1 | //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This provides a generalized class for OpenMP runtime code generation |
10 | // specialized by GPU targets NVPTX and AMDGCN. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "CGOpenMPRuntimeGPU.h" |
15 | #include "CodeGenFunction.h" |
16 | #include "clang/AST/Attr.h" |
17 | #include "clang/AST/DeclOpenMP.h" |
18 | #include "clang/AST/OpenMPClause.h" |
19 | #include "clang/AST/StmtOpenMP.h" |
20 | #include "clang/AST/StmtVisitor.h" |
21 | #include "clang/Basic/Cuda.h" |
22 | #include "llvm/ADT/SmallPtrSet.h" |
23 | #include "llvm/Frontend/OpenMP/OMPGridValues.h" |
24 | #include "llvm/Support/MathExtras.h" |
25 | |
26 | using namespace clang; |
27 | using namespace CodeGen; |
28 | using namespace llvm::omp; |
29 | |
30 | namespace { |
31 | /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. |
32 | class NVPTXActionTy final : public PrePostActionTy { |
33 | llvm::FunctionCallee EnterCallee = nullptr; |
34 | ArrayRef<llvm::Value *> EnterArgs; |
35 | llvm::FunctionCallee ExitCallee = nullptr; |
36 | ArrayRef<llvm::Value *> ExitArgs; |
37 | bool Conditional = false; |
38 | llvm::BasicBlock *ContBlock = nullptr; |
39 | |
40 | public: |
41 | NVPTXActionTy(llvm::FunctionCallee EnterCallee, |
42 | ArrayRef<llvm::Value *> EnterArgs, |
43 | llvm::FunctionCallee ExitCallee, |
44 | ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) |
45 | : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), |
46 | ExitArgs(ExitArgs), Conditional(Conditional) {} |
47 | void Enter(CodeGenFunction &CGF) override { |
48 | llvm::Value *EnterRes = CGF.EmitRuntimeCall(callee: EnterCallee, args: EnterArgs); |
49 | if (Conditional) { |
50 | llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(Arg: EnterRes); |
51 | auto *ThenBlock = CGF.createBasicBlock(name: "omp_if.then" ); |
52 | ContBlock = CGF.createBasicBlock(name: "omp_if.end" ); |
53 | // Generate the branch (If-stmt) |
54 | CGF.Builder.CreateCondBr(Cond: CallBool, True: ThenBlock, False: ContBlock); |
55 | CGF.EmitBlock(BB: ThenBlock); |
56 | } |
57 | } |
58 | void Done(CodeGenFunction &CGF) { |
59 | // Emit the rest of blocks/branches |
60 | CGF.EmitBranch(Block: ContBlock); |
61 | CGF.EmitBlock(BB: ContBlock, IsFinished: true); |
62 | } |
63 | void Exit(CodeGenFunction &CGF) override { |
64 | CGF.EmitRuntimeCall(callee: ExitCallee, args: ExitArgs); |
65 | } |
66 | }; |
67 | |
68 | /// A class to track the execution mode when codegening directives within |
69 | /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry |
70 | /// to the target region and used by containing directives such as 'parallel' |
71 | /// to emit optimized code. |
72 | class ExecutionRuntimeModesRAII { |
73 | private: |
74 | CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = |
75 | CGOpenMPRuntimeGPU::EM_Unknown; |
76 | CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; |
77 | |
78 | public: |
79 | ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, |
80 | CGOpenMPRuntimeGPU::ExecutionMode EntryMode) |
81 | : ExecMode(ExecMode) { |
82 | SavedExecMode = ExecMode; |
83 | ExecMode = EntryMode; |
84 | } |
85 | ~ExecutionRuntimeModesRAII() { ExecMode = SavedExecMode; } |
86 | }; |
87 | |
88 | static const ValueDecl *getPrivateItem(const Expr *RefExpr) { |
89 | RefExpr = RefExpr->IgnoreParens(); |
90 | if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Val: RefExpr)) { |
91 | const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); |
92 | while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Val: Base)) |
93 | Base = TempASE->getBase()->IgnoreParenImpCasts(); |
94 | RefExpr = Base; |
95 | } else if (auto *OASE = dyn_cast<ArraySectionExpr>(Val: RefExpr)) { |
96 | const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); |
97 | while (const auto *TempOASE = dyn_cast<ArraySectionExpr>(Val: Base)) |
98 | Base = TempOASE->getBase()->IgnoreParenImpCasts(); |
99 | while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Val: Base)) |
100 | Base = TempASE->getBase()->IgnoreParenImpCasts(); |
101 | RefExpr = Base; |
102 | } |
103 | RefExpr = RefExpr->IgnoreParenImpCasts(); |
104 | if (const auto *DE = dyn_cast<DeclRefExpr>(Val: RefExpr)) |
105 | return cast<ValueDecl>(Val: DE->getDecl()->getCanonicalDecl()); |
106 | const auto *ME = cast<MemberExpr>(Val: RefExpr); |
107 | return cast<ValueDecl>(Val: ME->getMemberDecl()->getCanonicalDecl()); |
108 | } |
109 | |
110 | static RecordDecl *buildRecordForGlobalizedVars( |
111 | ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, |
112 | ArrayRef<const ValueDecl *> EscapedDeclsForTeams, |
113 | llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
114 | &MappedDeclsFields, |
115 | int BufSize) { |
116 | using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; |
117 | if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) |
118 | return nullptr; |
119 | SmallVector<VarsDataTy, 4> GlobalizedVars; |
120 | for (const ValueDecl *D : EscapedDecls) |
121 | GlobalizedVars.emplace_back(Args: C.getDeclAlign(D), Args&: D); |
122 | for (const ValueDecl *D : EscapedDeclsForTeams) |
123 | GlobalizedVars.emplace_back(Args: C.getDeclAlign(D), Args&: D); |
124 | |
125 | // Build struct _globalized_locals_ty { |
126 | // /* globalized vars */[WarSize] align (decl_align) |
127 | // /* globalized vars */ for EscapedDeclsForTeams |
128 | // }; |
129 | RecordDecl *GlobalizedRD = C.buildImplicitRecord(Name: "_globalized_locals_ty" ); |
130 | GlobalizedRD->startDefinition(); |
131 | llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( |
132 | EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); |
133 | for (const auto &Pair : GlobalizedVars) { |
134 | const ValueDecl *VD = Pair.second; |
135 | QualType Type = VD->getType(); |
136 | if (Type->isLValueReferenceType()) |
137 | Type = C.getPointerType(T: Type.getNonReferenceType()); |
138 | else |
139 | Type = Type.getNonReferenceType(); |
140 | SourceLocation Loc = VD->getLocation(); |
141 | FieldDecl *Field; |
142 | if (SingleEscaped.count(Ptr: VD)) { |
143 | Field = FieldDecl::Create( |
144 | C, DC: GlobalizedRD, StartLoc: Loc, IdLoc: Loc, Id: VD->getIdentifier(), T: Type, |
145 | TInfo: C.getTrivialTypeSourceInfo(T: Type, Loc: SourceLocation()), |
146 | /*BW=*/nullptr, /*Mutable=*/false, |
147 | /*InitStyle=*/ICIS_NoInit); |
148 | Field->setAccess(AS_public); |
149 | if (VD->hasAttrs()) { |
150 | for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), |
151 | E(VD->getAttrs().end()); |
152 | I != E; ++I) |
153 | Field->addAttr(A: *I); |
154 | } |
155 | } else { |
156 | if (BufSize > 1) { |
157 | llvm::APInt ArraySize(32, BufSize); |
158 | Type = C.getConstantArrayType(EltTy: Type, ArySize: ArraySize, SizeExpr: nullptr, |
159 | ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
160 | } |
161 | Field = FieldDecl::Create( |
162 | C, DC: GlobalizedRD, StartLoc: Loc, IdLoc: Loc, Id: VD->getIdentifier(), T: Type, |
163 | TInfo: C.getTrivialTypeSourceInfo(T: Type, Loc: SourceLocation()), |
164 | /*BW=*/nullptr, /*Mutable=*/false, |
165 | /*InitStyle=*/ICIS_NoInit); |
166 | Field->setAccess(AS_public); |
167 | llvm::APInt Align(32, Pair.first.getQuantity()); |
168 | Field->addAttr(A: AlignedAttr::CreateImplicit( |
169 | Ctx&: C, /*IsAlignmentExpr=*/true, |
170 | Alignment: IntegerLiteral::Create(C, V: Align, |
171 | type: C.getIntTypeForBitwidth(DestWidth: 32, /*Signed=*/0), |
172 | l: SourceLocation()), |
173 | Range: {}, S: AlignedAttr::GNU_aligned)); |
174 | } |
175 | GlobalizedRD->addDecl(D: Field); |
176 | MappedDeclsFields.try_emplace(Key: VD, Args&: Field); |
177 | } |
178 | GlobalizedRD->completeDefinition(); |
179 | return GlobalizedRD; |
180 | } |
181 | |
182 | /// Get the list of variables that can escape their declaration context. |
183 | class CheckVarsEscapingDeclContext final |
184 | : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { |
185 | CodeGenFunction &CGF; |
186 | llvm::SetVector<const ValueDecl *> EscapedDecls; |
187 | llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; |
188 | llvm::SetVector<const ValueDecl *> DelayedVariableLengthDecls; |
189 | llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; |
190 | RecordDecl *GlobalizedRD = nullptr; |
191 | llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; |
192 | bool AllEscaped = false; |
193 | bool IsForCombinedParallelRegion = false; |
194 | |
195 | void markAsEscaped(const ValueDecl *VD) { |
196 | // Do not globalize declare target variables. |
197 | if (!isa<VarDecl>(Val: VD) || |
198 | OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) |
199 | return; |
200 | VD = cast<ValueDecl>(Val: VD->getCanonicalDecl()); |
201 | // Use user-specified allocation. |
202 | if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) |
203 | return; |
204 | // Variables captured by value must be globalized. |
205 | bool IsCaptured = false; |
206 | if (auto *CSI = CGF.CapturedStmtInfo) { |
207 | if (const FieldDecl *FD = CSI->lookup(VD: cast<VarDecl>(Val: VD))) { |
208 | // Check if need to capture the variable that was already captured by |
209 | // value in the outer region. |
210 | IsCaptured = true; |
211 | if (!IsForCombinedParallelRegion) { |
212 | if (!FD->hasAttrs()) |
213 | return; |
214 | const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); |
215 | if (!Attr) |
216 | return; |
217 | if (((Attr->getCaptureKind() != OMPC_map) && |
218 | !isOpenMPPrivate(Kind: Attr->getCaptureKind())) || |
219 | ((Attr->getCaptureKind() == OMPC_map) && |
220 | !FD->getType()->isAnyPointerType())) |
221 | return; |
222 | } |
223 | if (!FD->getType()->isReferenceType()) { |
224 | assert(!VD->getType()->isVariablyModifiedType() && |
225 | "Parameter captured by value with variably modified type" ); |
226 | EscapedParameters.insert(Ptr: VD); |
227 | } else if (!IsForCombinedParallelRegion) { |
228 | return; |
229 | } |
230 | } |
231 | } |
232 | if ((!CGF.CapturedStmtInfo || |
233 | (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && |
234 | VD->getType()->isReferenceType()) |
235 | // Do not globalize variables with reference type. |
236 | return; |
237 | if (VD->getType()->isVariablyModifiedType()) { |
238 | // If not captured at the target region level then mark the escaped |
239 | // variable as delayed. |
240 | if (IsCaptured) |
241 | EscapedVariableLengthDecls.insert(X: VD); |
242 | else |
243 | DelayedVariableLengthDecls.insert(X: VD); |
244 | } else |
245 | EscapedDecls.insert(X: VD); |
246 | } |
247 | |
248 | void VisitValueDecl(const ValueDecl *VD) { |
249 | if (VD->getType()->isLValueReferenceType()) |
250 | markAsEscaped(VD); |
251 | if (const auto *VarD = dyn_cast<VarDecl>(Val: VD)) { |
252 | if (!isa<ParmVarDecl>(Val: VarD) && VarD->hasInit()) { |
253 | const bool SavedAllEscaped = AllEscaped; |
254 | AllEscaped = VD->getType()->isLValueReferenceType(); |
255 | Visit(S: VarD->getInit()); |
256 | AllEscaped = SavedAllEscaped; |
257 | } |
258 | } |
259 | } |
260 | void VisitOpenMPCapturedStmt(const CapturedStmt *S, |
261 | ArrayRef<OMPClause *> Clauses, |
262 | bool IsCombinedParallelRegion) { |
263 | if (!S) |
264 | return; |
265 | for (const CapturedStmt::Capture &C : S->captures()) { |
266 | if (C.capturesVariable() && !C.capturesVariableByCopy()) { |
267 | const ValueDecl *VD = C.getCapturedVar(); |
268 | bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; |
269 | if (IsCombinedParallelRegion) { |
270 | // Check if the variable is privatized in the combined construct and |
271 | // those private copies must be shared in the inner parallel |
272 | // directive. |
273 | IsForCombinedParallelRegion = false; |
274 | for (const OMPClause *C : Clauses) { |
275 | if (!isOpenMPPrivate(Kind: C->getClauseKind()) || |
276 | C->getClauseKind() == OMPC_reduction || |
277 | C->getClauseKind() == OMPC_linear || |
278 | C->getClauseKind() == OMPC_private) |
279 | continue; |
280 | ArrayRef<const Expr *> Vars; |
281 | if (const auto *PC = dyn_cast<OMPFirstprivateClause>(Val: C)) |
282 | Vars = PC->getVarRefs(); |
283 | else if (const auto *PC = dyn_cast<OMPLastprivateClause>(Val: C)) |
284 | Vars = PC->getVarRefs(); |
285 | else |
286 | llvm_unreachable("Unexpected clause." ); |
287 | for (const auto *E : Vars) { |
288 | const Decl *D = |
289 | cast<DeclRefExpr>(Val: E)->getDecl()->getCanonicalDecl(); |
290 | if (D == VD->getCanonicalDecl()) { |
291 | IsForCombinedParallelRegion = true; |
292 | break; |
293 | } |
294 | } |
295 | if (IsForCombinedParallelRegion) |
296 | break; |
297 | } |
298 | } |
299 | markAsEscaped(VD); |
300 | if (isa<OMPCapturedExprDecl>(Val: VD)) |
301 | VisitValueDecl(VD); |
302 | IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; |
303 | } |
304 | } |
305 | } |
306 | |
307 | void buildRecordForGlobalizedVars(bool IsInTTDRegion) { |
308 | assert(!GlobalizedRD && |
309 | "Record for globalized variables is built already." ); |
310 | ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; |
311 | unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; |
312 | if (IsInTTDRegion) |
313 | EscapedDeclsForTeams = EscapedDecls.getArrayRef(); |
314 | else |
315 | EscapedDeclsForParallel = EscapedDecls.getArrayRef(); |
316 | GlobalizedRD = ::buildRecordForGlobalizedVars( |
317 | C&: CGF.getContext(), EscapedDecls: EscapedDeclsForParallel, EscapedDeclsForTeams, |
318 | MappedDeclsFields, BufSize: WarpSize); |
319 | } |
320 | |
321 | public: |
322 | CheckVarsEscapingDeclContext(CodeGenFunction &CGF, |
323 | ArrayRef<const ValueDecl *> TeamsReductions) |
324 | : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { |
325 | } |
326 | virtual ~CheckVarsEscapingDeclContext() = default; |
327 | void VisitDeclStmt(const DeclStmt *S) { |
328 | if (!S) |
329 | return; |
330 | for (const Decl *D : S->decls()) |
331 | if (const auto *VD = dyn_cast_or_null<ValueDecl>(Val: D)) |
332 | VisitValueDecl(VD); |
333 | } |
334 | void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { |
335 | if (!D) |
336 | return; |
337 | if (!D->hasAssociatedStmt()) |
338 | return; |
339 | if (const auto *S = |
340 | dyn_cast_or_null<CapturedStmt>(Val: D->getAssociatedStmt())) { |
341 | // Do not analyze directives that do not actually require capturing, |
342 | // like `omp for` or `omp simd` directives. |
343 | llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; |
344 | getOpenMPCaptureRegions(CaptureRegions, DKind: D->getDirectiveKind()); |
345 | if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { |
346 | VisitStmt(S: S->getCapturedStmt()); |
347 | return; |
348 | } |
349 | VisitOpenMPCapturedStmt( |
350 | S, Clauses: D->clauses(), |
351 | IsCombinedParallelRegion: CaptureRegions.back() == OMPD_parallel && |
352 | isOpenMPDistributeDirective(DKind: D->getDirectiveKind())); |
353 | } |
354 | } |
355 | void VisitCapturedStmt(const CapturedStmt *S) { |
356 | if (!S) |
357 | return; |
358 | for (const CapturedStmt::Capture &C : S->captures()) { |
359 | if (C.capturesVariable() && !C.capturesVariableByCopy()) { |
360 | const ValueDecl *VD = C.getCapturedVar(); |
361 | markAsEscaped(VD); |
362 | if (isa<OMPCapturedExprDecl>(Val: VD)) |
363 | VisitValueDecl(VD); |
364 | } |
365 | } |
366 | } |
367 | void VisitLambdaExpr(const LambdaExpr *E) { |
368 | if (!E) |
369 | return; |
370 | for (const LambdaCapture &C : E->captures()) { |
371 | if (C.capturesVariable()) { |
372 | if (C.getCaptureKind() == LCK_ByRef) { |
373 | const ValueDecl *VD = C.getCapturedVar(); |
374 | markAsEscaped(VD); |
375 | if (E->isInitCapture(Capture: &C) || isa<OMPCapturedExprDecl>(Val: VD)) |
376 | VisitValueDecl(VD); |
377 | } |
378 | } |
379 | } |
380 | } |
381 | void VisitBlockExpr(const BlockExpr *E) { |
382 | if (!E) |
383 | return; |
384 | for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { |
385 | if (C.isByRef()) { |
386 | const VarDecl *VD = C.getVariable(); |
387 | markAsEscaped(VD); |
388 | if (isa<OMPCapturedExprDecl>(Val: VD) || VD->isInitCapture()) |
389 | VisitValueDecl(VD); |
390 | } |
391 | } |
392 | } |
393 | void VisitCallExpr(const CallExpr *E) { |
394 | if (!E) |
395 | return; |
396 | for (const Expr *Arg : E->arguments()) { |
397 | if (!Arg) |
398 | continue; |
399 | if (Arg->isLValue()) { |
400 | const bool SavedAllEscaped = AllEscaped; |
401 | AllEscaped = true; |
402 | Visit(S: Arg); |
403 | AllEscaped = SavedAllEscaped; |
404 | } else { |
405 | Visit(S: Arg); |
406 | } |
407 | } |
408 | Visit(S: E->getCallee()); |
409 | } |
410 | void VisitDeclRefExpr(const DeclRefExpr *E) { |
411 | if (!E) |
412 | return; |
413 | const ValueDecl *VD = E->getDecl(); |
414 | if (AllEscaped) |
415 | markAsEscaped(VD); |
416 | if (isa<OMPCapturedExprDecl>(Val: VD)) |
417 | VisitValueDecl(VD); |
418 | else if (VD->isInitCapture()) |
419 | VisitValueDecl(VD); |
420 | } |
421 | void VisitUnaryOperator(const UnaryOperator *E) { |
422 | if (!E) |
423 | return; |
424 | if (E->getOpcode() == UO_AddrOf) { |
425 | const bool SavedAllEscaped = AllEscaped; |
426 | AllEscaped = true; |
427 | Visit(S: E->getSubExpr()); |
428 | AllEscaped = SavedAllEscaped; |
429 | } else { |
430 | Visit(S: E->getSubExpr()); |
431 | } |
432 | } |
433 | void VisitImplicitCastExpr(const ImplicitCastExpr *E) { |
434 | if (!E) |
435 | return; |
436 | if (E->getCastKind() == CK_ArrayToPointerDecay) { |
437 | const bool SavedAllEscaped = AllEscaped; |
438 | AllEscaped = true; |
439 | Visit(S: E->getSubExpr()); |
440 | AllEscaped = SavedAllEscaped; |
441 | } else { |
442 | Visit(S: E->getSubExpr()); |
443 | } |
444 | } |
445 | void VisitExpr(const Expr *E) { |
446 | if (!E) |
447 | return; |
448 | bool SavedAllEscaped = AllEscaped; |
449 | if (!E->isLValue()) |
450 | AllEscaped = false; |
451 | for (const Stmt *Child : E->children()) |
452 | if (Child) |
453 | Visit(S: Child); |
454 | AllEscaped = SavedAllEscaped; |
455 | } |
456 | void VisitStmt(const Stmt *S) { |
457 | if (!S) |
458 | return; |
459 | for (const Stmt *Child : S->children()) |
460 | if (Child) |
461 | Visit(S: Child); |
462 | } |
463 | |
464 | /// Returns the record that handles all the escaped local variables and used |
465 | /// instead of their original storage. |
466 | const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { |
467 | if (!GlobalizedRD) |
468 | buildRecordForGlobalizedVars(IsInTTDRegion); |
469 | return GlobalizedRD; |
470 | } |
471 | |
472 | /// Returns the field in the globalized record for the escaped variable. |
473 | const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { |
474 | assert(GlobalizedRD && |
475 | "Record for globalized variables must be generated already." ); |
476 | return MappedDeclsFields.lookup(Val: VD); |
477 | } |
478 | |
479 | /// Returns the list of the escaped local variables/parameters. |
480 | ArrayRef<const ValueDecl *> getEscapedDecls() const { |
481 | return EscapedDecls.getArrayRef(); |
482 | } |
483 | |
484 | /// Checks if the escaped local variable is actually a parameter passed by |
485 | /// value. |
486 | const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { |
487 | return EscapedParameters; |
488 | } |
489 | |
490 | /// Returns the list of the escaped variables with the variably modified |
491 | /// types. |
492 | ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { |
493 | return EscapedVariableLengthDecls.getArrayRef(); |
494 | } |
495 | |
496 | /// Returns the list of the delayed variables with the variably modified |
497 | /// types. |
498 | ArrayRef<const ValueDecl *> getDelayedVariableLengthDecls() const { |
499 | return DelayedVariableLengthDecls.getArrayRef(); |
500 | } |
501 | }; |
502 | } // anonymous namespace |
503 | |
504 | CGOpenMPRuntimeGPU::ExecutionMode |
505 | CGOpenMPRuntimeGPU::getExecutionMode() const { |
506 | return CurrentExecutionMode; |
507 | } |
508 | |
509 | CGOpenMPRuntimeGPU::DataSharingMode |
510 | CGOpenMPRuntimeGPU::getDataSharingMode() const { |
511 | return CurrentDataSharingMode; |
512 | } |
513 | |
514 | /// Check for inner (nested) SPMD construct, if any |
515 | static bool hasNestedSPMDDirective(ASTContext &Ctx, |
516 | const OMPExecutableDirective &D) { |
517 | const auto *CS = D.getInnermostCapturedStmt(); |
518 | const auto *Body = |
519 | CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); |
520 | const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); |
521 | |
522 | if (const auto *NestedDir = |
523 | dyn_cast_or_null<OMPExecutableDirective>(Val: ChildStmt)) { |
524 | OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); |
525 | switch (D.getDirectiveKind()) { |
526 | case OMPD_target: |
527 | if (isOpenMPParallelDirective(DKind)) |
528 | return true; |
529 | if (DKind == OMPD_teams) { |
530 | Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( |
531 | /*IgnoreCaptured=*/true); |
532 | if (!Body) |
533 | return false; |
534 | ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); |
535 | if (const auto *NND = |
536 | dyn_cast_or_null<OMPExecutableDirective>(Val: ChildStmt)) { |
537 | DKind = NND->getDirectiveKind(); |
538 | if (isOpenMPParallelDirective(DKind)) |
539 | return true; |
540 | } |
541 | } |
542 | return false; |
543 | case OMPD_target_teams: |
544 | return isOpenMPParallelDirective(DKind); |
545 | case OMPD_target_simd: |
546 | case OMPD_target_parallel: |
547 | case OMPD_target_parallel_for: |
548 | case OMPD_target_parallel_for_simd: |
549 | case OMPD_target_teams_distribute: |
550 | case OMPD_target_teams_distribute_simd: |
551 | case OMPD_target_teams_distribute_parallel_for: |
552 | case OMPD_target_teams_distribute_parallel_for_simd: |
553 | case OMPD_parallel: |
554 | case OMPD_for: |
555 | case OMPD_parallel_for: |
556 | case OMPD_parallel_master: |
557 | case OMPD_parallel_sections: |
558 | case OMPD_for_simd: |
559 | case OMPD_parallel_for_simd: |
560 | case OMPD_cancel: |
561 | case OMPD_cancellation_point: |
562 | case OMPD_ordered: |
563 | case OMPD_threadprivate: |
564 | case OMPD_allocate: |
565 | case OMPD_task: |
566 | case OMPD_simd: |
567 | case OMPD_sections: |
568 | case OMPD_section: |
569 | case OMPD_single: |
570 | case OMPD_master: |
571 | case OMPD_critical: |
572 | case OMPD_taskyield: |
573 | case OMPD_barrier: |
574 | case OMPD_taskwait: |
575 | case OMPD_taskgroup: |
576 | case OMPD_atomic: |
577 | case OMPD_flush: |
578 | case OMPD_depobj: |
579 | case OMPD_scan: |
580 | case OMPD_teams: |
581 | case OMPD_target_data: |
582 | case OMPD_target_exit_data: |
583 | case OMPD_target_enter_data: |
584 | case OMPD_distribute: |
585 | case OMPD_distribute_simd: |
586 | case OMPD_distribute_parallel_for: |
587 | case OMPD_distribute_parallel_for_simd: |
588 | case OMPD_teams_distribute: |
589 | case OMPD_teams_distribute_simd: |
590 | case OMPD_teams_distribute_parallel_for: |
591 | case OMPD_teams_distribute_parallel_for_simd: |
592 | case OMPD_target_update: |
593 | case OMPD_declare_simd: |
594 | case OMPD_declare_variant: |
595 | case OMPD_begin_declare_variant: |
596 | case OMPD_end_declare_variant: |
597 | case OMPD_declare_target: |
598 | case OMPD_end_declare_target: |
599 | case OMPD_declare_reduction: |
600 | case OMPD_declare_mapper: |
601 | case OMPD_taskloop: |
602 | case OMPD_taskloop_simd: |
603 | case OMPD_master_taskloop: |
604 | case OMPD_master_taskloop_simd: |
605 | case OMPD_parallel_master_taskloop: |
606 | case OMPD_parallel_master_taskloop_simd: |
607 | case OMPD_requires: |
608 | case OMPD_unknown: |
609 | default: |
610 | llvm_unreachable("Unexpected directive." ); |
611 | } |
612 | } |
613 | |
614 | return false; |
615 | } |
616 | |
617 | static bool supportsSPMDExecutionMode(ASTContext &Ctx, |
618 | const OMPExecutableDirective &D) { |
619 | OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); |
620 | switch (DirectiveKind) { |
621 | case OMPD_target: |
622 | case OMPD_target_teams: |
623 | return hasNestedSPMDDirective(Ctx, D); |
624 | case OMPD_target_parallel_loop: |
625 | case OMPD_target_parallel: |
626 | case OMPD_target_parallel_for: |
627 | case OMPD_target_parallel_for_simd: |
628 | case OMPD_target_teams_distribute_parallel_for: |
629 | case OMPD_target_teams_distribute_parallel_for_simd: |
630 | case OMPD_target_simd: |
631 | case OMPD_target_teams_distribute_simd: |
632 | return true; |
633 | case OMPD_target_teams_distribute: |
634 | return false; |
635 | case OMPD_target_teams_loop: |
636 | // Whether this is true or not depends on how the directive will |
637 | // eventually be emitted. |
638 | if (auto *TTLD = dyn_cast<OMPTargetTeamsGenericLoopDirective>(Val: &D)) |
639 | return TTLD->canBeParallelFor(); |
640 | return false; |
641 | case OMPD_parallel: |
642 | case OMPD_for: |
643 | case OMPD_parallel_for: |
644 | case OMPD_parallel_master: |
645 | case OMPD_parallel_sections: |
646 | case OMPD_for_simd: |
647 | case OMPD_parallel_for_simd: |
648 | case OMPD_cancel: |
649 | case OMPD_cancellation_point: |
650 | case OMPD_ordered: |
651 | case OMPD_threadprivate: |
652 | case OMPD_allocate: |
653 | case OMPD_task: |
654 | case OMPD_simd: |
655 | case OMPD_sections: |
656 | case OMPD_section: |
657 | case OMPD_single: |
658 | case OMPD_master: |
659 | case OMPD_critical: |
660 | case OMPD_taskyield: |
661 | case OMPD_barrier: |
662 | case OMPD_taskwait: |
663 | case OMPD_taskgroup: |
664 | case OMPD_atomic: |
665 | case OMPD_flush: |
666 | case OMPD_depobj: |
667 | case OMPD_scan: |
668 | case OMPD_teams: |
669 | case OMPD_target_data: |
670 | case OMPD_target_exit_data: |
671 | case OMPD_target_enter_data: |
672 | case OMPD_distribute: |
673 | case OMPD_distribute_simd: |
674 | case OMPD_distribute_parallel_for: |
675 | case OMPD_distribute_parallel_for_simd: |
676 | case OMPD_teams_distribute: |
677 | case OMPD_teams_distribute_simd: |
678 | case OMPD_teams_distribute_parallel_for: |
679 | case OMPD_teams_distribute_parallel_for_simd: |
680 | case OMPD_target_update: |
681 | case OMPD_declare_simd: |
682 | case OMPD_declare_variant: |
683 | case OMPD_begin_declare_variant: |
684 | case OMPD_end_declare_variant: |
685 | case OMPD_declare_target: |
686 | case OMPD_end_declare_target: |
687 | case OMPD_declare_reduction: |
688 | case OMPD_declare_mapper: |
689 | case OMPD_taskloop: |
690 | case OMPD_taskloop_simd: |
691 | case OMPD_master_taskloop: |
692 | case OMPD_master_taskloop_simd: |
693 | case OMPD_parallel_master_taskloop: |
694 | case OMPD_parallel_master_taskloop_simd: |
695 | case OMPD_requires: |
696 | case OMPD_unknown: |
697 | default: |
698 | break; |
699 | } |
700 | llvm_unreachable( |
701 | "Unknown programming model for OpenMP directive on NVPTX target." ); |
702 | } |
703 | |
704 | void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, |
705 | StringRef ParentName, |
706 | llvm::Function *&OutlinedFn, |
707 | llvm::Constant *&OutlinedFnID, |
708 | bool IsOffloadEntry, |
709 | const RegionCodeGenTy &CodeGen) { |
710 | ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode, EM_NonSPMD); |
711 | EntryFunctionState EST; |
712 | WrapperFunctionsMap.clear(); |
713 | |
714 | [[maybe_unused]] bool IsBareKernel = D.getSingleClause<OMPXBareClause>(); |
715 | assert(!IsBareKernel && "bare kernel should not be at generic mode" ); |
716 | |
717 | // Emit target region as a standalone region. |
718 | class NVPTXPrePostActionTy : public PrePostActionTy { |
719 | CGOpenMPRuntimeGPU::EntryFunctionState &EST; |
720 | const OMPExecutableDirective &D; |
721 | |
722 | public: |
723 | NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST, |
724 | const OMPExecutableDirective &D) |
725 | : EST(EST), D(D) {} |
726 | void Enter(CodeGenFunction &CGF) override { |
727 | auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
728 | RT.emitKernelInit(D, CGF, EST, /* IsSPMD */ false); |
729 | // Skip target region initialization. |
730 | RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); |
731 | } |
732 | void Exit(CodeGenFunction &CGF) override { |
733 | auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
734 | RT.clearLocThreadIdInsertPt(CGF); |
735 | RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false); |
736 | } |
737 | } Action(EST, D); |
738 | CodeGen.setAction(Action); |
739 | IsInTTDRegion = true; |
740 | emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, |
741 | IsOffloadEntry, CodeGen); |
742 | IsInTTDRegion = false; |
743 | } |
744 | |
745 | void CGOpenMPRuntimeGPU::emitKernelInit(const OMPExecutableDirective &D, |
746 | CodeGenFunction &CGF, |
747 | EntryFunctionState &EST, bool IsSPMD) { |
748 | int32_t MinThreadsVal = 1, MaxThreadsVal = -1, MinTeamsVal = 1, |
749 | MaxTeamsVal = -1; |
750 | computeMinAndMaxThreadsAndTeams(D, CGF, MinThreadsVal, MaxThreadsVal, |
751 | MinTeamsVal, MaxTeamsVal); |
752 | |
753 | CGBuilderTy &Bld = CGF.Builder; |
754 | Bld.restoreIP(IP: OMPBuilder.createTargetInit( |
755 | Loc: Bld, IsSPMD, MinThreadsVal, MaxThreadsVal, MinTeamsVal, MaxTeamsVal)); |
756 | if (!IsSPMD) |
757 | emitGenericVarsProlog(CGF, Loc: EST.Loc); |
758 | } |
759 | |
760 | void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF, |
761 | EntryFunctionState &EST, |
762 | bool IsSPMD) { |
763 | if (!IsSPMD) |
764 | emitGenericVarsEpilog(CGF); |
765 | |
766 | // This is temporary until we remove the fixed sized buffer. |
767 | ASTContext &C = CGM.getContext(); |
768 | RecordDecl *StaticRD = C.buildImplicitRecord( |
769 | Name: "_openmp_teams_reduction_type_$_" , TK: RecordDecl::TagKind::Union); |
770 | StaticRD->startDefinition(); |
771 | for (const RecordDecl *TeamReductionRec : TeamsReductions) { |
772 | QualType RecTy = C.getRecordType(Decl: TeamReductionRec); |
773 | auto *Field = FieldDecl::Create( |
774 | C, DC: StaticRD, StartLoc: SourceLocation(), IdLoc: SourceLocation(), Id: nullptr, T: RecTy, |
775 | TInfo: C.getTrivialTypeSourceInfo(T: RecTy, Loc: SourceLocation()), |
776 | /*BW=*/nullptr, /*Mutable=*/false, |
777 | /*InitStyle=*/ICIS_NoInit); |
778 | Field->setAccess(AS_public); |
779 | StaticRD->addDecl(D: Field); |
780 | } |
781 | StaticRD->completeDefinition(); |
782 | QualType StaticTy = C.getRecordType(Decl: StaticRD); |
783 | llvm::Type *LLVMReductionsBufferTy = |
784 | CGM.getTypes().ConvertTypeForMem(T: StaticTy); |
785 | const auto &DL = CGM.getModule().getDataLayout(); |
786 | uint64_t ReductionDataSize = |
787 | TeamsReductions.empty() |
788 | ? 0 |
789 | : DL.getTypeAllocSize(Ty: LLVMReductionsBufferTy).getFixedValue(); |
790 | CGBuilderTy &Bld = CGF.Builder; |
791 | OMPBuilder.createTargetDeinit(Loc: Bld, TeamsReductionDataSize: ReductionDataSize, |
792 | TeamsReductionBufferLength: C.getLangOpts().OpenMPCUDAReductionBufNum); |
793 | TeamsReductions.clear(); |
794 | } |
795 | |
796 | void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, |
797 | StringRef ParentName, |
798 | llvm::Function *&OutlinedFn, |
799 | llvm::Constant *&OutlinedFnID, |
800 | bool IsOffloadEntry, |
801 | const RegionCodeGenTy &CodeGen) { |
802 | ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode, EM_SPMD); |
803 | EntryFunctionState EST; |
804 | |
805 | bool IsBareKernel = D.getSingleClause<OMPXBareClause>(); |
806 | |
807 | // Emit target region as a standalone region. |
808 | class NVPTXPrePostActionTy : public PrePostActionTy { |
809 | CGOpenMPRuntimeGPU &RT; |
810 | CGOpenMPRuntimeGPU::EntryFunctionState &EST; |
811 | bool IsBareKernel; |
812 | DataSharingMode Mode; |
813 | const OMPExecutableDirective &D; |
814 | |
815 | public: |
816 | NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, |
817 | CGOpenMPRuntimeGPU::EntryFunctionState &EST, |
818 | bool IsBareKernel, const OMPExecutableDirective &D) |
819 | : RT(RT), EST(EST), IsBareKernel(IsBareKernel), |
820 | Mode(RT.CurrentDataSharingMode), D(D) {} |
821 | void Enter(CodeGenFunction &CGF) override { |
822 | if (IsBareKernel) { |
823 | RT.CurrentDataSharingMode = DataSharingMode::DS_CUDA; |
824 | return; |
825 | } |
826 | RT.emitKernelInit(D, CGF, EST, /* IsSPMD */ true); |
827 | // Skip target region initialization. |
828 | RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); |
829 | } |
830 | void Exit(CodeGenFunction &CGF) override { |
831 | if (IsBareKernel) { |
832 | RT.CurrentDataSharingMode = Mode; |
833 | return; |
834 | } |
835 | RT.clearLocThreadIdInsertPt(CGF); |
836 | RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true); |
837 | } |
838 | } Action(*this, EST, IsBareKernel, D); |
839 | CodeGen.setAction(Action); |
840 | IsInTTDRegion = true; |
841 | emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, |
842 | IsOffloadEntry, CodeGen); |
843 | IsInTTDRegion = false; |
844 | } |
845 | |
846 | void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( |
847 | const OMPExecutableDirective &D, StringRef ParentName, |
848 | llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, |
849 | bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { |
850 | if (!IsOffloadEntry) // Nothing to do. |
851 | return; |
852 | |
853 | assert(!ParentName.empty() && "Invalid target region parent name!" ); |
854 | |
855 | bool Mode = supportsSPMDExecutionMode(Ctx&: CGM.getContext(), D); |
856 | bool IsBareKernel = D.getSingleClause<OMPXBareClause>(); |
857 | if (Mode || IsBareKernel) |
858 | emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, |
859 | CodeGen); |
860 | else |
861 | emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, |
862 | CodeGen); |
863 | } |
864 | |
865 | CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) |
866 | : CGOpenMPRuntime(CGM) { |
867 | llvm::OpenMPIRBuilderConfig Config( |
868 | CGM.getLangOpts().OpenMPIsTargetDevice, isGPU(), |
869 | CGM.getLangOpts().OpenMPOffloadMandatory, |
870 | /*HasRequiresReverseOffload*/ false, /*HasRequiresUnifiedAddress*/ false, |
871 | hasRequiresUnifiedSharedMemory(), /*HasRequiresDynamicAllocators*/ false); |
872 | OMPBuilder.setConfig(Config); |
873 | |
874 | if (!CGM.getLangOpts().OpenMPIsTargetDevice) |
875 | llvm_unreachable("OpenMP can only handle device code." ); |
876 | |
877 | if (CGM.getLangOpts().OpenMPCUDAMode) |
878 | CurrentDataSharingMode = CGOpenMPRuntimeGPU::DS_CUDA; |
879 | |
880 | llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder(); |
881 | if (CGM.getLangOpts().NoGPULib || CGM.getLangOpts().OMPHostIRFile.empty()) |
882 | return; |
883 | |
884 | OMPBuilder.createGlobalFlag(Value: CGM.getLangOpts().OpenMPTargetDebug, |
885 | Name: "__omp_rtl_debug_kind" ); |
886 | OMPBuilder.createGlobalFlag(Value: CGM.getLangOpts().OpenMPTeamSubscription, |
887 | Name: "__omp_rtl_assume_teams_oversubscription" ); |
888 | OMPBuilder.createGlobalFlag(Value: CGM.getLangOpts().OpenMPThreadSubscription, |
889 | Name: "__omp_rtl_assume_threads_oversubscription" ); |
890 | OMPBuilder.createGlobalFlag(Value: CGM.getLangOpts().OpenMPNoThreadState, |
891 | Name: "__omp_rtl_assume_no_thread_state" ); |
892 | OMPBuilder.createGlobalFlag(Value: CGM.getLangOpts().OpenMPNoNestedParallelism, |
893 | Name: "__omp_rtl_assume_no_nested_parallelism" ); |
894 | } |
895 | |
896 | void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, |
897 | ProcBindKind ProcBind, |
898 | SourceLocation Loc) { |
899 | // Nothing to do. |
900 | } |
901 | |
902 | void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, |
903 | llvm::Value *NumThreads, |
904 | SourceLocation Loc) { |
905 | // Nothing to do. |
906 | } |
907 | |
908 | void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, |
909 | const Expr *NumTeams, |
910 | const Expr *ThreadLimit, |
911 | SourceLocation Loc) {} |
912 | |
913 | llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( |
914 | CodeGenFunction &CGF, const OMPExecutableDirective &D, |
915 | const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, |
916 | const RegionCodeGenTy &CodeGen) { |
917 | // Emit target region as a standalone region. |
918 | bool PrevIsInTTDRegion = IsInTTDRegion; |
919 | IsInTTDRegion = false; |
920 | auto *OutlinedFun = |
921 | cast<llvm::Function>(Val: CGOpenMPRuntime::emitParallelOutlinedFunction( |
922 | CGF, D, ThreadIDVar, InnermostKind, CodeGen)); |
923 | IsInTTDRegion = PrevIsInTTDRegion; |
924 | if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) { |
925 | llvm::Function *WrapperFun = |
926 | createParallelDataSharingWrapper(OutlinedParallelFn: OutlinedFun, D); |
927 | WrapperFunctionsMap[OutlinedFun] = WrapperFun; |
928 | } |
929 | |
930 | return OutlinedFun; |
931 | } |
932 | |
933 | /// Get list of lastprivate variables from the teams distribute ... or |
934 | /// teams {distribute ...} directives. |
935 | static void |
936 | getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, |
937 | llvm::SmallVectorImpl<const ValueDecl *> &Vars) { |
938 | assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && |
939 | "expected teams directive." ); |
940 | const OMPExecutableDirective *Dir = &D; |
941 | if (!isOpenMPDistributeDirective(DKind: D.getDirectiveKind())) { |
942 | if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( |
943 | Ctx, |
944 | Body: D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( |
945 | /*IgnoreCaptured=*/true))) { |
946 | Dir = dyn_cast_or_null<OMPExecutableDirective>(Val: S); |
947 | if (Dir && !isOpenMPDistributeDirective(DKind: Dir->getDirectiveKind())) |
948 | Dir = nullptr; |
949 | } |
950 | } |
951 | if (!Dir) |
952 | return; |
953 | for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { |
954 | for (const Expr *E : C->getVarRefs()) |
955 | Vars.push_back(Elt: getPrivateItem(RefExpr: E)); |
956 | } |
957 | } |
958 | |
959 | /// Get list of reduction variables from the teams ... directives. |
960 | static void |
961 | getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, |
962 | llvm::SmallVectorImpl<const ValueDecl *> &Vars) { |
963 | assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && |
964 | "expected teams directive." ); |
965 | for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { |
966 | for (const Expr *E : C->privates()) |
967 | Vars.push_back(Elt: getPrivateItem(RefExpr: E)); |
968 | } |
969 | } |
970 | |
971 | llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( |
972 | CodeGenFunction &CGF, const OMPExecutableDirective &D, |
973 | const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, |
974 | const RegionCodeGenTy &CodeGen) { |
975 | SourceLocation Loc = D.getBeginLoc(); |
976 | |
977 | const RecordDecl *GlobalizedRD = nullptr; |
978 | llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; |
979 | llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; |
980 | unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size; |
981 | // Globalize team reductions variable unconditionally in all modes. |
982 | if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) |
983 | getTeamsReductionVars(Ctx&: CGM.getContext(), D, Vars&: LastPrivatesReductions); |
984 | if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { |
985 | getDistributeLastprivateVars(Ctx&: CGM.getContext(), D, Vars&: LastPrivatesReductions); |
986 | if (!LastPrivatesReductions.empty()) { |
987 | GlobalizedRD = ::buildRecordForGlobalizedVars( |
988 | C&: CGM.getContext(), EscapedDecls: std::nullopt, EscapedDeclsForTeams: LastPrivatesReductions, |
989 | MappedDeclsFields, BufSize: WarpSize); |
990 | } |
991 | } else if (!LastPrivatesReductions.empty()) { |
992 | assert(!TeamAndReductions.first && |
993 | "Previous team declaration is not expected." ); |
994 | TeamAndReductions.first = D.getCapturedStmt(RegionKind: OMPD_teams)->getCapturedDecl(); |
995 | std::swap(LHS&: TeamAndReductions.second, RHS&: LastPrivatesReductions); |
996 | } |
997 | |
998 | // Emit target region as a standalone region. |
999 | class NVPTXPrePostActionTy : public PrePostActionTy { |
1000 | SourceLocation &Loc; |
1001 | const RecordDecl *GlobalizedRD; |
1002 | llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
1003 | &MappedDeclsFields; |
1004 | |
1005 | public: |
1006 | NVPTXPrePostActionTy( |
1007 | SourceLocation &Loc, const RecordDecl *GlobalizedRD, |
1008 | llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
1009 | &MappedDeclsFields) |
1010 | : Loc(Loc), GlobalizedRD(GlobalizedRD), |
1011 | MappedDeclsFields(MappedDeclsFields) {} |
1012 | void Enter(CodeGenFunction &CGF) override { |
1013 | auto &Rt = |
1014 | static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
1015 | if (GlobalizedRD) { |
1016 | auto I = Rt.FunctionGlobalizedDecls.try_emplace(Key: CGF.CurFn).first; |
1017 | I->getSecond().MappedParams = |
1018 | std::make_unique<CodeGenFunction::OMPMapVars>(); |
1019 | DeclToAddrMapTy &Data = I->getSecond().LocalVarData; |
1020 | for (const auto &Pair : MappedDeclsFields) { |
1021 | assert(Pair.getFirst()->isCanonicalDecl() && |
1022 | "Expected canonical declaration" ); |
1023 | Data.insert(KV: std::make_pair(x: Pair.getFirst(), y: MappedVarData())); |
1024 | } |
1025 | } |
1026 | Rt.emitGenericVarsProlog(CGF, Loc); |
1027 | } |
1028 | void Exit(CodeGenFunction &CGF) override { |
1029 | static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) |
1030 | .emitGenericVarsEpilog(CGF); |
1031 | } |
1032 | } Action(Loc, GlobalizedRD, MappedDeclsFields); |
1033 | CodeGen.setAction(Action); |
1034 | llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( |
1035 | CGF, D, ThreadIDVar, InnermostKind, CodeGen); |
1036 | |
1037 | return OutlinedFun; |
1038 | } |
1039 | |
1040 | void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, |
1041 | SourceLocation Loc) { |
1042 | if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic) |
1043 | return; |
1044 | |
1045 | CGBuilderTy &Bld = CGF.Builder; |
1046 | |
1047 | const auto I = FunctionGlobalizedDecls.find(Val: CGF.CurFn); |
1048 | if (I == FunctionGlobalizedDecls.end()) |
1049 | return; |
1050 | |
1051 | for (auto &Rec : I->getSecond().LocalVarData) { |
1052 | const auto *VD = cast<VarDecl>(Val: Rec.first); |
1053 | bool EscapedParam = I->getSecond().EscapedParameters.count(Ptr: Rec.first); |
1054 | QualType VarTy = VD->getType(); |
1055 | |
1056 | // Get the local allocation of a firstprivate variable before sharing |
1057 | llvm::Value *ParValue; |
1058 | if (EscapedParam) { |
1059 | LValue ParLVal = |
1060 | CGF.MakeAddrLValue(Addr: CGF.GetAddrOfLocalVar(VD), T: VD->getType()); |
1061 | ParValue = CGF.EmitLoadOfScalar(lvalue: ParLVal, Loc); |
1062 | } |
1063 | |
1064 | // Allocate space for the variable to be globalized |
1065 | llvm::Value *AllocArgs[] = {CGF.getTypeSize(Ty: VD->getType())}; |
1066 | llvm::CallBase *VoidPtr = |
1067 | CGF.EmitRuntimeCall(callee: OMPBuilder.getOrCreateRuntimeFunction( |
1068 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_alloc_shared), |
1069 | args: AllocArgs, name: VD->getName()); |
1070 | // FIXME: We should use the variables actual alignment as an argument. |
1071 | VoidPtr->addRetAttr(Attr: llvm::Attribute::get( |
1072 | Context&: CGM.getLLVMContext(), Kind: llvm::Attribute::Alignment, |
1073 | Val: CGM.getContext().getTargetInfo().getNewAlign() / 8)); |
1074 | |
1075 | // Cast the void pointer and get the address of the globalized variable. |
1076 | llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(T: VarTy)->getPointerTo(); |
1077 | llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
1078 | V: VoidPtr, DestTy: VarPtrTy, Name: VD->getName() + "_on_stack" ); |
1079 | LValue VarAddr = |
1080 | CGF.MakeNaturalAlignPointeeRawAddrLValue(V: CastedVoidPtr, T: VarTy); |
1081 | Rec.second.PrivateAddr = VarAddr.getAddress(); |
1082 | Rec.second.GlobalizedVal = VoidPtr; |
1083 | |
1084 | // Assign the local allocation to the newly globalized location. |
1085 | if (EscapedParam) { |
1086 | CGF.EmitStoreOfScalar(value: ParValue, lvalue: VarAddr); |
1087 | I->getSecond().MappedParams->setVarAddr(CGF, LocalVD: VD, TempAddr: VarAddr.getAddress()); |
1088 | } |
1089 | if (auto *DI = CGF.getDebugInfo()) |
1090 | VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(Loc: VD->getLocation())); |
1091 | } |
1092 | |
1093 | for (const auto *ValueD : I->getSecond().EscapedVariableLengthDecls) { |
1094 | const auto *VD = cast<VarDecl>(Val: ValueD); |
1095 | std::pair<llvm::Value *, llvm::Value *> AddrSizePair = |
1096 | getKmpcAllocShared(CGF, VD); |
1097 | I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(Args&: AddrSizePair); |
1098 | LValue Base = CGF.MakeAddrLValue(V: AddrSizePair.first, T: VD->getType(), |
1099 | Alignment: CGM.getContext().getDeclAlign(D: VD), |
1100 | Source: AlignmentSource::Decl); |
1101 | I->getSecond().MappedParams->setVarAddr(CGF, LocalVD: VD, TempAddr: Base.getAddress()); |
1102 | } |
1103 | I->getSecond().MappedParams->apply(CGF); |
1104 | } |
1105 | |
1106 | bool CGOpenMPRuntimeGPU::isDelayedVariableLengthDecl(CodeGenFunction &CGF, |
1107 | const VarDecl *VD) const { |
1108 | const auto I = FunctionGlobalizedDecls.find(Val: CGF.CurFn); |
1109 | if (I == FunctionGlobalizedDecls.end()) |
1110 | return false; |
1111 | |
1112 | // Check variable declaration is delayed: |
1113 | return llvm::is_contained(Range: I->getSecond().DelayedVariableLengthDecls, Element: VD); |
1114 | } |
1115 | |
1116 | std::pair<llvm::Value *, llvm::Value *> |
1117 | CGOpenMPRuntimeGPU::getKmpcAllocShared(CodeGenFunction &CGF, |
1118 | const VarDecl *VD) { |
1119 | CGBuilderTy &Bld = CGF.Builder; |
1120 | |
1121 | // Compute size and alignment. |
1122 | llvm::Value *Size = CGF.getTypeSize(Ty: VD->getType()); |
1123 | CharUnits Align = CGM.getContext().getDeclAlign(D: VD); |
1124 | Size = Bld.CreateNUWAdd( |
1125 | LHS: Size, RHS: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: Align.getQuantity() - 1)); |
1126 | llvm::Value *AlignVal = |
1127 | llvm::ConstantInt::get(Ty: CGF.SizeTy, V: Align.getQuantity()); |
1128 | Size = Bld.CreateUDiv(LHS: Size, RHS: AlignVal); |
1129 | Size = Bld.CreateNUWMul(LHS: Size, RHS: AlignVal); |
1130 | |
1131 | // Allocate space for this VLA object to be globalized. |
1132 | llvm::Value *AllocArgs[] = {Size}; |
1133 | llvm::CallBase *VoidPtr = |
1134 | CGF.EmitRuntimeCall(callee: OMPBuilder.getOrCreateRuntimeFunction( |
1135 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_alloc_shared), |
1136 | args: AllocArgs, name: VD->getName()); |
1137 | VoidPtr->addRetAttr(Attr: llvm::Attribute::get( |
1138 | Context&: CGM.getLLVMContext(), Kind: llvm::Attribute::Alignment, Val: Align.getQuantity())); |
1139 | |
1140 | return std::make_pair(x&: VoidPtr, y&: Size); |
1141 | } |
1142 | |
1143 | void CGOpenMPRuntimeGPU::getKmpcFreeShared( |
1144 | CodeGenFunction &CGF, |
1145 | const std::pair<llvm::Value *, llvm::Value *> &AddrSizePair) { |
1146 | // Deallocate the memory for each globalized VLA object |
1147 | CGF.EmitRuntimeCall(callee: OMPBuilder.getOrCreateRuntimeFunction( |
1148 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_free_shared), |
1149 | args: {AddrSizePair.first, AddrSizePair.second}); |
1150 | } |
1151 | |
1152 | void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF) { |
1153 | if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic) |
1154 | return; |
1155 | |
1156 | const auto I = FunctionGlobalizedDecls.find(Val: CGF.CurFn); |
1157 | if (I != FunctionGlobalizedDecls.end()) { |
1158 | // Deallocate the memory for each globalized VLA object that was |
1159 | // globalized in the prolog (i.e. emitGenericVarsProlog). |
1160 | for (const auto &AddrSizePair : |
1161 | llvm::reverse(C&: I->getSecond().EscapedVariableLengthDeclsAddrs)) { |
1162 | CGF.EmitRuntimeCall(callee: OMPBuilder.getOrCreateRuntimeFunction( |
1163 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_free_shared), |
1164 | args: {AddrSizePair.first, AddrSizePair.second}); |
1165 | } |
1166 | // Deallocate the memory for each globalized value |
1167 | for (auto &Rec : llvm::reverse(C&: I->getSecond().LocalVarData)) { |
1168 | const auto *VD = cast<VarDecl>(Val: Rec.first); |
1169 | I->getSecond().MappedParams->restore(CGF); |
1170 | |
1171 | llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal, |
1172 | CGF.getTypeSize(Ty: VD->getType())}; |
1173 | CGF.EmitRuntimeCall(callee: OMPBuilder.getOrCreateRuntimeFunction( |
1174 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_free_shared), |
1175 | args: FreeArgs); |
1176 | } |
1177 | } |
1178 | } |
1179 | |
1180 | void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, |
1181 | const OMPExecutableDirective &D, |
1182 | SourceLocation Loc, |
1183 | llvm::Function *OutlinedFn, |
1184 | ArrayRef<llvm::Value *> CapturedVars) { |
1185 | if (!CGF.HaveInsertPoint()) |
1186 | return; |
1187 | |
1188 | bool IsBareKernel = D.getSingleClause<OMPXBareClause>(); |
1189 | |
1190 | RawAddress ZeroAddr = CGF.CreateDefaultAlignTempAlloca(Ty: CGF.Int32Ty, |
1191 | /*Name=*/".zero.addr" ); |
1192 | CGF.Builder.CreateStore(Val: CGF.Builder.getInt32(/*C*/ 0), Addr: ZeroAddr); |
1193 | llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; |
1194 | // We don't emit any thread id function call in bare kernel, but because the |
1195 | // outlined function has a pointer argument, we emit a nullptr here. |
1196 | if (IsBareKernel) |
1197 | OutlinedFnArgs.push_back(Elt: llvm::ConstantPointerNull::get(T: CGM.VoidPtrTy)); |
1198 | else |
1199 | OutlinedFnArgs.push_back(Elt: emitThreadIDAddress(CGF, Loc).emitRawPointer(CGF)); |
1200 | OutlinedFnArgs.push_back(Elt: ZeroAddr.getPointer()); |
1201 | OutlinedFnArgs.append(in_start: CapturedVars.begin(), in_end: CapturedVars.end()); |
1202 | emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, Args: OutlinedFnArgs); |
1203 | } |
1204 | |
1205 | void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF, |
1206 | SourceLocation Loc, |
1207 | llvm::Function *OutlinedFn, |
1208 | ArrayRef<llvm::Value *> CapturedVars, |
1209 | const Expr *IfCond, |
1210 | llvm::Value *NumThreads) { |
1211 | if (!CGF.HaveInsertPoint()) |
1212 | return; |
1213 | |
1214 | auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond, |
1215 | NumThreads](CodeGenFunction &CGF, |
1216 | PrePostActionTy &Action) { |
1217 | CGBuilderTy &Bld = CGF.Builder; |
1218 | llvm::Value *NumThreadsVal = NumThreads; |
1219 | llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn]; |
1220 | llvm::Value *ID = llvm::ConstantPointerNull::get(T: CGM.Int8PtrTy); |
1221 | if (WFn) |
1222 | ID = Bld.CreateBitOrPointerCast(V: WFn, DestTy: CGM.Int8PtrTy); |
1223 | llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(V: OutlinedFn, DestTy: CGM.Int8PtrTy); |
1224 | |
1225 | // Create a private scope that will globalize the arguments |
1226 | // passed from the outside of the target region. |
1227 | // TODO: Is that needed? |
1228 | CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); |
1229 | |
1230 | Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca( |
1231 | Ty: llvm::ArrayType::get(ElementType: CGM.VoidPtrTy, NumElements: CapturedVars.size()), |
1232 | Name: "captured_vars_addrs" ); |
1233 | // There's something to share. |
1234 | if (!CapturedVars.empty()) { |
1235 | // Prepare for parallel region. Indicate the outlined function. |
1236 | ASTContext &Ctx = CGF.getContext(); |
1237 | unsigned Idx = 0; |
1238 | for (llvm::Value *V : CapturedVars) { |
1239 | Address Dst = Bld.CreateConstArrayGEP(Addr: CapturedVarsAddrs, Index: Idx); |
1240 | llvm::Value *PtrV; |
1241 | if (V->getType()->isIntegerTy()) |
1242 | PtrV = Bld.CreateIntToPtr(V, DestTy: CGF.VoidPtrTy); |
1243 | else |
1244 | PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, DestTy: CGF.VoidPtrTy); |
1245 | CGF.EmitStoreOfScalar(Value: PtrV, Addr: Dst, /*Volatile=*/false, |
1246 | Ty: Ctx.getPointerType(T: Ctx.VoidPtrTy)); |
1247 | ++Idx; |
1248 | } |
1249 | } |
1250 | |
1251 | llvm::Value *IfCondVal = nullptr; |
1252 | if (IfCond) |
1253 | IfCondVal = Bld.CreateIntCast(V: CGF.EvaluateExprAsBool(E: IfCond), DestTy: CGF.Int32Ty, |
1254 | /* isSigned */ false); |
1255 | else |
1256 | IfCondVal = llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: 1); |
1257 | |
1258 | if (!NumThreadsVal) |
1259 | NumThreadsVal = llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: -1); |
1260 | else |
1261 | NumThreadsVal = Bld.CreateZExtOrTrunc(V: NumThreadsVal, DestTy: CGF.Int32Ty), |
1262 | |
1263 | assert(IfCondVal && "Expected a value" ); |
1264 | llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); |
1265 | llvm::Value *Args[] = { |
1266 | RTLoc, |
1267 | getThreadID(CGF, Loc), |
1268 | IfCondVal, |
1269 | NumThreadsVal, |
1270 | llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: -1), |
1271 | FnPtr, |
1272 | ID, |
1273 | Bld.CreateBitOrPointerCast(V: CapturedVarsAddrs.emitRawPointer(CGF), |
1274 | DestTy: CGF.VoidPtrPtrTy), |
1275 | llvm::ConstantInt::get(Ty: CGM.SizeTy, V: CapturedVars.size())}; |
1276 | CGF.EmitRuntimeCall(callee: OMPBuilder.getOrCreateRuntimeFunction( |
1277 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_parallel_51), |
1278 | args: Args); |
1279 | }; |
1280 | |
1281 | RegionCodeGenTy RCG(ParallelGen); |
1282 | RCG(CGF); |
1283 | } |
1284 | |
1285 | void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { |
1286 | // Always emit simple barriers! |
1287 | if (!CGF.HaveInsertPoint()) |
1288 | return; |
1289 | // Build call __kmpc_barrier_simple_spmd(nullptr, 0); |
1290 | // This function does not use parameters, so we can emit just default values. |
1291 | llvm::Value *Args[] = { |
1292 | llvm::ConstantPointerNull::get( |
1293 | T: cast<llvm::PointerType>(Val: getIdentTyPointerTy())), |
1294 | llvm::ConstantInt::get(Ty: CGF.Int32Ty, /*V=*/0, /*isSigned=*/IsSigned: true)}; |
1295 | CGF.EmitRuntimeCall(callee: OMPBuilder.getOrCreateRuntimeFunction( |
1296 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_barrier_simple_spmd), |
1297 | args: Args); |
1298 | } |
1299 | |
1300 | void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, |
1301 | SourceLocation Loc, |
1302 | OpenMPDirectiveKind Kind, bool, |
1303 | bool) { |
1304 | // Always emit simple barriers! |
1305 | if (!CGF.HaveInsertPoint()) |
1306 | return; |
1307 | // Build call __kmpc_cancel_barrier(loc, thread_id); |
1308 | unsigned Flags = getDefaultFlagsForBarriers(Kind); |
1309 | llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), |
1310 | getThreadID(CGF, Loc)}; |
1311 | |
1312 | CGF.EmitRuntimeCall(callee: OMPBuilder.getOrCreateRuntimeFunction( |
1313 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_barrier), |
1314 | args: Args); |
1315 | } |
1316 | |
1317 | void CGOpenMPRuntimeGPU::emitCriticalRegion( |
1318 | CodeGenFunction &CGF, StringRef CriticalName, |
1319 | const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, |
1320 | const Expr *Hint) { |
1321 | llvm::BasicBlock *LoopBB = CGF.createBasicBlock(name: "omp.critical.loop" ); |
1322 | llvm::BasicBlock *TestBB = CGF.createBasicBlock(name: "omp.critical.test" ); |
1323 | llvm::BasicBlock *SyncBB = CGF.createBasicBlock(name: "omp.critical.sync" ); |
1324 | llvm::BasicBlock *BodyBB = CGF.createBasicBlock(name: "omp.critical.body" ); |
1325 | llvm::BasicBlock *ExitBB = CGF.createBasicBlock(name: "omp.critical.exit" ); |
1326 | |
1327 | auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
1328 | |
1329 | // Get the mask of active threads in the warp. |
1330 | llvm::Value *Mask = CGF.EmitRuntimeCall(callee: OMPBuilder.getOrCreateRuntimeFunction( |
1331 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_warp_active_thread_mask)); |
1332 | // Fetch team-local id of the thread. |
1333 | llvm::Value *ThreadID = RT.getGPUThreadID(CGF); |
1334 | |
1335 | // Get the width of the team. |
1336 | llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); |
1337 | |
1338 | // Initialize the counter variable for the loop. |
1339 | QualType Int32Ty = |
1340 | CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); |
1341 | Address Counter = CGF.CreateMemTemp(T: Int32Ty, Name: "critical_counter" ); |
1342 | LValue CounterLVal = CGF.MakeAddrLValue(Addr: Counter, T: Int32Ty); |
1343 | CGF.EmitStoreOfScalar(value: llvm::Constant::getNullValue(Ty: CGM.Int32Ty), lvalue: CounterLVal, |
1344 | /*isInit=*/true); |
1345 | |
1346 | // Block checks if loop counter exceeds upper bound. |
1347 | CGF.EmitBlock(BB: LoopBB); |
1348 | llvm::Value *CounterVal = CGF.EmitLoadOfScalar(lvalue: CounterLVal, Loc); |
1349 | llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(LHS: CounterVal, RHS: TeamWidth); |
1350 | CGF.Builder.CreateCondBr(Cond: CmpLoopBound, True: TestBB, False: ExitBB); |
1351 | |
1352 | // Block tests which single thread should execute region, and which threads |
1353 | // should go straight to synchronisation point. |
1354 | CGF.EmitBlock(BB: TestBB); |
1355 | CounterVal = CGF.EmitLoadOfScalar(lvalue: CounterLVal, Loc); |
1356 | llvm::Value *CmpThreadToCounter = |
1357 | CGF.Builder.CreateICmpEQ(LHS: ThreadID, RHS: CounterVal); |
1358 | CGF.Builder.CreateCondBr(Cond: CmpThreadToCounter, True: BodyBB, False: SyncBB); |
1359 | |
1360 | // Block emits the body of the critical region. |
1361 | CGF.EmitBlock(BB: BodyBB); |
1362 | |
1363 | // Output the critical statement. |
1364 | CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, |
1365 | Hint); |
1366 | |
1367 | // After the body surrounded by the critical region, the single executing |
1368 | // thread will jump to the synchronisation point. |
1369 | // Block waits for all threads in current team to finish then increments the |
1370 | // counter variable and returns to the loop. |
1371 | CGF.EmitBlock(BB: SyncBB); |
1372 | // Reconverge active threads in the warp. |
1373 | (void)CGF.EmitRuntimeCall(callee: OMPBuilder.getOrCreateRuntimeFunction( |
1374 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_syncwarp), |
1375 | args: Mask); |
1376 | |
1377 | llvm::Value *IncCounterVal = |
1378 | CGF.Builder.CreateNSWAdd(LHS: CounterVal, RHS: CGF.Builder.getInt32(C: 1)); |
1379 | CGF.EmitStoreOfScalar(value: IncCounterVal, lvalue: CounterLVal); |
1380 | CGF.EmitBranch(Block: LoopBB); |
1381 | |
1382 | // Block that is reached when all threads in the team complete the region. |
1383 | CGF.EmitBlock(BB: ExitBB, /*IsFinished=*/true); |
1384 | } |
1385 | |
1386 | /// Cast value to the specified type. |
1387 | static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, |
1388 | QualType ValTy, QualType CastTy, |
1389 | SourceLocation Loc) { |
1390 | assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && |
1391 | "Cast type must sized." ); |
1392 | assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && |
1393 | "Val type must sized." ); |
1394 | llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(T: CastTy); |
1395 | if (ValTy == CastTy) |
1396 | return Val; |
1397 | if (CGF.getContext().getTypeSizeInChars(T: ValTy) == |
1398 | CGF.getContext().getTypeSizeInChars(T: CastTy)) |
1399 | return CGF.Builder.CreateBitCast(V: Val, DestTy: LLVMCastTy); |
1400 | if (CastTy->isIntegerType() && ValTy->isIntegerType()) |
1401 | return CGF.Builder.CreateIntCast(V: Val, DestTy: LLVMCastTy, |
1402 | isSigned: CastTy->hasSignedIntegerRepresentation()); |
1403 | Address CastItem = CGF.CreateMemTemp(T: CastTy); |
1404 | Address ValCastItem = CastItem.withElementType(ElemTy: Val->getType()); |
1405 | CGF.EmitStoreOfScalar(Value: Val, Addr: ValCastItem, /*Volatile=*/false, Ty: ValTy, |
1406 | BaseInfo: LValueBaseInfo(AlignmentSource::Type), |
1407 | TBAAInfo: TBAAAccessInfo()); |
1408 | return CGF.EmitLoadOfScalar(Addr: CastItem, /*Volatile=*/false, Ty: CastTy, Loc, |
1409 | BaseInfo: LValueBaseInfo(AlignmentSource::Type), |
1410 | TBAAInfo: TBAAAccessInfo()); |
1411 | } |
1412 | |
1413 | /// |
1414 | /// Design of OpenMP reductions on the GPU |
1415 | /// |
1416 | /// Consider a typical OpenMP program with one or more reduction |
1417 | /// clauses: |
1418 | /// |
1419 | /// float foo; |
1420 | /// double bar; |
1421 | /// #pragma omp target teams distribute parallel for \ |
1422 | /// reduction(+:foo) reduction(*:bar) |
1423 | /// for (int i = 0; i < N; i++) { |
1424 | /// foo += A[i]; bar *= B[i]; |
1425 | /// } |
1426 | /// |
1427 | /// where 'foo' and 'bar' are reduced across all OpenMP threads in |
1428 | /// all teams. In our OpenMP implementation on the NVPTX device an |
1429 | /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads |
1430 | /// within a team are mapped to CUDA threads within a threadblock. |
1431 | /// Our goal is to efficiently aggregate values across all OpenMP |
1432 | /// threads such that: |
1433 | /// |
1434 | /// - the compiler and runtime are logically concise, and |
1435 | /// - the reduction is performed efficiently in a hierarchical |
1436 | /// manner as follows: within OpenMP threads in the same warp, |
1437 | /// across warps in a threadblock, and finally across teams on |
1438 | /// the NVPTX device. |
1439 | /// |
1440 | /// Introduction to Decoupling |
1441 | /// |
1442 | /// We would like to decouple the compiler and the runtime so that the |
1443 | /// latter is ignorant of the reduction variables (number, data types) |
1444 | /// and the reduction operators. This allows a simpler interface |
1445 | /// and implementation while still attaining good performance. |
1446 | /// |
1447 | /// Pseudocode for the aforementioned OpenMP program generated by the |
1448 | /// compiler is as follows: |
1449 | /// |
1450 | /// 1. Create private copies of reduction variables on each OpenMP |
1451 | /// thread: 'foo_private', 'bar_private' |
1452 | /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned |
1453 | /// to it and writes the result in 'foo_private' and 'bar_private' |
1454 | /// respectively. |
1455 | /// 3. Call the OpenMP runtime on the GPU to reduce within a team |
1456 | /// and store the result on the team master: |
1457 | /// |
1458 | /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., |
1459 | /// reduceData, shuffleReduceFn, interWarpCpyFn) |
1460 | /// |
1461 | /// where: |
1462 | /// struct ReduceData { |
1463 | /// double *foo; |
1464 | /// double *bar; |
1465 | /// } reduceData |
1466 | /// reduceData.foo = &foo_private |
1467 | /// reduceData.bar = &bar_private |
1468 | /// |
1469 | /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two |
1470 | /// auxiliary functions generated by the compiler that operate on |
1471 | /// variables of type 'ReduceData'. They aid the runtime perform |
1472 | /// algorithmic steps in a data agnostic manner. |
1473 | /// |
1474 | /// 'shuffleReduceFn' is a pointer to a function that reduces data |
1475 | /// of type 'ReduceData' across two OpenMP threads (lanes) in the |
1476 | /// same warp. It takes the following arguments as input: |
1477 | /// |
1478 | /// a. variable of type 'ReduceData' on the calling lane, |
1479 | /// b. its lane_id, |
1480 | /// c. an offset relative to the current lane_id to generate a |
1481 | /// remote_lane_id. The remote lane contains the second |
1482 | /// variable of type 'ReduceData' that is to be reduced. |
1483 | /// d. an algorithm version parameter determining which reduction |
1484 | /// algorithm to use. |
1485 | /// |
1486 | /// 'shuffleReduceFn' retrieves data from the remote lane using |
1487 | /// efficient GPU shuffle intrinsics and reduces, using the |
1488 | /// algorithm specified by the 4th parameter, the two operands |
1489 | /// element-wise. The result is written to the first operand. |
1490 | /// |
1491 | /// Different reduction algorithms are implemented in different |
1492 | /// runtime functions, all calling 'shuffleReduceFn' to perform |
1493 | /// the essential reduction step. Therefore, based on the 4th |
1494 | /// parameter, this function behaves slightly differently to |
1495 | /// cooperate with the runtime to ensure correctness under |
1496 | /// different circumstances. |
1497 | /// |
1498 | /// 'InterWarpCpyFn' is a pointer to a function that transfers |
1499 | /// reduced variables across warps. It tunnels, through CUDA |
1500 | /// shared memory, the thread-private data of type 'ReduceData' |
1501 | /// from lane 0 of each warp to a lane in the first warp. |
1502 | /// 4. Call the OpenMP runtime on the GPU to reduce across teams. |
1503 | /// The last team writes the global reduced value to memory. |
1504 | /// |
1505 | /// ret = __kmpc_nvptx_teams_reduce_nowait(..., |
1506 | /// reduceData, shuffleReduceFn, interWarpCpyFn, |
1507 | /// scratchpadCopyFn, loadAndReduceFn) |
1508 | /// |
1509 | /// 'scratchpadCopyFn' is a helper that stores reduced |
1510 | /// data from the team master to a scratchpad array in |
1511 | /// global memory. |
1512 | /// |
1513 | /// 'loadAndReduceFn' is a helper that loads data from |
1514 | /// the scratchpad array and reduces it with the input |
1515 | /// operand. |
1516 | /// |
1517 | /// These compiler generated functions hide address |
1518 | /// calculation and alignment information from the runtime. |
1519 | /// 5. if ret == 1: |
1520 | /// The team master of the last team stores the reduced |
1521 | /// result to the globals in memory. |
1522 | /// foo += reduceData.foo; bar *= reduceData.bar |
1523 | /// |
1524 | /// |
1525 | /// Warp Reduction Algorithms |
1526 | /// |
1527 | /// On the warp level, we have three algorithms implemented in the |
1528 | /// OpenMP runtime depending on the number of active lanes: |
1529 | /// |
1530 | /// Full Warp Reduction |
1531 | /// |
1532 | /// The reduce algorithm within a warp where all lanes are active |
1533 | /// is implemented in the runtime as follows: |
1534 | /// |
1535 | /// full_warp_reduce(void *reduce_data, |
1536 | /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { |
1537 | /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) |
1538 | /// ShuffleReduceFn(reduce_data, 0, offset, 0); |
1539 | /// } |
1540 | /// |
1541 | /// The algorithm completes in log(2, WARPSIZE) steps. |
1542 | /// |
1543 | /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is |
1544 | /// not used therefore we save instructions by not retrieving lane_id |
1545 | /// from the corresponding special registers. The 4th parameter, which |
1546 | /// represents the version of the algorithm being used, is set to 0 to |
1547 | /// signify full warp reduction. |
1548 | /// |
1549 | /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: |
1550 | /// |
1551 | /// #reduce_elem refers to an element in the local lane's data structure |
1552 | /// #remote_elem is retrieved from a remote lane |
1553 | /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); |
1554 | /// reduce_elem = reduce_elem REDUCE_OP remote_elem; |
1555 | /// |
1556 | /// Contiguous Partial Warp Reduction |
1557 | /// |
1558 | /// This reduce algorithm is used within a warp where only the first |
1559 | /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the |
1560 | /// number of OpenMP threads in a parallel region is not a multiple of |
1561 | /// WARPSIZE. The algorithm is implemented in the runtime as follows: |
1562 | /// |
1563 | /// void |
1564 | /// contiguous_partial_reduce(void *reduce_data, |
1565 | /// kmp_ShuffleReductFctPtr ShuffleReduceFn, |
1566 | /// int size, int lane_id) { |
1567 | /// int curr_size; |
1568 | /// int offset; |
1569 | /// curr_size = size; |
1570 | /// mask = curr_size/2; |
1571 | /// while (offset>0) { |
1572 | /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); |
1573 | /// curr_size = (curr_size+1)/2; |
1574 | /// offset = curr_size/2; |
1575 | /// } |
1576 | /// } |
1577 | /// |
1578 | /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: |
1579 | /// |
1580 | /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); |
1581 | /// if (lane_id < offset) |
1582 | /// reduce_elem = reduce_elem REDUCE_OP remote_elem |
1583 | /// else |
1584 | /// reduce_elem = remote_elem |
1585 | /// |
1586 | /// This algorithm assumes that the data to be reduced are located in a |
1587 | /// contiguous subset of lanes starting from the first. When there is |
1588 | /// an odd number of active lanes, the data in the last lane is not |
1589 | /// aggregated with any other lane's dat but is instead copied over. |
1590 | /// |
1591 | /// Dispersed Partial Warp Reduction |
1592 | /// |
1593 | /// This algorithm is used within a warp when any discontiguous subset of |
1594 | /// lanes are active. It is used to implement the reduction operation |
1595 | /// across lanes in an OpenMP simd region or in a nested parallel region. |
1596 | /// |
1597 | /// void |
1598 | /// dispersed_partial_reduce(void *reduce_data, |
1599 | /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { |
1600 | /// int size, remote_id; |
1601 | /// int logical_lane_id = number_of_active_lanes_before_me() * 2; |
1602 | /// do { |
1603 | /// remote_id = next_active_lane_id_right_after_me(); |
1604 | /// # the above function returns 0 of no active lane |
1605 | /// # is present right after the current lane. |
1606 | /// size = number_of_active_lanes_in_this_warp(); |
1607 | /// logical_lane_id /= 2; |
1608 | /// ShuffleReduceFn(reduce_data, logical_lane_id, |
1609 | /// remote_id-1-threadIdx.x, 2); |
1610 | /// } while (logical_lane_id % 2 == 0 && size > 1); |
1611 | /// } |
1612 | /// |
1613 | /// There is no assumption made about the initial state of the reduction. |
1614 | /// Any number of lanes (>=1) could be active at any position. The reduction |
1615 | /// result is returned in the first active lane. |
1616 | /// |
1617 | /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: |
1618 | /// |
1619 | /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); |
1620 | /// if (lane_id % 2 == 0 && offset > 0) |
1621 | /// reduce_elem = reduce_elem REDUCE_OP remote_elem |
1622 | /// else |
1623 | /// reduce_elem = remote_elem |
1624 | /// |
1625 | /// |
1626 | /// Intra-Team Reduction |
1627 | /// |
1628 | /// This function, as implemented in the runtime call |
1629 | /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP |
1630 | /// threads in a team. It first reduces within a warp using the |
1631 | /// aforementioned algorithms. We then proceed to gather all such |
1632 | /// reduced values at the first warp. |
1633 | /// |
1634 | /// The runtime makes use of the function 'InterWarpCpyFn', which copies |
1635 | /// data from each of the "warp master" (zeroth lane of each warp, where |
1636 | /// warp-reduced data is held) to the zeroth warp. This step reduces (in |
1637 | /// a mathematical sense) the problem of reduction across warp masters in |
1638 | /// a block to the problem of warp reduction. |
1639 | /// |
1640 | /// |
1641 | /// Inter-Team Reduction |
1642 | /// |
1643 | /// Once a team has reduced its data to a single value, it is stored in |
1644 | /// a global scratchpad array. Since each team has a distinct slot, this |
1645 | /// can be done without locking. |
1646 | /// |
1647 | /// The last team to write to the scratchpad array proceeds to reduce the |
1648 | /// scratchpad array. One or more workers in the last team use the helper |
1649 | /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., |
1650 | /// the k'th worker reduces every k'th element. |
1651 | /// |
1652 | /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to |
1653 | /// reduce across workers and compute a globally reduced value. |
1654 | /// |
1655 | void CGOpenMPRuntimeGPU::emitReduction( |
1656 | CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, |
1657 | ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, |
1658 | ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { |
1659 | if (!CGF.HaveInsertPoint()) |
1660 | return; |
1661 | |
1662 | bool ParallelReduction = isOpenMPParallelDirective(DKind: Options.ReductionKind); |
1663 | bool DistributeReduction = isOpenMPDistributeDirective(DKind: Options.ReductionKind); |
1664 | bool TeamsReduction = isOpenMPTeamsDirective(DKind: Options.ReductionKind); |
1665 | |
1666 | ASTContext &C = CGM.getContext(); |
1667 | |
1668 | if (Options.SimpleReduction) { |
1669 | assert(!TeamsReduction && !ParallelReduction && |
1670 | "Invalid reduction selection in emitReduction." ); |
1671 | (void)ParallelReduction; |
1672 | CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, |
1673 | ReductionOps, Options); |
1674 | return; |
1675 | } |
1676 | |
1677 | llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; |
1678 | llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); |
1679 | int Cnt = 0; |
1680 | for (const Expr *DRE : Privates) { |
1681 | PrivatesReductions[Cnt] = cast<DeclRefExpr>(Val: DRE)->getDecl(); |
1682 | ++Cnt; |
1683 | } |
1684 | const RecordDecl *ReductionRec = ::buildRecordForGlobalizedVars( |
1685 | C&: CGM.getContext(), EscapedDecls: PrivatesReductions, EscapedDeclsForTeams: std::nullopt, MappedDeclsFields&: VarFieldMap, BufSize: 1); |
1686 | |
1687 | if (TeamsReduction) |
1688 | TeamsReductions.push_back(Elt: ReductionRec); |
1689 | |
1690 | // Source location for the ident struct |
1691 | llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); |
1692 | |
1693 | using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; |
1694 | InsertPointTy AllocaIP(CGF.AllocaInsertPt->getParent(), |
1695 | CGF.AllocaInsertPt->getIterator()); |
1696 | InsertPointTy CodeGenIP(CGF.Builder.GetInsertBlock(), |
1697 | CGF.Builder.GetInsertPoint()); |
1698 | llvm::OpenMPIRBuilder::LocationDescription OmpLoc( |
1699 | CodeGenIP, CGF.SourceLocToDebugLoc(Location: Loc)); |
1700 | llvm::SmallVector<llvm::OpenMPIRBuilder::ReductionInfo> ReductionInfos; |
1701 | |
1702 | CodeGenFunction::OMPPrivateScope Scope(CGF); |
1703 | unsigned Idx = 0; |
1704 | for (const Expr *Private : Privates) { |
1705 | llvm::Type *ElementType; |
1706 | llvm::Value *Variable; |
1707 | llvm::Value *PrivateVariable; |
1708 | llvm::OpenMPIRBuilder::ReductionGenAtomicCBTy AtomicReductionGen = nullptr; |
1709 | ElementType = CGF.ConvertTypeForMem(T: Private->getType()); |
1710 | const auto *RHSVar = |
1711 | cast<VarDecl>(Val: cast<DeclRefExpr>(Val: RHSExprs[Idx])->getDecl()); |
1712 | PrivateVariable = CGF.GetAddrOfLocalVar(VD: RHSVar).emitRawPointer(CGF); |
1713 | const auto *LHSVar = |
1714 | cast<VarDecl>(Val: cast<DeclRefExpr>(Val: LHSExprs[Idx])->getDecl()); |
1715 | Variable = CGF.GetAddrOfLocalVar(VD: LHSVar).emitRawPointer(CGF); |
1716 | llvm::OpenMPIRBuilder::EvalKind EvalKind; |
1717 | switch (CGF.getEvaluationKind(T: Private->getType())) { |
1718 | case TEK_Scalar: |
1719 | EvalKind = llvm::OpenMPIRBuilder::EvalKind::Scalar; |
1720 | break; |
1721 | case TEK_Complex: |
1722 | EvalKind = llvm::OpenMPIRBuilder::EvalKind::Complex; |
1723 | break; |
1724 | case TEK_Aggregate: |
1725 | EvalKind = llvm::OpenMPIRBuilder::EvalKind::Aggregate; |
1726 | break; |
1727 | } |
1728 | auto ReductionGen = [&](InsertPointTy CodeGenIP, unsigned I, |
1729 | llvm::Value **LHSPtr, llvm::Value **RHSPtr, |
1730 | llvm::Function *NewFunc) { |
1731 | CGF.Builder.restoreIP(IP: CodeGenIP); |
1732 | auto *CurFn = CGF.CurFn; |
1733 | CGF.CurFn = NewFunc; |
1734 | |
1735 | *LHSPtr = CGF.GetAddrOfLocalVar( |
1736 | VD: cast<VarDecl>(Val: cast<DeclRefExpr>(Val: LHSExprs[I])->getDecl())) |
1737 | .emitRawPointer(CGF); |
1738 | *RHSPtr = CGF.GetAddrOfLocalVar( |
1739 | VD: cast<VarDecl>(Val: cast<DeclRefExpr>(Val: RHSExprs[I])->getDecl())) |
1740 | .emitRawPointer(CGF); |
1741 | |
1742 | emitSingleReductionCombiner(CGF, ReductionOp: ReductionOps[I], PrivateRef: Privates[I], |
1743 | LHS: cast<DeclRefExpr>(Val: LHSExprs[I]), |
1744 | RHS: cast<DeclRefExpr>(Val: RHSExprs[I])); |
1745 | |
1746 | CGF.CurFn = CurFn; |
1747 | |
1748 | return InsertPointTy(CGF.Builder.GetInsertBlock(), |
1749 | CGF.Builder.GetInsertPoint()); |
1750 | }; |
1751 | ReductionInfos.emplace_back(Args: llvm::OpenMPIRBuilder::ReductionInfo( |
1752 | ElementType, Variable, PrivateVariable, EvalKind, |
1753 | /*ReductionGen=*/nullptr, ReductionGen, AtomicReductionGen)); |
1754 | Idx++; |
1755 | } |
1756 | |
1757 | CGF.Builder.restoreIP(IP: OMPBuilder.createReductionsGPU( |
1758 | Loc: OmpLoc, AllocaIP, CodeGenIP, ReductionInfos, IsNoWait: false, IsTeamsReduction: TeamsReduction, |
1759 | HasDistribute: DistributeReduction, ReductionGenCBKind: llvm::OpenMPIRBuilder::ReductionGenCBKind::Clang, |
1760 | GridValue: CGF.getTarget().getGridValue(), ReductionBufNum: C.getLangOpts().OpenMPCUDAReductionBufNum, |
1761 | SrcLocInfo: RTLoc)); |
1762 | return; |
1763 | } |
1764 | |
1765 | const VarDecl * |
1766 | CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, |
1767 | const VarDecl *NativeParam) const { |
1768 | if (!NativeParam->getType()->isReferenceType()) |
1769 | return NativeParam; |
1770 | QualType ArgType = NativeParam->getType(); |
1771 | QualifierCollector QC; |
1772 | const Type *NonQualTy = QC.strip(type: ArgType); |
1773 | QualType PointeeTy = cast<ReferenceType>(Val: NonQualTy)->getPointeeType(); |
1774 | if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { |
1775 | if (Attr->getCaptureKind() == OMPC_map) { |
1776 | PointeeTy = CGM.getContext().getAddrSpaceQualType(T: PointeeTy, |
1777 | AddressSpace: LangAS::opencl_global); |
1778 | } |
1779 | } |
1780 | ArgType = CGM.getContext().getPointerType(T: PointeeTy); |
1781 | QC.addRestrict(); |
1782 | enum { NVPTX_local_addr = 5 }; |
1783 | QC.addAddressSpace(space: getLangASFromTargetAS(TargetAS: NVPTX_local_addr)); |
1784 | ArgType = QC.apply(Context: CGM.getContext(), QT: ArgType); |
1785 | if (isa<ImplicitParamDecl>(Val: NativeParam)) |
1786 | return ImplicitParamDecl::Create( |
1787 | C&: CGM.getContext(), /*DC=*/nullptr, IdLoc: NativeParam->getLocation(), |
1788 | Id: NativeParam->getIdentifier(), T: ArgType, ParamKind: ImplicitParamKind::Other); |
1789 | return ParmVarDecl::Create( |
1790 | C&: CGM.getContext(), |
1791 | DC: const_cast<DeclContext *>(NativeParam->getDeclContext()), |
1792 | StartLoc: NativeParam->getBeginLoc(), IdLoc: NativeParam->getLocation(), |
1793 | Id: NativeParam->getIdentifier(), T: ArgType, |
1794 | /*TInfo=*/nullptr, S: SC_None, /*DefArg=*/nullptr); |
1795 | } |
1796 | |
1797 | Address |
1798 | CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, |
1799 | const VarDecl *NativeParam, |
1800 | const VarDecl *TargetParam) const { |
1801 | assert(NativeParam != TargetParam && |
1802 | NativeParam->getType()->isReferenceType() && |
1803 | "Native arg must not be the same as target arg." ); |
1804 | Address LocalAddr = CGF.GetAddrOfLocalVar(VD: TargetParam); |
1805 | QualType NativeParamType = NativeParam->getType(); |
1806 | QualifierCollector QC; |
1807 | const Type *NonQualTy = QC.strip(type: NativeParamType); |
1808 | QualType NativePointeeTy = cast<ReferenceType>(Val: NonQualTy)->getPointeeType(); |
1809 | unsigned NativePointeeAddrSpace = |
1810 | CGF.getTypes().getTargetAddressSpace(T: NativePointeeTy); |
1811 | QualType TargetTy = TargetParam->getType(); |
1812 | llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(Addr: LocalAddr, /*Volatile=*/false, |
1813 | Ty: TargetTy, Loc: SourceLocation()); |
1814 | // Cast to native address space. |
1815 | TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
1816 | V: TargetAddr, |
1817 | DestTy: llvm::PointerType::get(C&: CGF.getLLVMContext(), AddressSpace: NativePointeeAddrSpace)); |
1818 | Address NativeParamAddr = CGF.CreateMemTemp(T: NativeParamType); |
1819 | CGF.EmitStoreOfScalar(Value: TargetAddr, Addr: NativeParamAddr, /*Volatile=*/false, |
1820 | Ty: NativeParamType); |
1821 | return NativeParamAddr; |
1822 | } |
1823 | |
1824 | void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( |
1825 | CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, |
1826 | ArrayRef<llvm::Value *> Args) const { |
1827 | SmallVector<llvm::Value *, 4> TargetArgs; |
1828 | TargetArgs.reserve(N: Args.size()); |
1829 | auto *FnType = OutlinedFn.getFunctionType(); |
1830 | for (unsigned I = 0, E = Args.size(); I < E; ++I) { |
1831 | if (FnType->isVarArg() && FnType->getNumParams() <= I) { |
1832 | TargetArgs.append(in_start: std::next(x: Args.begin(), n: I), in_end: Args.end()); |
1833 | break; |
1834 | } |
1835 | llvm::Type *TargetType = FnType->getParamType(i: I); |
1836 | llvm::Value *NativeArg = Args[I]; |
1837 | if (!TargetType->isPointerTy()) { |
1838 | TargetArgs.emplace_back(Args&: NativeArg); |
1839 | continue; |
1840 | } |
1841 | TargetArgs.emplace_back( |
1842 | Args: CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(V: NativeArg, DestTy: TargetType)); |
1843 | } |
1844 | CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, Args: TargetArgs); |
1845 | } |
1846 | |
1847 | /// Emit function which wraps the outline parallel region |
1848 | /// and controls the arguments which are passed to this function. |
1849 | /// The wrapper ensures that the outlined function is called |
1850 | /// with the correct arguments when data is shared. |
1851 | llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( |
1852 | llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { |
1853 | ASTContext &Ctx = CGM.getContext(); |
1854 | const auto &CS = *D.getCapturedStmt(RegionKind: OMPD_parallel); |
1855 | |
1856 | // Create a function that takes as argument the source thread. |
1857 | FunctionArgList WrapperArgs; |
1858 | QualType Int16QTy = |
1859 | Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); |
1860 | QualType Int32QTy = |
1861 | Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); |
1862 | ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), |
1863 | /*Id=*/nullptr, Int16QTy, |
1864 | ImplicitParamKind::Other); |
1865 | ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), |
1866 | /*Id=*/nullptr, Int32QTy, |
1867 | ImplicitParamKind::Other); |
1868 | WrapperArgs.emplace_back(Args: &ParallelLevelArg); |
1869 | WrapperArgs.emplace_back(Args: &WrapperArg); |
1870 | |
1871 | const CGFunctionInfo &CGFI = |
1872 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(resultType: Ctx.VoidTy, args: WrapperArgs); |
1873 | |
1874 | auto *Fn = llvm::Function::Create( |
1875 | Ty: CGM.getTypes().GetFunctionType(Info: CGFI), Linkage: llvm::GlobalValue::InternalLinkage, |
1876 | N: Twine(OutlinedParallelFn->getName(), "_wrapper" ), M: &CGM.getModule()); |
1877 | |
1878 | // Ensure we do not inline the function. This is trivially true for the ones |
1879 | // passed to __kmpc_fork_call but the ones calles in serialized regions |
1880 | // could be inlined. This is not a perfect but it is closer to the invariant |
1881 | // we want, namely, every data environment starts with a new function. |
1882 | // TODO: We should pass the if condition to the runtime function and do the |
1883 | // handling there. Much cleaner code. |
1884 | Fn->addFnAttr(Kind: llvm::Attribute::NoInline); |
1885 | |
1886 | CGM.SetInternalFunctionAttributes(GD: GlobalDecl(), F: Fn, FI: CGFI); |
1887 | Fn->setLinkage(llvm::GlobalValue::InternalLinkage); |
1888 | Fn->setDoesNotRecurse(); |
1889 | |
1890 | CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); |
1891 | CGF.StartFunction(GD: GlobalDecl(), RetTy: Ctx.VoidTy, Fn, FnInfo: CGFI, Args: WrapperArgs, |
1892 | Loc: D.getBeginLoc(), StartLoc: D.getBeginLoc()); |
1893 | |
1894 | const auto *RD = CS.getCapturedRecordDecl(); |
1895 | auto CurField = RD->field_begin(); |
1896 | |
1897 | Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(Ty: CGF.Int32Ty, |
1898 | /*Name=*/".zero.addr" ); |
1899 | CGF.Builder.CreateStore(Val: CGF.Builder.getInt32(/*C*/ 0), Addr: ZeroAddr); |
1900 | // Get the array of arguments. |
1901 | SmallVector<llvm::Value *, 8> Args; |
1902 | |
1903 | Args.emplace_back(Args: CGF.GetAddrOfLocalVar(VD: &WrapperArg).emitRawPointer(CGF)); |
1904 | Args.emplace_back(Args: ZeroAddr.emitRawPointer(CGF)); |
1905 | |
1906 | CGBuilderTy &Bld = CGF.Builder; |
1907 | auto CI = CS.capture_begin(); |
1908 | |
1909 | // Use global memory for data sharing. |
1910 | // Handle passing of global args to workers. |
1911 | RawAddress GlobalArgs = |
1912 | CGF.CreateDefaultAlignTempAlloca(Ty: CGF.VoidPtrPtrTy, Name: "global_args" ); |
1913 | llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); |
1914 | llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; |
1915 | CGF.EmitRuntimeCall(callee: OMPBuilder.getOrCreateRuntimeFunction( |
1916 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_get_shared_variables), |
1917 | args: DataSharingArgs); |
1918 | |
1919 | // Retrieve the shared variables from the list of references returned |
1920 | // by the runtime. Pass the variables to the outlined function. |
1921 | Address SharedArgListAddress = Address::invalid(); |
1922 | if (CS.capture_size() > 0 || |
1923 | isOpenMPLoopBoundSharingDirective(Kind: D.getDirectiveKind())) { |
1924 | SharedArgListAddress = CGF.EmitLoadOfPointer( |
1925 | Ptr: GlobalArgs, PtrTy: CGF.getContext() |
1926 | .getPointerType(T: CGF.getContext().VoidPtrTy) |
1927 | .castAs<PointerType>()); |
1928 | } |
1929 | unsigned Idx = 0; |
1930 | if (isOpenMPLoopBoundSharingDirective(Kind: D.getDirectiveKind())) { |
1931 | Address Src = Bld.CreateConstInBoundsGEP(Addr: SharedArgListAddress, Index: Idx); |
1932 | Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( |
1933 | Addr: Src, Ty: CGF.SizeTy->getPointerTo(), ElementTy: CGF.SizeTy); |
1934 | llvm::Value *LB = CGF.EmitLoadOfScalar( |
1935 | Addr: TypedAddress, |
1936 | /*Volatile=*/false, |
1937 | Ty: CGF.getContext().getPointerType(T: CGF.getContext().getSizeType()), |
1938 | Loc: cast<OMPLoopDirective>(Val: D).getLowerBoundVariable()->getExprLoc()); |
1939 | Args.emplace_back(Args&: LB); |
1940 | ++Idx; |
1941 | Src = Bld.CreateConstInBoundsGEP(Addr: SharedArgListAddress, Index: Idx); |
1942 | TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( |
1943 | Addr: Src, Ty: CGF.SizeTy->getPointerTo(), ElementTy: CGF.SizeTy); |
1944 | llvm::Value *UB = CGF.EmitLoadOfScalar( |
1945 | Addr: TypedAddress, |
1946 | /*Volatile=*/false, |
1947 | Ty: CGF.getContext().getPointerType(T: CGF.getContext().getSizeType()), |
1948 | Loc: cast<OMPLoopDirective>(Val: D).getUpperBoundVariable()->getExprLoc()); |
1949 | Args.emplace_back(Args&: UB); |
1950 | ++Idx; |
1951 | } |
1952 | if (CS.capture_size() > 0) { |
1953 | ASTContext &CGFContext = CGF.getContext(); |
1954 | for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { |
1955 | QualType ElemTy = CurField->getType(); |
1956 | Address Src = Bld.CreateConstInBoundsGEP(Addr: SharedArgListAddress, Index: I + Idx); |
1957 | Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( |
1958 | Addr: Src, Ty: CGF.ConvertTypeForMem(T: CGFContext.getPointerType(T: ElemTy)), |
1959 | ElementTy: CGF.ConvertTypeForMem(T: ElemTy)); |
1960 | llvm::Value *Arg = CGF.EmitLoadOfScalar(Addr: TypedAddress, |
1961 | /*Volatile=*/false, |
1962 | Ty: CGFContext.getPointerType(T: ElemTy), |
1963 | Loc: CI->getLocation()); |
1964 | if (CI->capturesVariableByCopy() && |
1965 | !CI->getCapturedVar()->getType()->isAnyPointerType()) { |
1966 | Arg = castValueToType(CGF, Val: Arg, ValTy: ElemTy, CastTy: CGFContext.getUIntPtrType(), |
1967 | Loc: CI->getLocation()); |
1968 | } |
1969 | Args.emplace_back(Args&: Arg); |
1970 | } |
1971 | } |
1972 | |
1973 | emitOutlinedFunctionCall(CGF, Loc: D.getBeginLoc(), OutlinedFn: OutlinedParallelFn, Args); |
1974 | CGF.FinishFunction(); |
1975 | return Fn; |
1976 | } |
1977 | |
1978 | void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, |
1979 | const Decl *D) { |
1980 | if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic) |
1981 | return; |
1982 | |
1983 | assert(D && "Expected function or captured|block decl." ); |
1984 | assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && |
1985 | "Function is registered already." ); |
1986 | assert((!TeamAndReductions.first || TeamAndReductions.first == D) && |
1987 | "Team is set but not processed." ); |
1988 | const Stmt *Body = nullptr; |
1989 | bool NeedToDelayGlobalization = false; |
1990 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
1991 | Body = FD->getBody(); |
1992 | } else if (const auto *BD = dyn_cast<BlockDecl>(Val: D)) { |
1993 | Body = BD->getBody(); |
1994 | } else if (const auto *CD = dyn_cast<CapturedDecl>(Val: D)) { |
1995 | Body = CD->getBody(); |
1996 | NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; |
1997 | if (NeedToDelayGlobalization && |
1998 | getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) |
1999 | return; |
2000 | } |
2001 | if (!Body) |
2002 | return; |
2003 | CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); |
2004 | VarChecker.Visit(S: Body); |
2005 | const RecordDecl *GlobalizedVarsRecord = |
2006 | VarChecker.getGlobalizedRecord(IsInTTDRegion); |
2007 | TeamAndReductions.first = nullptr; |
2008 | TeamAndReductions.second.clear(); |
2009 | ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = |
2010 | VarChecker.getEscapedVariableLengthDecls(); |
2011 | ArrayRef<const ValueDecl *> DelayedVariableLengthDecls = |
2012 | VarChecker.getDelayedVariableLengthDecls(); |
2013 | if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty() && |
2014 | DelayedVariableLengthDecls.empty()) |
2015 | return; |
2016 | auto I = FunctionGlobalizedDecls.try_emplace(Key: CGF.CurFn).first; |
2017 | I->getSecond().MappedParams = |
2018 | std::make_unique<CodeGenFunction::OMPMapVars>(); |
2019 | I->getSecond().EscapedParameters.insert( |
2020 | I: VarChecker.getEscapedParameters().begin(), |
2021 | E: VarChecker.getEscapedParameters().end()); |
2022 | I->getSecond().EscapedVariableLengthDecls.append( |
2023 | in_start: EscapedVariableLengthDecls.begin(), in_end: EscapedVariableLengthDecls.end()); |
2024 | I->getSecond().DelayedVariableLengthDecls.append( |
2025 | in_start: DelayedVariableLengthDecls.begin(), in_end: DelayedVariableLengthDecls.end()); |
2026 | DeclToAddrMapTy &Data = I->getSecond().LocalVarData; |
2027 | for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { |
2028 | assert(VD->isCanonicalDecl() && "Expected canonical declaration" ); |
2029 | Data.insert(KV: std::make_pair(x&: VD, y: MappedVarData())); |
2030 | } |
2031 | if (!NeedToDelayGlobalization) { |
2032 | emitGenericVarsProlog(CGF, Loc: D->getBeginLoc()); |
2033 | struct GlobalizationScope final : EHScopeStack::Cleanup { |
2034 | GlobalizationScope() = default; |
2035 | |
2036 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
2037 | static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) |
2038 | .emitGenericVarsEpilog(CGF); |
2039 | } |
2040 | }; |
2041 | CGF.EHStack.pushCleanup<GlobalizationScope>(Kind: NormalAndEHCleanup); |
2042 | } |
2043 | } |
2044 | |
2045 | Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, |
2046 | const VarDecl *VD) { |
2047 | if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { |
2048 | const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); |
2049 | auto AS = LangAS::Default; |
2050 | switch (A->getAllocatorType()) { |
2051 | // Use the default allocator here as by default local vars are |
2052 | // threadlocal. |
2053 | case OMPAllocateDeclAttr::OMPNullMemAlloc: |
2054 | case OMPAllocateDeclAttr::OMPDefaultMemAlloc: |
2055 | case OMPAllocateDeclAttr::OMPThreadMemAlloc: |
2056 | case OMPAllocateDeclAttr::OMPHighBWMemAlloc: |
2057 | case OMPAllocateDeclAttr::OMPLowLatMemAlloc: |
2058 | // Follow the user decision - use default allocation. |
2059 | return Address::invalid(); |
2060 | case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: |
2061 | // TODO: implement aupport for user-defined allocators. |
2062 | return Address::invalid(); |
2063 | case OMPAllocateDeclAttr::OMPConstMemAlloc: |
2064 | AS = LangAS::cuda_constant; |
2065 | break; |
2066 | case OMPAllocateDeclAttr::OMPPTeamMemAlloc: |
2067 | AS = LangAS::cuda_shared; |
2068 | break; |
2069 | case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: |
2070 | case OMPAllocateDeclAttr::OMPCGroupMemAlloc: |
2071 | break; |
2072 | } |
2073 | llvm::Type *VarTy = CGF.ConvertTypeForMem(T: VD->getType()); |
2074 | auto *GV = new llvm::GlobalVariable( |
2075 | CGM.getModule(), VarTy, /*isConstant=*/false, |
2076 | llvm::GlobalValue::InternalLinkage, llvm::PoisonValue::get(T: VarTy), |
2077 | VD->getName(), |
2078 | /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, |
2079 | CGM.getContext().getTargetAddressSpace(AS)); |
2080 | CharUnits Align = CGM.getContext().getDeclAlign(D: VD); |
2081 | GV->setAlignment(Align.getAsAlign()); |
2082 | return Address( |
2083 | CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
2084 | V: GV, DestTy: VarTy->getPointerTo(AddrSpace: CGM.getContext().getTargetAddressSpace( |
2085 | AS: VD->getType().getAddressSpace()))), |
2086 | VarTy, Align); |
2087 | } |
2088 | |
2089 | if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic) |
2090 | return Address::invalid(); |
2091 | |
2092 | VD = VD->getCanonicalDecl(); |
2093 | auto I = FunctionGlobalizedDecls.find(Val: CGF.CurFn); |
2094 | if (I == FunctionGlobalizedDecls.end()) |
2095 | return Address::invalid(); |
2096 | auto VDI = I->getSecond().LocalVarData.find(Key: VD); |
2097 | if (VDI != I->getSecond().LocalVarData.end()) |
2098 | return VDI->second.PrivateAddr; |
2099 | if (VD->hasAttrs()) { |
2100 | for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), |
2101 | E(VD->attr_end()); |
2102 | IT != E; ++IT) { |
2103 | auto VDI = I->getSecond().LocalVarData.find( |
2104 | Key: cast<VarDecl>(Val: cast<DeclRefExpr>(Val: IT->getRef())->getDecl()) |
2105 | ->getCanonicalDecl()); |
2106 | if (VDI != I->getSecond().LocalVarData.end()) |
2107 | return VDI->second.PrivateAddr; |
2108 | } |
2109 | } |
2110 | |
2111 | return Address::invalid(); |
2112 | } |
2113 | |
2114 | void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { |
2115 | FunctionGlobalizedDecls.erase(Val: CGF.CurFn); |
2116 | CGOpenMPRuntime::functionFinished(CGF); |
2117 | } |
2118 | |
2119 | void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( |
2120 | CodeGenFunction &CGF, const OMPLoopDirective &S, |
2121 | OpenMPDistScheduleClauseKind &ScheduleKind, |
2122 | llvm::Value *&Chunk) const { |
2123 | auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
2124 | if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { |
2125 | ScheduleKind = OMPC_DIST_SCHEDULE_static; |
2126 | Chunk = CGF.EmitScalarConversion( |
2127 | Src: RT.getGPUNumThreads(CGF), |
2128 | SrcTy: CGF.getContext().getIntTypeForBitwidth(DestWidth: 32, /*Signed=*/0), |
2129 | DstTy: S.getIterationVariable()->getType(), Loc: S.getBeginLoc()); |
2130 | return; |
2131 | } |
2132 | CGOpenMPRuntime::getDefaultDistScheduleAndChunk( |
2133 | CGF, S, ScheduleKind, Chunk); |
2134 | } |
2135 | |
2136 | void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( |
2137 | CodeGenFunction &CGF, const OMPLoopDirective &S, |
2138 | OpenMPScheduleClauseKind &ScheduleKind, |
2139 | const Expr *&ChunkExpr) const { |
2140 | ScheduleKind = OMPC_SCHEDULE_static; |
2141 | // Chunk size is 1 in this case. |
2142 | llvm::APInt ChunkSize(32, 1); |
2143 | ChunkExpr = IntegerLiteral::Create(C: CGF.getContext(), V: ChunkSize, |
2144 | type: CGF.getContext().getIntTypeForBitwidth(DestWidth: 32, /*Signed=*/0), |
2145 | l: SourceLocation()); |
2146 | } |
2147 | |
2148 | void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( |
2149 | CodeGenFunction &CGF, const OMPExecutableDirective &D) const { |
2150 | assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && |
2151 | " Expected target-based directive." ); |
2152 | const CapturedStmt *CS = D.getCapturedStmt(RegionKind: OMPD_target); |
2153 | for (const CapturedStmt::Capture &C : CS->captures()) { |
2154 | // Capture variables captured by reference in lambdas for target-based |
2155 | // directives. |
2156 | if (!C.capturesVariable()) |
2157 | continue; |
2158 | const VarDecl *VD = C.getCapturedVar(); |
2159 | const auto *RD = VD->getType() |
2160 | .getCanonicalType() |
2161 | .getNonReferenceType() |
2162 | ->getAsCXXRecordDecl(); |
2163 | if (!RD || !RD->isLambda()) |
2164 | continue; |
2165 | Address VDAddr = CGF.GetAddrOfLocalVar(VD); |
2166 | LValue VDLVal; |
2167 | if (VD->getType().getCanonicalType()->isReferenceType()) |
2168 | VDLVal = CGF.EmitLoadOfReferenceLValue(RefAddr: VDAddr, RefTy: VD->getType()); |
2169 | else |
2170 | VDLVal = CGF.MakeAddrLValue( |
2171 | Addr: VDAddr, T: VD->getType().getCanonicalType().getNonReferenceType()); |
2172 | llvm::DenseMap<const ValueDecl *, FieldDecl *> Captures; |
2173 | FieldDecl *ThisCapture = nullptr; |
2174 | RD->getCaptureFields(Captures, ThisCapture); |
2175 | if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { |
2176 | LValue ThisLVal = |
2177 | CGF.EmitLValueForFieldInitialization(Base: VDLVal, Field: ThisCapture); |
2178 | llvm::Value *CXXThis = CGF.LoadCXXThis(); |
2179 | CGF.EmitStoreOfScalar(value: CXXThis, lvalue: ThisLVal); |
2180 | } |
2181 | for (const LambdaCapture &LC : RD->captures()) { |
2182 | if (LC.getCaptureKind() != LCK_ByRef) |
2183 | continue; |
2184 | const ValueDecl *VD = LC.getCapturedVar(); |
2185 | // FIXME: For now VD is always a VarDecl because OpenMP does not support |
2186 | // capturing structured bindings in lambdas yet. |
2187 | if (!CS->capturesVariable(Var: cast<VarDecl>(Val: VD))) |
2188 | continue; |
2189 | auto It = Captures.find(Val: VD); |
2190 | assert(It != Captures.end() && "Found lambda capture without field." ); |
2191 | LValue VarLVal = CGF.EmitLValueForFieldInitialization(Base: VDLVal, Field: It->second); |
2192 | Address VDAddr = CGF.GetAddrOfLocalVar(VD: cast<VarDecl>(Val: VD)); |
2193 | if (VD->getType().getCanonicalType()->isReferenceType()) |
2194 | VDAddr = CGF.EmitLoadOfReferenceLValue(RefAddr: VDAddr, |
2195 | RefTy: VD->getType().getCanonicalType()) |
2196 | .getAddress(); |
2197 | CGF.EmitStoreOfScalar(value: VDAddr.emitRawPointer(CGF), lvalue: VarLVal); |
2198 | } |
2199 | } |
2200 | } |
2201 | |
2202 | bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, |
2203 | LangAS &AS) { |
2204 | if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) |
2205 | return false; |
2206 | const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); |
2207 | switch(A->getAllocatorType()) { |
2208 | case OMPAllocateDeclAttr::OMPNullMemAlloc: |
2209 | case OMPAllocateDeclAttr::OMPDefaultMemAlloc: |
2210 | // Not supported, fallback to the default mem space. |
2211 | case OMPAllocateDeclAttr::OMPThreadMemAlloc: |
2212 | case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: |
2213 | case OMPAllocateDeclAttr::OMPCGroupMemAlloc: |
2214 | case OMPAllocateDeclAttr::OMPHighBWMemAlloc: |
2215 | case OMPAllocateDeclAttr::OMPLowLatMemAlloc: |
2216 | AS = LangAS::Default; |
2217 | return true; |
2218 | case OMPAllocateDeclAttr::OMPConstMemAlloc: |
2219 | AS = LangAS::cuda_constant; |
2220 | return true; |
2221 | case OMPAllocateDeclAttr::OMPPTeamMemAlloc: |
2222 | AS = LangAS::cuda_shared; |
2223 | return true; |
2224 | case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: |
2225 | llvm_unreachable("Expected predefined allocator for the variables with the " |
2226 | "static storage." ); |
2227 | } |
2228 | return false; |
2229 | } |
2230 | |
2231 | // Get current OffloadArch and ignore any unknown values |
2232 | static OffloadArch getOffloadArch(CodeGenModule &CGM) { |
2233 | if (!CGM.getTarget().hasFeature(Feature: "ptx" )) |
2234 | return OffloadArch::UNKNOWN; |
2235 | for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { |
2236 | if (Feature.getValue()) { |
2237 | OffloadArch Arch = StringToOffloadArch(S: Feature.getKey()); |
2238 | if (Arch != OffloadArch::UNKNOWN) |
2239 | return Arch; |
2240 | } |
2241 | } |
2242 | return OffloadArch::UNKNOWN; |
2243 | } |
2244 | |
2245 | /// Check to see if target architecture supports unified addressing which is |
2246 | /// a restriction for OpenMP requires clause "unified_shared_memory". |
2247 | void CGOpenMPRuntimeGPU::processRequiresDirective(const OMPRequiresDecl *D) { |
2248 | for (const OMPClause *Clause : D->clauselists()) { |
2249 | if (Clause->getClauseKind() == OMPC_unified_shared_memory) { |
2250 | OffloadArch Arch = getOffloadArch(CGM); |
2251 | switch (Arch) { |
2252 | case OffloadArch::SM_20: |
2253 | case OffloadArch::SM_21: |
2254 | case OffloadArch::SM_30: |
2255 | case OffloadArch::SM_32_: |
2256 | case OffloadArch::SM_35: |
2257 | case OffloadArch::SM_37: |
2258 | case OffloadArch::SM_50: |
2259 | case OffloadArch::SM_52: |
2260 | case OffloadArch::SM_53: { |
2261 | SmallString<256> Buffer; |
2262 | llvm::raw_svector_ostream Out(Buffer); |
2263 | Out << "Target architecture " << OffloadArchToString(A: Arch) |
2264 | << " does not support unified addressing" ; |
2265 | CGM.Error(loc: Clause->getBeginLoc(), error: Out.str()); |
2266 | return; |
2267 | } |
2268 | case OffloadArch::SM_60: |
2269 | case OffloadArch::SM_61: |
2270 | case OffloadArch::SM_62: |
2271 | case OffloadArch::SM_70: |
2272 | case OffloadArch::SM_72: |
2273 | case OffloadArch::SM_75: |
2274 | case OffloadArch::SM_80: |
2275 | case OffloadArch::SM_86: |
2276 | case OffloadArch::SM_87: |
2277 | case OffloadArch::SM_89: |
2278 | case OffloadArch::SM_90: |
2279 | case OffloadArch::SM_90a: |
2280 | case OffloadArch::GFX600: |
2281 | case OffloadArch::GFX601: |
2282 | case OffloadArch::GFX602: |
2283 | case OffloadArch::GFX700: |
2284 | case OffloadArch::GFX701: |
2285 | case OffloadArch::GFX702: |
2286 | case OffloadArch::GFX703: |
2287 | case OffloadArch::GFX704: |
2288 | case OffloadArch::GFX705: |
2289 | case OffloadArch::GFX801: |
2290 | case OffloadArch::GFX802: |
2291 | case OffloadArch::GFX803: |
2292 | case OffloadArch::GFX805: |
2293 | case OffloadArch::GFX810: |
2294 | case OffloadArch::GFX9_GENERIC: |
2295 | case OffloadArch::GFX900: |
2296 | case OffloadArch::GFX902: |
2297 | case OffloadArch::GFX904: |
2298 | case OffloadArch::GFX906: |
2299 | case OffloadArch::GFX908: |
2300 | case OffloadArch::GFX909: |
2301 | case OffloadArch::GFX90a: |
2302 | case OffloadArch::GFX90c: |
2303 | case OffloadArch::GFX940: |
2304 | case OffloadArch::GFX941: |
2305 | case OffloadArch::GFX942: |
2306 | case OffloadArch::GFX10_1_GENERIC: |
2307 | case OffloadArch::GFX1010: |
2308 | case OffloadArch::GFX1011: |
2309 | case OffloadArch::GFX1012: |
2310 | case OffloadArch::GFX1013: |
2311 | case OffloadArch::GFX10_3_GENERIC: |
2312 | case OffloadArch::GFX1030: |
2313 | case OffloadArch::GFX1031: |
2314 | case OffloadArch::GFX1032: |
2315 | case OffloadArch::GFX1033: |
2316 | case OffloadArch::GFX1034: |
2317 | case OffloadArch::GFX1035: |
2318 | case OffloadArch::GFX1036: |
2319 | case OffloadArch::GFX11_GENERIC: |
2320 | case OffloadArch::GFX1100: |
2321 | case OffloadArch::GFX1101: |
2322 | case OffloadArch::GFX1102: |
2323 | case OffloadArch::GFX1103: |
2324 | case OffloadArch::GFX1150: |
2325 | case OffloadArch::GFX1151: |
2326 | case OffloadArch::GFX1152: |
2327 | case OffloadArch::GFX12_GENERIC: |
2328 | case OffloadArch::GFX1200: |
2329 | case OffloadArch::GFX1201: |
2330 | case OffloadArch::AMDGCNSPIRV: |
2331 | case OffloadArch::Generic: |
2332 | case OffloadArch::UNUSED: |
2333 | case OffloadArch::UNKNOWN: |
2334 | break; |
2335 | case OffloadArch::LAST: |
2336 | llvm_unreachable("Unexpected GPU arch." ); |
2337 | } |
2338 | } |
2339 | } |
2340 | CGOpenMPRuntime::processRequiresDirective(D); |
2341 | } |
2342 | |
2343 | llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) { |
2344 | CGBuilderTy &Bld = CGF.Builder; |
2345 | llvm::Module *M = &CGF.CGM.getModule(); |
2346 | const char *LocSize = "__kmpc_get_hardware_num_threads_in_block" ; |
2347 | llvm::Function *F = M->getFunction(Name: LocSize); |
2348 | if (!F) { |
2349 | F = llvm::Function::Create( |
2350 | Ty: llvm::FunctionType::get(Result: CGF.Int32Ty, Params: std::nullopt, isVarArg: false), |
2351 | Linkage: llvm::GlobalVariable::ExternalLinkage, N: LocSize, M: &CGF.CGM.getModule()); |
2352 | } |
2353 | return Bld.CreateCall(Callee: F, Args: std::nullopt, Name: "nvptx_num_threads" ); |
2354 | } |
2355 | |
2356 | llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) { |
2357 | ArrayRef<llvm::Value *> Args{}; |
2358 | return CGF.EmitRuntimeCall( |
2359 | callee: OMPBuilder.getOrCreateRuntimeFunction( |
2360 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_get_hardware_thread_id_in_block), |
2361 | args: Args); |
2362 | } |
2363 | |