1 | //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This contains code dealing with C++ code generation of classes |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "ABIInfoImpl.h" |
14 | #include "CGBlocks.h" |
15 | #include "CGCXXABI.h" |
16 | #include "CGDebugInfo.h" |
17 | #include "CGRecordLayout.h" |
18 | #include "CodeGenFunction.h" |
19 | #include "TargetInfo.h" |
20 | #include "clang/AST/Attr.h" |
21 | #include "clang/AST/CXXInheritance.h" |
22 | #include "clang/AST/CharUnits.h" |
23 | #include "clang/AST/DeclTemplate.h" |
24 | #include "clang/AST/EvaluatedExprVisitor.h" |
25 | #include "clang/AST/RecordLayout.h" |
26 | #include "clang/AST/StmtCXX.h" |
27 | #include "clang/Basic/CodeGenOptions.h" |
28 | #include "clang/Basic/TargetBuiltins.h" |
29 | #include "clang/CodeGen/CGFunctionInfo.h" |
30 | #include "llvm/IR/Intrinsics.h" |
31 | #include "llvm/IR/Metadata.h" |
32 | #include "llvm/Support/SaveAndRestore.h" |
33 | #include "llvm/Transforms/Utils/SanitizerStats.h" |
34 | #include <optional> |
35 | |
36 | using namespace clang; |
37 | using namespace CodeGen; |
38 | |
39 | /// Return the best known alignment for an unknown pointer to a |
40 | /// particular class. |
41 | CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { |
42 | if (!RD->hasDefinition()) |
43 | return CharUnits::One(); // Hopefully won't be used anywhere. |
44 | |
45 | auto &layout = getContext().getASTRecordLayout(D: RD); |
46 | |
47 | // If the class is final, then we know that the pointer points to an |
48 | // object of that type and can use the full alignment. |
49 | if (RD->isEffectivelyFinal()) |
50 | return layout.getAlignment(); |
51 | |
52 | // Otherwise, we have to assume it could be a subclass. |
53 | return layout.getNonVirtualAlignment(); |
54 | } |
55 | |
56 | /// Return the smallest possible amount of storage that might be allocated |
57 | /// starting from the beginning of an object of a particular class. |
58 | /// |
59 | /// This may be smaller than sizeof(RD) if RD has virtual base classes. |
60 | CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) { |
61 | if (!RD->hasDefinition()) |
62 | return CharUnits::One(); |
63 | |
64 | auto &layout = getContext().getASTRecordLayout(D: RD); |
65 | |
66 | // If the class is final, then we know that the pointer points to an |
67 | // object of that type and can use the full alignment. |
68 | if (RD->isEffectivelyFinal()) |
69 | return layout.getSize(); |
70 | |
71 | // Otherwise, we have to assume it could be a subclass. |
72 | return std::max(a: layout.getNonVirtualSize(), b: CharUnits::One()); |
73 | } |
74 | |
75 | /// Return the best known alignment for a pointer to a virtual base, |
76 | /// given the alignment of a pointer to the derived class. |
77 | CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, |
78 | const CXXRecordDecl *derivedClass, |
79 | const CXXRecordDecl *vbaseClass) { |
80 | // The basic idea here is that an underaligned derived pointer might |
81 | // indicate an underaligned base pointer. |
82 | |
83 | assert(vbaseClass->isCompleteDefinition()); |
84 | auto &baseLayout = getContext().getASTRecordLayout(D: vbaseClass); |
85 | CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); |
86 | |
87 | return getDynamicOffsetAlignment(ActualAlign: actualDerivedAlign, Class: derivedClass, |
88 | ExpectedTargetAlign: expectedVBaseAlign); |
89 | } |
90 | |
91 | CharUnits |
92 | CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, |
93 | const CXXRecordDecl *baseDecl, |
94 | CharUnits expectedTargetAlign) { |
95 | // If the base is an incomplete type (which is, alas, possible with |
96 | // member pointers), be pessimistic. |
97 | if (!baseDecl->isCompleteDefinition()) |
98 | return std::min(a: actualBaseAlign, b: expectedTargetAlign); |
99 | |
100 | auto &baseLayout = getContext().getASTRecordLayout(D: baseDecl); |
101 | CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); |
102 | |
103 | // If the class is properly aligned, assume the target offset is, too. |
104 | // |
105 | // This actually isn't necessarily the right thing to do --- if the |
106 | // class is a complete object, but it's only properly aligned for a |
107 | // base subobject, then the alignments of things relative to it are |
108 | // probably off as well. (Note that this requires the alignment of |
109 | // the target to be greater than the NV alignment of the derived |
110 | // class.) |
111 | // |
112 | // However, our approach to this kind of under-alignment can only |
113 | // ever be best effort; after all, we're never going to propagate |
114 | // alignments through variables or parameters. Note, in particular, |
115 | // that constructing a polymorphic type in an address that's less |
116 | // than pointer-aligned will generally trap in the constructor, |
117 | // unless we someday add some sort of attribute to change the |
118 | // assumed alignment of 'this'. So our goal here is pretty much |
119 | // just to allow the user to explicitly say that a pointer is |
120 | // under-aligned and then safely access its fields and vtables. |
121 | if (actualBaseAlign >= expectedBaseAlign) { |
122 | return expectedTargetAlign; |
123 | } |
124 | |
125 | // Otherwise, we might be offset by an arbitrary multiple of the |
126 | // actual alignment. The correct adjustment is to take the min of |
127 | // the two alignments. |
128 | return std::min(a: actualBaseAlign, b: expectedTargetAlign); |
129 | } |
130 | |
131 | Address CodeGenFunction::LoadCXXThisAddress() { |
132 | assert(CurFuncDecl && "loading 'this' without a func declaration?" ); |
133 | auto *MD = cast<CXXMethodDecl>(Val: CurFuncDecl); |
134 | |
135 | // Lazily compute CXXThisAlignment. |
136 | if (CXXThisAlignment.isZero()) { |
137 | // Just use the best known alignment for the parent. |
138 | // TODO: if we're currently emitting a complete-object ctor/dtor, |
139 | // we can always use the complete-object alignment. |
140 | CXXThisAlignment = CGM.getClassPointerAlignment(RD: MD->getParent()); |
141 | } |
142 | |
143 | return makeNaturalAddressForPointer( |
144 | Ptr: LoadCXXThis(), T: MD->getFunctionObjectParameterType(), Alignment: CXXThisAlignment, |
145 | ForPointeeType: false, BaseInfo: nullptr, TBAAInfo: nullptr, IsKnownNonNull: KnownNonNull); |
146 | } |
147 | |
148 | /// Emit the address of a field using a member data pointer. |
149 | /// |
150 | /// \param E Only used for emergency diagnostics |
151 | Address |
152 | CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, |
153 | llvm::Value *memberPtr, |
154 | const MemberPointerType *memberPtrType, |
155 | LValueBaseInfo *BaseInfo, |
156 | TBAAAccessInfo *TBAAInfo) { |
157 | // Ask the ABI to compute the actual address. |
158 | llvm::Value *ptr = |
159 | CGM.getCXXABI().EmitMemberDataPointerAddress(CGF&: *this, E, Base: base, |
160 | MemPtr: memberPtr, MPT: memberPtrType); |
161 | |
162 | QualType memberType = memberPtrType->getPointeeType(); |
163 | CharUnits memberAlign = |
164 | CGM.getNaturalTypeAlignment(T: memberType, BaseInfo, TBAAInfo); |
165 | memberAlign = |
166 | CGM.getDynamicOffsetAlignment(actualBaseAlign: base.getAlignment(), |
167 | baseDecl: memberPtrType->getClass()->getAsCXXRecordDecl(), |
168 | expectedTargetAlign: memberAlign); |
169 | return Address(ptr, ConvertTypeForMem(T: memberPtrType->getPointeeType()), |
170 | memberAlign); |
171 | } |
172 | |
173 | CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( |
174 | const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, |
175 | CastExpr::path_const_iterator End) { |
176 | CharUnits Offset = CharUnits::Zero(); |
177 | |
178 | const ASTContext &Context = getContext(); |
179 | const CXXRecordDecl *RD = DerivedClass; |
180 | |
181 | for (CastExpr::path_const_iterator I = Start; I != End; ++I) { |
182 | const CXXBaseSpecifier *Base = *I; |
183 | assert(!Base->isVirtual() && "Should not see virtual bases here!" ); |
184 | |
185 | // Get the layout. |
186 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
187 | |
188 | const auto *BaseDecl = |
189 | cast<CXXRecordDecl>(Val: Base->getType()->castAs<RecordType>()->getDecl()); |
190 | |
191 | // Add the offset. |
192 | Offset += Layout.getBaseClassOffset(Base: BaseDecl); |
193 | |
194 | RD = BaseDecl; |
195 | } |
196 | |
197 | return Offset; |
198 | } |
199 | |
200 | llvm::Constant * |
201 | CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, |
202 | CastExpr::path_const_iterator PathBegin, |
203 | CastExpr::path_const_iterator PathEnd) { |
204 | assert(PathBegin != PathEnd && "Base path should not be empty!" ); |
205 | |
206 | CharUnits Offset = |
207 | computeNonVirtualBaseClassOffset(DerivedClass: ClassDecl, Start: PathBegin, End: PathEnd); |
208 | if (Offset.isZero()) |
209 | return nullptr; |
210 | |
211 | llvm::Type *PtrDiffTy = |
212 | Types.ConvertType(T: getContext().getPointerDiffType()); |
213 | |
214 | return llvm::ConstantInt::get(Ty: PtrDiffTy, V: Offset.getQuantity()); |
215 | } |
216 | |
217 | /// Gets the address of a direct base class within a complete object. |
218 | /// This should only be used for (1) non-virtual bases or (2) virtual bases |
219 | /// when the type is known to be complete (e.g. in complete destructors). |
220 | /// |
221 | /// The object pointed to by 'This' is assumed to be non-null. |
222 | Address |
223 | CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, |
224 | const CXXRecordDecl *Derived, |
225 | const CXXRecordDecl *Base, |
226 | bool BaseIsVirtual) { |
227 | // 'this' must be a pointer (in some address space) to Derived. |
228 | assert(This.getElementType() == ConvertType(Derived)); |
229 | |
230 | // Compute the offset of the virtual base. |
231 | CharUnits Offset; |
232 | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D: Derived); |
233 | if (BaseIsVirtual) |
234 | Offset = Layout.getVBaseClassOffset(VBase: Base); |
235 | else |
236 | Offset = Layout.getBaseClassOffset(Base); |
237 | |
238 | // Shift and cast down to the base type. |
239 | // TODO: for complete types, this should be possible with a GEP. |
240 | Address V = This; |
241 | if (!Offset.isZero()) { |
242 | V = V.withElementType(ElemTy: Int8Ty); |
243 | V = Builder.CreateConstInBoundsByteGEP(Addr: V, Offset); |
244 | } |
245 | return V.withElementType(ElemTy: ConvertType(T: Base)); |
246 | } |
247 | |
248 | static Address |
249 | ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, |
250 | CharUnits nonVirtualOffset, |
251 | llvm::Value *virtualOffset, |
252 | const CXXRecordDecl *derivedClass, |
253 | const CXXRecordDecl *nearestVBase) { |
254 | // Assert that we have something to do. |
255 | assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); |
256 | |
257 | // Compute the offset from the static and dynamic components. |
258 | llvm::Value *baseOffset; |
259 | if (!nonVirtualOffset.isZero()) { |
260 | llvm::Type *OffsetType = |
261 | (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() && |
262 | CGF.CGM.getItaniumVTableContext().isRelativeLayout()) |
263 | ? CGF.Int32Ty |
264 | : CGF.PtrDiffTy; |
265 | baseOffset = |
266 | llvm::ConstantInt::get(Ty: OffsetType, V: nonVirtualOffset.getQuantity()); |
267 | if (virtualOffset) { |
268 | baseOffset = CGF.Builder.CreateAdd(LHS: virtualOffset, RHS: baseOffset); |
269 | } |
270 | } else { |
271 | baseOffset = virtualOffset; |
272 | } |
273 | |
274 | // Apply the base offset. |
275 | llvm::Value *ptr = addr.emitRawPointer(CGF); |
276 | ptr = CGF.Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: ptr, IdxList: baseOffset, Name: "add.ptr" ); |
277 | |
278 | // If we have a virtual component, the alignment of the result will |
279 | // be relative only to the known alignment of that vbase. |
280 | CharUnits alignment; |
281 | if (virtualOffset) { |
282 | assert(nearestVBase && "virtual offset without vbase?" ); |
283 | alignment = CGF.CGM.getVBaseAlignment(actualDerivedAlign: addr.getAlignment(), |
284 | derivedClass, vbaseClass: nearestVBase); |
285 | } else { |
286 | alignment = addr.getAlignment(); |
287 | } |
288 | alignment = alignment.alignmentAtOffset(offset: nonVirtualOffset); |
289 | |
290 | return Address(ptr, CGF.Int8Ty, alignment); |
291 | } |
292 | |
293 | Address CodeGenFunction::GetAddressOfBaseClass( |
294 | Address Value, const CXXRecordDecl *Derived, |
295 | CastExpr::path_const_iterator PathBegin, |
296 | CastExpr::path_const_iterator PathEnd, bool NullCheckValue, |
297 | SourceLocation Loc) { |
298 | assert(PathBegin != PathEnd && "Base path should not be empty!" ); |
299 | |
300 | CastExpr::path_const_iterator Start = PathBegin; |
301 | const CXXRecordDecl *VBase = nullptr; |
302 | |
303 | // Sema has done some convenient canonicalization here: if the |
304 | // access path involved any virtual steps, the conversion path will |
305 | // *start* with a step down to the correct virtual base subobject, |
306 | // and hence will not require any further steps. |
307 | if ((*Start)->isVirtual()) { |
308 | VBase = cast<CXXRecordDecl>( |
309 | Val: (*Start)->getType()->castAs<RecordType>()->getDecl()); |
310 | ++Start; |
311 | } |
312 | |
313 | // Compute the static offset of the ultimate destination within its |
314 | // allocating subobject (the virtual base, if there is one, or else |
315 | // the "complete" object that we see). |
316 | CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( |
317 | DerivedClass: VBase ? VBase : Derived, Start, End: PathEnd); |
318 | |
319 | // If there's a virtual step, we can sometimes "devirtualize" it. |
320 | // For now, that's limited to when the derived type is final. |
321 | // TODO: "devirtualize" this for accesses to known-complete objects. |
322 | if (VBase && Derived->hasAttr<FinalAttr>()) { |
323 | const ASTRecordLayout &layout = getContext().getASTRecordLayout(D: Derived); |
324 | CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); |
325 | NonVirtualOffset += vBaseOffset; |
326 | VBase = nullptr; // we no longer have a virtual step |
327 | } |
328 | |
329 | // Get the base pointer type. |
330 | llvm::Type *BaseValueTy = ConvertType(T: (PathEnd[-1])->getType()); |
331 | llvm::Type *PtrTy = llvm::PointerType::get( |
332 | C&: CGM.getLLVMContext(), AddressSpace: Value.getType()->getPointerAddressSpace()); |
333 | |
334 | QualType DerivedTy = getContext().getRecordType(Decl: Derived); |
335 | CharUnits DerivedAlign = CGM.getClassPointerAlignment(RD: Derived); |
336 | |
337 | // If the static offset is zero and we don't have a virtual step, |
338 | // just do a bitcast; null checks are unnecessary. |
339 | if (NonVirtualOffset.isZero() && !VBase) { |
340 | if (sanitizePerformTypeCheck()) { |
341 | SanitizerSet SkippedChecks; |
342 | SkippedChecks.set(K: SanitizerKind::Null, Value: !NullCheckValue); |
343 | EmitTypeCheck(TCK: TCK_Upcast, Loc, V: Value.emitRawPointer(CGF&: *this), Type: DerivedTy, |
344 | Alignment: DerivedAlign, SkippedChecks); |
345 | } |
346 | return Value.withElementType(ElemTy: BaseValueTy); |
347 | } |
348 | |
349 | llvm::BasicBlock *origBB = nullptr; |
350 | llvm::BasicBlock *endBB = nullptr; |
351 | |
352 | // Skip over the offset (and the vtable load) if we're supposed to |
353 | // null-check the pointer. |
354 | if (NullCheckValue) { |
355 | origBB = Builder.GetInsertBlock(); |
356 | llvm::BasicBlock *notNullBB = createBasicBlock(name: "cast.notnull" ); |
357 | endBB = createBasicBlock(name: "cast.end" ); |
358 | |
359 | llvm::Value *isNull = Builder.CreateIsNull(Addr: Value); |
360 | Builder.CreateCondBr(Cond: isNull, True: endBB, False: notNullBB); |
361 | EmitBlock(BB: notNullBB); |
362 | } |
363 | |
364 | if (sanitizePerformTypeCheck()) { |
365 | SanitizerSet SkippedChecks; |
366 | SkippedChecks.set(K: SanitizerKind::Null, Value: true); |
367 | EmitTypeCheck(TCK: VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, |
368 | V: Value.emitRawPointer(CGF&: *this), Type: DerivedTy, Alignment: DerivedAlign, |
369 | SkippedChecks); |
370 | } |
371 | |
372 | // Compute the virtual offset. |
373 | llvm::Value *VirtualOffset = nullptr; |
374 | if (VBase) { |
375 | VirtualOffset = |
376 | CGM.getCXXABI().GetVirtualBaseClassOffset(CGF&: *this, This: Value, ClassDecl: Derived, BaseClassDecl: VBase); |
377 | } |
378 | |
379 | // Apply both offsets. |
380 | Value = ApplyNonVirtualAndVirtualOffset(CGF&: *this, addr: Value, nonVirtualOffset: NonVirtualOffset, |
381 | virtualOffset: VirtualOffset, derivedClass: Derived, nearestVBase: VBase); |
382 | |
383 | // Cast to the destination type. |
384 | Value = Value.withElementType(ElemTy: BaseValueTy); |
385 | |
386 | // Build a phi if we needed a null check. |
387 | if (NullCheckValue) { |
388 | llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); |
389 | Builder.CreateBr(Dest: endBB); |
390 | EmitBlock(BB: endBB); |
391 | |
392 | llvm::PHINode *PHI = Builder.CreatePHI(Ty: PtrTy, NumReservedValues: 2, Name: "cast.result" ); |
393 | PHI->addIncoming(V: Value.emitRawPointer(CGF&: *this), BB: notNullBB); |
394 | PHI->addIncoming(V: llvm::Constant::getNullValue(Ty: PtrTy), BB: origBB); |
395 | Value = Value.withPointer(NewPointer: PHI, IsKnownNonNull: NotKnownNonNull); |
396 | } |
397 | |
398 | return Value; |
399 | } |
400 | |
401 | Address |
402 | CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, |
403 | const CXXRecordDecl *Derived, |
404 | CastExpr::path_const_iterator PathBegin, |
405 | CastExpr::path_const_iterator PathEnd, |
406 | bool NullCheckValue) { |
407 | assert(PathBegin != PathEnd && "Base path should not be empty!" ); |
408 | |
409 | QualType DerivedTy = |
410 | getContext().getCanonicalType(T: getContext().getTagDeclType(Decl: Derived)); |
411 | llvm::Type *DerivedValueTy = ConvertType(T: DerivedTy); |
412 | |
413 | llvm::Value *NonVirtualOffset = |
414 | CGM.GetNonVirtualBaseClassOffset(ClassDecl: Derived, PathBegin, PathEnd); |
415 | |
416 | if (!NonVirtualOffset) { |
417 | // No offset, we can just cast back. |
418 | return BaseAddr.withElementType(ElemTy: DerivedValueTy); |
419 | } |
420 | |
421 | llvm::BasicBlock *CastNull = nullptr; |
422 | llvm::BasicBlock *CastNotNull = nullptr; |
423 | llvm::BasicBlock *CastEnd = nullptr; |
424 | |
425 | if (NullCheckValue) { |
426 | CastNull = createBasicBlock(name: "cast.null" ); |
427 | CastNotNull = createBasicBlock(name: "cast.notnull" ); |
428 | CastEnd = createBasicBlock(name: "cast.end" ); |
429 | |
430 | llvm::Value *IsNull = Builder.CreateIsNull(Addr: BaseAddr); |
431 | Builder.CreateCondBr(Cond: IsNull, True: CastNull, False: CastNotNull); |
432 | EmitBlock(BB: CastNotNull); |
433 | } |
434 | |
435 | // Apply the offset. |
436 | Address Addr = BaseAddr.withElementType(ElemTy: Int8Ty); |
437 | Addr = Builder.CreateInBoundsGEP( |
438 | Addr, IdxList: Builder.CreateNeg(V: NonVirtualOffset), ElementType: Int8Ty, |
439 | Align: CGM.getClassPointerAlignment(RD: Derived), Name: "sub.ptr" ); |
440 | |
441 | // Just cast. |
442 | Addr = Addr.withElementType(ElemTy: DerivedValueTy); |
443 | |
444 | // Produce a PHI if we had a null-check. |
445 | if (NullCheckValue) { |
446 | Builder.CreateBr(Dest: CastEnd); |
447 | EmitBlock(BB: CastNull); |
448 | Builder.CreateBr(Dest: CastEnd); |
449 | EmitBlock(BB: CastEnd); |
450 | |
451 | llvm::Value *Value = Addr.emitRawPointer(CGF&: *this); |
452 | llvm::PHINode *PHI = Builder.CreatePHI(Ty: Value->getType(), NumReservedValues: 2); |
453 | PHI->addIncoming(V: Value, BB: CastNotNull); |
454 | PHI->addIncoming(V: llvm::Constant::getNullValue(Ty: Value->getType()), BB: CastNull); |
455 | return Address(PHI, Addr.getElementType(), |
456 | CGM.getClassPointerAlignment(RD: Derived)); |
457 | } |
458 | |
459 | return Addr; |
460 | } |
461 | |
462 | llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, |
463 | bool ForVirtualBase, |
464 | bool Delegating) { |
465 | if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { |
466 | // This constructor/destructor does not need a VTT parameter. |
467 | return nullptr; |
468 | } |
469 | |
470 | const CXXRecordDecl *RD = cast<CXXMethodDecl>(Val: CurCodeDecl)->getParent(); |
471 | const CXXRecordDecl *Base = cast<CXXMethodDecl>(Val: GD.getDecl())->getParent(); |
472 | |
473 | uint64_t SubVTTIndex; |
474 | |
475 | if (Delegating) { |
476 | // If this is a delegating constructor call, just load the VTT. |
477 | return LoadCXXVTT(); |
478 | } else if (RD == Base) { |
479 | // If the record matches the base, this is the complete ctor/dtor |
480 | // variant calling the base variant in a class with virtual bases. |
481 | assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && |
482 | "doing no-op VTT offset in base dtor/ctor?" ); |
483 | assert(!ForVirtualBase && "Can't have same class as virtual base!" ); |
484 | SubVTTIndex = 0; |
485 | } else { |
486 | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D: RD); |
487 | CharUnits BaseOffset = ForVirtualBase ? |
488 | Layout.getVBaseClassOffset(VBase: Base) : |
489 | Layout.getBaseClassOffset(Base); |
490 | |
491 | SubVTTIndex = |
492 | CGM.getVTables().getSubVTTIndex(RD, Base: BaseSubobject(Base, BaseOffset)); |
493 | assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!" ); |
494 | } |
495 | |
496 | if (CGM.getCXXABI().NeedsVTTParameter(GD: CurGD)) { |
497 | // A VTT parameter was passed to the constructor, use it. |
498 | llvm::Value *VTT = LoadCXXVTT(); |
499 | return Builder.CreateConstInBoundsGEP1_64(Ty: VoidPtrTy, Ptr: VTT, Idx0: SubVTTIndex); |
500 | } else { |
501 | // We're the complete constructor, so get the VTT by name. |
502 | llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD); |
503 | return Builder.CreateConstInBoundsGEP2_64( |
504 | Ty: VTT->getValueType(), Ptr: VTT, Idx0: 0, Idx1: SubVTTIndex); |
505 | } |
506 | } |
507 | |
508 | namespace { |
509 | /// Call the destructor for a direct base class. |
510 | struct CallBaseDtor final : EHScopeStack::Cleanup { |
511 | const CXXRecordDecl *BaseClass; |
512 | bool BaseIsVirtual; |
513 | CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) |
514 | : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} |
515 | |
516 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
517 | const CXXRecordDecl *DerivedClass = |
518 | cast<CXXMethodDecl>(Val: CGF.CurCodeDecl)->getParent(); |
519 | |
520 | const CXXDestructorDecl *D = BaseClass->getDestructor(); |
521 | // We are already inside a destructor, so presumably the object being |
522 | // destroyed should have the expected type. |
523 | QualType ThisTy = D->getFunctionObjectParameterType(); |
524 | Address Addr = |
525 | CGF.GetAddressOfDirectBaseInCompleteClass(This: CGF.LoadCXXThisAddress(), |
526 | Derived: DerivedClass, Base: BaseClass, |
527 | BaseIsVirtual); |
528 | CGF.EmitCXXDestructorCall(D, Type: Dtor_Base, ForVirtualBase: BaseIsVirtual, |
529 | /*Delegating=*/false, This: Addr, ThisTy); |
530 | } |
531 | }; |
532 | |
533 | /// A visitor which checks whether an initializer uses 'this' in a |
534 | /// way which requires the vtable to be properly set. |
535 | struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { |
536 | typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; |
537 | |
538 | bool UsesThis; |
539 | |
540 | DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} |
541 | |
542 | // Black-list all explicit and implicit references to 'this'. |
543 | // |
544 | // Do we need to worry about external references to 'this' derived |
545 | // from arbitrary code? If so, then anything which runs arbitrary |
546 | // external code might potentially access the vtable. |
547 | void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } |
548 | }; |
549 | } // end anonymous namespace |
550 | |
551 | static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { |
552 | DynamicThisUseChecker Checker(C); |
553 | Checker.Visit(S: Init); |
554 | return Checker.UsesThis; |
555 | } |
556 | |
557 | static void EmitBaseInitializer(CodeGenFunction &CGF, |
558 | const CXXRecordDecl *ClassDecl, |
559 | CXXCtorInitializer *BaseInit) { |
560 | assert(BaseInit->isBaseInitializer() && |
561 | "Must have base initializer!" ); |
562 | |
563 | Address ThisPtr = CGF.LoadCXXThisAddress(); |
564 | |
565 | const Type *BaseType = BaseInit->getBaseClass(); |
566 | const auto *BaseClassDecl = |
567 | cast<CXXRecordDecl>(Val: BaseType->castAs<RecordType>()->getDecl()); |
568 | |
569 | bool isBaseVirtual = BaseInit->isBaseVirtual(); |
570 | |
571 | // If the initializer for the base (other than the constructor |
572 | // itself) accesses 'this' in any way, we need to initialize the |
573 | // vtables. |
574 | if (BaseInitializerUsesThis(C&: CGF.getContext(), Init: BaseInit->getInit())) |
575 | CGF.InitializeVTablePointers(ClassDecl); |
576 | |
577 | // We can pretend to be a complete class because it only matters for |
578 | // virtual bases, and we only do virtual bases for complete ctors. |
579 | Address V = |
580 | CGF.GetAddressOfDirectBaseInCompleteClass(This: ThisPtr, Derived: ClassDecl, |
581 | Base: BaseClassDecl, |
582 | BaseIsVirtual: isBaseVirtual); |
583 | AggValueSlot AggSlot = |
584 | AggValueSlot::forAddr( |
585 | addr: V, quals: Qualifiers(), |
586 | isDestructed: AggValueSlot::IsDestructed, |
587 | needsGC: AggValueSlot::DoesNotNeedGCBarriers, |
588 | isAliased: AggValueSlot::IsNotAliased, |
589 | mayOverlap: CGF.getOverlapForBaseInit(RD: ClassDecl, BaseRD: BaseClassDecl, IsVirtual: isBaseVirtual)); |
590 | |
591 | CGF.EmitAggExpr(E: BaseInit->getInit(), AS: AggSlot); |
592 | |
593 | if (CGF.CGM.getLangOpts().Exceptions && |
594 | !BaseClassDecl->hasTrivialDestructor()) |
595 | CGF.EHStack.pushCleanup<CallBaseDtor>(Kind: EHCleanup, A: BaseClassDecl, |
596 | A: isBaseVirtual); |
597 | } |
598 | |
599 | static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { |
600 | auto *CD = dyn_cast<CXXConstructorDecl>(Val: D); |
601 | if (!(CD && CD->isCopyOrMoveConstructor()) && |
602 | !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) |
603 | return false; |
604 | |
605 | // We can emit a memcpy for a trivial copy or move constructor/assignment. |
606 | if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) |
607 | return true; |
608 | |
609 | // We *must* emit a memcpy for a defaulted union copy or move op. |
610 | if (D->getParent()->isUnion() && D->isDefaulted()) |
611 | return true; |
612 | |
613 | return false; |
614 | } |
615 | |
616 | static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, |
617 | CXXCtorInitializer *MemberInit, |
618 | LValue &LHS) { |
619 | FieldDecl *Field = MemberInit->getAnyMember(); |
620 | if (MemberInit->isIndirectMemberInitializer()) { |
621 | // If we are initializing an anonymous union field, drill down to the field. |
622 | IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); |
623 | for (const auto *I : IndirectField->chain()) |
624 | LHS = CGF.EmitLValueForFieldInitialization(Base: LHS, Field: cast<FieldDecl>(Val: I)); |
625 | } else { |
626 | LHS = CGF.EmitLValueForFieldInitialization(Base: LHS, Field); |
627 | } |
628 | } |
629 | |
630 | static void EmitMemberInitializer(CodeGenFunction &CGF, |
631 | const CXXRecordDecl *ClassDecl, |
632 | CXXCtorInitializer *MemberInit, |
633 | const CXXConstructorDecl *Constructor, |
634 | FunctionArgList &Args) { |
635 | ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); |
636 | assert(MemberInit->isAnyMemberInitializer() && |
637 | "Must have member initializer!" ); |
638 | assert(MemberInit->getInit() && "Must have initializer!" ); |
639 | |
640 | // non-static data member initializers. |
641 | FieldDecl *Field = MemberInit->getAnyMember(); |
642 | QualType FieldType = Field->getType(); |
643 | |
644 | llvm::Value *ThisPtr = CGF.LoadCXXThis(); |
645 | QualType RecordTy = CGF.getContext().getTypeDeclType(Decl: ClassDecl); |
646 | LValue LHS; |
647 | |
648 | // If a base constructor is being emitted, create an LValue that has the |
649 | // non-virtual alignment. |
650 | if (CGF.CurGD.getCtorType() == Ctor_Base) |
651 | LHS = CGF.MakeNaturalAlignPointeeAddrLValue(V: ThisPtr, T: RecordTy); |
652 | else |
653 | LHS = CGF.MakeNaturalAlignAddrLValue(V: ThisPtr, T: RecordTy); |
654 | |
655 | EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); |
656 | |
657 | // Special case: if we are in a copy or move constructor, and we are copying |
658 | // an array of PODs or classes with trivial copy constructors, ignore the |
659 | // AST and perform the copy we know is equivalent. |
660 | // FIXME: This is hacky at best... if we had a bit more explicit information |
661 | // in the AST, we could generalize it more easily. |
662 | const ConstantArrayType *Array |
663 | = CGF.getContext().getAsConstantArrayType(T: FieldType); |
664 | if (Array && Constructor->isDefaulted() && |
665 | Constructor->isCopyOrMoveConstructor()) { |
666 | QualType BaseElementTy = CGF.getContext().getBaseElementType(VAT: Array); |
667 | CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Val: MemberInit->getInit()); |
668 | if (BaseElementTy.isPODType(Context: CGF.getContext()) || |
669 | (CE && isMemcpyEquivalentSpecialMember(D: CE->getConstructor()))) { |
670 | unsigned SrcArgIndex = |
671 | CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); |
672 | llvm::Value *SrcPtr |
673 | = CGF.Builder.CreateLoad(Addr: CGF.GetAddrOfLocalVar(VD: Args[SrcArgIndex])); |
674 | LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(V: SrcPtr, T: RecordTy); |
675 | LValue Src = CGF.EmitLValueForFieldInitialization(Base: ThisRHSLV, Field); |
676 | |
677 | // Copy the aggregate. |
678 | CGF.EmitAggregateCopy(Dest: LHS, Src, EltTy: FieldType, MayOverlap: CGF.getOverlapForFieldInit(FD: Field), |
679 | isVolatile: LHS.isVolatileQualified()); |
680 | // Ensure that we destroy the objects if an exception is thrown later in |
681 | // the constructor. |
682 | QualType::DestructionKind dtorKind = FieldType.isDestructedType(); |
683 | if (CGF.needsEHCleanup(kind: dtorKind)) |
684 | CGF.pushEHDestroy(dtorKind, addr: LHS.getAddress(), type: FieldType); |
685 | return; |
686 | } |
687 | } |
688 | |
689 | CGF.EmitInitializerForField(Field, LHS, Init: MemberInit->getInit()); |
690 | } |
691 | |
692 | void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, |
693 | Expr *Init) { |
694 | QualType FieldType = Field->getType(); |
695 | switch (getEvaluationKind(T: FieldType)) { |
696 | case TEK_Scalar: |
697 | if (LHS.isSimple()) { |
698 | EmitExprAsInit(init: Init, D: Field, lvalue: LHS, capturedByInit: false); |
699 | } else { |
700 | RValue RHS = RValue::get(V: EmitScalarExpr(E: Init)); |
701 | EmitStoreThroughLValue(Src: RHS, Dst: LHS); |
702 | } |
703 | break; |
704 | case TEK_Complex: |
705 | EmitComplexExprIntoLValue(E: Init, dest: LHS, /*isInit*/ true); |
706 | break; |
707 | case TEK_Aggregate: { |
708 | AggValueSlot Slot = AggValueSlot::forLValue( |
709 | LV: LHS, isDestructed: AggValueSlot::IsDestructed, needsGC: AggValueSlot::DoesNotNeedGCBarriers, |
710 | isAliased: AggValueSlot::IsNotAliased, mayOverlap: getOverlapForFieldInit(FD: Field), |
711 | isZeroed: AggValueSlot::IsNotZeroed, |
712 | // Checks are made by the code that calls constructor. |
713 | isChecked: AggValueSlot::IsSanitizerChecked); |
714 | EmitAggExpr(E: Init, AS: Slot); |
715 | break; |
716 | } |
717 | } |
718 | |
719 | // Ensure that we destroy this object if an exception is thrown |
720 | // later in the constructor. |
721 | QualType::DestructionKind dtorKind = FieldType.isDestructedType(); |
722 | if (needsEHCleanup(kind: dtorKind)) |
723 | pushEHDestroy(dtorKind, addr: LHS.getAddress(), type: FieldType); |
724 | } |
725 | |
726 | /// Checks whether the given constructor is a valid subject for the |
727 | /// complete-to-base constructor delegation optimization, i.e. |
728 | /// emitting the complete constructor as a simple call to the base |
729 | /// constructor. |
730 | bool CodeGenFunction::IsConstructorDelegationValid( |
731 | const CXXConstructorDecl *Ctor) { |
732 | |
733 | // Currently we disable the optimization for classes with virtual |
734 | // bases because (1) the addresses of parameter variables need to be |
735 | // consistent across all initializers but (2) the delegate function |
736 | // call necessarily creates a second copy of the parameter variable. |
737 | // |
738 | // The limiting example (purely theoretical AFAIK): |
739 | // struct A { A(int &c) { c++; } }; |
740 | // struct B : virtual A { |
741 | // B(int count) : A(count) { printf("%d\n", count); } |
742 | // }; |
743 | // ...although even this example could in principle be emitted as a |
744 | // delegation since the address of the parameter doesn't escape. |
745 | if (Ctor->getParent()->getNumVBases()) { |
746 | // TODO: white-list trivial vbase initializers. This case wouldn't |
747 | // be subject to the restrictions below. |
748 | |
749 | // TODO: white-list cases where: |
750 | // - there are no non-reference parameters to the constructor |
751 | // - the initializers don't access any non-reference parameters |
752 | // - the initializers don't take the address of non-reference |
753 | // parameters |
754 | // - etc. |
755 | // If we ever add any of the above cases, remember that: |
756 | // - function-try-blocks will always exclude this optimization |
757 | // - we need to perform the constructor prologue and cleanup in |
758 | // EmitConstructorBody. |
759 | |
760 | return false; |
761 | } |
762 | |
763 | // We also disable the optimization for variadic functions because |
764 | // it's impossible to "re-pass" varargs. |
765 | if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic()) |
766 | return false; |
767 | |
768 | // FIXME: Decide if we can do a delegation of a delegating constructor. |
769 | if (Ctor->isDelegatingConstructor()) |
770 | return false; |
771 | |
772 | return true; |
773 | } |
774 | |
775 | // Emit code in ctor (Prologue==true) or dtor (Prologue==false) |
776 | // to poison the extra field paddings inserted under |
777 | // -fsanitize-address-field-padding=1|2. |
778 | void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { |
779 | ASTContext &Context = getContext(); |
780 | const CXXRecordDecl *ClassDecl = |
781 | Prologue ? cast<CXXConstructorDecl>(Val: CurGD.getDecl())->getParent() |
782 | : cast<CXXDestructorDecl>(Val: CurGD.getDecl())->getParent(); |
783 | if (!ClassDecl->mayInsertExtraPadding()) return; |
784 | |
785 | struct SizeAndOffset { |
786 | uint64_t Size; |
787 | uint64_t Offset; |
788 | }; |
789 | |
790 | unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); |
791 | const ASTRecordLayout &Info = Context.getASTRecordLayout(D: ClassDecl); |
792 | |
793 | // Populate sizes and offsets of fields. |
794 | SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); |
795 | for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) |
796 | SSV[i].Offset = |
797 | Context.toCharUnitsFromBits(BitSize: Info.getFieldOffset(FieldNo: i)).getQuantity(); |
798 | |
799 | size_t NumFields = 0; |
800 | for (const auto *Field : ClassDecl->fields()) { |
801 | const FieldDecl *D = Field; |
802 | auto FieldInfo = Context.getTypeInfoInChars(T: D->getType()); |
803 | CharUnits FieldSize = FieldInfo.Width; |
804 | assert(NumFields < SSV.size()); |
805 | SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); |
806 | NumFields++; |
807 | } |
808 | assert(NumFields == SSV.size()); |
809 | if (SSV.size() <= 1) return; |
810 | |
811 | // We will insert calls to __asan_* run-time functions. |
812 | // LLVM AddressSanitizer pass may decide to inline them later. |
813 | llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; |
814 | llvm::FunctionType *FTy = |
815 | llvm::FunctionType::get(Result: CGM.VoidTy, Params: Args, isVarArg: false); |
816 | llvm::FunctionCallee F = CGM.CreateRuntimeFunction( |
817 | Ty: FTy, Name: Prologue ? "__asan_poison_intra_object_redzone" |
818 | : "__asan_unpoison_intra_object_redzone" ); |
819 | |
820 | llvm::Value *ThisPtr = LoadCXXThis(); |
821 | ThisPtr = Builder.CreatePtrToInt(V: ThisPtr, DestTy: IntPtrTy); |
822 | uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); |
823 | // For each field check if it has sufficient padding, |
824 | // if so (un)poison it with a call. |
825 | for (size_t i = 0; i < SSV.size(); i++) { |
826 | uint64_t AsanAlignment = 8; |
827 | uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; |
828 | uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; |
829 | uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; |
830 | if (PoisonSize < AsanAlignment || !SSV[i].Size || |
831 | (NextField % AsanAlignment) != 0) |
832 | continue; |
833 | Builder.CreateCall( |
834 | Callee: F, Args: {Builder.CreateAdd(LHS: ThisPtr, RHS: Builder.getIntN(N: PtrSize, C: EndOffset)), |
835 | Builder.getIntN(N: PtrSize, C: PoisonSize)}); |
836 | } |
837 | } |
838 | |
839 | /// EmitConstructorBody - Emits the body of the current constructor. |
840 | void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { |
841 | EmitAsanPrologueOrEpilogue(Prologue: true); |
842 | const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(Val: CurGD.getDecl()); |
843 | CXXCtorType CtorType = CurGD.getCtorType(); |
844 | |
845 | assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || |
846 | CtorType == Ctor_Complete) && |
847 | "can only generate complete ctor for this ABI" ); |
848 | |
849 | // Before we go any further, try the complete->base constructor |
850 | // delegation optimization. |
851 | if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && |
852 | CGM.getTarget().getCXXABI().hasConstructorVariants()) { |
853 | EmitDelegateCXXConstructorCall(Ctor, CtorType: Ctor_Base, Args, Loc: Ctor->getEndLoc()); |
854 | return; |
855 | } |
856 | |
857 | const FunctionDecl *Definition = nullptr; |
858 | Stmt *Body = Ctor->getBody(Definition); |
859 | assert(Definition == Ctor && "emitting wrong constructor body" ); |
860 | |
861 | // Enter the function-try-block before the constructor prologue if |
862 | // applicable. |
863 | bool IsTryBody = isa_and_nonnull<CXXTryStmt>(Val: Body); |
864 | if (IsTryBody) |
865 | EnterCXXTryStmt(S: *cast<CXXTryStmt>(Val: Body), IsFnTryBlock: true); |
866 | |
867 | incrementProfileCounter(S: Body); |
868 | maybeCreateMCDCCondBitmap(); |
869 | |
870 | RunCleanupsScope RunCleanups(*this); |
871 | |
872 | // TODO: in restricted cases, we can emit the vbase initializers of |
873 | // a complete ctor and then delegate to the base ctor. |
874 | |
875 | // Emit the constructor prologue, i.e. the base and member |
876 | // initializers. |
877 | EmitCtorPrologue(CD: Ctor, Type: CtorType, Args); |
878 | |
879 | // Emit the body of the statement. |
880 | if (IsTryBody) |
881 | EmitStmt(S: cast<CXXTryStmt>(Val: Body)->getTryBlock()); |
882 | else if (Body) |
883 | EmitStmt(S: Body); |
884 | |
885 | // Emit any cleanup blocks associated with the member or base |
886 | // initializers, which includes (along the exceptional path) the |
887 | // destructors for those members and bases that were fully |
888 | // constructed. |
889 | RunCleanups.ForceCleanup(); |
890 | |
891 | if (IsTryBody) |
892 | ExitCXXTryStmt(S: *cast<CXXTryStmt>(Val: Body), IsFnTryBlock: true); |
893 | } |
894 | |
895 | namespace { |
896 | /// RAII object to indicate that codegen is copying the value representation |
897 | /// instead of the object representation. Useful when copying a struct or |
898 | /// class which has uninitialized members and we're only performing |
899 | /// lvalue-to-rvalue conversion on the object but not its members. |
900 | class CopyingValueRepresentation { |
901 | public: |
902 | explicit CopyingValueRepresentation(CodeGenFunction &CGF) |
903 | : CGF(CGF), OldSanOpts(CGF.SanOpts) { |
904 | CGF.SanOpts.set(K: SanitizerKind::Bool, Value: false); |
905 | CGF.SanOpts.set(K: SanitizerKind::Enum, Value: false); |
906 | } |
907 | ~CopyingValueRepresentation() { |
908 | CGF.SanOpts = OldSanOpts; |
909 | } |
910 | private: |
911 | CodeGenFunction &CGF; |
912 | SanitizerSet OldSanOpts; |
913 | }; |
914 | } // end anonymous namespace |
915 | |
916 | namespace { |
917 | class FieldMemcpyizer { |
918 | public: |
919 | FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, |
920 | const VarDecl *SrcRec) |
921 | : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), |
922 | RecLayout(CGF.getContext().getASTRecordLayout(D: ClassDecl)), |
923 | FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), |
924 | LastFieldOffset(0), LastAddedFieldIndex(0) {} |
925 | |
926 | bool isMemcpyableField(FieldDecl *F) const { |
927 | // Never memcpy fields when we are adding poisoned paddings. |
928 | if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) |
929 | return false; |
930 | Qualifiers Qual = F->getType().getQualifiers(); |
931 | if (Qual.hasVolatile() || Qual.hasObjCLifetime()) |
932 | return false; |
933 | return true; |
934 | } |
935 | |
936 | void addMemcpyableField(FieldDecl *F) { |
937 | if (isEmptyFieldForLayout(Context: CGF.getContext(), FD: F)) |
938 | return; |
939 | if (!FirstField) |
940 | addInitialField(F); |
941 | else |
942 | addNextField(F); |
943 | } |
944 | |
945 | CharUnits getMemcpySize(uint64_t FirstByteOffset) const { |
946 | ASTContext &Ctx = CGF.getContext(); |
947 | unsigned LastFieldSize = |
948 | LastField->isBitField() |
949 | ? LastField->getBitWidthValue(Ctx) |
950 | : Ctx.toBits( |
951 | CharSize: Ctx.getTypeInfoDataSizeInChars(T: LastField->getType()).Width); |
952 | uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize - |
953 | FirstByteOffset + Ctx.getCharWidth() - 1; |
954 | CharUnits MemcpySize = Ctx.toCharUnitsFromBits(BitSize: MemcpySizeBits); |
955 | return MemcpySize; |
956 | } |
957 | |
958 | void emitMemcpy() { |
959 | // Give the subclass a chance to bail out if it feels the memcpy isn't |
960 | // worth it (e.g. Hasn't aggregated enough data). |
961 | if (!FirstField) { |
962 | return; |
963 | } |
964 | |
965 | uint64_t FirstByteOffset; |
966 | if (FirstField->isBitField()) { |
967 | const CGRecordLayout &RL = |
968 | CGF.getTypes().getCGRecordLayout(FirstField->getParent()); |
969 | const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FD: FirstField); |
970 | // FirstFieldOffset is not appropriate for bitfields, |
971 | // we need to use the storage offset instead. |
972 | FirstByteOffset = CGF.getContext().toBits(CharSize: BFInfo.StorageOffset); |
973 | } else { |
974 | FirstByteOffset = FirstFieldOffset; |
975 | } |
976 | |
977 | CharUnits MemcpySize = getMemcpySize(FirstByteOffset); |
978 | QualType RecordTy = CGF.getContext().getTypeDeclType(Decl: ClassDecl); |
979 | Address ThisPtr = CGF.LoadCXXThisAddress(); |
980 | LValue DestLV = CGF.MakeAddrLValue(Addr: ThisPtr, T: RecordTy); |
981 | LValue Dest = CGF.EmitLValueForFieldInitialization(Base: DestLV, Field: FirstField); |
982 | llvm::Value *SrcPtr = CGF.Builder.CreateLoad(Addr: CGF.GetAddrOfLocalVar(VD: SrcRec)); |
983 | LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(V: SrcPtr, T: RecordTy); |
984 | LValue Src = CGF.EmitLValueForFieldInitialization(Base: SrcLV, Field: FirstField); |
985 | |
986 | emitMemcpyIR( |
987 | DestPtr: Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(), |
988 | SrcPtr: Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(), |
989 | Size: MemcpySize); |
990 | reset(); |
991 | } |
992 | |
993 | void reset() { |
994 | FirstField = nullptr; |
995 | } |
996 | |
997 | protected: |
998 | CodeGenFunction &CGF; |
999 | const CXXRecordDecl *ClassDecl; |
1000 | |
1001 | private: |
1002 | void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { |
1003 | DestPtr = DestPtr.withElementType(ElemTy: CGF.Int8Ty); |
1004 | SrcPtr = SrcPtr.withElementType(ElemTy: CGF.Int8Ty); |
1005 | CGF.Builder.CreateMemCpy(Dest: DestPtr, Src: SrcPtr, Size: Size.getQuantity()); |
1006 | } |
1007 | |
1008 | void addInitialField(FieldDecl *F) { |
1009 | FirstField = F; |
1010 | LastField = F; |
1011 | FirstFieldOffset = RecLayout.getFieldOffset(FieldNo: F->getFieldIndex()); |
1012 | LastFieldOffset = FirstFieldOffset; |
1013 | LastAddedFieldIndex = F->getFieldIndex(); |
1014 | } |
1015 | |
1016 | void addNextField(FieldDecl *F) { |
1017 | // For the most part, the following invariant will hold: |
1018 | // F->getFieldIndex() == LastAddedFieldIndex + 1 |
1019 | // The one exception is that Sema won't add a copy-initializer for an |
1020 | // unnamed bitfield, which will show up here as a gap in the sequence. |
1021 | assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && |
1022 | "Cannot aggregate fields out of order." ); |
1023 | LastAddedFieldIndex = F->getFieldIndex(); |
1024 | |
1025 | // The 'first' and 'last' fields are chosen by offset, rather than field |
1026 | // index. This allows the code to support bitfields, as well as regular |
1027 | // fields. |
1028 | uint64_t FOffset = RecLayout.getFieldOffset(FieldNo: F->getFieldIndex()); |
1029 | if (FOffset < FirstFieldOffset) { |
1030 | FirstField = F; |
1031 | FirstFieldOffset = FOffset; |
1032 | } else if (FOffset >= LastFieldOffset) { |
1033 | LastField = F; |
1034 | LastFieldOffset = FOffset; |
1035 | } |
1036 | } |
1037 | |
1038 | const VarDecl *SrcRec; |
1039 | const ASTRecordLayout &RecLayout; |
1040 | FieldDecl *FirstField; |
1041 | FieldDecl *LastField; |
1042 | uint64_t FirstFieldOffset, LastFieldOffset; |
1043 | unsigned LastAddedFieldIndex; |
1044 | }; |
1045 | |
1046 | class ConstructorMemcpyizer : public FieldMemcpyizer { |
1047 | private: |
1048 | /// Get source argument for copy constructor. Returns null if not a copy |
1049 | /// constructor. |
1050 | static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, |
1051 | const CXXConstructorDecl *CD, |
1052 | FunctionArgList &Args) { |
1053 | if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) |
1054 | return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; |
1055 | return nullptr; |
1056 | } |
1057 | |
1058 | // Returns true if a CXXCtorInitializer represents a member initialization |
1059 | // that can be rolled into a memcpy. |
1060 | bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { |
1061 | if (!MemcpyableCtor) |
1062 | return false; |
1063 | FieldDecl *Field = MemberInit->getMember(); |
1064 | assert(Field && "No field for member init." ); |
1065 | QualType FieldType = Field->getType(); |
1066 | CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Val: MemberInit->getInit()); |
1067 | |
1068 | // Bail out on non-memcpyable, not-trivially-copyable members. |
1069 | if (!(CE && isMemcpyEquivalentSpecialMember(D: CE->getConstructor())) && |
1070 | !(FieldType.isTriviallyCopyableType(Context: CGF.getContext()) || |
1071 | FieldType->isReferenceType())) |
1072 | return false; |
1073 | |
1074 | // Bail out on volatile fields. |
1075 | if (!isMemcpyableField(F: Field)) |
1076 | return false; |
1077 | |
1078 | // Otherwise we're good. |
1079 | return true; |
1080 | } |
1081 | |
1082 | public: |
1083 | ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, |
1084 | FunctionArgList &Args) |
1085 | : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), |
1086 | ConstructorDecl(CD), |
1087 | MemcpyableCtor(CD->isDefaulted() && |
1088 | CD->isCopyOrMoveConstructor() && |
1089 | CGF.getLangOpts().getGC() == LangOptions::NonGC), |
1090 | Args(Args) { } |
1091 | |
1092 | void addMemberInitializer(CXXCtorInitializer *MemberInit) { |
1093 | if (isMemberInitMemcpyable(MemberInit)) { |
1094 | AggregatedInits.push_back(Elt: MemberInit); |
1095 | addMemcpyableField(F: MemberInit->getMember()); |
1096 | } else { |
1097 | emitAggregatedInits(); |
1098 | EmitMemberInitializer(CGF, ClassDecl: ConstructorDecl->getParent(), MemberInit, |
1099 | Constructor: ConstructorDecl, Args); |
1100 | } |
1101 | } |
1102 | |
1103 | void emitAggregatedInits() { |
1104 | if (AggregatedInits.size() <= 1) { |
1105 | // This memcpy is too small to be worthwhile. Fall back on default |
1106 | // codegen. |
1107 | if (!AggregatedInits.empty()) { |
1108 | CopyingValueRepresentation CVR(CGF); |
1109 | EmitMemberInitializer(CGF, ClassDecl: ConstructorDecl->getParent(), |
1110 | MemberInit: AggregatedInits[0], Constructor: ConstructorDecl, Args); |
1111 | AggregatedInits.clear(); |
1112 | } |
1113 | reset(); |
1114 | return; |
1115 | } |
1116 | |
1117 | pushEHDestructors(); |
1118 | emitMemcpy(); |
1119 | AggregatedInits.clear(); |
1120 | } |
1121 | |
1122 | void pushEHDestructors() { |
1123 | Address ThisPtr = CGF.LoadCXXThisAddress(); |
1124 | QualType RecordTy = CGF.getContext().getTypeDeclType(Decl: ClassDecl); |
1125 | LValue LHS = CGF.MakeAddrLValue(Addr: ThisPtr, T: RecordTy); |
1126 | |
1127 | for (unsigned i = 0; i < AggregatedInits.size(); ++i) { |
1128 | CXXCtorInitializer *MemberInit = AggregatedInits[i]; |
1129 | QualType FieldType = MemberInit->getAnyMember()->getType(); |
1130 | QualType::DestructionKind dtorKind = FieldType.isDestructedType(); |
1131 | if (!CGF.needsEHCleanup(kind: dtorKind)) |
1132 | continue; |
1133 | LValue FieldLHS = LHS; |
1134 | EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS&: FieldLHS); |
1135 | CGF.pushEHDestroy(dtorKind, addr: FieldLHS.getAddress(), type: FieldType); |
1136 | } |
1137 | } |
1138 | |
1139 | void finish() { |
1140 | emitAggregatedInits(); |
1141 | } |
1142 | |
1143 | private: |
1144 | const CXXConstructorDecl *ConstructorDecl; |
1145 | bool MemcpyableCtor; |
1146 | FunctionArgList &Args; |
1147 | SmallVector<CXXCtorInitializer*, 16> AggregatedInits; |
1148 | }; |
1149 | |
1150 | class AssignmentMemcpyizer : public FieldMemcpyizer { |
1151 | private: |
1152 | // Returns the memcpyable field copied by the given statement, if one |
1153 | // exists. Otherwise returns null. |
1154 | FieldDecl *getMemcpyableField(Stmt *S) { |
1155 | if (!AssignmentsMemcpyable) |
1156 | return nullptr; |
1157 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: S)) { |
1158 | // Recognise trivial assignments. |
1159 | if (BO->getOpcode() != BO_Assign) |
1160 | return nullptr; |
1161 | MemberExpr *ME = dyn_cast<MemberExpr>(Val: BO->getLHS()); |
1162 | if (!ME) |
1163 | return nullptr; |
1164 | FieldDecl *Field = dyn_cast<FieldDecl>(Val: ME->getMemberDecl()); |
1165 | if (!Field || !isMemcpyableField(F: Field)) |
1166 | return nullptr; |
1167 | Stmt *RHS = BO->getRHS(); |
1168 | if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(Val: RHS)) |
1169 | RHS = EC->getSubExpr(); |
1170 | if (!RHS) |
1171 | return nullptr; |
1172 | if (MemberExpr *ME2 = dyn_cast<MemberExpr>(Val: RHS)) { |
1173 | if (ME2->getMemberDecl() == Field) |
1174 | return Field; |
1175 | } |
1176 | return nullptr; |
1177 | } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(Val: S)) { |
1178 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: MCE->getCalleeDecl()); |
1179 | if (!(MD && isMemcpyEquivalentSpecialMember(D: MD))) |
1180 | return nullptr; |
1181 | MemberExpr *IOA = dyn_cast<MemberExpr>(Val: MCE->getImplicitObjectArgument()); |
1182 | if (!IOA) |
1183 | return nullptr; |
1184 | FieldDecl *Field = dyn_cast<FieldDecl>(Val: IOA->getMemberDecl()); |
1185 | if (!Field || !isMemcpyableField(F: Field)) |
1186 | return nullptr; |
1187 | MemberExpr *Arg0 = dyn_cast<MemberExpr>(Val: MCE->getArg(Arg: 0)); |
1188 | if (!Arg0 || Field != dyn_cast<FieldDecl>(Val: Arg0->getMemberDecl())) |
1189 | return nullptr; |
1190 | return Field; |
1191 | } else if (CallExpr *CE = dyn_cast<CallExpr>(Val: S)) { |
1192 | FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: CE->getCalleeDecl()); |
1193 | if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) |
1194 | return nullptr; |
1195 | Expr *DstPtr = CE->getArg(Arg: 0); |
1196 | if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(Val: DstPtr)) |
1197 | DstPtr = DC->getSubExpr(); |
1198 | UnaryOperator *DUO = dyn_cast<UnaryOperator>(Val: DstPtr); |
1199 | if (!DUO || DUO->getOpcode() != UO_AddrOf) |
1200 | return nullptr; |
1201 | MemberExpr *ME = dyn_cast<MemberExpr>(Val: DUO->getSubExpr()); |
1202 | if (!ME) |
1203 | return nullptr; |
1204 | FieldDecl *Field = dyn_cast<FieldDecl>(Val: ME->getMemberDecl()); |
1205 | if (!Field || !isMemcpyableField(F: Field)) |
1206 | return nullptr; |
1207 | Expr *SrcPtr = CE->getArg(Arg: 1); |
1208 | if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(Val: SrcPtr)) |
1209 | SrcPtr = SC->getSubExpr(); |
1210 | UnaryOperator *SUO = dyn_cast<UnaryOperator>(Val: SrcPtr); |
1211 | if (!SUO || SUO->getOpcode() != UO_AddrOf) |
1212 | return nullptr; |
1213 | MemberExpr *ME2 = dyn_cast<MemberExpr>(Val: SUO->getSubExpr()); |
1214 | if (!ME2 || Field != dyn_cast<FieldDecl>(Val: ME2->getMemberDecl())) |
1215 | return nullptr; |
1216 | return Field; |
1217 | } |
1218 | |
1219 | return nullptr; |
1220 | } |
1221 | |
1222 | bool AssignmentsMemcpyable; |
1223 | SmallVector<Stmt*, 16> AggregatedStmts; |
1224 | |
1225 | public: |
1226 | AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, |
1227 | FunctionArgList &Args) |
1228 | : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), |
1229 | AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { |
1230 | assert(Args.size() == 2); |
1231 | } |
1232 | |
1233 | void emitAssignment(Stmt *S) { |
1234 | FieldDecl *F = getMemcpyableField(S); |
1235 | if (F) { |
1236 | addMemcpyableField(F); |
1237 | AggregatedStmts.push_back(Elt: S); |
1238 | } else { |
1239 | emitAggregatedStmts(); |
1240 | CGF.EmitStmt(S); |
1241 | } |
1242 | } |
1243 | |
1244 | void emitAggregatedStmts() { |
1245 | if (AggregatedStmts.size() <= 1) { |
1246 | if (!AggregatedStmts.empty()) { |
1247 | CopyingValueRepresentation CVR(CGF); |
1248 | CGF.EmitStmt(S: AggregatedStmts[0]); |
1249 | } |
1250 | reset(); |
1251 | } |
1252 | |
1253 | emitMemcpy(); |
1254 | AggregatedStmts.clear(); |
1255 | } |
1256 | |
1257 | void finish() { |
1258 | emitAggregatedStmts(); |
1259 | } |
1260 | }; |
1261 | } // end anonymous namespace |
1262 | |
1263 | static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { |
1264 | const Type *BaseType = BaseInit->getBaseClass(); |
1265 | const auto *BaseClassDecl = |
1266 | cast<CXXRecordDecl>(Val: BaseType->castAs<RecordType>()->getDecl()); |
1267 | return BaseClassDecl->isDynamicClass(); |
1268 | } |
1269 | |
1270 | /// EmitCtorPrologue - This routine generates necessary code to initialize |
1271 | /// base classes and non-static data members belonging to this constructor. |
1272 | void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, |
1273 | CXXCtorType CtorType, |
1274 | FunctionArgList &Args) { |
1275 | if (CD->isDelegatingConstructor()) |
1276 | return EmitDelegatingCXXConstructorCall(Ctor: CD, Args); |
1277 | |
1278 | const CXXRecordDecl *ClassDecl = CD->getParent(); |
1279 | |
1280 | CXXConstructorDecl::init_const_iterator B = CD->init_begin(), |
1281 | E = CD->init_end(); |
1282 | |
1283 | // Virtual base initializers first, if any. They aren't needed if: |
1284 | // - This is a base ctor variant |
1285 | // - There are no vbases |
1286 | // - The class is abstract, so a complete object of it cannot be constructed |
1287 | // |
1288 | // The check for an abstract class is necessary because sema may not have |
1289 | // marked virtual base destructors referenced. |
1290 | bool ConstructVBases = CtorType != Ctor_Base && |
1291 | ClassDecl->getNumVBases() != 0 && |
1292 | !ClassDecl->isAbstract(); |
1293 | |
1294 | // In the Microsoft C++ ABI, there are no constructor variants. Instead, the |
1295 | // constructor of a class with virtual bases takes an additional parameter to |
1296 | // conditionally construct the virtual bases. Emit that check here. |
1297 | llvm::BasicBlock *BaseCtorContinueBB = nullptr; |
1298 | if (ConstructVBases && |
1299 | !CGM.getTarget().getCXXABI().hasConstructorVariants()) { |
1300 | BaseCtorContinueBB = |
1301 | CGM.getCXXABI().EmitCtorCompleteObjectHandler(CGF&: *this, RD: ClassDecl); |
1302 | assert(BaseCtorContinueBB); |
1303 | } |
1304 | |
1305 | for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { |
1306 | if (!ConstructVBases) |
1307 | continue; |
1308 | SaveAndRestore ThisRAII(CXXThisValue); |
1309 | if (CGM.getCodeGenOpts().StrictVTablePointers && |
1310 | CGM.getCodeGenOpts().OptimizationLevel > 0 && |
1311 | isInitializerOfDynamicClass(BaseInit: *B)) |
1312 | CXXThisValue = Builder.CreateLaunderInvariantGroup(Ptr: LoadCXXThis()); |
1313 | EmitBaseInitializer(CGF&: *this, ClassDecl, BaseInit: *B); |
1314 | } |
1315 | |
1316 | if (BaseCtorContinueBB) { |
1317 | // Complete object handler should continue to the remaining initializers. |
1318 | Builder.CreateBr(Dest: BaseCtorContinueBB); |
1319 | EmitBlock(BB: BaseCtorContinueBB); |
1320 | } |
1321 | |
1322 | // Then, non-virtual base initializers. |
1323 | for (; B != E && (*B)->isBaseInitializer(); B++) { |
1324 | assert(!(*B)->isBaseVirtual()); |
1325 | SaveAndRestore ThisRAII(CXXThisValue); |
1326 | if (CGM.getCodeGenOpts().StrictVTablePointers && |
1327 | CGM.getCodeGenOpts().OptimizationLevel > 0 && |
1328 | isInitializerOfDynamicClass(BaseInit: *B)) |
1329 | CXXThisValue = Builder.CreateLaunderInvariantGroup(Ptr: LoadCXXThis()); |
1330 | EmitBaseInitializer(CGF&: *this, ClassDecl, BaseInit: *B); |
1331 | } |
1332 | |
1333 | InitializeVTablePointers(ClassDecl); |
1334 | |
1335 | // And finally, initialize class members. |
1336 | FieldConstructionScope FCS(*this, LoadCXXThisAddress()); |
1337 | ConstructorMemcpyizer CM(*this, CD, Args); |
1338 | for (; B != E; B++) { |
1339 | CXXCtorInitializer *Member = (*B); |
1340 | assert(!Member->isBaseInitializer()); |
1341 | assert(Member->isAnyMemberInitializer() && |
1342 | "Delegating initializer on non-delegating constructor" ); |
1343 | CM.addMemberInitializer(MemberInit: Member); |
1344 | } |
1345 | CM.finish(); |
1346 | } |
1347 | |
1348 | static bool |
1349 | FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); |
1350 | |
1351 | static bool |
1352 | HasTrivialDestructorBody(ASTContext &Context, |
1353 | const CXXRecordDecl *BaseClassDecl, |
1354 | const CXXRecordDecl *MostDerivedClassDecl) |
1355 | { |
1356 | // If the destructor is trivial we don't have to check anything else. |
1357 | if (BaseClassDecl->hasTrivialDestructor()) |
1358 | return true; |
1359 | |
1360 | if (!BaseClassDecl->getDestructor()->hasTrivialBody()) |
1361 | return false; |
1362 | |
1363 | // Check fields. |
1364 | for (const auto *Field : BaseClassDecl->fields()) |
1365 | if (!FieldHasTrivialDestructorBody(Context, Field)) |
1366 | return false; |
1367 | |
1368 | // Check non-virtual bases. |
1369 | for (const auto &I : BaseClassDecl->bases()) { |
1370 | if (I.isVirtual()) |
1371 | continue; |
1372 | |
1373 | const CXXRecordDecl *NonVirtualBase = |
1374 | cast<CXXRecordDecl>(Val: I.getType()->castAs<RecordType>()->getDecl()); |
1375 | if (!HasTrivialDestructorBody(Context, BaseClassDecl: NonVirtualBase, |
1376 | MostDerivedClassDecl)) |
1377 | return false; |
1378 | } |
1379 | |
1380 | if (BaseClassDecl == MostDerivedClassDecl) { |
1381 | // Check virtual bases. |
1382 | for (const auto &I : BaseClassDecl->vbases()) { |
1383 | const CXXRecordDecl *VirtualBase = |
1384 | cast<CXXRecordDecl>(Val: I.getType()->castAs<RecordType>()->getDecl()); |
1385 | if (!HasTrivialDestructorBody(Context, BaseClassDecl: VirtualBase, |
1386 | MostDerivedClassDecl)) |
1387 | return false; |
1388 | } |
1389 | } |
1390 | |
1391 | return true; |
1392 | } |
1393 | |
1394 | static bool |
1395 | FieldHasTrivialDestructorBody(ASTContext &Context, |
1396 | const FieldDecl *Field) |
1397 | { |
1398 | QualType FieldBaseElementType = Context.getBaseElementType(QT: Field->getType()); |
1399 | |
1400 | const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); |
1401 | if (!RT) |
1402 | return true; |
1403 | |
1404 | CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(Val: RT->getDecl()); |
1405 | |
1406 | // The destructor for an implicit anonymous union member is never invoked. |
1407 | if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) |
1408 | return true; |
1409 | |
1410 | return HasTrivialDestructorBody(Context, BaseClassDecl: FieldClassDecl, MostDerivedClassDecl: FieldClassDecl); |
1411 | } |
1412 | |
1413 | /// CanSkipVTablePointerInitialization - Check whether we need to initialize |
1414 | /// any vtable pointers before calling this destructor. |
1415 | static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, |
1416 | const CXXDestructorDecl *Dtor) { |
1417 | const CXXRecordDecl *ClassDecl = Dtor->getParent(); |
1418 | if (!ClassDecl->isDynamicClass()) |
1419 | return true; |
1420 | |
1421 | // For a final class, the vtable pointer is known to already point to the |
1422 | // class's vtable. |
1423 | if (ClassDecl->isEffectivelyFinal()) |
1424 | return true; |
1425 | |
1426 | if (!Dtor->hasTrivialBody()) |
1427 | return false; |
1428 | |
1429 | // Check the fields. |
1430 | for (const auto *Field : ClassDecl->fields()) |
1431 | if (!FieldHasTrivialDestructorBody(Context&: CGF.getContext(), Field)) |
1432 | return false; |
1433 | |
1434 | return true; |
1435 | } |
1436 | |
1437 | /// EmitDestructorBody - Emits the body of the current destructor. |
1438 | void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { |
1439 | const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(Val: CurGD.getDecl()); |
1440 | CXXDtorType DtorType = CurGD.getDtorType(); |
1441 | |
1442 | // For an abstract class, non-base destructors are never used (and can't |
1443 | // be emitted in general, because vbase dtors may not have been validated |
1444 | // by Sema), but the Itanium ABI doesn't make them optional and Clang may |
1445 | // in fact emit references to them from other compilations, so emit them |
1446 | // as functions containing a trap instruction. |
1447 | if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { |
1448 | llvm::CallInst *TrapCall = EmitTrapCall(IntrID: llvm::Intrinsic::trap); |
1449 | TrapCall->setDoesNotReturn(); |
1450 | TrapCall->setDoesNotThrow(); |
1451 | Builder.CreateUnreachable(); |
1452 | Builder.ClearInsertionPoint(); |
1453 | return; |
1454 | } |
1455 | |
1456 | Stmt *Body = Dtor->getBody(); |
1457 | if (Body) { |
1458 | incrementProfileCounter(S: Body); |
1459 | maybeCreateMCDCCondBitmap(); |
1460 | } |
1461 | |
1462 | // The call to operator delete in a deleting destructor happens |
1463 | // outside of the function-try-block, which means it's always |
1464 | // possible to delegate the destructor body to the complete |
1465 | // destructor. Do so. |
1466 | if (DtorType == Dtor_Deleting) { |
1467 | RunCleanupsScope DtorEpilogue(*this); |
1468 | EnterDtorCleanups(Dtor, Type: Dtor_Deleting); |
1469 | if (HaveInsertPoint()) { |
1470 | QualType ThisTy = Dtor->getFunctionObjectParameterType(); |
1471 | EmitCXXDestructorCall(D: Dtor, Type: Dtor_Complete, /*ForVirtualBase=*/false, |
1472 | /*Delegating=*/false, This: LoadCXXThisAddress(), ThisTy); |
1473 | } |
1474 | return; |
1475 | } |
1476 | |
1477 | // If the body is a function-try-block, enter the try before |
1478 | // anything else. |
1479 | bool isTryBody = isa_and_nonnull<CXXTryStmt>(Val: Body); |
1480 | if (isTryBody) |
1481 | EnterCXXTryStmt(S: *cast<CXXTryStmt>(Val: Body), IsFnTryBlock: true); |
1482 | EmitAsanPrologueOrEpilogue(Prologue: false); |
1483 | |
1484 | // Enter the epilogue cleanups. |
1485 | RunCleanupsScope DtorEpilogue(*this); |
1486 | |
1487 | // If this is the complete variant, just invoke the base variant; |
1488 | // the epilogue will destruct the virtual bases. But we can't do |
1489 | // this optimization if the body is a function-try-block, because |
1490 | // we'd introduce *two* handler blocks. In the Microsoft ABI, we |
1491 | // always delegate because we might not have a definition in this TU. |
1492 | switch (DtorType) { |
1493 | case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT" ); |
1494 | case Dtor_Deleting: llvm_unreachable("already handled deleting case" ); |
1495 | |
1496 | case Dtor_Complete: |
1497 | assert((Body || getTarget().getCXXABI().isMicrosoft()) && |
1498 | "can't emit a dtor without a body for non-Microsoft ABIs" ); |
1499 | |
1500 | // Enter the cleanup scopes for virtual bases. |
1501 | EnterDtorCleanups(Dtor, Type: Dtor_Complete); |
1502 | |
1503 | if (!isTryBody) { |
1504 | QualType ThisTy = Dtor->getFunctionObjectParameterType(); |
1505 | EmitCXXDestructorCall(D: Dtor, Type: Dtor_Base, /*ForVirtualBase=*/false, |
1506 | /*Delegating=*/false, This: LoadCXXThisAddress(), ThisTy); |
1507 | break; |
1508 | } |
1509 | |
1510 | // Fallthrough: act like we're in the base variant. |
1511 | [[fallthrough]]; |
1512 | |
1513 | case Dtor_Base: |
1514 | assert(Body); |
1515 | |
1516 | // Enter the cleanup scopes for fields and non-virtual bases. |
1517 | EnterDtorCleanups(Dtor, Type: Dtor_Base); |
1518 | |
1519 | // Initialize the vtable pointers before entering the body. |
1520 | if (!CanSkipVTablePointerInitialization(CGF&: *this, Dtor)) { |
1521 | // Insert the llvm.launder.invariant.group intrinsic before initializing |
1522 | // the vptrs to cancel any previous assumptions we might have made. |
1523 | if (CGM.getCodeGenOpts().StrictVTablePointers && |
1524 | CGM.getCodeGenOpts().OptimizationLevel > 0) |
1525 | CXXThisValue = Builder.CreateLaunderInvariantGroup(Ptr: LoadCXXThis()); |
1526 | InitializeVTablePointers(ClassDecl: Dtor->getParent()); |
1527 | } |
1528 | |
1529 | if (isTryBody) |
1530 | EmitStmt(S: cast<CXXTryStmt>(Val: Body)->getTryBlock()); |
1531 | else if (Body) |
1532 | EmitStmt(S: Body); |
1533 | else { |
1534 | assert(Dtor->isImplicit() && "bodyless dtor not implicit" ); |
1535 | // nothing to do besides what's in the epilogue |
1536 | } |
1537 | // -fapple-kext must inline any call to this dtor into |
1538 | // the caller's body. |
1539 | if (getLangOpts().AppleKext) |
1540 | CurFn->addFnAttr(Kind: llvm::Attribute::AlwaysInline); |
1541 | |
1542 | break; |
1543 | } |
1544 | |
1545 | // Jump out through the epilogue cleanups. |
1546 | DtorEpilogue.ForceCleanup(); |
1547 | |
1548 | // Exit the try if applicable. |
1549 | if (isTryBody) |
1550 | ExitCXXTryStmt(S: *cast<CXXTryStmt>(Val: Body), IsFnTryBlock: true); |
1551 | } |
1552 | |
1553 | void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { |
1554 | const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(Val: CurGD.getDecl()); |
1555 | const Stmt *RootS = AssignOp->getBody(); |
1556 | assert(isa<CompoundStmt>(RootS) && |
1557 | "Body of an implicit assignment operator should be compound stmt." ); |
1558 | const CompoundStmt *RootCS = cast<CompoundStmt>(Val: RootS); |
1559 | |
1560 | LexicalScope Scope(*this, RootCS->getSourceRange()); |
1561 | |
1562 | incrementProfileCounter(S: RootCS); |
1563 | maybeCreateMCDCCondBitmap(); |
1564 | AssignmentMemcpyizer AM(*this, AssignOp, Args); |
1565 | for (auto *I : RootCS->body()) |
1566 | AM.emitAssignment(S: I); |
1567 | AM.finish(); |
1568 | } |
1569 | |
1570 | namespace { |
1571 | llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, |
1572 | const CXXDestructorDecl *DD) { |
1573 | if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) |
1574 | return CGF.EmitScalarExpr(E: ThisArg); |
1575 | return CGF.LoadCXXThis(); |
1576 | } |
1577 | |
1578 | /// Call the operator delete associated with the current destructor. |
1579 | struct CallDtorDelete final : EHScopeStack::Cleanup { |
1580 | CallDtorDelete() {} |
1581 | |
1582 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
1583 | const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(Val: CGF.CurCodeDecl); |
1584 | const CXXRecordDecl *ClassDecl = Dtor->getParent(); |
1585 | CGF.EmitDeleteCall(DeleteFD: Dtor->getOperatorDelete(), |
1586 | Ptr: LoadThisForDtorDelete(CGF, DD: Dtor), |
1587 | DeleteTy: CGF.getContext().getTagDeclType(Decl: ClassDecl)); |
1588 | } |
1589 | }; |
1590 | |
1591 | void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, |
1592 | llvm::Value *ShouldDeleteCondition, |
1593 | bool ReturnAfterDelete) { |
1594 | llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock(name: "dtor.call_delete" ); |
1595 | llvm::BasicBlock *continueBB = CGF.createBasicBlock(name: "dtor.continue" ); |
1596 | llvm::Value *ShouldCallDelete |
1597 | = CGF.Builder.CreateIsNull(Arg: ShouldDeleteCondition); |
1598 | CGF.Builder.CreateCondBr(Cond: ShouldCallDelete, True: continueBB, False: callDeleteBB); |
1599 | |
1600 | CGF.EmitBlock(BB: callDeleteBB); |
1601 | const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(Val: CGF.CurCodeDecl); |
1602 | const CXXRecordDecl *ClassDecl = Dtor->getParent(); |
1603 | CGF.EmitDeleteCall(DeleteFD: Dtor->getOperatorDelete(), |
1604 | Ptr: LoadThisForDtorDelete(CGF, DD: Dtor), |
1605 | DeleteTy: CGF.getContext().getTagDeclType(Decl: ClassDecl)); |
1606 | assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == |
1607 | ReturnAfterDelete && |
1608 | "unexpected value for ReturnAfterDelete" ); |
1609 | if (ReturnAfterDelete) |
1610 | CGF.EmitBranchThroughCleanup(Dest: CGF.ReturnBlock); |
1611 | else |
1612 | CGF.Builder.CreateBr(Dest: continueBB); |
1613 | |
1614 | CGF.EmitBlock(BB: continueBB); |
1615 | } |
1616 | |
1617 | struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { |
1618 | llvm::Value *ShouldDeleteCondition; |
1619 | |
1620 | public: |
1621 | CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) |
1622 | : ShouldDeleteCondition(ShouldDeleteCondition) { |
1623 | assert(ShouldDeleteCondition != nullptr); |
1624 | } |
1625 | |
1626 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
1627 | EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, |
1628 | /*ReturnAfterDelete*/false); |
1629 | } |
1630 | }; |
1631 | |
1632 | class DestroyField final : public EHScopeStack::Cleanup { |
1633 | const FieldDecl *field; |
1634 | CodeGenFunction::Destroyer *destroyer; |
1635 | bool useEHCleanupForArray; |
1636 | |
1637 | public: |
1638 | DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, |
1639 | bool useEHCleanupForArray) |
1640 | : field(field), destroyer(destroyer), |
1641 | useEHCleanupForArray(useEHCleanupForArray) {} |
1642 | |
1643 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
1644 | // Find the address of the field. |
1645 | Address thisValue = CGF.LoadCXXThisAddress(); |
1646 | QualType RecordTy = CGF.getContext().getTagDeclType(Decl: field->getParent()); |
1647 | LValue ThisLV = CGF.MakeAddrLValue(Addr: thisValue, T: RecordTy); |
1648 | LValue LV = CGF.EmitLValueForField(Base: ThisLV, Field: field); |
1649 | assert(LV.isSimple()); |
1650 | |
1651 | CGF.emitDestroy(addr: LV.getAddress(), type: field->getType(), destroyer, |
1652 | useEHCleanupForArray: flags.isForNormalCleanup() && useEHCleanupForArray); |
1653 | } |
1654 | }; |
1655 | |
1656 | class DeclAsInlineDebugLocation { |
1657 | CGDebugInfo *DI; |
1658 | llvm::MDNode *InlinedAt; |
1659 | std::optional<ApplyDebugLocation> Location; |
1660 | |
1661 | public: |
1662 | DeclAsInlineDebugLocation(CodeGenFunction &CGF, const NamedDecl &Decl) |
1663 | : DI(CGF.getDebugInfo()) { |
1664 | if (!DI) |
1665 | return; |
1666 | InlinedAt = DI->getInlinedAt(); |
1667 | DI->setInlinedAt(CGF.Builder.getCurrentDebugLocation()); |
1668 | Location.emplace(args&: CGF, args: Decl.getLocation()); |
1669 | } |
1670 | |
1671 | ~DeclAsInlineDebugLocation() { |
1672 | if (!DI) |
1673 | return; |
1674 | Location.reset(); |
1675 | DI->setInlinedAt(InlinedAt); |
1676 | } |
1677 | }; |
1678 | |
1679 | static void EmitSanitizerDtorCallback( |
1680 | CodeGenFunction &CGF, StringRef Name, llvm::Value *Ptr, |
1681 | std::optional<CharUnits::QuantityType> PoisonSize = {}) { |
1682 | CodeGenFunction::SanitizerScope SanScope(&CGF); |
1683 | // Pass in void pointer and size of region as arguments to runtime |
1684 | // function |
1685 | SmallVector<llvm::Value *, 2> Args = {Ptr}; |
1686 | SmallVector<llvm::Type *, 2> ArgTypes = {CGF.VoidPtrTy}; |
1687 | |
1688 | if (PoisonSize.has_value()) { |
1689 | Args.emplace_back(Args: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: *PoisonSize)); |
1690 | ArgTypes.emplace_back(Args&: CGF.SizeTy); |
1691 | } |
1692 | |
1693 | llvm::FunctionType *FnType = |
1694 | llvm::FunctionType::get(Result: CGF.VoidTy, Params: ArgTypes, isVarArg: false); |
1695 | llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(Ty: FnType, Name); |
1696 | |
1697 | CGF.EmitNounwindRuntimeCall(callee: Fn, args: Args); |
1698 | } |
1699 | |
1700 | static void |
1701 | EmitSanitizerDtorFieldsCallback(CodeGenFunction &CGF, llvm::Value *Ptr, |
1702 | CharUnits::QuantityType PoisonSize) { |
1703 | EmitSanitizerDtorCallback(CGF, Name: "__sanitizer_dtor_callback_fields" , Ptr, |
1704 | PoisonSize); |
1705 | } |
1706 | |
1707 | /// Poison base class with a trivial destructor. |
1708 | struct SanitizeDtorTrivialBase final : EHScopeStack::Cleanup { |
1709 | const CXXRecordDecl *BaseClass; |
1710 | bool BaseIsVirtual; |
1711 | SanitizeDtorTrivialBase(const CXXRecordDecl *Base, bool BaseIsVirtual) |
1712 | : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} |
1713 | |
1714 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
1715 | const CXXRecordDecl *DerivedClass = |
1716 | cast<CXXMethodDecl>(Val: CGF.CurCodeDecl)->getParent(); |
1717 | |
1718 | Address Addr = CGF.GetAddressOfDirectBaseInCompleteClass( |
1719 | This: CGF.LoadCXXThisAddress(), Derived: DerivedClass, Base: BaseClass, BaseIsVirtual); |
1720 | |
1721 | const ASTRecordLayout &BaseLayout = |
1722 | CGF.getContext().getASTRecordLayout(D: BaseClass); |
1723 | CharUnits BaseSize = BaseLayout.getSize(); |
1724 | |
1725 | if (!BaseSize.isPositive()) |
1726 | return; |
1727 | |
1728 | // Use the base class declaration location as inline DebugLocation. All |
1729 | // fields of the class are destroyed. |
1730 | DeclAsInlineDebugLocation InlineHere(CGF, *BaseClass); |
1731 | EmitSanitizerDtorFieldsCallback(CGF, Ptr: Addr.emitRawPointer(CGF), |
1732 | PoisonSize: BaseSize.getQuantity()); |
1733 | |
1734 | // Prevent the current stack frame from disappearing from the stack trace. |
1735 | CGF.CurFn->addFnAttr(Kind: "disable-tail-calls" , Val: "true" ); |
1736 | } |
1737 | }; |
1738 | |
1739 | class SanitizeDtorFieldRange final : public EHScopeStack::Cleanup { |
1740 | const CXXDestructorDecl *Dtor; |
1741 | unsigned StartIndex; |
1742 | unsigned EndIndex; |
1743 | |
1744 | public: |
1745 | SanitizeDtorFieldRange(const CXXDestructorDecl *Dtor, unsigned StartIndex, |
1746 | unsigned EndIndex) |
1747 | : Dtor(Dtor), StartIndex(StartIndex), EndIndex(EndIndex) {} |
1748 | |
1749 | // Generate function call for handling object poisoning. |
1750 | // Disables tail call elimination, to prevent the current stack frame |
1751 | // from disappearing from the stack trace. |
1752 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
1753 | const ASTContext &Context = CGF.getContext(); |
1754 | const ASTRecordLayout &Layout = |
1755 | Context.getASTRecordLayout(D: Dtor->getParent()); |
1756 | |
1757 | // It's a first trivial field so it should be at the begining of a char, |
1758 | // still round up start offset just in case. |
1759 | CharUnits PoisonStart = Context.toCharUnitsFromBits( |
1760 | BitSize: Layout.getFieldOffset(FieldNo: StartIndex) + Context.getCharWidth() - 1); |
1761 | llvm::ConstantInt *OffsetSizePtr = |
1762 | llvm::ConstantInt::get(Ty: CGF.SizeTy, V: PoisonStart.getQuantity()); |
1763 | |
1764 | llvm::Value *OffsetPtr = |
1765 | CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: CGF.LoadCXXThis(), IdxList: OffsetSizePtr); |
1766 | |
1767 | CharUnits PoisonEnd; |
1768 | if (EndIndex >= Layout.getFieldCount()) { |
1769 | PoisonEnd = Layout.getNonVirtualSize(); |
1770 | } else { |
1771 | PoisonEnd = |
1772 | Context.toCharUnitsFromBits(BitSize: Layout.getFieldOffset(FieldNo: EndIndex)); |
1773 | } |
1774 | CharUnits PoisonSize = PoisonEnd - PoisonStart; |
1775 | if (!PoisonSize.isPositive()) |
1776 | return; |
1777 | |
1778 | // Use the top field declaration location as inline DebugLocation. |
1779 | DeclAsInlineDebugLocation InlineHere( |
1780 | CGF, **std::next(x: Dtor->getParent()->field_begin(), n: StartIndex)); |
1781 | EmitSanitizerDtorFieldsCallback(CGF, Ptr: OffsetPtr, PoisonSize: PoisonSize.getQuantity()); |
1782 | |
1783 | // Prevent the current stack frame from disappearing from the stack trace. |
1784 | CGF.CurFn->addFnAttr(Kind: "disable-tail-calls" , Val: "true" ); |
1785 | } |
1786 | }; |
1787 | |
1788 | class SanitizeDtorVTable final : public EHScopeStack::Cleanup { |
1789 | const CXXDestructorDecl *Dtor; |
1790 | |
1791 | public: |
1792 | SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} |
1793 | |
1794 | // Generate function call for handling vtable pointer poisoning. |
1795 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
1796 | assert(Dtor->getParent()->isDynamicClass()); |
1797 | (void)Dtor; |
1798 | // Poison vtable and vtable ptr if they exist for this class. |
1799 | llvm::Value *VTablePtr = CGF.LoadCXXThis(); |
1800 | |
1801 | // Pass in void pointer and size of region as arguments to runtime |
1802 | // function |
1803 | EmitSanitizerDtorCallback(CGF, Name: "__sanitizer_dtor_callback_vptr" , |
1804 | Ptr: VTablePtr); |
1805 | } |
1806 | }; |
1807 | |
1808 | class SanitizeDtorCleanupBuilder { |
1809 | ASTContext &Context; |
1810 | EHScopeStack &EHStack; |
1811 | const CXXDestructorDecl *DD; |
1812 | std::optional<unsigned> StartIndex; |
1813 | |
1814 | public: |
1815 | SanitizeDtorCleanupBuilder(ASTContext &Context, EHScopeStack &EHStack, |
1816 | const CXXDestructorDecl *DD) |
1817 | : Context(Context), EHStack(EHStack), DD(DD), StartIndex(std::nullopt) {} |
1818 | void PushCleanupForField(const FieldDecl *Field) { |
1819 | if (isEmptyFieldForLayout(Context, FD: Field)) |
1820 | return; |
1821 | unsigned FieldIndex = Field->getFieldIndex(); |
1822 | if (FieldHasTrivialDestructorBody(Context, Field)) { |
1823 | if (!StartIndex) |
1824 | StartIndex = FieldIndex; |
1825 | } else if (StartIndex) { |
1826 | EHStack.pushCleanup<SanitizeDtorFieldRange>(Kind: NormalAndEHCleanup, A: DD, |
1827 | A: *StartIndex, A: FieldIndex); |
1828 | StartIndex = std::nullopt; |
1829 | } |
1830 | } |
1831 | void End() { |
1832 | if (StartIndex) |
1833 | EHStack.pushCleanup<SanitizeDtorFieldRange>(Kind: NormalAndEHCleanup, A: DD, |
1834 | A: *StartIndex, A: -1); |
1835 | } |
1836 | }; |
1837 | } // end anonymous namespace |
1838 | |
1839 | /// Emit all code that comes at the end of class's |
1840 | /// destructor. This is to call destructors on members and base classes |
1841 | /// in reverse order of their construction. |
1842 | /// |
1843 | /// For a deleting destructor, this also handles the case where a destroying |
1844 | /// operator delete completely overrides the definition. |
1845 | void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, |
1846 | CXXDtorType DtorType) { |
1847 | assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && |
1848 | "Should not emit dtor epilogue for non-exported trivial dtor!" ); |
1849 | |
1850 | // The deleting-destructor phase just needs to call the appropriate |
1851 | // operator delete that Sema picked up. |
1852 | if (DtorType == Dtor_Deleting) { |
1853 | assert(DD->getOperatorDelete() && |
1854 | "operator delete missing - EnterDtorCleanups" ); |
1855 | if (CXXStructorImplicitParamValue) { |
1856 | // If there is an implicit param to the deleting dtor, it's a boolean |
1857 | // telling whether this is a deleting destructor. |
1858 | if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) |
1859 | EmitConditionalDtorDeleteCall(CGF&: *this, ShouldDeleteCondition: CXXStructorImplicitParamValue, |
1860 | /*ReturnAfterDelete*/true); |
1861 | else |
1862 | EHStack.pushCleanup<CallDtorDeleteConditional>( |
1863 | Kind: NormalAndEHCleanup, A: CXXStructorImplicitParamValue); |
1864 | } else { |
1865 | if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { |
1866 | const CXXRecordDecl *ClassDecl = DD->getParent(); |
1867 | EmitDeleteCall(DeleteFD: DD->getOperatorDelete(), |
1868 | Ptr: LoadThisForDtorDelete(CGF&: *this, DD), |
1869 | DeleteTy: getContext().getTagDeclType(Decl: ClassDecl)); |
1870 | EmitBranchThroughCleanup(Dest: ReturnBlock); |
1871 | } else { |
1872 | EHStack.pushCleanup<CallDtorDelete>(Kind: NormalAndEHCleanup); |
1873 | } |
1874 | } |
1875 | return; |
1876 | } |
1877 | |
1878 | const CXXRecordDecl *ClassDecl = DD->getParent(); |
1879 | |
1880 | // Unions have no bases and do not call field destructors. |
1881 | if (ClassDecl->isUnion()) |
1882 | return; |
1883 | |
1884 | // The complete-destructor phase just destructs all the virtual bases. |
1885 | if (DtorType == Dtor_Complete) { |
1886 | // Poison the vtable pointer such that access after the base |
1887 | // and member destructors are invoked is invalid. |
1888 | if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && |
1889 | SanOpts.has(K: SanitizerKind::Memory) && ClassDecl->getNumVBases() && |
1890 | ClassDecl->isPolymorphic()) |
1891 | EHStack.pushCleanup<SanitizeDtorVTable>(Kind: NormalAndEHCleanup, A: DD); |
1892 | |
1893 | // We push them in the forward order so that they'll be popped in |
1894 | // the reverse order. |
1895 | for (const auto &Base : ClassDecl->vbases()) { |
1896 | auto *BaseClassDecl = |
1897 | cast<CXXRecordDecl>(Val: Base.getType()->castAs<RecordType>()->getDecl()); |
1898 | |
1899 | if (BaseClassDecl->hasTrivialDestructor()) { |
1900 | // Under SanitizeMemoryUseAfterDtor, poison the trivial base class |
1901 | // memory. For non-trival base classes the same is done in the class |
1902 | // destructor. |
1903 | if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && |
1904 | SanOpts.has(K: SanitizerKind::Memory) && !BaseClassDecl->isEmpty()) |
1905 | EHStack.pushCleanup<SanitizeDtorTrivialBase>(Kind: NormalAndEHCleanup, |
1906 | A: BaseClassDecl, |
1907 | /*BaseIsVirtual*/ A: true); |
1908 | } else { |
1909 | EHStack.pushCleanup<CallBaseDtor>(Kind: NormalAndEHCleanup, A: BaseClassDecl, |
1910 | /*BaseIsVirtual*/ A: true); |
1911 | } |
1912 | } |
1913 | |
1914 | return; |
1915 | } |
1916 | |
1917 | assert(DtorType == Dtor_Base); |
1918 | // Poison the vtable pointer if it has no virtual bases, but inherits |
1919 | // virtual functions. |
1920 | if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && |
1921 | SanOpts.has(K: SanitizerKind::Memory) && !ClassDecl->getNumVBases() && |
1922 | ClassDecl->isPolymorphic()) |
1923 | EHStack.pushCleanup<SanitizeDtorVTable>(Kind: NormalAndEHCleanup, A: DD); |
1924 | |
1925 | // Destroy non-virtual bases. |
1926 | for (const auto &Base : ClassDecl->bases()) { |
1927 | // Ignore virtual bases. |
1928 | if (Base.isVirtual()) |
1929 | continue; |
1930 | |
1931 | CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); |
1932 | |
1933 | if (BaseClassDecl->hasTrivialDestructor()) { |
1934 | if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && |
1935 | SanOpts.has(K: SanitizerKind::Memory) && !BaseClassDecl->isEmpty()) |
1936 | EHStack.pushCleanup<SanitizeDtorTrivialBase>(Kind: NormalAndEHCleanup, |
1937 | A: BaseClassDecl, |
1938 | /*BaseIsVirtual*/ A: false); |
1939 | } else { |
1940 | EHStack.pushCleanup<CallBaseDtor>(Kind: NormalAndEHCleanup, A: BaseClassDecl, |
1941 | /*BaseIsVirtual*/ A: false); |
1942 | } |
1943 | } |
1944 | |
1945 | // Poison fields such that access after their destructors are |
1946 | // invoked, and before the base class destructor runs, is invalid. |
1947 | bool SanitizeFields = CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && |
1948 | SanOpts.has(K: SanitizerKind::Memory); |
1949 | SanitizeDtorCleanupBuilder SanitizeBuilder(getContext(), EHStack, DD); |
1950 | |
1951 | // Destroy direct fields. |
1952 | for (const auto *Field : ClassDecl->fields()) { |
1953 | if (SanitizeFields) |
1954 | SanitizeBuilder.PushCleanupForField(Field); |
1955 | |
1956 | QualType type = Field->getType(); |
1957 | QualType::DestructionKind dtorKind = type.isDestructedType(); |
1958 | if (!dtorKind) |
1959 | continue; |
1960 | |
1961 | // Anonymous union members do not have their destructors called. |
1962 | const RecordType *RT = type->getAsUnionType(); |
1963 | if (RT && RT->getDecl()->isAnonymousStructOrUnion()) |
1964 | continue; |
1965 | |
1966 | CleanupKind cleanupKind = getCleanupKind(kind: dtorKind); |
1967 | EHStack.pushCleanup<DestroyField>( |
1968 | Kind: cleanupKind, A: Field, A: getDestroyer(destructionKind: dtorKind), A: cleanupKind & EHCleanup); |
1969 | } |
1970 | |
1971 | if (SanitizeFields) |
1972 | SanitizeBuilder.End(); |
1973 | } |
1974 | |
1975 | /// EmitCXXAggrConstructorCall - Emit a loop to call a particular |
1976 | /// constructor for each of several members of an array. |
1977 | /// |
1978 | /// \param ctor the constructor to call for each element |
1979 | /// \param arrayType the type of the array to initialize |
1980 | /// \param arrayBegin an arrayType* |
1981 | /// \param zeroInitialize true if each element should be |
1982 | /// zero-initialized before it is constructed |
1983 | void CodeGenFunction::EmitCXXAggrConstructorCall( |
1984 | const CXXConstructorDecl *ctor, const ArrayType *arrayType, |
1985 | Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked, |
1986 | bool zeroInitialize) { |
1987 | QualType elementType; |
1988 | llvm::Value *numElements = |
1989 | emitArrayLength(arrayType, baseType&: elementType, addr&: arrayBegin); |
1990 | |
1991 | EmitCXXAggrConstructorCall(D: ctor, NumElements: numElements, ArrayPtr: arrayBegin, E, |
1992 | NewPointerIsChecked, ZeroInitialization: zeroInitialize); |
1993 | } |
1994 | |
1995 | /// EmitCXXAggrConstructorCall - Emit a loop to call a particular |
1996 | /// constructor for each of several members of an array. |
1997 | /// |
1998 | /// \param ctor the constructor to call for each element |
1999 | /// \param numElements the number of elements in the array; |
2000 | /// may be zero |
2001 | /// \param arrayBase a T*, where T is the type constructed by ctor |
2002 | /// \param zeroInitialize true if each element should be |
2003 | /// zero-initialized before it is constructed |
2004 | void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, |
2005 | llvm::Value *numElements, |
2006 | Address arrayBase, |
2007 | const CXXConstructExpr *E, |
2008 | bool NewPointerIsChecked, |
2009 | bool zeroInitialize) { |
2010 | // It's legal for numElements to be zero. This can happen both |
2011 | // dynamically, because x can be zero in 'new A[x]', and statically, |
2012 | // because of GCC extensions that permit zero-length arrays. There |
2013 | // are probably legitimate places where we could assume that this |
2014 | // doesn't happen, but it's not clear that it's worth it. |
2015 | llvm::BranchInst *zeroCheckBranch = nullptr; |
2016 | |
2017 | // Optimize for a constant count. |
2018 | llvm::ConstantInt *constantCount |
2019 | = dyn_cast<llvm::ConstantInt>(Val: numElements); |
2020 | if (constantCount) { |
2021 | // Just skip out if the constant count is zero. |
2022 | if (constantCount->isZero()) return; |
2023 | |
2024 | // Otherwise, emit the check. |
2025 | } else { |
2026 | llvm::BasicBlock *loopBB = createBasicBlock(name: "new.ctorloop" ); |
2027 | llvm::Value *iszero = Builder.CreateIsNull(Arg: numElements, Name: "isempty" ); |
2028 | zeroCheckBranch = Builder.CreateCondBr(Cond: iszero, True: loopBB, False: loopBB); |
2029 | EmitBlock(BB: loopBB); |
2030 | } |
2031 | |
2032 | // Find the end of the array. |
2033 | llvm::Type *elementType = arrayBase.getElementType(); |
2034 | llvm::Value *arrayBegin = arrayBase.emitRawPointer(CGF&: *this); |
2035 | llvm::Value *arrayEnd = Builder.CreateInBoundsGEP( |
2036 | Ty: elementType, Ptr: arrayBegin, IdxList: numElements, Name: "arrayctor.end" ); |
2037 | |
2038 | // Enter the loop, setting up a phi for the current location to initialize. |
2039 | llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); |
2040 | llvm::BasicBlock *loopBB = createBasicBlock(name: "arrayctor.loop" ); |
2041 | EmitBlock(BB: loopBB); |
2042 | llvm::PHINode *cur = Builder.CreatePHI(Ty: arrayBegin->getType(), NumReservedValues: 2, |
2043 | Name: "arrayctor.cur" ); |
2044 | cur->addIncoming(V: arrayBegin, BB: entryBB); |
2045 | |
2046 | // Inside the loop body, emit the constructor call on the array element. |
2047 | |
2048 | // The alignment of the base, adjusted by the size of a single element, |
2049 | // provides a conservative estimate of the alignment of every element. |
2050 | // (This assumes we never start tracking offsetted alignments.) |
2051 | // |
2052 | // Note that these are complete objects and so we don't need to |
2053 | // use the non-virtual size or alignment. |
2054 | QualType type = getContext().getTypeDeclType(Decl: ctor->getParent()); |
2055 | CharUnits eltAlignment = |
2056 | arrayBase.getAlignment() |
2057 | .alignmentOfArrayElement(elementSize: getContext().getTypeSizeInChars(T: type)); |
2058 | Address curAddr = Address(cur, elementType, eltAlignment); |
2059 | |
2060 | // Zero initialize the storage, if requested. |
2061 | if (zeroInitialize) |
2062 | EmitNullInitialization(DestPtr: curAddr, Ty: type); |
2063 | |
2064 | // C++ [class.temporary]p4: |
2065 | // There are two contexts in which temporaries are destroyed at a different |
2066 | // point than the end of the full-expression. The first context is when a |
2067 | // default constructor is called to initialize an element of an array. |
2068 | // If the constructor has one or more default arguments, the destruction of |
2069 | // every temporary created in a default argument expression is sequenced |
2070 | // before the construction of the next array element, if any. |
2071 | |
2072 | { |
2073 | RunCleanupsScope Scope(*this); |
2074 | |
2075 | // Evaluate the constructor and its arguments in a regular |
2076 | // partial-destroy cleanup. |
2077 | if (getLangOpts().Exceptions && |
2078 | !ctor->getParent()->hasTrivialDestructor()) { |
2079 | Destroyer *destroyer = destroyCXXObject; |
2080 | pushRegularPartialArrayCleanup(arrayBegin, arrayEnd: cur, elementType: type, elementAlignment: eltAlignment, |
2081 | destroyer: *destroyer); |
2082 | } |
2083 | auto currAVS = AggValueSlot::forAddr( |
2084 | addr: curAddr, quals: type.getQualifiers(), isDestructed: AggValueSlot::IsDestructed, |
2085 | needsGC: AggValueSlot::DoesNotNeedGCBarriers, isAliased: AggValueSlot::IsNotAliased, |
2086 | mayOverlap: AggValueSlot::DoesNotOverlap, isZeroed: AggValueSlot::IsNotZeroed, |
2087 | isChecked: NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked |
2088 | : AggValueSlot::IsNotSanitizerChecked); |
2089 | EmitCXXConstructorCall(D: ctor, Type: Ctor_Complete, /*ForVirtualBase=*/false, |
2090 | /*Delegating=*/false, ThisAVS: currAVS, E); |
2091 | } |
2092 | |
2093 | // Go to the next element. |
2094 | llvm::Value *next = Builder.CreateInBoundsGEP( |
2095 | Ty: elementType, Ptr: cur, IdxList: llvm::ConstantInt::get(Ty: SizeTy, V: 1), Name: "arrayctor.next" ); |
2096 | cur->addIncoming(V: next, BB: Builder.GetInsertBlock()); |
2097 | |
2098 | // Check whether that's the end of the loop. |
2099 | llvm::Value *done = Builder.CreateICmpEQ(LHS: next, RHS: arrayEnd, Name: "arrayctor.done" ); |
2100 | llvm::BasicBlock *contBB = createBasicBlock(name: "arrayctor.cont" ); |
2101 | Builder.CreateCondBr(Cond: done, True: contBB, False: loopBB); |
2102 | |
2103 | // Patch the earlier check to skip over the loop. |
2104 | if (zeroCheckBranch) zeroCheckBranch->setSuccessor(idx: 0, NewSucc: contBB); |
2105 | |
2106 | EmitBlock(BB: contBB); |
2107 | } |
2108 | |
2109 | void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, |
2110 | Address addr, |
2111 | QualType type) { |
2112 | const RecordType *rtype = type->castAs<RecordType>(); |
2113 | const CXXRecordDecl *record = cast<CXXRecordDecl>(Val: rtype->getDecl()); |
2114 | const CXXDestructorDecl *dtor = record->getDestructor(); |
2115 | assert(!dtor->isTrivial()); |
2116 | CGF.EmitCXXDestructorCall(D: dtor, Type: Dtor_Complete, /*for vbase*/ ForVirtualBase: false, |
2117 | /*Delegating=*/false, This: addr, ThisTy: type); |
2118 | } |
2119 | |
2120 | void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, |
2121 | CXXCtorType Type, |
2122 | bool ForVirtualBase, |
2123 | bool Delegating, |
2124 | AggValueSlot ThisAVS, |
2125 | const CXXConstructExpr *E) { |
2126 | CallArgList Args; |
2127 | Address This = ThisAVS.getAddress(); |
2128 | LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace(); |
2129 | LangAS ThisAS = D->getFunctionObjectParameterType().getAddressSpace(); |
2130 | llvm::Value *ThisPtr = |
2131 | getAsNaturalPointerTo(Addr: This, PointeeType: D->getThisType()->getPointeeType()); |
2132 | |
2133 | if (SlotAS != ThisAS) { |
2134 | unsigned TargetThisAS = getContext().getTargetAddressSpace(AS: ThisAS); |
2135 | llvm::Type *NewType = |
2136 | llvm::PointerType::get(C&: getLLVMContext(), AddressSpace: TargetThisAS); |
2137 | ThisPtr = getTargetHooks().performAddrSpaceCast(CGF&: *this, V: ThisPtr, SrcAddr: ThisAS, |
2138 | DestAddr: SlotAS, DestTy: NewType); |
2139 | } |
2140 | |
2141 | // Push the this ptr. |
2142 | Args.add(rvalue: RValue::get(V: ThisPtr), type: D->getThisType()); |
2143 | |
2144 | // If this is a trivial constructor, emit a memcpy now before we lose |
2145 | // the alignment information on the argument. |
2146 | // FIXME: It would be better to preserve alignment information into CallArg. |
2147 | if (isMemcpyEquivalentSpecialMember(D)) { |
2148 | assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor" ); |
2149 | |
2150 | const Expr *Arg = E->getArg(Arg: 0); |
2151 | LValue Src = EmitLValue(E: Arg); |
2152 | QualType DestTy = getContext().getTypeDeclType(Decl: D->getParent()); |
2153 | LValue Dest = MakeAddrLValue(Addr: This, T: DestTy); |
2154 | EmitAggregateCopyCtor(Dest, Src, MayOverlap: ThisAVS.mayOverlap()); |
2155 | return; |
2156 | } |
2157 | |
2158 | // Add the rest of the user-supplied arguments. |
2159 | const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); |
2160 | EvaluationOrder Order = E->isListInitialization() |
2161 | ? EvaluationOrder::ForceLeftToRight |
2162 | : EvaluationOrder::Default; |
2163 | EmitCallArgs(Args, Prototype: FPT, ArgRange: E->arguments(), AC: E->getConstructor(), |
2164 | /*ParamsToSkip*/ 0, Order); |
2165 | |
2166 | EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args, |
2167 | Overlap: ThisAVS.mayOverlap(), Loc: E->getExprLoc(), |
2168 | NewPointerIsChecked: ThisAVS.isSanitizerChecked()); |
2169 | } |
2170 | |
2171 | static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, |
2172 | const CXXConstructorDecl *Ctor, |
2173 | CXXCtorType Type, CallArgList &Args) { |
2174 | // We can't forward a variadic call. |
2175 | if (Ctor->isVariadic()) |
2176 | return false; |
2177 | |
2178 | if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { |
2179 | // If the parameters are callee-cleanup, it's not safe to forward. |
2180 | for (auto *P : Ctor->parameters()) |
2181 | if (P->needsDestruction(Ctx: CGF.getContext())) |
2182 | return false; |
2183 | |
2184 | // Likewise if they're inalloca. |
2185 | const CGFunctionInfo &Info = |
2186 | CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, D: Ctor, CtorKind: Type, ExtraPrefixArgs: 0, ExtraSuffixArgs: 0); |
2187 | if (Info.usesInAlloca()) |
2188 | return false; |
2189 | } |
2190 | |
2191 | // Anything else should be OK. |
2192 | return true; |
2193 | } |
2194 | |
2195 | void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, |
2196 | CXXCtorType Type, |
2197 | bool ForVirtualBase, |
2198 | bool Delegating, |
2199 | Address This, |
2200 | CallArgList &Args, |
2201 | AggValueSlot::Overlap_t Overlap, |
2202 | SourceLocation Loc, |
2203 | bool NewPointerIsChecked) { |
2204 | const CXXRecordDecl *ClassDecl = D->getParent(); |
2205 | |
2206 | if (!NewPointerIsChecked) |
2207 | EmitTypeCheck(TCK: CodeGenFunction::TCK_ConstructorCall, Loc, Addr: This, |
2208 | Type: getContext().getRecordType(Decl: ClassDecl), Alignment: CharUnits::Zero()); |
2209 | |
2210 | if (D->isTrivial() && D->isDefaultConstructor()) { |
2211 | assert(Args.size() == 1 && "trivial default ctor with args" ); |
2212 | return; |
2213 | } |
2214 | |
2215 | // If this is a trivial constructor, just emit what's needed. If this is a |
2216 | // union copy constructor, we must emit a memcpy, because the AST does not |
2217 | // model that copy. |
2218 | if (isMemcpyEquivalentSpecialMember(D)) { |
2219 | assert(Args.size() == 2 && "unexpected argcount for trivial ctor" ); |
2220 | QualType SrcTy = D->getParamDecl(i: 0)->getType().getNonReferenceType(); |
2221 | Address Src = makeNaturalAddressForPointer( |
2222 | Ptr: Args[1].getRValue(CGF&: *this).getScalarVal(), T: SrcTy); |
2223 | LValue SrcLVal = MakeAddrLValue(Addr: Src, T: SrcTy); |
2224 | QualType DestTy = getContext().getTypeDeclType(Decl: ClassDecl); |
2225 | LValue DestLVal = MakeAddrLValue(Addr: This, T: DestTy); |
2226 | EmitAggregateCopyCtor(Dest: DestLVal, Src: SrcLVal, MayOverlap: Overlap); |
2227 | return; |
2228 | } |
2229 | |
2230 | bool PassPrototypeArgs = true; |
2231 | // Check whether we can actually emit the constructor before trying to do so. |
2232 | if (auto Inherited = D->getInheritedConstructor()) { |
2233 | PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); |
2234 | if (PassPrototypeArgs && !canEmitDelegateCallArgs(CGF&: *this, Ctor: D, Type, Args)) { |
2235 | EmitInlinedInheritingCXXConstructorCall(Ctor: D, CtorType: Type, ForVirtualBase, |
2236 | Delegating, Args); |
2237 | return; |
2238 | } |
2239 | } |
2240 | |
2241 | // Insert any ABI-specific implicit constructor arguments. |
2242 | CGCXXABI::AddedStructorArgCounts = |
2243 | CGM.getCXXABI().addImplicitConstructorArgs(CGF&: *this, D, Type, ForVirtualBase, |
2244 | Delegating, Args); |
2245 | |
2246 | // Emit the call. |
2247 | llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GD: GlobalDecl(D, Type)); |
2248 | const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( |
2249 | Args, D, CtorKind: Type, ExtraPrefixArgs: ExtraArgs.Prefix, ExtraSuffixArgs: ExtraArgs.Suffix, PassProtoArgs: PassPrototypeArgs); |
2250 | CGCallee Callee = CGCallee::forDirect(functionPtr: CalleePtr, abstractInfo: GlobalDecl(D, Type)); |
2251 | EmitCall(CallInfo: Info, Callee, ReturnValue: ReturnValueSlot(), Args, callOrInvoke: nullptr, IsMustTail: false, Loc); |
2252 | |
2253 | // Generate vtable assumptions if we're constructing a complete object |
2254 | // with a vtable. We don't do this for base subobjects for two reasons: |
2255 | // first, it's incorrect for classes with virtual bases, and second, we're |
2256 | // about to overwrite the vptrs anyway. |
2257 | // We also have to make sure if we can refer to vtable: |
2258 | // - Otherwise we can refer to vtable if it's safe to speculatively emit. |
2259 | // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are |
2260 | // sure that definition of vtable is not hidden, |
2261 | // then we are always safe to refer to it. |
2262 | // FIXME: It looks like InstCombine is very inefficient on dealing with |
2263 | // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. |
2264 | if (CGM.getCodeGenOpts().OptimizationLevel > 0 && |
2265 | ClassDecl->isDynamicClass() && Type != Ctor_Base && |
2266 | CGM.getCXXABI().canSpeculativelyEmitVTable(RD: ClassDecl) && |
2267 | CGM.getCodeGenOpts().StrictVTablePointers) |
2268 | EmitVTableAssumptionLoads(ClassDecl, This); |
2269 | } |
2270 | |
2271 | void CodeGenFunction::EmitInheritedCXXConstructorCall( |
2272 | const CXXConstructorDecl *D, bool ForVirtualBase, Address This, |
2273 | bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { |
2274 | CallArgList Args; |
2275 | CallArg ThisArg(RValue::get(V: getAsNaturalPointerTo( |
2276 | Addr: This, PointeeType: D->getThisType()->getPointeeType())), |
2277 | D->getThisType()); |
2278 | |
2279 | // Forward the parameters. |
2280 | if (InheritedFromVBase && |
2281 | CGM.getTarget().getCXXABI().hasConstructorVariants()) { |
2282 | // Nothing to do; this construction is not responsible for constructing |
2283 | // the base class containing the inherited constructor. |
2284 | // FIXME: Can we just pass undef's for the remaining arguments if we don't |
2285 | // have constructor variants? |
2286 | Args.push_back(Elt: ThisArg); |
2287 | } else if (!CXXInheritedCtorInitExprArgs.empty()) { |
2288 | // The inheriting constructor was inlined; just inject its arguments. |
2289 | assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && |
2290 | "wrong number of parameters for inherited constructor call" ); |
2291 | Args = CXXInheritedCtorInitExprArgs; |
2292 | Args[0] = ThisArg; |
2293 | } else { |
2294 | // The inheriting constructor was not inlined. Emit delegating arguments. |
2295 | Args.push_back(Elt: ThisArg); |
2296 | const auto *OuterCtor = cast<CXXConstructorDecl>(Val: CurCodeDecl); |
2297 | assert(OuterCtor->getNumParams() == D->getNumParams()); |
2298 | assert(!OuterCtor->isVariadic() && "should have been inlined" ); |
2299 | |
2300 | for (const auto *Param : OuterCtor->parameters()) { |
2301 | assert(getContext().hasSameUnqualifiedType( |
2302 | OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), |
2303 | Param->getType())); |
2304 | EmitDelegateCallArg(args&: Args, param: Param, loc: E->getLocation()); |
2305 | |
2306 | // Forward __attribute__(pass_object_size). |
2307 | if (Param->hasAttr<PassObjectSizeAttr>()) { |
2308 | auto *POSParam = SizeArguments[Param]; |
2309 | assert(POSParam && "missing pass_object_size value for forwarding" ); |
2310 | EmitDelegateCallArg(args&: Args, param: POSParam, loc: E->getLocation()); |
2311 | } |
2312 | } |
2313 | } |
2314 | |
2315 | EmitCXXConstructorCall(D, Type: Ctor_Base, ForVirtualBase, /*Delegating*/false, |
2316 | This, Args, Overlap: AggValueSlot::MayOverlap, |
2317 | Loc: E->getLocation(), /*NewPointerIsChecked*/true); |
2318 | } |
2319 | |
2320 | void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( |
2321 | const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, |
2322 | bool Delegating, CallArgList &Args) { |
2323 | GlobalDecl GD(Ctor, CtorType); |
2324 | InlinedInheritingConstructorScope Scope(*this, GD); |
2325 | ApplyInlineDebugLocation DebugScope(*this, GD); |
2326 | RunCleanupsScope RunCleanups(*this); |
2327 | |
2328 | // Save the arguments to be passed to the inherited constructor. |
2329 | CXXInheritedCtorInitExprArgs = Args; |
2330 | |
2331 | FunctionArgList Params; |
2332 | QualType RetType = BuildFunctionArgList(GD: CurGD, Args&: Params); |
2333 | FnRetTy = RetType; |
2334 | |
2335 | // Insert any ABI-specific implicit constructor arguments. |
2336 | CGM.getCXXABI().addImplicitConstructorArgs(CGF&: *this, D: Ctor, Type: CtorType, |
2337 | ForVirtualBase, Delegating, Args); |
2338 | |
2339 | // Emit a simplified prolog. We only need to emit the implicit params. |
2340 | assert(Args.size() >= Params.size() && "too few arguments for call" ); |
2341 | for (unsigned I = 0, N = Args.size(); I != N; ++I) { |
2342 | if (I < Params.size() && isa<ImplicitParamDecl>(Val: Params[I])) { |
2343 | const RValue &RV = Args[I].getRValue(CGF&: *this); |
2344 | assert(!RV.isComplex() && "complex indirect params not supported" ); |
2345 | ParamValue Val = RV.isScalar() |
2346 | ? ParamValue::forDirect(value: RV.getScalarVal()) |
2347 | : ParamValue::forIndirect(addr: RV.getAggregateAddress()); |
2348 | EmitParmDecl(D: *Params[I], Arg: Val, ArgNo: I + 1); |
2349 | } |
2350 | } |
2351 | |
2352 | // Create a return value slot if the ABI implementation wants one. |
2353 | // FIXME: This is dumb, we should ask the ABI not to try to set the return |
2354 | // value instead. |
2355 | if (!RetType->isVoidType()) |
2356 | ReturnValue = CreateIRTemp(T: RetType, Name: "retval.inhctor" ); |
2357 | |
2358 | CGM.getCXXABI().EmitInstanceFunctionProlog(CGF&: *this); |
2359 | CXXThisValue = CXXABIThisValue; |
2360 | |
2361 | // Directly emit the constructor initializers. |
2362 | EmitCtorPrologue(CD: Ctor, CtorType, Args&: Params); |
2363 | } |
2364 | |
2365 | void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { |
2366 | llvm::Value *VTableGlobal = |
2367 | CGM.getCXXABI().getVTableAddressPoint(Base: Vptr.Base, VTableClass: Vptr.VTableClass); |
2368 | if (!VTableGlobal) |
2369 | return; |
2370 | |
2371 | // We can just use the base offset in the complete class. |
2372 | CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); |
2373 | |
2374 | if (!NonVirtualOffset.isZero()) |
2375 | This = |
2376 | ApplyNonVirtualAndVirtualOffset(CGF&: *this, addr: This, nonVirtualOffset: NonVirtualOffset, virtualOffset: nullptr, |
2377 | derivedClass: Vptr.VTableClass, nearestVBase: Vptr.NearestVBase); |
2378 | |
2379 | llvm::Value *VPtrValue = |
2380 | GetVTablePtr(This, VTableTy: VTableGlobal->getType(), VTableClass: Vptr.VTableClass); |
2381 | llvm::Value *Cmp = |
2382 | Builder.CreateICmpEQ(LHS: VPtrValue, RHS: VTableGlobal, Name: "cmp.vtables" ); |
2383 | Builder.CreateAssumption(Cond: Cmp); |
2384 | } |
2385 | |
2386 | void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, |
2387 | Address This) { |
2388 | if (CGM.getCXXABI().doStructorsInitializeVPtrs(VTableClass: ClassDecl)) |
2389 | for (const VPtr &Vptr : getVTablePointers(VTableClass: ClassDecl)) |
2390 | EmitVTableAssumptionLoad(Vptr, This); |
2391 | } |
2392 | |
2393 | void |
2394 | CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, |
2395 | Address This, Address Src, |
2396 | const CXXConstructExpr *E) { |
2397 | const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); |
2398 | |
2399 | CallArgList Args; |
2400 | |
2401 | // Push the this ptr. |
2402 | Args.add(rvalue: RValue::get(V: getAsNaturalPointerTo(Addr: This, PointeeType: D->getThisType())), |
2403 | type: D->getThisType()); |
2404 | |
2405 | // Push the src ptr. |
2406 | QualType QT = *(FPT->param_type_begin()); |
2407 | llvm::Type *t = CGM.getTypes().ConvertType(T: QT); |
2408 | llvm::Value *Val = getAsNaturalPointerTo(Addr: Src, PointeeType: D->getThisType()); |
2409 | llvm::Value *SrcVal = Builder.CreateBitCast(V: Val, DestTy: t); |
2410 | Args.add(rvalue: RValue::get(V: SrcVal), type: QT); |
2411 | |
2412 | // Skip over first argument (Src). |
2413 | EmitCallArgs(Args, Prototype: FPT, ArgRange: drop_begin(RangeOrContainer: E->arguments(), N: 1), AC: E->getConstructor(), |
2414 | /*ParamsToSkip*/ 1); |
2415 | |
2416 | EmitCXXConstructorCall(D, Type: Ctor_Complete, /*ForVirtualBase*/false, |
2417 | /*Delegating*/false, This, Args, |
2418 | Overlap: AggValueSlot::MayOverlap, Loc: E->getExprLoc(), |
2419 | /*NewPointerIsChecked*/false); |
2420 | } |
2421 | |
2422 | void |
2423 | CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, |
2424 | CXXCtorType CtorType, |
2425 | const FunctionArgList &Args, |
2426 | SourceLocation Loc) { |
2427 | CallArgList DelegateArgs; |
2428 | |
2429 | FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); |
2430 | assert(I != E && "no parameters to constructor" ); |
2431 | |
2432 | // this |
2433 | Address This = LoadCXXThisAddress(); |
2434 | DelegateArgs.add(rvalue: RValue::get(V: getAsNaturalPointerTo( |
2435 | Addr: This, PointeeType: (*I)->getType()->getPointeeType())), |
2436 | type: (*I)->getType()); |
2437 | ++I; |
2438 | |
2439 | // FIXME: The location of the VTT parameter in the parameter list is |
2440 | // specific to the Itanium ABI and shouldn't be hardcoded here. |
2441 | if (CGM.getCXXABI().NeedsVTTParameter(GD: CurGD)) { |
2442 | assert(I != E && "cannot skip vtt parameter, already done with args" ); |
2443 | assert((*I)->getType()->isPointerType() && |
2444 | "skipping parameter not of vtt type" ); |
2445 | ++I; |
2446 | } |
2447 | |
2448 | // Explicit arguments. |
2449 | for (; I != E; ++I) { |
2450 | const VarDecl *param = *I; |
2451 | // FIXME: per-argument source location |
2452 | EmitDelegateCallArg(args&: DelegateArgs, param, loc: Loc); |
2453 | } |
2454 | |
2455 | EmitCXXConstructorCall(D: Ctor, Type: CtorType, /*ForVirtualBase=*/false, |
2456 | /*Delegating=*/true, This, Args&: DelegateArgs, |
2457 | Overlap: AggValueSlot::MayOverlap, Loc, |
2458 | /*NewPointerIsChecked=*/true); |
2459 | } |
2460 | |
2461 | namespace { |
2462 | struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { |
2463 | const CXXDestructorDecl *Dtor; |
2464 | Address Addr; |
2465 | CXXDtorType Type; |
2466 | |
2467 | CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, |
2468 | CXXDtorType Type) |
2469 | : Dtor(D), Addr(Addr), Type(Type) {} |
2470 | |
2471 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
2472 | // We are calling the destructor from within the constructor. |
2473 | // Therefore, "this" should have the expected type. |
2474 | QualType ThisTy = Dtor->getFunctionObjectParameterType(); |
2475 | CGF.EmitCXXDestructorCall(D: Dtor, Type, /*ForVirtualBase=*/false, |
2476 | /*Delegating=*/true, This: Addr, ThisTy); |
2477 | } |
2478 | }; |
2479 | } // end anonymous namespace |
2480 | |
2481 | void |
2482 | CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, |
2483 | const FunctionArgList &Args) { |
2484 | assert(Ctor->isDelegatingConstructor()); |
2485 | |
2486 | Address ThisPtr = LoadCXXThisAddress(); |
2487 | |
2488 | AggValueSlot AggSlot = |
2489 | AggValueSlot::forAddr(addr: ThisPtr, quals: Qualifiers(), |
2490 | isDestructed: AggValueSlot::IsDestructed, |
2491 | needsGC: AggValueSlot::DoesNotNeedGCBarriers, |
2492 | isAliased: AggValueSlot::IsNotAliased, |
2493 | mayOverlap: AggValueSlot::MayOverlap, |
2494 | isZeroed: AggValueSlot::IsNotZeroed, |
2495 | // Checks are made by the code that calls constructor. |
2496 | isChecked: AggValueSlot::IsSanitizerChecked); |
2497 | |
2498 | EmitAggExpr(E: Ctor->init_begin()[0]->getInit(), AS: AggSlot); |
2499 | |
2500 | const CXXRecordDecl *ClassDecl = Ctor->getParent(); |
2501 | if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { |
2502 | CXXDtorType Type = |
2503 | CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; |
2504 | |
2505 | EHStack.pushCleanup<CallDelegatingCtorDtor>(Kind: EHCleanup, |
2506 | A: ClassDecl->getDestructor(), |
2507 | A: ThisPtr, A: Type); |
2508 | } |
2509 | } |
2510 | |
2511 | void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, |
2512 | CXXDtorType Type, |
2513 | bool ForVirtualBase, |
2514 | bool Delegating, Address This, |
2515 | QualType ThisTy) { |
2516 | CGM.getCXXABI().EmitDestructorCall(CGF&: *this, DD, Type, ForVirtualBase, |
2517 | Delegating, This, ThisTy); |
2518 | } |
2519 | |
2520 | namespace { |
2521 | struct CallLocalDtor final : EHScopeStack::Cleanup { |
2522 | const CXXDestructorDecl *Dtor; |
2523 | Address Addr; |
2524 | QualType Ty; |
2525 | |
2526 | CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty) |
2527 | : Dtor(D), Addr(Addr), Ty(Ty) {} |
2528 | |
2529 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
2530 | CGF.EmitCXXDestructorCall(DD: Dtor, Type: Dtor_Complete, |
2531 | /*ForVirtualBase=*/false, |
2532 | /*Delegating=*/false, This: Addr, ThisTy: Ty); |
2533 | } |
2534 | }; |
2535 | } // end anonymous namespace |
2536 | |
2537 | void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, |
2538 | QualType T, Address Addr) { |
2539 | EHStack.pushCleanup<CallLocalDtor>(Kind: NormalAndEHCleanup, A: D, A: Addr, A: T); |
2540 | } |
2541 | |
2542 | void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { |
2543 | CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); |
2544 | if (!ClassDecl) return; |
2545 | if (ClassDecl->hasTrivialDestructor()) return; |
2546 | |
2547 | const CXXDestructorDecl *D = ClassDecl->getDestructor(); |
2548 | assert(D && D->isUsed() && "destructor not marked as used!" ); |
2549 | PushDestructorCleanup(D, T, Addr); |
2550 | } |
2551 | |
2552 | void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { |
2553 | // Compute the address point. |
2554 | llvm::Value *VTableAddressPoint = |
2555 | CGM.getCXXABI().getVTableAddressPointInStructor( |
2556 | CGF&: *this, RD: Vptr.VTableClass, Base: Vptr.Base, NearestVBase: Vptr.NearestVBase); |
2557 | |
2558 | if (!VTableAddressPoint) |
2559 | return; |
2560 | |
2561 | // Compute where to store the address point. |
2562 | llvm::Value *VirtualOffset = nullptr; |
2563 | CharUnits NonVirtualOffset = CharUnits::Zero(); |
2564 | |
2565 | if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(CGF&: *this, Vptr)) { |
2566 | // We need to use the virtual base offset offset because the virtual base |
2567 | // might have a different offset in the most derived class. |
2568 | |
2569 | VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( |
2570 | CGF&: *this, This: LoadCXXThisAddress(), ClassDecl: Vptr.VTableClass, BaseClassDecl: Vptr.NearestVBase); |
2571 | NonVirtualOffset = Vptr.OffsetFromNearestVBase; |
2572 | } else { |
2573 | // We can just use the base offset in the complete class. |
2574 | NonVirtualOffset = Vptr.Base.getBaseOffset(); |
2575 | } |
2576 | |
2577 | // Apply the offsets. |
2578 | Address VTableField = LoadCXXThisAddress(); |
2579 | if (!NonVirtualOffset.isZero() || VirtualOffset) |
2580 | VTableField = ApplyNonVirtualAndVirtualOffset( |
2581 | CGF&: *this, addr: VTableField, nonVirtualOffset: NonVirtualOffset, virtualOffset: VirtualOffset, derivedClass: Vptr.VTableClass, |
2582 | nearestVBase: Vptr.NearestVBase); |
2583 | |
2584 | // Finally, store the address point. Use the same LLVM types as the field to |
2585 | // support optimization. |
2586 | unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace(); |
2587 | llvm::Type *PtrTy = llvm::PointerType::get(C&: CGM.getLLVMContext(), AddressSpace: GlobalsAS); |
2588 | // vtable field is derived from `this` pointer, therefore they should be in |
2589 | // the same addr space. Note that this might not be LLVM address space 0. |
2590 | VTableField = VTableField.withElementType(ElemTy: PtrTy); |
2591 | |
2592 | if (auto AuthenticationInfo = CGM.getVTablePointerAuthInfo( |
2593 | Context: this, Record: Vptr.Base.getBase(), StorageAddress: VTableField.emitRawPointer(CGF&: *this))) |
2594 | VTableAddressPoint = |
2595 | EmitPointerAuthSign(Info: *AuthenticationInfo, Pointer: VTableAddressPoint); |
2596 | |
2597 | llvm::StoreInst *Store = Builder.CreateStore(Val: VTableAddressPoint, Addr: VTableField); |
2598 | TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrType: PtrTy); |
2599 | CGM.DecorateInstructionWithTBAA(Inst: Store, TBAAInfo); |
2600 | if (CGM.getCodeGenOpts().OptimizationLevel > 0 && |
2601 | CGM.getCodeGenOpts().StrictVTablePointers) |
2602 | CGM.DecorateInstructionWithInvariantGroup(I: Store, RD: Vptr.VTableClass); |
2603 | } |
2604 | |
2605 | CodeGenFunction::VPtrsVector |
2606 | CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { |
2607 | CodeGenFunction::VPtrsVector VPtrsResult; |
2608 | VisitedVirtualBasesSetTy VBases; |
2609 | getVTablePointers(Base: BaseSubobject(VTableClass, CharUnits::Zero()), |
2610 | /*NearestVBase=*/nullptr, |
2611 | /*OffsetFromNearestVBase=*/CharUnits::Zero(), |
2612 | /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, |
2613 | vptrs&: VPtrsResult); |
2614 | return VPtrsResult; |
2615 | } |
2616 | |
2617 | void CodeGenFunction::getVTablePointers(BaseSubobject Base, |
2618 | const CXXRecordDecl *NearestVBase, |
2619 | CharUnits OffsetFromNearestVBase, |
2620 | bool BaseIsNonVirtualPrimaryBase, |
2621 | const CXXRecordDecl *VTableClass, |
2622 | VisitedVirtualBasesSetTy &VBases, |
2623 | VPtrsVector &Vptrs) { |
2624 | // If this base is a non-virtual primary base the address point has already |
2625 | // been set. |
2626 | if (!BaseIsNonVirtualPrimaryBase) { |
2627 | // Initialize the vtable pointer for this base. |
2628 | VPtr Vptr = {.Base: Base, .NearestVBase: NearestVBase, .OffsetFromNearestVBase: OffsetFromNearestVBase, .VTableClass: VTableClass}; |
2629 | Vptrs.push_back(Elt: Vptr); |
2630 | } |
2631 | |
2632 | const CXXRecordDecl *RD = Base.getBase(); |
2633 | |
2634 | // Traverse bases. |
2635 | for (const auto &I : RD->bases()) { |
2636 | auto *BaseDecl = |
2637 | cast<CXXRecordDecl>(Val: I.getType()->castAs<RecordType>()->getDecl()); |
2638 | |
2639 | // Ignore classes without a vtable. |
2640 | if (!BaseDecl->isDynamicClass()) |
2641 | continue; |
2642 | |
2643 | CharUnits BaseOffset; |
2644 | CharUnits BaseOffsetFromNearestVBase; |
2645 | bool BaseDeclIsNonVirtualPrimaryBase; |
2646 | |
2647 | if (I.isVirtual()) { |
2648 | // Check if we've visited this virtual base before. |
2649 | if (!VBases.insert(Ptr: BaseDecl).second) |
2650 | continue; |
2651 | |
2652 | const ASTRecordLayout &Layout = |
2653 | getContext().getASTRecordLayout(D: VTableClass); |
2654 | |
2655 | BaseOffset = Layout.getVBaseClassOffset(VBase: BaseDecl); |
2656 | BaseOffsetFromNearestVBase = CharUnits::Zero(); |
2657 | BaseDeclIsNonVirtualPrimaryBase = false; |
2658 | } else { |
2659 | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D: RD); |
2660 | |
2661 | BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(Base: BaseDecl); |
2662 | BaseOffsetFromNearestVBase = |
2663 | OffsetFromNearestVBase + Layout.getBaseClassOffset(Base: BaseDecl); |
2664 | BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; |
2665 | } |
2666 | |
2667 | getVTablePointers( |
2668 | Base: BaseSubobject(BaseDecl, BaseOffset), |
2669 | NearestVBase: I.isVirtual() ? BaseDecl : NearestVBase, OffsetFromNearestVBase: BaseOffsetFromNearestVBase, |
2670 | BaseIsNonVirtualPrimaryBase: BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); |
2671 | } |
2672 | } |
2673 | |
2674 | void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { |
2675 | // Ignore classes without a vtable. |
2676 | if (!RD->isDynamicClass()) |
2677 | return; |
2678 | |
2679 | // Initialize the vtable pointers for this class and all of its bases. |
2680 | if (CGM.getCXXABI().doStructorsInitializeVPtrs(VTableClass: RD)) |
2681 | for (const VPtr &Vptr : getVTablePointers(VTableClass: RD)) |
2682 | InitializeVTablePointer(Vptr); |
2683 | |
2684 | if (RD->getNumVBases()) |
2685 | CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(CGF&: *this, RD); |
2686 | } |
2687 | |
2688 | llvm::Value *CodeGenFunction::GetVTablePtr(Address This, |
2689 | llvm::Type *VTableTy, |
2690 | const CXXRecordDecl *RD, |
2691 | VTableAuthMode AuthMode) { |
2692 | Address VTablePtrSrc = This.withElementType(ElemTy: VTableTy); |
2693 | llvm::Instruction *VTable = Builder.CreateLoad(Addr: VTablePtrSrc, Name: "vtable" ); |
2694 | TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrType: VTableTy); |
2695 | CGM.DecorateInstructionWithTBAA(Inst: VTable, TBAAInfo); |
2696 | |
2697 | if (auto AuthenticationInfo = |
2698 | CGM.getVTablePointerAuthInfo(Context: this, Record: RD, StorageAddress: This.emitRawPointer(CGF&: *this))) { |
2699 | if (AuthMode != VTableAuthMode::UnsafeUbsanStrip) { |
2700 | VTable = cast<llvm::Instruction>( |
2701 | Val: EmitPointerAuthAuth(Info: *AuthenticationInfo, Pointer: VTable)); |
2702 | if (AuthMode == VTableAuthMode::MustTrap) { |
2703 | // This is clearly suboptimal but until we have an ability |
2704 | // to rely on the authentication intrinsic trapping and force |
2705 | // an authentication to occur we don't really have a choice. |
2706 | VTable = |
2707 | cast<llvm::Instruction>(Val: Builder.CreateBitCast(V: VTable, DestTy: Int8PtrTy)); |
2708 | Builder.CreateLoad(Addr: RawAddress(VTable, Int8Ty, CGM.getPointerAlign()), |
2709 | /* IsVolatile */ true); |
2710 | } |
2711 | } else { |
2712 | VTable = cast<llvm::Instruction>(Val: EmitPointerAuthAuth( |
2713 | Info: CGPointerAuthInfo(0, PointerAuthenticationMode::Strip, false, false, |
2714 | nullptr), |
2715 | Pointer: VTable)); |
2716 | } |
2717 | } |
2718 | |
2719 | if (CGM.getCodeGenOpts().OptimizationLevel > 0 && |
2720 | CGM.getCodeGenOpts().StrictVTablePointers) |
2721 | CGM.DecorateInstructionWithInvariantGroup(I: VTable, RD); |
2722 | |
2723 | return VTable; |
2724 | } |
2725 | |
2726 | // If a class has a single non-virtual base and does not introduce or override |
2727 | // virtual member functions or fields, it will have the same layout as its base. |
2728 | // This function returns the least derived such class. |
2729 | // |
2730 | // Casting an instance of a base class to such a derived class is technically |
2731 | // undefined behavior, but it is a relatively common hack for introducing member |
2732 | // functions on class instances with specific properties (e.g. llvm::Operator) |
2733 | // that works under most compilers and should not have security implications, so |
2734 | // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. |
2735 | static const CXXRecordDecl * |
2736 | LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { |
2737 | if (!RD->field_empty()) |
2738 | return RD; |
2739 | |
2740 | if (RD->getNumVBases() != 0) |
2741 | return RD; |
2742 | |
2743 | if (RD->getNumBases() != 1) |
2744 | return RD; |
2745 | |
2746 | for (const CXXMethodDecl *MD : RD->methods()) { |
2747 | if (MD->isVirtual()) { |
2748 | // Virtual member functions are only ok if they are implicit destructors |
2749 | // because the implicit destructor will have the same semantics as the |
2750 | // base class's destructor if no fields are added. |
2751 | if (isa<CXXDestructorDecl>(Val: MD) && MD->isImplicit()) |
2752 | continue; |
2753 | return RD; |
2754 | } |
2755 | } |
2756 | |
2757 | return LeastDerivedClassWithSameLayout( |
2758 | RD: RD->bases_begin()->getType()->getAsCXXRecordDecl()); |
2759 | } |
2760 | |
2761 | void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, |
2762 | llvm::Value *VTable, |
2763 | SourceLocation Loc) { |
2764 | if (SanOpts.has(K: SanitizerKind::CFIVCall)) |
2765 | EmitVTablePtrCheckForCall(RD, VTable, TCK: CodeGenFunction::CFITCK_VCall, Loc); |
2766 | else if (CGM.getCodeGenOpts().WholeProgramVTables && |
2767 | // Don't insert type test assumes if we are forcing public |
2768 | // visibility. |
2769 | !CGM.AlwaysHasLTOVisibilityPublic(RD)) { |
2770 | QualType Ty = QualType(RD->getTypeForDecl(), 0); |
2771 | llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(T: Ty); |
2772 | llvm::Value *TypeId = |
2773 | llvm::MetadataAsValue::get(Context&: CGM.getLLVMContext(), MD); |
2774 | |
2775 | // If we already know that the call has hidden LTO visibility, emit |
2776 | // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD |
2777 | // will convert to @llvm.type.test() if we assert at link time that we have |
2778 | // whole program visibility. |
2779 | llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD) |
2780 | ? llvm::Intrinsic::type_test |
2781 | : llvm::Intrinsic::public_type_test; |
2782 | llvm::Value *TypeTest = |
2783 | Builder.CreateCall(Callee: CGM.getIntrinsic(IID), Args: {VTable, TypeId}); |
2784 | Builder.CreateCall(Callee: CGM.getIntrinsic(IID: llvm::Intrinsic::assume), Args: TypeTest); |
2785 | } |
2786 | } |
2787 | |
2788 | void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, |
2789 | llvm::Value *VTable, |
2790 | CFITypeCheckKind TCK, |
2791 | SourceLocation Loc) { |
2792 | if (!SanOpts.has(K: SanitizerKind::CFICastStrict)) |
2793 | RD = LeastDerivedClassWithSameLayout(RD); |
2794 | |
2795 | EmitVTablePtrCheck(RD, VTable, TCK, Loc); |
2796 | } |
2797 | |
2798 | void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, Address Derived, |
2799 | bool MayBeNull, |
2800 | CFITypeCheckKind TCK, |
2801 | SourceLocation Loc) { |
2802 | if (!getLangOpts().CPlusPlus) |
2803 | return; |
2804 | |
2805 | auto *ClassTy = T->getAs<RecordType>(); |
2806 | if (!ClassTy) |
2807 | return; |
2808 | |
2809 | const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Val: ClassTy->getDecl()); |
2810 | |
2811 | if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) |
2812 | return; |
2813 | |
2814 | if (!SanOpts.has(K: SanitizerKind::CFICastStrict)) |
2815 | ClassDecl = LeastDerivedClassWithSameLayout(RD: ClassDecl); |
2816 | |
2817 | llvm::BasicBlock *ContBlock = nullptr; |
2818 | |
2819 | if (MayBeNull) { |
2820 | llvm::Value *DerivedNotNull = |
2821 | Builder.CreateIsNotNull(Arg: Derived.emitRawPointer(CGF&: *this), Name: "cast.nonnull" ); |
2822 | |
2823 | llvm::BasicBlock *CheckBlock = createBasicBlock(name: "cast.check" ); |
2824 | ContBlock = createBasicBlock(name: "cast.cont" ); |
2825 | |
2826 | Builder.CreateCondBr(Cond: DerivedNotNull, True: CheckBlock, False: ContBlock); |
2827 | |
2828 | EmitBlock(BB: CheckBlock); |
2829 | } |
2830 | |
2831 | llvm::Value *VTable; |
2832 | std::tie(args&: VTable, args&: ClassDecl) = |
2833 | CGM.getCXXABI().LoadVTablePtr(CGF&: *this, This: Derived, RD: ClassDecl); |
2834 | |
2835 | EmitVTablePtrCheck(RD: ClassDecl, VTable, TCK, Loc); |
2836 | |
2837 | if (MayBeNull) { |
2838 | Builder.CreateBr(Dest: ContBlock); |
2839 | EmitBlock(BB: ContBlock); |
2840 | } |
2841 | } |
2842 | |
2843 | void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, |
2844 | llvm::Value *VTable, |
2845 | CFITypeCheckKind TCK, |
2846 | SourceLocation Loc) { |
2847 | if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && |
2848 | !CGM.HasHiddenLTOVisibility(RD)) |
2849 | return; |
2850 | |
2851 | SanitizerMask M; |
2852 | llvm::SanitizerStatKind SSK; |
2853 | switch (TCK) { |
2854 | case CFITCK_VCall: |
2855 | M = SanitizerKind::CFIVCall; |
2856 | SSK = llvm::SanStat_CFI_VCall; |
2857 | break; |
2858 | case CFITCK_NVCall: |
2859 | M = SanitizerKind::CFINVCall; |
2860 | SSK = llvm::SanStat_CFI_NVCall; |
2861 | break; |
2862 | case CFITCK_DerivedCast: |
2863 | M = SanitizerKind::CFIDerivedCast; |
2864 | SSK = llvm::SanStat_CFI_DerivedCast; |
2865 | break; |
2866 | case CFITCK_UnrelatedCast: |
2867 | M = SanitizerKind::CFIUnrelatedCast; |
2868 | SSK = llvm::SanStat_CFI_UnrelatedCast; |
2869 | break; |
2870 | case CFITCK_ICall: |
2871 | case CFITCK_NVMFCall: |
2872 | case CFITCK_VMFCall: |
2873 | llvm_unreachable("unexpected sanitizer kind" ); |
2874 | } |
2875 | |
2876 | std::string TypeName = RD->getQualifiedNameAsString(); |
2877 | if (getContext().getNoSanitizeList().containsType(Mask: M, MangledTypeName: TypeName)) |
2878 | return; |
2879 | |
2880 | SanitizerScope SanScope(this); |
2881 | EmitSanitizerStatReport(SSK); |
2882 | |
2883 | llvm::Metadata *MD = |
2884 | CGM.CreateMetadataIdentifierForType(T: QualType(RD->getTypeForDecl(), 0)); |
2885 | llvm::Value *TypeId = llvm::MetadataAsValue::get(Context&: getLLVMContext(), MD); |
2886 | |
2887 | llvm::Value *TypeTest = Builder.CreateCall( |
2888 | Callee: CGM.getIntrinsic(IID: llvm::Intrinsic::type_test), Args: {VTable, TypeId}); |
2889 | |
2890 | llvm::Constant *StaticData[] = { |
2891 | llvm::ConstantInt::get(Ty: Int8Ty, V: TCK), |
2892 | EmitCheckSourceLocation(Loc), |
2893 | EmitCheckTypeDescriptor(T: QualType(RD->getTypeForDecl(), 0)), |
2894 | }; |
2895 | |
2896 | auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); |
2897 | if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { |
2898 | EmitCfiSlowPathCheck(Kind: M, Cond: TypeTest, TypeId: CrossDsoTypeId, Ptr: VTable, StaticArgs: StaticData); |
2899 | return; |
2900 | } |
2901 | |
2902 | if (CGM.getCodeGenOpts().SanitizeTrap.has(K: M)) { |
2903 | EmitTrapCheck(Checked: TypeTest, CheckHandlerID: SanitizerHandler::CFICheckFail); |
2904 | return; |
2905 | } |
2906 | |
2907 | llvm::Value *AllVtables = llvm::MetadataAsValue::get( |
2908 | Context&: CGM.getLLVMContext(), |
2909 | MD: llvm::MDString::get(Context&: CGM.getLLVMContext(), Str: "all-vtables" )); |
2910 | llvm::Value *ValidVtable = Builder.CreateCall( |
2911 | Callee: CGM.getIntrinsic(IID: llvm::Intrinsic::type_test), Args: {VTable, AllVtables}); |
2912 | EmitCheck(Checked: std::make_pair(x&: TypeTest, y&: M), Check: SanitizerHandler::CFICheckFail, |
2913 | StaticArgs: StaticData, DynamicArgs: {VTable, ValidVtable}); |
2914 | } |
2915 | |
2916 | bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { |
2917 | if (!CGM.getCodeGenOpts().WholeProgramVTables || |
2918 | !CGM.HasHiddenLTOVisibility(RD)) |
2919 | return false; |
2920 | |
2921 | if (CGM.getCodeGenOpts().VirtualFunctionElimination) |
2922 | return true; |
2923 | |
2924 | if (!SanOpts.has(K: SanitizerKind::CFIVCall) || |
2925 | !CGM.getCodeGenOpts().SanitizeTrap.has(K: SanitizerKind::CFIVCall)) |
2926 | return false; |
2927 | |
2928 | std::string TypeName = RD->getQualifiedNameAsString(); |
2929 | return !getContext().getNoSanitizeList().containsType(Mask: SanitizerKind::CFIVCall, |
2930 | MangledTypeName: TypeName); |
2931 | } |
2932 | |
2933 | llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( |
2934 | const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy, |
2935 | uint64_t VTableByteOffset) { |
2936 | SanitizerScope SanScope(this); |
2937 | |
2938 | EmitSanitizerStatReport(SSK: llvm::SanStat_CFI_VCall); |
2939 | |
2940 | llvm::Metadata *MD = |
2941 | CGM.CreateMetadataIdentifierForType(T: QualType(RD->getTypeForDecl(), 0)); |
2942 | llvm::Value *TypeId = llvm::MetadataAsValue::get(Context&: CGM.getLLVMContext(), MD); |
2943 | |
2944 | llvm::Value *CheckedLoad = Builder.CreateCall( |
2945 | Callee: CGM.getIntrinsic(IID: llvm::Intrinsic::type_checked_load), |
2946 | Args: {VTable, llvm::ConstantInt::get(Ty: Int32Ty, V: VTableByteOffset), TypeId}); |
2947 | llvm::Value *CheckResult = Builder.CreateExtractValue(Agg: CheckedLoad, Idxs: 1); |
2948 | |
2949 | std::string TypeName = RD->getQualifiedNameAsString(); |
2950 | if (SanOpts.has(K: SanitizerKind::CFIVCall) && |
2951 | !getContext().getNoSanitizeList().containsType(Mask: SanitizerKind::CFIVCall, |
2952 | MangledTypeName: TypeName)) { |
2953 | EmitCheck(Checked: std::make_pair(x&: CheckResult, y: SanitizerKind::CFIVCall), |
2954 | Check: SanitizerHandler::CFICheckFail, StaticArgs: {}, DynamicArgs: {}); |
2955 | } |
2956 | |
2957 | return Builder.CreateBitCast(V: Builder.CreateExtractValue(Agg: CheckedLoad, Idxs: 0), |
2958 | DestTy: VTableTy); |
2959 | } |
2960 | |
2961 | void CodeGenFunction::EmitForwardingCallToLambda( |
2962 | const CXXMethodDecl *callOperator, CallArgList &callArgs, |
2963 | const CGFunctionInfo *calleeFnInfo, llvm::Constant *calleePtr) { |
2964 | // Get the address of the call operator. |
2965 | if (!calleeFnInfo) |
2966 | calleeFnInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(MD: callOperator); |
2967 | |
2968 | if (!calleePtr) |
2969 | calleePtr = |
2970 | CGM.GetAddrOfFunction(GD: GlobalDecl(callOperator), |
2971 | Ty: CGM.getTypes().GetFunctionType(Info: *calleeFnInfo)); |
2972 | |
2973 | // Prepare the return slot. |
2974 | const FunctionProtoType *FPT = |
2975 | callOperator->getType()->castAs<FunctionProtoType>(); |
2976 | QualType resultType = FPT->getReturnType(); |
2977 | ReturnValueSlot returnSlot; |
2978 | if (!resultType->isVoidType() && |
2979 | calleeFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && |
2980 | !hasScalarEvaluationKind(T: calleeFnInfo->getReturnType())) |
2981 | returnSlot = |
2982 | ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(), |
2983 | /*IsUnused=*/false, /*IsExternallyDestructed=*/true); |
2984 | |
2985 | // We don't need to separately arrange the call arguments because |
2986 | // the call can't be variadic anyway --- it's impossible to forward |
2987 | // variadic arguments. |
2988 | |
2989 | // Now emit our call. |
2990 | auto callee = CGCallee::forDirect(functionPtr: calleePtr, abstractInfo: GlobalDecl(callOperator)); |
2991 | RValue RV = EmitCall(CallInfo: *calleeFnInfo, Callee: callee, ReturnValue: returnSlot, Args: callArgs); |
2992 | |
2993 | // If necessary, copy the returned value into the slot. |
2994 | if (!resultType->isVoidType() && returnSlot.isNull()) { |
2995 | if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { |
2996 | RV = RValue::get(V: EmitARCRetainAutoreleasedReturnValue(value: RV.getScalarVal())); |
2997 | } |
2998 | EmitReturnOfRValue(RV, Ty: resultType); |
2999 | } else |
3000 | EmitBranchThroughCleanup(Dest: ReturnBlock); |
3001 | } |
3002 | |
3003 | void CodeGenFunction::EmitLambdaBlockInvokeBody() { |
3004 | const BlockDecl *BD = BlockInfo->getBlockDecl(); |
3005 | const VarDecl *variable = BD->capture_begin()->getVariable(); |
3006 | const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); |
3007 | const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); |
3008 | |
3009 | if (CallOp->isVariadic()) { |
3010 | // FIXME: Making this work correctly is nasty because it requires either |
3011 | // cloning the body of the call operator or making the call operator |
3012 | // forward. |
3013 | CGM.ErrorUnsupported(D: CurCodeDecl, Type: "lambda conversion to variadic function" ); |
3014 | return; |
3015 | } |
3016 | |
3017 | // Start building arguments for forwarding call |
3018 | CallArgList CallArgs; |
3019 | |
3020 | QualType ThisType = getContext().getPointerType(T: getContext().getRecordType(Decl: Lambda)); |
3021 | Address ThisPtr = GetAddrOfBlockDecl(var: variable); |
3022 | CallArgs.add(rvalue: RValue::get(V: getAsNaturalPointerTo(Addr: ThisPtr, PointeeType: ThisType)), type: ThisType); |
3023 | |
3024 | // Add the rest of the parameters. |
3025 | for (auto *param : BD->parameters()) |
3026 | EmitDelegateCallArg(args&: CallArgs, param, loc: param->getBeginLoc()); |
3027 | |
3028 | assert(!Lambda->isGenericLambda() && |
3029 | "generic lambda interconversion to block not implemented" ); |
3030 | EmitForwardingCallToLambda(callOperator: CallOp, callArgs&: CallArgs); |
3031 | } |
3032 | |
3033 | void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { |
3034 | if (MD->isVariadic()) { |
3035 | // FIXME: Making this work correctly is nasty because it requires either |
3036 | // cloning the body of the call operator or making the call operator |
3037 | // forward. |
3038 | CGM.ErrorUnsupported(D: MD, Type: "lambda conversion to variadic function" ); |
3039 | return; |
3040 | } |
3041 | |
3042 | const CXXRecordDecl *Lambda = MD->getParent(); |
3043 | |
3044 | // Start building arguments for forwarding call |
3045 | CallArgList CallArgs; |
3046 | |
3047 | QualType LambdaType = getContext().getRecordType(Decl: Lambda); |
3048 | QualType ThisType = getContext().getPointerType(T: LambdaType); |
3049 | Address ThisPtr = CreateMemTemp(T: LambdaType, Name: "unused.capture" ); |
3050 | CallArgs.add(rvalue: RValue::get(V: ThisPtr.emitRawPointer(CGF&: *this)), type: ThisType); |
3051 | |
3052 | EmitLambdaDelegatingInvokeBody(MD, CallArgs); |
3053 | } |
3054 | |
3055 | void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD, |
3056 | CallArgList &CallArgs) { |
3057 | // Add the rest of the forwarded parameters. |
3058 | for (auto *Param : MD->parameters()) |
3059 | EmitDelegateCallArg(args&: CallArgs, param: Param, loc: Param->getBeginLoc()); |
3060 | |
3061 | const CXXRecordDecl *Lambda = MD->getParent(); |
3062 | const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); |
3063 | // For a generic lambda, find the corresponding call operator specialization |
3064 | // to which the call to the static-invoker shall be forwarded. |
3065 | if (Lambda->isGenericLambda()) { |
3066 | assert(MD->isFunctionTemplateSpecialization()); |
3067 | const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); |
3068 | FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); |
3069 | void *InsertPos = nullptr; |
3070 | FunctionDecl *CorrespondingCallOpSpecialization = |
3071 | CallOpTemplate->findSpecialization(Args: TAL->asArray(), InsertPos); |
3072 | assert(CorrespondingCallOpSpecialization); |
3073 | CallOp = cast<CXXMethodDecl>(Val: CorrespondingCallOpSpecialization); |
3074 | } |
3075 | |
3076 | // Special lambda forwarding when there are inalloca parameters. |
3077 | if (hasInAllocaArg(MD)) { |
3078 | const CGFunctionInfo *ImplFnInfo = nullptr; |
3079 | llvm::Function *ImplFn = nullptr; |
3080 | EmitLambdaInAllocaImplFn(CallOp, ImplFnInfo: &ImplFnInfo, ImplFn: &ImplFn); |
3081 | |
3082 | EmitForwardingCallToLambda(callOperator: CallOp, callArgs&: CallArgs, calleeFnInfo: ImplFnInfo, calleePtr: ImplFn); |
3083 | return; |
3084 | } |
3085 | |
3086 | EmitForwardingCallToLambda(callOperator: CallOp, callArgs&: CallArgs); |
3087 | } |
3088 | |
3089 | void CodeGenFunction::EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD) { |
3090 | if (MD->isVariadic()) { |
3091 | // FIXME: Making this work correctly is nasty because it requires either |
3092 | // cloning the body of the call operator or making the call operator forward. |
3093 | CGM.ErrorUnsupported(D: MD, Type: "lambda conversion to variadic function" ); |
3094 | return; |
3095 | } |
3096 | |
3097 | // Forward %this argument. |
3098 | CallArgList CallArgs; |
3099 | QualType LambdaType = getContext().getRecordType(Decl: MD->getParent()); |
3100 | QualType ThisType = getContext().getPointerType(T: LambdaType); |
3101 | llvm::Value *ThisArg = CurFn->getArg(i: 0); |
3102 | CallArgs.add(rvalue: RValue::get(V: ThisArg), type: ThisType); |
3103 | |
3104 | EmitLambdaDelegatingInvokeBody(MD, CallArgs); |
3105 | } |
3106 | |
3107 | void CodeGenFunction::EmitLambdaInAllocaImplFn( |
3108 | const CXXMethodDecl *CallOp, const CGFunctionInfo **ImplFnInfo, |
3109 | llvm::Function **ImplFn) { |
3110 | const CGFunctionInfo &FnInfo = |
3111 | CGM.getTypes().arrangeCXXMethodDeclaration(MD: CallOp); |
3112 | llvm::Function *CallOpFn = |
3113 | cast<llvm::Function>(Val: CGM.GetAddrOfFunction(GD: GlobalDecl(CallOp))); |
3114 | |
3115 | // Emit function containing the original call op body. __invoke will delegate |
3116 | // to this function. |
3117 | SmallVector<CanQualType, 4> ArgTypes; |
3118 | for (auto I = FnInfo.arg_begin(); I != FnInfo.arg_end(); ++I) |
3119 | ArgTypes.push_back(Elt: I->type); |
3120 | *ImplFnInfo = &CGM.getTypes().arrangeLLVMFunctionInfo( |
3121 | returnType: FnInfo.getReturnType(), opts: FnInfoOpts::IsDelegateCall, argTypes: ArgTypes, |
3122 | info: FnInfo.getExtInfo(), paramInfos: {}, args: FnInfo.getRequiredArgs()); |
3123 | |
3124 | // Create mangled name as if this was a method named __impl. If for some |
3125 | // reason the name doesn't look as expected then just tack __impl to the |
3126 | // front. |
3127 | // TODO: Use the name mangler to produce the right name instead of using |
3128 | // string replacement. |
3129 | StringRef CallOpName = CallOpFn->getName(); |
3130 | std::string ImplName; |
3131 | if (size_t Pos = CallOpName.find_first_of(Chars: "<lambda" )) |
3132 | ImplName = ("?__impl@" + CallOpName.drop_front(N: Pos)).str(); |
3133 | else |
3134 | ImplName = ("__impl" + CallOpName).str(); |
3135 | |
3136 | llvm::Function *Fn = CallOpFn->getParent()->getFunction(Name: ImplName); |
3137 | if (!Fn) { |
3138 | Fn = llvm::Function::Create(Ty: CGM.getTypes().GetFunctionType(Info: **ImplFnInfo), |
3139 | Linkage: llvm::GlobalValue::InternalLinkage, N: ImplName, |
3140 | M&: CGM.getModule()); |
3141 | CGM.SetInternalFunctionAttributes(GD: CallOp, F: Fn, FI: **ImplFnInfo); |
3142 | |
3143 | const GlobalDecl &GD = GlobalDecl(CallOp); |
3144 | const auto *D = cast<FunctionDecl>(Val: GD.getDecl()); |
3145 | CodeGenFunction(CGM).GenerateCode(GD, Fn, FnInfo: **ImplFnInfo); |
3146 | CGM.SetLLVMFunctionAttributesForDefinition(D, F: Fn); |
3147 | } |
3148 | *ImplFn = Fn; |
3149 | } |
3150 | |