1 | //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This contains code to emit Constant Expr nodes as LLVM code. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "ABIInfoImpl.h" |
14 | #include "CGCXXABI.h" |
15 | #include "CGObjCRuntime.h" |
16 | #include "CGRecordLayout.h" |
17 | #include "CodeGenFunction.h" |
18 | #include "CodeGenModule.h" |
19 | #include "ConstantEmitter.h" |
20 | #include "TargetInfo.h" |
21 | #include "clang/AST/APValue.h" |
22 | #include "clang/AST/ASTContext.h" |
23 | #include "clang/AST/Attr.h" |
24 | #include "clang/AST/RecordLayout.h" |
25 | #include "clang/AST/StmtVisitor.h" |
26 | #include "clang/Basic/Builtins.h" |
27 | #include "llvm/ADT/STLExtras.h" |
28 | #include "llvm/ADT/Sequence.h" |
29 | #include "llvm/Analysis/ConstantFolding.h" |
30 | #include "llvm/IR/Constants.h" |
31 | #include "llvm/IR/DataLayout.h" |
32 | #include "llvm/IR/Function.h" |
33 | #include "llvm/IR/GlobalVariable.h" |
34 | #include <optional> |
35 | using namespace clang; |
36 | using namespace CodeGen; |
37 | |
38 | //===----------------------------------------------------------------------===// |
39 | // ConstantAggregateBuilder |
40 | //===----------------------------------------------------------------------===// |
41 | |
42 | namespace { |
43 | class ConstExprEmitter; |
44 | |
45 | struct ConstantAggregateBuilderUtils { |
46 | CodeGenModule &CGM; |
47 | |
48 | ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {} |
49 | |
50 | CharUnits getAlignment(const llvm::Constant *C) const { |
51 | return CharUnits::fromQuantity( |
52 | Quantity: CGM.getDataLayout().getABITypeAlign(Ty: C->getType())); |
53 | } |
54 | |
55 | CharUnits getSize(llvm::Type *Ty) const { |
56 | return CharUnits::fromQuantity(Quantity: CGM.getDataLayout().getTypeAllocSize(Ty)); |
57 | } |
58 | |
59 | CharUnits getSize(const llvm::Constant *C) const { |
60 | return getSize(Ty: C->getType()); |
61 | } |
62 | |
63 | llvm::Constant *getPadding(CharUnits PadSize) const { |
64 | llvm::Type *Ty = CGM.CharTy; |
65 | if (PadSize > CharUnits::One()) |
66 | Ty = llvm::ArrayType::get(ElementType: Ty, NumElements: PadSize.getQuantity()); |
67 | return llvm::UndefValue::get(T: Ty); |
68 | } |
69 | |
70 | llvm::Constant *getZeroes(CharUnits ZeroSize) const { |
71 | llvm::Type *Ty = llvm::ArrayType::get(ElementType: CGM.CharTy, NumElements: ZeroSize.getQuantity()); |
72 | return llvm::ConstantAggregateZero::get(Ty); |
73 | } |
74 | }; |
75 | |
76 | /// Incremental builder for an llvm::Constant* holding a struct or array |
77 | /// constant. |
78 | class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils { |
79 | /// The elements of the constant. These two arrays must have the same size; |
80 | /// Offsets[i] describes the offset of Elems[i] within the constant. The |
81 | /// elements are kept in increasing offset order, and we ensure that there |
82 | /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]). |
83 | /// |
84 | /// This may contain explicit padding elements (in order to create a |
85 | /// natural layout), but need not. Gaps between elements are implicitly |
86 | /// considered to be filled with undef. |
87 | llvm::SmallVector<llvm::Constant*, 32> Elems; |
88 | llvm::SmallVector<CharUnits, 32> Offsets; |
89 | |
90 | /// The size of the constant (the maximum end offset of any added element). |
91 | /// May be larger than the end of Elems.back() if we split the last element |
92 | /// and removed some trailing undefs. |
93 | CharUnits Size = CharUnits::Zero(); |
94 | |
95 | /// This is true only if laying out Elems in order as the elements of a |
96 | /// non-packed LLVM struct will give the correct layout. |
97 | bool NaturalLayout = true; |
98 | |
99 | bool split(size_t Index, CharUnits Hint); |
100 | std::optional<size_t> splitAt(CharUnits Pos); |
101 | |
102 | static llvm::Constant *buildFrom(CodeGenModule &CGM, |
103 | ArrayRef<llvm::Constant *> Elems, |
104 | ArrayRef<CharUnits> Offsets, |
105 | CharUnits StartOffset, CharUnits Size, |
106 | bool NaturalLayout, llvm::Type *DesiredTy, |
107 | bool AllowOversized); |
108 | |
109 | public: |
110 | ConstantAggregateBuilder(CodeGenModule &CGM) |
111 | : ConstantAggregateBuilderUtils(CGM) {} |
112 | |
113 | /// Update or overwrite the value starting at \p Offset with \c C. |
114 | /// |
115 | /// \param AllowOverwrite If \c true, this constant might overwrite (part of) |
116 | /// a constant that has already been added. This flag is only used to |
117 | /// detect bugs. |
118 | bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite); |
119 | |
120 | /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits. |
121 | bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite); |
122 | |
123 | /// Attempt to condense the value starting at \p Offset to a constant of type |
124 | /// \p DesiredTy. |
125 | void condense(CharUnits Offset, llvm::Type *DesiredTy); |
126 | |
127 | /// Produce a constant representing the entire accumulated value, ideally of |
128 | /// the specified type. If \p AllowOversized, the constant might be larger |
129 | /// than implied by \p DesiredTy (eg, if there is a flexible array member). |
130 | /// Otherwise, the constant will be of exactly the same size as \p DesiredTy |
131 | /// even if we can't represent it as that type. |
132 | llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const { |
133 | return buildFrom(CGM, Elems, Offsets, StartOffset: CharUnits::Zero(), Size, |
134 | NaturalLayout, DesiredTy, AllowOversized); |
135 | } |
136 | }; |
137 | |
138 | template<typename Container, typename Range = std::initializer_list< |
139 | typename Container::value_type>> |
140 | static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) { |
141 | assert(BeginOff <= EndOff && "invalid replacement range" ); |
142 | llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals); |
143 | } |
144 | |
145 | bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset, |
146 | bool AllowOverwrite) { |
147 | // Common case: appending to a layout. |
148 | if (Offset >= Size) { |
149 | CharUnits Align = getAlignment(C); |
150 | CharUnits AlignedSize = Size.alignTo(Align); |
151 | if (AlignedSize > Offset || Offset.alignTo(Align) != Offset) |
152 | NaturalLayout = false; |
153 | else if (AlignedSize < Offset) { |
154 | Elems.push_back(Elt: getPadding(PadSize: Offset - Size)); |
155 | Offsets.push_back(Elt: Size); |
156 | } |
157 | Elems.push_back(Elt: C); |
158 | Offsets.push_back(Elt: Offset); |
159 | Size = Offset + getSize(C); |
160 | return true; |
161 | } |
162 | |
163 | // Uncommon case: constant overlaps what we've already created. |
164 | std::optional<size_t> FirstElemToReplace = splitAt(Pos: Offset); |
165 | if (!FirstElemToReplace) |
166 | return false; |
167 | |
168 | CharUnits CSize = getSize(C); |
169 | std::optional<size_t> LastElemToReplace = splitAt(Pos: Offset + CSize); |
170 | if (!LastElemToReplace) |
171 | return false; |
172 | |
173 | assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) && |
174 | "unexpectedly overwriting field" ); |
175 | |
176 | replace(C&: Elems, BeginOff: *FirstElemToReplace, EndOff: *LastElemToReplace, Vals: {C}); |
177 | replace(C&: Offsets, BeginOff: *FirstElemToReplace, EndOff: *LastElemToReplace, Vals: {Offset}); |
178 | Size = std::max(a: Size, b: Offset + CSize); |
179 | NaturalLayout = false; |
180 | return true; |
181 | } |
182 | |
183 | bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits, |
184 | bool AllowOverwrite) { |
185 | const ASTContext &Context = CGM.getContext(); |
186 | const uint64_t CharWidth = CGM.getContext().getCharWidth(); |
187 | |
188 | // Offset of where we want the first bit to go within the bits of the |
189 | // current char. |
190 | unsigned OffsetWithinChar = OffsetInBits % CharWidth; |
191 | |
192 | // We split bit-fields up into individual bytes. Walk over the bytes and |
193 | // update them. |
194 | for (CharUnits OffsetInChars = |
195 | Context.toCharUnitsFromBits(BitSize: OffsetInBits - OffsetWithinChar); |
196 | /**/; ++OffsetInChars) { |
197 | // Number of bits we want to fill in this char. |
198 | unsigned WantedBits = |
199 | std::min(a: (uint64_t)Bits.getBitWidth(), b: CharWidth - OffsetWithinChar); |
200 | |
201 | // Get a char containing the bits we want in the right places. The other |
202 | // bits have unspecified values. |
203 | llvm::APInt BitsThisChar = Bits; |
204 | if (BitsThisChar.getBitWidth() < CharWidth) |
205 | BitsThisChar = BitsThisChar.zext(width: CharWidth); |
206 | if (CGM.getDataLayout().isBigEndian()) { |
207 | // Figure out how much to shift by. We may need to left-shift if we have |
208 | // less than one byte of Bits left. |
209 | int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar; |
210 | if (Shift > 0) |
211 | BitsThisChar.lshrInPlace(ShiftAmt: Shift); |
212 | else if (Shift < 0) |
213 | BitsThisChar = BitsThisChar.shl(shiftAmt: -Shift); |
214 | } else { |
215 | BitsThisChar = BitsThisChar.shl(shiftAmt: OffsetWithinChar); |
216 | } |
217 | if (BitsThisChar.getBitWidth() > CharWidth) |
218 | BitsThisChar = BitsThisChar.trunc(width: CharWidth); |
219 | |
220 | if (WantedBits == CharWidth) { |
221 | // Got a full byte: just add it directly. |
222 | add(C: llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: BitsThisChar), |
223 | Offset: OffsetInChars, AllowOverwrite); |
224 | } else { |
225 | // Partial byte: update the existing integer if there is one. If we |
226 | // can't split out a 1-CharUnit range to update, then we can't add |
227 | // these bits and fail the entire constant emission. |
228 | std::optional<size_t> FirstElemToUpdate = splitAt(Pos: OffsetInChars); |
229 | if (!FirstElemToUpdate) |
230 | return false; |
231 | std::optional<size_t> LastElemToUpdate = |
232 | splitAt(Pos: OffsetInChars + CharUnits::One()); |
233 | if (!LastElemToUpdate) |
234 | return false; |
235 | assert(*LastElemToUpdate - *FirstElemToUpdate < 2 && |
236 | "should have at most one element covering one byte" ); |
237 | |
238 | // Figure out which bits we want and discard the rest. |
239 | llvm::APInt UpdateMask(CharWidth, 0); |
240 | if (CGM.getDataLayout().isBigEndian()) |
241 | UpdateMask.setBits(loBit: CharWidth - OffsetWithinChar - WantedBits, |
242 | hiBit: CharWidth - OffsetWithinChar); |
243 | else |
244 | UpdateMask.setBits(loBit: OffsetWithinChar, hiBit: OffsetWithinChar + WantedBits); |
245 | BitsThisChar &= UpdateMask; |
246 | |
247 | if (*FirstElemToUpdate == *LastElemToUpdate || |
248 | Elems[*FirstElemToUpdate]->isNullValue() || |
249 | isa<llvm::UndefValue>(Val: Elems[*FirstElemToUpdate])) { |
250 | // All existing bits are either zero or undef. |
251 | add(C: llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: BitsThisChar), |
252 | Offset: OffsetInChars, /*AllowOverwrite*/ true); |
253 | } else { |
254 | llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate]; |
255 | // In order to perform a partial update, we need the existing bitwise |
256 | // value, which we can only extract for a constant int. |
257 | auto *CI = dyn_cast<llvm::ConstantInt>(Val: ToUpdate); |
258 | if (!CI) |
259 | return false; |
260 | // Because this is a 1-CharUnit range, the constant occupying it must |
261 | // be exactly one CharUnit wide. |
262 | assert(CI->getBitWidth() == CharWidth && "splitAt failed" ); |
263 | assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) && |
264 | "unexpectedly overwriting bitfield" ); |
265 | BitsThisChar |= (CI->getValue() & ~UpdateMask); |
266 | ToUpdate = llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: BitsThisChar); |
267 | } |
268 | } |
269 | |
270 | // Stop if we've added all the bits. |
271 | if (WantedBits == Bits.getBitWidth()) |
272 | break; |
273 | |
274 | // Remove the consumed bits from Bits. |
275 | if (!CGM.getDataLayout().isBigEndian()) |
276 | Bits.lshrInPlace(ShiftAmt: WantedBits); |
277 | Bits = Bits.trunc(width: Bits.getBitWidth() - WantedBits); |
278 | |
279 | // The remanining bits go at the start of the following bytes. |
280 | OffsetWithinChar = 0; |
281 | } |
282 | |
283 | return true; |
284 | } |
285 | |
286 | /// Returns a position within Elems and Offsets such that all elements |
287 | /// before the returned index end before Pos and all elements at or after |
288 | /// the returned index begin at or after Pos. Splits elements as necessary |
289 | /// to ensure this. Returns std::nullopt if we find something we can't split. |
290 | std::optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) { |
291 | if (Pos >= Size) |
292 | return Offsets.size(); |
293 | |
294 | while (true) { |
295 | auto FirstAfterPos = llvm::upper_bound(Range&: Offsets, Value&: Pos); |
296 | if (FirstAfterPos == Offsets.begin()) |
297 | return 0; |
298 | |
299 | // If we already have an element starting at Pos, we're done. |
300 | size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1; |
301 | if (Offsets[LastAtOrBeforePosIndex] == Pos) |
302 | return LastAtOrBeforePosIndex; |
303 | |
304 | // We found an element starting before Pos. Check for overlap. |
305 | if (Offsets[LastAtOrBeforePosIndex] + |
306 | getSize(C: Elems[LastAtOrBeforePosIndex]) <= Pos) |
307 | return LastAtOrBeforePosIndex + 1; |
308 | |
309 | // Try to decompose it into smaller constants. |
310 | if (!split(Index: LastAtOrBeforePosIndex, Hint: Pos)) |
311 | return std::nullopt; |
312 | } |
313 | } |
314 | |
315 | /// Split the constant at index Index, if possible. Return true if we did. |
316 | /// Hint indicates the location at which we'd like to split, but may be |
317 | /// ignored. |
318 | bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) { |
319 | NaturalLayout = false; |
320 | llvm::Constant *C = Elems[Index]; |
321 | CharUnits Offset = Offsets[Index]; |
322 | |
323 | if (auto *CA = dyn_cast<llvm::ConstantAggregate>(Val: C)) { |
324 | // Expand the sequence into its contained elements. |
325 | // FIXME: This assumes vector elements are byte-sized. |
326 | replace(C&: Elems, BeginOff: Index, EndOff: Index + 1, |
327 | Vals: llvm::map_range(C: llvm::seq(Begin: 0u, End: CA->getNumOperands()), |
328 | F: [&](unsigned Op) { return CA->getOperand(i_nocapture: Op); })); |
329 | if (isa<llvm::ArrayType>(Val: CA->getType()) || |
330 | isa<llvm::VectorType>(Val: CA->getType())) { |
331 | // Array or vector. |
332 | llvm::Type *ElemTy = |
333 | llvm::GetElementPtrInst::getTypeAtIndex(Ty: CA->getType(), Idx: (uint64_t)0); |
334 | CharUnits ElemSize = getSize(Ty: ElemTy); |
335 | replace( |
336 | C&: Offsets, BeginOff: Index, EndOff: Index + 1, |
337 | Vals: llvm::map_range(C: llvm::seq(Begin: 0u, End: CA->getNumOperands()), |
338 | F: [&](unsigned Op) { return Offset + Op * ElemSize; })); |
339 | } else { |
340 | // Must be a struct. |
341 | auto *ST = cast<llvm::StructType>(Val: CA->getType()); |
342 | const llvm::StructLayout *Layout = |
343 | CGM.getDataLayout().getStructLayout(Ty: ST); |
344 | replace(C&: Offsets, BeginOff: Index, EndOff: Index + 1, |
345 | Vals: llvm::map_range( |
346 | C: llvm::seq(Begin: 0u, End: CA->getNumOperands()), F: [&](unsigned Op) { |
347 | return Offset + CharUnits::fromQuantity( |
348 | Quantity: Layout->getElementOffset(Idx: Op)); |
349 | })); |
350 | } |
351 | return true; |
352 | } |
353 | |
354 | if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(Val: C)) { |
355 | // Expand the sequence into its contained elements. |
356 | // FIXME: This assumes vector elements are byte-sized. |
357 | // FIXME: If possible, split into two ConstantDataSequentials at Hint. |
358 | CharUnits ElemSize = getSize(Ty: CDS->getElementType()); |
359 | replace(C&: Elems, BeginOff: Index, EndOff: Index + 1, |
360 | Vals: llvm::map_range(C: llvm::seq(Begin: 0u, End: CDS->getNumElements()), |
361 | F: [&](unsigned Elem) { |
362 | return CDS->getElementAsConstant(i: Elem); |
363 | })); |
364 | replace(C&: Offsets, BeginOff: Index, EndOff: Index + 1, |
365 | Vals: llvm::map_range( |
366 | C: llvm::seq(Begin: 0u, End: CDS->getNumElements()), |
367 | F: [&](unsigned Elem) { return Offset + Elem * ElemSize; })); |
368 | return true; |
369 | } |
370 | |
371 | if (isa<llvm::ConstantAggregateZero>(Val: C)) { |
372 | // Split into two zeros at the hinted offset. |
373 | CharUnits ElemSize = getSize(C); |
374 | assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split" ); |
375 | replace(C&: Elems, BeginOff: Index, EndOff: Index + 1, |
376 | Vals: {getZeroes(ZeroSize: Hint - Offset), getZeroes(ZeroSize: Offset + ElemSize - Hint)}); |
377 | replace(C&: Offsets, BeginOff: Index, EndOff: Index + 1, Vals: {Offset, Hint}); |
378 | return true; |
379 | } |
380 | |
381 | if (isa<llvm::UndefValue>(Val: C)) { |
382 | // Drop undef; it doesn't contribute to the final layout. |
383 | replace(C&: Elems, BeginOff: Index, EndOff: Index + 1, Vals: {}); |
384 | replace(C&: Offsets, BeginOff: Index, EndOff: Index + 1, Vals: {}); |
385 | return true; |
386 | } |
387 | |
388 | // FIXME: We could split a ConstantInt if the need ever arose. |
389 | // We don't need to do this to handle bit-fields because we always eagerly |
390 | // split them into 1-byte chunks. |
391 | |
392 | return false; |
393 | } |
394 | |
395 | static llvm::Constant * |
396 | EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, |
397 | llvm::Type *CommonElementType, uint64_t ArrayBound, |
398 | SmallVectorImpl<llvm::Constant *> &Elements, |
399 | llvm::Constant *Filler); |
400 | |
401 | llvm::Constant *ConstantAggregateBuilder::buildFrom( |
402 | CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems, |
403 | ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size, |
404 | bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) { |
405 | ConstantAggregateBuilderUtils Utils(CGM); |
406 | |
407 | if (Elems.empty()) |
408 | return llvm::UndefValue::get(T: DesiredTy); |
409 | |
410 | auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; }; |
411 | |
412 | // If we want an array type, see if all the elements are the same type and |
413 | // appropriately spaced. |
414 | if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(Val: DesiredTy)) { |
415 | assert(!AllowOversized && "oversized array emission not supported" ); |
416 | |
417 | bool CanEmitArray = true; |
418 | llvm::Type *CommonType = Elems[0]->getType(); |
419 | llvm::Constant *Filler = llvm::Constant::getNullValue(Ty: CommonType); |
420 | CharUnits ElemSize = Utils.getSize(Ty: ATy->getElementType()); |
421 | SmallVector<llvm::Constant*, 32> ArrayElements; |
422 | for (size_t I = 0; I != Elems.size(); ++I) { |
423 | // Skip zeroes; we'll use a zero value as our array filler. |
424 | if (Elems[I]->isNullValue()) |
425 | continue; |
426 | |
427 | // All remaining elements must be the same type. |
428 | if (Elems[I]->getType() != CommonType || |
429 | Offset(I) % ElemSize != 0) { |
430 | CanEmitArray = false; |
431 | break; |
432 | } |
433 | ArrayElements.resize(N: Offset(I) / ElemSize + 1, NV: Filler); |
434 | ArrayElements.back() = Elems[I]; |
435 | } |
436 | |
437 | if (CanEmitArray) { |
438 | return EmitArrayConstant(CGM, DesiredType: ATy, CommonElementType: CommonType, ArrayBound: ATy->getNumElements(), |
439 | Elements&: ArrayElements, Filler); |
440 | } |
441 | |
442 | // Can't emit as an array, carry on to emit as a struct. |
443 | } |
444 | |
445 | // The size of the constant we plan to generate. This is usually just |
446 | // the size of the initialized type, but in AllowOversized mode (i.e. |
447 | // flexible array init), it can be larger. |
448 | CharUnits DesiredSize = Utils.getSize(Ty: DesiredTy); |
449 | if (Size > DesiredSize) { |
450 | assert(AllowOversized && "Elems are oversized" ); |
451 | DesiredSize = Size; |
452 | } |
453 | |
454 | // The natural alignment of an unpacked LLVM struct with the given elements. |
455 | CharUnits Align = CharUnits::One(); |
456 | for (llvm::Constant *C : Elems) |
457 | Align = std::max(a: Align, b: Utils.getAlignment(C)); |
458 | |
459 | // The natural size of an unpacked LLVM struct with the given elements. |
460 | CharUnits AlignedSize = Size.alignTo(Align); |
461 | |
462 | bool Packed = false; |
463 | ArrayRef<llvm::Constant*> UnpackedElems = Elems; |
464 | llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage; |
465 | if (DesiredSize < AlignedSize || DesiredSize.alignTo(Align) != DesiredSize) { |
466 | // The natural layout would be too big; force use of a packed layout. |
467 | NaturalLayout = false; |
468 | Packed = true; |
469 | } else if (DesiredSize > AlignedSize) { |
470 | // The natural layout would be too small. Add padding to fix it. (This |
471 | // is ignored if we choose a packed layout.) |
472 | UnpackedElemStorage.assign(in_start: Elems.begin(), in_end: Elems.end()); |
473 | UnpackedElemStorage.push_back(Elt: Utils.getPadding(PadSize: DesiredSize - Size)); |
474 | UnpackedElems = UnpackedElemStorage; |
475 | } |
476 | |
477 | // If we don't have a natural layout, insert padding as necessary. |
478 | // As we go, double-check to see if we can actually just emit Elems |
479 | // as a non-packed struct and do so opportunistically if possible. |
480 | llvm::SmallVector<llvm::Constant*, 32> PackedElems; |
481 | if (!NaturalLayout) { |
482 | CharUnits SizeSoFar = CharUnits::Zero(); |
483 | for (size_t I = 0; I != Elems.size(); ++I) { |
484 | CharUnits Align = Utils.getAlignment(C: Elems[I]); |
485 | CharUnits NaturalOffset = SizeSoFar.alignTo(Align); |
486 | CharUnits DesiredOffset = Offset(I); |
487 | assert(DesiredOffset >= SizeSoFar && "elements out of order" ); |
488 | |
489 | if (DesiredOffset != NaturalOffset) |
490 | Packed = true; |
491 | if (DesiredOffset != SizeSoFar) |
492 | PackedElems.push_back(Elt: Utils.getPadding(PadSize: DesiredOffset - SizeSoFar)); |
493 | PackedElems.push_back(Elt: Elems[I]); |
494 | SizeSoFar = DesiredOffset + Utils.getSize(C: Elems[I]); |
495 | } |
496 | // If we're using the packed layout, pad it out to the desired size if |
497 | // necessary. |
498 | if (Packed) { |
499 | assert(SizeSoFar <= DesiredSize && |
500 | "requested size is too small for contents" ); |
501 | if (SizeSoFar < DesiredSize) |
502 | PackedElems.push_back(Elt: Utils.getPadding(PadSize: DesiredSize - SizeSoFar)); |
503 | } |
504 | } |
505 | |
506 | llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements( |
507 | Ctx&: CGM.getLLVMContext(), V: Packed ? PackedElems : UnpackedElems, Packed); |
508 | |
509 | // Pick the type to use. If the type is layout identical to the desired |
510 | // type then use it, otherwise use whatever the builder produced for us. |
511 | if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(Val: DesiredTy)) { |
512 | if (DesiredSTy->isLayoutIdentical(Other: STy)) |
513 | STy = DesiredSTy; |
514 | } |
515 | |
516 | return llvm::ConstantStruct::get(T: STy, V: Packed ? PackedElems : UnpackedElems); |
517 | } |
518 | |
519 | void ConstantAggregateBuilder::condense(CharUnits Offset, |
520 | llvm::Type *DesiredTy) { |
521 | CharUnits Size = getSize(Ty: DesiredTy); |
522 | |
523 | std::optional<size_t> FirstElemToReplace = splitAt(Pos: Offset); |
524 | if (!FirstElemToReplace) |
525 | return; |
526 | size_t First = *FirstElemToReplace; |
527 | |
528 | std::optional<size_t> LastElemToReplace = splitAt(Pos: Offset + Size); |
529 | if (!LastElemToReplace) |
530 | return; |
531 | size_t Last = *LastElemToReplace; |
532 | |
533 | size_t Length = Last - First; |
534 | if (Length == 0) |
535 | return; |
536 | |
537 | if (Length == 1 && Offsets[First] == Offset && |
538 | getSize(C: Elems[First]) == Size) { |
539 | // Re-wrap single element structs if necessary. Otherwise, leave any single |
540 | // element constant of the right size alone even if it has the wrong type. |
541 | auto *STy = dyn_cast<llvm::StructType>(Val: DesiredTy); |
542 | if (STy && STy->getNumElements() == 1 && |
543 | STy->getElementType(N: 0) == Elems[First]->getType()) |
544 | Elems[First] = llvm::ConstantStruct::get(T: STy, Vs: Elems[First]); |
545 | return; |
546 | } |
547 | |
548 | llvm::Constant *Replacement = buildFrom( |
549 | CGM, Elems: ArrayRef(Elems).slice(N: First, M: Length), |
550 | Offsets: ArrayRef(Offsets).slice(N: First, M: Length), StartOffset: Offset, Size: getSize(Ty: DesiredTy), |
551 | /*known to have natural layout=*/NaturalLayout: false, DesiredTy, AllowOversized: false); |
552 | replace(C&: Elems, BeginOff: First, EndOff: Last, Vals: {Replacement}); |
553 | replace(C&: Offsets, BeginOff: First, EndOff: Last, Vals: {Offset}); |
554 | } |
555 | |
556 | //===----------------------------------------------------------------------===// |
557 | // ConstStructBuilder |
558 | //===----------------------------------------------------------------------===// |
559 | |
560 | class ConstStructBuilder { |
561 | CodeGenModule &CGM; |
562 | ConstantEmitter &Emitter; |
563 | ConstantAggregateBuilder &Builder; |
564 | CharUnits StartOffset; |
565 | |
566 | public: |
567 | static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, |
568 | const InitListExpr *ILE, |
569 | QualType StructTy); |
570 | static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, |
571 | const APValue &Value, QualType ValTy); |
572 | static bool UpdateStruct(ConstantEmitter &Emitter, |
573 | ConstantAggregateBuilder &Const, CharUnits Offset, |
574 | const InitListExpr *Updater); |
575 | |
576 | private: |
577 | ConstStructBuilder(ConstantEmitter &Emitter, |
578 | ConstantAggregateBuilder &Builder, CharUnits StartOffset) |
579 | : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder), |
580 | StartOffset(StartOffset) {} |
581 | |
582 | bool AppendField(const FieldDecl *Field, uint64_t FieldOffset, |
583 | llvm::Constant *InitExpr, bool AllowOverwrite = false); |
584 | |
585 | bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst, |
586 | bool AllowOverwrite = false); |
587 | |
588 | bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, |
589 | llvm::Constant *InitExpr, bool AllowOverwrite = false); |
590 | |
591 | bool Build(const InitListExpr *ILE, bool AllowOverwrite); |
592 | bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, |
593 | const CXXRecordDecl *VTableClass, CharUnits BaseOffset); |
594 | llvm::Constant *Finalize(QualType Ty); |
595 | }; |
596 | |
597 | bool ConstStructBuilder::AppendField( |
598 | const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst, |
599 | bool AllowOverwrite) { |
600 | const ASTContext &Context = CGM.getContext(); |
601 | |
602 | CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(BitSize: FieldOffset); |
603 | |
604 | return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite); |
605 | } |
606 | |
607 | bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars, |
608 | llvm::Constant *InitCst, |
609 | bool AllowOverwrite) { |
610 | return Builder.add(C: InitCst, Offset: StartOffset + FieldOffsetInChars, AllowOverwrite); |
611 | } |
612 | |
613 | bool ConstStructBuilder::AppendBitField(const FieldDecl *Field, |
614 | uint64_t FieldOffset, llvm::Constant *C, |
615 | bool AllowOverwrite) { |
616 | |
617 | llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(Val: C); |
618 | if (!CI) { |
619 | // Constants for long _BitInt types are sometimes split into individual |
620 | // bytes. Try to fold these back into an integer constant. If that doesn't |
621 | // work out, then we are trying to initialize a bitfield with a non-trivial |
622 | // constant, this must require run-time code. |
623 | llvm::Type *LoadType = |
624 | CGM.getTypes().convertTypeForLoadStore(T: Field->getType(), LLVMTy: C->getType()); |
625 | llvm::Constant *FoldedConstant = llvm::ConstantFoldLoadFromConst( |
626 | C, Ty: LoadType, Offset: llvm::APInt::getZero(numBits: 32), DL: CGM.getDataLayout()); |
627 | CI = dyn_cast_if_present<llvm::ConstantInt>(Val: FoldedConstant); |
628 | if (!CI) |
629 | return false; |
630 | } |
631 | |
632 | const CGRecordLayout &RL = |
633 | CGM.getTypes().getCGRecordLayout(Field->getParent()); |
634 | const CGBitFieldInfo &Info = RL.getBitFieldInfo(FD: Field); |
635 | llvm::APInt FieldValue = CI->getValue(); |
636 | |
637 | // Promote the size of FieldValue if necessary |
638 | // FIXME: This should never occur, but currently it can because initializer |
639 | // constants are cast to bool, and because clang is not enforcing bitfield |
640 | // width limits. |
641 | if (Info.Size > FieldValue.getBitWidth()) |
642 | FieldValue = FieldValue.zext(width: Info.Size); |
643 | |
644 | // Truncate the size of FieldValue to the bit field size. |
645 | if (Info.Size < FieldValue.getBitWidth()) |
646 | FieldValue = FieldValue.trunc(width: Info.Size); |
647 | |
648 | return Builder.addBits(Bits: FieldValue, |
649 | OffsetInBits: CGM.getContext().toBits(CharSize: StartOffset) + FieldOffset, |
650 | AllowOverwrite); |
651 | } |
652 | |
653 | static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter, |
654 | ConstantAggregateBuilder &Const, |
655 | CharUnits Offset, QualType Type, |
656 | const InitListExpr *Updater) { |
657 | if (Type->isRecordType()) |
658 | return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater); |
659 | |
660 | auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(T: Type); |
661 | if (!CAT) |
662 | return false; |
663 | QualType ElemType = CAT->getElementType(); |
664 | CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(T: ElemType); |
665 | llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(T: ElemType); |
666 | |
667 | llvm::Constant *FillC = nullptr; |
668 | if (const Expr *Filler = Updater->getArrayFiller()) { |
669 | if (!isa<NoInitExpr>(Val: Filler)) { |
670 | FillC = Emitter.tryEmitAbstractForMemory(E: Filler, T: ElemType); |
671 | if (!FillC) |
672 | return false; |
673 | } |
674 | } |
675 | |
676 | unsigned NumElementsToUpdate = |
677 | FillC ? CAT->getZExtSize() : Updater->getNumInits(); |
678 | for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) { |
679 | const Expr *Init = nullptr; |
680 | if (I < Updater->getNumInits()) |
681 | Init = Updater->getInit(Init: I); |
682 | |
683 | if (!Init && FillC) { |
684 | if (!Const.add(C: FillC, Offset, AllowOverwrite: true)) |
685 | return false; |
686 | } else if (!Init || isa<NoInitExpr>(Val: Init)) { |
687 | continue; |
688 | } else if (const auto *ChildILE = dyn_cast<InitListExpr>(Val: Init)) { |
689 | if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, Type: ElemType, |
690 | Updater: ChildILE)) |
691 | return false; |
692 | // Attempt to reduce the array element to a single constant if necessary. |
693 | Const.condense(Offset, DesiredTy: ElemTy); |
694 | } else { |
695 | llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(E: Init, T: ElemType); |
696 | if (!Const.add(C: Val, Offset, AllowOverwrite: true)) |
697 | return false; |
698 | } |
699 | } |
700 | |
701 | return true; |
702 | } |
703 | |
704 | bool ConstStructBuilder::Build(const InitListExpr *ILE, bool AllowOverwrite) { |
705 | RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); |
706 | const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(D: RD); |
707 | |
708 | unsigned FieldNo = -1; |
709 | unsigned ElementNo = 0; |
710 | |
711 | // Bail out if we have base classes. We could support these, but they only |
712 | // arise in C++1z where we will have already constant folded most interesting |
713 | // cases. FIXME: There are still a few more cases we can handle this way. |
714 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) |
715 | if (CXXRD->getNumBases()) |
716 | return false; |
717 | |
718 | for (FieldDecl *Field : RD->fields()) { |
719 | ++FieldNo; |
720 | |
721 | // If this is a union, skip all the fields that aren't being initialized. |
722 | if (RD->isUnion() && |
723 | !declaresSameEntity(D1: ILE->getInitializedFieldInUnion(), D2: Field)) |
724 | continue; |
725 | |
726 | // Don't emit anonymous bitfields. |
727 | if (Field->isUnnamedBitField()) |
728 | continue; |
729 | |
730 | // Get the initializer. A struct can include fields without initializers, |
731 | // we just use explicit null values for them. |
732 | const Expr *Init = nullptr; |
733 | if (ElementNo < ILE->getNumInits()) |
734 | Init = ILE->getInit(Init: ElementNo++); |
735 | if (isa_and_nonnull<NoInitExpr>(Val: Init)) |
736 | continue; |
737 | |
738 | // Zero-sized fields are not emitted, but their initializers may still |
739 | // prevent emission of this struct as a constant. |
740 | if (isEmptyFieldForLayout(Context: CGM.getContext(), FD: Field)) { |
741 | if (Init->HasSideEffects(Ctx: CGM.getContext())) |
742 | return false; |
743 | continue; |
744 | } |
745 | |
746 | // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr |
747 | // represents additional overwriting of our current constant value, and not |
748 | // a new constant to emit independently. |
749 | if (AllowOverwrite && |
750 | (Field->getType()->isArrayType() || Field->getType()->isRecordType())) { |
751 | if (auto *SubILE = dyn_cast<InitListExpr>(Val: Init)) { |
752 | CharUnits Offset = CGM.getContext().toCharUnitsFromBits( |
753 | BitSize: Layout.getFieldOffset(FieldNo)); |
754 | if (!EmitDesignatedInitUpdater(Emitter, Const&: Builder, Offset: StartOffset + Offset, |
755 | Type: Field->getType(), Updater: SubILE)) |
756 | return false; |
757 | // If we split apart the field's value, try to collapse it down to a |
758 | // single value now. |
759 | Builder.condense(Offset: StartOffset + Offset, |
760 | DesiredTy: CGM.getTypes().ConvertTypeForMem(T: Field->getType())); |
761 | continue; |
762 | } |
763 | } |
764 | |
765 | llvm::Constant *EltInit = |
766 | Init ? Emitter.tryEmitPrivateForMemory(E: Init, T: Field->getType()) |
767 | : Emitter.emitNullForMemory(T: Field->getType()); |
768 | if (!EltInit) |
769 | return false; |
770 | |
771 | if (!Field->isBitField()) { |
772 | // Handle non-bitfield members. |
773 | if (!AppendField(Field, FieldOffset: Layout.getFieldOffset(FieldNo), InitCst: EltInit, |
774 | AllowOverwrite)) |
775 | return false; |
776 | // After emitting a non-empty field with [[no_unique_address]], we may |
777 | // need to overwrite its tail padding. |
778 | if (Field->hasAttr<NoUniqueAddressAttr>()) |
779 | AllowOverwrite = true; |
780 | } else { |
781 | // Otherwise we have a bitfield. |
782 | if (!AppendBitField(Field, FieldOffset: Layout.getFieldOffset(FieldNo), C: EltInit, |
783 | AllowOverwrite)) |
784 | return false; |
785 | } |
786 | } |
787 | |
788 | return true; |
789 | } |
790 | |
791 | namespace { |
792 | struct BaseInfo { |
793 | BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) |
794 | : Decl(Decl), Offset(Offset), Index(Index) { |
795 | } |
796 | |
797 | const CXXRecordDecl *Decl; |
798 | CharUnits Offset; |
799 | unsigned Index; |
800 | |
801 | bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } |
802 | }; |
803 | } |
804 | |
805 | bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, |
806 | bool IsPrimaryBase, |
807 | const CXXRecordDecl *VTableClass, |
808 | CharUnits Offset) { |
809 | const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(D: RD); |
810 | |
811 | if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
812 | // Add a vtable pointer, if we need one and it hasn't already been added. |
813 | if (Layout.hasOwnVFPtr()) { |
814 | llvm::Constant *VTableAddressPoint = |
815 | CGM.getCXXABI().getVTableAddressPoint(Base: BaseSubobject(CD, Offset), |
816 | VTableClass); |
817 | if (auto Authentication = CGM.getVTablePointerAuthentication(thisClass: CD)) { |
818 | VTableAddressPoint = Emitter.tryEmitConstantSignedPointer( |
819 | Ptr: VTableAddressPoint, Auth: *Authentication); |
820 | if (!VTableAddressPoint) |
821 | return false; |
822 | } |
823 | if (!AppendBytes(FieldOffsetInChars: Offset, InitCst: VTableAddressPoint)) |
824 | return false; |
825 | } |
826 | |
827 | // Accumulate and sort bases, in order to visit them in address order, which |
828 | // may not be the same as declaration order. |
829 | SmallVector<BaseInfo, 8> Bases; |
830 | Bases.reserve(N: CD->getNumBases()); |
831 | unsigned BaseNo = 0; |
832 | for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), |
833 | BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { |
834 | assert(!Base->isVirtual() && "should not have virtual bases here" ); |
835 | const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); |
836 | CharUnits BaseOffset = Layout.getBaseClassOffset(Base: BD); |
837 | Bases.push_back(Elt: BaseInfo(BD, BaseOffset, BaseNo)); |
838 | } |
839 | llvm::stable_sort(Range&: Bases); |
840 | |
841 | for (unsigned I = 0, N = Bases.size(); I != N; ++I) { |
842 | BaseInfo &Base = Bases[I]; |
843 | |
844 | bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; |
845 | Build(Val: Val.getStructBase(i: Base.Index), RD: Base.Decl, IsPrimaryBase, |
846 | VTableClass, Offset: Offset + Base.Offset); |
847 | } |
848 | } |
849 | |
850 | unsigned FieldNo = 0; |
851 | uint64_t OffsetBits = CGM.getContext().toBits(CharSize: Offset); |
852 | |
853 | bool AllowOverwrite = false; |
854 | for (RecordDecl::field_iterator Field = RD->field_begin(), |
855 | FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { |
856 | // If this is a union, skip all the fields that aren't being initialized. |
857 | if (RD->isUnion() && !declaresSameEntity(D1: Val.getUnionField(), D2: *Field)) |
858 | continue; |
859 | |
860 | // Don't emit anonymous bitfields or zero-sized fields. |
861 | if (Field->isUnnamedBitField() || |
862 | isEmptyFieldForLayout(Context: CGM.getContext(), FD: *Field)) |
863 | continue; |
864 | |
865 | // Emit the value of the initializer. |
866 | const APValue &FieldValue = |
867 | RD->isUnion() ? Val.getUnionValue() : Val.getStructField(i: FieldNo); |
868 | llvm::Constant *EltInit = |
869 | Emitter.tryEmitPrivateForMemory(value: FieldValue, T: Field->getType()); |
870 | if (!EltInit) |
871 | return false; |
872 | |
873 | if (!Field->isBitField()) { |
874 | // Handle non-bitfield members. |
875 | if (!AppendField(Field: *Field, FieldOffset: Layout.getFieldOffset(FieldNo) + OffsetBits, |
876 | InitCst: EltInit, AllowOverwrite)) |
877 | return false; |
878 | // After emitting a non-empty field with [[no_unique_address]], we may |
879 | // need to overwrite its tail padding. |
880 | if (Field->hasAttr<NoUniqueAddressAttr>()) |
881 | AllowOverwrite = true; |
882 | } else { |
883 | // Otherwise we have a bitfield. |
884 | if (!AppendBitField(Field: *Field, FieldOffset: Layout.getFieldOffset(FieldNo) + OffsetBits, |
885 | C: EltInit, AllowOverwrite)) |
886 | return false; |
887 | } |
888 | } |
889 | |
890 | return true; |
891 | } |
892 | |
893 | llvm::Constant *ConstStructBuilder::Finalize(QualType Type) { |
894 | Type = Type.getNonReferenceType(); |
895 | RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); |
896 | llvm::Type *ValTy = CGM.getTypes().ConvertType(T: Type); |
897 | return Builder.build(DesiredTy: ValTy, AllowOversized: RD->hasFlexibleArrayMember()); |
898 | } |
899 | |
900 | llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, |
901 | const InitListExpr *ILE, |
902 | QualType ValTy) { |
903 | ConstantAggregateBuilder Const(Emitter.CGM); |
904 | ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); |
905 | |
906 | if (!Builder.Build(ILE, /*AllowOverwrite*/false)) |
907 | return nullptr; |
908 | |
909 | return Builder.Finalize(Type: ValTy); |
910 | } |
911 | |
912 | llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, |
913 | const APValue &Val, |
914 | QualType ValTy) { |
915 | ConstantAggregateBuilder Const(Emitter.CGM); |
916 | ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); |
917 | |
918 | const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); |
919 | const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(Val: RD); |
920 | if (!Builder.Build(Val, RD, IsPrimaryBase: false, VTableClass: CD, Offset: CharUnits::Zero())) |
921 | return nullptr; |
922 | |
923 | return Builder.Finalize(Type: ValTy); |
924 | } |
925 | |
926 | bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter, |
927 | ConstantAggregateBuilder &Const, |
928 | CharUnits Offset, |
929 | const InitListExpr *Updater) { |
930 | return ConstStructBuilder(Emitter, Const, Offset) |
931 | .Build(ILE: Updater, /*AllowOverwrite*/ true); |
932 | } |
933 | |
934 | //===----------------------------------------------------------------------===// |
935 | // ConstExprEmitter |
936 | //===----------------------------------------------------------------------===// |
937 | |
938 | static ConstantAddress |
939 | tryEmitGlobalCompoundLiteral(ConstantEmitter &emitter, |
940 | const CompoundLiteralExpr *E) { |
941 | CodeGenModule &CGM = emitter.CGM; |
942 | CharUnits Align = CGM.getContext().getTypeAlignInChars(T: E->getType()); |
943 | if (llvm::GlobalVariable *Addr = |
944 | CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) |
945 | return ConstantAddress(Addr, Addr->getValueType(), Align); |
946 | |
947 | LangAS addressSpace = E->getType().getAddressSpace(); |
948 | llvm::Constant *C = emitter.tryEmitForInitializer(E: E->getInitializer(), |
949 | destAddrSpace: addressSpace, destType: E->getType()); |
950 | if (!C) { |
951 | assert(!E->isFileScope() && |
952 | "file-scope compound literal did not have constant initializer!" ); |
953 | return ConstantAddress::invalid(); |
954 | } |
955 | |
956 | auto GV = new llvm::GlobalVariable( |
957 | CGM.getModule(), C->getType(), |
958 | E->getType().isConstantStorage(Ctx: CGM.getContext(), ExcludeCtor: true, ExcludeDtor: false), |
959 | llvm::GlobalValue::InternalLinkage, C, ".compoundliteral" , nullptr, |
960 | llvm::GlobalVariable::NotThreadLocal, |
961 | CGM.getContext().getTargetAddressSpace(AS: addressSpace)); |
962 | emitter.finalize(global: GV); |
963 | GV->setAlignment(Align.getAsAlign()); |
964 | CGM.setAddrOfConstantCompoundLiteral(CLE: E, GV); |
965 | return ConstantAddress(GV, GV->getValueType(), Align); |
966 | } |
967 | |
968 | static llvm::Constant * |
969 | EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, |
970 | llvm::Type *CommonElementType, uint64_t ArrayBound, |
971 | SmallVectorImpl<llvm::Constant *> &Elements, |
972 | llvm::Constant *Filler) { |
973 | // Figure out how long the initial prefix of non-zero elements is. |
974 | uint64_t NonzeroLength = ArrayBound; |
975 | if (Elements.size() < NonzeroLength && Filler->isNullValue()) |
976 | NonzeroLength = Elements.size(); |
977 | if (NonzeroLength == Elements.size()) { |
978 | while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue()) |
979 | --NonzeroLength; |
980 | } |
981 | |
982 | if (NonzeroLength == 0) |
983 | return llvm::ConstantAggregateZero::get(Ty: DesiredType); |
984 | |
985 | // Add a zeroinitializer array filler if we have lots of trailing zeroes. |
986 | uint64_t TrailingZeroes = ArrayBound - NonzeroLength; |
987 | if (TrailingZeroes >= 8) { |
988 | assert(Elements.size() >= NonzeroLength && |
989 | "missing initializer for non-zero element" ); |
990 | |
991 | // If all the elements had the same type up to the trailing zeroes, emit a |
992 | // struct of two arrays (the nonzero data and the zeroinitializer). |
993 | if (CommonElementType && NonzeroLength >= 8) { |
994 | llvm::Constant *Initial = llvm::ConstantArray::get( |
995 | T: llvm::ArrayType::get(ElementType: CommonElementType, NumElements: NonzeroLength), |
996 | V: ArrayRef(Elements).take_front(N: NonzeroLength)); |
997 | Elements.resize(N: 2); |
998 | Elements[0] = Initial; |
999 | } else { |
1000 | Elements.resize(N: NonzeroLength + 1); |
1001 | } |
1002 | |
1003 | auto *FillerType = |
1004 | CommonElementType ? CommonElementType : DesiredType->getElementType(); |
1005 | FillerType = llvm::ArrayType::get(ElementType: FillerType, NumElements: TrailingZeroes); |
1006 | Elements.back() = llvm::ConstantAggregateZero::get(Ty: FillerType); |
1007 | CommonElementType = nullptr; |
1008 | } else if (Elements.size() != ArrayBound) { |
1009 | // Otherwise pad to the right size with the filler if necessary. |
1010 | Elements.resize(N: ArrayBound, NV: Filler); |
1011 | if (Filler->getType() != CommonElementType) |
1012 | CommonElementType = nullptr; |
1013 | } |
1014 | |
1015 | // If all elements have the same type, just emit an array constant. |
1016 | if (CommonElementType) |
1017 | return llvm::ConstantArray::get( |
1018 | T: llvm::ArrayType::get(ElementType: CommonElementType, NumElements: ArrayBound), V: Elements); |
1019 | |
1020 | // We have mixed types. Use a packed struct. |
1021 | llvm::SmallVector<llvm::Type *, 16> Types; |
1022 | Types.reserve(N: Elements.size()); |
1023 | for (llvm::Constant *Elt : Elements) |
1024 | Types.push_back(Elt: Elt->getType()); |
1025 | llvm::StructType *SType = |
1026 | llvm::StructType::get(Context&: CGM.getLLVMContext(), Elements: Types, isPacked: true); |
1027 | return llvm::ConstantStruct::get(T: SType, V: Elements); |
1028 | } |
1029 | |
1030 | // This class only needs to handle arrays, structs and unions. Outside C++11 |
1031 | // mode, we don't currently constant fold those types. All other types are |
1032 | // handled by constant folding. |
1033 | // |
1034 | // Constant folding is currently missing support for a few features supported |
1035 | // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr. |
1036 | class ConstExprEmitter |
1037 | : public ConstStmtVisitor<ConstExprEmitter, llvm::Constant *, QualType> { |
1038 | CodeGenModule &CGM; |
1039 | ConstantEmitter &Emitter; |
1040 | llvm::LLVMContext &VMContext; |
1041 | public: |
1042 | ConstExprEmitter(ConstantEmitter &emitter) |
1043 | : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { |
1044 | } |
1045 | |
1046 | //===--------------------------------------------------------------------===// |
1047 | // Visitor Methods |
1048 | //===--------------------------------------------------------------------===// |
1049 | |
1050 | llvm::Constant *VisitStmt(const Stmt *S, QualType T) { return nullptr; } |
1051 | |
1052 | llvm::Constant *VisitConstantExpr(const ConstantExpr *CE, QualType T) { |
1053 | if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE)) |
1054 | return Result; |
1055 | return Visit(S: CE->getSubExpr(), P: T); |
1056 | } |
1057 | |
1058 | llvm::Constant *VisitParenExpr(const ParenExpr *PE, QualType T) { |
1059 | return Visit(S: PE->getSubExpr(), P: T); |
1060 | } |
1061 | |
1062 | llvm::Constant * |
1063 | VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *PE, |
1064 | QualType T) { |
1065 | return Visit(S: PE->getReplacement(), P: T); |
1066 | } |
1067 | |
1068 | llvm::Constant *VisitGenericSelectionExpr(const GenericSelectionExpr *GE, |
1069 | QualType T) { |
1070 | return Visit(S: GE->getResultExpr(), P: T); |
1071 | } |
1072 | |
1073 | llvm::Constant *VisitChooseExpr(const ChooseExpr *CE, QualType T) { |
1074 | return Visit(S: CE->getChosenSubExpr(), P: T); |
1075 | } |
1076 | |
1077 | llvm::Constant *VisitCompoundLiteralExpr(const CompoundLiteralExpr *E, |
1078 | QualType T) { |
1079 | return Visit(S: E->getInitializer(), P: T); |
1080 | } |
1081 | |
1082 | llvm::Constant *ProduceIntToIntCast(const Expr *E, QualType DestType) { |
1083 | QualType FromType = E->getType(); |
1084 | // See also HandleIntToIntCast in ExprConstant.cpp |
1085 | if (FromType->isIntegerType()) |
1086 | if (llvm::Constant *C = Visit(S: E, P: FromType)) |
1087 | if (auto *CI = dyn_cast<llvm::ConstantInt>(Val: C)) { |
1088 | unsigned SrcWidth = CGM.getContext().getIntWidth(T: FromType); |
1089 | unsigned DstWidth = CGM.getContext().getIntWidth(T: DestType); |
1090 | if (DstWidth == SrcWidth) |
1091 | return CI; |
1092 | llvm::APInt A = FromType->isSignedIntegerType() |
1093 | ? CI->getValue().sextOrTrunc(width: DstWidth) |
1094 | : CI->getValue().zextOrTrunc(width: DstWidth); |
1095 | return llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: A); |
1096 | } |
1097 | return nullptr; |
1098 | } |
1099 | |
1100 | llvm::Constant *VisitCastExpr(const CastExpr *E, QualType destType) { |
1101 | if (const auto *ECE = dyn_cast<ExplicitCastExpr>(Val: E)) |
1102 | CGM.EmitExplicitCastExprType(E: ECE, CGF: Emitter.CGF); |
1103 | const Expr *subExpr = E->getSubExpr(); |
1104 | |
1105 | switch (E->getCastKind()) { |
1106 | case CK_ToUnion: { |
1107 | // GCC cast to union extension |
1108 | assert(E->getType()->isUnionType() && |
1109 | "Destination type is not union type!" ); |
1110 | |
1111 | auto field = E->getTargetUnionField(); |
1112 | |
1113 | auto C = Emitter.tryEmitPrivateForMemory(E: subExpr, T: field->getType()); |
1114 | if (!C) return nullptr; |
1115 | |
1116 | auto destTy = ConvertType(T: destType); |
1117 | if (C->getType() == destTy) return C; |
1118 | |
1119 | // Build a struct with the union sub-element as the first member, |
1120 | // and padded to the appropriate size. |
1121 | SmallVector<llvm::Constant*, 2> Elts; |
1122 | SmallVector<llvm::Type*, 2> Types; |
1123 | Elts.push_back(Elt: C); |
1124 | Types.push_back(Elt: C->getType()); |
1125 | unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(Ty: C->getType()); |
1126 | unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(Ty: destTy); |
1127 | |
1128 | assert(CurSize <= TotalSize && "Union size mismatch!" ); |
1129 | if (unsigned NumPadBytes = TotalSize - CurSize) { |
1130 | llvm::Type *Ty = CGM.CharTy; |
1131 | if (NumPadBytes > 1) |
1132 | Ty = llvm::ArrayType::get(ElementType: Ty, NumElements: NumPadBytes); |
1133 | |
1134 | Elts.push_back(Elt: llvm::UndefValue::get(T: Ty)); |
1135 | Types.push_back(Elt: Ty); |
1136 | } |
1137 | |
1138 | llvm::StructType *STy = llvm::StructType::get(Context&: VMContext, Elements: Types, isPacked: false); |
1139 | return llvm::ConstantStruct::get(T: STy, V: Elts); |
1140 | } |
1141 | |
1142 | case CK_AddressSpaceConversion: { |
1143 | auto C = Emitter.tryEmitPrivate(E: subExpr, T: subExpr->getType()); |
1144 | if (!C) return nullptr; |
1145 | LangAS destAS = E->getType()->getPointeeType().getAddressSpace(); |
1146 | LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); |
1147 | llvm::Type *destTy = ConvertType(T: E->getType()); |
1148 | return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, V: C, SrcAddr: srcAS, |
1149 | DestAddr: destAS, DestTy: destTy); |
1150 | } |
1151 | |
1152 | case CK_LValueToRValue: { |
1153 | // We don't really support doing lvalue-to-rvalue conversions here; any |
1154 | // interesting conversions should be done in Evaluate(). But as a |
1155 | // special case, allow compound literals to support the gcc extension |
1156 | // allowing "struct x {int x;} x = (struct x) {};". |
1157 | if (const auto *E = |
1158 | dyn_cast<CompoundLiteralExpr>(Val: subExpr->IgnoreParens())) |
1159 | return Visit(S: E->getInitializer(), P: destType); |
1160 | return nullptr; |
1161 | } |
1162 | |
1163 | case CK_AtomicToNonAtomic: |
1164 | case CK_NonAtomicToAtomic: |
1165 | case CK_NoOp: |
1166 | case CK_ConstructorConversion: |
1167 | return Visit(S: subExpr, P: destType); |
1168 | |
1169 | case CK_ArrayToPointerDecay: |
1170 | if (const auto *S = dyn_cast<StringLiteral>(Val: subExpr)) |
1171 | return CGM.GetAddrOfConstantStringFromLiteral(S).getPointer(); |
1172 | return nullptr; |
1173 | case CK_NullToPointer: |
1174 | if (Visit(S: subExpr, P: destType)) |
1175 | return CGM.EmitNullConstant(T: destType); |
1176 | return nullptr; |
1177 | |
1178 | case CK_IntToOCLSampler: |
1179 | llvm_unreachable("global sampler variables are not generated" ); |
1180 | |
1181 | case CK_IntegralCast: |
1182 | return ProduceIntToIntCast(E: subExpr, DestType: destType); |
1183 | |
1184 | case CK_Dependent: llvm_unreachable("saw dependent cast!" ); |
1185 | |
1186 | case CK_BuiltinFnToFnPtr: |
1187 | llvm_unreachable("builtin functions are handled elsewhere" ); |
1188 | |
1189 | case CK_ReinterpretMemberPointer: |
1190 | case CK_DerivedToBaseMemberPointer: |
1191 | case CK_BaseToDerivedMemberPointer: { |
1192 | auto C = Emitter.tryEmitPrivate(E: subExpr, T: subExpr->getType()); |
1193 | if (!C) return nullptr; |
1194 | return CGM.getCXXABI().EmitMemberPointerConversion(E, Src: C); |
1195 | } |
1196 | |
1197 | // These will never be supported. |
1198 | case CK_ObjCObjectLValueCast: |
1199 | case CK_ARCProduceObject: |
1200 | case CK_ARCConsumeObject: |
1201 | case CK_ARCReclaimReturnedObject: |
1202 | case CK_ARCExtendBlockObject: |
1203 | case CK_CopyAndAutoreleaseBlockObject: |
1204 | return nullptr; |
1205 | |
1206 | // These don't need to be handled here because Evaluate knows how to |
1207 | // evaluate them in the cases where they can be folded. |
1208 | case CK_BitCast: |
1209 | case CK_ToVoid: |
1210 | case CK_Dynamic: |
1211 | case CK_LValueBitCast: |
1212 | case CK_LValueToRValueBitCast: |
1213 | case CK_NullToMemberPointer: |
1214 | case CK_UserDefinedConversion: |
1215 | case CK_CPointerToObjCPointerCast: |
1216 | case CK_BlockPointerToObjCPointerCast: |
1217 | case CK_AnyPointerToBlockPointerCast: |
1218 | case CK_FunctionToPointerDecay: |
1219 | case CK_BaseToDerived: |
1220 | case CK_DerivedToBase: |
1221 | case CK_UncheckedDerivedToBase: |
1222 | case CK_MemberPointerToBoolean: |
1223 | case CK_VectorSplat: |
1224 | case CK_FloatingRealToComplex: |
1225 | case CK_FloatingComplexToReal: |
1226 | case CK_FloatingComplexToBoolean: |
1227 | case CK_FloatingComplexCast: |
1228 | case CK_FloatingComplexToIntegralComplex: |
1229 | case CK_IntegralRealToComplex: |
1230 | case CK_IntegralComplexToReal: |
1231 | case CK_IntegralComplexToBoolean: |
1232 | case CK_IntegralComplexCast: |
1233 | case CK_IntegralComplexToFloatingComplex: |
1234 | case CK_PointerToIntegral: |
1235 | case CK_PointerToBoolean: |
1236 | case CK_BooleanToSignedIntegral: |
1237 | case CK_IntegralToPointer: |
1238 | case CK_IntegralToBoolean: |
1239 | case CK_IntegralToFloating: |
1240 | case CK_FloatingToIntegral: |
1241 | case CK_FloatingToBoolean: |
1242 | case CK_FloatingCast: |
1243 | case CK_FloatingToFixedPoint: |
1244 | case CK_FixedPointToFloating: |
1245 | case CK_FixedPointCast: |
1246 | case CK_FixedPointToBoolean: |
1247 | case CK_FixedPointToIntegral: |
1248 | case CK_IntegralToFixedPoint: |
1249 | case CK_ZeroToOCLOpaqueType: |
1250 | case CK_MatrixCast: |
1251 | case CK_HLSLVectorTruncation: |
1252 | case CK_HLSLArrayRValue: |
1253 | return nullptr; |
1254 | } |
1255 | llvm_unreachable("Invalid CastKind" ); |
1256 | } |
1257 | |
1258 | llvm::Constant *VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *DIE, |
1259 | QualType T) { |
1260 | // No need for a DefaultInitExprScope: we don't handle 'this' in a |
1261 | // constant expression. |
1262 | return Visit(S: DIE->getExpr(), P: T); |
1263 | } |
1264 | |
1265 | llvm::Constant *VisitExprWithCleanups(const ExprWithCleanups *E, QualType T) { |
1266 | return Visit(S: E->getSubExpr(), P: T); |
1267 | } |
1268 | |
1269 | llvm::Constant *VisitIntegerLiteral(const IntegerLiteral *I, QualType T) { |
1270 | return llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: I->getValue()); |
1271 | } |
1272 | |
1273 | static APValue withDestType(ASTContext &Ctx, const Expr *E, QualType SrcType, |
1274 | QualType DestType, const llvm::APSInt &Value) { |
1275 | if (!Ctx.hasSameType(T1: SrcType, T2: DestType)) { |
1276 | if (DestType->isFloatingType()) { |
1277 | llvm::APFloat Result = |
1278 | llvm::APFloat(Ctx.getFloatTypeSemantics(T: DestType), 1); |
1279 | llvm::RoundingMode RM = |
1280 | E->getFPFeaturesInEffect(LO: Ctx.getLangOpts()).getRoundingMode(); |
1281 | if (RM == llvm::RoundingMode::Dynamic) |
1282 | RM = llvm::RoundingMode::NearestTiesToEven; |
1283 | Result.convertFromAPInt(Input: Value, IsSigned: Value.isSigned(), RM); |
1284 | return APValue(Result); |
1285 | } |
1286 | } |
1287 | return APValue(Value); |
1288 | } |
1289 | |
1290 | llvm::Constant *EmitArrayInitialization(const InitListExpr *ILE, QualType T) { |
1291 | auto *CAT = CGM.getContext().getAsConstantArrayType(T: ILE->getType()); |
1292 | assert(CAT && "can't emit array init for non-constant-bound array" ); |
1293 | uint64_t NumInitElements = ILE->getNumInits(); |
1294 | const uint64_t NumElements = CAT->getZExtSize(); |
1295 | for (const auto *Init : ILE->inits()) { |
1296 | if (const auto *Embed = |
1297 | dyn_cast<EmbedExpr>(Val: Init->IgnoreParenImpCasts())) { |
1298 | NumInitElements += Embed->getDataElementCount() - 1; |
1299 | if (NumInitElements > NumElements) { |
1300 | NumInitElements = NumElements; |
1301 | break; |
1302 | } |
1303 | } |
1304 | } |
1305 | |
1306 | // Initialising an array requires us to automatically |
1307 | // initialise any elements that have not been initialised explicitly |
1308 | uint64_t NumInitableElts = std::min<uint64_t>(a: NumInitElements, b: NumElements); |
1309 | |
1310 | QualType EltType = CAT->getElementType(); |
1311 | |
1312 | // Initialize remaining array elements. |
1313 | llvm::Constant *fillC = nullptr; |
1314 | if (const Expr *filler = ILE->getArrayFiller()) { |
1315 | fillC = Emitter.tryEmitAbstractForMemory(E: filler, T: EltType); |
1316 | if (!fillC) |
1317 | return nullptr; |
1318 | } |
1319 | |
1320 | // Copy initializer elements. |
1321 | SmallVector<llvm::Constant *, 16> Elts; |
1322 | if (fillC && fillC->isNullValue()) |
1323 | Elts.reserve(N: NumInitableElts + 1); |
1324 | else |
1325 | Elts.reserve(N: NumElements); |
1326 | |
1327 | llvm::Type *CommonElementType = nullptr; |
1328 | auto Emit = [&](const Expr *Init, unsigned ArrayIndex) { |
1329 | llvm::Constant *C = nullptr; |
1330 | C = Emitter.tryEmitPrivateForMemory(E: Init, T: EltType); |
1331 | if (!C) |
1332 | return false; |
1333 | if (ArrayIndex == 0) |
1334 | CommonElementType = C->getType(); |
1335 | else if (C->getType() != CommonElementType) |
1336 | CommonElementType = nullptr; |
1337 | Elts.push_back(Elt: C); |
1338 | return true; |
1339 | }; |
1340 | |
1341 | unsigned ArrayIndex = 0; |
1342 | QualType DestTy = CAT->getElementType(); |
1343 | for (unsigned i = 0; i < ILE->getNumInits(); ++i) { |
1344 | const Expr *Init = ILE->getInit(Init: i); |
1345 | if (auto *EmbedS = dyn_cast<EmbedExpr>(Val: Init->IgnoreParenImpCasts())) { |
1346 | StringLiteral *SL = EmbedS->getDataStringLiteral(); |
1347 | llvm::APSInt Value(CGM.getContext().getTypeSize(T: DestTy), |
1348 | DestTy->isUnsignedIntegerType()); |
1349 | llvm::Constant *C; |
1350 | for (unsigned I = EmbedS->getStartingElementPos(), |
1351 | N = EmbedS->getDataElementCount(); |
1352 | I != EmbedS->getStartingElementPos() + N; ++I) { |
1353 | Value = SL->getCodeUnit(i: I); |
1354 | if (DestTy->isIntegerType()) { |
1355 | C = llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: Value); |
1356 | } else { |
1357 | C = Emitter.tryEmitPrivateForMemory( |
1358 | value: withDestType(Ctx&: CGM.getContext(), E: Init, SrcType: EmbedS->getType(), DestType: DestTy, |
1359 | Value), |
1360 | T: EltType); |
1361 | } |
1362 | if (!C) |
1363 | return nullptr; |
1364 | Elts.push_back(Elt: C); |
1365 | ArrayIndex++; |
1366 | } |
1367 | if ((ArrayIndex - EmbedS->getDataElementCount()) == 0) |
1368 | CommonElementType = C->getType(); |
1369 | else if (C->getType() != CommonElementType) |
1370 | CommonElementType = nullptr; |
1371 | } else { |
1372 | if (!Emit(Init, ArrayIndex)) |
1373 | return nullptr; |
1374 | ArrayIndex++; |
1375 | } |
1376 | } |
1377 | |
1378 | llvm::ArrayType *Desired = |
1379 | cast<llvm::ArrayType>(Val: CGM.getTypes().ConvertType(T: ILE->getType())); |
1380 | return EmitArrayConstant(CGM, DesiredType: Desired, CommonElementType, ArrayBound: NumElements, Elements&: Elts, |
1381 | Filler: fillC); |
1382 | } |
1383 | |
1384 | llvm::Constant *EmitRecordInitialization(const InitListExpr *ILE, |
1385 | QualType T) { |
1386 | return ConstStructBuilder::BuildStruct(Emitter, ILE, ValTy: T); |
1387 | } |
1388 | |
1389 | llvm::Constant *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E, |
1390 | QualType T) { |
1391 | return CGM.EmitNullConstant(T); |
1392 | } |
1393 | |
1394 | llvm::Constant *VisitInitListExpr(const InitListExpr *ILE, QualType T) { |
1395 | if (ILE->isTransparent()) |
1396 | return Visit(S: ILE->getInit(Init: 0), P: T); |
1397 | |
1398 | if (ILE->getType()->isArrayType()) |
1399 | return EmitArrayInitialization(ILE, T); |
1400 | |
1401 | if (ILE->getType()->isRecordType()) |
1402 | return EmitRecordInitialization(ILE, T); |
1403 | |
1404 | return nullptr; |
1405 | } |
1406 | |
1407 | llvm::Constant * |
1408 | VisitDesignatedInitUpdateExpr(const DesignatedInitUpdateExpr *E, |
1409 | QualType destType) { |
1410 | auto C = Visit(S: E->getBase(), P: destType); |
1411 | if (!C) |
1412 | return nullptr; |
1413 | |
1414 | ConstantAggregateBuilder Const(CGM); |
1415 | Const.add(C, Offset: CharUnits::Zero(), AllowOverwrite: false); |
1416 | |
1417 | if (!EmitDesignatedInitUpdater(Emitter, Const, Offset: CharUnits::Zero(), Type: destType, |
1418 | Updater: E->getUpdater())) |
1419 | return nullptr; |
1420 | |
1421 | llvm::Type *ValTy = CGM.getTypes().ConvertType(T: destType); |
1422 | bool HasFlexibleArray = false; |
1423 | if (const auto *RT = destType->getAs<RecordType>()) |
1424 | HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember(); |
1425 | return Const.build(DesiredTy: ValTy, AllowOversized: HasFlexibleArray); |
1426 | } |
1427 | |
1428 | llvm::Constant *VisitCXXConstructExpr(const CXXConstructExpr *E, |
1429 | QualType Ty) { |
1430 | if (!E->getConstructor()->isTrivial()) |
1431 | return nullptr; |
1432 | |
1433 | // Only default and copy/move constructors can be trivial. |
1434 | if (E->getNumArgs()) { |
1435 | assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument" ); |
1436 | assert(E->getConstructor()->isCopyOrMoveConstructor() && |
1437 | "trivial ctor has argument but isn't a copy/move ctor" ); |
1438 | |
1439 | const Expr *Arg = E->getArg(Arg: 0); |
1440 | assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && |
1441 | "argument to copy ctor is of wrong type" ); |
1442 | |
1443 | // Look through the temporary; it's just converting the value to an |
1444 | // lvalue to pass it to the constructor. |
1445 | if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: Arg)) |
1446 | return Visit(S: MTE->getSubExpr(), P: Ty); |
1447 | // Don't try to support arbitrary lvalue-to-rvalue conversions for now. |
1448 | return nullptr; |
1449 | } |
1450 | |
1451 | return CGM.EmitNullConstant(T: Ty); |
1452 | } |
1453 | |
1454 | llvm::Constant *VisitStringLiteral(const StringLiteral *E, QualType T) { |
1455 | // This is a string literal initializing an array in an initializer. |
1456 | return CGM.GetConstantArrayFromStringLiteral(E); |
1457 | } |
1458 | |
1459 | llvm::Constant *VisitObjCEncodeExpr(const ObjCEncodeExpr *E, QualType T) { |
1460 | // This must be an @encode initializing an array in a static initializer. |
1461 | // Don't emit it as the address of the string, emit the string data itself |
1462 | // as an inline array. |
1463 | std::string Str; |
1464 | CGM.getContext().getObjCEncodingForType(T: E->getEncodedType(), S&: Str); |
1465 | const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); |
1466 | assert(CAT && "String data not of constant array type!" ); |
1467 | |
1468 | // Resize the string to the right size, adding zeros at the end, or |
1469 | // truncating as needed. |
1470 | Str.resize(n: CAT->getZExtSize(), c: '\0'); |
1471 | return llvm::ConstantDataArray::getString(Context&: VMContext, Initializer: Str, AddNull: false); |
1472 | } |
1473 | |
1474 | llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { |
1475 | return Visit(S: E->getSubExpr(), P: T); |
1476 | } |
1477 | |
1478 | llvm::Constant *VisitUnaryMinus(const UnaryOperator *U, QualType T) { |
1479 | if (llvm::Constant *C = Visit(S: U->getSubExpr(), P: T)) |
1480 | if (auto *CI = dyn_cast<llvm::ConstantInt>(Val: C)) |
1481 | return llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: -CI->getValue()); |
1482 | return nullptr; |
1483 | } |
1484 | |
1485 | llvm::Constant *VisitPackIndexingExpr(const PackIndexingExpr *E, QualType T) { |
1486 | return Visit(S: E->getSelectedExpr(), P: T); |
1487 | } |
1488 | |
1489 | // Utility methods |
1490 | llvm::Type *ConvertType(QualType T) { |
1491 | return CGM.getTypes().ConvertType(T); |
1492 | } |
1493 | }; |
1494 | |
1495 | } // end anonymous namespace. |
1496 | |
1497 | llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, |
1498 | AbstractState saved) { |
1499 | Abstract = saved.OldValue; |
1500 | |
1501 | assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && |
1502 | "created a placeholder while doing an abstract emission?" ); |
1503 | |
1504 | // No validation necessary for now. |
1505 | // No cleanup to do for now. |
1506 | return C; |
1507 | } |
1508 | |
1509 | llvm::Constant * |
1510 | ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { |
1511 | auto state = pushAbstract(); |
1512 | auto C = tryEmitPrivateForVarInit(D); |
1513 | return validateAndPopAbstract(C, saved: state); |
1514 | } |
1515 | |
1516 | llvm::Constant * |
1517 | ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { |
1518 | auto state = pushAbstract(); |
1519 | auto C = tryEmitPrivate(E, T: destType); |
1520 | return validateAndPopAbstract(C, saved: state); |
1521 | } |
1522 | |
1523 | llvm::Constant * |
1524 | ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { |
1525 | auto state = pushAbstract(); |
1526 | auto C = tryEmitPrivate(value, T: destType); |
1527 | return validateAndPopAbstract(C, saved: state); |
1528 | } |
1529 | |
1530 | llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) { |
1531 | if (!CE->hasAPValueResult()) |
1532 | return nullptr; |
1533 | |
1534 | QualType RetType = CE->getType(); |
1535 | if (CE->isGLValue()) |
1536 | RetType = CGM.getContext().getLValueReferenceType(T: RetType); |
1537 | |
1538 | return emitAbstract(loc: CE->getBeginLoc(), value: CE->getAPValueResult(), T: RetType); |
1539 | } |
1540 | |
1541 | llvm::Constant * |
1542 | ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { |
1543 | auto state = pushAbstract(); |
1544 | auto C = tryEmitPrivate(E, T: destType); |
1545 | C = validateAndPopAbstract(C, saved: state); |
1546 | if (!C) { |
1547 | CGM.Error(loc: E->getExprLoc(), |
1548 | error: "internal error: could not emit constant value \"abstractly\"" ); |
1549 | C = CGM.EmitNullConstant(T: destType); |
1550 | } |
1551 | return C; |
1552 | } |
1553 | |
1554 | llvm::Constant * |
1555 | ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, |
1556 | QualType destType, |
1557 | bool EnablePtrAuthFunctionTypeDiscrimination) { |
1558 | auto state = pushAbstract(); |
1559 | auto C = |
1560 | tryEmitPrivate(value, T: destType, EnablePtrAuthFunctionTypeDiscrimination); |
1561 | C = validateAndPopAbstract(C, saved: state); |
1562 | if (!C) { |
1563 | CGM.Error(loc, |
1564 | error: "internal error: could not emit constant value \"abstractly\"" ); |
1565 | C = CGM.EmitNullConstant(T: destType); |
1566 | } |
1567 | return C; |
1568 | } |
1569 | |
1570 | llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { |
1571 | initializeNonAbstract(destAS: D.getType().getAddressSpace()); |
1572 | return markIfFailed(init: tryEmitPrivateForVarInit(D)); |
1573 | } |
1574 | |
1575 | llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, |
1576 | LangAS destAddrSpace, |
1577 | QualType destType) { |
1578 | initializeNonAbstract(destAS: destAddrSpace); |
1579 | return markIfFailed(init: tryEmitPrivateForMemory(E, T: destType)); |
1580 | } |
1581 | |
1582 | llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, |
1583 | LangAS destAddrSpace, |
1584 | QualType destType) { |
1585 | initializeNonAbstract(destAS: destAddrSpace); |
1586 | auto C = tryEmitPrivateForMemory(value, T: destType); |
1587 | assert(C && "couldn't emit constant value non-abstractly?" ); |
1588 | return C; |
1589 | } |
1590 | |
1591 | llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { |
1592 | assert(!Abstract && "cannot get current address for abstract constant" ); |
1593 | |
1594 | |
1595 | |
1596 | // Make an obviously ill-formed global that should blow up compilation |
1597 | // if it survives. |
1598 | auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, |
1599 | llvm::GlobalValue::PrivateLinkage, |
1600 | /*init*/ nullptr, |
1601 | /*name*/ "" , |
1602 | /*before*/ nullptr, |
1603 | llvm::GlobalVariable::NotThreadLocal, |
1604 | CGM.getContext().getTargetAddressSpace(AS: DestAddressSpace)); |
1605 | |
1606 | PlaceholderAddresses.push_back(Elt: std::make_pair(x: nullptr, y&: global)); |
1607 | |
1608 | return global; |
1609 | } |
1610 | |
1611 | void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, |
1612 | llvm::GlobalValue *placeholder) { |
1613 | assert(!PlaceholderAddresses.empty()); |
1614 | assert(PlaceholderAddresses.back().first == nullptr); |
1615 | assert(PlaceholderAddresses.back().second == placeholder); |
1616 | PlaceholderAddresses.back().first = signal; |
1617 | } |
1618 | |
1619 | namespace { |
1620 | struct ReplacePlaceholders { |
1621 | CodeGenModule &CGM; |
1622 | |
1623 | /// The base address of the global. |
1624 | llvm::Constant *Base; |
1625 | llvm::Type *BaseValueTy = nullptr; |
1626 | |
1627 | /// The placeholder addresses that were registered during emission. |
1628 | llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; |
1629 | |
1630 | /// The locations of the placeholder signals. |
1631 | llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; |
1632 | |
1633 | /// The current index stack. We use a simple unsigned stack because |
1634 | /// we assume that placeholders will be relatively sparse in the |
1635 | /// initializer, but we cache the index values we find just in case. |
1636 | llvm::SmallVector<unsigned, 8> Indices; |
1637 | llvm::SmallVector<llvm::Constant*, 8> IndexValues; |
1638 | |
1639 | ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, |
1640 | ArrayRef<std::pair<llvm::Constant*, |
1641 | llvm::GlobalVariable*>> addresses) |
1642 | : CGM(CGM), Base(base), |
1643 | PlaceholderAddresses(addresses.begin(), addresses.end()) { |
1644 | } |
1645 | |
1646 | void replaceInInitializer(llvm::Constant *init) { |
1647 | // Remember the type of the top-most initializer. |
1648 | BaseValueTy = init->getType(); |
1649 | |
1650 | // Initialize the stack. |
1651 | Indices.push_back(Elt: 0); |
1652 | IndexValues.push_back(Elt: nullptr); |
1653 | |
1654 | // Recurse into the initializer. |
1655 | findLocations(init); |
1656 | |
1657 | // Check invariants. |
1658 | assert(IndexValues.size() == Indices.size() && "mismatch" ); |
1659 | assert(Indices.size() == 1 && "didn't pop all indices" ); |
1660 | |
1661 | // Do the replacement; this basically invalidates 'init'. |
1662 | assert(Locations.size() == PlaceholderAddresses.size() && |
1663 | "missed a placeholder?" ); |
1664 | |
1665 | // We're iterating over a hashtable, so this would be a source of |
1666 | // non-determinism in compiler output *except* that we're just |
1667 | // messing around with llvm::Constant structures, which never itself |
1668 | // does anything that should be visible in compiler output. |
1669 | for (auto &entry : Locations) { |
1670 | assert(entry.first->getName() == "" && "not a placeholder!" ); |
1671 | entry.first->replaceAllUsesWith(V: entry.second); |
1672 | entry.first->eraseFromParent(); |
1673 | } |
1674 | } |
1675 | |
1676 | private: |
1677 | void findLocations(llvm::Constant *init) { |
1678 | // Recurse into aggregates. |
1679 | if (auto agg = dyn_cast<llvm::ConstantAggregate>(Val: init)) { |
1680 | for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { |
1681 | Indices.push_back(Elt: i); |
1682 | IndexValues.push_back(Elt: nullptr); |
1683 | |
1684 | findLocations(init: agg->getOperand(i_nocapture: i)); |
1685 | |
1686 | IndexValues.pop_back(); |
1687 | Indices.pop_back(); |
1688 | } |
1689 | return; |
1690 | } |
1691 | |
1692 | // Otherwise, check for registered constants. |
1693 | while (true) { |
1694 | auto it = PlaceholderAddresses.find(Val: init); |
1695 | if (it != PlaceholderAddresses.end()) { |
1696 | setLocation(it->second); |
1697 | break; |
1698 | } |
1699 | |
1700 | // Look through bitcasts or other expressions. |
1701 | if (auto expr = dyn_cast<llvm::ConstantExpr>(Val: init)) { |
1702 | init = expr->getOperand(i_nocapture: 0); |
1703 | } else { |
1704 | break; |
1705 | } |
1706 | } |
1707 | } |
1708 | |
1709 | void setLocation(llvm::GlobalVariable *placeholder) { |
1710 | assert(!Locations.contains(placeholder) && |
1711 | "already found location for placeholder!" ); |
1712 | |
1713 | // Lazily fill in IndexValues with the values from Indices. |
1714 | // We do this in reverse because we should always have a strict |
1715 | // prefix of indices from the start. |
1716 | assert(Indices.size() == IndexValues.size()); |
1717 | for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { |
1718 | if (IndexValues[i]) { |
1719 | #ifndef NDEBUG |
1720 | for (size_t j = 0; j != i + 1; ++j) { |
1721 | assert(IndexValues[j] && |
1722 | isa<llvm::ConstantInt>(IndexValues[j]) && |
1723 | cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() |
1724 | == Indices[j]); |
1725 | } |
1726 | #endif |
1727 | break; |
1728 | } |
1729 | |
1730 | IndexValues[i] = llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: Indices[i]); |
1731 | } |
1732 | |
1733 | llvm::Constant *location = llvm::ConstantExpr::getInBoundsGetElementPtr( |
1734 | Ty: BaseValueTy, C: Base, IdxList: IndexValues); |
1735 | |
1736 | Locations.insert(KV: {placeholder, location}); |
1737 | } |
1738 | }; |
1739 | } |
1740 | |
1741 | void ConstantEmitter::finalize(llvm::GlobalVariable *global) { |
1742 | assert(InitializedNonAbstract && |
1743 | "finalizing emitter that was used for abstract emission?" ); |
1744 | assert(!Finalized && "finalizing emitter multiple times" ); |
1745 | assert(global->getInitializer()); |
1746 | |
1747 | // Note that we might also be Failed. |
1748 | Finalized = true; |
1749 | |
1750 | if (!PlaceholderAddresses.empty()) { |
1751 | ReplacePlaceholders(CGM, global, PlaceholderAddresses) |
1752 | .replaceInInitializer(init: global->getInitializer()); |
1753 | PlaceholderAddresses.clear(); // satisfy |
1754 | } |
1755 | } |
1756 | |
1757 | ConstantEmitter::~ConstantEmitter() { |
1758 | assert((!InitializedNonAbstract || Finalized || Failed) && |
1759 | "not finalized after being initialized for non-abstract emission" ); |
1760 | assert(PlaceholderAddresses.empty() && "unhandled placeholders" ); |
1761 | } |
1762 | |
1763 | static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { |
1764 | if (auto AT = type->getAs<AtomicType>()) { |
1765 | return CGM.getContext().getQualifiedType(T: AT->getValueType(), |
1766 | Qs: type.getQualifiers()); |
1767 | } |
1768 | return type; |
1769 | } |
1770 | |
1771 | llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { |
1772 | // Make a quick check if variable can be default NULL initialized |
1773 | // and avoid going through rest of code which may do, for c++11, |
1774 | // initialization of memory to all NULLs. |
1775 | if (!D.hasLocalStorage()) { |
1776 | QualType Ty = CGM.getContext().getBaseElementType(QT: D.getType()); |
1777 | if (Ty->isRecordType()) |
1778 | if (const CXXConstructExpr *E = |
1779 | dyn_cast_or_null<CXXConstructExpr>(Val: D.getInit())) { |
1780 | const CXXConstructorDecl *CD = E->getConstructor(); |
1781 | if (CD->isTrivial() && CD->isDefaultConstructor()) |
1782 | return CGM.EmitNullConstant(T: D.getType()); |
1783 | } |
1784 | } |
1785 | InConstantContext = D.hasConstantInitialization(); |
1786 | |
1787 | QualType destType = D.getType(); |
1788 | const Expr *E = D.getInit(); |
1789 | assert(E && "No initializer to emit" ); |
1790 | |
1791 | if (!destType->isReferenceType()) { |
1792 | QualType nonMemoryDestType = getNonMemoryType(CGM, type: destType); |
1793 | if (llvm::Constant *C = ConstExprEmitter(*this).Visit(S: E, P: nonMemoryDestType)) |
1794 | return emitForMemory(C, T: destType); |
1795 | } |
1796 | |
1797 | // Try to emit the initializer. Note that this can allow some things that |
1798 | // are not allowed by tryEmitPrivateForMemory alone. |
1799 | if (APValue *value = D.evaluateValue()) |
1800 | return tryEmitPrivateForMemory(value: *value, T: destType); |
1801 | |
1802 | return nullptr; |
1803 | } |
1804 | |
1805 | llvm::Constant * |
1806 | ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { |
1807 | auto nonMemoryDestType = getNonMemoryType(CGM, type: destType); |
1808 | auto C = tryEmitAbstract(E, destType: nonMemoryDestType); |
1809 | return (C ? emitForMemory(C, T: destType) : nullptr); |
1810 | } |
1811 | |
1812 | llvm::Constant * |
1813 | ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, |
1814 | QualType destType) { |
1815 | auto nonMemoryDestType = getNonMemoryType(CGM, type: destType); |
1816 | auto C = tryEmitAbstract(value, destType: nonMemoryDestType); |
1817 | return (C ? emitForMemory(C, T: destType) : nullptr); |
1818 | } |
1819 | |
1820 | llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, |
1821 | QualType destType) { |
1822 | auto nonMemoryDestType = getNonMemoryType(CGM, type: destType); |
1823 | llvm::Constant *C = tryEmitPrivate(E, T: nonMemoryDestType); |
1824 | return (C ? emitForMemory(C, T: destType) : nullptr); |
1825 | } |
1826 | |
1827 | llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, |
1828 | QualType destType) { |
1829 | auto nonMemoryDestType = getNonMemoryType(CGM, type: destType); |
1830 | auto C = tryEmitPrivate(value, T: nonMemoryDestType); |
1831 | return (C ? emitForMemory(C, T: destType) : nullptr); |
1832 | } |
1833 | |
1834 | /// Try to emit a constant signed pointer, given a raw pointer and the |
1835 | /// destination ptrauth qualifier. |
1836 | /// |
1837 | /// This can fail if the qualifier needs address discrimination and the |
1838 | /// emitter is in an abstract mode. |
1839 | llvm::Constant * |
1840 | ConstantEmitter::tryEmitConstantSignedPointer(llvm::Constant *UnsignedPointer, |
1841 | PointerAuthQualifier Schema) { |
1842 | assert(Schema && "applying trivial ptrauth schema" ); |
1843 | |
1844 | if (Schema.hasKeyNone()) |
1845 | return UnsignedPointer; |
1846 | |
1847 | unsigned Key = Schema.getKey(); |
1848 | |
1849 | // Create an address placeholder if we're using address discrimination. |
1850 | llvm::GlobalValue *StorageAddress = nullptr; |
1851 | if (Schema.isAddressDiscriminated()) { |
1852 | // We can't do this if the emitter is in an abstract state. |
1853 | if (isAbstract()) |
1854 | return nullptr; |
1855 | |
1856 | StorageAddress = getCurrentAddrPrivate(); |
1857 | } |
1858 | |
1859 | llvm::ConstantInt *Discriminator = |
1860 | llvm::ConstantInt::get(Ty: CGM.IntPtrTy, V: Schema.getExtraDiscriminator()); |
1861 | |
1862 | llvm::Constant *SignedPointer = CGM.getConstantSignedPointer( |
1863 | Pointer: UnsignedPointer, Key, StorageAddress, OtherDiscriminator: Discriminator); |
1864 | |
1865 | if (Schema.isAddressDiscriminated()) |
1866 | registerCurrentAddrPrivate(signal: SignedPointer, placeholder: StorageAddress); |
1867 | |
1868 | return SignedPointer; |
1869 | } |
1870 | |
1871 | llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, |
1872 | llvm::Constant *C, |
1873 | QualType destType) { |
1874 | // For an _Atomic-qualified constant, we may need to add tail padding. |
1875 | if (auto AT = destType->getAs<AtomicType>()) { |
1876 | QualType destValueType = AT->getValueType(); |
1877 | C = emitForMemory(CGM, C, destType: destValueType); |
1878 | |
1879 | uint64_t innerSize = CGM.getContext().getTypeSize(T: destValueType); |
1880 | uint64_t outerSize = CGM.getContext().getTypeSize(T: destType); |
1881 | if (innerSize == outerSize) |
1882 | return C; |
1883 | |
1884 | assert(innerSize < outerSize && "emitted over-large constant for atomic" ); |
1885 | llvm::Constant *elts[] = { |
1886 | C, |
1887 | llvm::ConstantAggregateZero::get( |
1888 | Ty: llvm::ArrayType::get(ElementType: CGM.Int8Ty, NumElements: (outerSize - innerSize) / 8)) |
1889 | }; |
1890 | return llvm::ConstantStruct::getAnon(V: elts); |
1891 | } |
1892 | |
1893 | // Zero-extend bool. |
1894 | if (C->getType()->isIntegerTy(Bitwidth: 1) && !destType->isBitIntType()) { |
1895 | llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(T: destType); |
1896 | llvm::Constant *Res = llvm::ConstantFoldCastOperand( |
1897 | Opcode: llvm::Instruction::ZExt, C, DestTy: boolTy, DL: CGM.getDataLayout()); |
1898 | assert(Res && "Constant folding must succeed" ); |
1899 | return Res; |
1900 | } |
1901 | |
1902 | if (destType->isBitIntType()) { |
1903 | ConstantAggregateBuilder Builder(CGM); |
1904 | llvm::Type *LoadStoreTy = CGM.getTypes().convertTypeForLoadStore(T: destType); |
1905 | // ptrtoint/inttoptr should not involve _BitInt in constant expressions, so |
1906 | // casting to ConstantInt is safe here. |
1907 | auto *CI = cast<llvm::ConstantInt>(Val: C); |
1908 | llvm::Constant *Res = llvm::ConstantFoldCastOperand( |
1909 | Opcode: destType->isSignedIntegerOrEnumerationType() ? llvm::Instruction::SExt |
1910 | : llvm::Instruction::ZExt, |
1911 | C: CI, DestTy: LoadStoreTy, DL: CGM.getDataLayout()); |
1912 | if (CGM.getTypes().typeRequiresSplitIntoByteArray(ASTTy: destType, LLVMTy: C->getType())) { |
1913 | // Long _BitInt has array of bytes as in-memory type. |
1914 | // So, split constant into individual bytes. |
1915 | llvm::Type *DesiredTy = CGM.getTypes().ConvertTypeForMem(T: destType); |
1916 | llvm::APInt Value = cast<llvm::ConstantInt>(Val: Res)->getValue(); |
1917 | Builder.addBits(Bits: Value, /*OffsetInBits=*/0, /*AllowOverwrite=*/false); |
1918 | return Builder.build(DesiredTy, /*AllowOversized*/ false); |
1919 | } |
1920 | return Res; |
1921 | } |
1922 | |
1923 | return C; |
1924 | } |
1925 | |
1926 | llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, |
1927 | QualType destType) { |
1928 | assert(!destType->isVoidType() && "can't emit a void constant" ); |
1929 | |
1930 | if (!destType->isReferenceType()) |
1931 | if (llvm::Constant *C = ConstExprEmitter(*this).Visit(S: E, P: destType)) |
1932 | return C; |
1933 | |
1934 | Expr::EvalResult Result; |
1935 | |
1936 | bool Success = false; |
1937 | |
1938 | if (destType->isReferenceType()) |
1939 | Success = E->EvaluateAsLValue(Result, Ctx: CGM.getContext()); |
1940 | else |
1941 | Success = E->EvaluateAsRValue(Result, Ctx: CGM.getContext(), InConstantContext); |
1942 | |
1943 | if (Success && !Result.HasSideEffects) |
1944 | return tryEmitPrivate(value: Result.Val, T: destType); |
1945 | |
1946 | return nullptr; |
1947 | } |
1948 | |
1949 | llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { |
1950 | return getTargetCodeGenInfo().getNullPointer(CGM: *this, T, QT); |
1951 | } |
1952 | |
1953 | namespace { |
1954 | /// A struct which can be used to peephole certain kinds of finalization |
1955 | /// that normally happen during l-value emission. |
1956 | struct ConstantLValue { |
1957 | llvm::Constant *Value; |
1958 | bool HasOffsetApplied; |
1959 | |
1960 | /*implicit*/ ConstantLValue(llvm::Constant *value, |
1961 | bool hasOffsetApplied = false) |
1962 | : Value(value), HasOffsetApplied(hasOffsetApplied) {} |
1963 | |
1964 | /*implicit*/ ConstantLValue(ConstantAddress address) |
1965 | : ConstantLValue(address.getPointer()) {} |
1966 | }; |
1967 | |
1968 | /// A helper class for emitting constant l-values. |
1969 | class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter, |
1970 | ConstantLValue> { |
1971 | CodeGenModule &CGM; |
1972 | ConstantEmitter &Emitter; |
1973 | const APValue &Value; |
1974 | QualType DestType; |
1975 | bool EnablePtrAuthFunctionTypeDiscrimination; |
1976 | |
1977 | // Befriend StmtVisitorBase so that we don't have to expose Visit*. |
1978 | friend StmtVisitorBase; |
1979 | |
1980 | public: |
1981 | ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value, |
1982 | QualType destType, |
1983 | bool EnablePtrAuthFunctionTypeDiscrimination = true) |
1984 | : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType), |
1985 | EnablePtrAuthFunctionTypeDiscrimination( |
1986 | EnablePtrAuthFunctionTypeDiscrimination) {} |
1987 | |
1988 | llvm::Constant *tryEmit(); |
1989 | |
1990 | private: |
1991 | llvm::Constant *tryEmitAbsolute(llvm::Type *destTy); |
1992 | ConstantLValue tryEmitBase(const APValue::LValueBase &base); |
1993 | |
1994 | ConstantLValue VisitStmt(const Stmt *S) { return nullptr; } |
1995 | ConstantLValue VisitConstantExpr(const ConstantExpr *E); |
1996 | ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); |
1997 | ConstantLValue VisitStringLiteral(const StringLiteral *E); |
1998 | ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E); |
1999 | ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E); |
2000 | ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E); |
2001 | ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E); |
2002 | ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E); |
2003 | ConstantLValue VisitCallExpr(const CallExpr *E); |
2004 | ConstantLValue VisitBlockExpr(const BlockExpr *E); |
2005 | ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E); |
2006 | ConstantLValue VisitMaterializeTemporaryExpr( |
2007 | const MaterializeTemporaryExpr *E); |
2008 | |
2009 | ConstantLValue emitPointerAuthSignConstant(const CallExpr *E); |
2010 | llvm::Constant *emitPointerAuthPointer(const Expr *E); |
2011 | unsigned emitPointerAuthKey(const Expr *E); |
2012 | std::pair<llvm::Constant *, llvm::ConstantInt *> |
2013 | emitPointerAuthDiscriminator(const Expr *E); |
2014 | |
2015 | bool hasNonZeroOffset() const { |
2016 | return !Value.getLValueOffset().isZero(); |
2017 | } |
2018 | |
2019 | /// Return the value offset. |
2020 | llvm::Constant *getOffset() { |
2021 | return llvm::ConstantInt::get(Ty: CGM.Int64Ty, |
2022 | V: Value.getLValueOffset().getQuantity()); |
2023 | } |
2024 | |
2025 | /// Apply the value offset to the given constant. |
2026 | llvm::Constant *applyOffset(llvm::Constant *C) { |
2027 | if (!hasNonZeroOffset()) |
2028 | return C; |
2029 | |
2030 | return llvm::ConstantExpr::getGetElementPtr(Ty: CGM.Int8Ty, C, Idx: getOffset()); |
2031 | } |
2032 | }; |
2033 | |
2034 | } |
2035 | |
2036 | llvm::Constant *ConstantLValueEmitter::tryEmit() { |
2037 | const APValue::LValueBase &base = Value.getLValueBase(); |
2038 | |
2039 | // The destination type should be a pointer or reference |
2040 | // type, but it might also be a cast thereof. |
2041 | // |
2042 | // FIXME: the chain of casts required should be reflected in the APValue. |
2043 | // We need this in order to correctly handle things like a ptrtoint of a |
2044 | // non-zero null pointer and addrspace casts that aren't trivially |
2045 | // represented in LLVM IR. |
2046 | auto destTy = CGM.getTypes().ConvertTypeForMem(T: DestType); |
2047 | assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy)); |
2048 | |
2049 | // If there's no base at all, this is a null or absolute pointer, |
2050 | // possibly cast back to an integer type. |
2051 | if (!base) { |
2052 | return tryEmitAbsolute(destTy); |
2053 | } |
2054 | |
2055 | // Otherwise, try to emit the base. |
2056 | ConstantLValue result = tryEmitBase(base); |
2057 | |
2058 | // If that failed, we're done. |
2059 | llvm::Constant *value = result.Value; |
2060 | if (!value) return nullptr; |
2061 | |
2062 | // Apply the offset if necessary and not already done. |
2063 | if (!result.HasOffsetApplied) { |
2064 | value = applyOffset(C: value); |
2065 | } |
2066 | |
2067 | // Convert to the appropriate type; this could be an lvalue for |
2068 | // an integer. FIXME: performAddrSpaceCast |
2069 | if (isa<llvm::PointerType>(Val: destTy)) |
2070 | return llvm::ConstantExpr::getPointerCast(C: value, Ty: destTy); |
2071 | |
2072 | return llvm::ConstantExpr::getPtrToInt(C: value, Ty: destTy); |
2073 | } |
2074 | |
2075 | /// Try to emit an absolute l-value, such as a null pointer or an integer |
2076 | /// bitcast to pointer type. |
2077 | llvm::Constant * |
2078 | ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) { |
2079 | // If we're producing a pointer, this is easy. |
2080 | auto destPtrTy = cast<llvm::PointerType>(Val: destTy); |
2081 | if (Value.isNullPointer()) { |
2082 | // FIXME: integer offsets from non-zero null pointers. |
2083 | return CGM.getNullPointer(T: destPtrTy, QT: DestType); |
2084 | } |
2085 | |
2086 | // Convert the integer to a pointer-sized integer before converting it |
2087 | // to a pointer. |
2088 | // FIXME: signedness depends on the original integer type. |
2089 | auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy); |
2090 | llvm::Constant *C; |
2091 | C = llvm::ConstantFoldIntegerCast(C: getOffset(), DestTy: intptrTy, /*isSigned*/ IsSigned: false, |
2092 | DL: CGM.getDataLayout()); |
2093 | assert(C && "Must have folded, as Offset is a ConstantInt" ); |
2094 | C = llvm::ConstantExpr::getIntToPtr(C, Ty: destPtrTy); |
2095 | return C; |
2096 | } |
2097 | |
2098 | ConstantLValue |
2099 | ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) { |
2100 | // Handle values. |
2101 | if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) { |
2102 | // The constant always points to the canonical declaration. We want to look |
2103 | // at properties of the most recent declaration at the point of emission. |
2104 | D = cast<ValueDecl>(Val: D->getMostRecentDecl()); |
2105 | |
2106 | if (D->hasAttr<WeakRefAttr>()) |
2107 | return CGM.GetWeakRefReference(VD: D).getPointer(); |
2108 | |
2109 | auto PtrAuthSign = [&](llvm::Constant *C) { |
2110 | CGPointerAuthInfo AuthInfo; |
2111 | |
2112 | if (EnablePtrAuthFunctionTypeDiscrimination) |
2113 | AuthInfo = CGM.getFunctionPointerAuthInfo(T: DestType); |
2114 | |
2115 | if (AuthInfo) { |
2116 | if (hasNonZeroOffset()) |
2117 | return ConstantLValue(nullptr); |
2118 | |
2119 | C = applyOffset(C); |
2120 | C = CGM.getConstantSignedPointer( |
2121 | Pointer: C, Key: AuthInfo.getKey(), StorageAddress: nullptr, |
2122 | OtherDiscriminator: cast_or_null<llvm::ConstantInt>(Val: AuthInfo.getDiscriminator())); |
2123 | return ConstantLValue(C, /*applied offset*/ true); |
2124 | } |
2125 | |
2126 | return ConstantLValue(C); |
2127 | }; |
2128 | |
2129 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
2130 | return PtrAuthSign(CGM.getRawFunctionPointer(GD: FD)); |
2131 | |
2132 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
2133 | // We can never refer to a variable with local storage. |
2134 | if (!VD->hasLocalStorage()) { |
2135 | if (VD->isFileVarDecl() || VD->hasExternalStorage()) |
2136 | return CGM.GetAddrOfGlobalVar(D: VD); |
2137 | |
2138 | if (VD->isLocalVarDecl()) { |
2139 | return CGM.getOrCreateStaticVarDecl( |
2140 | D: *VD, Linkage: CGM.getLLVMLinkageVarDefinition(VD)); |
2141 | } |
2142 | } |
2143 | } |
2144 | |
2145 | if (const auto *GD = dyn_cast<MSGuidDecl>(Val: D)) |
2146 | return CGM.GetAddrOfMSGuidDecl(GD); |
2147 | |
2148 | if (const auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(Val: D)) |
2149 | return CGM.GetAddrOfUnnamedGlobalConstantDecl(GCD); |
2150 | |
2151 | if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(Val: D)) |
2152 | return CGM.GetAddrOfTemplateParamObject(TPO); |
2153 | |
2154 | return nullptr; |
2155 | } |
2156 | |
2157 | // Handle typeid(T). |
2158 | if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) |
2159 | return CGM.GetAddrOfRTTIDescriptor(Ty: QualType(TI.getType(), 0)); |
2160 | |
2161 | // Otherwise, it must be an expression. |
2162 | return Visit(S: base.get<const Expr*>()); |
2163 | } |
2164 | |
2165 | ConstantLValue |
2166 | ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) { |
2167 | if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE: E)) |
2168 | return Result; |
2169 | return Visit(S: E->getSubExpr()); |
2170 | } |
2171 | |
2172 | ConstantLValue |
2173 | ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { |
2174 | ConstantEmitter CompoundLiteralEmitter(CGM, Emitter.CGF); |
2175 | CompoundLiteralEmitter.setInConstantContext(Emitter.isInConstantContext()); |
2176 | return tryEmitGlobalCompoundLiteral(emitter&: CompoundLiteralEmitter, E); |
2177 | } |
2178 | |
2179 | ConstantLValue |
2180 | ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) { |
2181 | return CGM.GetAddrOfConstantStringFromLiteral(S: E); |
2182 | } |
2183 | |
2184 | ConstantLValue |
2185 | ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { |
2186 | return CGM.GetAddrOfConstantStringFromObjCEncode(E); |
2187 | } |
2188 | |
2189 | static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S, |
2190 | QualType T, |
2191 | CodeGenModule &CGM) { |
2192 | auto C = CGM.getObjCRuntime().GenerateConstantString(S); |
2193 | return C.withElementType(ElemTy: CGM.getTypes().ConvertTypeForMem(T)); |
2194 | } |
2195 | |
2196 | ConstantLValue |
2197 | ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) { |
2198 | return emitConstantObjCStringLiteral(S: E->getString(), T: E->getType(), CGM); |
2199 | } |
2200 | |
2201 | ConstantLValue |
2202 | ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { |
2203 | assert(E->isExpressibleAsConstantInitializer() && |
2204 | "this boxed expression can't be emitted as a compile-time constant" ); |
2205 | const auto *SL = cast<StringLiteral>(Val: E->getSubExpr()->IgnoreParenCasts()); |
2206 | return emitConstantObjCStringLiteral(S: SL, T: E->getType(), CGM); |
2207 | } |
2208 | |
2209 | ConstantLValue |
2210 | ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) { |
2211 | return CGM.GetAddrOfConstantStringFromLiteral(S: E->getFunctionName()); |
2212 | } |
2213 | |
2214 | ConstantLValue |
2215 | ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) { |
2216 | assert(Emitter.CGF && "Invalid address of label expression outside function" ); |
2217 | llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(L: E->getLabel()); |
2218 | return Ptr; |
2219 | } |
2220 | |
2221 | ConstantLValue |
2222 | ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) { |
2223 | unsigned builtin = E->getBuiltinCallee(); |
2224 | if (builtin == Builtin::BI__builtin_function_start) |
2225 | return CGM.GetFunctionStart( |
2226 | Decl: E->getArg(Arg: 0)->getAsBuiltinConstantDeclRef(Context: CGM.getContext())); |
2227 | |
2228 | if (builtin == Builtin::BI__builtin_ptrauth_sign_constant) |
2229 | return emitPointerAuthSignConstant(E); |
2230 | |
2231 | if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && |
2232 | builtin != Builtin::BI__builtin___NSStringMakeConstantString) |
2233 | return nullptr; |
2234 | |
2235 | const auto *Literal = cast<StringLiteral>(Val: E->getArg(Arg: 0)->IgnoreParenCasts()); |
2236 | if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { |
2237 | return CGM.getObjCRuntime().GenerateConstantString(Literal); |
2238 | } else { |
2239 | // FIXME: need to deal with UCN conversion issues. |
2240 | return CGM.GetAddrOfConstantCFString(Literal); |
2241 | } |
2242 | } |
2243 | |
2244 | ConstantLValue |
2245 | ConstantLValueEmitter::emitPointerAuthSignConstant(const CallExpr *E) { |
2246 | llvm::Constant *UnsignedPointer = emitPointerAuthPointer(E: E->getArg(Arg: 0)); |
2247 | unsigned Key = emitPointerAuthKey(E: E->getArg(Arg: 1)); |
2248 | auto [StorageAddress, OtherDiscriminator] = |
2249 | emitPointerAuthDiscriminator(E: E->getArg(Arg: 2)); |
2250 | |
2251 | llvm::Constant *SignedPointer = CGM.getConstantSignedPointer( |
2252 | Pointer: UnsignedPointer, Key, StorageAddress, OtherDiscriminator); |
2253 | return SignedPointer; |
2254 | } |
2255 | |
2256 | llvm::Constant *ConstantLValueEmitter::emitPointerAuthPointer(const Expr *E) { |
2257 | Expr::EvalResult Result; |
2258 | bool Succeeded = E->EvaluateAsRValue(Result, Ctx: CGM.getContext()); |
2259 | assert(Succeeded); |
2260 | (void)Succeeded; |
2261 | |
2262 | // The assertions here are all checked by Sema. |
2263 | assert(Result.Val.isLValue()); |
2264 | if (isa<FunctionDecl>(Val: Result.Val.getLValueBase().get<const ValueDecl *>())) |
2265 | assert(Result.Val.getLValueOffset().isZero()); |
2266 | return ConstantEmitter(CGM, Emitter.CGF) |
2267 | .emitAbstract(loc: E->getExprLoc(), value: Result.Val, destType: E->getType(), EnablePtrAuthFunctionTypeDiscrimination: false); |
2268 | } |
2269 | |
2270 | unsigned ConstantLValueEmitter::emitPointerAuthKey(const Expr *E) { |
2271 | return E->EvaluateKnownConstInt(Ctx: CGM.getContext()).getZExtValue(); |
2272 | } |
2273 | |
2274 | std::pair<llvm::Constant *, llvm::ConstantInt *> |
2275 | ConstantLValueEmitter::emitPointerAuthDiscriminator(const Expr *E) { |
2276 | E = E->IgnoreParens(); |
2277 | |
2278 | if (const auto *Call = dyn_cast<CallExpr>(Val: E)) { |
2279 | if (Call->getBuiltinCallee() == |
2280 | Builtin::BI__builtin_ptrauth_blend_discriminator) { |
2281 | llvm::Constant *Pointer = ConstantEmitter(CGM).emitAbstract( |
2282 | E: Call->getArg(Arg: 0), destType: Call->getArg(Arg: 0)->getType()); |
2283 | auto * = cast<llvm::ConstantInt>(Val: ConstantEmitter(CGM).emitAbstract( |
2284 | E: Call->getArg(Arg: 1), destType: Call->getArg(Arg: 1)->getType())); |
2285 | return {Pointer, Extra}; |
2286 | } |
2287 | } |
2288 | |
2289 | llvm::Constant *Result = ConstantEmitter(CGM).emitAbstract(E, destType: E->getType()); |
2290 | if (Result->getType()->isPointerTy()) |
2291 | return {Result, nullptr}; |
2292 | return {nullptr, cast<llvm::ConstantInt>(Val: Result)}; |
2293 | } |
2294 | |
2295 | ConstantLValue |
2296 | ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) { |
2297 | StringRef functionName; |
2298 | if (auto CGF = Emitter.CGF) |
2299 | functionName = CGF->CurFn->getName(); |
2300 | else |
2301 | functionName = "global" ; |
2302 | |
2303 | return CGM.GetAddrOfGlobalBlock(BE: E, Name: functionName); |
2304 | } |
2305 | |
2306 | ConstantLValue |
2307 | ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { |
2308 | QualType T; |
2309 | if (E->isTypeOperand()) |
2310 | T = E->getTypeOperand(Context&: CGM.getContext()); |
2311 | else |
2312 | T = E->getExprOperand()->getType(); |
2313 | return CGM.GetAddrOfRTTIDescriptor(Ty: T); |
2314 | } |
2315 | |
2316 | ConstantLValue |
2317 | ConstantLValueEmitter::VisitMaterializeTemporaryExpr( |
2318 | const MaterializeTemporaryExpr *E) { |
2319 | assert(E->getStorageDuration() == SD_Static); |
2320 | const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); |
2321 | return CGM.GetAddrOfGlobalTemporary(E, Inner); |
2322 | } |
2323 | |
2324 | llvm::Constant * |
2325 | ConstantEmitter::tryEmitPrivate(const APValue &Value, QualType DestType, |
2326 | bool EnablePtrAuthFunctionTypeDiscrimination) { |
2327 | switch (Value.getKind()) { |
2328 | case APValue::None: |
2329 | case APValue::Indeterminate: |
2330 | // Out-of-lifetime and indeterminate values can be modeled as 'undef'. |
2331 | return llvm::UndefValue::get(T: CGM.getTypes().ConvertType(T: DestType)); |
2332 | case APValue::LValue: |
2333 | return ConstantLValueEmitter(*this, Value, DestType, |
2334 | EnablePtrAuthFunctionTypeDiscrimination) |
2335 | .tryEmit(); |
2336 | case APValue::Int: |
2337 | return llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: Value.getInt()); |
2338 | case APValue::FixedPoint: |
2339 | return llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), |
2340 | V: Value.getFixedPoint().getValue()); |
2341 | case APValue::ComplexInt: { |
2342 | llvm::Constant *Complex[2]; |
2343 | |
2344 | Complex[0] = llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), |
2345 | V: Value.getComplexIntReal()); |
2346 | Complex[1] = llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), |
2347 | V: Value.getComplexIntImag()); |
2348 | |
2349 | // FIXME: the target may want to specify that this is packed. |
2350 | llvm::StructType *STy = |
2351 | llvm::StructType::get(elt1: Complex[0]->getType(), elts: Complex[1]->getType()); |
2352 | return llvm::ConstantStruct::get(T: STy, V: Complex); |
2353 | } |
2354 | case APValue::Float: { |
2355 | const llvm::APFloat &Init = Value.getFloat(); |
2356 | if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && |
2357 | !CGM.getContext().getLangOpts().NativeHalfType && |
2358 | CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics()) |
2359 | return llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), |
2360 | V: Init.bitcastToAPInt()); |
2361 | else |
2362 | return llvm::ConstantFP::get(Context&: CGM.getLLVMContext(), V: Init); |
2363 | } |
2364 | case APValue::ComplexFloat: { |
2365 | llvm::Constant *Complex[2]; |
2366 | |
2367 | Complex[0] = llvm::ConstantFP::get(Context&: CGM.getLLVMContext(), |
2368 | V: Value.getComplexFloatReal()); |
2369 | Complex[1] = llvm::ConstantFP::get(Context&: CGM.getLLVMContext(), |
2370 | V: Value.getComplexFloatImag()); |
2371 | |
2372 | // FIXME: the target may want to specify that this is packed. |
2373 | llvm::StructType *STy = |
2374 | llvm::StructType::get(elt1: Complex[0]->getType(), elts: Complex[1]->getType()); |
2375 | return llvm::ConstantStruct::get(T: STy, V: Complex); |
2376 | } |
2377 | case APValue::Vector: { |
2378 | unsigned NumElts = Value.getVectorLength(); |
2379 | SmallVector<llvm::Constant *, 4> Inits(NumElts); |
2380 | |
2381 | for (unsigned I = 0; I != NumElts; ++I) { |
2382 | const APValue &Elt = Value.getVectorElt(I); |
2383 | if (Elt.isInt()) |
2384 | Inits[I] = llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: Elt.getInt()); |
2385 | else if (Elt.isFloat()) |
2386 | Inits[I] = llvm::ConstantFP::get(Context&: CGM.getLLVMContext(), V: Elt.getFloat()); |
2387 | else if (Elt.isIndeterminate()) |
2388 | Inits[I] = llvm::UndefValue::get(T: CGM.getTypes().ConvertType( |
2389 | T: DestType->castAs<VectorType>()->getElementType())); |
2390 | else |
2391 | llvm_unreachable("unsupported vector element type" ); |
2392 | } |
2393 | return llvm::ConstantVector::get(V: Inits); |
2394 | } |
2395 | case APValue::AddrLabelDiff: { |
2396 | const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); |
2397 | const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); |
2398 | llvm::Constant *LHS = tryEmitPrivate(E: LHSExpr, destType: LHSExpr->getType()); |
2399 | llvm::Constant *RHS = tryEmitPrivate(E: RHSExpr, destType: RHSExpr->getType()); |
2400 | if (!LHS || !RHS) return nullptr; |
2401 | |
2402 | // Compute difference |
2403 | llvm::Type *ResultType = CGM.getTypes().ConvertType(T: DestType); |
2404 | LHS = llvm::ConstantExpr::getPtrToInt(C: LHS, Ty: CGM.IntPtrTy); |
2405 | RHS = llvm::ConstantExpr::getPtrToInt(C: RHS, Ty: CGM.IntPtrTy); |
2406 | llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(C1: LHS, C2: RHS); |
2407 | |
2408 | // LLVM is a bit sensitive about the exact format of the |
2409 | // address-of-label difference; make sure to truncate after |
2410 | // the subtraction. |
2411 | return llvm::ConstantExpr::getTruncOrBitCast(C: AddrLabelDiff, Ty: ResultType); |
2412 | } |
2413 | case APValue::Struct: |
2414 | case APValue::Union: |
2415 | return ConstStructBuilder::BuildStruct(Emitter&: *this, Val: Value, ValTy: DestType); |
2416 | case APValue::Array: { |
2417 | const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(T: DestType); |
2418 | unsigned NumElements = Value.getArraySize(); |
2419 | unsigned NumInitElts = Value.getArrayInitializedElts(); |
2420 | |
2421 | // Emit array filler, if there is one. |
2422 | llvm::Constant *Filler = nullptr; |
2423 | if (Value.hasArrayFiller()) { |
2424 | Filler = tryEmitAbstractForMemory(value: Value.getArrayFiller(), |
2425 | destType: ArrayTy->getElementType()); |
2426 | if (!Filler) |
2427 | return nullptr; |
2428 | } |
2429 | |
2430 | // Emit initializer elements. |
2431 | SmallVector<llvm::Constant*, 16> Elts; |
2432 | if (Filler && Filler->isNullValue()) |
2433 | Elts.reserve(N: NumInitElts + 1); |
2434 | else |
2435 | Elts.reserve(N: NumElements); |
2436 | |
2437 | llvm::Type *CommonElementType = nullptr; |
2438 | for (unsigned I = 0; I < NumInitElts; ++I) { |
2439 | llvm::Constant *C = tryEmitPrivateForMemory( |
2440 | value: Value.getArrayInitializedElt(I), destType: ArrayTy->getElementType()); |
2441 | if (!C) return nullptr; |
2442 | |
2443 | if (I == 0) |
2444 | CommonElementType = C->getType(); |
2445 | else if (C->getType() != CommonElementType) |
2446 | CommonElementType = nullptr; |
2447 | Elts.push_back(Elt: C); |
2448 | } |
2449 | |
2450 | llvm::ArrayType *Desired = |
2451 | cast<llvm::ArrayType>(Val: CGM.getTypes().ConvertType(T: DestType)); |
2452 | |
2453 | // Fix the type of incomplete arrays if the initializer isn't empty. |
2454 | if (DestType->isIncompleteArrayType() && !Elts.empty()) |
2455 | Desired = llvm::ArrayType::get(ElementType: Desired->getElementType(), NumElements: Elts.size()); |
2456 | |
2457 | return EmitArrayConstant(CGM, DesiredType: Desired, CommonElementType, ArrayBound: NumElements, Elements&: Elts, |
2458 | Filler); |
2459 | } |
2460 | case APValue::MemberPointer: |
2461 | return CGM.getCXXABI().EmitMemberPointer(MP: Value, MPT: DestType); |
2462 | } |
2463 | llvm_unreachable("Unknown APValue kind" ); |
2464 | } |
2465 | |
2466 | llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( |
2467 | const CompoundLiteralExpr *E) { |
2468 | return EmittedCompoundLiterals.lookup(Val: E); |
2469 | } |
2470 | |
2471 | void CodeGenModule::setAddrOfConstantCompoundLiteral( |
2472 | const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { |
2473 | bool Ok = EmittedCompoundLiterals.insert(KV: std::make_pair(x&: CLE, y&: GV)).second; |
2474 | (void)Ok; |
2475 | assert(Ok && "CLE has already been emitted!" ); |
2476 | } |
2477 | |
2478 | ConstantAddress |
2479 | CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { |
2480 | assert(E->isFileScope() && "not a file-scope compound literal expr" ); |
2481 | ConstantEmitter emitter(*this); |
2482 | return tryEmitGlobalCompoundLiteral(emitter, E); |
2483 | } |
2484 | |
2485 | llvm::Constant * |
2486 | CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { |
2487 | // Member pointer constants always have a very particular form. |
2488 | const MemberPointerType *type = cast<MemberPointerType>(Val: uo->getType()); |
2489 | const ValueDecl *decl = cast<DeclRefExpr>(Val: uo->getSubExpr())->getDecl(); |
2490 | |
2491 | // A member function pointer. |
2492 | if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(Val: decl)) |
2493 | return getCXXABI().EmitMemberFunctionPointer(MD: method); |
2494 | |
2495 | // Otherwise, a member data pointer. |
2496 | uint64_t fieldOffset = getContext().getFieldOffset(FD: decl); |
2497 | CharUnits chars = getContext().toCharUnitsFromBits(BitSize: (int64_t) fieldOffset); |
2498 | return getCXXABI().EmitMemberDataPointer(MPT: type, offset: chars); |
2499 | } |
2500 | |
2501 | static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, |
2502 | llvm::Type *baseType, |
2503 | const CXXRecordDecl *base); |
2504 | |
2505 | static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, |
2506 | const RecordDecl *record, |
2507 | bool asCompleteObject) { |
2508 | const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); |
2509 | llvm::StructType *structure = |
2510 | (asCompleteObject ? layout.getLLVMType() |
2511 | : layout.getBaseSubobjectLLVMType()); |
2512 | |
2513 | unsigned numElements = structure->getNumElements(); |
2514 | std::vector<llvm::Constant *> elements(numElements); |
2515 | |
2516 | auto CXXR = dyn_cast<CXXRecordDecl>(Val: record); |
2517 | // Fill in all the bases. |
2518 | if (CXXR) { |
2519 | for (const auto &I : CXXR->bases()) { |
2520 | if (I.isVirtual()) { |
2521 | // Ignore virtual bases; if we're laying out for a complete |
2522 | // object, we'll lay these out later. |
2523 | continue; |
2524 | } |
2525 | |
2526 | const CXXRecordDecl *base = |
2527 | cast<CXXRecordDecl>(Val: I.getType()->castAs<RecordType>()->getDecl()); |
2528 | |
2529 | // Ignore empty bases. |
2530 | if (isEmptyRecordForLayout(Context: CGM.getContext(), T: I.getType()) || |
2531 | CGM.getContext() |
2532 | .getASTRecordLayout(D: base) |
2533 | .getNonVirtualSize() |
2534 | .isZero()) |
2535 | continue; |
2536 | |
2537 | unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(RD: base); |
2538 | llvm::Type *baseType = structure->getElementType(N: fieldIndex); |
2539 | elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); |
2540 | } |
2541 | } |
2542 | |
2543 | // Fill in all the fields. |
2544 | for (const auto *Field : record->fields()) { |
2545 | // Fill in non-bitfields. (Bitfields always use a zero pattern, which we |
2546 | // will fill in later.) |
2547 | if (!Field->isBitField() && |
2548 | !isEmptyFieldForLayout(Context: CGM.getContext(), FD: Field)) { |
2549 | unsigned fieldIndex = layout.getLLVMFieldNo(FD: Field); |
2550 | elements[fieldIndex] = CGM.EmitNullConstant(T: Field->getType()); |
2551 | } |
2552 | |
2553 | // For unions, stop after the first named field. |
2554 | if (record->isUnion()) { |
2555 | if (Field->getIdentifier()) |
2556 | break; |
2557 | if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) |
2558 | if (FieldRD->findFirstNamedDataMember()) |
2559 | break; |
2560 | } |
2561 | } |
2562 | |
2563 | // Fill in the virtual bases, if we're working with the complete object. |
2564 | if (CXXR && asCompleteObject) { |
2565 | for (const auto &I : CXXR->vbases()) { |
2566 | const CXXRecordDecl *base = |
2567 | cast<CXXRecordDecl>(Val: I.getType()->castAs<RecordType>()->getDecl()); |
2568 | |
2569 | // Ignore empty bases. |
2570 | if (isEmptyRecordForLayout(Context: CGM.getContext(), T: I.getType())) |
2571 | continue; |
2572 | |
2573 | unsigned fieldIndex = layout.getVirtualBaseIndex(base); |
2574 | |
2575 | // We might have already laid this field out. |
2576 | if (elements[fieldIndex]) continue; |
2577 | |
2578 | llvm::Type *baseType = structure->getElementType(N: fieldIndex); |
2579 | elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); |
2580 | } |
2581 | } |
2582 | |
2583 | // Now go through all other fields and zero them out. |
2584 | for (unsigned i = 0; i != numElements; ++i) { |
2585 | if (!elements[i]) |
2586 | elements[i] = llvm::Constant::getNullValue(Ty: structure->getElementType(N: i)); |
2587 | } |
2588 | |
2589 | return llvm::ConstantStruct::get(T: structure, V: elements); |
2590 | } |
2591 | |
2592 | /// Emit the null constant for a base subobject. |
2593 | static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, |
2594 | llvm::Type *baseType, |
2595 | const CXXRecordDecl *base) { |
2596 | const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); |
2597 | |
2598 | // Just zero out bases that don't have any pointer to data members. |
2599 | if (baseLayout.isZeroInitializableAsBase()) |
2600 | return llvm::Constant::getNullValue(Ty: baseType); |
2601 | |
2602 | // Otherwise, we can just use its null constant. |
2603 | return EmitNullConstant(CGM, record: base, /*asCompleteObject=*/false); |
2604 | } |
2605 | |
2606 | llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, |
2607 | QualType T) { |
2608 | return emitForMemory(CGM, C: CGM.EmitNullConstant(T), destType: T); |
2609 | } |
2610 | |
2611 | llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { |
2612 | if (T->getAs<PointerType>()) |
2613 | return getNullPointer( |
2614 | T: cast<llvm::PointerType>(Val: getTypes().ConvertTypeForMem(T)), QT: T); |
2615 | |
2616 | if (getTypes().isZeroInitializable(T)) |
2617 | return llvm::Constant::getNullValue(Ty: getTypes().ConvertTypeForMem(T)); |
2618 | |
2619 | if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { |
2620 | llvm::ArrayType *ATy = |
2621 | cast<llvm::ArrayType>(Val: getTypes().ConvertTypeForMem(T)); |
2622 | |
2623 | QualType ElementTy = CAT->getElementType(); |
2624 | |
2625 | llvm::Constant *Element = |
2626 | ConstantEmitter::emitNullForMemory(CGM&: *this, T: ElementTy); |
2627 | unsigned NumElements = CAT->getZExtSize(); |
2628 | SmallVector<llvm::Constant *, 8> Array(NumElements, Element); |
2629 | return llvm::ConstantArray::get(T: ATy, V: Array); |
2630 | } |
2631 | |
2632 | if (const RecordType *RT = T->getAs<RecordType>()) |
2633 | return ::EmitNullConstant(CGM&: *this, record: RT->getDecl(), /*complete object*/ asCompleteObject: true); |
2634 | |
2635 | assert(T->isMemberDataPointerType() && |
2636 | "Should only see pointers to data members here!" ); |
2637 | |
2638 | return getCXXABI().EmitNullMemberPointer(MPT: T->castAs<MemberPointerType>()); |
2639 | } |
2640 | |
2641 | llvm::Constant * |
2642 | CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { |
2643 | return ::EmitNullConstant(CGM&: *this, record: Record, asCompleteObject: false); |
2644 | } |
2645 | |