1 | //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This coordinates the per-function state used while generating code. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "CodeGenFunction.h" |
14 | #include "CGBlocks.h" |
15 | #include "CGCUDARuntime.h" |
16 | #include "CGCXXABI.h" |
17 | #include "CGCleanup.h" |
18 | #include "CGDebugInfo.h" |
19 | #include "CGHLSLRuntime.h" |
20 | #include "CGOpenMPRuntime.h" |
21 | #include "CodeGenModule.h" |
22 | #include "CodeGenPGO.h" |
23 | #include "TargetInfo.h" |
24 | #include "clang/AST/ASTContext.h" |
25 | #include "clang/AST/ASTLambda.h" |
26 | #include "clang/AST/Attr.h" |
27 | #include "clang/AST/Decl.h" |
28 | #include "clang/AST/DeclCXX.h" |
29 | #include "clang/AST/Expr.h" |
30 | #include "clang/AST/StmtCXX.h" |
31 | #include "clang/AST/StmtObjC.h" |
32 | #include "clang/Basic/Builtins.h" |
33 | #include "clang/Basic/CodeGenOptions.h" |
34 | #include "clang/Basic/TargetBuiltins.h" |
35 | #include "clang/Basic/TargetInfo.h" |
36 | #include "clang/CodeGen/CGFunctionInfo.h" |
37 | #include "clang/Frontend/FrontendDiagnostic.h" |
38 | #include "llvm/ADT/ArrayRef.h" |
39 | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
40 | #include "llvm/IR/DataLayout.h" |
41 | #include "llvm/IR/Dominators.h" |
42 | #include "llvm/IR/FPEnv.h" |
43 | #include "llvm/IR/IntrinsicInst.h" |
44 | #include "llvm/IR/Intrinsics.h" |
45 | #include "llvm/IR/MDBuilder.h" |
46 | #include "llvm/IR/Operator.h" |
47 | #include "llvm/Support/CRC.h" |
48 | #include "llvm/Support/xxhash.h" |
49 | #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" |
50 | #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
51 | #include <optional> |
52 | |
53 | using namespace clang; |
54 | using namespace CodeGen; |
55 | |
56 | namespace llvm { |
57 | extern cl::opt<bool> EnableSingleByteCoverage; |
58 | } // namespace llvm |
59 | |
60 | /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time |
61 | /// markers. |
62 | static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, |
63 | const LangOptions &LangOpts) { |
64 | if (CGOpts.DisableLifetimeMarkers) |
65 | return false; |
66 | |
67 | // Sanitizers may use markers. |
68 | if (CGOpts.SanitizeAddressUseAfterScope || |
69 | LangOpts.Sanitize.has(K: SanitizerKind::HWAddress) || |
70 | LangOpts.Sanitize.has(K: SanitizerKind::Memory)) |
71 | return true; |
72 | |
73 | // For now, only in optimized builds. |
74 | return CGOpts.OptimizationLevel != 0; |
75 | } |
76 | |
77 | CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) |
78 | : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), |
79 | Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), |
80 | CGBuilderInserterTy(this)), |
81 | SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), |
82 | DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), |
83 | ShouldEmitLifetimeMarkers( |
84 | shouldEmitLifetimeMarkers(CGOpts: CGM.getCodeGenOpts(), LangOpts: CGM.getLangOpts())) { |
85 | if (!suppressNewContext) |
86 | CGM.getCXXABI().getMangleContext().startNewFunction(); |
87 | EHStack.setCGF(this); |
88 | |
89 | SetFastMathFlags(CurFPFeatures); |
90 | } |
91 | |
92 | CodeGenFunction::~CodeGenFunction() { |
93 | assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup" ); |
94 | assert(DeferredDeactivationCleanupStack.empty() && |
95 | "missed to deactivate a cleanup" ); |
96 | |
97 | if (getLangOpts().OpenMP && CurFn) |
98 | CGM.getOpenMPRuntime().functionFinished(CGF&: *this); |
99 | |
100 | // If we have an OpenMPIRBuilder we want to finalize functions (incl. |
101 | // outlining etc) at some point. Doing it once the function codegen is done |
102 | // seems to be a reasonable spot. We do it here, as opposed to the deletion |
103 | // time of the CodeGenModule, because we have to ensure the IR has not yet |
104 | // been "emitted" to the outside, thus, modifications are still sensible. |
105 | if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) |
106 | CGM.getOpenMPRuntime().getOMPBuilder().finalize(Fn: CurFn); |
107 | } |
108 | |
109 | // Map the LangOption for exception behavior into |
110 | // the corresponding enum in the IR. |
111 | llvm::fp::ExceptionBehavior |
112 | clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { |
113 | |
114 | switch (Kind) { |
115 | case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; |
116 | case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; |
117 | case LangOptions::FPE_Strict: return llvm::fp::ebStrict; |
118 | default: |
119 | llvm_unreachable("Unsupported FP Exception Behavior" ); |
120 | } |
121 | } |
122 | |
123 | void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { |
124 | llvm::FastMathFlags FMF; |
125 | FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); |
126 | FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); |
127 | FMF.setNoInfs(FPFeatures.getNoHonorInfs()); |
128 | FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); |
129 | FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); |
130 | FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); |
131 | FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); |
132 | Builder.setFastMathFlags(FMF); |
133 | } |
134 | |
135 | CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, |
136 | const Expr *E) |
137 | : CGF(CGF) { |
138 | ConstructorHelper(FPFeatures: E->getFPFeaturesInEffect(LO: CGF.getLangOpts())); |
139 | } |
140 | |
141 | CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, |
142 | FPOptions FPFeatures) |
143 | : CGF(CGF) { |
144 | ConstructorHelper(FPFeatures); |
145 | } |
146 | |
147 | void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { |
148 | OldFPFeatures = CGF.CurFPFeatures; |
149 | CGF.CurFPFeatures = FPFeatures; |
150 | |
151 | OldExcept = CGF.Builder.getDefaultConstrainedExcept(); |
152 | OldRounding = CGF.Builder.getDefaultConstrainedRounding(); |
153 | |
154 | if (OldFPFeatures == FPFeatures) |
155 | return; |
156 | |
157 | FMFGuard.emplace(args&: CGF.Builder); |
158 | |
159 | llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); |
160 | CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); |
161 | auto NewExceptionBehavior = |
162 | ToConstrainedExceptMD(Kind: static_cast<LangOptions::FPExceptionModeKind>( |
163 | FPFeatures.getExceptionMode())); |
164 | CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); |
165 | |
166 | CGF.SetFastMathFlags(FPFeatures); |
167 | |
168 | assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || |
169 | isa<CXXConstructorDecl>(CGF.CurFuncDecl) || |
170 | isa<CXXDestructorDecl>(CGF.CurFuncDecl) || |
171 | (NewExceptionBehavior == llvm::fp::ebIgnore && |
172 | NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && |
173 | "FPConstrained should be enabled on entire function" ); |
174 | |
175 | auto mergeFnAttrValue = [&](StringRef Name, bool Value) { |
176 | auto OldValue = |
177 | CGF.CurFn->getFnAttribute(Kind: Name).getValueAsBool(); |
178 | auto NewValue = OldValue & Value; |
179 | if (OldValue != NewValue) |
180 | CGF.CurFn->addFnAttr(Kind: Name, Val: llvm::toStringRef(B: NewValue)); |
181 | }; |
182 | mergeFnAttrValue("no-infs-fp-math" , FPFeatures.getNoHonorInfs()); |
183 | mergeFnAttrValue("no-nans-fp-math" , FPFeatures.getNoHonorNaNs()); |
184 | mergeFnAttrValue("no-signed-zeros-fp-math" , FPFeatures.getNoSignedZero()); |
185 | mergeFnAttrValue( |
186 | "unsafe-fp-math" , |
187 | FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && |
188 | FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && |
189 | FPFeatures.allowFPContractAcrossStatement()); |
190 | } |
191 | |
192 | CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { |
193 | CGF.CurFPFeatures = OldFPFeatures; |
194 | CGF.Builder.setDefaultConstrainedExcept(OldExcept); |
195 | CGF.Builder.setDefaultConstrainedRounding(OldRounding); |
196 | } |
197 | |
198 | static LValue |
199 | makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType, |
200 | bool MightBeSigned, CodeGenFunction &CGF, |
201 | KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { |
202 | LValueBaseInfo BaseInfo; |
203 | TBAAAccessInfo TBAAInfo; |
204 | CharUnits Alignment = |
205 | CGF.CGM.getNaturalTypeAlignment(T, BaseInfo: &BaseInfo, TBAAInfo: &TBAAInfo, forPointeeType: ForPointeeType); |
206 | Address Addr = |
207 | MightBeSigned |
208 | ? CGF.makeNaturalAddressForPointer(Ptr: V, T, Alignment, ForPointeeType: false, BaseInfo: nullptr, |
209 | TBAAInfo: nullptr, IsKnownNonNull) |
210 | : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull); |
211 | return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); |
212 | } |
213 | |
214 | LValue |
215 | CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, |
216 | KnownNonNull_t IsKnownNonNull) { |
217 | return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, |
218 | /*MightBeSigned*/ true, CGF&: *this, |
219 | IsKnownNonNull); |
220 | } |
221 | |
222 | LValue |
223 | CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { |
224 | return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, |
225 | /*MightBeSigned*/ true, CGF&: *this); |
226 | } |
227 | |
228 | LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V, |
229 | QualType T) { |
230 | return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, |
231 | /*MightBeSigned*/ false, CGF&: *this); |
232 | } |
233 | |
234 | LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, |
235 | QualType T) { |
236 | return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, |
237 | /*MightBeSigned*/ false, CGF&: *this); |
238 | } |
239 | |
240 | llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { |
241 | return CGM.getTypes().ConvertTypeForMem(T); |
242 | } |
243 | |
244 | llvm::Type *CodeGenFunction::ConvertType(QualType T) { |
245 | return CGM.getTypes().ConvertType(T); |
246 | } |
247 | |
248 | llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy, |
249 | llvm::Type *LLVMTy) { |
250 | return CGM.getTypes().convertTypeForLoadStore(T: ASTTy, LLVMTy); |
251 | } |
252 | |
253 | TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { |
254 | type = type.getCanonicalType(); |
255 | while (true) { |
256 | switch (type->getTypeClass()) { |
257 | #define TYPE(name, parent) |
258 | #define ABSTRACT_TYPE(name, parent) |
259 | #define NON_CANONICAL_TYPE(name, parent) case Type::name: |
260 | #define DEPENDENT_TYPE(name, parent) case Type::name: |
261 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: |
262 | #include "clang/AST/TypeNodes.inc" |
263 | llvm_unreachable("non-canonical or dependent type in IR-generation" ); |
264 | |
265 | case Type::Auto: |
266 | case Type::DeducedTemplateSpecialization: |
267 | llvm_unreachable("undeduced type in IR-generation" ); |
268 | |
269 | // Various scalar types. |
270 | case Type::Builtin: |
271 | case Type::Pointer: |
272 | case Type::BlockPointer: |
273 | case Type::LValueReference: |
274 | case Type::RValueReference: |
275 | case Type::MemberPointer: |
276 | case Type::Vector: |
277 | case Type::ExtVector: |
278 | case Type::ConstantMatrix: |
279 | case Type::FunctionProto: |
280 | case Type::FunctionNoProto: |
281 | case Type::Enum: |
282 | case Type::ObjCObjectPointer: |
283 | case Type::Pipe: |
284 | case Type::BitInt: |
285 | return TEK_Scalar; |
286 | |
287 | // Complexes. |
288 | case Type::Complex: |
289 | return TEK_Complex; |
290 | |
291 | // Arrays, records, and Objective-C objects. |
292 | case Type::ConstantArray: |
293 | case Type::IncompleteArray: |
294 | case Type::VariableArray: |
295 | case Type::Record: |
296 | case Type::ObjCObject: |
297 | case Type::ObjCInterface: |
298 | case Type::ArrayParameter: |
299 | return TEK_Aggregate; |
300 | |
301 | // We operate on atomic values according to their underlying type. |
302 | case Type::Atomic: |
303 | type = cast<AtomicType>(Val&: type)->getValueType(); |
304 | continue; |
305 | } |
306 | llvm_unreachable("unknown type kind!" ); |
307 | } |
308 | } |
309 | |
310 | llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { |
311 | // For cleanliness, we try to avoid emitting the return block for |
312 | // simple cases. |
313 | llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); |
314 | |
315 | if (CurBB) { |
316 | assert(!CurBB->getTerminator() && "Unexpected terminated block." ); |
317 | |
318 | // We have a valid insert point, reuse it if it is empty or there are no |
319 | // explicit jumps to the return block. |
320 | if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { |
321 | ReturnBlock.getBlock()->replaceAllUsesWith(V: CurBB); |
322 | delete ReturnBlock.getBlock(); |
323 | ReturnBlock = JumpDest(); |
324 | } else |
325 | EmitBlock(BB: ReturnBlock.getBlock()); |
326 | return llvm::DebugLoc(); |
327 | } |
328 | |
329 | // Otherwise, if the return block is the target of a single direct |
330 | // branch then we can just put the code in that block instead. This |
331 | // cleans up functions which started with a unified return block. |
332 | if (ReturnBlock.getBlock()->hasOneUse()) { |
333 | llvm::BranchInst *BI = |
334 | dyn_cast<llvm::BranchInst>(Val: *ReturnBlock.getBlock()->user_begin()); |
335 | if (BI && BI->isUnconditional() && |
336 | BI->getSuccessor(i: 0) == ReturnBlock.getBlock()) { |
337 | // Record/return the DebugLoc of the simple 'return' expression to be used |
338 | // later by the actual 'ret' instruction. |
339 | llvm::DebugLoc Loc = BI->getDebugLoc(); |
340 | Builder.SetInsertPoint(BI->getParent()); |
341 | BI->eraseFromParent(); |
342 | delete ReturnBlock.getBlock(); |
343 | ReturnBlock = JumpDest(); |
344 | return Loc; |
345 | } |
346 | } |
347 | |
348 | // FIXME: We are at an unreachable point, there is no reason to emit the block |
349 | // unless it has uses. However, we still need a place to put the debug |
350 | // region.end for now. |
351 | |
352 | EmitBlock(BB: ReturnBlock.getBlock()); |
353 | return llvm::DebugLoc(); |
354 | } |
355 | |
356 | static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { |
357 | if (!BB) return; |
358 | if (!BB->use_empty()) { |
359 | CGF.CurFn->insert(Position: CGF.CurFn->end(), BB); |
360 | return; |
361 | } |
362 | delete BB; |
363 | } |
364 | |
365 | void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { |
366 | assert(BreakContinueStack.empty() && |
367 | "mismatched push/pop in break/continue stack!" ); |
368 | assert(LifetimeExtendedCleanupStack.empty() && |
369 | "mismatched push/pop of cleanups in EHStack!" ); |
370 | assert(DeferredDeactivationCleanupStack.empty() && |
371 | "mismatched activate/deactivate of cleanups!" ); |
372 | |
373 | if (CGM.shouldEmitConvergenceTokens()) { |
374 | ConvergenceTokenStack.pop_back(); |
375 | assert(ConvergenceTokenStack.empty() && |
376 | "mismatched push/pop in convergence stack!" ); |
377 | } |
378 | |
379 | bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 |
380 | && NumSimpleReturnExprs == NumReturnExprs |
381 | && ReturnBlock.getBlock()->use_empty(); |
382 | // Usually the return expression is evaluated before the cleanup |
383 | // code. If the function contains only a simple return statement, |
384 | // such as a constant, the location before the cleanup code becomes |
385 | // the last useful breakpoint in the function, because the simple |
386 | // return expression will be evaluated after the cleanup code. To be |
387 | // safe, set the debug location for cleanup code to the location of |
388 | // the return statement. Otherwise the cleanup code should be at the |
389 | // end of the function's lexical scope. |
390 | // |
391 | // If there are multiple branches to the return block, the branch |
392 | // instructions will get the location of the return statements and |
393 | // all will be fine. |
394 | if (CGDebugInfo *DI = getDebugInfo()) { |
395 | if (OnlySimpleReturnStmts) |
396 | DI->EmitLocation(Builder, Loc: LastStopPoint); |
397 | else |
398 | DI->EmitLocation(Builder, Loc: EndLoc); |
399 | } |
400 | |
401 | // Pop any cleanups that might have been associated with the |
402 | // parameters. Do this in whatever block we're currently in; it's |
403 | // important to do this before we enter the return block or return |
404 | // edges will be *really* confused. |
405 | bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; |
406 | bool HasOnlyLifetimeMarkers = |
407 | HasCleanups && EHStack.containsOnlyLifetimeMarkers(Old: PrologueCleanupDepth); |
408 | bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; |
409 | |
410 | std::optional<ApplyDebugLocation> OAL; |
411 | if (HasCleanups) { |
412 | // Make sure the line table doesn't jump back into the body for |
413 | // the ret after it's been at EndLoc. |
414 | if (CGDebugInfo *DI = getDebugInfo()) { |
415 | if (OnlySimpleReturnStmts) |
416 | DI->EmitLocation(Builder, Loc: EndLoc); |
417 | else |
418 | // We may not have a valid end location. Try to apply it anyway, and |
419 | // fall back to an artificial location if needed. |
420 | OAL = ApplyDebugLocation::CreateDefaultArtificial(CGF&: *this, TemporaryLocation: EndLoc); |
421 | } |
422 | |
423 | PopCleanupBlocks(OldCleanupStackSize: PrologueCleanupDepth); |
424 | } |
425 | |
426 | // Emit function epilog (to return). |
427 | llvm::DebugLoc Loc = EmitReturnBlock(); |
428 | |
429 | if (ShouldInstrumentFunction()) { |
430 | if (CGM.getCodeGenOpts().InstrumentFunctions) |
431 | CurFn->addFnAttr(Kind: "instrument-function-exit" , Val: "__cyg_profile_func_exit" ); |
432 | if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) |
433 | CurFn->addFnAttr(Kind: "instrument-function-exit-inlined" , |
434 | Val: "__cyg_profile_func_exit" ); |
435 | } |
436 | |
437 | // Emit debug descriptor for function end. |
438 | if (CGDebugInfo *DI = getDebugInfo()) |
439 | DI->EmitFunctionEnd(Builder, Fn: CurFn); |
440 | |
441 | // Reset the debug location to that of the simple 'return' expression, if any |
442 | // rather than that of the end of the function's scope '}'. |
443 | ApplyDebugLocation AL(*this, Loc); |
444 | EmitFunctionEpilog(FI: *CurFnInfo, EmitRetDbgLoc, EndLoc); |
445 | EmitEndEHSpec(D: CurCodeDecl); |
446 | |
447 | assert(EHStack.empty() && |
448 | "did not remove all scopes from cleanup stack!" ); |
449 | |
450 | // If someone did an indirect goto, emit the indirect goto block at the end of |
451 | // the function. |
452 | if (IndirectBranch) { |
453 | EmitBlock(BB: IndirectBranch->getParent()); |
454 | Builder.ClearInsertionPoint(); |
455 | } |
456 | |
457 | // If some of our locals escaped, insert a call to llvm.localescape in the |
458 | // entry block. |
459 | if (!EscapedLocals.empty()) { |
460 | // Invert the map from local to index into a simple vector. There should be |
461 | // no holes. |
462 | SmallVector<llvm::Value *, 4> EscapeArgs; |
463 | EscapeArgs.resize(N: EscapedLocals.size()); |
464 | for (auto &Pair : EscapedLocals) |
465 | EscapeArgs[Pair.second] = Pair.first; |
466 | llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( |
467 | M: &CGM.getModule(), id: llvm::Intrinsic::localescape); |
468 | CGBuilderTy(*this, AllocaInsertPt).CreateCall(Callee: FrameEscapeFn, Args: EscapeArgs); |
469 | } |
470 | |
471 | // Remove the AllocaInsertPt instruction, which is just a convenience for us. |
472 | llvm::Instruction *Ptr = AllocaInsertPt; |
473 | AllocaInsertPt = nullptr; |
474 | Ptr->eraseFromParent(); |
475 | |
476 | // PostAllocaInsertPt, if created, was lazily created when it was required, |
477 | // remove it now since it was just created for our own convenience. |
478 | if (PostAllocaInsertPt) { |
479 | llvm::Instruction *PostPtr = PostAllocaInsertPt; |
480 | PostAllocaInsertPt = nullptr; |
481 | PostPtr->eraseFromParent(); |
482 | } |
483 | |
484 | // If someone took the address of a label but never did an indirect goto, we |
485 | // made a zero entry PHI node, which is illegal, zap it now. |
486 | if (IndirectBranch) { |
487 | llvm::PHINode *PN = cast<llvm::PHINode>(Val: IndirectBranch->getAddress()); |
488 | if (PN->getNumIncomingValues() == 0) { |
489 | PN->replaceAllUsesWith(V: llvm::UndefValue::get(T: PN->getType())); |
490 | PN->eraseFromParent(); |
491 | } |
492 | } |
493 | |
494 | EmitIfUsed(CGF&: *this, BB: EHResumeBlock); |
495 | EmitIfUsed(CGF&: *this, BB: TerminateLandingPad); |
496 | EmitIfUsed(CGF&: *this, BB: TerminateHandler); |
497 | EmitIfUsed(CGF&: *this, BB: UnreachableBlock); |
498 | |
499 | for (const auto &FuncletAndParent : TerminateFunclets) |
500 | EmitIfUsed(CGF&: *this, BB: FuncletAndParent.second); |
501 | |
502 | if (CGM.getCodeGenOpts().EmitDeclMetadata) |
503 | EmitDeclMetadata(); |
504 | |
505 | for (const auto &R : DeferredReplacements) { |
506 | if (llvm::Value *Old = R.first) { |
507 | Old->replaceAllUsesWith(V: R.second); |
508 | cast<llvm::Instruction>(Val: Old)->eraseFromParent(); |
509 | } |
510 | } |
511 | DeferredReplacements.clear(); |
512 | |
513 | // Eliminate CleanupDestSlot alloca by replacing it with SSA values and |
514 | // PHIs if the current function is a coroutine. We don't do it for all |
515 | // functions as it may result in slight increase in numbers of instructions |
516 | // if compiled with no optimizations. We do it for coroutine as the lifetime |
517 | // of CleanupDestSlot alloca make correct coroutine frame building very |
518 | // difficult. |
519 | if (NormalCleanupDest.isValid() && isCoroutine()) { |
520 | llvm::DominatorTree DT(*CurFn); |
521 | llvm::PromoteMemToReg( |
522 | Allocas: cast<llvm::AllocaInst>(Val: NormalCleanupDest.getPointer()), DT); |
523 | NormalCleanupDest = Address::invalid(); |
524 | } |
525 | |
526 | // Scan function arguments for vector width. |
527 | for (llvm::Argument &A : CurFn->args()) |
528 | if (auto *VT = dyn_cast<llvm::VectorType>(Val: A.getType())) |
529 | LargestVectorWidth = |
530 | std::max(a: (uint64_t)LargestVectorWidth, |
531 | b: VT->getPrimitiveSizeInBits().getKnownMinValue()); |
532 | |
533 | // Update vector width based on return type. |
534 | if (auto *VT = dyn_cast<llvm::VectorType>(Val: CurFn->getReturnType())) |
535 | LargestVectorWidth = |
536 | std::max(a: (uint64_t)LargestVectorWidth, |
537 | b: VT->getPrimitiveSizeInBits().getKnownMinValue()); |
538 | |
539 | if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) |
540 | LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); |
541 | |
542 | // Add the min-legal-vector-width attribute. This contains the max width from: |
543 | // 1. min-vector-width attribute used in the source program. |
544 | // 2. Any builtins used that have a vector width specified. |
545 | // 3. Values passed in and out of inline assembly. |
546 | // 4. Width of vector arguments and return types for this function. |
547 | // 5. Width of vector arguments and return types for functions called by this |
548 | // function. |
549 | if (getContext().getTargetInfo().getTriple().isX86()) |
550 | CurFn->addFnAttr(Kind: "min-legal-vector-width" , |
551 | Val: llvm::utostr(X: LargestVectorWidth)); |
552 | |
553 | // Add vscale_range attribute if appropriate. |
554 | std::optional<std::pair<unsigned, unsigned>> VScaleRange = |
555 | getContext().getTargetInfo().getVScaleRange(LangOpts: getLangOpts()); |
556 | if (VScaleRange) { |
557 | CurFn->addFnAttr(Attr: llvm::Attribute::getWithVScaleRangeArgs( |
558 | Context&: getLLVMContext(), MinValue: VScaleRange->first, MaxValue: VScaleRange->second)); |
559 | } |
560 | |
561 | // If we generated an unreachable return block, delete it now. |
562 | if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { |
563 | Builder.ClearInsertionPoint(); |
564 | ReturnBlock.getBlock()->eraseFromParent(); |
565 | } |
566 | if (ReturnValue.isValid()) { |
567 | auto *RetAlloca = |
568 | dyn_cast<llvm::AllocaInst>(Val: ReturnValue.emitRawPointer(CGF&: *this)); |
569 | if (RetAlloca && RetAlloca->use_empty()) { |
570 | RetAlloca->eraseFromParent(); |
571 | ReturnValue = Address::invalid(); |
572 | } |
573 | } |
574 | } |
575 | |
576 | /// ShouldInstrumentFunction - Return true if the current function should be |
577 | /// instrumented with __cyg_profile_func_* calls |
578 | bool CodeGenFunction::ShouldInstrumentFunction() { |
579 | if (!CGM.getCodeGenOpts().InstrumentFunctions && |
580 | !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && |
581 | !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) |
582 | return false; |
583 | if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) |
584 | return false; |
585 | return true; |
586 | } |
587 | |
588 | bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { |
589 | if (!CurFuncDecl) |
590 | return false; |
591 | return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); |
592 | } |
593 | |
594 | /// ShouldXRayInstrument - Return true if the current function should be |
595 | /// instrumented with XRay nop sleds. |
596 | bool CodeGenFunction::ShouldXRayInstrumentFunction() const { |
597 | return CGM.getCodeGenOpts().XRayInstrumentFunctions; |
598 | } |
599 | |
600 | /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to |
601 | /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. |
602 | bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { |
603 | return CGM.getCodeGenOpts().XRayInstrumentFunctions && |
604 | (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || |
605 | CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == |
606 | XRayInstrKind::Custom); |
607 | } |
608 | |
609 | bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { |
610 | return CGM.getCodeGenOpts().XRayInstrumentFunctions && |
611 | (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || |
612 | CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == |
613 | XRayInstrKind::Typed); |
614 | } |
615 | |
616 | llvm::ConstantInt * |
617 | CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { |
618 | // Remove any (C++17) exception specifications, to allow calling e.g. a |
619 | // noexcept function through a non-noexcept pointer. |
620 | if (!Ty->isFunctionNoProtoType()) |
621 | Ty = getContext().getFunctionTypeWithExceptionSpec(Orig: Ty, ESI: EST_None); |
622 | std::string Mangled; |
623 | llvm::raw_string_ostream Out(Mangled); |
624 | CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(T: Ty, Out, NormalizeIntegers: false); |
625 | return llvm::ConstantInt::get( |
626 | Ty: CGM.Int32Ty, V: static_cast<uint32_t>(llvm::xxh3_64bits(data: Mangled))); |
627 | } |
628 | |
629 | void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, |
630 | llvm::Function *Fn) { |
631 | if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) |
632 | return; |
633 | |
634 | llvm::LLVMContext &Context = getLLVMContext(); |
635 | |
636 | CGM.GenKernelArgMetadata(FN: Fn, FD, CGF: this); |
637 | |
638 | if (!getLangOpts().OpenCL) |
639 | return; |
640 | |
641 | if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { |
642 | QualType HintQTy = A->getTypeHint(); |
643 | const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); |
644 | bool IsSignedInteger = |
645 | HintQTy->isSignedIntegerType() || |
646 | (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); |
647 | llvm::Metadata *AttrMDArgs[] = { |
648 | llvm::ConstantAsMetadata::get(C: llvm::UndefValue::get( |
649 | T: CGM.getTypes().ConvertType(T: A->getTypeHint()))), |
650 | llvm::ConstantAsMetadata::get(C: llvm::ConstantInt::get( |
651 | Ty: llvm::IntegerType::get(C&: Context, NumBits: 32), |
652 | V: llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; |
653 | Fn->setMetadata(Kind: "vec_type_hint" , Node: llvm::MDNode::get(Context, MDs: AttrMDArgs)); |
654 | } |
655 | |
656 | if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { |
657 | llvm::Metadata *AttrMDArgs[] = { |
658 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: A->getXDim())), |
659 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: A->getYDim())), |
660 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: A->getZDim()))}; |
661 | Fn->setMetadata(Kind: "work_group_size_hint" , Node: llvm::MDNode::get(Context, MDs: AttrMDArgs)); |
662 | } |
663 | |
664 | if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { |
665 | llvm::Metadata *AttrMDArgs[] = { |
666 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: A->getXDim())), |
667 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: A->getYDim())), |
668 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: A->getZDim()))}; |
669 | Fn->setMetadata(Kind: "reqd_work_group_size" , Node: llvm::MDNode::get(Context, MDs: AttrMDArgs)); |
670 | } |
671 | |
672 | if (const OpenCLIntelReqdSubGroupSizeAttr *A = |
673 | FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { |
674 | llvm::Metadata *AttrMDArgs[] = { |
675 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: A->getSubGroupSize()))}; |
676 | Fn->setMetadata(Kind: "intel_reqd_sub_group_size" , |
677 | Node: llvm::MDNode::get(Context, MDs: AttrMDArgs)); |
678 | } |
679 | } |
680 | |
681 | /// Determine whether the function F ends with a return stmt. |
682 | static bool endsWithReturn(const Decl* F) { |
683 | const Stmt *Body = nullptr; |
684 | if (auto *FD = dyn_cast_or_null<FunctionDecl>(Val: F)) |
685 | Body = FD->getBody(); |
686 | else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(Val: F)) |
687 | Body = OMD->getBody(); |
688 | |
689 | if (auto *CS = dyn_cast_or_null<CompoundStmt>(Val: Body)) { |
690 | auto LastStmt = CS->body_rbegin(); |
691 | if (LastStmt != CS->body_rend()) |
692 | return isa<ReturnStmt>(Val: *LastStmt); |
693 | } |
694 | return false; |
695 | } |
696 | |
697 | void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { |
698 | if (SanOpts.has(K: SanitizerKind::Thread)) { |
699 | Fn->addFnAttr(Kind: "sanitize_thread_no_checking_at_run_time" ); |
700 | Fn->removeFnAttr(Kind: llvm::Attribute::SanitizeThread); |
701 | } |
702 | } |
703 | |
704 | /// Check if the return value of this function requires sanitization. |
705 | bool CodeGenFunction::requiresReturnValueCheck() const { |
706 | return requiresReturnValueNullabilityCheck() || |
707 | (SanOpts.has(K: SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && |
708 | CurCodeDecl->getAttr<ReturnsNonNullAttr>()); |
709 | } |
710 | |
711 | static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { |
712 | auto *MD = dyn_cast_or_null<CXXMethodDecl>(Val: D); |
713 | if (!MD || !MD->getDeclName().getAsIdentifierInfo() || |
714 | !MD->getDeclName().getAsIdentifierInfo()->isStr(Str: "allocate" ) || |
715 | (MD->getNumParams() != 1 && MD->getNumParams() != 2)) |
716 | return false; |
717 | |
718 | if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) |
719 | return false; |
720 | |
721 | if (MD->getNumParams() == 2) { |
722 | auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); |
723 | if (!PT || !PT->isVoidPointerType() || |
724 | !PT->getPointeeType().isConstQualified()) |
725 | return false; |
726 | } |
727 | |
728 | return true; |
729 | } |
730 | |
731 | bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { |
732 | const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); |
733 | return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; |
734 | } |
735 | |
736 | bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { |
737 | return getTarget().getTriple().getArch() == llvm::Triple::x86 && |
738 | getTarget().getCXXABI().isMicrosoft() && |
739 | llvm::any_of(Range: MD->parameters(), P: [&](ParmVarDecl *P) { |
740 | return isInAllocaArgument(ABI&: CGM.getCXXABI(), Ty: P->getType()); |
741 | }); |
742 | } |
743 | |
744 | /// Return the UBSan prologue signature for \p FD if one is available. |
745 | static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, |
746 | const FunctionDecl *FD) { |
747 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) |
748 | if (!MD->isStatic()) |
749 | return nullptr; |
750 | return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); |
751 | } |
752 | |
753 | void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, |
754 | llvm::Function *Fn, |
755 | const CGFunctionInfo &FnInfo, |
756 | const FunctionArgList &Args, |
757 | SourceLocation Loc, |
758 | SourceLocation StartLoc) { |
759 | assert(!CurFn && |
760 | "Do not use a CodeGenFunction object for more than one function" ); |
761 | |
762 | const Decl *D = GD.getDecl(); |
763 | |
764 | DidCallStackSave = false; |
765 | CurCodeDecl = D; |
766 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: D); |
767 | if (FD && FD->usesSEHTry()) |
768 | CurSEHParent = GD; |
769 | CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); |
770 | FnRetTy = RetTy; |
771 | CurFn = Fn; |
772 | CurFnInfo = &FnInfo; |
773 | assert(CurFn->isDeclaration() && "Function already has body?" ); |
774 | |
775 | // If this function is ignored for any of the enabled sanitizers, |
776 | // disable the sanitizer for the function. |
777 | do { |
778 | #define SANITIZER(NAME, ID) \ |
779 | if (SanOpts.empty()) \ |
780 | break; \ |
781 | if (SanOpts.has(SanitizerKind::ID)) \ |
782 | if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ |
783 | SanOpts.set(SanitizerKind::ID, false); |
784 | |
785 | #include "clang/Basic/Sanitizers.def" |
786 | #undef SANITIZER |
787 | } while (false); |
788 | |
789 | if (D) { |
790 | const bool SanitizeBounds = SanOpts.hasOneOf(K: SanitizerKind::Bounds); |
791 | SanitizerMask no_sanitize_mask; |
792 | bool NoSanitizeCoverage = false; |
793 | |
794 | for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { |
795 | no_sanitize_mask |= Attr->getMask(); |
796 | // SanitizeCoverage is not handled by SanOpts. |
797 | if (Attr->hasCoverage()) |
798 | NoSanitizeCoverage = true; |
799 | } |
800 | |
801 | // Apply the no_sanitize* attributes to SanOpts. |
802 | SanOpts.Mask &= ~no_sanitize_mask; |
803 | if (no_sanitize_mask & SanitizerKind::Address) |
804 | SanOpts.set(K: SanitizerKind::KernelAddress, Value: false); |
805 | if (no_sanitize_mask & SanitizerKind::KernelAddress) |
806 | SanOpts.set(K: SanitizerKind::Address, Value: false); |
807 | if (no_sanitize_mask & SanitizerKind::HWAddress) |
808 | SanOpts.set(K: SanitizerKind::KernelHWAddress, Value: false); |
809 | if (no_sanitize_mask & SanitizerKind::KernelHWAddress) |
810 | SanOpts.set(K: SanitizerKind::HWAddress, Value: false); |
811 | |
812 | if (SanitizeBounds && !SanOpts.hasOneOf(K: SanitizerKind::Bounds)) |
813 | Fn->addFnAttr(Kind: llvm::Attribute::NoSanitizeBounds); |
814 | |
815 | if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) |
816 | Fn->addFnAttr(Kind: llvm::Attribute::NoSanitizeCoverage); |
817 | |
818 | // Some passes need the non-negated no_sanitize attribute. Pass them on. |
819 | if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { |
820 | if (no_sanitize_mask & SanitizerKind::Thread) |
821 | Fn->addFnAttr(Kind: "no_sanitize_thread" ); |
822 | } |
823 | } |
824 | |
825 | if (ShouldSkipSanitizerInstrumentation()) { |
826 | CurFn->addFnAttr(Kind: llvm::Attribute::DisableSanitizerInstrumentation); |
827 | } else { |
828 | // Apply sanitizer attributes to the function. |
829 | if (SanOpts.hasOneOf(K: SanitizerKind::Address | SanitizerKind::KernelAddress)) |
830 | Fn->addFnAttr(Kind: llvm::Attribute::SanitizeAddress); |
831 | if (SanOpts.hasOneOf(K: SanitizerKind::HWAddress | |
832 | SanitizerKind::KernelHWAddress)) |
833 | Fn->addFnAttr(Kind: llvm::Attribute::SanitizeHWAddress); |
834 | if (SanOpts.has(K: SanitizerKind::MemtagStack)) |
835 | Fn->addFnAttr(Kind: llvm::Attribute::SanitizeMemTag); |
836 | if (SanOpts.has(K: SanitizerKind::Thread)) |
837 | Fn->addFnAttr(Kind: llvm::Attribute::SanitizeThread); |
838 | if (SanOpts.has(K: SanitizerKind::NumericalStability)) |
839 | Fn->addFnAttr(Kind: llvm::Attribute::SanitizeNumericalStability); |
840 | if (SanOpts.hasOneOf(K: SanitizerKind::Memory | SanitizerKind::KernelMemory)) |
841 | Fn->addFnAttr(Kind: llvm::Attribute::SanitizeMemory); |
842 | } |
843 | if (SanOpts.has(K: SanitizerKind::SafeStack)) |
844 | Fn->addFnAttr(Kind: llvm::Attribute::SafeStack); |
845 | if (SanOpts.has(K: SanitizerKind::ShadowCallStack)) |
846 | Fn->addFnAttr(Kind: llvm::Attribute::ShadowCallStack); |
847 | |
848 | // Apply fuzzing attribute to the function. |
849 | if (SanOpts.hasOneOf(K: SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) |
850 | Fn->addFnAttr(Kind: llvm::Attribute::OptForFuzzing); |
851 | |
852 | // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, |
853 | // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. |
854 | if (SanOpts.has(K: SanitizerKind::Thread)) { |
855 | if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(Val: D)) { |
856 | const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(argIndex: 0); |
857 | if (OMD->getMethodFamily() == OMF_dealloc || |
858 | OMD->getMethodFamily() == OMF_initialize || |
859 | (OMD->getSelector().isUnarySelector() && II->isStr(Str: ".cxx_destruct" ))) { |
860 | markAsIgnoreThreadCheckingAtRuntime(Fn); |
861 | } |
862 | } |
863 | } |
864 | |
865 | // Ignore unrelated casts in STL allocate() since the allocator must cast |
866 | // from void* to T* before object initialization completes. Don't match on the |
867 | // namespace because not all allocators are in std:: |
868 | if (D && SanOpts.has(K: SanitizerKind::CFIUnrelatedCast)) { |
869 | if (matchesStlAllocatorFn(D, Ctx: getContext())) |
870 | SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; |
871 | } |
872 | |
873 | // Ignore null checks in coroutine functions since the coroutines passes |
874 | // are not aware of how to move the extra UBSan instructions across the split |
875 | // coroutine boundaries. |
876 | if (D && SanOpts.has(K: SanitizerKind::Null)) |
877 | if (FD && FD->getBody() && |
878 | FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) |
879 | SanOpts.Mask &= ~SanitizerKind::Null; |
880 | |
881 | // Add pointer authentication attributes. |
882 | const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); |
883 | if (CodeGenOpts.PointerAuth.ReturnAddresses) |
884 | Fn->addFnAttr(Kind: "ptrauth-returns" ); |
885 | if (CodeGenOpts.PointerAuth.FunctionPointers) |
886 | Fn->addFnAttr(Kind: "ptrauth-calls" ); |
887 | if (CodeGenOpts.PointerAuth.AuthTraps) |
888 | Fn->addFnAttr(Kind: "ptrauth-auth-traps" ); |
889 | if (CodeGenOpts.PointerAuth.IndirectGotos) |
890 | Fn->addFnAttr(Kind: "ptrauth-indirect-gotos" ); |
891 | |
892 | // Apply xray attributes to the function (as a string, for now) |
893 | bool AlwaysXRayAttr = false; |
894 | if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { |
895 | if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
896 | K: XRayInstrKind::FunctionEntry) || |
897 | CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
898 | K: XRayInstrKind::FunctionExit)) { |
899 | if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { |
900 | Fn->addFnAttr(Kind: "function-instrument" , Val: "xray-always" ); |
901 | AlwaysXRayAttr = true; |
902 | } |
903 | if (XRayAttr->neverXRayInstrument()) |
904 | Fn->addFnAttr(Kind: "function-instrument" , Val: "xray-never" ); |
905 | if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) |
906 | if (ShouldXRayInstrumentFunction()) |
907 | Fn->addFnAttr(Kind: "xray-log-args" , |
908 | Val: llvm::utostr(X: LogArgs->getArgumentCount())); |
909 | } |
910 | } else { |
911 | if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) |
912 | Fn->addFnAttr( |
913 | Kind: "xray-instruction-threshold" , |
914 | Val: llvm::itostr(X: CGM.getCodeGenOpts().XRayInstructionThreshold)); |
915 | } |
916 | |
917 | if (ShouldXRayInstrumentFunction()) { |
918 | if (CGM.getCodeGenOpts().XRayIgnoreLoops) |
919 | Fn->addFnAttr(Kind: "xray-ignore-loops" ); |
920 | |
921 | if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
922 | K: XRayInstrKind::FunctionExit)) |
923 | Fn->addFnAttr(Kind: "xray-skip-exit" ); |
924 | |
925 | if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
926 | K: XRayInstrKind::FunctionEntry)) |
927 | Fn->addFnAttr(Kind: "xray-skip-entry" ); |
928 | |
929 | auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; |
930 | if (FuncGroups > 1) { |
931 | auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), |
932 | CurFn->getName().bytes_end()); |
933 | auto Group = crc32(Data: FuncName) % FuncGroups; |
934 | if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && |
935 | !AlwaysXRayAttr) |
936 | Fn->addFnAttr(Kind: "function-instrument" , Val: "xray-never" ); |
937 | } |
938 | } |
939 | |
940 | if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { |
941 | switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { |
942 | case ProfileList::Skip: |
943 | Fn->addFnAttr(Kind: llvm::Attribute::SkipProfile); |
944 | break; |
945 | case ProfileList::Forbid: |
946 | Fn->addFnAttr(Kind: llvm::Attribute::NoProfile); |
947 | break; |
948 | case ProfileList::Allow: |
949 | break; |
950 | } |
951 | } |
952 | |
953 | unsigned Count, Offset; |
954 | if (const auto *Attr = |
955 | D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { |
956 | Count = Attr->getCount(); |
957 | Offset = Attr->getOffset(); |
958 | } else { |
959 | Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; |
960 | Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; |
961 | } |
962 | if (Count && Offset <= Count) { |
963 | Fn->addFnAttr(Kind: "patchable-function-entry" , Val: std::to_string(val: Count - Offset)); |
964 | if (Offset) |
965 | Fn->addFnAttr(Kind: "patchable-function-prefix" , Val: std::to_string(val: Offset)); |
966 | } |
967 | // Instruct that functions for COFF/CodeView targets should start with a |
968 | // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 |
969 | // backends as they don't need it -- instructions on these architectures are |
970 | // always atomically patchable at runtime. |
971 | if (CGM.getCodeGenOpts().HotPatch && |
972 | getContext().getTargetInfo().getTriple().isX86() && |
973 | getContext().getTargetInfo().getTriple().getEnvironment() != |
974 | llvm::Triple::CODE16) |
975 | Fn->addFnAttr(Kind: "patchable-function" , Val: "prologue-short-redirect" ); |
976 | |
977 | // Add no-jump-tables value. |
978 | if (CGM.getCodeGenOpts().NoUseJumpTables) |
979 | Fn->addFnAttr(Kind: "no-jump-tables" , Val: "true" ); |
980 | |
981 | // Add no-inline-line-tables value. |
982 | if (CGM.getCodeGenOpts().NoInlineLineTables) |
983 | Fn->addFnAttr(Kind: "no-inline-line-tables" ); |
984 | |
985 | // Add profile-sample-accurate value. |
986 | if (CGM.getCodeGenOpts().ProfileSampleAccurate) |
987 | Fn->addFnAttr(Kind: "profile-sample-accurate" ); |
988 | |
989 | if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) |
990 | Fn->addFnAttr(Kind: "use-sample-profile" ); |
991 | |
992 | if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) |
993 | Fn->addFnAttr(Kind: "cfi-canonical-jump-table" ); |
994 | |
995 | if (D && D->hasAttr<NoProfileFunctionAttr>()) |
996 | Fn->addFnAttr(Kind: llvm::Attribute::NoProfile); |
997 | |
998 | if (D && D->hasAttr<HybridPatchableAttr>()) |
999 | Fn->addFnAttr(Kind: llvm::Attribute::HybridPatchable); |
1000 | |
1001 | if (D) { |
1002 | // Function attributes take precedence over command line flags. |
1003 | if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { |
1004 | switch (A->getThunkType()) { |
1005 | case FunctionReturnThunksAttr::Kind::Keep: |
1006 | break; |
1007 | case FunctionReturnThunksAttr::Kind::Extern: |
1008 | Fn->addFnAttr(Kind: llvm::Attribute::FnRetThunkExtern); |
1009 | break; |
1010 | } |
1011 | } else if (CGM.getCodeGenOpts().FunctionReturnThunks) |
1012 | Fn->addFnAttr(Kind: llvm::Attribute::FnRetThunkExtern); |
1013 | } |
1014 | |
1015 | if (FD && (getLangOpts().OpenCL || |
1016 | (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) { |
1017 | // Add metadata for a kernel function. |
1018 | EmitKernelMetadata(FD, Fn); |
1019 | } |
1020 | |
1021 | if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) { |
1022 | Fn->setMetadata(Kind: "clspv_libclc_builtin" , |
1023 | Node: llvm::MDNode::get(Context&: getLLVMContext(), MDs: {})); |
1024 | } |
1025 | |
1026 | // If we are checking function types, emit a function type signature as |
1027 | // prologue data. |
1028 | if (FD && SanOpts.has(K: SanitizerKind::Function)) { |
1029 | if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { |
1030 | llvm::LLVMContext &Ctx = Fn->getContext(); |
1031 | llvm::MDBuilder MDB(Ctx); |
1032 | Fn->setMetadata( |
1033 | KindID: llvm::LLVMContext::MD_func_sanitize, |
1034 | Node: MDB.createRTTIPointerPrologue( |
1035 | PrologueSig, RTTI: getUBSanFunctionTypeHash(Ty: FD->getType()))); |
1036 | } |
1037 | } |
1038 | |
1039 | // If we're checking nullability, we need to know whether we can check the |
1040 | // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. |
1041 | if (SanOpts.has(K: SanitizerKind::NullabilityReturn)) { |
1042 | auto Nullability = FnRetTy->getNullability(); |
1043 | if (Nullability && *Nullability == NullabilityKind::NonNull && |
1044 | !FnRetTy->isRecordType()) { |
1045 | if (!(SanOpts.has(K: SanitizerKind::ReturnsNonnullAttribute) && |
1046 | CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) |
1047 | RetValNullabilityPrecondition = |
1048 | llvm::ConstantInt::getTrue(Context&: getLLVMContext()); |
1049 | } |
1050 | } |
1051 | |
1052 | // If we're in C++ mode and the function name is "main", it is guaranteed |
1053 | // to be norecurse by the standard (3.6.1.3 "The function main shall not be |
1054 | // used within a program"). |
1055 | // |
1056 | // OpenCL C 2.0 v2.2-11 s6.9.i: |
1057 | // Recursion is not supported. |
1058 | // |
1059 | // SYCL v1.2.1 s3.10: |
1060 | // kernels cannot include RTTI information, exception classes, |
1061 | // recursive code, virtual functions or make use of C++ libraries that |
1062 | // are not compiled for the device. |
1063 | if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || |
1064 | getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || |
1065 | (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) |
1066 | Fn->addFnAttr(Kind: llvm::Attribute::NoRecurse); |
1067 | |
1068 | llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); |
1069 | llvm::fp::ExceptionBehavior FPExceptionBehavior = |
1070 | ToConstrainedExceptMD(Kind: getLangOpts().getDefaultExceptionMode()); |
1071 | Builder.setDefaultConstrainedRounding(RM); |
1072 | Builder.setDefaultConstrainedExcept(FPExceptionBehavior); |
1073 | if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || |
1074 | (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || |
1075 | RM != llvm::RoundingMode::NearestTiesToEven))) { |
1076 | Builder.setIsFPConstrained(true); |
1077 | Fn->addFnAttr(Kind: llvm::Attribute::StrictFP); |
1078 | } |
1079 | |
1080 | // If a custom alignment is used, force realigning to this alignment on |
1081 | // any main function which certainly will need it. |
1082 | if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && |
1083 | CGM.getCodeGenOpts().StackAlignment)) |
1084 | Fn->addFnAttr(Kind: "stackrealign" ); |
1085 | |
1086 | // "main" doesn't need to zero out call-used registers. |
1087 | if (FD && FD->isMain()) |
1088 | Fn->removeFnAttr(Kind: "zero-call-used-regs" ); |
1089 | |
1090 | llvm::BasicBlock *EntryBB = createBasicBlock(name: "entry" , parent: CurFn); |
1091 | |
1092 | // Create a marker to make it easy to insert allocas into the entryblock |
1093 | // later. Don't create this with the builder, because we don't want it |
1094 | // folded. |
1095 | llvm::Value *Undef = llvm::UndefValue::get(T: Int32Ty); |
1096 | AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt" , EntryBB); |
1097 | |
1098 | ReturnBlock = getJumpDestInCurrentScope(Name: "return" ); |
1099 | |
1100 | Builder.SetInsertPoint(EntryBB); |
1101 | |
1102 | // If we're checking the return value, allocate space for a pointer to a |
1103 | // precise source location of the checked return statement. |
1104 | if (requiresReturnValueCheck()) { |
1105 | ReturnLocation = CreateDefaultAlignTempAlloca(Ty: Int8PtrTy, Name: "return.sloc.ptr" ); |
1106 | Builder.CreateStore(Val: llvm::ConstantPointerNull::get(T: Int8PtrTy), |
1107 | Addr: ReturnLocation); |
1108 | } |
1109 | |
1110 | // Emit subprogram debug descriptor. |
1111 | if (CGDebugInfo *DI = getDebugInfo()) { |
1112 | // Reconstruct the type from the argument list so that implicit parameters, |
1113 | // such as 'this' and 'vtt', show up in the debug info. Preserve the calling |
1114 | // convention. |
1115 | DI->emitFunctionStart(GD, Loc, ScopeLoc: StartLoc, |
1116 | FnType: DI->getFunctionType(FD, RetTy, Args), Fn: CurFn, |
1117 | CurFnIsThunk: CurFuncIsThunk); |
1118 | } |
1119 | |
1120 | if (ShouldInstrumentFunction()) { |
1121 | if (CGM.getCodeGenOpts().InstrumentFunctions) |
1122 | CurFn->addFnAttr(Kind: "instrument-function-entry" , Val: "__cyg_profile_func_enter" ); |
1123 | if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) |
1124 | CurFn->addFnAttr(Kind: "instrument-function-entry-inlined" , |
1125 | Val: "__cyg_profile_func_enter" ); |
1126 | if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) |
1127 | CurFn->addFnAttr(Kind: "instrument-function-entry-inlined" , |
1128 | Val: "__cyg_profile_func_enter_bare" ); |
1129 | } |
1130 | |
1131 | // Since emitting the mcount call here impacts optimizations such as function |
1132 | // inlining, we just add an attribute to insert a mcount call in backend. |
1133 | // The attribute "counting-function" is set to mcount function name which is |
1134 | // architecture dependent. |
1135 | if (CGM.getCodeGenOpts().InstrumentForProfiling) { |
1136 | // Calls to fentry/mcount should not be generated if function has |
1137 | // the no_instrument_function attribute. |
1138 | if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { |
1139 | if (CGM.getCodeGenOpts().CallFEntry) |
1140 | Fn->addFnAttr(Kind: "fentry-call" , Val: "true" ); |
1141 | else { |
1142 | Fn->addFnAttr(Kind: "instrument-function-entry-inlined" , |
1143 | Val: getTarget().getMCountName()); |
1144 | } |
1145 | if (CGM.getCodeGenOpts().MNopMCount) { |
1146 | if (!CGM.getCodeGenOpts().CallFEntry) |
1147 | CGM.getDiags().Report(DiagID: diag::err_opt_not_valid_without_opt) |
1148 | << "-mnop-mcount" << "-mfentry" ; |
1149 | Fn->addFnAttr(Kind: "mnop-mcount" ); |
1150 | } |
1151 | |
1152 | if (CGM.getCodeGenOpts().RecordMCount) { |
1153 | if (!CGM.getCodeGenOpts().CallFEntry) |
1154 | CGM.getDiags().Report(DiagID: diag::err_opt_not_valid_without_opt) |
1155 | << "-mrecord-mcount" << "-mfentry" ; |
1156 | Fn->addFnAttr(Kind: "mrecord-mcount" ); |
1157 | } |
1158 | } |
1159 | } |
1160 | |
1161 | if (CGM.getCodeGenOpts().PackedStack) { |
1162 | if (getContext().getTargetInfo().getTriple().getArch() != |
1163 | llvm::Triple::systemz) |
1164 | CGM.getDiags().Report(DiagID: diag::err_opt_not_valid_on_target) |
1165 | << "-mpacked-stack" ; |
1166 | Fn->addFnAttr(Kind: "packed-stack" ); |
1167 | } |
1168 | |
1169 | if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && |
1170 | !CGM.getDiags().isIgnored(DiagID: diag::warn_fe_backend_frame_larger_than, Loc)) |
1171 | Fn->addFnAttr(Kind: "warn-stack-size" , |
1172 | Val: std::to_string(val: CGM.getCodeGenOpts().WarnStackSize)); |
1173 | |
1174 | if (RetTy->isVoidType()) { |
1175 | // Void type; nothing to return. |
1176 | ReturnValue = Address::invalid(); |
1177 | |
1178 | // Count the implicit return. |
1179 | if (!endsWithReturn(F: D)) |
1180 | ++NumReturnExprs; |
1181 | } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { |
1182 | // Indirect return; emit returned value directly into sret slot. |
1183 | // This reduces code size, and affects correctness in C++. |
1184 | auto AI = CurFn->arg_begin(); |
1185 | if (CurFnInfo->getReturnInfo().isSRetAfterThis()) |
1186 | ++AI; |
1187 | ReturnValue = makeNaturalAddressForPointer( |
1188 | Ptr: &*AI, T: RetTy, Alignment: CurFnInfo->getReturnInfo().getIndirectAlign(), ForPointeeType: false, |
1189 | BaseInfo: nullptr, TBAAInfo: nullptr, IsKnownNonNull: KnownNonNull); |
1190 | if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { |
1191 | ReturnValuePointer = |
1192 | CreateDefaultAlignTempAlloca(Ty: ReturnValue.getType(), Name: "result.ptr" ); |
1193 | Builder.CreateStore(Val: ReturnValue.emitRawPointer(CGF&: *this), |
1194 | Addr: ReturnValuePointer); |
1195 | } |
1196 | } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && |
1197 | !hasScalarEvaluationKind(T: CurFnInfo->getReturnType())) { |
1198 | // Load the sret pointer from the argument struct and return into that. |
1199 | unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); |
1200 | llvm::Function::arg_iterator EI = CurFn->arg_end(); |
1201 | --EI; |
1202 | llvm::Value *Addr = Builder.CreateStructGEP( |
1203 | Ty: CurFnInfo->getArgStruct(), Ptr: &*EI, Idx); |
1204 | llvm::Type *Ty = |
1205 | cast<llvm::GetElementPtrInst>(Val: Addr)->getResultElementType(); |
1206 | ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); |
1207 | Addr = Builder.CreateAlignedLoad(Ty, Addr, Align: getPointerAlign(), Name: "agg.result" ); |
1208 | ReturnValue = Address(Addr, ConvertType(T: RetTy), |
1209 | CGM.getNaturalTypeAlignment(T: RetTy), KnownNonNull); |
1210 | } else { |
1211 | ReturnValue = CreateIRTemp(T: RetTy, Name: "retval" ); |
1212 | |
1213 | // Tell the epilog emitter to autorelease the result. We do this |
1214 | // now so that various specialized functions can suppress it |
1215 | // during their IR-generation. |
1216 | if (getLangOpts().ObjCAutoRefCount && |
1217 | !CurFnInfo->isReturnsRetained() && |
1218 | RetTy->isObjCRetainableType()) |
1219 | AutoreleaseResult = true; |
1220 | } |
1221 | |
1222 | EmitStartEHSpec(D: CurCodeDecl); |
1223 | |
1224 | PrologueCleanupDepth = EHStack.stable_begin(); |
1225 | |
1226 | // Emit OpenMP specific initialization of the device functions. |
1227 | if (getLangOpts().OpenMP && CurCodeDecl) |
1228 | CGM.getOpenMPRuntime().emitFunctionProlog(CGF&: *this, D: CurCodeDecl); |
1229 | |
1230 | // Handle emitting HLSL entry functions. |
1231 | if (D && D->hasAttr<HLSLShaderAttr>()) |
1232 | CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); |
1233 | |
1234 | EmitFunctionProlog(FI: *CurFnInfo, Fn: CurFn, Args); |
1235 | |
1236 | if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(Val: D); |
1237 | MD && !MD->isStatic()) { |
1238 | bool IsInLambda = |
1239 | MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call; |
1240 | if (MD->isImplicitObjectMemberFunction()) |
1241 | CGM.getCXXABI().EmitInstanceFunctionProlog(CGF&: *this); |
1242 | if (IsInLambda) { |
1243 | // We're in a lambda; figure out the captures. |
1244 | MD->getParent()->getCaptureFields(Captures&: LambdaCaptureFields, |
1245 | ThisCapture&: LambdaThisCaptureField); |
1246 | if (LambdaThisCaptureField) { |
1247 | // If the lambda captures the object referred to by '*this' - either by |
1248 | // value or by reference, make sure CXXThisValue points to the correct |
1249 | // object. |
1250 | |
1251 | // Get the lvalue for the field (which is a copy of the enclosing object |
1252 | // or contains the address of the enclosing object). |
1253 | LValue ThisFieldLValue = EmitLValueForLambdaField(Field: LambdaThisCaptureField); |
1254 | if (!LambdaThisCaptureField->getType()->isPointerType()) { |
1255 | // If the enclosing object was captured by value, just use its |
1256 | // address. Sign this pointer. |
1257 | CXXThisValue = ThisFieldLValue.getPointer(CGF&: *this); |
1258 | } else { |
1259 | // Load the lvalue pointed to by the field, since '*this' was captured |
1260 | // by reference. |
1261 | CXXThisValue = |
1262 | EmitLoadOfLValue(V: ThisFieldLValue, Loc: SourceLocation()).getScalarVal(); |
1263 | } |
1264 | } |
1265 | for (auto *FD : MD->getParent()->fields()) { |
1266 | if (FD->hasCapturedVLAType()) { |
1267 | auto *ExprArg = EmitLoadOfLValue(V: EmitLValueForLambdaField(Field: FD), |
1268 | Loc: SourceLocation()).getScalarVal(); |
1269 | auto VAT = FD->getCapturedVLAType(); |
1270 | VLASizeMap[VAT->getSizeExpr()] = ExprArg; |
1271 | } |
1272 | } |
1273 | } else if (MD->isImplicitObjectMemberFunction()) { |
1274 | // Not in a lambda; just use 'this' from the method. |
1275 | // FIXME: Should we generate a new load for each use of 'this'? The |
1276 | // fast register allocator would be happier... |
1277 | CXXThisValue = CXXABIThisValue; |
1278 | } |
1279 | |
1280 | // Check the 'this' pointer once per function, if it's available. |
1281 | if (CXXABIThisValue) { |
1282 | SanitizerSet SkippedChecks; |
1283 | SkippedChecks.set(K: SanitizerKind::ObjectSize, Value: true); |
1284 | QualType ThisTy = MD->getThisType(); |
1285 | |
1286 | // If this is the call operator of a lambda with no captures, it |
1287 | // may have a static invoker function, which may call this operator with |
1288 | // a null 'this' pointer. |
1289 | if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda()) |
1290 | SkippedChecks.set(K: SanitizerKind::Null, Value: true); |
1291 | |
1292 | EmitTypeCheck( |
1293 | TCK: isa<CXXConstructorDecl>(Val: MD) ? TCK_ConstructorCall : TCK_MemberCall, |
1294 | Loc, V: CXXABIThisValue, Type: ThisTy, Alignment: CXXABIThisAlignment, SkippedChecks); |
1295 | } |
1296 | } |
1297 | |
1298 | // If any of the arguments have a variably modified type, make sure to |
1299 | // emit the type size, but only if the function is not naked. Naked functions |
1300 | // have no prolog to run this evaluation. |
1301 | if (!FD || !FD->hasAttr<NakedAttr>()) { |
1302 | for (const VarDecl *VD : Args) { |
1303 | // Dig out the type as written from ParmVarDecls; it's unclear whether |
1304 | // the standard (C99 6.9.1p10) requires this, but we're following the |
1305 | // precedent set by gcc. |
1306 | QualType Ty; |
1307 | if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Val: VD)) |
1308 | Ty = PVD->getOriginalType(); |
1309 | else |
1310 | Ty = VD->getType(); |
1311 | |
1312 | if (Ty->isVariablyModifiedType()) |
1313 | EmitVariablyModifiedType(Ty); |
1314 | } |
1315 | } |
1316 | // Emit a location at the end of the prologue. |
1317 | if (CGDebugInfo *DI = getDebugInfo()) |
1318 | DI->EmitLocation(Builder, Loc: StartLoc); |
1319 | // TODO: Do we need to handle this in two places like we do with |
1320 | // target-features/target-cpu? |
1321 | if (CurFuncDecl) |
1322 | if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) |
1323 | LargestVectorWidth = VecWidth->getVectorWidth(); |
1324 | |
1325 | if (CGM.shouldEmitConvergenceTokens()) |
1326 | ConvergenceTokenStack.push_back(Elt: getOrEmitConvergenceEntryToken(F: CurFn)); |
1327 | } |
1328 | |
1329 | void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { |
1330 | incrementProfileCounter(S: Body); |
1331 | maybeCreateMCDCCondBitmap(); |
1332 | if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Val: Body)) |
1333 | EmitCompoundStmtWithoutScope(S: *S); |
1334 | else |
1335 | EmitStmt(S: Body); |
1336 | } |
1337 | |
1338 | /// When instrumenting to collect profile data, the counts for some blocks |
1339 | /// such as switch cases need to not include the fall-through counts, so |
1340 | /// emit a branch around the instrumentation code. When not instrumenting, |
1341 | /// this just calls EmitBlock(). |
1342 | void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, |
1343 | const Stmt *S) { |
1344 | llvm::BasicBlock *SkipCountBB = nullptr; |
1345 | // Do not skip over the instrumentation when single byte coverage mode is |
1346 | // enabled. |
1347 | if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() && |
1348 | !llvm::EnableSingleByteCoverage) { |
1349 | // When instrumenting for profiling, the fallthrough to certain |
1350 | // statements needs to skip over the instrumentation code so that we |
1351 | // get an accurate count. |
1352 | SkipCountBB = createBasicBlock(name: "skipcount" ); |
1353 | EmitBranch(Block: SkipCountBB); |
1354 | } |
1355 | EmitBlock(BB); |
1356 | uint64_t CurrentCount = getCurrentProfileCount(); |
1357 | incrementProfileCounter(S); |
1358 | setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); |
1359 | if (SkipCountBB) |
1360 | EmitBlock(BB: SkipCountBB); |
1361 | } |
1362 | |
1363 | /// Tries to mark the given function nounwind based on the |
1364 | /// non-existence of any throwing calls within it. We believe this is |
1365 | /// lightweight enough to do at -O0. |
1366 | static void TryMarkNoThrow(llvm::Function *F) { |
1367 | // LLVM treats 'nounwind' on a function as part of the type, so we |
1368 | // can't do this on functions that can be overwritten. |
1369 | if (F->isInterposable()) return; |
1370 | |
1371 | for (llvm::BasicBlock &BB : *F) |
1372 | for (llvm::Instruction &I : BB) |
1373 | if (I.mayThrow()) |
1374 | return; |
1375 | |
1376 | F->setDoesNotThrow(); |
1377 | } |
1378 | |
1379 | QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, |
1380 | FunctionArgList &Args) { |
1381 | const FunctionDecl *FD = cast<FunctionDecl>(Val: GD.getDecl()); |
1382 | QualType ResTy = FD->getReturnType(); |
1383 | |
1384 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD); |
1385 | if (MD && MD->isImplicitObjectMemberFunction()) { |
1386 | if (CGM.getCXXABI().HasThisReturn(GD)) |
1387 | ResTy = MD->getThisType(); |
1388 | else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) |
1389 | ResTy = CGM.getContext().VoidPtrTy; |
1390 | CGM.getCXXABI().buildThisParam(CGF&: *this, Params&: Args); |
1391 | } |
1392 | |
1393 | // The base version of an inheriting constructor whose constructed base is a |
1394 | // virtual base is not passed any arguments (because it doesn't actually call |
1395 | // the inherited constructor). |
1396 | bool PassedParams = true; |
1397 | if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Val: FD)) |
1398 | if (auto Inherited = CD->getInheritedConstructor()) |
1399 | PassedParams = |
1400 | getTypes().inheritingCtorHasParams(Inherited, Type: GD.getCtorType()); |
1401 | |
1402 | if (PassedParams) { |
1403 | for (auto *Param : FD->parameters()) { |
1404 | Args.push_back(Elt: Param); |
1405 | if (!Param->hasAttr<PassObjectSizeAttr>()) |
1406 | continue; |
1407 | |
1408 | auto *Implicit = ImplicitParamDecl::Create( |
1409 | C&: getContext(), DC: Param->getDeclContext(), IdLoc: Param->getLocation(), |
1410 | /*Id=*/nullptr, T: getContext().getSizeType(), ParamKind: ImplicitParamKind::Other); |
1411 | SizeArguments[Param] = Implicit; |
1412 | Args.push_back(Elt: Implicit); |
1413 | } |
1414 | } |
1415 | |
1416 | if (MD && (isa<CXXConstructorDecl>(Val: MD) || isa<CXXDestructorDecl>(Val: MD))) |
1417 | CGM.getCXXABI().addImplicitStructorParams(CGF&: *this, ResTy, Params&: Args); |
1418 | |
1419 | return ResTy; |
1420 | } |
1421 | |
1422 | void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, |
1423 | const CGFunctionInfo &FnInfo) { |
1424 | assert(Fn && "generating code for null Function" ); |
1425 | const FunctionDecl *FD = cast<FunctionDecl>(Val: GD.getDecl()); |
1426 | CurGD = GD; |
1427 | |
1428 | FunctionArgList Args; |
1429 | QualType ResTy = BuildFunctionArgList(GD, Args); |
1430 | |
1431 | CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, Decl: FD); |
1432 | |
1433 | if (FD->isInlineBuiltinDeclaration()) { |
1434 | // When generating code for a builtin with an inline declaration, use a |
1435 | // mangled name to hold the actual body, while keeping an external |
1436 | // definition in case the function pointer is referenced somewhere. |
1437 | std::string FDInlineName = (Fn->getName() + ".inline" ).str(); |
1438 | llvm::Module *M = Fn->getParent(); |
1439 | llvm::Function *Clone = M->getFunction(Name: FDInlineName); |
1440 | if (!Clone) { |
1441 | Clone = llvm::Function::Create(Ty: Fn->getFunctionType(), |
1442 | Linkage: llvm::GlobalValue::InternalLinkage, |
1443 | AddrSpace: Fn->getAddressSpace(), N: FDInlineName, M); |
1444 | Clone->addFnAttr(Kind: llvm::Attribute::AlwaysInline); |
1445 | } |
1446 | Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); |
1447 | Fn = Clone; |
1448 | } else { |
1449 | // Detect the unusual situation where an inline version is shadowed by a |
1450 | // non-inline version. In that case we should pick the external one |
1451 | // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way |
1452 | // to detect that situation before we reach codegen, so do some late |
1453 | // replacement. |
1454 | for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; |
1455 | PD = PD->getPreviousDecl()) { |
1456 | if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { |
1457 | std::string FDInlineName = (Fn->getName() + ".inline" ).str(); |
1458 | llvm::Module *M = Fn->getParent(); |
1459 | if (llvm::Function *Clone = M->getFunction(Name: FDInlineName)) { |
1460 | Clone->replaceAllUsesWith(V: Fn); |
1461 | Clone->eraseFromParent(); |
1462 | } |
1463 | break; |
1464 | } |
1465 | } |
1466 | } |
1467 | |
1468 | // Check if we should generate debug info for this function. |
1469 | if (FD->hasAttr<NoDebugAttr>()) { |
1470 | // Clear non-distinct debug info that was possibly attached to the function |
1471 | // due to an earlier declaration without the nodebug attribute |
1472 | Fn->setSubprogram(nullptr); |
1473 | // Disable debug info indefinitely for this function |
1474 | DebugInfo = nullptr; |
1475 | } |
1476 | |
1477 | // The function might not have a body if we're generating thunks for a |
1478 | // function declaration. |
1479 | SourceRange BodyRange; |
1480 | if (Stmt *Body = FD->getBody()) |
1481 | BodyRange = Body->getSourceRange(); |
1482 | else |
1483 | BodyRange = FD->getLocation(); |
1484 | CurEHLocation = BodyRange.getEnd(); |
1485 | |
1486 | // Use the location of the start of the function to determine where |
1487 | // the function definition is located. By default use the location |
1488 | // of the declaration as the location for the subprogram. A function |
1489 | // may lack a declaration in the source code if it is created by code |
1490 | // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). |
1491 | SourceLocation Loc = FD->getLocation(); |
1492 | |
1493 | // If this is a function specialization then use the pattern body |
1494 | // as the location for the function. |
1495 | if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) |
1496 | if (SpecDecl->hasBody(Definition&: SpecDecl)) |
1497 | Loc = SpecDecl->getLocation(); |
1498 | |
1499 | Stmt *Body = FD->getBody(); |
1500 | |
1501 | if (Body) { |
1502 | // Coroutines always emit lifetime markers. |
1503 | if (isa<CoroutineBodyStmt>(Val: Body)) |
1504 | ShouldEmitLifetimeMarkers = true; |
1505 | |
1506 | // Initialize helper which will detect jumps which can cause invalid |
1507 | // lifetime markers. |
1508 | if (ShouldEmitLifetimeMarkers) |
1509 | Bypasses.Init(Body); |
1510 | } |
1511 | |
1512 | // Emit the standard function prologue. |
1513 | StartFunction(GD, RetTy: ResTy, Fn, FnInfo, Args, Loc, StartLoc: BodyRange.getBegin()); |
1514 | |
1515 | // Save parameters for coroutine function. |
1516 | if (Body && isa_and_nonnull<CoroutineBodyStmt>(Val: Body)) |
1517 | llvm::append_range(C&: FnArgs, R: FD->parameters()); |
1518 | |
1519 | // Ensure that the function adheres to the forward progress guarantee, which |
1520 | // is required by certain optimizations. |
1521 | // In C++11 and up, the attribute will be removed if the body contains a |
1522 | // trivial empty loop. |
1523 | if (checkIfFunctionMustProgress()) |
1524 | CurFn->addFnAttr(Kind: llvm::Attribute::MustProgress); |
1525 | |
1526 | // Generate the body of the function. |
1527 | PGO.assignRegionCounters(GD, Fn: CurFn); |
1528 | if (isa<CXXDestructorDecl>(Val: FD)) |
1529 | EmitDestructorBody(Args); |
1530 | else if (isa<CXXConstructorDecl>(Val: FD)) |
1531 | EmitConstructorBody(Args); |
1532 | else if (getLangOpts().CUDA && |
1533 | !getLangOpts().CUDAIsDevice && |
1534 | FD->hasAttr<CUDAGlobalAttr>()) |
1535 | CGM.getCUDARuntime().emitDeviceStub(CGF&: *this, Args); |
1536 | else if (isa<CXXMethodDecl>(Val: FD) && |
1537 | cast<CXXMethodDecl>(Val: FD)->isLambdaStaticInvoker()) { |
1538 | // The lambda static invoker function is special, because it forwards or |
1539 | // clones the body of the function call operator (but is actually static). |
1540 | EmitLambdaStaticInvokeBody(MD: cast<CXXMethodDecl>(Val: FD)); |
1541 | } else if (isa<CXXMethodDecl>(Val: FD) && |
1542 | isLambdaCallOperator(MD: cast<CXXMethodDecl>(Val: FD)) && |
1543 | !FnInfo.isDelegateCall() && |
1544 | cast<CXXMethodDecl>(Val: FD)->getParent()->getLambdaStaticInvoker() && |
1545 | hasInAllocaArg(MD: cast<CXXMethodDecl>(Val: FD))) { |
1546 | // If emitting a lambda with static invoker on X86 Windows, change |
1547 | // the call operator body. |
1548 | // Make sure that this is a call operator with an inalloca arg and check |
1549 | // for delegate call to make sure this is the original call op and not the |
1550 | // new forwarding function for the static invoker. |
1551 | EmitLambdaInAllocaCallOpBody(MD: cast<CXXMethodDecl>(Val: FD)); |
1552 | } else if (FD->isDefaulted() && isa<CXXMethodDecl>(Val: FD) && |
1553 | (cast<CXXMethodDecl>(Val: FD)->isCopyAssignmentOperator() || |
1554 | cast<CXXMethodDecl>(Val: FD)->isMoveAssignmentOperator())) { |
1555 | // Implicit copy-assignment gets the same special treatment as implicit |
1556 | // copy-constructors. |
1557 | emitImplicitAssignmentOperatorBody(Args); |
1558 | } else if (Body) { |
1559 | EmitFunctionBody(Body); |
1560 | } else |
1561 | llvm_unreachable("no definition for emitted function" ); |
1562 | |
1563 | // C++11 [stmt.return]p2: |
1564 | // Flowing off the end of a function [...] results in undefined behavior in |
1565 | // a value-returning function. |
1566 | // C11 6.9.1p12: |
1567 | // If the '}' that terminates a function is reached, and the value of the |
1568 | // function call is used by the caller, the behavior is undefined. |
1569 | if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && |
1570 | !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { |
1571 | bool ShouldEmitUnreachable = |
1572 | CGM.getCodeGenOpts().StrictReturn || |
1573 | !CGM.MayDropFunctionReturn(Context: FD->getASTContext(), ReturnType: FD->getReturnType()); |
1574 | if (SanOpts.has(K: SanitizerKind::Return)) { |
1575 | SanitizerScope SanScope(this); |
1576 | llvm::Value *IsFalse = Builder.getFalse(); |
1577 | EmitCheck(Checked: std::make_pair(x&: IsFalse, y: SanitizerKind::Return), |
1578 | Check: SanitizerHandler::MissingReturn, |
1579 | StaticArgs: EmitCheckSourceLocation(Loc: FD->getLocation()), DynamicArgs: std::nullopt); |
1580 | } else if (ShouldEmitUnreachable) { |
1581 | if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
1582 | EmitTrapCall(IntrID: llvm::Intrinsic::trap); |
1583 | } |
1584 | if (SanOpts.has(K: SanitizerKind::Return) || ShouldEmitUnreachable) { |
1585 | Builder.CreateUnreachable(); |
1586 | Builder.ClearInsertionPoint(); |
1587 | } |
1588 | } |
1589 | |
1590 | // Emit the standard function epilogue. |
1591 | FinishFunction(EndLoc: BodyRange.getEnd()); |
1592 | |
1593 | // If we haven't marked the function nothrow through other means, do |
1594 | // a quick pass now to see if we can. |
1595 | if (!CurFn->doesNotThrow()) |
1596 | TryMarkNoThrow(F: CurFn); |
1597 | } |
1598 | |
1599 | /// ContainsLabel - Return true if the statement contains a label in it. If |
1600 | /// this statement is not executed normally, it not containing a label means |
1601 | /// that we can just remove the code. |
1602 | bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { |
1603 | // Null statement, not a label! |
1604 | if (!S) return false; |
1605 | |
1606 | // If this is a label, we have to emit the code, consider something like: |
1607 | // if (0) { ... foo: bar(); } goto foo; |
1608 | // |
1609 | // TODO: If anyone cared, we could track __label__'s, since we know that you |
1610 | // can't jump to one from outside their declared region. |
1611 | if (isa<LabelStmt>(Val: S)) |
1612 | return true; |
1613 | |
1614 | // If this is a case/default statement, and we haven't seen a switch, we have |
1615 | // to emit the code. |
1616 | if (isa<SwitchCase>(Val: S) && !IgnoreCaseStmts) |
1617 | return true; |
1618 | |
1619 | // If this is a switch statement, we want to ignore cases below it. |
1620 | if (isa<SwitchStmt>(Val: S)) |
1621 | IgnoreCaseStmts = true; |
1622 | |
1623 | // Scan subexpressions for verboten labels. |
1624 | for (const Stmt *SubStmt : S->children()) |
1625 | if (ContainsLabel(S: SubStmt, IgnoreCaseStmts)) |
1626 | return true; |
1627 | |
1628 | return false; |
1629 | } |
1630 | |
1631 | /// containsBreak - Return true if the statement contains a break out of it. |
1632 | /// If the statement (recursively) contains a switch or loop with a break |
1633 | /// inside of it, this is fine. |
1634 | bool CodeGenFunction::containsBreak(const Stmt *S) { |
1635 | // Null statement, not a label! |
1636 | if (!S) return false; |
1637 | |
1638 | // If this is a switch or loop that defines its own break scope, then we can |
1639 | // include it and anything inside of it. |
1640 | if (isa<SwitchStmt>(Val: S) || isa<WhileStmt>(Val: S) || isa<DoStmt>(Val: S) || |
1641 | isa<ForStmt>(Val: S)) |
1642 | return false; |
1643 | |
1644 | if (isa<BreakStmt>(Val: S)) |
1645 | return true; |
1646 | |
1647 | // Scan subexpressions for verboten breaks. |
1648 | for (const Stmt *SubStmt : S->children()) |
1649 | if (containsBreak(S: SubStmt)) |
1650 | return true; |
1651 | |
1652 | return false; |
1653 | } |
1654 | |
1655 | bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { |
1656 | if (!S) return false; |
1657 | |
1658 | // Some statement kinds add a scope and thus never add a decl to the current |
1659 | // scope. Note, this list is longer than the list of statements that might |
1660 | // have an unscoped decl nested within them, but this way is conservatively |
1661 | // correct even if more statement kinds are added. |
1662 | if (isa<IfStmt>(Val: S) || isa<SwitchStmt>(Val: S) || isa<WhileStmt>(Val: S) || |
1663 | isa<DoStmt>(Val: S) || isa<ForStmt>(Val: S) || isa<CompoundStmt>(Val: S) || |
1664 | isa<CXXForRangeStmt>(Val: S) || isa<CXXTryStmt>(Val: S) || |
1665 | isa<ObjCForCollectionStmt>(Val: S) || isa<ObjCAtTryStmt>(Val: S)) |
1666 | return false; |
1667 | |
1668 | if (isa<DeclStmt>(Val: S)) |
1669 | return true; |
1670 | |
1671 | for (const Stmt *SubStmt : S->children()) |
1672 | if (mightAddDeclToScope(S: SubStmt)) |
1673 | return true; |
1674 | |
1675 | return false; |
1676 | } |
1677 | |
1678 | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
1679 | /// to a constant, or if it does but contains a label, return false. If it |
1680 | /// constant folds return true and set the boolean result in Result. |
1681 | bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, |
1682 | bool &ResultBool, |
1683 | bool AllowLabels) { |
1684 | // If MC/DC is enabled, disable folding so that we can instrument all |
1685 | // conditions to yield complete test vectors. We still keep track of |
1686 | // folded conditions during region mapping and visualization. |
1687 | if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() && |
1688 | CGM.getCodeGenOpts().MCDCCoverage) |
1689 | return false; |
1690 | |
1691 | llvm::APSInt ResultInt; |
1692 | if (!ConstantFoldsToSimpleInteger(Cond, Result&: ResultInt, AllowLabels)) |
1693 | return false; |
1694 | |
1695 | ResultBool = ResultInt.getBoolValue(); |
1696 | return true; |
1697 | } |
1698 | |
1699 | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
1700 | /// to a constant, or if it does but contains a label, return false. If it |
1701 | /// constant folds return true and set the folded value. |
1702 | bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, |
1703 | llvm::APSInt &ResultInt, |
1704 | bool AllowLabels) { |
1705 | // FIXME: Rename and handle conversion of other evaluatable things |
1706 | // to bool. |
1707 | Expr::EvalResult Result; |
1708 | if (!Cond->EvaluateAsInt(Result, Ctx: getContext())) |
1709 | return false; // Not foldable, not integer or not fully evaluatable. |
1710 | |
1711 | llvm::APSInt Int = Result.Val.getInt(); |
1712 | if (!AllowLabels && CodeGenFunction::ContainsLabel(S: Cond)) |
1713 | return false; // Contains a label. |
1714 | |
1715 | ResultInt = Int; |
1716 | return true; |
1717 | } |
1718 | |
1719 | /// Strip parentheses and simplistic logical-NOT operators. |
1720 | const Expr *CodeGenFunction::stripCond(const Expr *C) { |
1721 | while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(Val: C->IgnoreParens())) { |
1722 | if (Op->getOpcode() != UO_LNot) |
1723 | break; |
1724 | C = Op->getSubExpr(); |
1725 | } |
1726 | return C->IgnoreParens(); |
1727 | } |
1728 | |
1729 | /// Determine whether the given condition is an instrumentable condition |
1730 | /// (i.e. no "&&" or "||"). |
1731 | bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { |
1732 | const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val: stripCond(C)); |
1733 | return (!BOp || !BOp->isLogicalOp()); |
1734 | } |
1735 | |
1736 | /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that |
1737 | /// increments a profile counter based on the semantics of the given logical |
1738 | /// operator opcode. This is used to instrument branch condition coverage for |
1739 | /// logical operators. |
1740 | void CodeGenFunction::EmitBranchToCounterBlock( |
1741 | const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, |
1742 | llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, |
1743 | Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { |
1744 | // If not instrumenting, just emit a branch. |
1745 | bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); |
1746 | if (!InstrumentRegions || !isInstrumentedCondition(C: Cond)) |
1747 | return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); |
1748 | |
1749 | llvm::BasicBlock *ThenBlock = nullptr; |
1750 | llvm::BasicBlock *ElseBlock = nullptr; |
1751 | llvm::BasicBlock *NextBlock = nullptr; |
1752 | |
1753 | // Create the block we'll use to increment the appropriate counter. |
1754 | llvm::BasicBlock *CounterIncrBlock = createBasicBlock(name: "lop.rhscnt" ); |
1755 | |
1756 | // Set block pointers according to Logical-AND (BO_LAnd) semantics. This |
1757 | // means we need to evaluate the condition and increment the counter on TRUE: |
1758 | // |
1759 | // if (Cond) |
1760 | // goto CounterIncrBlock; |
1761 | // else |
1762 | // goto FalseBlock; |
1763 | // |
1764 | // CounterIncrBlock: |
1765 | // Counter++; |
1766 | // goto TrueBlock; |
1767 | |
1768 | if (LOp == BO_LAnd) { |
1769 | ThenBlock = CounterIncrBlock; |
1770 | ElseBlock = FalseBlock; |
1771 | NextBlock = TrueBlock; |
1772 | } |
1773 | |
1774 | // Set block pointers according to Logical-OR (BO_LOr) semantics. This means |
1775 | // we need to evaluate the condition and increment the counter on FALSE: |
1776 | // |
1777 | // if (Cond) |
1778 | // goto TrueBlock; |
1779 | // else |
1780 | // goto CounterIncrBlock; |
1781 | // |
1782 | // CounterIncrBlock: |
1783 | // Counter++; |
1784 | // goto FalseBlock; |
1785 | |
1786 | else if (LOp == BO_LOr) { |
1787 | ThenBlock = TrueBlock; |
1788 | ElseBlock = CounterIncrBlock; |
1789 | NextBlock = FalseBlock; |
1790 | } else { |
1791 | llvm_unreachable("Expected Opcode must be that of a Logical Operator" ); |
1792 | } |
1793 | |
1794 | // Emit Branch based on condition. |
1795 | EmitBranchOnBoolExpr(Cond, TrueBlock: ThenBlock, FalseBlock: ElseBlock, TrueCount, LH); |
1796 | |
1797 | // Emit the block containing the counter increment(s). |
1798 | EmitBlock(BB: CounterIncrBlock); |
1799 | |
1800 | // Increment corresponding counter; if index not provided, use Cond as index. |
1801 | incrementProfileCounter(S: CntrIdx ? CntrIdx : Cond); |
1802 | |
1803 | // Go to the next block. |
1804 | EmitBranch(Block: NextBlock); |
1805 | } |
1806 | |
1807 | /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if |
1808 | /// statement) to the specified blocks. Based on the condition, this might try |
1809 | /// to simplify the codegen of the conditional based on the branch. |
1810 | /// \param LH The value of the likelihood attribute on the True branch. |
1811 | /// \param ConditionalOp Used by MC/DC code coverage to track the result of the |
1812 | /// ConditionalOperator (ternary) through a recursive call for the operator's |
1813 | /// LHS and RHS nodes. |
1814 | void CodeGenFunction::EmitBranchOnBoolExpr( |
1815 | const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, |
1816 | uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) { |
1817 | Cond = Cond->IgnoreParens(); |
1818 | |
1819 | if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Val: Cond)) { |
1820 | // Handle X && Y in a condition. |
1821 | if (CondBOp->getOpcode() == BO_LAnd) { |
1822 | MCDCLogOpStack.push_back(Elt: CondBOp); |
1823 | |
1824 | // If we have "1 && X", simplify the code. "0 && X" would have constant |
1825 | // folded if the case was simple enough. |
1826 | bool ConstantBool = false; |
1827 | if (ConstantFoldsToSimpleInteger(Cond: CondBOp->getLHS(), ResultBool&: ConstantBool) && |
1828 | ConstantBool) { |
1829 | // br(1 && X) -> br(X). |
1830 | incrementProfileCounter(S: CondBOp); |
1831 | EmitBranchToCounterBlock(Cond: CondBOp->getRHS(), LOp: BO_LAnd, TrueBlock, |
1832 | FalseBlock, TrueCount, LH); |
1833 | MCDCLogOpStack.pop_back(); |
1834 | return; |
1835 | } |
1836 | |
1837 | // If we have "X && 1", simplify the code to use an uncond branch. |
1838 | // "X && 0" would have been constant folded to 0. |
1839 | if (ConstantFoldsToSimpleInteger(Cond: CondBOp->getRHS(), ResultBool&: ConstantBool) && |
1840 | ConstantBool) { |
1841 | // br(X && 1) -> br(X). |
1842 | EmitBranchToCounterBlock(Cond: CondBOp->getLHS(), LOp: BO_LAnd, TrueBlock, |
1843 | FalseBlock, TrueCount, LH, CntrIdx: CondBOp); |
1844 | MCDCLogOpStack.pop_back(); |
1845 | return; |
1846 | } |
1847 | |
1848 | // Emit the LHS as a conditional. If the LHS conditional is false, we |
1849 | // want to jump to the FalseBlock. |
1850 | llvm::BasicBlock *LHSTrue = createBasicBlock(name: "land.lhs.true" ); |
1851 | // The counter tells us how often we evaluate RHS, and all of TrueCount |
1852 | // can be propagated to that branch. |
1853 | uint64_t RHSCount = getProfileCount(S: CondBOp->getRHS()); |
1854 | |
1855 | ConditionalEvaluation eval(*this); |
1856 | { |
1857 | ApplyDebugLocation DL(*this, Cond); |
1858 | // Propagate the likelihood attribute like __builtin_expect |
1859 | // __builtin_expect(X && Y, 1) -> X and Y are likely |
1860 | // __builtin_expect(X && Y, 0) -> only Y is unlikely |
1861 | EmitBranchOnBoolExpr(Cond: CondBOp->getLHS(), TrueBlock: LHSTrue, FalseBlock, TrueCount: RHSCount, |
1862 | LH: LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); |
1863 | EmitBlock(BB: LHSTrue); |
1864 | } |
1865 | |
1866 | incrementProfileCounter(S: CondBOp); |
1867 | setCurrentProfileCount(getProfileCount(S: CondBOp->getRHS())); |
1868 | |
1869 | // Any temporaries created here are conditional. |
1870 | eval.begin(CGF&: *this); |
1871 | EmitBranchToCounterBlock(Cond: CondBOp->getRHS(), LOp: BO_LAnd, TrueBlock, |
1872 | FalseBlock, TrueCount, LH); |
1873 | eval.end(CGF&: *this); |
1874 | MCDCLogOpStack.pop_back(); |
1875 | return; |
1876 | } |
1877 | |
1878 | if (CondBOp->getOpcode() == BO_LOr) { |
1879 | MCDCLogOpStack.push_back(Elt: CondBOp); |
1880 | |
1881 | // If we have "0 || X", simplify the code. "1 || X" would have constant |
1882 | // folded if the case was simple enough. |
1883 | bool ConstantBool = false; |
1884 | if (ConstantFoldsToSimpleInteger(Cond: CondBOp->getLHS(), ResultBool&: ConstantBool) && |
1885 | !ConstantBool) { |
1886 | // br(0 || X) -> br(X). |
1887 | incrementProfileCounter(S: CondBOp); |
1888 | EmitBranchToCounterBlock(Cond: CondBOp->getRHS(), LOp: BO_LOr, TrueBlock, |
1889 | FalseBlock, TrueCount, LH); |
1890 | MCDCLogOpStack.pop_back(); |
1891 | return; |
1892 | } |
1893 | |
1894 | // If we have "X || 0", simplify the code to use an uncond branch. |
1895 | // "X || 1" would have been constant folded to 1. |
1896 | if (ConstantFoldsToSimpleInteger(Cond: CondBOp->getRHS(), ResultBool&: ConstantBool) && |
1897 | !ConstantBool) { |
1898 | // br(X || 0) -> br(X). |
1899 | EmitBranchToCounterBlock(Cond: CondBOp->getLHS(), LOp: BO_LOr, TrueBlock, |
1900 | FalseBlock, TrueCount, LH, CntrIdx: CondBOp); |
1901 | MCDCLogOpStack.pop_back(); |
1902 | return; |
1903 | } |
1904 | // Emit the LHS as a conditional. If the LHS conditional is true, we |
1905 | // want to jump to the TrueBlock. |
1906 | llvm::BasicBlock *LHSFalse = createBasicBlock(name: "lor.lhs.false" ); |
1907 | // We have the count for entry to the RHS and for the whole expression |
1908 | // being true, so we can divy up True count between the short circuit and |
1909 | // the RHS. |
1910 | uint64_t LHSCount = |
1911 | getCurrentProfileCount() - getProfileCount(S: CondBOp->getRHS()); |
1912 | uint64_t RHSCount = TrueCount - LHSCount; |
1913 | |
1914 | ConditionalEvaluation eval(*this); |
1915 | { |
1916 | // Propagate the likelihood attribute like __builtin_expect |
1917 | // __builtin_expect(X || Y, 1) -> only Y is likely |
1918 | // __builtin_expect(X || Y, 0) -> both X and Y are unlikely |
1919 | ApplyDebugLocation DL(*this, Cond); |
1920 | EmitBranchOnBoolExpr(Cond: CondBOp->getLHS(), TrueBlock, FalseBlock: LHSFalse, TrueCount: LHSCount, |
1921 | LH: LH == Stmt::LH_Likely ? Stmt::LH_None : LH); |
1922 | EmitBlock(BB: LHSFalse); |
1923 | } |
1924 | |
1925 | incrementProfileCounter(S: CondBOp); |
1926 | setCurrentProfileCount(getProfileCount(S: CondBOp->getRHS())); |
1927 | |
1928 | // Any temporaries created here are conditional. |
1929 | eval.begin(CGF&: *this); |
1930 | EmitBranchToCounterBlock(Cond: CondBOp->getRHS(), LOp: BO_LOr, TrueBlock, FalseBlock, |
1931 | TrueCount: RHSCount, LH); |
1932 | |
1933 | eval.end(CGF&: *this); |
1934 | MCDCLogOpStack.pop_back(); |
1935 | return; |
1936 | } |
1937 | } |
1938 | |
1939 | if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Val: Cond)) { |
1940 | // br(!x, t, f) -> br(x, f, t) |
1941 | // Avoid doing this optimization when instrumenting a condition for MC/DC. |
1942 | // LNot is taken as part of the condition for simplicity, and changing its |
1943 | // sense negatively impacts test vector tracking. |
1944 | bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() && |
1945 | CGM.getCodeGenOpts().MCDCCoverage && |
1946 | isInstrumentedCondition(C: Cond); |
1947 | if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) { |
1948 | // Negate the count. |
1949 | uint64_t FalseCount = getCurrentProfileCount() - TrueCount; |
1950 | // The values of the enum are chosen to make this negation possible. |
1951 | LH = static_cast<Stmt::Likelihood>(-LH); |
1952 | // Negate the condition and swap the destination blocks. |
1953 | return EmitBranchOnBoolExpr(Cond: CondUOp->getSubExpr(), TrueBlock: FalseBlock, FalseBlock: TrueBlock, |
1954 | TrueCount: FalseCount, LH); |
1955 | } |
1956 | } |
1957 | |
1958 | if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Val: Cond)) { |
1959 | // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) |
1960 | llvm::BasicBlock *LHSBlock = createBasicBlock(name: "cond.true" ); |
1961 | llvm::BasicBlock *RHSBlock = createBasicBlock(name: "cond.false" ); |
1962 | |
1963 | // The ConditionalOperator itself has no likelihood information for its |
1964 | // true and false branches. This matches the behavior of __builtin_expect. |
1965 | ConditionalEvaluation cond(*this); |
1966 | EmitBranchOnBoolExpr(Cond: CondOp->getCond(), TrueBlock: LHSBlock, FalseBlock: RHSBlock, |
1967 | TrueCount: getProfileCount(S: CondOp), LH: Stmt::LH_None); |
1968 | |
1969 | // When computing PGO branch weights, we only know the overall count for |
1970 | // the true block. This code is essentially doing tail duplication of the |
1971 | // naive code-gen, introducing new edges for which counts are not |
1972 | // available. Divide the counts proportionally between the LHS and RHS of |
1973 | // the conditional operator. |
1974 | uint64_t LHSScaledTrueCount = 0; |
1975 | if (TrueCount) { |
1976 | double LHSRatio = |
1977 | getProfileCount(S: CondOp) / (double)getCurrentProfileCount(); |
1978 | LHSScaledTrueCount = TrueCount * LHSRatio; |
1979 | } |
1980 | |
1981 | cond.begin(CGF&: *this); |
1982 | EmitBlock(BB: LHSBlock); |
1983 | incrementProfileCounter(S: CondOp); |
1984 | { |
1985 | ApplyDebugLocation DL(*this, Cond); |
1986 | EmitBranchOnBoolExpr(Cond: CondOp->getLHS(), TrueBlock, FalseBlock, |
1987 | TrueCount: LHSScaledTrueCount, LH, ConditionalOp: CondOp); |
1988 | } |
1989 | cond.end(CGF&: *this); |
1990 | |
1991 | cond.begin(CGF&: *this); |
1992 | EmitBlock(BB: RHSBlock); |
1993 | EmitBranchOnBoolExpr(Cond: CondOp->getRHS(), TrueBlock, FalseBlock, |
1994 | TrueCount: TrueCount - LHSScaledTrueCount, LH, ConditionalOp: CondOp); |
1995 | cond.end(CGF&: *this); |
1996 | |
1997 | return; |
1998 | } |
1999 | |
2000 | if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Val: Cond)) { |
2001 | // Conditional operator handling can give us a throw expression as a |
2002 | // condition for a case like: |
2003 | // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) |
2004 | // Fold this to: |
2005 | // br(c, throw x, br(y, t, f)) |
2006 | EmitCXXThrowExpr(E: Throw, /*KeepInsertionPoint*/false); |
2007 | return; |
2008 | } |
2009 | |
2010 | // Emit the code with the fully general case. |
2011 | llvm::Value *CondV; |
2012 | { |
2013 | ApplyDebugLocation DL(*this, Cond); |
2014 | CondV = EvaluateExprAsBool(E: Cond); |
2015 | } |
2016 | |
2017 | // If not at the top of the logical operator nest, update MCDC temp with the |
2018 | // boolean result of the evaluated condition. |
2019 | if (!MCDCLogOpStack.empty()) { |
2020 | const Expr *MCDCBaseExpr = Cond; |
2021 | // When a nested ConditionalOperator (ternary) is encountered in a boolean |
2022 | // expression, MC/DC tracks the result of the ternary, and this is tied to |
2023 | // the ConditionalOperator expression and not the ternary's LHS or RHS. If |
2024 | // this is the case, the ConditionalOperator expression is passed through |
2025 | // the ConditionalOp parameter and then used as the MCDC base expression. |
2026 | if (ConditionalOp) |
2027 | MCDCBaseExpr = ConditionalOp; |
2028 | |
2029 | maybeUpdateMCDCCondBitmap(E: MCDCBaseExpr, Val: CondV); |
2030 | } |
2031 | |
2032 | llvm::MDNode *Weights = nullptr; |
2033 | llvm::MDNode *Unpredictable = nullptr; |
2034 | |
2035 | // If the branch has a condition wrapped by __builtin_unpredictable, |
2036 | // create metadata that specifies that the branch is unpredictable. |
2037 | // Don't bother if not optimizing because that metadata would not be used. |
2038 | auto *Call = dyn_cast<CallExpr>(Val: Cond->IgnoreImpCasts()); |
2039 | if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { |
2040 | auto *FD = dyn_cast_or_null<FunctionDecl>(Val: Call->getCalleeDecl()); |
2041 | if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { |
2042 | llvm::MDBuilder MDHelper(getLLVMContext()); |
2043 | Unpredictable = MDHelper.createUnpredictable(); |
2044 | } |
2045 | } |
2046 | |
2047 | // If there is a Likelihood knowledge for the cond, lower it. |
2048 | // Note that if not optimizing this won't emit anything. |
2049 | llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(Cond: CondV, LH); |
2050 | if (CondV != NewCondV) |
2051 | CondV = NewCondV; |
2052 | else { |
2053 | // Otherwise, lower profile counts. Note that we do this even at -O0. |
2054 | uint64_t CurrentCount = std::max(a: getCurrentProfileCount(), b: TrueCount); |
2055 | Weights = createProfileWeights(TrueCount, FalseCount: CurrentCount - TrueCount); |
2056 | } |
2057 | |
2058 | Builder.CreateCondBr(Cond: CondV, True: TrueBlock, False: FalseBlock, BranchWeights: Weights, Unpredictable); |
2059 | } |
2060 | |
2061 | /// ErrorUnsupported - Print out an error that codegen doesn't support the |
2062 | /// specified stmt yet. |
2063 | void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { |
2064 | CGM.ErrorUnsupported(S, Type); |
2065 | } |
2066 | |
2067 | /// emitNonZeroVLAInit - Emit the "zero" initialization of a |
2068 | /// variable-length array whose elements have a non-zero bit-pattern. |
2069 | /// |
2070 | /// \param baseType the inner-most element type of the array |
2071 | /// \param src - a char* pointing to the bit-pattern for a single |
2072 | /// base element of the array |
2073 | /// \param sizeInChars - the total size of the VLA, in chars |
2074 | static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, |
2075 | Address dest, Address src, |
2076 | llvm::Value *sizeInChars) { |
2077 | CGBuilderTy &Builder = CGF.Builder; |
2078 | |
2079 | CharUnits baseSize = CGF.getContext().getTypeSizeInChars(T: baseType); |
2080 | llvm::Value *baseSizeInChars |
2081 | = llvm::ConstantInt::get(Ty: CGF.IntPtrTy, V: baseSize.getQuantity()); |
2082 | |
2083 | Address begin = dest.withElementType(ElemTy: CGF.Int8Ty); |
2084 | llvm::Value *end = Builder.CreateInBoundsGEP(Ty: begin.getElementType(), |
2085 | Ptr: begin.emitRawPointer(CGF), |
2086 | IdxList: sizeInChars, Name: "vla.end" ); |
2087 | |
2088 | llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); |
2089 | llvm::BasicBlock *loopBB = CGF.createBasicBlock(name: "vla-init.loop" ); |
2090 | llvm::BasicBlock *contBB = CGF.createBasicBlock(name: "vla-init.cont" ); |
2091 | |
2092 | // Make a loop over the VLA. C99 guarantees that the VLA element |
2093 | // count must be nonzero. |
2094 | CGF.EmitBlock(BB: loopBB); |
2095 | |
2096 | llvm::PHINode *cur = Builder.CreatePHI(Ty: begin.getType(), NumReservedValues: 2, Name: "vla.cur" ); |
2097 | cur->addIncoming(V: begin.emitRawPointer(CGF), BB: originBB); |
2098 | |
2099 | CharUnits curAlign = |
2100 | dest.getAlignment().alignmentOfArrayElement(elementSize: baseSize); |
2101 | |
2102 | // memcpy the individual element bit-pattern. |
2103 | Builder.CreateMemCpy(Dest: Address(cur, CGF.Int8Ty, curAlign), Src: src, Size: baseSizeInChars, |
2104 | /*volatile*/ IsVolatile: false); |
2105 | |
2106 | // Go to the next element. |
2107 | llvm::Value *next = |
2108 | Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: cur, IdxList: baseSizeInChars, Name: "vla.next" ); |
2109 | |
2110 | // Leave if that's the end of the VLA. |
2111 | llvm::Value *done = Builder.CreateICmpEQ(LHS: next, RHS: end, Name: "vla-init.isdone" ); |
2112 | Builder.CreateCondBr(Cond: done, True: contBB, False: loopBB); |
2113 | cur->addIncoming(V: next, BB: loopBB); |
2114 | |
2115 | CGF.EmitBlock(BB: contBB); |
2116 | } |
2117 | |
2118 | void |
2119 | CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { |
2120 | // Ignore empty classes in C++. |
2121 | if (getLangOpts().CPlusPlus) { |
2122 | if (const RecordType *RT = Ty->getAs<RecordType>()) { |
2123 | if (cast<CXXRecordDecl>(Val: RT->getDecl())->isEmpty()) |
2124 | return; |
2125 | } |
2126 | } |
2127 | |
2128 | if (DestPtr.getElementType() != Int8Ty) |
2129 | DestPtr = DestPtr.withElementType(ElemTy: Int8Ty); |
2130 | |
2131 | // Get size and alignment info for this aggregate. |
2132 | CharUnits size = getContext().getTypeSizeInChars(T: Ty); |
2133 | |
2134 | llvm::Value *SizeVal; |
2135 | const VariableArrayType *vla; |
2136 | |
2137 | // Don't bother emitting a zero-byte memset. |
2138 | if (size.isZero()) { |
2139 | // But note that getTypeInfo returns 0 for a VLA. |
2140 | if (const VariableArrayType *vlaType = |
2141 | dyn_cast_or_null<VariableArrayType>( |
2142 | Val: getContext().getAsArrayType(T: Ty))) { |
2143 | auto VlaSize = getVLASize(vla: vlaType); |
2144 | SizeVal = VlaSize.NumElts; |
2145 | CharUnits eltSize = getContext().getTypeSizeInChars(T: VlaSize.Type); |
2146 | if (!eltSize.isOne()) |
2147 | SizeVal = Builder.CreateNUWMul(LHS: SizeVal, RHS: CGM.getSize(numChars: eltSize)); |
2148 | vla = vlaType; |
2149 | } else { |
2150 | return; |
2151 | } |
2152 | } else { |
2153 | SizeVal = CGM.getSize(numChars: size); |
2154 | vla = nullptr; |
2155 | } |
2156 | |
2157 | // If the type contains a pointer to data member we can't memset it to zero. |
2158 | // Instead, create a null constant and copy it to the destination. |
2159 | // TODO: there are other patterns besides zero that we can usefully memset, |
2160 | // like -1, which happens to be the pattern used by member-pointers. |
2161 | if (!CGM.getTypes().isZeroInitializable(T: Ty)) { |
2162 | // For a VLA, emit a single element, then splat that over the VLA. |
2163 | if (vla) Ty = getContext().getBaseElementType(VAT: vla); |
2164 | |
2165 | llvm::Constant *NullConstant = CGM.EmitNullConstant(T: Ty); |
2166 | |
2167 | llvm::GlobalVariable *NullVariable = |
2168 | new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), |
2169 | /*isConstant=*/true, |
2170 | llvm::GlobalVariable::PrivateLinkage, |
2171 | NullConstant, Twine()); |
2172 | CharUnits NullAlign = DestPtr.getAlignment(); |
2173 | NullVariable->setAlignment(NullAlign.getAsAlign()); |
2174 | Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign); |
2175 | |
2176 | if (vla) return emitNonZeroVLAInit(CGF&: *this, baseType: Ty, dest: DestPtr, src: SrcPtr, sizeInChars: SizeVal); |
2177 | |
2178 | // Get and call the appropriate llvm.memcpy overload. |
2179 | Builder.CreateMemCpy(Dest: DestPtr, Src: SrcPtr, Size: SizeVal, IsVolatile: false); |
2180 | return; |
2181 | } |
2182 | |
2183 | // Otherwise, just memset the whole thing to zero. This is legal |
2184 | // because in LLVM, all default initializers (other than the ones we just |
2185 | // handled above) are guaranteed to have a bit pattern of all zeros. |
2186 | Builder.CreateMemSet(Dest: DestPtr, Value: Builder.getInt8(C: 0), Size: SizeVal, IsVolatile: false); |
2187 | } |
2188 | |
2189 | llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { |
2190 | // Make sure that there is a block for the indirect goto. |
2191 | if (!IndirectBranch) |
2192 | GetIndirectGotoBlock(); |
2193 | |
2194 | llvm::BasicBlock *BB = getJumpDestForLabel(S: L).getBlock(); |
2195 | |
2196 | // Make sure the indirect branch includes all of the address-taken blocks. |
2197 | IndirectBranch->addDestination(Dest: BB); |
2198 | return llvm::BlockAddress::get(F: CurFn, BB); |
2199 | } |
2200 | |
2201 | llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { |
2202 | // If we already made the indirect branch for indirect goto, return its block. |
2203 | if (IndirectBranch) return IndirectBranch->getParent(); |
2204 | |
2205 | CGBuilderTy TmpBuilder(*this, createBasicBlock(name: "indirectgoto" )); |
2206 | |
2207 | // Create the PHI node that indirect gotos will add entries to. |
2208 | llvm::Value *DestVal = TmpBuilder.CreatePHI(Ty: Int8PtrTy, NumReservedValues: 0, |
2209 | Name: "indirect.goto.dest" ); |
2210 | |
2211 | // Create the indirect branch instruction. |
2212 | IndirectBranch = TmpBuilder.CreateIndirectBr(Addr: DestVal); |
2213 | return IndirectBranch->getParent(); |
2214 | } |
2215 | |
2216 | /// Computes the length of an array in elements, as well as the base |
2217 | /// element type and a properly-typed first element pointer. |
2218 | llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, |
2219 | QualType &baseType, |
2220 | Address &addr) { |
2221 | const ArrayType *arrayType = origArrayType; |
2222 | |
2223 | // If it's a VLA, we have to load the stored size. Note that |
2224 | // this is the size of the VLA in bytes, not its size in elements. |
2225 | llvm::Value *numVLAElements = nullptr; |
2226 | if (isa<VariableArrayType>(Val: arrayType)) { |
2227 | numVLAElements = getVLASize(vla: cast<VariableArrayType>(Val: arrayType)).NumElts; |
2228 | |
2229 | // Walk into all VLAs. This doesn't require changes to addr, |
2230 | // which has type T* where T is the first non-VLA element type. |
2231 | do { |
2232 | QualType elementType = arrayType->getElementType(); |
2233 | arrayType = getContext().getAsArrayType(T: elementType); |
2234 | |
2235 | // If we only have VLA components, 'addr' requires no adjustment. |
2236 | if (!arrayType) { |
2237 | baseType = elementType; |
2238 | return numVLAElements; |
2239 | } |
2240 | } while (isa<VariableArrayType>(Val: arrayType)); |
2241 | |
2242 | // We get out here only if we find a constant array type |
2243 | // inside the VLA. |
2244 | } |
2245 | |
2246 | // We have some number of constant-length arrays, so addr should |
2247 | // have LLVM type [M x [N x [...]]]*. Build a GEP that walks |
2248 | // down to the first element of addr. |
2249 | SmallVector<llvm::Value*, 8> gepIndices; |
2250 | |
2251 | // GEP down to the array type. |
2252 | llvm::ConstantInt *zero = Builder.getInt32(C: 0); |
2253 | gepIndices.push_back(Elt: zero); |
2254 | |
2255 | uint64_t countFromCLAs = 1; |
2256 | QualType eltType; |
2257 | |
2258 | llvm::ArrayType *llvmArrayType = |
2259 | dyn_cast<llvm::ArrayType>(Val: addr.getElementType()); |
2260 | while (llvmArrayType) { |
2261 | assert(isa<ConstantArrayType>(arrayType)); |
2262 | assert(cast<ConstantArrayType>(arrayType)->getZExtSize() == |
2263 | llvmArrayType->getNumElements()); |
2264 | |
2265 | gepIndices.push_back(Elt: zero); |
2266 | countFromCLAs *= llvmArrayType->getNumElements(); |
2267 | eltType = arrayType->getElementType(); |
2268 | |
2269 | llvmArrayType = |
2270 | dyn_cast<llvm::ArrayType>(Val: llvmArrayType->getElementType()); |
2271 | arrayType = getContext().getAsArrayType(T: arrayType->getElementType()); |
2272 | assert((!llvmArrayType || arrayType) && |
2273 | "LLVM and Clang types are out-of-synch" ); |
2274 | } |
2275 | |
2276 | if (arrayType) { |
2277 | // From this point onwards, the Clang array type has been emitted |
2278 | // as some other type (probably a packed struct). Compute the array |
2279 | // size, and just emit the 'begin' expression as a bitcast. |
2280 | while (arrayType) { |
2281 | countFromCLAs *= cast<ConstantArrayType>(Val: arrayType)->getZExtSize(); |
2282 | eltType = arrayType->getElementType(); |
2283 | arrayType = getContext().getAsArrayType(T: eltType); |
2284 | } |
2285 | |
2286 | llvm::Type *baseType = ConvertType(T: eltType); |
2287 | addr = addr.withElementType(ElemTy: baseType); |
2288 | } else { |
2289 | // Create the actual GEP. |
2290 | addr = Address(Builder.CreateInBoundsGEP(Ty: addr.getElementType(), |
2291 | Ptr: addr.emitRawPointer(CGF&: *this), |
2292 | IdxList: gepIndices, Name: "array.begin" ), |
2293 | ConvertTypeForMem(T: eltType), addr.getAlignment()); |
2294 | } |
2295 | |
2296 | baseType = eltType; |
2297 | |
2298 | llvm::Value *numElements |
2299 | = llvm::ConstantInt::get(Ty: SizeTy, V: countFromCLAs); |
2300 | |
2301 | // If we had any VLA dimensions, factor them in. |
2302 | if (numVLAElements) |
2303 | numElements = Builder.CreateNUWMul(LHS: numVLAElements, RHS: numElements); |
2304 | |
2305 | return numElements; |
2306 | } |
2307 | |
2308 | CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { |
2309 | const VariableArrayType *vla = getContext().getAsVariableArrayType(T: type); |
2310 | assert(vla && "type was not a variable array type!" ); |
2311 | return getVLASize(vla); |
2312 | } |
2313 | |
2314 | CodeGenFunction::VlaSizePair |
2315 | CodeGenFunction::getVLASize(const VariableArrayType *type) { |
2316 | // The number of elements so far; always size_t. |
2317 | llvm::Value *numElements = nullptr; |
2318 | |
2319 | QualType elementType; |
2320 | do { |
2321 | elementType = type->getElementType(); |
2322 | llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; |
2323 | assert(vlaSize && "no size for VLA!" ); |
2324 | assert(vlaSize->getType() == SizeTy); |
2325 | |
2326 | if (!numElements) { |
2327 | numElements = vlaSize; |
2328 | } else { |
2329 | // It's undefined behavior if this wraps around, so mark it that way. |
2330 | // FIXME: Teach -fsanitize=undefined to trap this. |
2331 | numElements = Builder.CreateNUWMul(LHS: numElements, RHS: vlaSize); |
2332 | } |
2333 | } while ((type = getContext().getAsVariableArrayType(T: elementType))); |
2334 | |
2335 | return { numElements, elementType }; |
2336 | } |
2337 | |
2338 | CodeGenFunction::VlaSizePair |
2339 | CodeGenFunction::getVLAElements1D(QualType type) { |
2340 | const VariableArrayType *vla = getContext().getAsVariableArrayType(T: type); |
2341 | assert(vla && "type was not a variable array type!" ); |
2342 | return getVLAElements1D(vla); |
2343 | } |
2344 | |
2345 | CodeGenFunction::VlaSizePair |
2346 | CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { |
2347 | llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; |
2348 | assert(VlaSize && "no size for VLA!" ); |
2349 | assert(VlaSize->getType() == SizeTy); |
2350 | return { VlaSize, Vla->getElementType() }; |
2351 | } |
2352 | |
2353 | void CodeGenFunction::EmitVariablyModifiedType(QualType type) { |
2354 | assert(type->isVariablyModifiedType() && |
2355 | "Must pass variably modified type to EmitVLASizes!" ); |
2356 | |
2357 | EnsureInsertPoint(); |
2358 | |
2359 | // We're going to walk down into the type and look for VLA |
2360 | // expressions. |
2361 | do { |
2362 | assert(type->isVariablyModifiedType()); |
2363 | |
2364 | const Type *ty = type.getTypePtr(); |
2365 | switch (ty->getTypeClass()) { |
2366 | |
2367 | #define TYPE(Class, Base) |
2368 | #define ABSTRACT_TYPE(Class, Base) |
2369 | #define NON_CANONICAL_TYPE(Class, Base) |
2370 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
2371 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) |
2372 | #include "clang/AST/TypeNodes.inc" |
2373 | llvm_unreachable("unexpected dependent type!" ); |
2374 | |
2375 | // These types are never variably-modified. |
2376 | case Type::Builtin: |
2377 | case Type::Complex: |
2378 | case Type::Vector: |
2379 | case Type::ExtVector: |
2380 | case Type::ConstantMatrix: |
2381 | case Type::Record: |
2382 | case Type::Enum: |
2383 | case Type::Using: |
2384 | case Type::TemplateSpecialization: |
2385 | case Type::ObjCTypeParam: |
2386 | case Type::ObjCObject: |
2387 | case Type::ObjCInterface: |
2388 | case Type::ObjCObjectPointer: |
2389 | case Type::BitInt: |
2390 | llvm_unreachable("type class is never variably-modified!" ); |
2391 | |
2392 | case Type::Elaborated: |
2393 | type = cast<ElaboratedType>(Val: ty)->getNamedType(); |
2394 | break; |
2395 | |
2396 | case Type::Adjusted: |
2397 | type = cast<AdjustedType>(Val: ty)->getAdjustedType(); |
2398 | break; |
2399 | |
2400 | case Type::Decayed: |
2401 | type = cast<DecayedType>(Val: ty)->getPointeeType(); |
2402 | break; |
2403 | |
2404 | case Type::Pointer: |
2405 | type = cast<PointerType>(Val: ty)->getPointeeType(); |
2406 | break; |
2407 | |
2408 | case Type::BlockPointer: |
2409 | type = cast<BlockPointerType>(Val: ty)->getPointeeType(); |
2410 | break; |
2411 | |
2412 | case Type::LValueReference: |
2413 | case Type::RValueReference: |
2414 | type = cast<ReferenceType>(Val: ty)->getPointeeType(); |
2415 | break; |
2416 | |
2417 | case Type::MemberPointer: |
2418 | type = cast<MemberPointerType>(Val: ty)->getPointeeType(); |
2419 | break; |
2420 | |
2421 | case Type::ArrayParameter: |
2422 | case Type::ConstantArray: |
2423 | case Type::IncompleteArray: |
2424 | // Losing element qualification here is fine. |
2425 | type = cast<ArrayType>(Val: ty)->getElementType(); |
2426 | break; |
2427 | |
2428 | case Type::VariableArray: { |
2429 | // Losing element qualification here is fine. |
2430 | const VariableArrayType *vat = cast<VariableArrayType>(Val: ty); |
2431 | |
2432 | // Unknown size indication requires no size computation. |
2433 | // Otherwise, evaluate and record it. |
2434 | if (const Expr *sizeExpr = vat->getSizeExpr()) { |
2435 | // It's possible that we might have emitted this already, |
2436 | // e.g. with a typedef and a pointer to it. |
2437 | llvm::Value *&entry = VLASizeMap[sizeExpr]; |
2438 | if (!entry) { |
2439 | llvm::Value *size = EmitScalarExpr(E: sizeExpr); |
2440 | |
2441 | // C11 6.7.6.2p5: |
2442 | // If the size is an expression that is not an integer constant |
2443 | // expression [...] each time it is evaluated it shall have a value |
2444 | // greater than zero. |
2445 | if (SanOpts.has(K: SanitizerKind::VLABound)) { |
2446 | SanitizerScope SanScope(this); |
2447 | llvm::Value *Zero = llvm::Constant::getNullValue(Ty: size->getType()); |
2448 | clang::QualType SEType = sizeExpr->getType(); |
2449 | llvm::Value *CheckCondition = |
2450 | SEType->isSignedIntegerType() |
2451 | ? Builder.CreateICmpSGT(LHS: size, RHS: Zero) |
2452 | : Builder.CreateICmpUGT(LHS: size, RHS: Zero); |
2453 | llvm::Constant *StaticArgs[] = { |
2454 | EmitCheckSourceLocation(Loc: sizeExpr->getBeginLoc()), |
2455 | EmitCheckTypeDescriptor(T: SEType)}; |
2456 | EmitCheck(Checked: std::make_pair(x&: CheckCondition, y: SanitizerKind::VLABound), |
2457 | Check: SanitizerHandler::VLABoundNotPositive, StaticArgs, DynamicArgs: size); |
2458 | } |
2459 | |
2460 | // Always zexting here would be wrong if it weren't |
2461 | // undefined behavior to have a negative bound. |
2462 | // FIXME: What about when size's type is larger than size_t? |
2463 | entry = Builder.CreateIntCast(V: size, DestTy: SizeTy, /*signed*/ isSigned: false); |
2464 | } |
2465 | } |
2466 | type = vat->getElementType(); |
2467 | break; |
2468 | } |
2469 | |
2470 | case Type::FunctionProto: |
2471 | case Type::FunctionNoProto: |
2472 | type = cast<FunctionType>(Val: ty)->getReturnType(); |
2473 | break; |
2474 | |
2475 | case Type::Paren: |
2476 | case Type::TypeOf: |
2477 | case Type::UnaryTransform: |
2478 | case Type::Attributed: |
2479 | case Type::BTFTagAttributed: |
2480 | case Type::SubstTemplateTypeParm: |
2481 | case Type::MacroQualified: |
2482 | case Type::CountAttributed: |
2483 | // Keep walking after single level desugaring. |
2484 | type = type.getSingleStepDesugaredType(Context: getContext()); |
2485 | break; |
2486 | |
2487 | case Type::Typedef: |
2488 | case Type::Decltype: |
2489 | case Type::Auto: |
2490 | case Type::DeducedTemplateSpecialization: |
2491 | case Type::PackIndexing: |
2492 | // Stop walking: nothing to do. |
2493 | return; |
2494 | |
2495 | case Type::TypeOfExpr: |
2496 | // Stop walking: emit typeof expression. |
2497 | EmitIgnoredExpr(E: cast<TypeOfExprType>(Val: ty)->getUnderlyingExpr()); |
2498 | return; |
2499 | |
2500 | case Type::Atomic: |
2501 | type = cast<AtomicType>(Val: ty)->getValueType(); |
2502 | break; |
2503 | |
2504 | case Type::Pipe: |
2505 | type = cast<PipeType>(Val: ty)->getElementType(); |
2506 | break; |
2507 | } |
2508 | } while (type->isVariablyModifiedType()); |
2509 | } |
2510 | |
2511 | Address CodeGenFunction::EmitVAListRef(const Expr* E) { |
2512 | if (getContext().getBuiltinVaListType()->isArrayType()) |
2513 | return EmitPointerWithAlignment(Addr: E); |
2514 | return EmitLValue(E).getAddress(); |
2515 | } |
2516 | |
2517 | Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { |
2518 | return EmitLValue(E).getAddress(); |
2519 | } |
2520 | |
2521 | void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, |
2522 | const APValue &Init) { |
2523 | assert(Init.hasValue() && "Invalid DeclRefExpr initializer!" ); |
2524 | if (CGDebugInfo *Dbg = getDebugInfo()) |
2525 | if (CGM.getCodeGenOpts().hasReducedDebugInfo()) |
2526 | Dbg->EmitGlobalVariable(VD: E->getDecl(), Init); |
2527 | } |
2528 | |
2529 | CodeGenFunction::PeepholeProtection |
2530 | CodeGenFunction::protectFromPeepholes(RValue rvalue) { |
2531 | // At the moment, the only aggressive peephole we do in IR gen |
2532 | // is trunc(zext) folding, but if we add more, we can easily |
2533 | // extend this protection. |
2534 | |
2535 | if (!rvalue.isScalar()) return PeepholeProtection(); |
2536 | llvm::Value *value = rvalue.getScalarVal(); |
2537 | if (!isa<llvm::ZExtInst>(Val: value)) return PeepholeProtection(); |
2538 | |
2539 | // Just make an extra bitcast. |
2540 | assert(HaveInsertPoint()); |
2541 | llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "" , |
2542 | Builder.GetInsertBlock()); |
2543 | |
2544 | PeepholeProtection protection; |
2545 | protection.Inst = inst; |
2546 | return protection; |
2547 | } |
2548 | |
2549 | void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { |
2550 | if (!protection.Inst) return; |
2551 | |
2552 | // In theory, we could try to duplicate the peepholes now, but whatever. |
2553 | protection.Inst->eraseFromParent(); |
2554 | } |
2555 | |
2556 | void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, |
2557 | QualType Ty, SourceLocation Loc, |
2558 | SourceLocation AssumptionLoc, |
2559 | llvm::Value *Alignment, |
2560 | llvm::Value *OffsetValue) { |
2561 | if (Alignment->getType() != IntPtrTy) |
2562 | Alignment = |
2563 | Builder.CreateIntCast(V: Alignment, DestTy: IntPtrTy, isSigned: false, Name: "casted.align" ); |
2564 | if (OffsetValue && OffsetValue->getType() != IntPtrTy) |
2565 | OffsetValue = |
2566 | Builder.CreateIntCast(V: OffsetValue, DestTy: IntPtrTy, isSigned: true, Name: "casted.offset" ); |
2567 | llvm::Value *TheCheck = nullptr; |
2568 | if (SanOpts.has(K: SanitizerKind::Alignment)) { |
2569 | llvm::Value *PtrIntValue = |
2570 | Builder.CreatePtrToInt(V: PtrValue, DestTy: IntPtrTy, Name: "ptrint" ); |
2571 | |
2572 | if (OffsetValue) { |
2573 | bool IsOffsetZero = false; |
2574 | if (const auto *CI = dyn_cast<llvm::ConstantInt>(Val: OffsetValue)) |
2575 | IsOffsetZero = CI->isZero(); |
2576 | |
2577 | if (!IsOffsetZero) |
2578 | PtrIntValue = Builder.CreateSub(LHS: PtrIntValue, RHS: OffsetValue, Name: "offsetptr" ); |
2579 | } |
2580 | |
2581 | llvm::Value *Zero = llvm::ConstantInt::get(Ty: IntPtrTy, V: 0); |
2582 | llvm::Value *Mask = |
2583 | Builder.CreateSub(LHS: Alignment, RHS: llvm::ConstantInt::get(Ty: IntPtrTy, V: 1)); |
2584 | llvm::Value *MaskedPtr = Builder.CreateAnd(LHS: PtrIntValue, RHS: Mask, Name: "maskedptr" ); |
2585 | TheCheck = Builder.CreateICmpEQ(LHS: MaskedPtr, RHS: Zero, Name: "maskcond" ); |
2586 | } |
2587 | llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( |
2588 | DL: CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); |
2589 | |
2590 | if (!SanOpts.has(K: SanitizerKind::Alignment)) |
2591 | return; |
2592 | emitAlignmentAssumptionCheck(Ptr: PtrValue, Ty, Loc, AssumptionLoc, Alignment, |
2593 | OffsetValue, TheCheck, Assumption); |
2594 | } |
2595 | |
2596 | void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, |
2597 | const Expr *E, |
2598 | SourceLocation AssumptionLoc, |
2599 | llvm::Value *Alignment, |
2600 | llvm::Value *OffsetValue) { |
2601 | QualType Ty = E->getType(); |
2602 | SourceLocation Loc = E->getExprLoc(); |
2603 | |
2604 | emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, |
2605 | OffsetValue); |
2606 | } |
2607 | |
2608 | llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, |
2609 | llvm::Value *AnnotatedVal, |
2610 | StringRef AnnotationStr, |
2611 | SourceLocation Location, |
2612 | const AnnotateAttr *Attr) { |
2613 | SmallVector<llvm::Value *, 5> Args = { |
2614 | AnnotatedVal, |
2615 | CGM.EmitAnnotationString(Str: AnnotationStr), |
2616 | CGM.EmitAnnotationUnit(Loc: Location), |
2617 | CGM.EmitAnnotationLineNo(L: Location), |
2618 | }; |
2619 | if (Attr) |
2620 | Args.push_back(Elt: CGM.EmitAnnotationArgs(Attr)); |
2621 | return Builder.CreateCall(Callee: AnnotationFn, Args); |
2622 | } |
2623 | |
2624 | void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { |
2625 | assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute" ); |
2626 | for (const auto *I : D->specific_attrs<AnnotateAttr>()) |
2627 | EmitAnnotationCall(AnnotationFn: CGM.getIntrinsic(IID: llvm::Intrinsic::var_annotation, |
2628 | Tys: {V->getType(), CGM.ConstGlobalsPtrTy}), |
2629 | AnnotatedVal: V, AnnotationStr: I->getAnnotation(), Location: D->getLocation(), Attr: I); |
2630 | } |
2631 | |
2632 | Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, |
2633 | Address Addr) { |
2634 | assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute" ); |
2635 | llvm::Value *V = Addr.emitRawPointer(CGF&: *this); |
2636 | llvm::Type *VTy = V->getType(); |
2637 | auto *PTy = dyn_cast<llvm::PointerType>(Val: VTy); |
2638 | unsigned AS = PTy ? PTy->getAddressSpace() : 0; |
2639 | llvm::PointerType *IntrinTy = |
2640 | llvm::PointerType::get(C&: CGM.getLLVMContext(), AddressSpace: AS); |
2641 | llvm::Function *F = CGM.getIntrinsic(IID: llvm::Intrinsic::ptr_annotation, |
2642 | Tys: {IntrinTy, CGM.ConstGlobalsPtrTy}); |
2643 | |
2644 | for (const auto *I : D->specific_attrs<AnnotateAttr>()) { |
2645 | // FIXME Always emit the cast inst so we can differentiate between |
2646 | // annotation on the first field of a struct and annotation on the struct |
2647 | // itself. |
2648 | if (VTy != IntrinTy) |
2649 | V = Builder.CreateBitCast(V, DestTy: IntrinTy); |
2650 | V = EmitAnnotationCall(AnnotationFn: F, AnnotatedVal: V, AnnotationStr: I->getAnnotation(), Location: D->getLocation(), Attr: I); |
2651 | V = Builder.CreateBitCast(V, DestTy: VTy); |
2652 | } |
2653 | |
2654 | return Address(V, Addr.getElementType(), Addr.getAlignment()); |
2655 | } |
2656 | |
2657 | CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } |
2658 | |
2659 | CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) |
2660 | : CGF(CGF) { |
2661 | assert(!CGF->IsSanitizerScope); |
2662 | CGF->IsSanitizerScope = true; |
2663 | } |
2664 | |
2665 | CodeGenFunction::SanitizerScope::~SanitizerScope() { |
2666 | CGF->IsSanitizerScope = false; |
2667 | } |
2668 | |
2669 | void CodeGenFunction::InsertHelper(llvm::Instruction *I, |
2670 | const llvm::Twine &Name, |
2671 | llvm::BasicBlock::iterator InsertPt) const { |
2672 | LoopStack.InsertHelper(I); |
2673 | if (IsSanitizerScope) |
2674 | I->setNoSanitizeMetadata(); |
2675 | } |
2676 | |
2677 | void CGBuilderInserter::InsertHelper( |
2678 | llvm::Instruction *I, const llvm::Twine &Name, |
2679 | llvm::BasicBlock::iterator InsertPt) const { |
2680 | llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt); |
2681 | if (CGF) |
2682 | CGF->InsertHelper(I, Name, InsertPt); |
2683 | } |
2684 | |
2685 | // Emits an error if we don't have a valid set of target features for the |
2686 | // called function. |
2687 | void CodeGenFunction::checkTargetFeatures(const CallExpr *E, |
2688 | const FunctionDecl *TargetDecl) { |
2689 | // SemaChecking cannot handle below x86 builtins because they have different |
2690 | // parameter ranges with different TargetAttribute of caller. |
2691 | if (CGM.getContext().getTargetInfo().getTriple().isX86()) { |
2692 | unsigned BuiltinID = TargetDecl->getBuiltinID(); |
2693 | if (BuiltinID == X86::BI__builtin_ia32_cmpps || |
2694 | BuiltinID == X86::BI__builtin_ia32_cmpss || |
2695 | BuiltinID == X86::BI__builtin_ia32_cmppd || |
2696 | BuiltinID == X86::BI__builtin_ia32_cmpsd) { |
2697 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: CurCodeDecl); |
2698 | llvm::StringMap<bool> TargetFetureMap; |
2699 | CGM.getContext().getFunctionFeatureMap(FeatureMap&: TargetFetureMap, FD); |
2700 | llvm::APSInt Result = |
2701 | *(E->getArg(Arg: 2)->getIntegerConstantExpr(Ctx: CGM.getContext())); |
2702 | if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup(Key: "avx" )) |
2703 | CGM.getDiags().Report(Loc: E->getBeginLoc(), DiagID: diag::err_builtin_needs_feature) |
2704 | << TargetDecl->getDeclName() << "avx" ; |
2705 | } |
2706 | } |
2707 | return checkTargetFeatures(Loc: E->getBeginLoc(), TargetDecl); |
2708 | } |
2709 | |
2710 | // Emits an error if we don't have a valid set of target features for the |
2711 | // called function. |
2712 | void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, |
2713 | const FunctionDecl *TargetDecl) { |
2714 | // Early exit if this is an indirect call. |
2715 | if (!TargetDecl) |
2716 | return; |
2717 | |
2718 | // Get the current enclosing function if it exists. If it doesn't |
2719 | // we can't check the target features anyhow. |
2720 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: CurCodeDecl); |
2721 | if (!FD) |
2722 | return; |
2723 | |
2724 | // Grab the required features for the call. For a builtin this is listed in |
2725 | // the td file with the default cpu, for an always_inline function this is any |
2726 | // listed cpu and any listed features. |
2727 | unsigned BuiltinID = TargetDecl->getBuiltinID(); |
2728 | std::string MissingFeature; |
2729 | llvm::StringMap<bool> CallerFeatureMap; |
2730 | CGM.getContext().getFunctionFeatureMap(FeatureMap&: CallerFeatureMap, FD); |
2731 | // When compiling in HipStdPar mode we have to be conservative in rejecting |
2732 | // target specific features in the FE, and defer the possible error to the |
2733 | // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is |
2734 | // referenced by an accelerator executable function, we emit an error. |
2735 | bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice; |
2736 | if (BuiltinID) { |
2737 | StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(ID: BuiltinID)); |
2738 | if (!Builtin::evaluateRequiredTargetFeatures( |
2739 | RequiredFatures: FeatureList, TargetFetureMap: CallerFeatureMap) && !IsHipStdPar) { |
2740 | CGM.getDiags().Report(Loc, DiagID: diag::err_builtin_needs_feature) |
2741 | << TargetDecl->getDeclName() |
2742 | << FeatureList; |
2743 | } |
2744 | } else if (!TargetDecl->isMultiVersion() && |
2745 | TargetDecl->hasAttr<TargetAttr>()) { |
2746 | // Get the required features for the callee. |
2747 | |
2748 | const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); |
2749 | ParsedTargetAttr ParsedAttr = |
2750 | CGM.getContext().filterFunctionTargetAttrs(TD); |
2751 | |
2752 | SmallVector<StringRef, 1> ReqFeatures; |
2753 | llvm::StringMap<bool> CalleeFeatureMap; |
2754 | CGM.getContext().getFunctionFeatureMap(FeatureMap&: CalleeFeatureMap, TargetDecl); |
2755 | |
2756 | for (const auto &F : ParsedAttr.Features) { |
2757 | if (F[0] == '+' && CalleeFeatureMap.lookup(Key: F.substr(pos: 1))) |
2758 | ReqFeatures.push_back(Elt: StringRef(F).substr(Start: 1)); |
2759 | } |
2760 | |
2761 | for (const auto &F : CalleeFeatureMap) { |
2762 | // Only positive features are "required". |
2763 | if (F.getValue()) |
2764 | ReqFeatures.push_back(Elt: F.getKey()); |
2765 | } |
2766 | if (!llvm::all_of(Range&: ReqFeatures, P: [&](StringRef Feature) { |
2767 | if (!CallerFeatureMap.lookup(Key: Feature)) { |
2768 | MissingFeature = Feature.str(); |
2769 | return false; |
2770 | } |
2771 | return true; |
2772 | }) && !IsHipStdPar) |
2773 | CGM.getDiags().Report(Loc, DiagID: diag::err_function_needs_feature) |
2774 | << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; |
2775 | } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) { |
2776 | llvm::StringMap<bool> CalleeFeatureMap; |
2777 | CGM.getContext().getFunctionFeatureMap(FeatureMap&: CalleeFeatureMap, TargetDecl); |
2778 | |
2779 | for (const auto &F : CalleeFeatureMap) { |
2780 | if (F.getValue() && (!CallerFeatureMap.lookup(Key: F.getKey()) || |
2781 | !CallerFeatureMap.find(Key: F.getKey())->getValue()) && |
2782 | !IsHipStdPar) |
2783 | CGM.getDiags().Report(Loc, DiagID: diag::err_function_needs_feature) |
2784 | << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); |
2785 | } |
2786 | } |
2787 | } |
2788 | |
2789 | void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { |
2790 | if (!CGM.getCodeGenOpts().SanitizeStats) |
2791 | return; |
2792 | |
2793 | llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); |
2794 | IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); |
2795 | CGM.getSanStats().create(B&: IRB, SK: SSK); |
2796 | } |
2797 | |
2798 | void CodeGenFunction::EmitKCFIOperandBundle( |
2799 | const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { |
2800 | const FunctionProtoType *FP = |
2801 | Callee.getAbstractInfo().getCalleeFunctionProtoType(); |
2802 | if (FP) |
2803 | Bundles.emplace_back(Args: "kcfi" , Args: CGM.CreateKCFITypeId(T: FP->desugar())); |
2804 | } |
2805 | |
2806 | llvm::Value *CodeGenFunction::FormAArch64ResolverCondition( |
2807 | const MultiVersionResolverOption &RO) { |
2808 | llvm::SmallVector<StringRef, 8> CondFeatures; |
2809 | for (const StringRef &Feature : RO.Conditions.Features) |
2810 | CondFeatures.push_back(Elt: Feature); |
2811 | if (!CondFeatures.empty()) { |
2812 | return EmitAArch64CpuSupports(FeatureStrs: CondFeatures); |
2813 | } |
2814 | return nullptr; |
2815 | } |
2816 | |
2817 | llvm::Value *CodeGenFunction::FormX86ResolverCondition( |
2818 | const MultiVersionResolverOption &RO) { |
2819 | llvm::Value *Condition = nullptr; |
2820 | |
2821 | if (!RO.Conditions.Architecture.empty()) { |
2822 | StringRef Arch = RO.Conditions.Architecture; |
2823 | // If arch= specifies an x86-64 micro-architecture level, test the feature |
2824 | // with __builtin_cpu_supports, otherwise use __builtin_cpu_is. |
2825 | if (Arch.starts_with(Prefix: "x86-64" )) |
2826 | Condition = EmitX86CpuSupports(FeatureStrs: {Arch}); |
2827 | else |
2828 | Condition = EmitX86CpuIs(CPUStr: Arch); |
2829 | } |
2830 | |
2831 | if (!RO.Conditions.Features.empty()) { |
2832 | llvm::Value *FeatureCond = EmitX86CpuSupports(FeatureStrs: RO.Conditions.Features); |
2833 | Condition = |
2834 | Condition ? Builder.CreateAnd(LHS: Condition, RHS: FeatureCond) : FeatureCond; |
2835 | } |
2836 | return Condition; |
2837 | } |
2838 | |
2839 | static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, |
2840 | llvm::Function *Resolver, |
2841 | CGBuilderTy &Builder, |
2842 | llvm::Function *FuncToReturn, |
2843 | bool SupportsIFunc) { |
2844 | if (SupportsIFunc) { |
2845 | Builder.CreateRet(V: FuncToReturn); |
2846 | return; |
2847 | } |
2848 | |
2849 | llvm::SmallVector<llvm::Value *, 10> Args( |
2850 | llvm::make_pointer_range(Range: Resolver->args())); |
2851 | |
2852 | llvm::CallInst *Result = Builder.CreateCall(Callee: FuncToReturn, Args); |
2853 | Result->setTailCallKind(llvm::CallInst::TCK_MustTail); |
2854 | |
2855 | if (Resolver->getReturnType()->isVoidTy()) |
2856 | Builder.CreateRetVoid(); |
2857 | else |
2858 | Builder.CreateRet(V: Result); |
2859 | } |
2860 | |
2861 | void CodeGenFunction::EmitMultiVersionResolver( |
2862 | llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { |
2863 | |
2864 | llvm::Triple::ArchType ArchType = |
2865 | getContext().getTargetInfo().getTriple().getArch(); |
2866 | |
2867 | switch (ArchType) { |
2868 | case llvm::Triple::x86: |
2869 | case llvm::Triple::x86_64: |
2870 | EmitX86MultiVersionResolver(Resolver, Options); |
2871 | return; |
2872 | case llvm::Triple::aarch64: |
2873 | EmitAArch64MultiVersionResolver(Resolver, Options); |
2874 | return; |
2875 | |
2876 | default: |
2877 | assert(false && "Only implemented for x86 and AArch64 targets" ); |
2878 | } |
2879 | } |
2880 | |
2881 | void CodeGenFunction::EmitAArch64MultiVersionResolver( |
2882 | llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { |
2883 | assert(!Options.empty() && "No multiversion resolver options found" ); |
2884 | assert(Options.back().Conditions.Features.size() == 0 && |
2885 | "Default case must be last" ); |
2886 | bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); |
2887 | assert(SupportsIFunc && |
2888 | "Multiversion resolver requires target IFUNC support" ); |
2889 | bool AArch64CpuInitialized = false; |
2890 | llvm::BasicBlock *CurBlock = createBasicBlock(name: "resolver_entry" , parent: Resolver); |
2891 | |
2892 | for (const MultiVersionResolverOption &RO : Options) { |
2893 | Builder.SetInsertPoint(CurBlock); |
2894 | llvm::Value *Condition = FormAArch64ResolverCondition(RO); |
2895 | |
2896 | // The 'default' or 'all features enabled' case. |
2897 | if (!Condition) { |
2898 | CreateMultiVersionResolverReturn(CGM, Resolver, Builder, FuncToReturn: RO.Function, |
2899 | SupportsIFunc); |
2900 | return; |
2901 | } |
2902 | |
2903 | if (!AArch64CpuInitialized) { |
2904 | Builder.SetInsertPoint(TheBB: CurBlock, IP: CurBlock->begin()); |
2905 | EmitAArch64CpuInit(); |
2906 | AArch64CpuInitialized = true; |
2907 | Builder.SetInsertPoint(CurBlock); |
2908 | } |
2909 | |
2910 | llvm::BasicBlock *RetBlock = createBasicBlock(name: "resolver_return" , parent: Resolver); |
2911 | CGBuilderTy RetBuilder(*this, RetBlock); |
2912 | CreateMultiVersionResolverReturn(CGM, Resolver, Builder&: RetBuilder, FuncToReturn: RO.Function, |
2913 | SupportsIFunc); |
2914 | CurBlock = createBasicBlock(name: "resolver_else" , parent: Resolver); |
2915 | Builder.CreateCondBr(Cond: Condition, True: RetBlock, False: CurBlock); |
2916 | } |
2917 | |
2918 | // If no default, emit an unreachable. |
2919 | Builder.SetInsertPoint(CurBlock); |
2920 | llvm::CallInst *TrapCall = EmitTrapCall(IntrID: llvm::Intrinsic::trap); |
2921 | TrapCall->setDoesNotReturn(); |
2922 | TrapCall->setDoesNotThrow(); |
2923 | Builder.CreateUnreachable(); |
2924 | Builder.ClearInsertionPoint(); |
2925 | } |
2926 | |
2927 | void CodeGenFunction::EmitX86MultiVersionResolver( |
2928 | llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { |
2929 | |
2930 | bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); |
2931 | |
2932 | // Main function's basic block. |
2933 | llvm::BasicBlock *CurBlock = createBasicBlock(name: "resolver_entry" , parent: Resolver); |
2934 | Builder.SetInsertPoint(CurBlock); |
2935 | EmitX86CpuInit(); |
2936 | |
2937 | for (const MultiVersionResolverOption &RO : Options) { |
2938 | Builder.SetInsertPoint(CurBlock); |
2939 | llvm::Value *Condition = FormX86ResolverCondition(RO); |
2940 | |
2941 | // The 'default' or 'generic' case. |
2942 | if (!Condition) { |
2943 | assert(&RO == Options.end() - 1 && |
2944 | "Default or Generic case must be last" ); |
2945 | CreateMultiVersionResolverReturn(CGM, Resolver, Builder, FuncToReturn: RO.Function, |
2946 | SupportsIFunc); |
2947 | return; |
2948 | } |
2949 | |
2950 | llvm::BasicBlock *RetBlock = createBasicBlock(name: "resolver_return" , parent: Resolver); |
2951 | CGBuilderTy RetBuilder(*this, RetBlock); |
2952 | CreateMultiVersionResolverReturn(CGM, Resolver, Builder&: RetBuilder, FuncToReturn: RO.Function, |
2953 | SupportsIFunc); |
2954 | CurBlock = createBasicBlock(name: "resolver_else" , parent: Resolver); |
2955 | Builder.CreateCondBr(Cond: Condition, True: RetBlock, False: CurBlock); |
2956 | } |
2957 | |
2958 | // If no generic/default, emit an unreachable. |
2959 | Builder.SetInsertPoint(CurBlock); |
2960 | llvm::CallInst *TrapCall = EmitTrapCall(IntrID: llvm::Intrinsic::trap); |
2961 | TrapCall->setDoesNotReturn(); |
2962 | TrapCall->setDoesNotThrow(); |
2963 | Builder.CreateUnreachable(); |
2964 | Builder.ClearInsertionPoint(); |
2965 | } |
2966 | |
2967 | // Loc - where the diagnostic will point, where in the source code this |
2968 | // alignment has failed. |
2969 | // SecondaryLoc - if present (will be present if sufficiently different from |
2970 | // Loc), the diagnostic will additionally point a "Note:" to this location. |
2971 | // It should be the location where the __attribute__((assume_aligned)) |
2972 | // was written e.g. |
2973 | void CodeGenFunction::emitAlignmentAssumptionCheck( |
2974 | llvm::Value *Ptr, QualType Ty, SourceLocation Loc, |
2975 | SourceLocation SecondaryLoc, llvm::Value *Alignment, |
2976 | llvm::Value *OffsetValue, llvm::Value *TheCheck, |
2977 | llvm::Instruction *Assumption) { |
2978 | assert(isa_and_nonnull<llvm::CallInst>(Assumption) && |
2979 | cast<llvm::CallInst>(Assumption)->getCalledOperand() == |
2980 | llvm::Intrinsic::getDeclaration( |
2981 | Builder.GetInsertBlock()->getParent()->getParent(), |
2982 | llvm::Intrinsic::assume) && |
2983 | "Assumption should be a call to llvm.assume()." ); |
2984 | assert(&(Builder.GetInsertBlock()->back()) == Assumption && |
2985 | "Assumption should be the last instruction of the basic block, " |
2986 | "since the basic block is still being generated." ); |
2987 | |
2988 | if (!SanOpts.has(K: SanitizerKind::Alignment)) |
2989 | return; |
2990 | |
2991 | // Don't check pointers to volatile data. The behavior here is implementation- |
2992 | // defined. |
2993 | if (Ty->getPointeeType().isVolatileQualified()) |
2994 | return; |
2995 | |
2996 | // We need to temorairly remove the assumption so we can insert the |
2997 | // sanitizer check before it, else the check will be dropped by optimizations. |
2998 | Assumption->removeFromParent(); |
2999 | |
3000 | { |
3001 | SanitizerScope SanScope(this); |
3002 | |
3003 | if (!OffsetValue) |
3004 | OffsetValue = Builder.getInt1(V: false); // no offset. |
3005 | |
3006 | llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), |
3007 | EmitCheckSourceLocation(Loc: SecondaryLoc), |
3008 | EmitCheckTypeDescriptor(T: Ty)}; |
3009 | llvm::Value *DynamicData[] = {EmitCheckValue(V: Ptr), |
3010 | EmitCheckValue(V: Alignment), |
3011 | EmitCheckValue(V: OffsetValue)}; |
3012 | EmitCheck(Checked: {std::make_pair(x&: TheCheck, y: SanitizerKind::Alignment)}, |
3013 | Check: SanitizerHandler::AlignmentAssumption, StaticArgs: StaticData, DynamicArgs: DynamicData); |
3014 | } |
3015 | |
3016 | // We are now in the (new, empty) "cont" basic block. |
3017 | // Reintroduce the assumption. |
3018 | Builder.Insert(I: Assumption); |
3019 | // FIXME: Assumption still has it's original basic block as it's Parent. |
3020 | } |
3021 | |
3022 | llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { |
3023 | if (CGDebugInfo *DI = getDebugInfo()) |
3024 | return DI->SourceLocToDebugLoc(Loc: Location); |
3025 | |
3026 | return llvm::DebugLoc(); |
3027 | } |
3028 | |
3029 | llvm::Value * |
3030 | CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, |
3031 | Stmt::Likelihood LH) { |
3032 | switch (LH) { |
3033 | case Stmt::LH_None: |
3034 | return Cond; |
3035 | case Stmt::LH_Likely: |
3036 | case Stmt::LH_Unlikely: |
3037 | // Don't generate llvm.expect on -O0 as the backend won't use it for |
3038 | // anything. |
3039 | if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
3040 | return Cond; |
3041 | llvm::Type *CondTy = Cond->getType(); |
3042 | assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean" ); |
3043 | llvm::Function *FnExpect = |
3044 | CGM.getIntrinsic(IID: llvm::Intrinsic::expect, Tys: CondTy); |
3045 | llvm::Value *ExpectedValueOfCond = |
3046 | llvm::ConstantInt::getBool(Ty: CondTy, V: LH == Stmt::LH_Likely); |
3047 | return Builder.CreateCall(Callee: FnExpect, Args: {Cond, ExpectedValueOfCond}, |
3048 | Name: Cond->getName() + ".expval" ); |
3049 | } |
3050 | llvm_unreachable("Unknown Likelihood" ); |
3051 | } |
3052 | |
3053 | llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, |
3054 | unsigned NumElementsDst, |
3055 | const llvm::Twine &Name) { |
3056 | auto *SrcTy = cast<llvm::FixedVectorType>(Val: SrcVec->getType()); |
3057 | unsigned NumElementsSrc = SrcTy->getNumElements(); |
3058 | if (NumElementsSrc == NumElementsDst) |
3059 | return SrcVec; |
3060 | |
3061 | std::vector<int> ShuffleMask(NumElementsDst, -1); |
3062 | for (unsigned MaskIdx = 0; |
3063 | MaskIdx < std::min<>(a: NumElementsDst, b: NumElementsSrc); ++MaskIdx) |
3064 | ShuffleMask[MaskIdx] = MaskIdx; |
3065 | |
3066 | return Builder.CreateShuffleVector(V: SrcVec, Mask: ShuffleMask, Name); |
3067 | } |
3068 | |
3069 | void CodeGenFunction::EmitPointerAuthOperandBundle( |
3070 | const CGPointerAuthInfo &PointerAuth, |
3071 | SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { |
3072 | if (!PointerAuth.isSigned()) |
3073 | return; |
3074 | |
3075 | auto *Key = Builder.getInt32(C: PointerAuth.getKey()); |
3076 | |
3077 | llvm::Value *Discriminator = PointerAuth.getDiscriminator(); |
3078 | if (!Discriminator) |
3079 | Discriminator = Builder.getSize(N: 0); |
3080 | |
3081 | llvm::Value *Args[] = {Key, Discriminator}; |
3082 | Bundles.emplace_back(Args: "ptrauth" , Args); |
3083 | } |
3084 | |
3085 | static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF, |
3086 | const CGPointerAuthInfo &PointerAuth, |
3087 | llvm::Value *Pointer, |
3088 | unsigned IntrinsicID) { |
3089 | if (!PointerAuth) |
3090 | return Pointer; |
3091 | |
3092 | auto Key = CGF.Builder.getInt32(C: PointerAuth.getKey()); |
3093 | |
3094 | llvm::Value *Discriminator = PointerAuth.getDiscriminator(); |
3095 | if (!Discriminator) { |
3096 | Discriminator = CGF.Builder.getSize(N: 0); |
3097 | } |
3098 | |
3099 | // Convert the pointer to intptr_t before signing it. |
3100 | auto OrigType = Pointer->getType(); |
3101 | Pointer = CGF.Builder.CreatePtrToInt(V: Pointer, DestTy: CGF.IntPtrTy); |
3102 | |
3103 | // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator) |
3104 | auto Intrinsic = CGF.CGM.getIntrinsic(IID: IntrinsicID); |
3105 | Pointer = CGF.EmitRuntimeCall(callee: Intrinsic, args: {Pointer, Key, Discriminator}); |
3106 | |
3107 | // Convert back to the original type. |
3108 | Pointer = CGF.Builder.CreateIntToPtr(V: Pointer, DestTy: OrigType); |
3109 | return Pointer; |
3110 | } |
3111 | |
3112 | llvm::Value * |
3113 | CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth, |
3114 | llvm::Value *Pointer) { |
3115 | if (!PointerAuth.shouldSign()) |
3116 | return Pointer; |
3117 | return EmitPointerAuthCommon(CGF&: *this, PointerAuth, Pointer, |
3118 | IntrinsicID: llvm::Intrinsic::ptrauth_sign); |
3119 | } |
3120 | |
3121 | static llvm::Value *EmitStrip(CodeGenFunction &CGF, |
3122 | const CGPointerAuthInfo &PointerAuth, |
3123 | llvm::Value *Pointer) { |
3124 | auto StripIntrinsic = CGF.CGM.getIntrinsic(IID: llvm::Intrinsic::ptrauth_strip); |
3125 | |
3126 | auto Key = CGF.Builder.getInt32(C: PointerAuth.getKey()); |
3127 | // Convert the pointer to intptr_t before signing it. |
3128 | auto OrigType = Pointer->getType(); |
3129 | Pointer = CGF.EmitRuntimeCall( |
3130 | callee: StripIntrinsic, args: {CGF.Builder.CreatePtrToInt(V: Pointer, DestTy: CGF.IntPtrTy), Key}); |
3131 | return CGF.Builder.CreateIntToPtr(V: Pointer, DestTy: OrigType); |
3132 | } |
3133 | |
3134 | llvm::Value * |
3135 | CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth, |
3136 | llvm::Value *Pointer) { |
3137 | if (PointerAuth.shouldStrip()) { |
3138 | return EmitStrip(CGF&: *this, PointerAuth, Pointer); |
3139 | } |
3140 | if (!PointerAuth.shouldAuth()) { |
3141 | return Pointer; |
3142 | } |
3143 | |
3144 | return EmitPointerAuthCommon(CGF&: *this, PointerAuth, Pointer, |
3145 | IntrinsicID: llvm::Intrinsic::ptrauth_auth); |
3146 | } |
3147 | |