| 1 | //===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the DAG Matcher optimizer. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "Basic/SDNodeProperties.h" |
| 14 | #include "Common/CodeGenDAGPatterns.h" |
| 15 | #include "Common/DAGISelMatcher.h" |
| 16 | #include "llvm/ADT/StringSet.h" |
| 17 | #include "llvm/Support/Debug.h" |
| 18 | #include "llvm/Support/raw_ostream.h" |
| 19 | using namespace llvm; |
| 20 | |
| 21 | #define DEBUG_TYPE "isel-opt" |
| 22 | |
| 23 | /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record' |
| 24 | /// into single compound nodes like RecordChild. |
| 25 | static void ContractNodes(std::unique_ptr<Matcher> &InputMatcherPtr, |
| 26 | const CodeGenDAGPatterns &CGP) { |
| 27 | std::unique_ptr<Matcher> *MatcherPtr = &InputMatcherPtr; |
| 28 | while (true) { |
| 29 | Matcher *N = MatcherPtr->get(); |
| 30 | |
| 31 | // If we have a scope node, walk down all of the children. |
| 32 | if (auto *Scope = dyn_cast<ScopeMatcher>(Val: N)) { |
| 33 | for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { |
| 34 | std::unique_ptr<Matcher> Child(Scope->takeChild(i)); |
| 35 | ContractNodes(InputMatcherPtr&: Child, CGP); |
| 36 | Scope->resetChild(i, N: Child.release()); |
| 37 | } |
| 38 | return; |
| 39 | } |
| 40 | |
| 41 | // If we found a movechild node with a node that comes in a 'foochild' form, |
| 42 | // transform it. |
| 43 | if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(Val: N)) { |
| 44 | Matcher *New = nullptr; |
| 45 | if (RecordMatcher *RM = dyn_cast<RecordMatcher>(Val: MC->getNext())) |
| 46 | if (MC->getChildNo() < 8) // Only have RecordChild0...7 |
| 47 | New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(), |
| 48 | RM->getResultNo()); |
| 49 | |
| 50 | if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(Val: MC->getNext())) |
| 51 | if (MC->getChildNo() < 8 && // Only have CheckChildType0...7 |
| 52 | CT->getResNo() == 0) // CheckChildType checks res #0 |
| 53 | New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType()); |
| 54 | |
| 55 | if (CheckSameMatcher *CS = dyn_cast<CheckSameMatcher>(Val: MC->getNext())) |
| 56 | if (MC->getChildNo() < 4) // Only have CheckChildSame0...3 |
| 57 | New = |
| 58 | new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber()); |
| 59 | |
| 60 | if (CheckIntegerMatcher *CI = |
| 61 | dyn_cast<CheckIntegerMatcher>(Val: MC->getNext())) |
| 62 | if (MC->getChildNo() < 5) // Only have CheckChildInteger0...4 |
| 63 | New = new CheckChildIntegerMatcher(MC->getChildNo(), CI->getValue()); |
| 64 | |
| 65 | if (auto *CCC = dyn_cast<CheckCondCodeMatcher>(Val: MC->getNext())) |
| 66 | if (MC->getChildNo() == 2) // Only have CheckChild2CondCode |
| 67 | New = new CheckChild2CondCodeMatcher(CCC->getCondCodeName()); |
| 68 | |
| 69 | if (New) { |
| 70 | // Insert the new node. |
| 71 | New->setNext(MatcherPtr->release()); |
| 72 | MatcherPtr->reset(p: New); |
| 73 | // Remove the old one. |
| 74 | MC->setNext(MC->getNext()->takeNext()); |
| 75 | continue; |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | // Turn MoveParent->MoveChild into MoveSibling. |
| 80 | if (auto *MP = dyn_cast<MoveParentMatcher>(Val: N)) { |
| 81 | if (auto *MC = dyn_cast<MoveChildMatcher>(Val: MP->getNext())) { |
| 82 | auto *MS = new MoveSiblingMatcher(MC->getChildNo()); |
| 83 | MS->setNext(MC->takeNext()); |
| 84 | MatcherPtr->reset(p: MS); |
| 85 | continue; |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | // Uncontract MoveSibling if it will help form other child operations. |
| 90 | if (auto *MS = dyn_cast<MoveSiblingMatcher>(Val: N)) { |
| 91 | if (auto *RM = dyn_cast<RecordMatcher>(Val: MS->getNext())) { |
| 92 | // Turn MoveSibling->Record->MoveParent into MoveParent->RecordChild. |
| 93 | if (auto *MP = dyn_cast<MoveParentMatcher>(Val: RM->getNext())) { |
| 94 | if (MS->getSiblingNo() < 8) { // Only have RecordChild0...7 |
| 95 | auto *NewMP = new MoveParentMatcher(); |
| 96 | auto *NewRCM = new RecordChildMatcher( |
| 97 | MS->getSiblingNo(), RM->getWhatFor(), RM->getResultNo()); |
| 98 | NewMP->setNext(NewRCM); |
| 99 | NewRCM->setNext(MP->takeNext()); |
| 100 | MatcherPtr->reset(p: NewMP); |
| 101 | continue; |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | // Turn MoveSibling->Record->CheckType->MoveParent into |
| 106 | // MoveParent->RecordChild->CheckChildType. |
| 107 | if (auto *CT = dyn_cast<CheckTypeMatcher>(Val: RM->getNext())) { |
| 108 | if (auto *MP = dyn_cast<MoveParentMatcher>(Val: CT->getNext())) { |
| 109 | if (MS->getSiblingNo() < 8 && // Only have CheckChildType0...7 |
| 110 | CT->getResNo() == 0) { // CheckChildType checks res #0 |
| 111 | auto *NewMP = new MoveParentMatcher(); |
| 112 | auto *NewRCM = new RecordChildMatcher( |
| 113 | MS->getSiblingNo(), RM->getWhatFor(), RM->getResultNo()); |
| 114 | auto *NewCCT = |
| 115 | new CheckChildTypeMatcher(MS->getSiblingNo(), CT->getType()); |
| 116 | NewMP->setNext(NewRCM); |
| 117 | NewRCM->setNext(NewCCT); |
| 118 | NewCCT->setNext(MP->takeNext()); |
| 119 | MatcherPtr->reset(p: NewMP); |
| 120 | continue; |
| 121 | } |
| 122 | } |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | // Turn MoveSibling->CheckType->MoveParent into |
| 127 | // MoveParent->CheckChildType. |
| 128 | if (auto *CT = dyn_cast<CheckTypeMatcher>(Val: MS->getNext())) { |
| 129 | if (auto *MP = dyn_cast<MoveParentMatcher>(Val: CT->getNext())) { |
| 130 | if (MS->getSiblingNo() < 8 && // Only have CheckChildType0...7 |
| 131 | CT->getResNo() == 0) { // CheckChildType checks res #0 |
| 132 | auto *NewMP = new MoveParentMatcher(); |
| 133 | auto *NewCCT = |
| 134 | new CheckChildTypeMatcher(MS->getSiblingNo(), CT->getType()); |
| 135 | NewMP->setNext(NewCCT); |
| 136 | NewCCT->setNext(MP->takeNext()); |
| 137 | MatcherPtr->reset(p: NewMP); |
| 138 | continue; |
| 139 | } |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | // Turn MoveSibling->CheckInteger->MoveParent into |
| 144 | // MoveParent->CheckChildInteger. |
| 145 | if (auto *CI = dyn_cast<CheckIntegerMatcher>(Val: MS->getNext())) { |
| 146 | if (auto *MP = dyn_cast<MoveParentMatcher>(Val: CI->getNext())) { |
| 147 | if (MS->getSiblingNo() < 5) { // Only have CheckChildInteger0...4 |
| 148 | auto *NewMP = new MoveParentMatcher(); |
| 149 | auto *NewCCI = new CheckChildIntegerMatcher(MS->getSiblingNo(), |
| 150 | CI->getValue()); |
| 151 | NewMP->setNext(NewCCI); |
| 152 | NewCCI->setNext(MP->takeNext()); |
| 153 | MatcherPtr->reset(p: NewMP); |
| 154 | continue; |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | // Turn MoveSibling->CheckInteger->CheckType->MoveParent into |
| 159 | // MoveParent->CheckChildInteger->CheckType. |
| 160 | if (auto *CT = dyn_cast<CheckTypeMatcher>(Val: CI->getNext())) { |
| 161 | if (auto *MP = dyn_cast<MoveParentMatcher>(Val: CT->getNext())) { |
| 162 | if (MS->getSiblingNo() < 5 && // Only have CheckChildInteger0...4 |
| 163 | CT->getResNo() == 0) { // CheckChildType checks res #0 |
| 164 | auto *NewMP = new MoveParentMatcher(); |
| 165 | auto *NewCCI = new CheckChildIntegerMatcher(MS->getSiblingNo(), |
| 166 | CI->getValue()); |
| 167 | auto *NewCCT = |
| 168 | new CheckChildTypeMatcher(MS->getSiblingNo(), CT->getType()); |
| 169 | NewMP->setNext(NewCCI); |
| 170 | NewCCI->setNext(NewCCT); |
| 171 | NewCCT->setNext(MP->takeNext()); |
| 172 | MatcherPtr->reset(p: NewMP); |
| 173 | continue; |
| 174 | } |
| 175 | } |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | // Turn MoveSibling->CheckCondCode->MoveParent into |
| 180 | // MoveParent->CheckChild2CondCode. |
| 181 | if (auto *CCC = dyn_cast<CheckCondCodeMatcher>(Val: MS->getNext())) { |
| 182 | if (auto *MP = dyn_cast<MoveParentMatcher>(Val: CCC->getNext())) { |
| 183 | if (MS->getSiblingNo() == 2) { // Only have CheckChild2CondCode |
| 184 | auto *NewMP = new MoveParentMatcher(); |
| 185 | auto *NewCCCC = |
| 186 | new CheckChild2CondCodeMatcher(CCC->getCondCodeName()); |
| 187 | NewMP->setNext(NewCCCC); |
| 188 | NewCCCC->setNext(MP->takeNext()); |
| 189 | MatcherPtr->reset(p: NewMP); |
| 190 | continue; |
| 191 | } |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | // Turn MoveSibling->CheckSame->MoveParent into |
| 196 | // MoveParent->CheckChildSame. |
| 197 | if (auto *CS = dyn_cast<CheckSameMatcher>(Val: MS->getNext())) { |
| 198 | if (auto *MP = dyn_cast<MoveParentMatcher>(Val: CS->getNext())) { |
| 199 | if (MS->getSiblingNo() < 4) { // Only have CheckChildSame0...3 |
| 200 | auto *NewMP = new MoveParentMatcher(); |
| 201 | auto *NewCCS = new CheckChildSameMatcher(MS->getSiblingNo(), |
| 202 | CS->getMatchNumber()); |
| 203 | NewMP->setNext(NewCCS); |
| 204 | NewCCS->setNext(MP->takeNext()); |
| 205 | MatcherPtr->reset(p: NewMP); |
| 206 | continue; |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | // Turn MoveSibling->CheckSame->CheckType->MoveParent into |
| 211 | // MoveParent->CheckChildSame->CheckChildType. |
| 212 | if (auto *CT = dyn_cast<CheckTypeMatcher>(Val: CS->getNext())) { |
| 213 | if (auto *MP = dyn_cast<MoveParentMatcher>(Val: CT->getNext())) { |
| 214 | if (MS->getSiblingNo() < 4 && // Only have CheckChildSame0...3 |
| 215 | CT->getResNo() == 0) { // CheckChildType checks res #0 |
| 216 | auto *NewMP = new MoveParentMatcher(); |
| 217 | auto *NewCCS = new CheckChildSameMatcher(MS->getSiblingNo(), |
| 218 | CS->getMatchNumber()); |
| 219 | auto *NewCCT = |
| 220 | new CheckChildTypeMatcher(MS->getSiblingNo(), CT->getType()); |
| 221 | NewMP->setNext(NewCCS); |
| 222 | NewCCS->setNext(NewCCT); |
| 223 | NewCCT->setNext(MP->takeNext()); |
| 224 | MatcherPtr->reset(p: NewMP); |
| 225 | continue; |
| 226 | } |
| 227 | } |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | // Turn MoveSibling->MoveParent into MoveParent. |
| 232 | if (isa<MoveParentMatcher>(Val: MS->getNext())) { |
| 233 | MatcherPtr->reset(p: MS->takeNext()); |
| 234 | continue; |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | // Zap movechild -> moveparent. |
| 239 | if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(Val: N)) |
| 240 | if (MoveParentMatcher *MP = dyn_cast<MoveParentMatcher>(Val: MC->getNext())) { |
| 241 | MatcherPtr->reset(p: MP->takeNext()); |
| 242 | continue; |
| 243 | } |
| 244 | |
| 245 | // Turn EmitNode->CompleteMatch into MorphNodeTo if we can. |
| 246 | if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(Val: N)) { |
| 247 | if (CompleteMatchMatcher *CM = |
| 248 | dyn_cast<CompleteMatchMatcher>(Val: EN->getNext())) { |
| 249 | // We can only use MorphNodeTo if the result values match up. |
| 250 | unsigned RootResultFirst = EN->getFirstResultSlot(); |
| 251 | bool ResultsMatch = true; |
| 252 | for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i) |
| 253 | if (CM->getResult(R: i) != RootResultFirst + i) |
| 254 | ResultsMatch = false; |
| 255 | |
| 256 | // If the selected node defines a subset of the glue/chain results, we |
| 257 | // can't use MorphNodeTo. For example, we can't use MorphNodeTo if the |
| 258 | // matched pattern has a chain but the root node doesn't. |
| 259 | const PatternToMatch &Pattern = CM->getPattern(); |
| 260 | |
| 261 | if (!EN->hasChain() && |
| 262 | Pattern.getSrcPattern().NodeHasProperty(Property: SDNPHasChain, CGP)) |
| 263 | ResultsMatch = false; |
| 264 | |
| 265 | // If the matched node has glue and the output root doesn't, we can't |
| 266 | // use MorphNodeTo. |
| 267 | // |
| 268 | // NOTE: Strictly speaking, we don't have to check for glue here |
| 269 | // because the code in the pattern generator doesn't handle it right. We |
| 270 | // do it anyway for thoroughness. |
| 271 | if (!EN->hasOutGlue() && |
| 272 | Pattern.getSrcPattern().NodeHasProperty(Property: SDNPOutGlue, CGP)) |
| 273 | ResultsMatch = false; |
| 274 | |
| 275 | #if 0 |
| 276 | // If the root result node defines more results than the source root |
| 277 | // node *and* has a chain or glue input, then we can't match it because |
| 278 | // it would end up replacing the extra result with the chain/glue. |
| 279 | if ((EN->hasGlue() || EN->hasChain()) && |
| 280 | EN->getNumNonChainGlueVTs() > ...need to get no results reliably...) |
| 281 | ResultMatch = false; |
| 282 | #endif |
| 283 | |
| 284 | if (ResultsMatch) { |
| 285 | ArrayRef<MVT::SimpleValueType> VTs = EN->getVTList(); |
| 286 | ArrayRef<unsigned> Operands = EN->getOperandList(); |
| 287 | MatcherPtr->reset(p: new MorphNodeToMatcher( |
| 288 | EN->getInstruction(), VTs, Operands, EN->hasChain(), |
| 289 | EN->hasInGlue(), EN->hasOutGlue(), EN->hasMemRefs(), |
| 290 | EN->getNumFixedArityOperands(), Pattern)); |
| 291 | return; |
| 292 | } |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | // If we have a Record node followed by a CheckOpcode, invert the two nodes. |
| 297 | // We prefer to do structural checks before type checks, as this opens |
| 298 | // opportunities for factoring on targets like X86 where many operations are |
| 299 | // valid on multiple types. |
| 300 | if (isa<RecordMatcher>(Val: N) && isa<CheckOpcodeMatcher>(Val: N->getNext())) { |
| 301 | // Unlink the two nodes from the list. |
| 302 | Matcher *CheckType = MatcherPtr->release(); |
| 303 | Matcher *CheckOpcode = CheckType->takeNext(); |
| 304 | Matcher *Tail = CheckOpcode->takeNext(); |
| 305 | |
| 306 | // Relink them. |
| 307 | MatcherPtr->reset(p: CheckOpcode); |
| 308 | CheckOpcode->setNext(CheckType); |
| 309 | CheckType->setNext(Tail); |
| 310 | continue; |
| 311 | } |
| 312 | |
| 313 | // No contractions were performed, go to next node. |
| 314 | MatcherPtr = &(MatcherPtr->get()->getNextPtr()); |
| 315 | |
| 316 | // If we reached the end of the chain, we're done. |
| 317 | if (!*MatcherPtr) |
| 318 | return; |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a |
| 323 | /// specified kind. Return null if we didn't find one otherwise return the |
| 324 | /// matcher. |
| 325 | static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) { |
| 326 | for (; M; M = M->getNext()) |
| 327 | if (M->getKind() == Kind) |
| 328 | return M; |
| 329 | return nullptr; |
| 330 | } |
| 331 | |
| 332 | static void FactorNodes(std::unique_ptr<Matcher> &InputMatcherPtr); |
| 333 | |
| 334 | /// Turn matches like this: |
| 335 | /// Scope |
| 336 | /// OPC_CheckType i32 |
| 337 | /// ABC |
| 338 | /// OPC_CheckType i32 |
| 339 | /// XYZ |
| 340 | /// into: |
| 341 | /// OPC_CheckType i32 |
| 342 | /// Scope |
| 343 | /// ABC |
| 344 | /// XYZ |
| 345 | /// |
| 346 | static void FactorScope(std::unique_ptr<Matcher> &MatcherPtr) { |
| 347 | ScopeMatcher *Scope = cast<ScopeMatcher>(Val: MatcherPtr.get()); |
| 348 | |
| 349 | // Okay, pull together the children of the scope node into a vector so we can |
| 350 | // inspect it more easily. |
| 351 | SmallVector<Matcher *, 32> OptionsToMatch; |
| 352 | |
| 353 | for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { |
| 354 | // Factor the subexpression. |
| 355 | std::unique_ptr<Matcher> Child(Scope->takeChild(i)); |
| 356 | FactorNodes(InputMatcherPtr&: Child); |
| 357 | |
| 358 | // If the child is a ScopeMatcher we can just merge its contents. |
| 359 | if (auto *SM = dyn_cast<ScopeMatcher>(Val: Child.get())) { |
| 360 | for (unsigned j = 0, e = SM->getNumChildren(); j != e; ++j) |
| 361 | OptionsToMatch.push_back(Elt: SM->takeChild(i: j)); |
| 362 | } else { |
| 363 | OptionsToMatch.push_back(Elt: Child.release()); |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | // Loop over options to match, merging neighboring patterns with identical |
| 368 | // starting nodes into a shared matcher. |
| 369 | auto E = OptionsToMatch.end(); |
| 370 | for (auto I = OptionsToMatch.begin(); I != E; ++I) { |
| 371 | // If there are no other matchers left, there's nothing to merge with. |
| 372 | auto J = std::next(x: I); |
| 373 | if (J == E) |
| 374 | break; |
| 375 | |
| 376 | // Remember where we started. We'll use this to move non-equal elements. |
| 377 | auto K = J; |
| 378 | |
| 379 | // Find the set of matchers that start with this node. |
| 380 | Matcher *Optn = *I; |
| 381 | |
| 382 | // See if the next option starts with the same matcher. If the two |
| 383 | // neighbors *do* start with the same matcher, we can factor the matcher out |
| 384 | // of at least these two patterns. See what the maximal set we can merge |
| 385 | // together is. |
| 386 | SmallVector<Matcher *, 8> EqualMatchers; |
| 387 | EqualMatchers.push_back(Elt: Optn); |
| 388 | |
| 389 | // Factor all of the known-equal matchers after this one into the same |
| 390 | // group. |
| 391 | while (J != E && (*J)->isEqual(M: Optn)) |
| 392 | EqualMatchers.push_back(Elt: *J++); |
| 393 | |
| 394 | // If we found a non-equal matcher, see if it is contradictory with the |
| 395 | // current node. If so, we know that the ordering relation between the |
| 396 | // current sets of nodes and this node don't matter. Look past it to see if |
| 397 | // we can merge anything else into this matching group. |
| 398 | while (J != E) { |
| 399 | Matcher *ScanMatcher = *J; |
| 400 | |
| 401 | // If we found an entry that matches out matcher, merge it into the set to |
| 402 | // handle. |
| 403 | if (Optn->isEqual(M: ScanMatcher)) { |
| 404 | // It is equal after all, add the option to EqualMatchers. |
| 405 | EqualMatchers.push_back(Elt: ScanMatcher); |
| 406 | ++J; |
| 407 | continue; |
| 408 | } |
| 409 | |
| 410 | // If the option we're checking for contradicts the start of the list, |
| 411 | // move it earlier in OptionsToMatch for the next iteration of the outer |
| 412 | // loop. Then continue searching for equal or contradictory matchers. |
| 413 | if (Optn->isContradictory(Other: ScanMatcher)) { |
| 414 | *K++ = *J++; |
| 415 | continue; |
| 416 | } |
| 417 | |
| 418 | // If we're scanning for a simple node, see if it occurs later in the |
| 419 | // sequence. If so, and if we can move it up, it might be contradictory |
| 420 | // or the same as what we're looking for. If so, reorder it. |
| 421 | if (Optn->isSimplePredicateOrRecordNode()) { |
| 422 | Matcher *M2 = FindNodeWithKind(M: ScanMatcher, Kind: Optn->getKind()); |
| 423 | if (M2 && M2 != ScanMatcher && M2->canMoveBefore(Other: ScanMatcher) && |
| 424 | (M2->isEqual(M: Optn) || M2->isContradictory(Other: Optn))) { |
| 425 | Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(Other: M2); |
| 426 | M2->setNext(MatcherWithoutM2); |
| 427 | *J = M2; |
| 428 | continue; |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | // Otherwise, we don't know how to handle this entry, we have to bail. |
| 433 | break; |
| 434 | } |
| 435 | |
| 436 | if (J != E && |
| 437 | // Don't print if it's obvious nothing extract could be merged anyway. |
| 438 | std::next(x: J) != E) { |
| 439 | LLVM_DEBUG(errs() << "Couldn't merge this:\n" ; |
| 440 | Optn->print(errs(), indent(4)); errs() << "into this:\n" ; |
| 441 | (*J)->print(errs(), indent(4)); |
| 442 | (*std::next(J))->printOne(errs()); |
| 443 | if (std::next(J, 2) != E)(*std::next(J, 2))->printOne(errs()); |
| 444 | errs() << "\n" ); |
| 445 | } |
| 446 | |
| 447 | // If we removed any equal matchers, we may need to slide the rest of the |
| 448 | // elements down for the next iteration of the outer loop. |
| 449 | if (J != K) |
| 450 | E = std::copy(first: J, last: E, result: K); |
| 451 | |
| 452 | // If we only found one option starting with this matcher, no factoring is |
| 453 | // possible. Put the Matcher back in OptionsToMatch. |
| 454 | if (EqualMatchers.size() == 1) { |
| 455 | *I = EqualMatchers[0]; |
| 456 | continue; |
| 457 | } |
| 458 | |
| 459 | // Factor these checks by pulling the first node off each entry and |
| 460 | // discarding it. Take the first one off the first entry to reuse. |
| 461 | Matcher *Shared = Optn; |
| 462 | Optn = Optn->takeNext(); |
| 463 | EqualMatchers[0] = Optn; |
| 464 | |
| 465 | // Remove and delete the first node from the other matchers we're factoring. |
| 466 | for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) { |
| 467 | Matcher *Tmp = EqualMatchers[i]->takeNext(); |
| 468 | delete EqualMatchers[i]; |
| 469 | EqualMatchers[i] = Tmp; |
| 470 | assert(!Optn == !Tmp && "Expected all to be null if any are null" ); |
| 471 | } |
| 472 | |
| 473 | if (EqualMatchers[0]) { |
| 474 | Shared->setNext(new ScopeMatcher(std::move(EqualMatchers))); |
| 475 | |
| 476 | // Recursively factor the newly created node. |
| 477 | FactorScope(MatcherPtr&: Shared->getNextPtr()); |
| 478 | } |
| 479 | |
| 480 | // Put the new Matcher where we started in OptionsToMatch. |
| 481 | *I = Shared; |
| 482 | } |
| 483 | |
| 484 | // Trim the array to match the updated end. |
| 485 | OptionsToMatch.erase(CS: E, CE: OptionsToMatch.end()); |
| 486 | |
| 487 | // If we're down to a single pattern to match, then we don't need this scope |
| 488 | // anymore. |
| 489 | if (OptionsToMatch.size() == 1) { |
| 490 | MatcherPtr.reset(p: OptionsToMatch[0]); |
| 491 | return; |
| 492 | } |
| 493 | |
| 494 | if (OptionsToMatch.empty()) { |
| 495 | MatcherPtr.reset(); |
| 496 | return; |
| 497 | } |
| 498 | |
| 499 | // If our factoring failed (didn't achieve anything) see if we can simplify in |
| 500 | // other ways. |
| 501 | |
| 502 | // Check to see if all of the leading entries are now opcode checks. If so, |
| 503 | // we can convert this Scope to be a OpcodeSwitch instead. |
| 504 | bool AllOpcodeChecks = true, AllTypeChecks = true; |
| 505 | for (Matcher *Optn : OptionsToMatch) { |
| 506 | // Check to see if this breaks a series of CheckOpcodeMatchers. |
| 507 | if (AllOpcodeChecks && !isa<CheckOpcodeMatcher>(Val: Optn)) { |
| 508 | #if 0 |
| 509 | if (i > 3) { |
| 510 | errs() << "FAILING OPC #" << i << "\n" ; |
| 511 | Optn->dump(); |
| 512 | } |
| 513 | #endif |
| 514 | AllOpcodeChecks = false; |
| 515 | } |
| 516 | |
| 517 | // Check to see if this breaks a series of CheckTypeMatcher's. |
| 518 | if (AllTypeChecks) { |
| 519 | CheckTypeMatcher *CTM = cast_or_null<CheckTypeMatcher>( |
| 520 | Val: FindNodeWithKind(M: Optn, Kind: Matcher::CheckType)); |
| 521 | if (!CTM || |
| 522 | // iPTR checks could alias any other case without us knowing, don't |
| 523 | // bother with them. |
| 524 | CTM->getType() == MVT::iPTR || |
| 525 | // SwitchType only works for result #0. |
| 526 | CTM->getResNo() != 0 || |
| 527 | // If the CheckType isn't at the start of the list, see if we can move |
| 528 | // it there. |
| 529 | !CTM->canMoveBefore(Other: Optn)) { |
| 530 | #if 0 |
| 531 | if (i > 3 && AllTypeChecks) { |
| 532 | errs() << "FAILING TYPE #" << i << "\n" ; |
| 533 | Optn->dump(); } |
| 534 | #endif |
| 535 | AllTypeChecks = false; |
| 536 | } |
| 537 | } |
| 538 | } |
| 539 | |
| 540 | // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot. |
| 541 | if (AllOpcodeChecks) { |
| 542 | StringSet<> Opcodes; |
| 543 | SmallVector<std::pair<const SDNodeInfo *, Matcher *>, 8> Cases; |
| 544 | for (Matcher *Optn : OptionsToMatch) { |
| 545 | CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(Val: Optn); |
| 546 | assert(Opcodes.insert(COM->getOpcode().getEnumName()).second && |
| 547 | "Duplicate opcodes not factored?" ); |
| 548 | Cases.emplace_back(Args: &COM->getOpcode(), Args: COM->takeNext()); |
| 549 | delete COM; |
| 550 | } |
| 551 | |
| 552 | MatcherPtr.reset(p: new SwitchOpcodeMatcher(std::move(Cases))); |
| 553 | return; |
| 554 | } |
| 555 | |
| 556 | // If all the options are CheckType's, we can form the SwitchType, woot. |
| 557 | if (AllTypeChecks) { |
| 558 | DenseMap<unsigned, unsigned> TypeEntry; |
| 559 | SmallVector<std::pair<MVT::SimpleValueType, Matcher *>, 8> Cases; |
| 560 | for (Matcher *Optn : OptionsToMatch) { |
| 561 | Matcher *M = FindNodeWithKind(M: Optn, Kind: Matcher::CheckType); |
| 562 | assert(M && isa<CheckTypeMatcher>(M) && "Unknown Matcher type" ); |
| 563 | |
| 564 | auto *CTM = cast<CheckTypeMatcher>(Val: M); |
| 565 | Matcher *MatcherWithoutCTM = Optn->unlinkNode(Other: CTM); |
| 566 | MVT::SimpleValueType CTMTy = CTM->getType(); |
| 567 | delete CTM; |
| 568 | |
| 569 | unsigned &Entry = TypeEntry[CTMTy]; |
| 570 | if (Entry != 0) { |
| 571 | // If we have unfactored duplicate types, then we should factor them. |
| 572 | Matcher *PrevMatcher = Cases[Entry - 1].second; |
| 573 | if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(Val: PrevMatcher)) { |
| 574 | SM->setNumChildren(SM->getNumChildren() + 1); |
| 575 | SM->resetChild(i: SM->getNumChildren() - 1, N: MatcherWithoutCTM); |
| 576 | continue; |
| 577 | } |
| 578 | |
| 579 | SmallVector<Matcher *, 2> Entries = {PrevMatcher, MatcherWithoutCTM}; |
| 580 | Cases[Entry - 1].second = new ScopeMatcher(std::move(Entries)); |
| 581 | continue; |
| 582 | } |
| 583 | |
| 584 | Entry = Cases.size() + 1; |
| 585 | Cases.emplace_back(Args&: CTMTy, Args&: MatcherWithoutCTM); |
| 586 | } |
| 587 | |
| 588 | // Make sure we recursively factor any scopes we may have created. |
| 589 | for (auto &M : Cases) { |
| 590 | if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(Val: M.second)) { |
| 591 | std::unique_ptr<Matcher> Scope(SM); |
| 592 | FactorScope(MatcherPtr&: Scope); |
| 593 | M.second = Scope.release(); |
| 594 | assert(M.second && "null matcher" ); |
| 595 | } |
| 596 | } |
| 597 | |
| 598 | if (Cases.size() != 1) { |
| 599 | MatcherPtr.reset(p: new SwitchTypeMatcher(std::move(Cases))); |
| 600 | } else { |
| 601 | // If we factored and ended up with one case, create it now. |
| 602 | MatcherPtr.reset(p: new CheckTypeMatcher(Cases[0].first, 0)); |
| 603 | MatcherPtr->setNext(Cases[0].second); |
| 604 | } |
| 605 | return; |
| 606 | } |
| 607 | |
| 608 | // Reassemble the Scope node with the adjusted children. |
| 609 | Scope->setNumChildren(OptionsToMatch.size()); |
| 610 | for (unsigned i = 0, e = OptionsToMatch.size(); i != e; ++i) |
| 611 | Scope->resetChild(i, N: OptionsToMatch[i]); |
| 612 | } |
| 613 | |
| 614 | /// Search a ScopeMatcher to factor with FactorScope. |
| 615 | static void FactorNodes(std::unique_ptr<Matcher> &InputMatcherPtr) { |
| 616 | // Look for a scope matcher. Iterates instead of recurses to reduce stack |
| 617 | // usage. |
| 618 | std::unique_ptr<Matcher> *MatcherPtr = &InputMatcherPtr; |
| 619 | do { |
| 620 | if (isa<ScopeMatcher>(Val: *MatcherPtr)) |
| 621 | return FactorScope(MatcherPtr&: *MatcherPtr); |
| 622 | |
| 623 | // If this is not a scope matcher, go to the next node. |
| 624 | MatcherPtr = &(MatcherPtr->get()->getNextPtr()); |
| 625 | } while (MatcherPtr->get()); |
| 626 | } |
| 627 | |
| 628 | void llvm::OptimizeMatcher(std::unique_ptr<Matcher> &MatcherPtr, |
| 629 | const CodeGenDAGPatterns &CGP) { |
| 630 | ContractNodes(InputMatcherPtr&: MatcherPtr, CGP); |
| 631 | FactorNodes(InputMatcherPtr&: MatcherPtr); |
| 632 | } |
| 633 | |