| 1 | //===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This tablegen backend is responsible for emitting the memory fold tables of |
| 10 | // the X86 backend instructions. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "Common/CodeGenInstruction.h" |
| 15 | #include "Common/CodeGenTarget.h" |
| 16 | #include "X86RecognizableInstr.h" |
| 17 | #include "llvm/ADT/StringSwitch.h" |
| 18 | #include "llvm/Support/X86FoldTablesUtils.h" |
| 19 | #include "llvm/TableGen/Record.h" |
| 20 | #include "llvm/TableGen/TableGenBackend.h" |
| 21 | #include <set> |
| 22 | |
| 23 | using namespace llvm; |
| 24 | using namespace X86Disassembler; |
| 25 | |
| 26 | namespace { |
| 27 | // Represents an entry in the manual mapped instructions set. |
| 28 | struct ManualMapEntry { |
| 29 | const char *RegInstStr; |
| 30 | const char *MemInstStr; |
| 31 | uint16_t Strategy; |
| 32 | }; |
| 33 | |
| 34 | // List of instructions requiring explicitly aligned memory. |
| 35 | const char *ExplicitAlign[] = {"MOVDQA" , "MOVAPS" , "MOVAPD" , "MOVNTPS" , |
| 36 | "MOVNTPD" , "MOVNTDQ" , "MOVNTDQA" }; |
| 37 | |
| 38 | // List of instructions NOT requiring explicit memory alignment. |
| 39 | const char *ExplicitUnalign[] = {"MOVDQU" , "MOVUPS" , "MOVUPD" , |
| 40 | "PCMPESTRM" , "PCMPESTRI" , "PCMPISTRM" , |
| 41 | "PCMPISTRI" }; |
| 42 | |
| 43 | const ManualMapEntry ManualMapSet[] = { |
| 44 | #define ENTRY(REG, MEM, FLAGS) {#REG, #MEM, FLAGS}, |
| 45 | #include "X86ManualFoldTables.def" |
| 46 | }; |
| 47 | |
| 48 | const std::set<StringRef> NoFoldSet = { |
| 49 | #define NOFOLD(INSN) #INSN, |
| 50 | #include "X86ManualFoldTables.def" |
| 51 | }; |
| 52 | |
| 53 | static bool isExplicitAlign(const CodeGenInstruction *Inst) { |
| 54 | return any_of(Range&: ExplicitAlign, P: [Inst](const char *InstStr) { |
| 55 | return Inst->TheDef->getName().contains(Other: InstStr); |
| 56 | }); |
| 57 | } |
| 58 | |
| 59 | static bool isExplicitUnalign(const CodeGenInstruction *Inst) { |
| 60 | return any_of(Range&: ExplicitUnalign, P: [Inst](const char *InstStr) { |
| 61 | return Inst->TheDef->getName().contains(Other: InstStr); |
| 62 | }); |
| 63 | } |
| 64 | |
| 65 | class X86FoldTablesEmitter { |
| 66 | const RecordKeeper &Records; |
| 67 | const CodeGenTarget Target; |
| 68 | |
| 69 | // Represents an entry in the folding table |
| 70 | class X86FoldTableEntry { |
| 71 | const CodeGenInstruction *RegInst; |
| 72 | const CodeGenInstruction *MemInst; |
| 73 | |
| 74 | public: |
| 75 | bool NoReverse = false; |
| 76 | bool NoForward = false; |
| 77 | bool FoldLoad = false; |
| 78 | bool FoldStore = false; |
| 79 | enum BcastType { |
| 80 | BCAST_NONE, |
| 81 | BCAST_W, |
| 82 | BCAST_D, |
| 83 | BCAST_Q, |
| 84 | BCAST_SS, |
| 85 | BCAST_SD, |
| 86 | BCAST_SH, |
| 87 | }; |
| 88 | BcastType BroadcastKind = BCAST_NONE; |
| 89 | |
| 90 | Align Alignment; |
| 91 | |
| 92 | X86FoldTableEntry() = default; |
| 93 | X86FoldTableEntry(const CodeGenInstruction *RegInst, |
| 94 | const CodeGenInstruction *MemInst) |
| 95 | : RegInst(RegInst), MemInst(MemInst) {} |
| 96 | |
| 97 | void print(raw_ostream &OS) const { |
| 98 | OS.indent(NumSpaces: 2); |
| 99 | OS << "{X86::" << RegInst->TheDef->getName() << ", " ; |
| 100 | OS << "X86::" << MemInst->TheDef->getName() << ", " ; |
| 101 | |
| 102 | std::string Attrs; |
| 103 | if (FoldLoad) |
| 104 | Attrs += "TB_FOLDED_LOAD|" ; |
| 105 | if (FoldStore) |
| 106 | Attrs += "TB_FOLDED_STORE|" ; |
| 107 | if (NoReverse) |
| 108 | Attrs += "TB_NO_REVERSE|" ; |
| 109 | if (NoForward) |
| 110 | Attrs += "TB_NO_FORWARD|" ; |
| 111 | if (Alignment != Align(1)) |
| 112 | Attrs += "TB_ALIGN_" + std::to_string(val: Alignment.value()) + "|" ; |
| 113 | switch (BroadcastKind) { |
| 114 | case BCAST_NONE: |
| 115 | break; |
| 116 | case BCAST_W: |
| 117 | Attrs += "TB_BCAST_W|" ; |
| 118 | break; |
| 119 | case BCAST_D: |
| 120 | Attrs += "TB_BCAST_D|" ; |
| 121 | break; |
| 122 | case BCAST_Q: |
| 123 | Attrs += "TB_BCAST_Q|" ; |
| 124 | break; |
| 125 | case BCAST_SS: |
| 126 | Attrs += "TB_BCAST_SS|" ; |
| 127 | break; |
| 128 | case BCAST_SD: |
| 129 | Attrs += "TB_BCAST_SD|" ; |
| 130 | break; |
| 131 | case BCAST_SH: |
| 132 | Attrs += "TB_BCAST_SH|" ; |
| 133 | break; |
| 134 | } |
| 135 | |
| 136 | StringRef SimplifiedAttrs = StringRef(Attrs).rtrim(Chars: "|" ); |
| 137 | if (SimplifiedAttrs.empty()) |
| 138 | SimplifiedAttrs = "0" ; |
| 139 | |
| 140 | OS << SimplifiedAttrs << "},\n" ; |
| 141 | } |
| 142 | |
| 143 | #ifndef NDEBUG |
| 144 | // Check that Uses and Defs are same after memory fold. |
| 145 | void checkCorrectness() const { |
| 146 | auto &RegInstRec = *RegInst->TheDef; |
| 147 | auto &MemInstRec = *MemInst->TheDef; |
| 148 | auto ListOfUsesReg = RegInstRec.getValueAsListOfDefs("Uses" ); |
| 149 | auto ListOfUsesMem = MemInstRec.getValueAsListOfDefs("Uses" ); |
| 150 | auto ListOfDefsReg = RegInstRec.getValueAsListOfDefs("Defs" ); |
| 151 | auto ListOfDefsMem = MemInstRec.getValueAsListOfDefs("Defs" ); |
| 152 | if (ListOfUsesReg != ListOfUsesMem || ListOfDefsReg != ListOfDefsMem) |
| 153 | report_fatal_error("Uses/Defs couldn't be changed after folding " + |
| 154 | RegInstRec.getName() + " to " + |
| 155 | MemInstRec.getName()); |
| 156 | } |
| 157 | #endif |
| 158 | }; |
| 159 | |
| 160 | // NOTE: We check the fold tables are sorted in X86InstrFoldTables.cpp by the |
| 161 | // enum of the instruction, which is computed in |
| 162 | // CodeGenTarget::ComputeInstrsByEnum. So we should use the same comparator |
| 163 | // here. |
| 164 | // FIXME: Could we share the code with CodeGenTarget::ComputeInstrsByEnum? |
| 165 | struct CompareInstrsByEnum { |
| 166 | bool operator()(const CodeGenInstruction *LHS, |
| 167 | const CodeGenInstruction *RHS) const { |
| 168 | assert(LHS && RHS && "LHS and RHS shouldn't be nullptr" ); |
| 169 | const auto &D1 = *LHS->TheDef; |
| 170 | const auto &D2 = *RHS->TheDef; |
| 171 | return std::tuple(!D1.getValueAsBit(FieldName: "isPseudo" ), D1.getName()) < |
| 172 | std::tuple(!D2.getValueAsBit(FieldName: "isPseudo" ), D2.getName()); |
| 173 | } |
| 174 | }; |
| 175 | |
| 176 | typedef std::map<const CodeGenInstruction *, X86FoldTableEntry, |
| 177 | CompareInstrsByEnum> |
| 178 | FoldTable; |
| 179 | // Table2Addr - Holds instructions which their memory form performs |
| 180 | // load+store. |
| 181 | // |
| 182 | // Table#i - Holds instructions which the their memory form |
| 183 | // performs a load OR a store, and their #i'th operand is folded. |
| 184 | // |
| 185 | // BroadcastTable#i - Holds instructions which the their memory form performs |
| 186 | // a broadcast load and their #i'th operand is folded. |
| 187 | FoldTable Table2Addr; |
| 188 | FoldTable Table0; |
| 189 | FoldTable Table1; |
| 190 | FoldTable Table2; |
| 191 | FoldTable Table3; |
| 192 | FoldTable Table4; |
| 193 | FoldTable BroadcastTable1; |
| 194 | FoldTable BroadcastTable2; |
| 195 | FoldTable BroadcastTable3; |
| 196 | FoldTable BroadcastTable4; |
| 197 | |
| 198 | public: |
| 199 | X86FoldTablesEmitter(const RecordKeeper &R) : Records(R), Target(R) {} |
| 200 | |
| 201 | // run - Generate the 6 X86 memory fold tables. |
| 202 | void run(raw_ostream &OS); |
| 203 | |
| 204 | private: |
| 205 | // Decides to which table to add the entry with the given instructions. |
| 206 | // S sets the strategy of adding the TB_NO_REVERSE flag. |
| 207 | void updateTables(const CodeGenInstruction *RegInst, |
| 208 | const CodeGenInstruction *MemInst, uint16_t S = 0, |
| 209 | bool IsManual = false, bool IsBroadcast = false); |
| 210 | |
| 211 | // Generates X86FoldTableEntry with the given instructions and fill it with |
| 212 | // the appropriate flags, then adds it to a memory fold table. |
| 213 | void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInst, |
| 214 | const CodeGenInstruction *MemInst, uint16_t S, |
| 215 | unsigned FoldedIdx, bool IsManual); |
| 216 | // Generates X86FoldTableEntry with the given instructions and adds it to a |
| 217 | // broadcast table. |
| 218 | void addBroadcastEntry(FoldTable &Table, const CodeGenInstruction *RegInst, |
| 219 | const CodeGenInstruction *MemInst); |
| 220 | |
| 221 | // Print the given table as a static const C++ array of type |
| 222 | // X86FoldTableEntry. |
| 223 | void printTable(const FoldTable &Table, StringRef TableName, |
| 224 | raw_ostream &OS) { |
| 225 | OS << "static const X86FoldTableEntry " << TableName << "[] = {\n" ; |
| 226 | |
| 227 | for (auto &E : Table) |
| 228 | E.second.print(OS); |
| 229 | |
| 230 | OS << "};\n\n" ; |
| 231 | } |
| 232 | }; |
| 233 | |
| 234 | // Return true if one of the instruction's operands is a RST register class |
| 235 | static bool hasRSTRegClass(const CodeGenInstruction *Inst) { |
| 236 | return any_of(Range: Inst->Operands, P: [](const CGIOperandList::OperandInfo &OpIn) { |
| 237 | return OpIn.Rec->getName() == "RST" || OpIn.Rec->getName() == "RSTi" ; |
| 238 | }); |
| 239 | } |
| 240 | |
| 241 | // Return true if one of the instruction's operands is a ptr_rc_tailcall |
| 242 | static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) { |
| 243 | return any_of(Range: Inst->Operands, P: [](const CGIOperandList::OperandInfo &OpIn) { |
| 244 | return OpIn.Rec->getName() == "ptr_rc_tailcall" ; |
| 245 | }); |
| 246 | } |
| 247 | |
| 248 | static uint8_t byteFromBitsInit(const BitsInit *B) { |
| 249 | unsigned N = B->getNumBits(); |
| 250 | assert(N <= 8 && "Field is too large for uint8_t!" ); |
| 251 | |
| 252 | uint8_t Value = 0; |
| 253 | for (unsigned I = 0; I != N; ++I) { |
| 254 | const BitInit *Bit = cast<BitInit>(Val: B->getBit(Bit: I)); |
| 255 | Value |= Bit->getValue() << I; |
| 256 | } |
| 257 | return Value; |
| 258 | } |
| 259 | |
| 260 | static bool mayFoldFromForm(uint8_t Form) { |
| 261 | switch (Form) { |
| 262 | default: |
| 263 | return Form >= X86Local::MRM0r && Form <= X86Local::MRM7r; |
| 264 | case X86Local::MRMXr: |
| 265 | case X86Local::MRMXrCC: |
| 266 | case X86Local::MRMDestReg: |
| 267 | case X86Local::MRMSrcReg: |
| 268 | case X86Local::MRMSrcReg4VOp3: |
| 269 | case X86Local::MRMSrcRegOp4: |
| 270 | case X86Local::MRMSrcRegCC: |
| 271 | return true; |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | static bool mayFoldToForm(uint8_t Form) { |
| 276 | switch (Form) { |
| 277 | default: |
| 278 | return Form >= X86Local::MRM0m && Form <= X86Local::MRM7m; |
| 279 | case X86Local::MRMXm: |
| 280 | case X86Local::MRMXmCC: |
| 281 | case X86Local::MRMDestMem: |
| 282 | case X86Local::MRMSrcMem: |
| 283 | case X86Local::MRMSrcMem4VOp3: |
| 284 | case X86Local::MRMSrcMemOp4: |
| 285 | case X86Local::MRMSrcMemCC: |
| 286 | return true; |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | static bool mayFoldFromLeftToRight(uint8_t LHS, uint8_t RHS) { |
| 291 | switch (LHS) { |
| 292 | default: |
| 293 | llvm_unreachable("Unexpected Form!" ); |
| 294 | case X86Local::MRM0r: |
| 295 | return RHS == X86Local::MRM0m; |
| 296 | case X86Local::MRM1r: |
| 297 | return RHS == X86Local::MRM1m; |
| 298 | case X86Local::MRM2r: |
| 299 | return RHS == X86Local::MRM2m; |
| 300 | case X86Local::MRM3r: |
| 301 | return RHS == X86Local::MRM3m; |
| 302 | case X86Local::MRM4r: |
| 303 | return RHS == X86Local::MRM4m; |
| 304 | case X86Local::MRM5r: |
| 305 | return RHS == X86Local::MRM5m; |
| 306 | case X86Local::MRM6r: |
| 307 | return RHS == X86Local::MRM6m; |
| 308 | case X86Local::MRM7r: |
| 309 | return RHS == X86Local::MRM7m; |
| 310 | case X86Local::MRMXr: |
| 311 | return RHS == X86Local::MRMXm; |
| 312 | case X86Local::MRMXrCC: |
| 313 | return RHS == X86Local::MRMXmCC; |
| 314 | case X86Local::MRMDestReg: |
| 315 | return RHS == X86Local::MRMDestMem; |
| 316 | case X86Local::MRMSrcReg: |
| 317 | return RHS == X86Local::MRMSrcMem; |
| 318 | case X86Local::MRMSrcReg4VOp3: |
| 319 | return RHS == X86Local::MRMSrcMem4VOp3; |
| 320 | case X86Local::MRMSrcRegOp4: |
| 321 | return RHS == X86Local::MRMSrcMemOp4; |
| 322 | case X86Local::MRMSrcRegCC: |
| 323 | return RHS == X86Local::MRMSrcMemCC; |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | static bool isNOREXRegClass(const Record *Op) { |
| 328 | return Op->getName().contains(Other: "_NOREX" ); |
| 329 | } |
| 330 | |
| 331 | // Function object - Operator() returns true if the given Reg instruction |
| 332 | // matches the Mem instruction of this object. |
| 333 | class IsMatch { |
| 334 | const CodeGenInstruction *MemInst; |
| 335 | const X86Disassembler::RecognizableInstrBase MemRI; |
| 336 | bool IsBroadcast; |
| 337 | const unsigned Variant; |
| 338 | |
| 339 | public: |
| 340 | IsMatch(const CodeGenInstruction *Inst, bool IsBroadcast, unsigned V) |
| 341 | : MemInst(Inst), MemRI(*MemInst), IsBroadcast(IsBroadcast), Variant(V) {} |
| 342 | |
| 343 | bool operator()(const CodeGenInstruction *RegInst) { |
| 344 | X86Disassembler::RecognizableInstrBase RegRI(*RegInst); |
| 345 | const Record *RegRec = RegInst->TheDef; |
| 346 | const Record *MemRec = MemInst->TheDef; |
| 347 | |
| 348 | // EVEX_B means different things for memory and register forms. |
| 349 | // register form: rounding control or SAE |
| 350 | // memory form: broadcast |
| 351 | if (IsBroadcast && (RegRI.HasEVEX_B || !MemRI.HasEVEX_B)) |
| 352 | return false; |
| 353 | // EVEX_B indicates NDD for MAP4 instructions |
| 354 | if (!IsBroadcast && (RegRI.HasEVEX_B || MemRI.HasEVEX_B) && |
| 355 | RegRI.OpMap != X86Local::T_MAP4) |
| 356 | return false; |
| 357 | |
| 358 | if (!mayFoldFromLeftToRight(LHS: RegRI.Form, RHS: MemRI.Form)) |
| 359 | return false; |
| 360 | |
| 361 | // X86 encoding is crazy, e.g |
| 362 | // |
| 363 | // f3 0f c7 30 vmxon (%rax) |
| 364 | // f3 0f c7 f0 senduipi %rax |
| 365 | // |
| 366 | // This two instruction have similiar encoding fields but are unrelated |
| 367 | if (X86Disassembler::getMnemonic(I: MemInst, Variant) != |
| 368 | X86Disassembler::getMnemonic(I: RegInst, Variant)) |
| 369 | return false; |
| 370 | |
| 371 | // Return false if any of the following fields of does not match. |
| 372 | if (std::tuple(RegRI.Encoding, RegRI.Opcode, RegRI.OpPrefix, RegRI.OpMap, |
| 373 | RegRI.OpSize, RegRI.AdSize, RegRI.HasREX_W, RegRI.HasVEX_4V, |
| 374 | RegRI.HasVEX_L, RegRI.IgnoresVEX_L, RegRI.IgnoresW, |
| 375 | RegRI.HasEVEX_K, RegRI.HasEVEX_KZ, RegRI.HasEVEX_L2, |
| 376 | RegRI.HasEVEX_NF, RegRec->getValueAsBit(FieldName: "hasEVEX_RC" ), |
| 377 | RegRec->getValueAsBit(FieldName: "hasLockPrefix" ), |
| 378 | RegRec->getValueAsBit(FieldName: "hasNoTrackPrefix" )) != |
| 379 | std::tuple(MemRI.Encoding, MemRI.Opcode, MemRI.OpPrefix, MemRI.OpMap, |
| 380 | MemRI.OpSize, MemRI.AdSize, MemRI.HasREX_W, MemRI.HasVEX_4V, |
| 381 | MemRI.HasVEX_L, MemRI.IgnoresVEX_L, MemRI.IgnoresW, |
| 382 | MemRI.HasEVEX_K, MemRI.HasEVEX_KZ, MemRI.HasEVEX_L2, |
| 383 | MemRI.HasEVEX_NF, MemRec->getValueAsBit(FieldName: "hasEVEX_RC" ), |
| 384 | MemRec->getValueAsBit(FieldName: "hasLockPrefix" ), |
| 385 | MemRec->getValueAsBit(FieldName: "hasNoTrackPrefix" ))) |
| 386 | return false; |
| 387 | |
| 388 | // Make sure the sizes of the operands of both instructions suit each other. |
| 389 | // This is needed for instructions with intrinsic version (_Int). |
| 390 | // Where the only difference is the size of the operands. |
| 391 | // For example: VUCOMISDZrm and VUCOMISDrm_Int |
| 392 | // Also for instructions that their EVEX version was upgraded to work with |
| 393 | // k-registers. For example VPCMPEQBrm (xmm output register) and |
| 394 | // VPCMPEQBZ128rm (k register output register). |
| 395 | unsigned MemOutSize = MemRec->getValueAsDag(FieldName: "OutOperandList" )->getNumArgs(); |
| 396 | unsigned RegOutSize = RegRec->getValueAsDag(FieldName: "OutOperandList" )->getNumArgs(); |
| 397 | unsigned MemInSize = MemRec->getValueAsDag(FieldName: "InOperandList" )->getNumArgs(); |
| 398 | unsigned RegInSize = RegRec->getValueAsDag(FieldName: "InOperandList" )->getNumArgs(); |
| 399 | |
| 400 | // Instructions with one output in their memory form use the memory folded |
| 401 | // operand as source and destination (Read-Modify-Write). |
| 402 | unsigned RegStartIdx = |
| 403 | (MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0; |
| 404 | |
| 405 | bool FoundFoldedOp = false; |
| 406 | for (unsigned I = 0, E = MemInst->Operands.size(); I != E; I++) { |
| 407 | const Record *MemOpRec = MemInst->Operands[I].Rec; |
| 408 | const Record *RegOpRec = RegInst->Operands[I + RegStartIdx].Rec; |
| 409 | |
| 410 | if (MemOpRec == RegOpRec) |
| 411 | continue; |
| 412 | |
| 413 | if (isRegisterOperand(Rec: MemOpRec) && isRegisterOperand(Rec: RegOpRec) && |
| 414 | ((getRegOperandSize(RegRec: MemOpRec) != getRegOperandSize(RegRec: RegOpRec)) || |
| 415 | (isNOREXRegClass(Op: MemOpRec) != isNOREXRegClass(Op: RegOpRec)))) |
| 416 | return false; |
| 417 | |
| 418 | if (isMemoryOperand(Rec: MemOpRec) && isMemoryOperand(Rec: RegOpRec) && |
| 419 | (getMemOperandSize(MemRec: MemOpRec) != getMemOperandSize(MemRec: RegOpRec))) |
| 420 | return false; |
| 421 | |
| 422 | if (isImmediateOperand(Rec: MemOpRec) && isImmediateOperand(Rec: RegOpRec) && |
| 423 | (MemOpRec->getValueAsDef(FieldName: "Type" ) != RegOpRec->getValueAsDef(FieldName: "Type" ))) |
| 424 | return false; |
| 425 | |
| 426 | // Only one operand can be folded. |
| 427 | if (FoundFoldedOp) |
| 428 | return false; |
| 429 | |
| 430 | assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)); |
| 431 | FoundFoldedOp = true; |
| 432 | } |
| 433 | |
| 434 | return FoundFoldedOp; |
| 435 | } |
| 436 | }; |
| 437 | |
| 438 | } // end anonymous namespace |
| 439 | |
| 440 | void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table, |
| 441 | const CodeGenInstruction *RegInst, |
| 442 | const CodeGenInstruction *MemInst, |
| 443 | uint16_t S, unsigned FoldedIdx, |
| 444 | bool IsManual) { |
| 445 | |
| 446 | assert((IsManual || Table.find(RegInst) == Table.end()) && |
| 447 | "Override entry unexpectedly" ); |
| 448 | X86FoldTableEntry Result = X86FoldTableEntry(RegInst, MemInst); |
| 449 | const Record *RegRec = RegInst->TheDef; |
| 450 | Result.NoReverse = S & TB_NO_REVERSE; |
| 451 | Result.NoForward = S & TB_NO_FORWARD; |
| 452 | Result.FoldLoad = S & TB_FOLDED_LOAD; |
| 453 | Result.FoldStore = S & TB_FOLDED_STORE; |
| 454 | Result.Alignment = Align(1ULL << ((S & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT)); |
| 455 | if (IsManual) { |
| 456 | Table[RegInst] = Result; |
| 457 | return; |
| 458 | } |
| 459 | |
| 460 | const Record *RegOpRec = RegInst->Operands[FoldedIdx].Rec; |
| 461 | const Record *MemOpRec = MemInst->Operands[FoldedIdx].Rec; |
| 462 | |
| 463 | // Unfolding code generates a load/store instruction according to the size of |
| 464 | // the register in the register form instruction. |
| 465 | // If the register's size is greater than the memory's operand size, do not |
| 466 | // allow unfolding. |
| 467 | |
| 468 | // the unfolded load size will be based on the register size. If that’s bigger |
| 469 | // than the memory operand size, the unfolded load will load more memory and |
| 470 | // potentially cause a memory fault. |
| 471 | if (getRegOperandSize(RegRec: RegOpRec) > getMemOperandSize(MemRec: MemOpRec)) |
| 472 | Result.NoReverse = true; |
| 473 | |
| 474 | // Check no-kz version's isMoveReg |
| 475 | StringRef RegInstName = RegRec->getName(); |
| 476 | unsigned DropLen = |
| 477 | RegInstName.ends_with(Suffix: "rkz" ) ? 2 : (RegInstName.ends_with(Suffix: "rk" ) ? 1 : 0); |
| 478 | const Record *BaseDef = |
| 479 | DropLen ? Records.getDef(Name: RegInstName.drop_back(N: DropLen)) : nullptr; |
| 480 | bool IsMoveReg = |
| 481 | BaseDef ? Target.getInstruction(InstRec: BaseDef).isMoveReg : RegInst->isMoveReg; |
| 482 | // A masked load can not be unfolded to a full load, otherwise it would access |
| 483 | // unexpected memory. A simple store can not be unfolded. |
| 484 | if (IsMoveReg && (BaseDef || Result.FoldStore)) |
| 485 | Result.NoReverse = true; |
| 486 | |
| 487 | uint8_t Enc = byteFromBitsInit(B: RegRec->getValueAsBitsInit(FieldName: "OpEncBits" )); |
| 488 | if (isExplicitAlign(Inst: RegInst)) { |
| 489 | // The instruction require explicitly aligned memory. |
| 490 | const BitsInit *VectSize = RegRec->getValueAsBitsInit(FieldName: "VectSize" ); |
| 491 | Result.Alignment = Align(byteFromBitsInit(B: VectSize)); |
| 492 | } else if (!Enc && !isExplicitUnalign(Inst: RegInst) && |
| 493 | getMemOperandSize(MemRec: MemOpRec) > 64) { |
| 494 | // Instructions with XOP/VEX/EVEX encoding do not require alignment while |
| 495 | // SSE packed vector instructions require a 16 byte alignment. |
| 496 | Result.Alignment = Align(16); |
| 497 | } |
| 498 | // Expand is only ever created as a masked instruction. It is not safe to |
| 499 | // unfold a masked expand because we don't know if it came from an expand load |
| 500 | // intrinsic or folding a plain load. If it is from a expand load intrinsic, |
| 501 | // Unfolding to plain load would read more elements and could trigger a fault. |
| 502 | if (RegRec->getName().contains(Other: "EXPAND" )) |
| 503 | Result.NoReverse = true; |
| 504 | |
| 505 | Table[RegInst] = Result; |
| 506 | } |
| 507 | |
| 508 | void X86FoldTablesEmitter::addBroadcastEntry( |
| 509 | FoldTable &Table, const CodeGenInstruction *RegInst, |
| 510 | const CodeGenInstruction *MemInst) { |
| 511 | |
| 512 | assert(Table.find(RegInst) == Table.end() && "Override entry unexpectedly" ); |
| 513 | X86FoldTableEntry Result = X86FoldTableEntry(RegInst, MemInst); |
| 514 | |
| 515 | const DagInit *In = MemInst->TheDef->getValueAsDag(FieldName: "InOperandList" ); |
| 516 | for (unsigned I = 0, E = In->getNumArgs(); I != E; ++I) { |
| 517 | Result.BroadcastKind = |
| 518 | StringSwitch<X86FoldTableEntry::BcastType>(In->getArg(Num: I)->getAsString()) |
| 519 | .Case(S: "i16mem" , Value: X86FoldTableEntry::BCAST_W) |
| 520 | .Case(S: "i32mem" , Value: X86FoldTableEntry::BCAST_D) |
| 521 | .Case(S: "i64mem" , Value: X86FoldTableEntry::BCAST_Q) |
| 522 | .Case(S: "f16mem" , Value: X86FoldTableEntry::BCAST_SH) |
| 523 | .Case(S: "f32mem" , Value: X86FoldTableEntry::BCAST_SS) |
| 524 | .Case(S: "f64mem" , Value: X86FoldTableEntry::BCAST_SD) |
| 525 | .Default(Value: X86FoldTableEntry::BCAST_NONE); |
| 526 | if (Result.BroadcastKind != X86FoldTableEntry::BCAST_NONE) |
| 527 | break; |
| 528 | } |
| 529 | assert(Result.BroadcastKind != X86FoldTableEntry::BCAST_NONE && |
| 530 | "Unknown memory operand for broadcast" ); |
| 531 | |
| 532 | Table[RegInst] = Result; |
| 533 | } |
| 534 | |
| 535 | void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInst, |
| 536 | const CodeGenInstruction *MemInst, |
| 537 | uint16_t S, bool IsManual, |
| 538 | bool IsBroadcast) { |
| 539 | |
| 540 | const Record *RegRec = RegInst->TheDef; |
| 541 | const Record *MemRec = MemInst->TheDef; |
| 542 | unsigned MemOutSize = MemRec->getValueAsDag(FieldName: "OutOperandList" )->getNumArgs(); |
| 543 | unsigned RegOutSize = RegRec->getValueAsDag(FieldName: "OutOperandList" )->getNumArgs(); |
| 544 | unsigned MemInSize = MemRec->getValueAsDag(FieldName: "InOperandList" )->getNumArgs(); |
| 545 | unsigned RegInSize = RegRec->getValueAsDag(FieldName: "InOperandList" )->getNumArgs(); |
| 546 | |
| 547 | // Instructions which Read-Modify-Write should be added to Table2Addr. |
| 548 | if (!MemOutSize && RegOutSize == 1 && MemInSize == RegInSize) { |
| 549 | assert(!IsBroadcast && "Read-Modify-Write can not be broadcast" ); |
| 550 | // X86 would not unfold Read-Modify-Write instructions so add TB_NO_REVERSE. |
| 551 | addEntryWithFlags(Table&: Table2Addr, RegInst, MemInst, S: S | TB_NO_REVERSE, FoldedIdx: 0, |
| 552 | IsManual); |
| 553 | return; |
| 554 | } |
| 555 | |
| 556 | // Only table0 entries should explicitly specify a load or store flag. |
| 557 | // If the instruction writes to the folded operand, it will appear as |
| 558 | // an output in the register form instruction and as an input in the |
| 559 | // memory form instruction. If the instruction reads from the folded |
| 560 | // operand, it will appear as in input in both forms. |
| 561 | if (MemInSize == RegInSize && MemOutSize == RegOutSize) { |
| 562 | // Load-Folding cases. |
| 563 | // If the i'th register form operand is a register and the i'th memory form |
| 564 | // operand is a memory operand, add instructions to Table#i. |
| 565 | for (unsigned I = RegOutSize, E = RegInst->Operands.size(); I < E; I++) { |
| 566 | const Record *RegOpRec = RegInst->Operands[I].Rec; |
| 567 | const Record *MemOpRec = MemInst->Operands[I].Rec; |
| 568 | // PointerLikeRegClass: For instructions like TAILJMPr, TAILJMPr64, |
| 569 | // TAILJMPr64_REX |
| 570 | if ((isRegisterOperand(Rec: RegOpRec) || |
| 571 | RegOpRec->isSubClassOf(Name: "PointerLikeRegClass" )) && |
| 572 | isMemoryOperand(Rec: MemOpRec)) { |
| 573 | switch (I) { |
| 574 | case 0: |
| 575 | assert(!IsBroadcast && "BroadcastTable0 needs to be added" ); |
| 576 | addEntryWithFlags(Table&: Table0, RegInst, MemInst, S: S | TB_FOLDED_LOAD, FoldedIdx: 0, |
| 577 | IsManual); |
| 578 | return; |
| 579 | case 1: |
| 580 | IsBroadcast |
| 581 | ? addBroadcastEntry(Table&: BroadcastTable1, RegInst, MemInst) |
| 582 | : addEntryWithFlags(Table&: Table1, RegInst, MemInst, S, FoldedIdx: 1, IsManual); |
| 583 | return; |
| 584 | case 2: |
| 585 | IsBroadcast |
| 586 | ? addBroadcastEntry(Table&: BroadcastTable2, RegInst, MemInst) |
| 587 | : addEntryWithFlags(Table&: Table2, RegInst, MemInst, S, FoldedIdx: 2, IsManual); |
| 588 | return; |
| 589 | case 3: |
| 590 | IsBroadcast |
| 591 | ? addBroadcastEntry(Table&: BroadcastTable3, RegInst, MemInst) |
| 592 | : addEntryWithFlags(Table&: Table3, RegInst, MemInst, S, FoldedIdx: 3, IsManual); |
| 593 | return; |
| 594 | case 4: |
| 595 | IsBroadcast |
| 596 | ? addBroadcastEntry(Table&: BroadcastTable4, RegInst, MemInst) |
| 597 | : addEntryWithFlags(Table&: Table4, RegInst, MemInst, S, FoldedIdx: 4, IsManual); |
| 598 | return; |
| 599 | } |
| 600 | } |
| 601 | } |
| 602 | } else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) { |
| 603 | // Store-Folding cases. |
| 604 | // If the memory form instruction performs a store, the *output* |
| 605 | // register of the register form instructions disappear and instead a |
| 606 | // memory *input* operand appears in the memory form instruction. |
| 607 | // For example: |
| 608 | // MOVAPSrr => (outs VR128:$dst), (ins VR128:$src) |
| 609 | // MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src) |
| 610 | const Record *RegOpRec = RegInst->Operands[RegOutSize - 1].Rec; |
| 611 | const Record *MemOpRec = MemInst->Operands[RegOutSize - 1].Rec; |
| 612 | if (isRegisterOperand(Rec: RegOpRec) && isMemoryOperand(Rec: MemOpRec) && |
| 613 | getRegOperandSize(RegRec: RegOpRec) == getMemOperandSize(MemRec: MemOpRec)) { |
| 614 | assert(!IsBroadcast && "Store can not be broadcast" ); |
| 615 | addEntryWithFlags(Table&: Table0, RegInst, MemInst, S: S | TB_FOLDED_STORE, FoldedIdx: 0, |
| 616 | IsManual); |
| 617 | } |
| 618 | } |
| 619 | } |
| 620 | |
| 621 | void X86FoldTablesEmitter::run(raw_ostream &OS) { |
| 622 | // Holds all memory instructions |
| 623 | std::vector<const CodeGenInstruction *> MemInsts; |
| 624 | // Holds all register instructions - divided according to opcode. |
| 625 | std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts; |
| 626 | |
| 627 | ArrayRef<const CodeGenInstruction *> NumberedInstructions = |
| 628 | Target.getInstructionsByEnumValue(); |
| 629 | |
| 630 | for (const CodeGenInstruction *Inst : NumberedInstructions) { |
| 631 | const Record *Rec = Inst->TheDef; |
| 632 | if (!Rec->isSubClassOf(Name: "X86Inst" ) || Rec->getValueAsBit(FieldName: "isAsmParserOnly" )) |
| 633 | continue; |
| 634 | |
| 635 | if (NoFoldSet.find(x: Rec->getName()) != NoFoldSet.end()) |
| 636 | continue; |
| 637 | |
| 638 | // Promoted legacy instruction is in EVEX space, and has REX2-encoding |
| 639 | // alternative. It's added due to HW design and never emitted by compiler. |
| 640 | if (byteFromBitsInit(B: Rec->getValueAsBitsInit(FieldName: "OpMapBits" )) == |
| 641 | X86Local::T_MAP4 && |
| 642 | byteFromBitsInit(B: Rec->getValueAsBitsInit(FieldName: "explicitOpPrefixBits" )) == |
| 643 | X86Local::ExplicitEVEX) |
| 644 | continue; |
| 645 | |
| 646 | // - Instructions including RST register class operands are not relevant |
| 647 | // for memory folding (for further details check the explanation in |
| 648 | // lib/Target/X86/X86InstrFPStack.td file). |
| 649 | // - Some instructions (listed in the manual map above) use the register |
| 650 | // class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure |
| 651 | // safe mapping of these instruction we manually map them and exclude |
| 652 | // them from the automation. |
| 653 | if (hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst)) |
| 654 | continue; |
| 655 | |
| 656 | // Add all the memory form instructions to MemInsts, and all the register |
| 657 | // form instructions to RegInsts[Opc], where Opc is the opcode of each |
| 658 | // instructions. this helps reducing the runtime of the backend. |
| 659 | const BitsInit *FormBits = Rec->getValueAsBitsInit(FieldName: "FormBits" ); |
| 660 | uint8_t Form = byteFromBitsInit(B: FormBits); |
| 661 | if (mayFoldToForm(Form)) |
| 662 | MemInsts.push_back(x: Inst); |
| 663 | else if (mayFoldFromForm(Form)) { |
| 664 | uint8_t Opc = byteFromBitsInit(B: Rec->getValueAsBitsInit(FieldName: "Opcode" )); |
| 665 | RegInsts[Opc].push_back(x: Inst); |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | // Create a copy b/c the register instruction will removed when a new entry is |
| 670 | // added into memory fold tables. |
| 671 | auto RegInstsForBroadcast = RegInsts; |
| 672 | |
| 673 | const Record *AsmWriter = Target.getAsmWriter(); |
| 674 | unsigned Variant = AsmWriter->getValueAsInt(FieldName: "Variant" ); |
| 675 | auto FixUp = [&](const CodeGenInstruction *RegInst) { |
| 676 | StringRef RegInstName = RegInst->TheDef->getName(); |
| 677 | if (RegInstName.ends_with(Suffix: "_REV" ) || RegInstName.ends_with(Suffix: "_alt" )) |
| 678 | if (auto *RegAltRec = Records.getDef(Name: RegInstName.drop_back(N: 4))) |
| 679 | RegInst = &Target.getInstruction(InstRec: RegAltRec); |
| 680 | return RegInst; |
| 681 | }; |
| 682 | // For each memory form instruction, try to find its register form |
| 683 | // instruction. |
| 684 | for (const CodeGenInstruction *MemInst : MemInsts) { |
| 685 | uint8_t Opc = |
| 686 | byteFromBitsInit(B: MemInst->TheDef->getValueAsBitsInit(FieldName: "Opcode" )); |
| 687 | |
| 688 | auto RegInstsIt = RegInsts.find(x: Opc); |
| 689 | if (RegInstsIt == RegInsts.end()) |
| 690 | continue; |
| 691 | |
| 692 | // Two forms (memory & register) of the same instruction must have the same |
| 693 | // opcode. |
| 694 | std::vector<const CodeGenInstruction *> &OpcRegInsts = RegInstsIt->second; |
| 695 | |
| 696 | // Memory fold tables |
| 697 | auto Match = |
| 698 | find_if(Range&: OpcRegInsts, P: IsMatch(MemInst, /*IsBroadcast=*/false, Variant)); |
| 699 | if (Match != OpcRegInsts.end()) { |
| 700 | updateTables(RegInst: FixUp(*Match), MemInst); |
| 701 | OpcRegInsts.erase(position: Match); |
| 702 | } |
| 703 | |
| 704 | // Broadcast tables |
| 705 | StringRef MemInstName = MemInst->TheDef->getName(); |
| 706 | if (!MemInstName.contains(Other: "mb" ) && !MemInstName.contains(Other: "mib" )) |
| 707 | continue; |
| 708 | RegInstsIt = RegInstsForBroadcast.find(x: Opc); |
| 709 | assert(RegInstsIt != RegInstsForBroadcast.end() && |
| 710 | "Unexpected control flow" ); |
| 711 | std::vector<const CodeGenInstruction *> &OpcRegInstsForBroadcast = |
| 712 | RegInstsIt->second; |
| 713 | Match = find_if(Range&: OpcRegInstsForBroadcast, |
| 714 | P: IsMatch(MemInst, /*IsBroadcast=*/true, Variant)); |
| 715 | if (Match != OpcRegInstsForBroadcast.end()) { |
| 716 | updateTables(RegInst: FixUp(*Match), MemInst, S: 0, /*IsManual=*/false, |
| 717 | /*IsBroadcast=*/true); |
| 718 | OpcRegInstsForBroadcast.erase(position: Match); |
| 719 | } |
| 720 | } |
| 721 | |
| 722 | // Add the manually mapped instructions listed above. |
| 723 | for (const ManualMapEntry &Entry : ManualMapSet) { |
| 724 | const Record *RegInstIter = Records.getDef(Name: Entry.RegInstStr); |
| 725 | const Record *MemInstIter = Records.getDef(Name: Entry.MemInstStr); |
| 726 | |
| 727 | updateTables(RegInst: &(Target.getInstruction(InstRec: RegInstIter)), |
| 728 | MemInst: &(Target.getInstruction(InstRec: MemInstIter)), S: Entry.Strategy, IsManual: true); |
| 729 | } |
| 730 | |
| 731 | #ifndef NDEBUG |
| 732 | auto CheckMemFoldTable = [](const FoldTable &Table) -> void { |
| 733 | for (const auto &Record : Table) { |
| 734 | auto &FoldEntry = Record.second; |
| 735 | FoldEntry.checkCorrectness(); |
| 736 | } |
| 737 | }; |
| 738 | CheckMemFoldTable(Table2Addr); |
| 739 | CheckMemFoldTable(Table0); |
| 740 | CheckMemFoldTable(Table1); |
| 741 | CheckMemFoldTable(Table2); |
| 742 | CheckMemFoldTable(Table3); |
| 743 | CheckMemFoldTable(Table4); |
| 744 | CheckMemFoldTable(BroadcastTable1); |
| 745 | CheckMemFoldTable(BroadcastTable2); |
| 746 | CheckMemFoldTable(BroadcastTable3); |
| 747 | CheckMemFoldTable(BroadcastTable4); |
| 748 | #endif |
| 749 | #define PRINT_TABLE(TABLE) printTable(TABLE, #TABLE, OS); |
| 750 | // Print all tables. |
| 751 | PRINT_TABLE(Table2Addr) |
| 752 | PRINT_TABLE(Table0) |
| 753 | PRINT_TABLE(Table1) |
| 754 | PRINT_TABLE(Table2) |
| 755 | PRINT_TABLE(Table3) |
| 756 | PRINT_TABLE(Table4) |
| 757 | PRINT_TABLE(BroadcastTable1) |
| 758 | PRINT_TABLE(BroadcastTable2) |
| 759 | PRINT_TABLE(BroadcastTable3) |
| 760 | PRINT_TABLE(BroadcastTable4) |
| 761 | } |
| 762 | |
| 763 | static TableGen::Emitter::OptClass<X86FoldTablesEmitter> |
| 764 | X("gen-x86-fold-tables" , "Generate X86 fold tables" ); |
| 765 | |