1 | //===- SpillPlacement.cpp - Optimal Spill Code Placement ------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the spill code placement analysis. |
10 | // |
11 | // Each edge bundle corresponds to a node in a Hopfield network. Constraints on |
12 | // basic blocks are weighted by the block frequency and added to become the node |
13 | // bias. |
14 | // |
15 | // Transparent basic blocks have the variable live through, but don't care if it |
16 | // is spilled or in a register. These blocks become connections in the Hopfield |
17 | // network, again weighted by block frequency. |
18 | // |
19 | // The Hopfield network minimizes (possibly locally) its energy function: |
20 | // |
21 | // E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b ) |
22 | // |
23 | // The energy function represents the expected spill code execution frequency, |
24 | // or the cost of spilling. This is a Lyapunov function which never increases |
25 | // when a node is updated. It is guaranteed to converge to a local minimum. |
26 | // |
27 | //===----------------------------------------------------------------------===// |
28 | |
29 | #include "SpillPlacement.h" |
30 | #include "llvm/ADT/BitVector.h" |
31 | #include "llvm/CodeGen/EdgeBundles.h" |
32 | #include "llvm/CodeGen/MachineBasicBlock.h" |
33 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
34 | #include "llvm/CodeGen/MachineFunction.h" |
35 | #include "llvm/CodeGen/Passes.h" |
36 | #include "llvm/InitializePasses.h" |
37 | #include "llvm/Pass.h" |
38 | #include <algorithm> |
39 | #include <cassert> |
40 | #include <cstdint> |
41 | #include <utility> |
42 | |
43 | using namespace llvm; |
44 | |
45 | #define DEBUG_TYPE "spill-code-placement" |
46 | |
47 | char SpillPlacement::ID = 0; |
48 | |
49 | char &llvm::SpillPlacementID = SpillPlacement::ID; |
50 | |
51 | INITIALIZE_PASS_BEGIN(SpillPlacement, DEBUG_TYPE, |
52 | "Spill Code Placement Analysis" , true, true) |
53 | INITIALIZE_PASS_DEPENDENCY(EdgeBundles) |
54 | INITIALIZE_PASS_END(SpillPlacement, DEBUG_TYPE, |
55 | "Spill Code Placement Analysis" , true, true) |
56 | |
57 | void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const { |
58 | AU.setPreservesAll(); |
59 | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); |
60 | AU.addRequiredTransitive<EdgeBundles>(); |
61 | MachineFunctionPass::getAnalysisUsage(AU); |
62 | } |
63 | |
64 | /// Node - Each edge bundle corresponds to a Hopfield node. |
65 | /// |
66 | /// The node contains precomputed frequency data that only depends on the CFG, |
67 | /// but Bias and Links are computed each time placeSpills is called. |
68 | /// |
69 | /// The node Value is positive when the variable should be in a register. The |
70 | /// value can change when linked nodes change, but convergence is very fast |
71 | /// because all weights are positive. |
72 | struct SpillPlacement::Node { |
73 | /// BiasN - Sum of blocks that prefer a spill. |
74 | BlockFrequency BiasN; |
75 | |
76 | /// BiasP - Sum of blocks that prefer a register. |
77 | BlockFrequency BiasP; |
78 | |
79 | /// Value - Output value of this node computed from the Bias and links. |
80 | /// This is always on of the values {-1, 0, 1}. A positive number means the |
81 | /// variable should go in a register through this bundle. |
82 | int Value; |
83 | |
84 | using LinkVector = SmallVector<std::pair<BlockFrequency, unsigned>, 4>; |
85 | |
86 | /// Links - (Weight, BundleNo) for all transparent blocks connecting to other |
87 | /// bundles. The weights are all positive block frequencies. |
88 | LinkVector Links; |
89 | |
90 | /// SumLinkWeights - Cached sum of the weights of all links + ThresHold. |
91 | BlockFrequency SumLinkWeights; |
92 | |
93 | /// preferReg - Return true when this node prefers to be in a register. |
94 | bool preferReg() const { |
95 | // Undecided nodes (Value==0) go on the stack. |
96 | return Value > 0; |
97 | } |
98 | |
99 | /// mustSpill - Return True if this node is so biased that it must spill. |
100 | bool mustSpill() const { |
101 | // We must spill if Bias < -sum(weights) or the MustSpill flag was set. |
102 | // BiasN is saturated when MustSpill is set, make sure this still returns |
103 | // true when the RHS saturates. Note that SumLinkWeights includes Threshold. |
104 | return BiasN >= BiasP + SumLinkWeights; |
105 | } |
106 | |
107 | /// clear - Reset per-query data, but preserve frequencies that only depend on |
108 | /// the CFG. |
109 | void clear(BlockFrequency Threshold) { |
110 | BiasN = BlockFrequency(0); |
111 | BiasP = BlockFrequency(0); |
112 | Value = 0; |
113 | SumLinkWeights = Threshold; |
114 | Links.clear(); |
115 | } |
116 | |
117 | /// addLink - Add a link to bundle b with weight w. |
118 | void addLink(unsigned b, BlockFrequency w) { |
119 | // Update cached sum. |
120 | SumLinkWeights += w; |
121 | |
122 | // There can be multiple links to the same bundle, add them up. |
123 | for (std::pair<BlockFrequency, unsigned> &L : Links) |
124 | if (L.second == b) { |
125 | L.first += w; |
126 | return; |
127 | } |
128 | // This must be the first link to b. |
129 | Links.push_back(Elt: std::make_pair(x&: w, y&: b)); |
130 | } |
131 | |
132 | /// addBias - Bias this node. |
133 | void addBias(BlockFrequency freq, BorderConstraint direction) { |
134 | switch (direction) { |
135 | default: |
136 | break; |
137 | case PrefReg: |
138 | BiasP += freq; |
139 | break; |
140 | case PrefSpill: |
141 | BiasN += freq; |
142 | break; |
143 | case MustSpill: |
144 | BiasN = BlockFrequency::max(); |
145 | break; |
146 | } |
147 | } |
148 | |
149 | /// update - Recompute Value from Bias and Links. Return true when node |
150 | /// preference changes. |
151 | bool update(const Node nodes[], BlockFrequency Threshold) { |
152 | // Compute the weighted sum of inputs. |
153 | BlockFrequency SumN = BiasN; |
154 | BlockFrequency SumP = BiasP; |
155 | for (std::pair<BlockFrequency, unsigned> &L : Links) { |
156 | if (nodes[L.second].Value == -1) |
157 | SumN += L.first; |
158 | else if (nodes[L.second].Value == 1) |
159 | SumP += L.first; |
160 | } |
161 | |
162 | // Each weighted sum is going to be less than the total frequency of the |
163 | // bundle. Ideally, we should simply set Value = sign(SumP - SumN), but we |
164 | // will add a dead zone around 0 for two reasons: |
165 | // |
166 | // 1. It avoids arbitrary bias when all links are 0 as is possible during |
167 | // initial iterations. |
168 | // 2. It helps tame rounding errors when the links nominally sum to 0. |
169 | // |
170 | bool Before = preferReg(); |
171 | if (SumN >= SumP + Threshold) |
172 | Value = -1; |
173 | else if (SumP >= SumN + Threshold) |
174 | Value = 1; |
175 | else |
176 | Value = 0; |
177 | return Before != preferReg(); |
178 | } |
179 | |
180 | void getDissentingNeighbors(SparseSet<unsigned> &List, |
181 | const Node nodes[]) const { |
182 | for (const auto &Elt : Links) { |
183 | unsigned n = Elt.second; |
184 | // Neighbors that already have the same value are not going to |
185 | // change because of this node changing. |
186 | if (Value != nodes[n].Value) |
187 | List.insert(Val: n); |
188 | } |
189 | } |
190 | }; |
191 | |
192 | bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) { |
193 | MF = &mf; |
194 | bundles = &getAnalysis<EdgeBundles>(); |
195 | |
196 | assert(!nodes && "Leaking node array" ); |
197 | nodes = new Node[bundles->getNumBundles()]; |
198 | TodoList.clear(); |
199 | TodoList.setUniverse(bundles->getNumBundles()); |
200 | |
201 | // Compute total ingoing and outgoing block frequencies for all bundles. |
202 | BlockFrequencies.resize(N: mf.getNumBlockIDs()); |
203 | MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(); |
204 | setThreshold(MBFI->getEntryFreq()); |
205 | for (auto &I : mf) { |
206 | unsigned Num = I.getNumber(); |
207 | BlockFrequencies[Num] = MBFI->getBlockFreq(MBB: &I); |
208 | } |
209 | |
210 | // We never change the function. |
211 | return false; |
212 | } |
213 | |
214 | void SpillPlacement::releaseMemory() { |
215 | delete[] nodes; |
216 | nodes = nullptr; |
217 | TodoList.clear(); |
218 | } |
219 | |
220 | /// activate - mark node n as active if it wasn't already. |
221 | void SpillPlacement::activate(unsigned n) { |
222 | TodoList.insert(Val: n); |
223 | if (ActiveNodes->test(Idx: n)) |
224 | return; |
225 | ActiveNodes->set(n); |
226 | nodes[n].clear(Threshold); |
227 | |
228 | // Very large bundles usually come from big switches, indirect branches, |
229 | // landing pads, or loops with many 'continue' statements. It is difficult to |
230 | // allocate registers when so many different blocks are involved. |
231 | // |
232 | // Give a small negative bias to large bundles such that a substantial |
233 | // fraction of the connected blocks need to be interested before we consider |
234 | // expanding the region through the bundle. This helps compile time by |
235 | // limiting the number of blocks visited and the number of links in the |
236 | // Hopfield network. |
237 | if (bundles->getBlocks(Bundle: n).size() > 100) { |
238 | nodes[n].BiasP = BlockFrequency(0); |
239 | BlockFrequency BiasN = MBFI->getEntryFreq(); |
240 | BiasN >>= 4; |
241 | nodes[n].BiasN = BiasN; |
242 | } |
243 | } |
244 | |
245 | /// Set the threshold for a given entry frequency. |
246 | /// |
247 | /// Set the threshold relative to \c Entry. Since the threshold is used as a |
248 | /// bound on the open interval (-Threshold;Threshold), 1 is the minimum |
249 | /// threshold. |
250 | void SpillPlacement::setThreshold(BlockFrequency Entry) { |
251 | // Apparently 2 is a good threshold when Entry==2^14, but we need to scale |
252 | // it. Divide by 2^13, rounding as appropriate. |
253 | uint64_t Freq = Entry.getFrequency(); |
254 | uint64_t Scaled = (Freq >> 13) + bool(Freq & (1 << 12)); |
255 | Threshold = BlockFrequency(std::max(UINT64_C(1), b: Scaled)); |
256 | } |
257 | |
258 | /// addConstraints - Compute node biases and weights from a set of constraints. |
259 | /// Set a bit in NodeMask for each active node. |
260 | void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) { |
261 | for (const BlockConstraint &LB : LiveBlocks) { |
262 | BlockFrequency Freq = BlockFrequencies[LB.Number]; |
263 | |
264 | // Live-in to block? |
265 | if (LB.Entry != DontCare) { |
266 | unsigned ib = bundles->getBundle(N: LB.Number, Out: false); |
267 | activate(n: ib); |
268 | nodes[ib].addBias(freq: Freq, direction: LB.Entry); |
269 | } |
270 | |
271 | // Live-out from block? |
272 | if (LB.Exit != DontCare) { |
273 | unsigned ob = bundles->getBundle(N: LB.Number, Out: true); |
274 | activate(n: ob); |
275 | nodes[ob].addBias(freq: Freq, direction: LB.Exit); |
276 | } |
277 | } |
278 | } |
279 | |
280 | /// addPrefSpill - Same as addConstraints(PrefSpill) |
281 | void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) { |
282 | for (unsigned B : Blocks) { |
283 | BlockFrequency Freq = BlockFrequencies[B]; |
284 | if (Strong) |
285 | Freq += Freq; |
286 | unsigned ib = bundles->getBundle(N: B, Out: false); |
287 | unsigned ob = bundles->getBundle(N: B, Out: true); |
288 | activate(n: ib); |
289 | activate(n: ob); |
290 | nodes[ib].addBias(freq: Freq, direction: PrefSpill); |
291 | nodes[ob].addBias(freq: Freq, direction: PrefSpill); |
292 | } |
293 | } |
294 | |
295 | void SpillPlacement::addLinks(ArrayRef<unsigned> Links) { |
296 | for (unsigned Number : Links) { |
297 | unsigned ib = bundles->getBundle(N: Number, Out: false); |
298 | unsigned ob = bundles->getBundle(N: Number, Out: true); |
299 | |
300 | // Ignore self-loops. |
301 | if (ib == ob) |
302 | continue; |
303 | activate(n: ib); |
304 | activate(n: ob); |
305 | BlockFrequency Freq = BlockFrequencies[Number]; |
306 | nodes[ib].addLink(b: ob, w: Freq); |
307 | nodes[ob].addLink(b: ib, w: Freq); |
308 | } |
309 | } |
310 | |
311 | bool SpillPlacement::scanActiveBundles() { |
312 | RecentPositive.clear(); |
313 | for (unsigned n : ActiveNodes->set_bits()) { |
314 | update(n); |
315 | // A node that must spill, or a node without any links is not going to |
316 | // change its value ever again, so exclude it from iterations. |
317 | if (nodes[n].mustSpill()) |
318 | continue; |
319 | if (nodes[n].preferReg()) |
320 | RecentPositive.push_back(Elt: n); |
321 | } |
322 | return !RecentPositive.empty(); |
323 | } |
324 | |
325 | bool SpillPlacement::update(unsigned n) { |
326 | if (!nodes[n].update(nodes, Threshold)) |
327 | return false; |
328 | nodes[n].getDissentingNeighbors(List&: TodoList, nodes); |
329 | return true; |
330 | } |
331 | |
332 | /// iterate - Repeatedly update the Hopfield nodes until stability or the |
333 | /// maximum number of iterations is reached. |
334 | void SpillPlacement::iterate() { |
335 | // We do not need to push those node in the todolist. |
336 | // They are already been proceeded as part of the previous iteration. |
337 | RecentPositive.clear(); |
338 | |
339 | // Since the last iteration, the todolist have been augmented by calls |
340 | // to addConstraints, addLinks, and co. |
341 | // Update the network energy starting at this new frontier. |
342 | // The call to ::update will add the nodes that changed into the todolist. |
343 | unsigned Limit = bundles->getNumBundles() * 10; |
344 | while(Limit-- > 0 && !TodoList.empty()) { |
345 | unsigned n = TodoList.pop_back_val(); |
346 | if (!update(n)) |
347 | continue; |
348 | if (nodes[n].preferReg()) |
349 | RecentPositive.push_back(Elt: n); |
350 | } |
351 | } |
352 | |
353 | void SpillPlacement::prepare(BitVector &RegBundles) { |
354 | RecentPositive.clear(); |
355 | TodoList.clear(); |
356 | // Reuse RegBundles as our ActiveNodes vector. |
357 | ActiveNodes = &RegBundles; |
358 | ActiveNodes->clear(); |
359 | ActiveNodes->resize(N: bundles->getNumBundles()); |
360 | } |
361 | |
362 | bool |
363 | SpillPlacement::finish() { |
364 | assert(ActiveNodes && "Call prepare() first" ); |
365 | |
366 | // Write preferences back to ActiveNodes. |
367 | bool Perfect = true; |
368 | for (unsigned n : ActiveNodes->set_bits()) |
369 | if (!nodes[n].preferReg()) { |
370 | ActiveNodes->reset(Idx: n); |
371 | Perfect = false; |
372 | } |
373 | ActiveNodes = nullptr; |
374 | return Perfect; |
375 | } |
376 | |
377 | void SpillPlacement::BlockConstraint::print(raw_ostream &OS) const { |
378 | auto toString = [](BorderConstraint C) -> StringRef { |
379 | switch(C) { |
380 | case DontCare: return "DontCare" ; |
381 | case PrefReg: return "PrefReg" ; |
382 | case PrefSpill: return "PrefSpill" ; |
383 | case PrefBoth: return "PrefBoth" ; |
384 | case MustSpill: return "MustSpill" ; |
385 | }; |
386 | llvm_unreachable("uncovered switch" ); |
387 | }; |
388 | |
389 | dbgs() << "{" << Number << ", " |
390 | << toString(Entry) << ", " |
391 | << toString(Exit) << ", " |
392 | << (ChangesValue ? "changes" : "no change" ) << "}" ; |
393 | } |
394 | |
395 | void SpillPlacement::BlockConstraint::dump() const { |
396 | print(OS&: dbgs()); |
397 | dbgs() << "\n" ; |
398 | } |
399 | |