Error; |
| 72 | std::string ArchName; |
| 73 | const Target *TheTarget = |
| 74 | TargetRegistry::lookupTarget(ArchName, TheTriple, Error); |
| 75 | if (!TheTarget) |
| 76 | exitWithError(Message: Error, Whence: Obj->getFileName()); |
| 77 | return TheTarget; |
| 78 | } |
| 79 | |
| 80 | void BinarySizeContextTracker::addInstructionForContext( |
| 81 | const SampleContextFrameVector &Context, uint32_t InstrSize) { |
| 82 | ContextTrieNode *CurNode = &RootContext; |
| 83 | bool IsLeaf = true; |
| 84 | for (const auto &Callsite : reverse(C: Context)) { |
| 85 | FunctionId CallerName = Callsite.Func; |
| 86 | LineLocation CallsiteLoc = IsLeaf ? LineLocation(0, 0) : Callsite.Location; |
| 87 | CurNode = CurNode->getOrCreateChildContext(CallSite: CallsiteLoc, ChildName: CallerName); |
| 88 | IsLeaf = false; |
| 89 | } |
| 90 | |
| 91 | CurNode->addFunctionSize(FSize: InstrSize); |
| 92 | } |
| 93 | |
| 94 | uint32_t |
| 95 | BinarySizeContextTracker::getFuncSizeForContext(const ContextTrieNode *Node) { |
| 96 | ContextTrieNode *CurrNode = &RootContext; |
| 97 | ContextTrieNode *PrevNode = nullptr; |
| 98 | |
| 99 | std::optional<uint32_t> Size; |
| 100 | |
| 101 | // Start from top-level context-less function, traverse down the reverse |
| 102 | // context trie to find the best/longest match for given context, then |
| 103 | // retrieve the size. |
| 104 | LineLocation CallSiteLoc(0, 0); |
| 105 | while (CurrNode && Node->getParentContext() != nullptr) { |
| 106 | PrevNode = CurrNode; |
| 107 | CurrNode = CurrNode->getChildContext(CallSite: CallSiteLoc, ChildName: Node->getFuncName()); |
| 108 | if (CurrNode && CurrNode->getFunctionSize()) |
| 109 | Size = *CurrNode->getFunctionSize(); |
| 110 | CallSiteLoc = Node->getCallSiteLoc(); |
| 111 | Node = Node->getParentContext(); |
| 112 | } |
| 113 | |
| 114 | // If we traversed all nodes along the path of the context and haven't |
| 115 | // found a size yet, pivot to look for size from sibling nodes, i.e size |
| 116 | // of inlinee under different context. |
| 117 | if (!Size) { |
| 118 | if (!CurrNode) |
| 119 | CurrNode = PrevNode; |
| 120 | while (!Size && CurrNode && !CurrNode->getAllChildContext().empty()) { |
| 121 | CurrNode = &CurrNode->getAllChildContext().begin()->second; |
| 122 | if (CurrNode->getFunctionSize()) |
| 123 | Size = *CurrNode->getFunctionSize(); |
| 124 | } |
| 125 | } |
| 126 | |
| 127 | assert(Size && "We should at least find one context size." ); |
| 128 | return *Size; |
| 129 | } |
| 130 | |
| 131 | void BinarySizeContextTracker::trackInlineesOptimizedAway( |
| 132 | MCPseudoProbeDecoder &ProbeDecoder) { |
| 133 | ProbeFrameStack ProbeContext; |
| 134 | for (const auto &Child : ProbeDecoder.getDummyInlineRoot().getChildren()) |
| 135 | trackInlineesOptimizedAway(ProbeDecoder, ProbeNode: Child, Context&: ProbeContext); |
| 136 | } |
| 137 | |
| 138 | void BinarySizeContextTracker::trackInlineesOptimizedAway( |
| 139 | MCPseudoProbeDecoder &ProbeDecoder, |
| 140 | const MCDecodedPseudoProbeInlineTree &ProbeNode, |
| 141 | ProbeFrameStack &ProbeContext) { |
| 142 | StringRef FuncName = |
| 143 | ProbeDecoder.getFuncDescForGUID(GUID: ProbeNode.Guid)->FuncName; |
| 144 | ProbeContext.emplace_back(Args&: FuncName, Args: 0); |
| 145 | |
| 146 | // This ProbeContext has a probe, so it has code before inlining and |
| 147 | // optimization. Make sure we mark its size as known. |
| 148 | if (!ProbeNode.getProbes().empty()) { |
| 149 | ContextTrieNode *SizeContext = &RootContext; |
| 150 | for (auto &ProbeFrame : reverse(C&: ProbeContext)) { |
| 151 | StringRef CallerName = ProbeFrame.first; |
| 152 | LineLocation CallsiteLoc(ProbeFrame.second, 0); |
| 153 | SizeContext = |
| 154 | SizeContext->getOrCreateChildContext(CallSite: CallsiteLoc, |
| 155 | ChildName: FunctionId(CallerName)); |
| 156 | } |
| 157 | // Add 0 size to make known. |
| 158 | SizeContext->addFunctionSize(FSize: 0); |
| 159 | } |
| 160 | |
| 161 | // DFS down the probe inline tree |
| 162 | for (const auto &ChildNode : ProbeNode.getChildren()) { |
| 163 | InlineSite Location = ChildNode.getInlineSite(); |
| 164 | ProbeContext.back().second = std::get<1>(t&: Location); |
| 165 | trackInlineesOptimizedAway(ProbeDecoder, ProbeNode: ChildNode, ProbeContext); |
| 166 | } |
| 167 | |
| 168 | ProbeContext.pop_back(); |
| 169 | } |
| 170 | |
| 171 | ProfiledBinary::ProfiledBinary(const StringRef ExeBinPath, |
| 172 | const StringRef DebugBinPath) |
| 173 | : Path(ExeBinPath), DebugBinaryPath(DebugBinPath), |
| 174 | SymbolizerOpts(getSymbolizerOpts()), ProEpilogTracker(this), |
| 175 | Symbolizer(std::make_unique<symbolize::LLVMSymbolizer>(args&: SymbolizerOpts)), |
| 176 | TrackFuncContextSize(EnableCSPreInliner && UseContextCostForPreInliner) { |
| 177 | // Point to executable binary if debug info binary is not specified. |
| 178 | SymbolizerPath = DebugBinPath.empty() ? ExeBinPath : DebugBinPath; |
| 179 | if (InferMissingFrames) |
| 180 | MissingContextInferrer = std::make_unique<MissingFrameInferrer>(args: this); |
| 181 | load(); |
| 182 | } |
| 183 | |
| 184 | ProfiledBinary::~ProfiledBinary() {} |
| 185 | |
| 186 | void ProfiledBinary::warnNoFuncEntry() { |
| 187 | uint64_t NoFuncEntryNum = 0; |
| 188 | for (auto &F : BinaryFunctions) { |
| 189 | if (F.second.Ranges.empty()) |
| 190 | continue; |
| 191 | bool hasFuncEntry = false; |
| 192 | for (auto &R : F.second.Ranges) { |
| 193 | if (FuncRange *FR = findFuncRangeForStartAddr(Address: R.first)) { |
| 194 | if (FR->IsFuncEntry) { |
| 195 | hasFuncEntry = true; |
| 196 | break; |
| 197 | } |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | if (!hasFuncEntry) { |
| 202 | NoFuncEntryNum++; |
| 203 | if (ShowDetailedWarning) |
| 204 | WithColor::warning() |
| 205 | << "Failed to determine function entry for " << F.first |
| 206 | << " due to inconsistent name from symbol table and dwarf info.\n" ; |
| 207 | } |
| 208 | } |
| 209 | emitWarningSummary(Num: NoFuncEntryNum, Total: BinaryFunctions.size(), |
| 210 | Msg: "of functions failed to determine function entry due to " |
| 211 | "inconsistent name from symbol table and dwarf info." ); |
| 212 | } |
| 213 | |
| 214 | void ProfiledBinary::load() { |
| 215 | // Attempt to open the binary. |
| 216 | OwningBinary<Binary> OBinary = unwrapOrError(EO: createBinary(Path), Args&: Path); |
| 217 | Binary &ExeBinary = *OBinary.getBinary(); |
| 218 | |
| 219 | IsCOFF = isa<COFFObjectFile>(Val: &ExeBinary); |
| 220 | if (!isa<ELFObjectFileBase>(Val: &ExeBinary) && !IsCOFF) |
| 221 | exitWithError(Message: "not a valid ELF/COFF image" , Whence: Path); |
| 222 | |
| 223 | auto *Obj = cast<ObjectFile>(Val: &ExeBinary); |
| 224 | TheTriple = Obj->makeTriple(); |
| 225 | |
| 226 | LLVM_DEBUG(dbgs() << "Loading " << Path << "\n" ); |
| 227 | |
| 228 | // Mark the binary as a kernel image; |
| 229 | IsKernel = KernelBinary; |
| 230 | |
| 231 | // Find the preferred load address for text sections. |
| 232 | setPreferredTextSegmentAddresses(Obj); |
| 233 | |
| 234 | // Load debug info of subprograms from DWARF section. |
| 235 | // If path of debug info binary is specified, use the debug info from it, |
| 236 | // otherwise use the debug info from the executable binary. |
| 237 | if (!DebugBinaryPath.empty()) { |
| 238 | OwningBinary<Binary> DebugPath = |
| 239 | unwrapOrError(EO: createBinary(Path: DebugBinaryPath), Args&: DebugBinaryPath); |
| 240 | loadSymbolsFromDWARF(Obj&: *cast<ObjectFile>(Val: DebugPath.getBinary())); |
| 241 | } else { |
| 242 | loadSymbolsFromDWARF(Obj&: *cast<ObjectFile>(Val: &ExeBinary)); |
| 243 | } |
| 244 | |
| 245 | DisassembleFunctionSet.insert_range(R&: DisassembleFunctions); |
| 246 | |
| 247 | if (auto *ELFObj = dyn_cast<ELFObjectFileBase>(Val: Obj)) { |
| 248 | checkPseudoProbe(Obj: ELFObj); |
| 249 | if (UsePseudoProbes) |
| 250 | populateElfSymbolAddressList(O: ELFObj); |
| 251 | |
| 252 | if (ShowDisassemblyOnly) |
| 253 | decodePseudoProbe(Obj: ELFObj); |
| 254 | } |
| 255 | |
| 256 | // Disassemble the text sections. |
| 257 | disassemble(O: Obj); |
| 258 | |
| 259 | // Use function start and return address to infer prolog and epilog |
| 260 | ProEpilogTracker.inferPrologAddresses(FuncStartAddressMap&: StartAddrToFuncRangeMap); |
| 261 | ProEpilogTracker.inferEpilogAddresses(RetAddrs&: RetAddressSet); |
| 262 | |
| 263 | warnNoFuncEntry(); |
| 264 | |
| 265 | // TODO: decode other sections. |
| 266 | } |
| 267 | |
| 268 | bool ProfiledBinary::inlineContextEqual(uint64_t Address1, uint64_t Address2) { |
| 269 | const SampleContextFrameVector &Context1 = |
| 270 | getCachedFrameLocationStack(Address: Address1); |
| 271 | const SampleContextFrameVector &Context2 = |
| 272 | getCachedFrameLocationStack(Address: Address2); |
| 273 | if (Context1.size() != Context2.size()) |
| 274 | return false; |
| 275 | if (Context1.empty()) |
| 276 | return false; |
| 277 | // The leaf frame contains location within the leaf, and it |
| 278 | // needs to be remove that as it's not part of the calling context |
| 279 | return std::equal(first1: Context1.begin(), last1: Context1.begin() + Context1.size() - 1, |
| 280 | first2: Context2.begin(), last2: Context2.begin() + Context2.size() - 1); |
| 281 | } |
| 282 | |
| 283 | SampleContextFrameVector |
| 284 | ProfiledBinary::getExpandedContext(const SmallVectorImpl<uint64_t> &Stack, |
| 285 | bool &WasLeafInlined) { |
| 286 | SampleContextFrameVector ContextVec; |
| 287 | if (Stack.empty()) |
| 288 | return ContextVec; |
| 289 | // Process from frame root to leaf |
| 290 | for (auto Address : Stack) { |
| 291 | const SampleContextFrameVector &ExpandedContext = |
| 292 | getCachedFrameLocationStack(Address); |
| 293 | // An instruction without a valid debug line will be ignored by sample |
| 294 | // processing |
| 295 | if (ExpandedContext.empty()) |
| 296 | return SampleContextFrameVector(); |
| 297 | // Set WasLeafInlined to the size of inlined frame count for the last |
| 298 | // address which is leaf |
| 299 | WasLeafInlined = (ExpandedContext.size() > 1); |
| 300 | ContextVec.append(RHS: ExpandedContext); |
| 301 | } |
| 302 | |
| 303 | // Replace with decoded base discriminator |
| 304 | for (auto &Frame : ContextVec) { |
| 305 | Frame.Location.Discriminator = ProfileGeneratorBase::getBaseDiscriminator( |
| 306 | Discriminator: Frame.Location.Discriminator, UseFSD: UseFSDiscriminator); |
| 307 | } |
| 308 | |
| 309 | assert(ContextVec.size() && "Context length should be at least 1" ); |
| 310 | |
| 311 | // Compress the context string except for the leaf frame |
| 312 | auto LeafFrame = ContextVec.back(); |
| 313 | LeafFrame.Location = LineLocation(0, 0); |
| 314 | ContextVec.pop_back(); |
| 315 | CSProfileGenerator::compressRecursionContext(Context&: ContextVec); |
| 316 | CSProfileGenerator::trimContext(S&: ContextVec); |
| 317 | ContextVec.push_back(Elt: LeafFrame); |
| 318 | return ContextVec; |
| 319 | } |
| 320 | |
| 321 | template <class ELFT> |
| 322 | void ProfiledBinary::setPreferredTextSegmentAddresses(const ELFFile<ELFT> &Obj, |
| 323 | StringRef FileName) { |
| 324 | const auto &PhdrRange = unwrapOrError(Obj.program_headers(), FileName); |
| 325 | // FIXME: This should be the page size of the system running profiling. |
| 326 | // However such info isn't available at post-processing time, assuming |
| 327 | // 4K page now. Note that we don't use EXEC_PAGESIZE from <linux/param.h> |
| 328 | // because we may build the tools on non-linux. |
| 329 | uint64_t PageSize = 0x1000; |
| 330 | for (const typename ELFT::Phdr &Phdr : PhdrRange) { |
| 331 | if (Phdr.p_type == ELF::PT_LOAD) { |
| 332 | if (!FirstLoadableAddress) |
| 333 | FirstLoadableAddress = Phdr.p_vaddr & ~(PageSize - 1U); |
| 334 | if (Phdr.p_flags & ELF::PF_X) { |
| 335 | // Segments will always be loaded at a page boundary. |
| 336 | PreferredTextSegmentAddresses.push_back(Phdr.p_vaddr & |
| 337 | ~(PageSize - 1U)); |
| 338 | TextSegmentOffsets.push_back(Phdr.p_offset & ~(PageSize - 1U)); |
| 339 | } |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | if (PreferredTextSegmentAddresses.empty()) |
| 344 | exitWithError(Message: "no executable segment found" , Whence: FileName); |
| 345 | } |
| 346 | |
| 347 | void ProfiledBinary::setPreferredTextSegmentAddresses(const COFFObjectFile *Obj, |
| 348 | StringRef FileName) { |
| 349 | uint64_t ImageBase = Obj->getImageBase(); |
| 350 | if (!ImageBase) |
| 351 | exitWithError(Message: "Not a COFF image" , Whence: FileName); |
| 352 | |
| 353 | PreferredTextSegmentAddresses.push_back(x: ImageBase); |
| 354 | FirstLoadableAddress = ImageBase; |
| 355 | |
| 356 | for (SectionRef Section : Obj->sections()) { |
| 357 | const coff_section *Sec = Obj->getCOFFSection(Section); |
| 358 | if (Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) |
| 359 | TextSegmentOffsets.push_back(x: Sec->VirtualAddress); |
| 360 | } |
| 361 | } |
| 362 | |
| 363 | void ProfiledBinary::setPreferredTextSegmentAddresses(const ObjectFile *Obj) { |
| 364 | if (const auto *ELFObj = dyn_cast<ELF32LEObjectFile>(Val: Obj)) |
| 365 | setPreferredTextSegmentAddresses(Obj: ELFObj->getELFFile(), FileName: Obj->getFileName()); |
| 366 | else if (const auto *ELFObj = dyn_cast<ELF32BEObjectFile>(Val: Obj)) |
| 367 | setPreferredTextSegmentAddresses(Obj: ELFObj->getELFFile(), FileName: Obj->getFileName()); |
| 368 | else if (const auto *ELFObj = dyn_cast<ELF64LEObjectFile>(Val: Obj)) |
| 369 | setPreferredTextSegmentAddresses(Obj: ELFObj->getELFFile(), FileName: Obj->getFileName()); |
| 370 | else if (const auto *ELFObj = dyn_cast<ELF64BEObjectFile>(Val: Obj)) |
| 371 | setPreferredTextSegmentAddresses(Obj: ELFObj->getELFFile(), FileName: Obj->getFileName()); |
| 372 | else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Val: Obj)) |
| 373 | setPreferredTextSegmentAddresses(Obj: COFFObj, FileName: Obj->getFileName()); |
| 374 | else |
| 375 | llvm_unreachable("invalid object format" ); |
| 376 | } |
| 377 | |
| 378 | void ProfiledBinary::checkPseudoProbe(const ELFObjectFileBase *Obj) { |
| 379 | if (UseDwarfCorrelation) |
| 380 | return; |
| 381 | |
| 382 | bool HasProbeDescSection = false; |
| 383 | bool HasPseudoProbeSection = false; |
| 384 | |
| 385 | StringRef FileName = Obj->getFileName(); |
| 386 | for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end(); |
| 387 | SI != SE; ++SI) { |
| 388 | const SectionRef &Section = *SI; |
| 389 | StringRef SectionName = unwrapOrError(EO: Section.getName(), Args&: FileName); |
| 390 | if (SectionName == ".pseudo_probe_desc" ) { |
| 391 | HasProbeDescSection = true; |
| 392 | } else if (SectionName == ".pseudo_probe" ) { |
| 393 | HasPseudoProbeSection = true; |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | // set UsePseudoProbes flag, used for PerfReader |
| 398 | UsePseudoProbes = HasProbeDescSection && HasPseudoProbeSection; |
| 399 | } |
| 400 | |
| 401 | void ProfiledBinary::decodePseudoProbe(const ELFObjectFileBase *Obj) { |
| 402 | if (!UsePseudoProbes) |
| 403 | return; |
| 404 | |
| 405 | MCPseudoProbeDecoder::Uint64Set GuidFilter; |
| 406 | MCPseudoProbeDecoder::Uint64Map FuncStartAddresses; |
| 407 | if (ShowDisassemblyOnly) { |
| 408 | if (DisassembleFunctionSet.empty()) { |
| 409 | FuncStartAddresses = SymbolStartAddrs; |
| 410 | } else { |
| 411 | for (auto &F : DisassembleFunctionSet) { |
| 412 | auto GUID = Function::getGUIDAssumingExternalLinkage(GlobalName: F.first()); |
| 413 | if (auto StartAddr = SymbolStartAddrs.lookup(Val: GUID)) { |
| 414 | FuncStartAddresses[GUID] = StartAddr; |
| 415 | FuncRange &Range = StartAddrToFuncRangeMap[StartAddr]; |
| 416 | GuidFilter.insert( |
| 417 | V: Function::getGUIDAssumingExternalLinkage(GlobalName: Range.getFuncName())); |
| 418 | } |
| 419 | } |
| 420 | } |
| 421 | } else { |
| 422 | for (auto *F : ProfiledFunctions) { |
| 423 | GuidFilter.insert(V: Function::getGUIDAssumingExternalLinkage(GlobalName: F->FuncName)); |
| 424 | for (auto &Range : F->Ranges) { |
| 425 | auto GUIDs = StartAddrToSymMap.equal_range(x: Range.first); |
| 426 | for (const auto &[StartAddr, Func] : make_range(p: GUIDs)) |
| 427 | FuncStartAddresses[Func] = StartAddr; |
| 428 | } |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | StringRef FileName = Obj->getFileName(); |
| 433 | for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end(); |
| 434 | SI != SE; ++SI) { |
| 435 | const SectionRef &Section = *SI; |
| 436 | StringRef SectionName = unwrapOrError(EO: Section.getName(), Args&: FileName); |
| 437 | |
| 438 | if (SectionName == ".pseudo_probe_desc" ) { |
| 439 | StringRef Contents = unwrapOrError(EO: Section.getContents(), Args&: FileName); |
| 440 | if (!ProbeDecoder.buildGUID2FuncDescMap( |
| 441 | Start: reinterpret_cast<const uint8_t *>(Contents.data()), |
| 442 | Size: Contents.size())) |
| 443 | exitWithError( |
| 444 | Message: "Pseudo Probe decoder fail in .pseudo_probe_desc section" ); |
| 445 | } else if (SectionName == ".pseudo_probe" ) { |
| 446 | StringRef Contents = unwrapOrError(EO: Section.getContents(), Args&: FileName); |
| 447 | if (!ProbeDecoder.buildAddress2ProbeMap( |
| 448 | Start: reinterpret_cast<const uint8_t *>(Contents.data()), |
| 449 | Size: Contents.size(), GuildFilter: GuidFilter, FuncStartAddrs: FuncStartAddresses)) |
| 450 | exitWithError(Message: "Pseudo Probe decoder fail in .pseudo_probe section" ); |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | // Build TopLevelProbeFrameMap to track size for optimized inlinees when probe |
| 455 | // is available |
| 456 | if (TrackFuncContextSize) { |
| 457 | for (auto &Child : ProbeDecoder.getDummyInlineRoot().getChildren()) { |
| 458 | auto *Frame = &Child; |
| 459 | StringRef FuncName = |
| 460 | ProbeDecoder.getFuncDescForGUID(GUID: Frame->Guid)->FuncName; |
| 461 | TopLevelProbeFrameMap[FuncName] = Frame; |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | if (ShowPseudoProbe) |
| 466 | ProbeDecoder.printGUID2FuncDescMap(OS&: outs()); |
| 467 | } |
| 468 | |
| 469 | void ProfiledBinary::decodePseudoProbe() { |
| 470 | OwningBinary<Binary> OBinary = unwrapOrError(EO: createBinary(Path), Args&: Path); |
| 471 | Binary &ExeBinary = *OBinary.getBinary(); |
| 472 | auto *Obj = cast<ELFObjectFileBase>(Val: &ExeBinary); |
| 473 | decodePseudoProbe(Obj); |
| 474 | } |
| 475 | |
| 476 | void ProfiledBinary::setIsFuncEntry(FuncRange *FuncRange, |
| 477 | StringRef RangeSymName) { |
| 478 | // Skip external function symbol. |
| 479 | if (!FuncRange) |
| 480 | return; |
| 481 | |
| 482 | // Set IsFuncEntry to ture if there is only one range in the function or the |
| 483 | // RangeSymName from ELF is equal to its DWARF-based function name. |
| 484 | if (FuncRange->Func->Ranges.size() == 1 || |
| 485 | (!FuncRange->IsFuncEntry && FuncRange->getFuncName() == RangeSymName)) |
| 486 | FuncRange->IsFuncEntry = true; |
| 487 | } |
| 488 | |
| 489 | bool ProfiledBinary::dissassembleSymbol(std::size_t SI, ArrayRef<uint8_t> Bytes, |
| 490 | SectionSymbolsTy &Symbols, |
| 491 | const SectionRef &Section) { |
| 492 | std::size_t SE = Symbols.size(); |
| 493 | uint64_t SectionAddress = Section.getAddress(); |
| 494 | uint64_t SectSize = Section.getSize(); |
| 495 | uint64_t StartAddress = Symbols[SI].Addr; |
| 496 | uint64_t NextStartAddress = |
| 497 | (SI + 1 < SE) ? Symbols[SI + 1].Addr : SectionAddress + SectSize; |
| 498 | FuncRange *FRange = findFuncRange(Address: StartAddress); |
| 499 | setIsFuncEntry(FuncRange: FRange, RangeSymName: FunctionSamples::getCanonicalFnName(FnName: Symbols[SI].Name)); |
| 500 | StringRef SymbolName = |
| 501 | ShowCanonicalFnName |
| 502 | ? FunctionSamples::getCanonicalFnName(FnName: Symbols[SI].Name) |
| 503 | : Symbols[SI].Name; |
| 504 | bool ShowDisassembly = |
| 505 | ShowDisassemblyOnly && (DisassembleFunctionSet.empty() || |
| 506 | DisassembleFunctionSet.count(Key: SymbolName)); |
| 507 | if (ShowDisassembly) |
| 508 | outs() << '<' << SymbolName << ">:\n" ; |
| 509 | |
| 510 | uint64_t Address = StartAddress; |
| 511 | // Size of a consecutive invalid instruction range starting from Address -1 |
| 512 | // backwards. |
| 513 | uint64_t InvalidInstLength = 0; |
| 514 | while (Address < NextStartAddress) { |
| 515 | MCInst Inst; |
| 516 | uint64_t Size; |
| 517 | // Disassemble an instruction. |
| 518 | bool Disassembled = DisAsm->getInstruction( |
| 519 | Instr&: Inst, Size, Bytes: Bytes.slice(N: Address - SectionAddress), Address, CStream&: nulls()); |
| 520 | if (Size == 0) |
| 521 | Size = 1; |
| 522 | |
| 523 | if (ShowDisassembly) { |
| 524 | if (ShowPseudoProbe) { |
| 525 | ProbeDecoder.printProbeForAddress(OS&: outs(), Address); |
| 526 | } |
| 527 | outs() << format(Fmt: "%8" PRIx64 ":" , Vals: Address); |
| 528 | size_t Start = outs().tell(); |
| 529 | if (Disassembled) |
| 530 | IPrinter->printInst(MI: &Inst, Address: Address + Size, Annot: "" , STI: *STI, OS&: outs()); |
| 531 | else |
| 532 | outs() << "\t<unknown>" ; |
| 533 | if (ShowSourceLocations) { |
| 534 | unsigned Cur = outs().tell() - Start; |
| 535 | if (Cur < 40) |
| 536 | outs().indent(NumSpaces: 40 - Cur); |
| 537 | InstructionPointer IP(this, Address); |
| 538 | outs() << getReversedLocWithContext( |
| 539 | Context: symbolize(IP, UseCanonicalFnName: ShowCanonicalFnName, UseProbeDiscriminator: ShowPseudoProbe)); |
| 540 | } |
| 541 | outs() << "\n" ; |
| 542 | } |
| 543 | |
| 544 | if (Disassembled) { |
| 545 | const MCInstrDesc &MCDesc = MII->get(Opcode: Inst.getOpcode()); |
| 546 | |
| 547 | // Record instruction size. |
| 548 | AddressToInstSizeMap[Address] = Size; |
| 549 | |
| 550 | // Populate address maps. |
| 551 | CodeAddressVec.push_back(x: Address); |
| 552 | if (MCDesc.isCall()) { |
| 553 | CallAddressSet.insert(x: Address); |
| 554 | UncondBranchAddrSet.insert(x: Address); |
| 555 | } else if (MCDesc.isReturn()) { |
| 556 | RetAddressSet.insert(x: Address); |
| 557 | UncondBranchAddrSet.insert(x: Address); |
| 558 | } else if (MCDesc.isBranch()) { |
| 559 | if (MCDesc.isUnconditionalBranch()) |
| 560 | UncondBranchAddrSet.insert(x: Address); |
| 561 | BranchAddressSet.insert(x: Address); |
| 562 | } |
| 563 | |
| 564 | // Record potential call targets for tail frame inference later-on. |
| 565 | if (InferMissingFrames && FRange) { |
| 566 | uint64_t Target = 0; |
| 567 | MIA->evaluateBranch(Inst, Addr: Address, Size, Target); |
| 568 | if (MCDesc.isCall()) { |
| 569 | // Indirect call targets are unknown at this point. Recording the |
| 570 | // unknown target (zero) for further LBR-based refinement. |
| 571 | MissingContextInferrer->CallEdges[Address].insert(x: Target); |
| 572 | } else if (MCDesc.isUnconditionalBranch()) { |
| 573 | assert(Target && |
| 574 | "target should be known for unconditional direct branch" ); |
| 575 | // Any inter-function unconditional jump is considered tail call at |
| 576 | // this point. This is not 100% accurate and could further be |
| 577 | // optimized based on some source annotation. |
| 578 | FuncRange *ToFRange = findFuncRange(Address: Target); |
| 579 | if (ToFRange && ToFRange->Func != FRange->Func) |
| 580 | MissingContextInferrer->TailCallEdges[Address].insert(x: Target); |
| 581 | LLVM_DEBUG({ |
| 582 | dbgs() << "Direct Tail call: " << format("%8" PRIx64 ":" , Address); |
| 583 | IPrinter->printInst(&Inst, Address + Size, "" , *STI.get(), dbgs()); |
| 584 | dbgs() << "\n" ; |
| 585 | }); |
| 586 | } else if (MCDesc.isIndirectBranch() && MCDesc.isBarrier()) { |
| 587 | // This is an indirect branch but not necessarily an indirect tail |
| 588 | // call. The isBarrier check is to filter out conditional branch. |
| 589 | // Similar with indirect call targets, recording the unknown target |
| 590 | // (zero) for further LBR-based refinement. |
| 591 | MissingContextInferrer->TailCallEdges[Address].insert(x: Target); |
| 592 | LLVM_DEBUG({ |
| 593 | dbgs() << "Indirect Tail call: " |
| 594 | << format("%8" PRIx64 ":" , Address); |
| 595 | IPrinter->printInst(&Inst, Address + Size, "" , *STI.get(), dbgs()); |
| 596 | dbgs() << "\n" ; |
| 597 | }); |
| 598 | } |
| 599 | } |
| 600 | |
| 601 | if (InvalidInstLength) { |
| 602 | AddrsWithInvalidInstruction.insert( |
| 603 | V: {Address - InvalidInstLength, Address - 1}); |
| 604 | InvalidInstLength = 0; |
| 605 | } |
| 606 | } else { |
| 607 | InvalidInstLength += Size; |
| 608 | } |
| 609 | |
| 610 | Address += Size; |
| 611 | } |
| 612 | |
| 613 | if (InvalidInstLength) |
| 614 | AddrsWithInvalidInstruction.insert( |
| 615 | V: {Address - InvalidInstLength, Address - 1}); |
| 616 | |
| 617 | if (ShowDisassembly) |
| 618 | outs() << "\n" ; |
| 619 | |
| 620 | return true; |
| 621 | } |
| 622 | |
| 623 | void ProfiledBinary::setUpDisassembler(const ObjectFile *Obj) { |
| 624 | const Target *TheTarget = getTarget(Obj); |
| 625 | std::string TripleName = TheTriple.getTriple(); |
| 626 | StringRef FileName = Obj->getFileName(); |
| 627 | |
| 628 | MRI.reset(p: TheTarget->createMCRegInfo(TT: TripleName)); |
| 629 | if (!MRI) |
| 630 | exitWithError(Message: "no register info for target " + TripleName, Whence: FileName); |
| 631 | |
| 632 | MCTargetOptions MCOptions; |
| 633 | AsmInfo.reset(p: TheTarget->createMCAsmInfo(MRI: *MRI, TheTriple: TripleName, Options: MCOptions)); |
| 634 | if (!AsmInfo) |
| 635 | exitWithError(Message: "no assembly info for target " + TripleName, Whence: FileName); |
| 636 | |
| 637 | Expected<SubtargetFeatures> Features = Obj->getFeatures(); |
| 638 | if (!Features) |
| 639 | exitWithError(E: Features.takeError(), Whence: FileName); |
| 640 | STI.reset( |
| 641 | p: TheTarget->createMCSubtargetInfo(TheTriple: TripleName, CPU: "" , Features: Features->getString())); |
| 642 | if (!STI) |
| 643 | exitWithError(Message: "no subtarget info for target " + TripleName, Whence: FileName); |
| 644 | |
| 645 | MII.reset(p: TheTarget->createMCInstrInfo()); |
| 646 | if (!MII) |
| 647 | exitWithError(Message: "no instruction info for target " + TripleName, Whence: FileName); |
| 648 | |
| 649 | MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get()); |
| 650 | std::unique_ptr<MCObjectFileInfo> MOFI( |
| 651 | TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false)); |
| 652 | Ctx.setObjectFileInfo(MOFI.get()); |
| 653 | DisAsm.reset(p: TheTarget->createMCDisassembler(STI: *STI, Ctx)); |
| 654 | if (!DisAsm) |
| 655 | exitWithError(Message: "no disassembler for target " + TripleName, Whence: FileName); |
| 656 | |
| 657 | MIA.reset(p: TheTarget->createMCInstrAnalysis(Info: MII.get())); |
| 658 | |
| 659 | int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); |
| 660 | IPrinter.reset(p: TheTarget->createMCInstPrinter( |
| 661 | T: Triple(TripleName), SyntaxVariant: AsmPrinterVariant, MAI: *AsmInfo, MII: *MII, MRI: *MRI)); |
| 662 | IPrinter->setPrintBranchImmAsAddress(true); |
| 663 | } |
| 664 | |
| 665 | void ProfiledBinary::disassemble(const ObjectFile *Obj) { |
| 666 | // Set up disassembler and related components. |
| 667 | setUpDisassembler(Obj); |
| 668 | |
| 669 | // Create a mapping from virtual address to symbol name. The symbols in text |
| 670 | // sections are the candidates to dissassemble. |
| 671 | std::map<SectionRef, SectionSymbolsTy> AllSymbols; |
| 672 | StringRef FileName = Obj->getFileName(); |
| 673 | for (const SymbolRef &Symbol : Obj->symbols()) { |
| 674 | const uint64_t Addr = unwrapOrError(EO: Symbol.getAddress(), Args&: FileName); |
| 675 | const StringRef Name = unwrapOrError(EO: Symbol.getName(), Args&: FileName); |
| 676 | section_iterator SecI = unwrapOrError(EO: Symbol.getSection(), Args&: FileName); |
| 677 | if (SecI != Obj->section_end()) |
| 678 | AllSymbols[*SecI].push_back(x: SymbolInfoTy(Addr, Name, ELF::STT_NOTYPE)); |
| 679 | } |
| 680 | |
| 681 | // Sort all the symbols. Use a stable sort to stabilize the output. |
| 682 | for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) |
| 683 | stable_sort(Range&: SecSyms.second); |
| 684 | |
| 685 | assert((DisassembleFunctionSet.empty() || ShowDisassemblyOnly) && |
| 686 | "Functions to disassemble should be only specified together with " |
| 687 | "--show-disassembly-only" ); |
| 688 | |
| 689 | if (ShowDisassemblyOnly) |
| 690 | outs() << "\nDisassembly of " << FileName << ":\n" ; |
| 691 | |
| 692 | // Dissassemble a text section. |
| 693 | for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end(); |
| 694 | SI != SE; ++SI) { |
| 695 | const SectionRef &Section = *SI; |
| 696 | if (!Section.isText()) |
| 697 | continue; |
| 698 | |
| 699 | uint64_t ImageLoadAddr = getPreferredBaseAddress(); |
| 700 | uint64_t SectionAddress = Section.getAddress() - ImageLoadAddr; |
| 701 | uint64_t SectSize = Section.getSize(); |
| 702 | if (!SectSize) |
| 703 | continue; |
| 704 | |
| 705 | // Register the text section. |
| 706 | TextSections.insert(x: {SectionAddress, SectSize}); |
| 707 | |
| 708 | StringRef SectionName = unwrapOrError(EO: Section.getName(), Args&: FileName); |
| 709 | |
| 710 | if (ShowDisassemblyOnly) { |
| 711 | outs() << "\nDisassembly of section " << SectionName; |
| 712 | outs() << " [" << format(Fmt: "0x%" PRIx64, Vals: Section.getAddress()) << ", " |
| 713 | << format(Fmt: "0x%" PRIx64, Vals: Section.getAddress() + SectSize) |
| 714 | << "]:\n\n" ; |
| 715 | } |
| 716 | |
| 717 | if (isa<ELFObjectFileBase>(Val: Obj) && SectionName == ".plt" ) |
| 718 | continue; |
| 719 | |
| 720 | // Get the section data. |
| 721 | ArrayRef<uint8_t> Bytes = |
| 722 | arrayRefFromStringRef(Input: unwrapOrError(EO: Section.getContents(), Args&: FileName)); |
| 723 | |
| 724 | // Get the list of all the symbols in this section. |
| 725 | SectionSymbolsTy &Symbols = AllSymbols[Section]; |
| 726 | |
| 727 | // Disassemble symbol by symbol. |
| 728 | for (std::size_t SI = 0, SE = Symbols.size(); SI != SE; ++SI) { |
| 729 | if (!dissassembleSymbol(SI, Bytes, Symbols, Section)) |
| 730 | exitWithError(Message: "disassembling error" , Whence: FileName); |
| 731 | } |
| 732 | } |
| 733 | |
| 734 | if (!AddrsWithInvalidInstruction.empty()) { |
| 735 | if (ShowDetailedWarning) { |
| 736 | for (auto &Addr : AddrsWithInvalidInstruction) { |
| 737 | WithColor::warning() |
| 738 | << "Invalid instructions at " << format(Fmt: "%8" PRIx64, Vals: Addr.first) |
| 739 | << " - " << format(Fmt: "%8" PRIx64, Vals: Addr.second) << "\n" ; |
| 740 | } |
| 741 | } |
| 742 | WithColor::warning() << "Found " << AddrsWithInvalidInstruction.size() |
| 743 | << " invalid instructions\n" ; |
| 744 | AddrsWithInvalidInstruction.clear(); |
| 745 | } |
| 746 | |
| 747 | // Dissassemble rodata section to check if FS discriminator symbol exists. |
| 748 | checkUseFSDiscriminator(Obj, AllSymbols); |
| 749 | } |
| 750 | |
| 751 | void ProfiledBinary::checkUseFSDiscriminator( |
| 752 | const ObjectFile *Obj, std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { |
| 753 | const char *FSDiscriminatorVar = "__llvm_fs_discriminator__" ; |
| 754 | for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end(); |
| 755 | SI != SE; ++SI) { |
| 756 | const SectionRef &Section = *SI; |
| 757 | if (!Section.isData() || Section.getSize() == 0) |
| 758 | continue; |
| 759 | SectionSymbolsTy &Symbols = AllSymbols[Section]; |
| 760 | |
| 761 | for (std::size_t SI = 0, SE = Symbols.size(); SI != SE; ++SI) { |
| 762 | if (Symbols[SI].Name == FSDiscriminatorVar) { |
| 763 | UseFSDiscriminator = true; |
| 764 | return; |
| 765 | } |
| 766 | } |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | void ProfiledBinary::populateElfSymbolAddressList( |
| 771 | const ELFObjectFileBase *Obj) { |
| 772 | // Create a mapping from virtual address to symbol GUID and the other way |
| 773 | // around. |
| 774 | StringRef FileName = Obj->getFileName(); |
| 775 | for (const SymbolRef &Symbol : Obj->symbols()) { |
| 776 | const uint64_t Addr = unwrapOrError(EO: Symbol.getAddress(), Args&: FileName); |
| 777 | const StringRef Name = unwrapOrError(EO: Symbol.getName(), Args&: FileName); |
| 778 | uint64_t GUID = Function::getGUIDAssumingExternalLinkage(GlobalName: Name); |
| 779 | SymbolStartAddrs[GUID] = Addr; |
| 780 | StartAddrToSymMap.emplace(args: Addr, args&: GUID); |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | void ProfiledBinary::loadSymbolsFromDWARFUnit(DWARFUnit &CompilationUnit) { |
| 785 | for (const auto &DieInfo : CompilationUnit.dies()) { |
| 786 | llvm::DWARFDie Die(&CompilationUnit, &DieInfo); |
| 787 | |
| 788 | if (!Die.isSubprogramDIE()) |
| 789 | continue; |
| 790 | auto Name = Die.getName(Kind: llvm::DINameKind::LinkageName); |
| 791 | if (!Name) |
| 792 | Name = Die.getName(Kind: llvm::DINameKind::ShortName); |
| 793 | if (!Name) |
| 794 | continue; |
| 795 | |
| 796 | auto RangesOrError = Die.getAddressRanges(); |
| 797 | if (!RangesOrError) |
| 798 | continue; |
| 799 | const DWARFAddressRangesVector &Ranges = RangesOrError.get(); |
| 800 | |
| 801 | if (Ranges.empty()) |
| 802 | continue; |
| 803 | |
| 804 | // Different DWARF symbols can have same function name, search or create |
| 805 | // BinaryFunction indexed by the name. |
| 806 | auto Ret = BinaryFunctions.emplace(args&: Name, args: BinaryFunction()); |
| 807 | auto &Func = Ret.first->second; |
| 808 | if (Ret.second) |
| 809 | Func.FuncName = Ret.first->first; |
| 810 | |
| 811 | for (const auto &Range : Ranges) { |
| 812 | uint64_t StartAddress = Range.LowPC; |
| 813 | uint64_t EndAddress = Range.HighPC; |
| 814 | |
| 815 | if (EndAddress <= StartAddress || |
| 816 | StartAddress < getPreferredBaseAddress()) |
| 817 | continue; |
| 818 | |
| 819 | // We may want to know all ranges for one function. Here group the |
| 820 | // ranges and store them into BinaryFunction. |
| 821 | Func.Ranges.emplace_back(args&: StartAddress, args&: EndAddress); |
| 822 | |
| 823 | auto R = StartAddrToFuncRangeMap.emplace(args&: StartAddress, args: FuncRange()); |
| 824 | if (R.second) { |
| 825 | FuncRange &FRange = R.first->second; |
| 826 | FRange.Func = &Func; |
| 827 | FRange.StartAddress = StartAddress; |
| 828 | FRange.EndAddress = EndAddress; |
| 829 | } else { |
| 830 | AddrsWithMultipleSymbols.insert(V: StartAddress); |
| 831 | if (ShowDetailedWarning) |
| 832 | WithColor::warning() |
| 833 | << "Duplicated symbol start address at " |
| 834 | << format(Fmt: "%8" PRIx64, Vals: StartAddress) << " " |
| 835 | << R.first->second.getFuncName() << " and " << Name << "\n" ; |
| 836 | } |
| 837 | } |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | void ProfiledBinary::loadSymbolsFromDWARF(ObjectFile &Obj) { |
| 842 | auto DebugContext = llvm::DWARFContext::create( |
| 843 | Obj, RelocAction: DWARFContext::ProcessDebugRelocations::Process, L: nullptr, DWPName: DWPPath); |
| 844 | if (!DebugContext) |
| 845 | exitWithError(Message: "Error creating the debug info context" , Whence: Path); |
| 846 | |
| 847 | for (const auto &CompilationUnit : DebugContext->compile_units()) |
| 848 | loadSymbolsFromDWARFUnit(CompilationUnit&: *CompilationUnit); |
| 849 | |
| 850 | // Handles DWO sections that can either be in .o, .dwo or .dwp files. |
| 851 | uint32_t NumOfDWOMissing = 0; |
| 852 | for (const auto &CompilationUnit : DebugContext->compile_units()) { |
| 853 | DWARFUnit *const DwarfUnit = CompilationUnit.get(); |
| 854 | if (DwarfUnit->getDWOId()) { |
| 855 | DWARFUnit *DWOCU = DwarfUnit->getNonSkeletonUnitDIE(ExtractUnitDIEOnly: false).getDwarfUnit(); |
| 856 | if (!DWOCU->isDWOUnit()) { |
| 857 | NumOfDWOMissing++; |
| 858 | if (ShowDetailedWarning) { |
| 859 | std::string DWOName = dwarf::toString( |
| 860 | V: DwarfUnit->getUnitDIE().find( |
| 861 | Attrs: {dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), |
| 862 | Default: "" ); |
| 863 | WithColor::warning() << "DWO debug information for " << DWOName |
| 864 | << " was not loaded.\n" ; |
| 865 | } |
| 866 | continue; |
| 867 | } |
| 868 | loadSymbolsFromDWARFUnit(CompilationUnit&: *DWOCU); |
| 869 | } |
| 870 | } |
| 871 | |
| 872 | if (NumOfDWOMissing) |
| 873 | WithColor::warning() |
| 874 | << " DWO debug information was not loaded for " << NumOfDWOMissing |
| 875 | << " modules. Please check the .o, .dwo or .dwp path.\n" ; |
| 876 | if (BinaryFunctions.empty()) |
| 877 | WithColor::warning() << "Loading of DWARF info completed, but no binary " |
| 878 | "functions have been retrieved.\n" ; |
| 879 | // Populate the hash binary function map for MD5 function name lookup. This |
| 880 | // is done after BinaryFunctions are finalized. |
| 881 | for (auto &BinaryFunction : BinaryFunctions) { |
| 882 | HashBinaryFunctions[MD5Hash(Str: StringRef(BinaryFunction.first))] = |
| 883 | &BinaryFunction.second; |
| 884 | } |
| 885 | |
| 886 | if (!AddrsWithMultipleSymbols.empty()) { |
| 887 | WithColor::warning() << "Found " << AddrsWithMultipleSymbols.size() |
| 888 | << " start addresses with multiple symbols\n" ; |
| 889 | AddrsWithMultipleSymbols.clear(); |
| 890 | } |
| 891 | } |
| 892 | |
| 893 | void ProfiledBinary::populateSymbolListFromDWARF( |
| 894 | ProfileSymbolList &SymbolList) { |
| 895 | for (auto &I : StartAddrToFuncRangeMap) |
| 896 | SymbolList.add(Name: I.second.getFuncName()); |
| 897 | } |
| 898 | |
| 899 | symbolize::LLVMSymbolizer::Options ProfiledBinary::getSymbolizerOpts() const { |
| 900 | symbolize::LLVMSymbolizer::Options SymbolizerOpts; |
| 901 | SymbolizerOpts.PrintFunctions = |
| 902 | DILineInfoSpecifier::FunctionNameKind::LinkageName; |
| 903 | SymbolizerOpts.Demangle = false; |
| 904 | SymbolizerOpts.DefaultArch = TheTriple.getArchName().str(); |
| 905 | SymbolizerOpts.UseSymbolTable = false; |
| 906 | SymbolizerOpts.RelativeAddresses = false; |
| 907 | SymbolizerOpts.DWPName = DWPPath; |
| 908 | return SymbolizerOpts; |
| 909 | } |
| 910 | |
| 911 | SampleContextFrameVector ProfiledBinary::symbolize(const InstructionPointer &IP, |
| 912 | bool UseCanonicalFnName, |
| 913 | bool UseProbeDiscriminator) { |
| 914 | assert(this == IP.Binary && |
| 915 | "Binary should only symbolize its own instruction" ); |
| 916 | auto Addr = object::SectionedAddress{.Address: IP.Address, |
| 917 | .SectionIndex: object::SectionedAddress::UndefSection}; |
| 918 | DIInliningInfo InlineStack = unwrapOrError( |
| 919 | EO: Symbolizer->symbolizeInlinedCode(ModuleName: SymbolizerPath.str(), ModuleOffset: Addr), |
| 920 | Args&: SymbolizerPath); |
| 921 | |
| 922 | SampleContextFrameVector CallStack; |
| 923 | for (int32_t I = InlineStack.getNumberOfFrames() - 1; I >= 0; I--) { |
| 924 | const auto &CallerFrame = InlineStack.getFrame(Index: I); |
| 925 | if (CallerFrame.FunctionName.empty() || |
| 926 | (CallerFrame.FunctionName == "<invalid>" )) |
| 927 | break; |
| 928 | |
| 929 | StringRef FunctionName(CallerFrame.FunctionName); |
| 930 | if (UseCanonicalFnName) |
| 931 | FunctionName = FunctionSamples::getCanonicalFnName(FnName: FunctionName); |
| 932 | |
| 933 | uint32_t Discriminator = CallerFrame.Discriminator; |
| 934 | uint32_t LineOffset = (CallerFrame.Line - CallerFrame.StartLine) & 0xffff; |
| 935 | if (UseProbeDiscriminator) { |
| 936 | LineOffset = |
| 937 | PseudoProbeDwarfDiscriminator::extractProbeIndex(Value: Discriminator); |
| 938 | Discriminator = 0; |
| 939 | } |
| 940 | |
| 941 | LineLocation Line(LineOffset, Discriminator); |
| 942 | auto It = NameStrings.insert(x: FunctionName.str()); |
| 943 | CallStack.emplace_back(Args: FunctionId(StringRef(*It.first)), Args&: Line); |
| 944 | } |
| 945 | |
| 946 | return CallStack; |
| 947 | } |
| 948 | |
| 949 | void ProfiledBinary::computeInlinedContextSizeForRange(uint64_t RangeBegin, |
| 950 | uint64_t RangeEnd) { |
| 951 | InstructionPointer IP(this, RangeBegin, true); |
| 952 | |
| 953 | if (IP.Address != RangeBegin) |
| 954 | WithColor::warning() << "Invalid start instruction at " |
| 955 | << format(Fmt: "%8" PRIx64, Vals: RangeBegin) << "\n" ; |
| 956 | |
| 957 | if (IP.Address >= RangeEnd) |
| 958 | return; |
| 959 | |
| 960 | do { |
| 961 | const SampleContextFrameVector SymbolizedCallStack = |
| 962 | getFrameLocationStack(Address: IP.Address, UseProbeDiscriminator: UsePseudoProbes); |
| 963 | uint64_t Size = AddressToInstSizeMap[IP.Address]; |
| 964 | // Record instruction size for the corresponding context |
| 965 | FuncSizeTracker.addInstructionForContext(Context: SymbolizedCallStack, InstrSize: Size); |
| 966 | |
| 967 | } while (IP.advance() && IP.Address < RangeEnd); |
| 968 | } |
| 969 | |
| 970 | void ProfiledBinary::computeInlinedContextSizeForFunc( |
| 971 | const BinaryFunction *Func) { |
| 972 | // Note that a function can be spilt into multiple ranges, so compute for all |
| 973 | // ranges of the function. |
| 974 | for (const auto &Range : Func->Ranges) |
| 975 | computeInlinedContextSizeForRange(RangeBegin: Range.first, RangeEnd: Range.second); |
| 976 | |
| 977 | // Track optimized-away inlinee for probed binary. A function inlined and then |
| 978 | // optimized away should still have their probes left over in places. |
| 979 | if (usePseudoProbes()) { |
| 980 | auto I = TopLevelProbeFrameMap.find(Key: Func->FuncName); |
| 981 | if (I != TopLevelProbeFrameMap.end()) { |
| 982 | BinarySizeContextTracker::ProbeFrameStack ProbeContext; |
| 983 | FuncSizeTracker.trackInlineesOptimizedAway(ProbeDecoder, ProbeNode: *I->second, |
| 984 | ProbeContext); |
| 985 | } |
| 986 | } |
| 987 | } |
| 988 | |
| 989 | void ProfiledBinary::inferMissingFrames( |
| 990 | const SmallVectorImpl<uint64_t> &Context, |
| 991 | SmallVectorImpl<uint64_t> &NewContext) { |
| 992 | MissingContextInferrer->inferMissingFrames(Context, NewContext); |
| 993 | } |
| 994 | |
| 995 | InstructionPointer::InstructionPointer(const ProfiledBinary *Binary, |
| 996 | uint64_t Address, bool RoundToNext) |
| 997 | : Binary(Binary), Address(Address) { |
| 998 | Index = Binary->getIndexForAddr(Address); |
| 999 | if (RoundToNext) { |
| 1000 | // we might get address which is not the code |
| 1001 | // it should round to the next valid address |
| 1002 | if (Index >= Binary->getCodeAddrVecSize()) |
| 1003 | this->Address = UINT64_MAX; |
| 1004 | else |
| 1005 | this->Address = Binary->getAddressforIndex(Index); |
| 1006 | } |
| 1007 | } |
| 1008 | |
| 1009 | bool InstructionPointer::advance() { |
| 1010 | Index++; |
| 1011 | if (Index >= Binary->getCodeAddrVecSize()) { |
| 1012 | Address = UINT64_MAX; |
| 1013 | return false; |
| 1014 | } |
| 1015 | Address = Binary->getAddressforIndex(Index); |
| 1016 | return true; |
| 1017 | } |
| 1018 | |
| 1019 | bool InstructionPointer::backward() { |
| 1020 | if (Index == 0) { |
| 1021 | Address = 0; |
| 1022 | return false; |
| 1023 | } |
| 1024 | Index--; |
| 1025 | Address = Binary->getAddressforIndex(Index); |
| 1026 | return true; |
| 1027 | } |
| 1028 | |
| 1029 | void InstructionPointer::update(uint64_t Addr) { |
| 1030 | Address = Addr; |
| 1031 | Index = Binary->getIndexForAddr(Address); |
| 1032 | } |
| 1033 | |
| 1034 | } // end namespace sampleprof |
| 1035 | } // end namespace llvm |
| 1036 | |