1 | //===- AMDGPInstCombineIntrinsic.cpp - AMDGPU specific InstCombine pass ---===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // \file |
10 | // This file implements a TargetTransformInfo analysis pass specific to the |
11 | // AMDGPU target machine. It uses the target's detailed information to provide |
12 | // more precise answers to certain TTI queries, while letting the target |
13 | // independent and default TTI implementations handle the rest. |
14 | // |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #include "AMDGPUInstrInfo.h" |
18 | #include "AMDGPUTargetTransformInfo.h" |
19 | #include "GCNSubtarget.h" |
20 | #include "llvm/ADT/FloatingPointMode.h" |
21 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
22 | #include "llvm/Transforms/InstCombine/InstCombiner.h" |
23 | #include <optional> |
24 | |
25 | using namespace llvm; |
26 | using namespace llvm::PatternMatch; |
27 | |
28 | #define DEBUG_TYPE "AMDGPUtti" |
29 | |
30 | namespace { |
31 | |
32 | struct AMDGPUImageDMaskIntrinsic { |
33 | unsigned Intr; |
34 | }; |
35 | |
36 | #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL |
37 | #include "InstCombineTables.inc" |
38 | |
39 | } // end anonymous namespace |
40 | |
41 | // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs. |
42 | // |
43 | // A single NaN input is folded to minnum, so we rely on that folding for |
44 | // handling NaNs. |
45 | static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1, |
46 | const APFloat &Src2) { |
47 | APFloat Max3 = maxnum(A: maxnum(A: Src0, B: Src1), B: Src2); |
48 | |
49 | APFloat::cmpResult Cmp0 = Max3.compare(RHS: Src0); |
50 | assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately" ); |
51 | if (Cmp0 == APFloat::cmpEqual) |
52 | return maxnum(A: Src1, B: Src2); |
53 | |
54 | APFloat::cmpResult Cmp1 = Max3.compare(RHS: Src1); |
55 | assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately" ); |
56 | if (Cmp1 == APFloat::cmpEqual) |
57 | return maxnum(A: Src0, B: Src2); |
58 | |
59 | return maxnum(A: Src0, B: Src1); |
60 | } |
61 | |
62 | // Check if a value can be converted to a 16-bit value without losing |
63 | // precision. |
64 | // The value is expected to be either a float (IsFloat = true) or an unsigned |
65 | // integer (IsFloat = false). |
66 | static bool canSafelyConvertTo16Bit(Value &V, bool IsFloat) { |
67 | Type *VTy = V.getType(); |
68 | if (VTy->isHalfTy() || VTy->isIntegerTy(Bitwidth: 16)) { |
69 | // The value is already 16-bit, so we don't want to convert to 16-bit again! |
70 | return false; |
71 | } |
72 | if (IsFloat) { |
73 | if (ConstantFP *ConstFloat = dyn_cast<ConstantFP>(Val: &V)) { |
74 | // We need to check that if we cast the index down to a half, we do not |
75 | // lose precision. |
76 | APFloat FloatValue(ConstFloat->getValueAPF()); |
77 | bool LosesInfo = true; |
78 | FloatValue.convert(ToSemantics: APFloat::IEEEhalf(), RM: APFloat::rmTowardZero, |
79 | losesInfo: &LosesInfo); |
80 | return !LosesInfo; |
81 | } |
82 | } else { |
83 | if (ConstantInt *ConstInt = dyn_cast<ConstantInt>(Val: &V)) { |
84 | // We need to check that if we cast the index down to an i16, we do not |
85 | // lose precision. |
86 | APInt IntValue(ConstInt->getValue()); |
87 | return IntValue.getActiveBits() <= 16; |
88 | } |
89 | } |
90 | |
91 | Value *CastSrc; |
92 | bool IsExt = IsFloat ? match(V: &V, P: m_FPExt(Op: PatternMatch::m_Value(V&: CastSrc))) |
93 | : match(V: &V, P: m_ZExt(Op: PatternMatch::m_Value(V&: CastSrc))); |
94 | if (IsExt) { |
95 | Type *CastSrcTy = CastSrc->getType(); |
96 | if (CastSrcTy->isHalfTy() || CastSrcTy->isIntegerTy(Bitwidth: 16)) |
97 | return true; |
98 | } |
99 | |
100 | return false; |
101 | } |
102 | |
103 | // Convert a value to 16-bit. |
104 | static Value *convertTo16Bit(Value &V, InstCombiner::BuilderTy &Builder) { |
105 | Type *VTy = V.getType(); |
106 | if (isa<FPExtInst>(Val: &V) || isa<SExtInst>(Val: &V) || isa<ZExtInst>(Val: &V)) |
107 | return cast<Instruction>(Val: &V)->getOperand(i: 0); |
108 | if (VTy->isIntegerTy()) |
109 | return Builder.CreateIntCast(V: &V, DestTy: Type::getInt16Ty(C&: V.getContext()), isSigned: false); |
110 | if (VTy->isFloatingPointTy()) |
111 | return Builder.CreateFPCast(V: &V, DestTy: Type::getHalfTy(C&: V.getContext())); |
112 | |
113 | llvm_unreachable("Should never be called!" ); |
114 | } |
115 | |
116 | /// Applies Func(OldIntr.Args, OldIntr.ArgTys), creates intrinsic call with |
117 | /// modified arguments (based on OldIntr) and replaces InstToReplace with |
118 | /// this newly created intrinsic call. |
119 | static std::optional<Instruction *> modifyIntrinsicCall( |
120 | IntrinsicInst &OldIntr, Instruction &InstToReplace, unsigned NewIntr, |
121 | InstCombiner &IC, |
122 | std::function<void(SmallVectorImpl<Value *> &, SmallVectorImpl<Type *> &)> |
123 | Func) { |
124 | SmallVector<Type *, 4> ArgTys; |
125 | if (!Intrinsic::getIntrinsicSignature(F: OldIntr.getCalledFunction(), ArgTys)) |
126 | return std::nullopt; |
127 | |
128 | SmallVector<Value *, 8> Args(OldIntr.args()); |
129 | |
130 | // Modify arguments and types |
131 | Func(Args, ArgTys); |
132 | |
133 | Function *I = Intrinsic::getDeclaration(M: OldIntr.getModule(), id: NewIntr, Tys: ArgTys); |
134 | |
135 | CallInst *NewCall = IC.Builder.CreateCall(Callee: I, Args); |
136 | NewCall->takeName(V: &OldIntr); |
137 | NewCall->copyMetadata(SrcInst: OldIntr); |
138 | if (isa<FPMathOperator>(Val: NewCall)) |
139 | NewCall->copyFastMathFlags(I: &OldIntr); |
140 | |
141 | // Erase and replace uses |
142 | if (!InstToReplace.getType()->isVoidTy()) |
143 | IC.replaceInstUsesWith(I&: InstToReplace, V: NewCall); |
144 | |
145 | bool RemoveOldIntr = &OldIntr != &InstToReplace; |
146 | |
147 | auto RetValue = IC.eraseInstFromFunction(I&: InstToReplace); |
148 | if (RemoveOldIntr) |
149 | IC.eraseInstFromFunction(I&: OldIntr); |
150 | |
151 | return RetValue; |
152 | } |
153 | |
154 | static std::optional<Instruction *> |
155 | simplifyAMDGCNImageIntrinsic(const GCNSubtarget *ST, |
156 | const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr, |
157 | IntrinsicInst &II, InstCombiner &IC) { |
158 | // Optimize _L to _LZ when _L is zero |
159 | if (const auto *LZMappingInfo = |
160 | AMDGPU::getMIMGLZMappingInfo(L: ImageDimIntr->BaseOpcode)) { |
161 | if (auto *ConstantLod = |
162 | dyn_cast<ConstantFP>(Val: II.getOperand(i_nocapture: ImageDimIntr->LodIndex))) { |
163 | if (ConstantLod->isZero() || ConstantLod->isNegative()) { |
164 | const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = |
165 | AMDGPU::getImageDimIntrinsicByBaseOpcode(BaseOpcode: LZMappingInfo->LZ, |
166 | Dim: ImageDimIntr->Dim); |
167 | return modifyIntrinsicCall( |
168 | OldIntr&: II, InstToReplace&: II, NewIntr: NewImageDimIntr->Intr, IC, Func: [&](auto &Args, auto &ArgTys) { |
169 | Args.erase(Args.begin() + ImageDimIntr->LodIndex); |
170 | }); |
171 | } |
172 | } |
173 | } |
174 | |
175 | // Optimize _mip away, when 'lod' is zero |
176 | if (const auto *MIPMappingInfo = |
177 | AMDGPU::getMIMGMIPMappingInfo(MIP: ImageDimIntr->BaseOpcode)) { |
178 | if (auto *ConstantMip = |
179 | dyn_cast<ConstantInt>(Val: II.getOperand(i_nocapture: ImageDimIntr->MipIndex))) { |
180 | if (ConstantMip->isZero()) { |
181 | const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = |
182 | AMDGPU::getImageDimIntrinsicByBaseOpcode(BaseOpcode: MIPMappingInfo->NONMIP, |
183 | Dim: ImageDimIntr->Dim); |
184 | return modifyIntrinsicCall( |
185 | OldIntr&: II, InstToReplace&: II, NewIntr: NewImageDimIntr->Intr, IC, Func: [&](auto &Args, auto &ArgTys) { |
186 | Args.erase(Args.begin() + ImageDimIntr->MipIndex); |
187 | }); |
188 | } |
189 | } |
190 | } |
191 | |
192 | // Optimize _bias away when 'bias' is zero |
193 | if (const auto *BiasMappingInfo = |
194 | AMDGPU::getMIMGBiasMappingInfo(Bias: ImageDimIntr->BaseOpcode)) { |
195 | if (auto *ConstantBias = |
196 | dyn_cast<ConstantFP>(Val: II.getOperand(i_nocapture: ImageDimIntr->BiasIndex))) { |
197 | if (ConstantBias->isZero()) { |
198 | const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = |
199 | AMDGPU::getImageDimIntrinsicByBaseOpcode(BaseOpcode: BiasMappingInfo->NoBias, |
200 | Dim: ImageDimIntr->Dim); |
201 | return modifyIntrinsicCall( |
202 | OldIntr&: II, InstToReplace&: II, NewIntr: NewImageDimIntr->Intr, IC, Func: [&](auto &Args, auto &ArgTys) { |
203 | Args.erase(Args.begin() + ImageDimIntr->BiasIndex); |
204 | ArgTys.erase(ArgTys.begin() + ImageDimIntr->BiasTyArg); |
205 | }); |
206 | } |
207 | } |
208 | } |
209 | |
210 | // Optimize _offset away when 'offset' is zero |
211 | if (const auto *OffsetMappingInfo = |
212 | AMDGPU::getMIMGOffsetMappingInfo(Offset: ImageDimIntr->BaseOpcode)) { |
213 | if (auto *ConstantOffset = |
214 | dyn_cast<ConstantInt>(Val: II.getOperand(i_nocapture: ImageDimIntr->OffsetIndex))) { |
215 | if (ConstantOffset->isZero()) { |
216 | const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = |
217 | AMDGPU::getImageDimIntrinsicByBaseOpcode( |
218 | BaseOpcode: OffsetMappingInfo->NoOffset, Dim: ImageDimIntr->Dim); |
219 | return modifyIntrinsicCall( |
220 | OldIntr&: II, InstToReplace&: II, NewIntr: NewImageDimIntr->Intr, IC, Func: [&](auto &Args, auto &ArgTys) { |
221 | Args.erase(Args.begin() + ImageDimIntr->OffsetIndex); |
222 | }); |
223 | } |
224 | } |
225 | } |
226 | |
227 | // Try to use D16 |
228 | if (ST->hasD16Images()) { |
229 | |
230 | const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = |
231 | AMDGPU::getMIMGBaseOpcodeInfo(BaseOpcode: ImageDimIntr->BaseOpcode); |
232 | |
233 | if (BaseOpcode->HasD16) { |
234 | |
235 | // If the only use of image intrinsic is a fptrunc (with conversion to |
236 | // half) then both fptrunc and image intrinsic will be replaced with image |
237 | // intrinsic with D16 flag. |
238 | if (II.hasOneUse()) { |
239 | Instruction *User = II.user_back(); |
240 | |
241 | if (User->getOpcode() == Instruction::FPTrunc && |
242 | User->getType()->getScalarType()->isHalfTy()) { |
243 | |
244 | return modifyIntrinsicCall(OldIntr&: II, InstToReplace&: *User, NewIntr: ImageDimIntr->Intr, IC, |
245 | Func: [&](auto &Args, auto &ArgTys) { |
246 | // Change return type of image intrinsic. |
247 | // Set it to return type of fptrunc. |
248 | ArgTys[0] = User->getType(); |
249 | }); |
250 | } |
251 | } |
252 | } |
253 | } |
254 | |
255 | // Try to use A16 or G16 |
256 | if (!ST->hasA16() && !ST->hasG16()) |
257 | return std::nullopt; |
258 | |
259 | // Address is interpreted as float if the instruction has a sampler or as |
260 | // unsigned int if there is no sampler. |
261 | bool HasSampler = |
262 | AMDGPU::getMIMGBaseOpcodeInfo(BaseOpcode: ImageDimIntr->BaseOpcode)->Sampler; |
263 | bool FloatCoord = false; |
264 | // true means derivatives can be converted to 16 bit, coordinates not |
265 | bool OnlyDerivatives = false; |
266 | |
267 | for (unsigned OperandIndex = ImageDimIntr->GradientStart; |
268 | OperandIndex < ImageDimIntr->VAddrEnd; OperandIndex++) { |
269 | Value *Coord = II.getOperand(i_nocapture: OperandIndex); |
270 | // If the values are not derived from 16-bit values, we cannot optimize. |
271 | if (!canSafelyConvertTo16Bit(V&: *Coord, IsFloat: HasSampler)) { |
272 | if (OperandIndex < ImageDimIntr->CoordStart || |
273 | ImageDimIntr->GradientStart == ImageDimIntr->CoordStart) { |
274 | return std::nullopt; |
275 | } |
276 | // All gradients can be converted, so convert only them |
277 | OnlyDerivatives = true; |
278 | break; |
279 | } |
280 | |
281 | assert(OperandIndex == ImageDimIntr->GradientStart || |
282 | FloatCoord == Coord->getType()->isFloatingPointTy()); |
283 | FloatCoord = Coord->getType()->isFloatingPointTy(); |
284 | } |
285 | |
286 | if (!OnlyDerivatives && !ST->hasA16()) |
287 | OnlyDerivatives = true; // Only supports G16 |
288 | |
289 | // Check if there is a bias parameter and if it can be converted to f16 |
290 | if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { |
291 | Value *Bias = II.getOperand(i_nocapture: ImageDimIntr->BiasIndex); |
292 | assert(HasSampler && |
293 | "Only image instructions with a sampler can have a bias" ); |
294 | if (!canSafelyConvertTo16Bit(V&: *Bias, IsFloat: HasSampler)) |
295 | OnlyDerivatives = true; |
296 | } |
297 | |
298 | if (OnlyDerivatives && (!ST->hasG16() || ImageDimIntr->GradientStart == |
299 | ImageDimIntr->CoordStart)) |
300 | return std::nullopt; |
301 | |
302 | Type *CoordType = FloatCoord ? Type::getHalfTy(C&: II.getContext()) |
303 | : Type::getInt16Ty(C&: II.getContext()); |
304 | |
305 | return modifyIntrinsicCall( |
306 | OldIntr&: II, InstToReplace&: II, NewIntr: II.getIntrinsicID(), IC, Func: [&](auto &Args, auto &ArgTys) { |
307 | ArgTys[ImageDimIntr->GradientTyArg] = CoordType; |
308 | if (!OnlyDerivatives) { |
309 | ArgTys[ImageDimIntr->CoordTyArg] = CoordType; |
310 | |
311 | // Change the bias type |
312 | if (ImageDimIntr->NumBiasArgs != 0) |
313 | ArgTys[ImageDimIntr->BiasTyArg] = Type::getHalfTy(C&: II.getContext()); |
314 | } |
315 | |
316 | unsigned EndIndex = |
317 | OnlyDerivatives ? ImageDimIntr->CoordStart : ImageDimIntr->VAddrEnd; |
318 | for (unsigned OperandIndex = ImageDimIntr->GradientStart; |
319 | OperandIndex < EndIndex; OperandIndex++) { |
320 | Args[OperandIndex] = |
321 | convertTo16Bit(V&: *II.getOperand(i_nocapture: OperandIndex), Builder&: IC.Builder); |
322 | } |
323 | |
324 | // Convert the bias |
325 | if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { |
326 | Value *Bias = II.getOperand(i_nocapture: ImageDimIntr->BiasIndex); |
327 | Args[ImageDimIntr->BiasIndex] = convertTo16Bit(V&: *Bias, Builder&: IC.Builder); |
328 | } |
329 | }); |
330 | } |
331 | |
332 | bool GCNTTIImpl::canSimplifyLegacyMulToMul(const Instruction &I, |
333 | const Value *Op0, const Value *Op1, |
334 | InstCombiner &IC) const { |
335 | // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or |
336 | // infinity, gives +0.0. If we can prove we don't have one of the special |
337 | // cases then we can use a normal multiply instead. |
338 | // TODO: Create and use isKnownFiniteNonZero instead of just matching |
339 | // constants here. |
340 | if (match(V: Op0, P: PatternMatch::m_FiniteNonZero()) || |
341 | match(V: Op1, P: PatternMatch::m_FiniteNonZero())) { |
342 | // One operand is not zero or infinity or NaN. |
343 | return true; |
344 | } |
345 | |
346 | SimplifyQuery SQ = IC.getSimplifyQuery().getWithInstruction(I: &I); |
347 | if (isKnownNeverInfOrNaN(V: Op0, /*Depth=*/0, SQ) && |
348 | isKnownNeverInfOrNaN(V: Op1, /*Depth=*/0, SQ)) { |
349 | // Neither operand is infinity or NaN. |
350 | return true; |
351 | } |
352 | return false; |
353 | } |
354 | |
355 | /// Match an fpext from half to float, or a constant we can convert. |
356 | static bool matchFPExtFromF16(Value *Arg, Value *&FPExtSrc) { |
357 | if (match(V: Arg, P: m_OneUse(SubPattern: m_FPExt(Op: m_Value(V&: FPExtSrc))))) |
358 | return FPExtSrc->getType()->isHalfTy(); |
359 | |
360 | ConstantFP *CFP; |
361 | if (match(V: Arg, P: m_ConstantFP(C&: CFP))) { |
362 | bool LosesInfo; |
363 | APFloat Val(CFP->getValueAPF()); |
364 | Val.convert(ToSemantics: APFloat::IEEEhalf(), RM: APFloat::rmNearestTiesToEven, losesInfo: &LosesInfo); |
365 | if (LosesInfo) |
366 | return false; |
367 | |
368 | FPExtSrc = ConstantFP::get(Ty: Type::getHalfTy(C&: Arg->getContext()), V: Val); |
369 | return true; |
370 | } |
371 | |
372 | return false; |
373 | } |
374 | |
375 | // Trim all zero components from the end of the vector \p UseV and return |
376 | // an appropriate bitset with known elements. |
377 | static APInt trimTrailingZerosInVector(InstCombiner &IC, Value *UseV, |
378 | Instruction *I) { |
379 | auto *VTy = cast<FixedVectorType>(Val: UseV->getType()); |
380 | unsigned VWidth = VTy->getNumElements(); |
381 | APInt DemandedElts = APInt::getAllOnes(numBits: VWidth); |
382 | |
383 | for (int i = VWidth - 1; i > 0; --i) { |
384 | auto *Elt = findScalarElement(V: UseV, EltNo: i); |
385 | if (!Elt) |
386 | break; |
387 | |
388 | if (auto *ConstElt = dyn_cast<Constant>(Val: Elt)) { |
389 | if (!ConstElt->isNullValue() && !isa<UndefValue>(Val: Elt)) |
390 | break; |
391 | } else { |
392 | break; |
393 | } |
394 | |
395 | DemandedElts.clearBit(BitPosition: i); |
396 | } |
397 | |
398 | return DemandedElts; |
399 | } |
400 | |
401 | // Trim elements of the end of the vector \p V, if they are |
402 | // equal to the first element of the vector. |
403 | static APInt defaultComponentBroadcast(Value *V) { |
404 | auto *VTy = cast<FixedVectorType>(Val: V->getType()); |
405 | unsigned VWidth = VTy->getNumElements(); |
406 | APInt DemandedElts = APInt::getAllOnes(numBits: VWidth); |
407 | Value *FirstComponent = findScalarElement(V, EltNo: 0); |
408 | |
409 | SmallVector<int> ShuffleMask; |
410 | if (auto *SVI = dyn_cast<ShuffleVectorInst>(Val: V)) |
411 | SVI->getShuffleMask(Result&: ShuffleMask); |
412 | |
413 | for (int I = VWidth - 1; I > 0; --I) { |
414 | if (ShuffleMask.empty()) { |
415 | auto *Elt = findScalarElement(V, EltNo: I); |
416 | if (!Elt || (Elt != FirstComponent && !isa<UndefValue>(Val: Elt))) |
417 | break; |
418 | } else { |
419 | // Detect identical elements in the shufflevector result, even though |
420 | // findScalarElement cannot tell us what that element is. |
421 | if (ShuffleMask[I] != ShuffleMask[0] && ShuffleMask[I] != PoisonMaskElem) |
422 | break; |
423 | } |
424 | DemandedElts.clearBit(BitPosition: I); |
425 | } |
426 | |
427 | return DemandedElts; |
428 | } |
429 | |
430 | static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, |
431 | IntrinsicInst &II, |
432 | APInt DemandedElts, |
433 | int DMaskIdx = -1, |
434 | bool IsLoad = true); |
435 | |
436 | /// Return true if it's legal to contract llvm.amdgcn.rcp(llvm.sqrt) |
437 | static bool canContractSqrtToRsq(const FPMathOperator *SqrtOp) { |
438 | return (SqrtOp->getType()->isFloatTy() && |
439 | (SqrtOp->hasApproxFunc() || SqrtOp->getFPAccuracy() >= 1.0f)) || |
440 | SqrtOp->getType()->isHalfTy(); |
441 | } |
442 | |
443 | std::optional<Instruction *> |
444 | GCNTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { |
445 | Intrinsic::ID IID = II.getIntrinsicID(); |
446 | switch (IID) { |
447 | case Intrinsic::amdgcn_rcp: { |
448 | Value *Src = II.getArgOperand(i: 0); |
449 | |
450 | // TODO: Move to ConstantFolding/InstSimplify? |
451 | if (isa<UndefValue>(Val: Src)) { |
452 | Type *Ty = II.getType(); |
453 | auto *QNaN = ConstantFP::get(Ty, V: APFloat::getQNaN(Sem: Ty->getFltSemantics())); |
454 | return IC.replaceInstUsesWith(I&: II, V: QNaN); |
455 | } |
456 | |
457 | if (II.isStrictFP()) |
458 | break; |
459 | |
460 | if (const ConstantFP *C = dyn_cast<ConstantFP>(Val: Src)) { |
461 | const APFloat &ArgVal = C->getValueAPF(); |
462 | APFloat Val(ArgVal.getSemantics(), 1); |
463 | Val.divide(RHS: ArgVal, RM: APFloat::rmNearestTiesToEven); |
464 | |
465 | // This is more precise than the instruction may give. |
466 | // |
467 | // TODO: The instruction always flushes denormal results (except for f16), |
468 | // should this also? |
469 | return IC.replaceInstUsesWith(I&: II, V: ConstantFP::get(Context&: II.getContext(), V: Val)); |
470 | } |
471 | |
472 | FastMathFlags FMF = cast<FPMathOperator>(Val&: II).getFastMathFlags(); |
473 | if (!FMF.allowContract()) |
474 | break; |
475 | auto *SrcCI = dyn_cast<IntrinsicInst>(Val: Src); |
476 | if (!SrcCI) |
477 | break; |
478 | |
479 | auto IID = SrcCI->getIntrinsicID(); |
480 | // llvm.amdgcn.rcp(llvm.amdgcn.sqrt(x)) -> llvm.amdgcn.rsq(x) if contractable |
481 | // |
482 | // llvm.amdgcn.rcp(llvm.sqrt(x)) -> llvm.amdgcn.rsq(x) if contractable and |
483 | // relaxed. |
484 | if (IID == Intrinsic::amdgcn_sqrt || IID == Intrinsic::sqrt) { |
485 | const FPMathOperator *SqrtOp = cast<FPMathOperator>(Val: SrcCI); |
486 | FastMathFlags InnerFMF = SqrtOp->getFastMathFlags(); |
487 | if (!InnerFMF.allowContract() || !SrcCI->hasOneUse()) |
488 | break; |
489 | |
490 | if (IID == Intrinsic::sqrt && !canContractSqrtToRsq(SqrtOp)) |
491 | break; |
492 | |
493 | Function *NewDecl = Intrinsic::getDeclaration( |
494 | M: SrcCI->getModule(), id: Intrinsic::amdgcn_rsq, Tys: {SrcCI->getType()}); |
495 | |
496 | InnerFMF |= FMF; |
497 | II.setFastMathFlags(InnerFMF); |
498 | |
499 | II.setCalledFunction(NewDecl); |
500 | return IC.replaceOperand(I&: II, OpNum: 0, V: SrcCI->getArgOperand(i: 0)); |
501 | } |
502 | |
503 | break; |
504 | } |
505 | case Intrinsic::amdgcn_sqrt: |
506 | case Intrinsic::amdgcn_rsq: { |
507 | Value *Src = II.getArgOperand(i: 0); |
508 | |
509 | // TODO: Move to ConstantFolding/InstSimplify? |
510 | if (isa<UndefValue>(Val: Src)) { |
511 | Type *Ty = II.getType(); |
512 | auto *QNaN = ConstantFP::get(Ty, V: APFloat::getQNaN(Sem: Ty->getFltSemantics())); |
513 | return IC.replaceInstUsesWith(I&: II, V: QNaN); |
514 | } |
515 | |
516 | // f16 amdgcn.sqrt is identical to regular sqrt. |
517 | if (IID == Intrinsic::amdgcn_sqrt && Src->getType()->isHalfTy()) { |
518 | Function *NewDecl = Intrinsic::getDeclaration( |
519 | M: II.getModule(), id: Intrinsic::sqrt, Tys: {II.getType()}); |
520 | II.setCalledFunction(NewDecl); |
521 | return &II; |
522 | } |
523 | |
524 | break; |
525 | } |
526 | case Intrinsic::amdgcn_log: |
527 | case Intrinsic::amdgcn_exp2: { |
528 | const bool IsLog = IID == Intrinsic::amdgcn_log; |
529 | const bool IsExp = IID == Intrinsic::amdgcn_exp2; |
530 | Value *Src = II.getArgOperand(i: 0); |
531 | Type *Ty = II.getType(); |
532 | |
533 | if (isa<PoisonValue>(Val: Src)) |
534 | return IC.replaceInstUsesWith(I&: II, V: Src); |
535 | |
536 | if (IC.getSimplifyQuery().isUndefValue(V: Src)) |
537 | return IC.replaceInstUsesWith(I&: II, V: ConstantFP::getNaN(Ty)); |
538 | |
539 | if (ConstantFP *C = dyn_cast<ConstantFP>(Val: Src)) { |
540 | if (C->isInfinity()) { |
541 | // exp2(+inf) -> +inf |
542 | // log2(+inf) -> +inf |
543 | if (!C->isNegative()) |
544 | return IC.replaceInstUsesWith(I&: II, V: C); |
545 | |
546 | // exp2(-inf) -> 0 |
547 | if (IsExp && C->isNegative()) |
548 | return IC.replaceInstUsesWith(I&: II, V: ConstantFP::getZero(Ty)); |
549 | } |
550 | |
551 | if (II.isStrictFP()) |
552 | break; |
553 | |
554 | if (C->isNaN()) { |
555 | Constant *Quieted = ConstantFP::get(Ty, V: C->getValue().makeQuiet()); |
556 | return IC.replaceInstUsesWith(I&: II, V: Quieted); |
557 | } |
558 | |
559 | // f32 instruction doesn't handle denormals, f16 does. |
560 | if (C->isZero() || (C->getValue().isDenormal() && Ty->isFloatTy())) { |
561 | Constant *FoldedValue = IsLog ? ConstantFP::getInfinity(Ty, Negative: true) |
562 | : ConstantFP::get(Ty, V: 1.0); |
563 | return IC.replaceInstUsesWith(I&: II, V: FoldedValue); |
564 | } |
565 | |
566 | if (IsLog && C->isNegative()) |
567 | return IC.replaceInstUsesWith(I&: II, V: ConstantFP::getNaN(Ty)); |
568 | |
569 | // TODO: Full constant folding matching hardware behavior. |
570 | } |
571 | |
572 | break; |
573 | } |
574 | case Intrinsic::amdgcn_frexp_mant: |
575 | case Intrinsic::amdgcn_frexp_exp: { |
576 | Value *Src = II.getArgOperand(i: 0); |
577 | if (const ConstantFP *C = dyn_cast<ConstantFP>(Val: Src)) { |
578 | int Exp; |
579 | APFloat Significand = |
580 | frexp(X: C->getValueAPF(), Exp, RM: APFloat::rmNearestTiesToEven); |
581 | |
582 | if (IID == Intrinsic::amdgcn_frexp_mant) { |
583 | return IC.replaceInstUsesWith( |
584 | I&: II, V: ConstantFP::get(Context&: II.getContext(), V: Significand)); |
585 | } |
586 | |
587 | // Match instruction special case behavior. |
588 | if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf) |
589 | Exp = 0; |
590 | |
591 | return IC.replaceInstUsesWith(I&: II, V: ConstantInt::get(Ty: II.getType(), V: Exp)); |
592 | } |
593 | |
594 | if (isa<UndefValue>(Val: Src)) { |
595 | return IC.replaceInstUsesWith(I&: II, V: UndefValue::get(T: II.getType())); |
596 | } |
597 | |
598 | break; |
599 | } |
600 | case Intrinsic::amdgcn_class: { |
601 | Value *Src0 = II.getArgOperand(i: 0); |
602 | Value *Src1 = II.getArgOperand(i: 1); |
603 | const ConstantInt *CMask = dyn_cast<ConstantInt>(Val: Src1); |
604 | if (CMask) { |
605 | II.setCalledOperand(Intrinsic::getDeclaration( |
606 | M: II.getModule(), id: Intrinsic::is_fpclass, Tys: Src0->getType())); |
607 | |
608 | // Clamp any excess bits, as they're illegal for the generic intrinsic. |
609 | II.setArgOperand(i: 1, v: ConstantInt::get(Ty: Src1->getType(), |
610 | V: CMask->getZExtValue() & fcAllFlags)); |
611 | return &II; |
612 | } |
613 | |
614 | // Propagate poison. |
615 | if (isa<PoisonValue>(Val: Src0) || isa<PoisonValue>(Val: Src1)) |
616 | return IC.replaceInstUsesWith(I&: II, V: PoisonValue::get(T: II.getType())); |
617 | |
618 | // llvm.amdgcn.class(_, undef) -> false |
619 | if (IC.getSimplifyQuery().isUndefValue(V: Src1)) |
620 | return IC.replaceInstUsesWith(I&: II, V: ConstantInt::get(Ty: II.getType(), V: false)); |
621 | |
622 | // llvm.amdgcn.class(undef, mask) -> mask != 0 |
623 | if (IC.getSimplifyQuery().isUndefValue(V: Src0)) { |
624 | Value *CmpMask = IC.Builder.CreateICmpNE( |
625 | LHS: Src1, RHS: ConstantInt::getNullValue(Ty: Src1->getType())); |
626 | return IC.replaceInstUsesWith(I&: II, V: CmpMask); |
627 | } |
628 | break; |
629 | } |
630 | case Intrinsic::amdgcn_cvt_pkrtz: { |
631 | Value *Src0 = II.getArgOperand(i: 0); |
632 | Value *Src1 = II.getArgOperand(i: 1); |
633 | if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Val: Src0)) { |
634 | if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Val: Src1)) { |
635 | const fltSemantics &HalfSem = |
636 | II.getType()->getScalarType()->getFltSemantics(); |
637 | bool LosesInfo; |
638 | APFloat Val0 = C0->getValueAPF(); |
639 | APFloat Val1 = C1->getValueAPF(); |
640 | Val0.convert(ToSemantics: HalfSem, RM: APFloat::rmTowardZero, losesInfo: &LosesInfo); |
641 | Val1.convert(ToSemantics: HalfSem, RM: APFloat::rmTowardZero, losesInfo: &LosesInfo); |
642 | |
643 | Constant *Folded = |
644 | ConstantVector::get(V: {ConstantFP::get(Context&: II.getContext(), V: Val0), |
645 | ConstantFP::get(Context&: II.getContext(), V: Val1)}); |
646 | return IC.replaceInstUsesWith(I&: II, V: Folded); |
647 | } |
648 | } |
649 | |
650 | if (isa<UndefValue>(Val: Src0) && isa<UndefValue>(Val: Src1)) { |
651 | return IC.replaceInstUsesWith(I&: II, V: UndefValue::get(T: II.getType())); |
652 | } |
653 | |
654 | break; |
655 | } |
656 | case Intrinsic::amdgcn_cvt_pknorm_i16: |
657 | case Intrinsic::amdgcn_cvt_pknorm_u16: |
658 | case Intrinsic::amdgcn_cvt_pk_i16: |
659 | case Intrinsic::amdgcn_cvt_pk_u16: { |
660 | Value *Src0 = II.getArgOperand(i: 0); |
661 | Value *Src1 = II.getArgOperand(i: 1); |
662 | |
663 | if (isa<UndefValue>(Val: Src0) && isa<UndefValue>(Val: Src1)) { |
664 | return IC.replaceInstUsesWith(I&: II, V: UndefValue::get(T: II.getType())); |
665 | } |
666 | |
667 | break; |
668 | } |
669 | case Intrinsic::amdgcn_ubfe: |
670 | case Intrinsic::amdgcn_sbfe: { |
671 | // Decompose simple cases into standard shifts. |
672 | Value *Src = II.getArgOperand(i: 0); |
673 | if (isa<UndefValue>(Val: Src)) { |
674 | return IC.replaceInstUsesWith(I&: II, V: Src); |
675 | } |
676 | |
677 | unsigned Width; |
678 | Type *Ty = II.getType(); |
679 | unsigned IntSize = Ty->getIntegerBitWidth(); |
680 | |
681 | ConstantInt *CWidth = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 2)); |
682 | if (CWidth) { |
683 | Width = CWidth->getZExtValue(); |
684 | if ((Width & (IntSize - 1)) == 0) { |
685 | return IC.replaceInstUsesWith(I&: II, V: ConstantInt::getNullValue(Ty)); |
686 | } |
687 | |
688 | // Hardware ignores high bits, so remove those. |
689 | if (Width >= IntSize) { |
690 | return IC.replaceOperand( |
691 | I&: II, OpNum: 2, V: ConstantInt::get(Ty: CWidth->getType(), V: Width & (IntSize - 1))); |
692 | } |
693 | } |
694 | |
695 | unsigned Offset; |
696 | ConstantInt *COffset = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 1)); |
697 | if (COffset) { |
698 | Offset = COffset->getZExtValue(); |
699 | if (Offset >= IntSize) { |
700 | return IC.replaceOperand( |
701 | I&: II, OpNum: 1, |
702 | V: ConstantInt::get(Ty: COffset->getType(), V: Offset & (IntSize - 1))); |
703 | } |
704 | } |
705 | |
706 | bool Signed = IID == Intrinsic::amdgcn_sbfe; |
707 | |
708 | if (!CWidth || !COffset) |
709 | break; |
710 | |
711 | // The case of Width == 0 is handled above, which makes this transformation |
712 | // safe. If Width == 0, then the ashr and lshr instructions become poison |
713 | // value since the shift amount would be equal to the bit size. |
714 | assert(Width != 0); |
715 | |
716 | // TODO: This allows folding to undef when the hardware has specific |
717 | // behavior? |
718 | if (Offset + Width < IntSize) { |
719 | Value *Shl = IC.Builder.CreateShl(LHS: Src, RHS: IntSize - Offset - Width); |
720 | Value *RightShift = Signed ? IC.Builder.CreateAShr(LHS: Shl, RHS: IntSize - Width) |
721 | : IC.Builder.CreateLShr(LHS: Shl, RHS: IntSize - Width); |
722 | RightShift->takeName(V: &II); |
723 | return IC.replaceInstUsesWith(I&: II, V: RightShift); |
724 | } |
725 | |
726 | Value *RightShift = Signed ? IC.Builder.CreateAShr(LHS: Src, RHS: Offset) |
727 | : IC.Builder.CreateLShr(LHS: Src, RHS: Offset); |
728 | |
729 | RightShift->takeName(V: &II); |
730 | return IC.replaceInstUsesWith(I&: II, V: RightShift); |
731 | } |
732 | case Intrinsic::amdgcn_exp: |
733 | case Intrinsic::amdgcn_exp_row: |
734 | case Intrinsic::amdgcn_exp_compr: { |
735 | ConstantInt *En = cast<ConstantInt>(Val: II.getArgOperand(i: 1)); |
736 | unsigned EnBits = En->getZExtValue(); |
737 | if (EnBits == 0xf) |
738 | break; // All inputs enabled. |
739 | |
740 | bool IsCompr = IID == Intrinsic::amdgcn_exp_compr; |
741 | bool Changed = false; |
742 | for (int I = 0; I < (IsCompr ? 2 : 4); ++I) { |
743 | if ((!IsCompr && (EnBits & (1 << I)) == 0) || |
744 | (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) { |
745 | Value *Src = II.getArgOperand(i: I + 2); |
746 | if (!isa<UndefValue>(Val: Src)) { |
747 | IC.replaceOperand(I&: II, OpNum: I + 2, V: UndefValue::get(T: Src->getType())); |
748 | Changed = true; |
749 | } |
750 | } |
751 | } |
752 | |
753 | if (Changed) { |
754 | return &II; |
755 | } |
756 | |
757 | break; |
758 | } |
759 | case Intrinsic::amdgcn_fmed3: { |
760 | // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled |
761 | // for the shader. |
762 | |
763 | Value *Src0 = II.getArgOperand(i: 0); |
764 | Value *Src1 = II.getArgOperand(i: 1); |
765 | Value *Src2 = II.getArgOperand(i: 2); |
766 | |
767 | // Checking for NaN before canonicalization provides better fidelity when |
768 | // mapping other operations onto fmed3 since the order of operands is |
769 | // unchanged. |
770 | Value *V = nullptr; |
771 | if (match(V: Src0, P: PatternMatch::m_NaN()) || isa<UndefValue>(Val: Src0)) { |
772 | V = IC.Builder.CreateMinNum(LHS: Src1, RHS: Src2); |
773 | } else if (match(V: Src1, P: PatternMatch::m_NaN()) || isa<UndefValue>(Val: Src1)) { |
774 | V = IC.Builder.CreateMinNum(LHS: Src0, RHS: Src2); |
775 | } else if (match(V: Src2, P: PatternMatch::m_NaN()) || isa<UndefValue>(Val: Src2)) { |
776 | V = IC.Builder.CreateMaxNum(LHS: Src0, RHS: Src1); |
777 | } |
778 | |
779 | if (V) { |
780 | if (auto *CI = dyn_cast<CallInst>(Val: V)) { |
781 | CI->copyFastMathFlags(I: &II); |
782 | CI->takeName(V: &II); |
783 | } |
784 | return IC.replaceInstUsesWith(I&: II, V); |
785 | } |
786 | |
787 | bool Swap = false; |
788 | // Canonicalize constants to RHS operands. |
789 | // |
790 | // fmed3(c0, x, c1) -> fmed3(x, c0, c1) |
791 | if (isa<Constant>(Val: Src0) && !isa<Constant>(Val: Src1)) { |
792 | std::swap(a&: Src0, b&: Src1); |
793 | Swap = true; |
794 | } |
795 | |
796 | if (isa<Constant>(Val: Src1) && !isa<Constant>(Val: Src2)) { |
797 | std::swap(a&: Src1, b&: Src2); |
798 | Swap = true; |
799 | } |
800 | |
801 | if (isa<Constant>(Val: Src0) && !isa<Constant>(Val: Src1)) { |
802 | std::swap(a&: Src0, b&: Src1); |
803 | Swap = true; |
804 | } |
805 | |
806 | if (Swap) { |
807 | II.setArgOperand(i: 0, v: Src0); |
808 | II.setArgOperand(i: 1, v: Src1); |
809 | II.setArgOperand(i: 2, v: Src2); |
810 | return &II; |
811 | } |
812 | |
813 | if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Val: Src0)) { |
814 | if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Val: Src1)) { |
815 | if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Val: Src2)) { |
816 | APFloat Result = fmed3AMDGCN(Src0: C0->getValueAPF(), Src1: C1->getValueAPF(), |
817 | Src2: C2->getValueAPF()); |
818 | return IC.replaceInstUsesWith( |
819 | I&: II, V: ConstantFP::get(Context&: IC.Builder.getContext(), V: Result)); |
820 | } |
821 | } |
822 | } |
823 | |
824 | if (!ST->hasMed3_16()) |
825 | break; |
826 | |
827 | Value *X, *Y, *Z; |
828 | |
829 | // Repeat floating-point width reduction done for minnum/maxnum. |
830 | // fmed3((fpext X), (fpext Y), (fpext Z)) -> fpext (fmed3(X, Y, Z)) |
831 | if (matchFPExtFromF16(Arg: Src0, FPExtSrc&: X) && matchFPExtFromF16(Arg: Src1, FPExtSrc&: Y) && |
832 | matchFPExtFromF16(Arg: Src2, FPExtSrc&: Z)) { |
833 | Value *NewCall = IC.Builder.CreateIntrinsic(ID: IID, Types: {X->getType()}, |
834 | Args: {X, Y, Z}, FMFSource: &II, Name: II.getName()); |
835 | return new FPExtInst(NewCall, II.getType()); |
836 | } |
837 | |
838 | break; |
839 | } |
840 | case Intrinsic::amdgcn_icmp: |
841 | case Intrinsic::amdgcn_fcmp: { |
842 | const ConstantInt *CC = cast<ConstantInt>(Val: II.getArgOperand(i: 2)); |
843 | // Guard against invalid arguments. |
844 | int64_t CCVal = CC->getZExtValue(); |
845 | bool IsInteger = IID == Intrinsic::amdgcn_icmp; |
846 | if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE || |
847 | CCVal > CmpInst::LAST_ICMP_PREDICATE)) || |
848 | (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE || |
849 | CCVal > CmpInst::LAST_FCMP_PREDICATE))) |
850 | break; |
851 | |
852 | Value *Src0 = II.getArgOperand(i: 0); |
853 | Value *Src1 = II.getArgOperand(i: 1); |
854 | |
855 | if (auto *CSrc0 = dyn_cast<Constant>(Val: Src0)) { |
856 | if (auto *CSrc1 = dyn_cast<Constant>(Val: Src1)) { |
857 | Constant *CCmp = ConstantFoldCompareInstOperands( |
858 | Predicate: (ICmpInst::Predicate)CCVal, LHS: CSrc0, RHS: CSrc1, DL); |
859 | if (CCmp && CCmp->isNullValue()) { |
860 | return IC.replaceInstUsesWith( |
861 | I&: II, V: IC.Builder.CreateSExt(V: CCmp, DestTy: II.getType())); |
862 | } |
863 | |
864 | // The result of V_ICMP/V_FCMP assembly instructions (which this |
865 | // intrinsic exposes) is one bit per thread, masked with the EXEC |
866 | // register (which contains the bitmask of live threads). So a |
867 | // comparison that always returns true is the same as a read of the |
868 | // EXEC register. |
869 | Function *NewF = Intrinsic::getDeclaration( |
870 | M: II.getModule(), id: Intrinsic::read_register, Tys: II.getType()); |
871 | Metadata *MDArgs[] = {MDString::get(Context&: II.getContext(), Str: "exec" )}; |
872 | MDNode *MD = MDNode::get(Context&: II.getContext(), MDs: MDArgs); |
873 | Value *Args[] = {MetadataAsValue::get(Context&: II.getContext(), MD)}; |
874 | CallInst *NewCall = IC.Builder.CreateCall(Callee: NewF, Args); |
875 | NewCall->addFnAttr(Kind: Attribute::Convergent); |
876 | NewCall->takeName(V: &II); |
877 | return IC.replaceInstUsesWith(I&: II, V: NewCall); |
878 | } |
879 | |
880 | // Canonicalize constants to RHS. |
881 | CmpInst::Predicate SwapPred = |
882 | CmpInst::getSwappedPredicate(pred: static_cast<CmpInst::Predicate>(CCVal)); |
883 | II.setArgOperand(i: 0, v: Src1); |
884 | II.setArgOperand(i: 1, v: Src0); |
885 | II.setArgOperand( |
886 | i: 2, v: ConstantInt::get(Ty: CC->getType(), V: static_cast<int>(SwapPred))); |
887 | return &II; |
888 | } |
889 | |
890 | if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE) |
891 | break; |
892 | |
893 | // Canonicalize compare eq with true value to compare != 0 |
894 | // llvm.amdgcn.icmp(zext (i1 x), 1, eq) |
895 | // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne) |
896 | // llvm.amdgcn.icmp(sext (i1 x), -1, eq) |
897 | // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne) |
898 | Value *ExtSrc; |
899 | if (CCVal == CmpInst::ICMP_EQ && |
900 | ((match(V: Src1, P: PatternMatch::m_One()) && |
901 | match(V: Src0, P: m_ZExt(Op: PatternMatch::m_Value(V&: ExtSrc)))) || |
902 | (match(V: Src1, P: PatternMatch::m_AllOnes()) && |
903 | match(V: Src0, P: m_SExt(Op: PatternMatch::m_Value(V&: ExtSrc))))) && |
904 | ExtSrc->getType()->isIntegerTy(Bitwidth: 1)) { |
905 | IC.replaceOperand(I&: II, OpNum: 1, V: ConstantInt::getNullValue(Ty: Src1->getType())); |
906 | IC.replaceOperand(I&: II, OpNum: 2, |
907 | V: ConstantInt::get(Ty: CC->getType(), V: CmpInst::ICMP_NE)); |
908 | return &II; |
909 | } |
910 | |
911 | CmpInst::Predicate SrcPred; |
912 | Value *SrcLHS; |
913 | Value *SrcRHS; |
914 | |
915 | // Fold compare eq/ne with 0 from a compare result as the predicate to the |
916 | // intrinsic. The typical use is a wave vote function in the library, which |
917 | // will be fed from a user code condition compared with 0. Fold in the |
918 | // redundant compare. |
919 | |
920 | // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne) |
921 | // -> llvm.amdgcn.[if]cmp(a, b, pred) |
922 | // |
923 | // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq) |
924 | // -> llvm.amdgcn.[if]cmp(a, b, inv pred) |
925 | if (match(V: Src1, P: PatternMatch::m_Zero()) && |
926 | match(V: Src0, P: PatternMatch::m_ZExtOrSExt( |
927 | Op: m_Cmp(Pred&: SrcPred, L: PatternMatch::m_Value(V&: SrcLHS), |
928 | R: PatternMatch::m_Value(V&: SrcRHS))))) { |
929 | if (CCVal == CmpInst::ICMP_EQ) |
930 | SrcPred = CmpInst::getInversePredicate(pred: SrcPred); |
931 | |
932 | Intrinsic::ID NewIID = CmpInst::isFPPredicate(P: SrcPred) |
933 | ? Intrinsic::amdgcn_fcmp |
934 | : Intrinsic::amdgcn_icmp; |
935 | |
936 | Type *Ty = SrcLHS->getType(); |
937 | if (auto *CmpType = dyn_cast<IntegerType>(Val: Ty)) { |
938 | // Promote to next legal integer type. |
939 | unsigned Width = CmpType->getBitWidth(); |
940 | unsigned NewWidth = Width; |
941 | |
942 | // Don't do anything for i1 comparisons. |
943 | if (Width == 1) |
944 | break; |
945 | |
946 | if (Width <= 16) |
947 | NewWidth = 16; |
948 | else if (Width <= 32) |
949 | NewWidth = 32; |
950 | else if (Width <= 64) |
951 | NewWidth = 64; |
952 | else |
953 | break; // Can't handle this. |
954 | |
955 | if (Width != NewWidth) { |
956 | IntegerType *CmpTy = IC.Builder.getIntNTy(N: NewWidth); |
957 | if (CmpInst::isSigned(predicate: SrcPred)) { |
958 | SrcLHS = IC.Builder.CreateSExt(V: SrcLHS, DestTy: CmpTy); |
959 | SrcRHS = IC.Builder.CreateSExt(V: SrcRHS, DestTy: CmpTy); |
960 | } else { |
961 | SrcLHS = IC.Builder.CreateZExt(V: SrcLHS, DestTy: CmpTy); |
962 | SrcRHS = IC.Builder.CreateZExt(V: SrcRHS, DestTy: CmpTy); |
963 | } |
964 | } |
965 | } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy()) |
966 | break; |
967 | |
968 | Function *NewF = Intrinsic::getDeclaration( |
969 | M: II.getModule(), id: NewIID, Tys: {II.getType(), SrcLHS->getType()}); |
970 | Value *Args[] = {SrcLHS, SrcRHS, |
971 | ConstantInt::get(Ty: CC->getType(), V: SrcPred)}; |
972 | CallInst *NewCall = IC.Builder.CreateCall(Callee: NewF, Args); |
973 | NewCall->takeName(V: &II); |
974 | return IC.replaceInstUsesWith(I&: II, V: NewCall); |
975 | } |
976 | |
977 | break; |
978 | } |
979 | case Intrinsic::amdgcn_mbcnt_hi: { |
980 | // exec_hi is all 0, so this is just a copy. |
981 | if (ST->isWave32()) |
982 | return IC.replaceInstUsesWith(I&: II, V: II.getArgOperand(i: 1)); |
983 | break; |
984 | } |
985 | case Intrinsic::amdgcn_ballot: { |
986 | if (auto *Src = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 0))) { |
987 | if (Src->isZero()) { |
988 | // amdgcn.ballot(i1 0) is zero. |
989 | return IC.replaceInstUsesWith(I&: II, V: Constant::getNullValue(Ty: II.getType())); |
990 | } |
991 | } |
992 | if (ST->isWave32() && II.getType()->getIntegerBitWidth() == 64) { |
993 | // %b64 = call i64 ballot.i64(...) |
994 | // => |
995 | // %b32 = call i32 ballot.i32(...) |
996 | // %b64 = zext i32 %b32 to i64 |
997 | Value *Call = IC.Builder.CreateZExt( |
998 | V: IC.Builder.CreateIntrinsic(ID: Intrinsic::amdgcn_ballot, |
999 | Types: {IC.Builder.getInt32Ty()}, |
1000 | Args: {II.getArgOperand(i: 0)}), |
1001 | DestTy: II.getType()); |
1002 | Call->takeName(V: &II); |
1003 | return IC.replaceInstUsesWith(I&: II, V: Call); |
1004 | } |
1005 | break; |
1006 | } |
1007 | case Intrinsic::amdgcn_wqm_vote: { |
1008 | // wqm_vote is identity when the argument is constant. |
1009 | if (!isa<Constant>(Val: II.getArgOperand(i: 0))) |
1010 | break; |
1011 | |
1012 | return IC.replaceInstUsesWith(I&: II, V: II.getArgOperand(i: 0)); |
1013 | } |
1014 | case Intrinsic::amdgcn_kill: { |
1015 | const ConstantInt *C = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 0)); |
1016 | if (!C || !C->getZExtValue()) |
1017 | break; |
1018 | |
1019 | // amdgcn.kill(i1 1) is a no-op |
1020 | return IC.eraseInstFromFunction(I&: II); |
1021 | } |
1022 | case Intrinsic::amdgcn_update_dpp: { |
1023 | Value *Old = II.getArgOperand(i: 0); |
1024 | |
1025 | auto *BC = cast<ConstantInt>(Val: II.getArgOperand(i: 5)); |
1026 | auto *RM = cast<ConstantInt>(Val: II.getArgOperand(i: 3)); |
1027 | auto *BM = cast<ConstantInt>(Val: II.getArgOperand(i: 4)); |
1028 | if (BC->isZeroValue() || RM->getZExtValue() != 0xF || |
1029 | BM->getZExtValue() != 0xF || isa<UndefValue>(Val: Old)) |
1030 | break; |
1031 | |
1032 | // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value. |
1033 | return IC.replaceOperand(I&: II, OpNum: 0, V: UndefValue::get(T: Old->getType())); |
1034 | } |
1035 | case Intrinsic::amdgcn_permlane16: |
1036 | case Intrinsic::amdgcn_permlane16_var: |
1037 | case Intrinsic::amdgcn_permlanex16: |
1038 | case Intrinsic::amdgcn_permlanex16_var: { |
1039 | // Discard vdst_in if it's not going to be read. |
1040 | Value *VDstIn = II.getArgOperand(i: 0); |
1041 | if (isa<UndefValue>(Val: VDstIn)) |
1042 | break; |
1043 | |
1044 | // FetchInvalid operand idx. |
1045 | unsigned int FiIdx = (IID == Intrinsic::amdgcn_permlane16 || |
1046 | IID == Intrinsic::amdgcn_permlanex16) |
1047 | ? 4 /* for permlane16 and permlanex16 */ |
1048 | : 3; /* for permlane16_var and permlanex16_var */ |
1049 | |
1050 | // BoundCtrl operand idx. |
1051 | // For permlane16 and permlanex16 it should be 5 |
1052 | // For Permlane16_var and permlanex16_var it should be 4 |
1053 | unsigned int BcIdx = FiIdx + 1; |
1054 | |
1055 | ConstantInt *FetchInvalid = cast<ConstantInt>(Val: II.getArgOperand(i: FiIdx)); |
1056 | ConstantInt *BoundCtrl = cast<ConstantInt>(Val: II.getArgOperand(i: BcIdx)); |
1057 | if (!FetchInvalid->getZExtValue() && !BoundCtrl->getZExtValue()) |
1058 | break; |
1059 | |
1060 | return IC.replaceOperand(I&: II, OpNum: 0, V: UndefValue::get(T: VDstIn->getType())); |
1061 | } |
1062 | case Intrinsic::amdgcn_permlane64: |
1063 | // A constant value is trivially uniform. |
1064 | if (Constant *C = dyn_cast<Constant>(Val: II.getArgOperand(i: 0))) { |
1065 | return IC.replaceInstUsesWith(I&: II, V: C); |
1066 | } |
1067 | break; |
1068 | case Intrinsic::amdgcn_readfirstlane: |
1069 | case Intrinsic::amdgcn_readlane: { |
1070 | // A constant value is trivially uniform. |
1071 | if (Constant *C = dyn_cast<Constant>(Val: II.getArgOperand(i: 0))) { |
1072 | return IC.replaceInstUsesWith(I&: II, V: C); |
1073 | } |
1074 | |
1075 | // The rest of these may not be safe if the exec may not be the same between |
1076 | // the def and use. |
1077 | Value *Src = II.getArgOperand(i: 0); |
1078 | Instruction *SrcInst = dyn_cast<Instruction>(Val: Src); |
1079 | if (SrcInst && SrcInst->getParent() != II.getParent()) |
1080 | break; |
1081 | |
1082 | // readfirstlane (readfirstlane x) -> readfirstlane x |
1083 | // readlane (readfirstlane x), y -> readfirstlane x |
1084 | if (match(V: Src, |
1085 | P: PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readfirstlane>())) { |
1086 | return IC.replaceInstUsesWith(I&: II, V: Src); |
1087 | } |
1088 | |
1089 | if (IID == Intrinsic::amdgcn_readfirstlane) { |
1090 | // readfirstlane (readlane x, y) -> readlane x, y |
1091 | if (match(V: Src, P: PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>())) { |
1092 | return IC.replaceInstUsesWith(I&: II, V: Src); |
1093 | } |
1094 | } else { |
1095 | // readlane (readlane x, y), y -> readlane x, y |
1096 | if (match(V: Src, P: PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>( |
1097 | Op0: PatternMatch::m_Value(), |
1098 | Op1: PatternMatch::m_Specific(V: II.getArgOperand(i: 1))))) { |
1099 | return IC.replaceInstUsesWith(I&: II, V: Src); |
1100 | } |
1101 | } |
1102 | |
1103 | break; |
1104 | } |
1105 | case Intrinsic::amdgcn_trig_preop: { |
1106 | // The intrinsic is declared with name mangling, but currently the |
1107 | // instruction only exists for f64 |
1108 | if (!II.getType()->isDoubleTy()) |
1109 | break; |
1110 | |
1111 | Value *Src = II.getArgOperand(i: 0); |
1112 | Value *Segment = II.getArgOperand(i: 1); |
1113 | if (isa<PoisonValue>(Val: Src) || isa<PoisonValue>(Val: Segment)) |
1114 | return IC.replaceInstUsesWith(I&: II, V: PoisonValue::get(T: II.getType())); |
1115 | |
1116 | if (isa<UndefValue>(Val: Src)) { |
1117 | auto *QNaN = ConstantFP::get( |
1118 | Ty: II.getType(), V: APFloat::getQNaN(Sem: II.getType()->getFltSemantics())); |
1119 | return IC.replaceInstUsesWith(I&: II, V: QNaN); |
1120 | } |
1121 | |
1122 | const ConstantFP *Csrc = dyn_cast<ConstantFP>(Val: Src); |
1123 | if (!Csrc) |
1124 | break; |
1125 | |
1126 | if (II.isStrictFP()) |
1127 | break; |
1128 | |
1129 | const APFloat &Fsrc = Csrc->getValueAPF(); |
1130 | if (Fsrc.isNaN()) { |
1131 | auto *Quieted = ConstantFP::get(Ty: II.getType(), V: Fsrc.makeQuiet()); |
1132 | return IC.replaceInstUsesWith(I&: II, V: Quieted); |
1133 | } |
1134 | |
1135 | const ConstantInt *Cseg = dyn_cast<ConstantInt>(Val: Segment); |
1136 | if (!Cseg) |
1137 | break; |
1138 | |
1139 | unsigned Exponent = (Fsrc.bitcastToAPInt().getZExtValue() >> 52) & 0x7ff; |
1140 | unsigned SegmentVal = Cseg->getValue().trunc(width: 5).getZExtValue(); |
1141 | unsigned Shift = SegmentVal * 53; |
1142 | if (Exponent > 1077) |
1143 | Shift += Exponent - 1077; |
1144 | |
1145 | // 2.0/PI table. |
1146 | static const uint32_t TwoByPi[] = { |
1147 | 0xa2f9836e, 0x4e441529, 0xfc2757d1, 0xf534ddc0, 0xdb629599, 0x3c439041, |
1148 | 0xfe5163ab, 0xdebbc561, 0xb7246e3a, 0x424dd2e0, 0x06492eea, 0x09d1921c, |
1149 | 0xfe1deb1c, 0xb129a73e, 0xe88235f5, 0x2ebb4484, 0xe99c7026, 0xb45f7e41, |
1150 | 0x3991d639, 0x835339f4, 0x9c845f8b, 0xbdf9283b, 0x1ff897ff, 0xde05980f, |
1151 | 0xef2f118b, 0x5a0a6d1f, 0x6d367ecf, 0x27cb09b7, 0x4f463f66, 0x9e5fea2d, |
1152 | 0x7527bac7, 0xebe5f17b, 0x3d0739f7, 0x8a5292ea, 0x6bfb5fb1, 0x1f8d5d08, |
1153 | 0x56033046}; |
1154 | |
1155 | // Return 0 for outbound segment (hardware behavior). |
1156 | unsigned Idx = Shift >> 5; |
1157 | if (Idx + 2 >= std::size(TwoByPi)) { |
1158 | APFloat Zero = APFloat::getZero(Sem: II.getType()->getFltSemantics()); |
1159 | return IC.replaceInstUsesWith(I&: II, V: ConstantFP::get(Ty: II.getType(), V: Zero)); |
1160 | } |
1161 | |
1162 | unsigned BShift = Shift & 0x1f; |
1163 | uint64_t Thi = Make_64(High: TwoByPi[Idx], Low: TwoByPi[Idx + 1]); |
1164 | uint64_t Tlo = Make_64(High: TwoByPi[Idx + 2], Low: 0); |
1165 | if (BShift) |
1166 | Thi = (Thi << BShift) | (Tlo >> (64 - BShift)); |
1167 | Thi = Thi >> 11; |
1168 | APFloat Result = APFloat((double)Thi); |
1169 | |
1170 | int Scale = -53 - Shift; |
1171 | if (Exponent >= 1968) |
1172 | Scale += 128; |
1173 | |
1174 | Result = scalbn(X: Result, Exp: Scale, RM: RoundingMode::NearestTiesToEven); |
1175 | return IC.replaceInstUsesWith(I&: II, V: ConstantFP::get(Ty: Src->getType(), V: Result)); |
1176 | } |
1177 | case Intrinsic::amdgcn_fmul_legacy: { |
1178 | Value *Op0 = II.getArgOperand(i: 0); |
1179 | Value *Op1 = II.getArgOperand(i: 1); |
1180 | |
1181 | // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or |
1182 | // infinity, gives +0.0. |
1183 | // TODO: Move to InstSimplify? |
1184 | if (match(V: Op0, P: PatternMatch::m_AnyZeroFP()) || |
1185 | match(V: Op1, P: PatternMatch::m_AnyZeroFP())) |
1186 | return IC.replaceInstUsesWith(I&: II, V: ConstantFP::getZero(Ty: II.getType())); |
1187 | |
1188 | // If we can prove we don't have one of the special cases then we can use a |
1189 | // normal fmul instruction instead. |
1190 | if (canSimplifyLegacyMulToMul(I: II, Op0, Op1, IC)) { |
1191 | auto *FMul = IC.Builder.CreateFMulFMF(L: Op0, R: Op1, FMFSource: &II); |
1192 | FMul->takeName(V: &II); |
1193 | return IC.replaceInstUsesWith(I&: II, V: FMul); |
1194 | } |
1195 | break; |
1196 | } |
1197 | case Intrinsic::amdgcn_fma_legacy: { |
1198 | Value *Op0 = II.getArgOperand(i: 0); |
1199 | Value *Op1 = II.getArgOperand(i: 1); |
1200 | Value *Op2 = II.getArgOperand(i: 2); |
1201 | |
1202 | // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or |
1203 | // infinity, gives +0.0. |
1204 | // TODO: Move to InstSimplify? |
1205 | if (match(V: Op0, P: PatternMatch::m_AnyZeroFP()) || |
1206 | match(V: Op1, P: PatternMatch::m_AnyZeroFP())) { |
1207 | // It's tempting to just return Op2 here, but that would give the wrong |
1208 | // result if Op2 was -0.0. |
1209 | auto *Zero = ConstantFP::getZero(Ty: II.getType()); |
1210 | auto *FAdd = IC.Builder.CreateFAddFMF(L: Zero, R: Op2, FMFSource: &II); |
1211 | FAdd->takeName(V: &II); |
1212 | return IC.replaceInstUsesWith(I&: II, V: FAdd); |
1213 | } |
1214 | |
1215 | // If we can prove we don't have one of the special cases then we can use a |
1216 | // normal fma instead. |
1217 | if (canSimplifyLegacyMulToMul(I: II, Op0, Op1, IC)) { |
1218 | II.setCalledOperand(Intrinsic::getDeclaration( |
1219 | M: II.getModule(), id: Intrinsic::fma, Tys: II.getType())); |
1220 | return &II; |
1221 | } |
1222 | break; |
1223 | } |
1224 | case Intrinsic::amdgcn_is_shared: |
1225 | case Intrinsic::amdgcn_is_private: { |
1226 | if (isa<UndefValue>(Val: II.getArgOperand(i: 0))) |
1227 | return IC.replaceInstUsesWith(I&: II, V: UndefValue::get(T: II.getType())); |
1228 | |
1229 | if (isa<ConstantPointerNull>(Val: II.getArgOperand(i: 0))) |
1230 | return IC.replaceInstUsesWith(I&: II, V: ConstantInt::getFalse(Ty: II.getType())); |
1231 | break; |
1232 | } |
1233 | case Intrinsic::amdgcn_raw_buffer_store_format: |
1234 | case Intrinsic::amdgcn_struct_buffer_store_format: |
1235 | case Intrinsic::amdgcn_raw_tbuffer_store: |
1236 | case Intrinsic::amdgcn_struct_tbuffer_store: |
1237 | case Intrinsic::amdgcn_image_store_1d: |
1238 | case Intrinsic::amdgcn_image_store_1darray: |
1239 | case Intrinsic::amdgcn_image_store_2d: |
1240 | case Intrinsic::amdgcn_image_store_2darray: |
1241 | case Intrinsic::amdgcn_image_store_2darraymsaa: |
1242 | case Intrinsic::amdgcn_image_store_2dmsaa: |
1243 | case Intrinsic::amdgcn_image_store_3d: |
1244 | case Intrinsic::amdgcn_image_store_cube: |
1245 | case Intrinsic::amdgcn_image_store_mip_1d: |
1246 | case Intrinsic::amdgcn_image_store_mip_1darray: |
1247 | case Intrinsic::amdgcn_image_store_mip_2d: |
1248 | case Intrinsic::amdgcn_image_store_mip_2darray: |
1249 | case Intrinsic::amdgcn_image_store_mip_3d: |
1250 | case Intrinsic::amdgcn_image_store_mip_cube: { |
1251 | if (!isa<FixedVectorType>(Val: II.getArgOperand(i: 0)->getType())) |
1252 | break; |
1253 | |
1254 | APInt DemandedElts; |
1255 | if (ST->hasDefaultComponentBroadcast()) |
1256 | DemandedElts = defaultComponentBroadcast(V: II.getArgOperand(i: 0)); |
1257 | else if (ST->hasDefaultComponentZero()) |
1258 | DemandedElts = trimTrailingZerosInVector(IC, UseV: II.getArgOperand(i: 0), I: &II); |
1259 | else |
1260 | break; |
1261 | |
1262 | int DMaskIdx = getAMDGPUImageDMaskIntrinsic(Intr: II.getIntrinsicID()) ? 1 : -1; |
1263 | if (simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, DMaskIdx, |
1264 | IsLoad: false)) { |
1265 | return IC.eraseInstFromFunction(I&: II); |
1266 | } |
1267 | |
1268 | break; |
1269 | } |
1270 | } |
1271 | if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = |
1272 | AMDGPU::getImageDimIntrinsicInfo(Intr: II.getIntrinsicID())) { |
1273 | return simplifyAMDGCNImageIntrinsic(ST, ImageDimIntr, II, IC); |
1274 | } |
1275 | return std::nullopt; |
1276 | } |
1277 | |
1278 | /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. |
1279 | /// |
1280 | /// The result of simplifying amdgcn image and buffer store intrinsics is updating |
1281 | /// definitions of the intrinsics vector argument, not Uses of the result like |
1282 | /// image and buffer loads. |
1283 | /// Note: This only supports non-TFE/LWE image intrinsic calls; those have |
1284 | /// struct returns. |
1285 | static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, |
1286 | IntrinsicInst &II, |
1287 | APInt DemandedElts, |
1288 | int DMaskIdx, bool IsLoad) { |
1289 | |
1290 | auto *IIVTy = cast<FixedVectorType>(Val: IsLoad ? II.getType() |
1291 | : II.getOperand(i_nocapture: 0)->getType()); |
1292 | unsigned VWidth = IIVTy->getNumElements(); |
1293 | if (VWidth == 1) |
1294 | return nullptr; |
1295 | Type *EltTy = IIVTy->getElementType(); |
1296 | |
1297 | IRBuilderBase::InsertPointGuard Guard(IC.Builder); |
1298 | IC.Builder.SetInsertPoint(&II); |
1299 | |
1300 | // Assume the arguments are unchanged and later override them, if needed. |
1301 | SmallVector<Value *, 16> Args(II.args()); |
1302 | |
1303 | if (DMaskIdx < 0) { |
1304 | // Buffer case. |
1305 | |
1306 | const unsigned ActiveBits = DemandedElts.getActiveBits(); |
1307 | const unsigned UnusedComponentsAtFront = DemandedElts.countr_zero(); |
1308 | |
1309 | // Start assuming the prefix of elements is demanded, but possibly clear |
1310 | // some other bits if there are trailing zeros (unused components at front) |
1311 | // and update offset. |
1312 | DemandedElts = (1 << ActiveBits) - 1; |
1313 | |
1314 | if (UnusedComponentsAtFront > 0) { |
1315 | static const unsigned InvalidOffsetIdx = 0xf; |
1316 | |
1317 | unsigned OffsetIdx; |
1318 | switch (II.getIntrinsicID()) { |
1319 | case Intrinsic::amdgcn_raw_buffer_load: |
1320 | case Intrinsic::amdgcn_raw_ptr_buffer_load: |
1321 | OffsetIdx = 1; |
1322 | break; |
1323 | case Intrinsic::amdgcn_s_buffer_load: |
1324 | // If resulting type is vec3, there is no point in trimming the |
1325 | // load with updated offset, as the vec3 would most likely be widened to |
1326 | // vec4 anyway during lowering. |
1327 | if (ActiveBits == 4 && UnusedComponentsAtFront == 1) |
1328 | OffsetIdx = InvalidOffsetIdx; |
1329 | else |
1330 | OffsetIdx = 1; |
1331 | break; |
1332 | case Intrinsic::amdgcn_struct_buffer_load: |
1333 | case Intrinsic::amdgcn_struct_ptr_buffer_load: |
1334 | OffsetIdx = 2; |
1335 | break; |
1336 | default: |
1337 | // TODO: handle tbuffer* intrinsics. |
1338 | OffsetIdx = InvalidOffsetIdx; |
1339 | break; |
1340 | } |
1341 | |
1342 | if (OffsetIdx != InvalidOffsetIdx) { |
1343 | // Clear demanded bits and update the offset. |
1344 | DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1); |
1345 | auto *Offset = Args[OffsetIdx]; |
1346 | unsigned SingleComponentSizeInBits = |
1347 | IC.getDataLayout().getTypeSizeInBits(Ty: EltTy); |
1348 | unsigned OffsetAdd = |
1349 | UnusedComponentsAtFront * SingleComponentSizeInBits / 8; |
1350 | auto *OffsetAddVal = ConstantInt::get(Ty: Offset->getType(), V: OffsetAdd); |
1351 | Args[OffsetIdx] = IC.Builder.CreateAdd(LHS: Offset, RHS: OffsetAddVal); |
1352 | } |
1353 | } |
1354 | } else { |
1355 | // Image case. |
1356 | |
1357 | ConstantInt *DMask = cast<ConstantInt>(Val: Args[DMaskIdx]); |
1358 | unsigned DMaskVal = DMask->getZExtValue() & 0xf; |
1359 | |
1360 | // dmask 0 has special semantics, do not simplify. |
1361 | if (DMaskVal == 0) |
1362 | return nullptr; |
1363 | |
1364 | // Mask off values that are undefined because the dmask doesn't cover them |
1365 | DemandedElts &= (1 << llvm::popcount(Value: DMaskVal)) - 1; |
1366 | |
1367 | unsigned NewDMaskVal = 0; |
1368 | unsigned OrigLdStIdx = 0; |
1369 | for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { |
1370 | const unsigned Bit = 1 << SrcIdx; |
1371 | if (!!(DMaskVal & Bit)) { |
1372 | if (!!DemandedElts[OrigLdStIdx]) |
1373 | NewDMaskVal |= Bit; |
1374 | OrigLdStIdx++; |
1375 | } |
1376 | } |
1377 | |
1378 | if (DMaskVal != NewDMaskVal) |
1379 | Args[DMaskIdx] = ConstantInt::get(Ty: DMask->getType(), V: NewDMaskVal); |
1380 | } |
1381 | |
1382 | unsigned NewNumElts = DemandedElts.popcount(); |
1383 | if (!NewNumElts) |
1384 | return PoisonValue::get(T: IIVTy); |
1385 | |
1386 | if (NewNumElts >= VWidth && DemandedElts.isMask()) { |
1387 | if (DMaskIdx >= 0) |
1388 | II.setArgOperand(i: DMaskIdx, v: Args[DMaskIdx]); |
1389 | return nullptr; |
1390 | } |
1391 | |
1392 | // Validate function argument and return types, extracting overloaded types |
1393 | // along the way. |
1394 | SmallVector<Type *, 6> OverloadTys; |
1395 | if (!Intrinsic::getIntrinsicSignature(F: II.getCalledFunction(), ArgTys&: OverloadTys)) |
1396 | return nullptr; |
1397 | |
1398 | Type *NewTy = |
1399 | (NewNumElts == 1) ? EltTy : FixedVectorType::get(ElementType: EltTy, NumElts: NewNumElts); |
1400 | OverloadTys[0] = NewTy; |
1401 | |
1402 | if (!IsLoad) { |
1403 | SmallVector<int, 8> EltMask; |
1404 | for (unsigned OrigStoreIdx = 0; OrigStoreIdx < VWidth; ++OrigStoreIdx) |
1405 | if (DemandedElts[OrigStoreIdx]) |
1406 | EltMask.push_back(Elt: OrigStoreIdx); |
1407 | |
1408 | if (NewNumElts == 1) |
1409 | Args[0] = IC.Builder.CreateExtractElement(Vec: II.getOperand(i_nocapture: 0), Idx: EltMask[0]); |
1410 | else |
1411 | Args[0] = IC.Builder.CreateShuffleVector(V: II.getOperand(i_nocapture: 0), Mask: EltMask); |
1412 | } |
1413 | |
1414 | Function *NewIntrin = Intrinsic::getDeclaration( |
1415 | M: II.getModule(), id: II.getIntrinsicID(), Tys: OverloadTys); |
1416 | CallInst *NewCall = IC.Builder.CreateCall(Callee: NewIntrin, Args); |
1417 | NewCall->takeName(V: &II); |
1418 | NewCall->copyMetadata(SrcInst: II); |
1419 | |
1420 | if (IsLoad) { |
1421 | if (NewNumElts == 1) { |
1422 | return IC.Builder.CreateInsertElement(Vec: PoisonValue::get(T: IIVTy), NewElt: NewCall, |
1423 | Idx: DemandedElts.countr_zero()); |
1424 | } |
1425 | |
1426 | SmallVector<int, 8> EltMask; |
1427 | unsigned NewLoadIdx = 0; |
1428 | for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { |
1429 | if (!!DemandedElts[OrigLoadIdx]) |
1430 | EltMask.push_back(Elt: NewLoadIdx++); |
1431 | else |
1432 | EltMask.push_back(Elt: NewNumElts); |
1433 | } |
1434 | |
1435 | auto *Shuffle = IC.Builder.CreateShuffleVector(V: NewCall, Mask: EltMask); |
1436 | |
1437 | return Shuffle; |
1438 | } |
1439 | |
1440 | return NewCall; |
1441 | } |
1442 | |
1443 | std::optional<Value *> GCNTTIImpl::simplifyDemandedVectorEltsIntrinsic( |
1444 | InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, |
1445 | APInt &UndefElts2, APInt &UndefElts3, |
1446 | std::function<void(Instruction *, unsigned, APInt, APInt &)> |
1447 | SimplifyAndSetOp) const { |
1448 | switch (II.getIntrinsicID()) { |
1449 | case Intrinsic::amdgcn_raw_buffer_load: |
1450 | case Intrinsic::amdgcn_raw_ptr_buffer_load: |
1451 | case Intrinsic::amdgcn_raw_buffer_load_format: |
1452 | case Intrinsic::amdgcn_raw_ptr_buffer_load_format: |
1453 | case Intrinsic::amdgcn_raw_tbuffer_load: |
1454 | case Intrinsic::amdgcn_raw_ptr_tbuffer_load: |
1455 | case Intrinsic::amdgcn_s_buffer_load: |
1456 | case Intrinsic::amdgcn_struct_buffer_load: |
1457 | case Intrinsic::amdgcn_struct_ptr_buffer_load: |
1458 | case Intrinsic::amdgcn_struct_buffer_load_format: |
1459 | case Intrinsic::amdgcn_struct_ptr_buffer_load_format: |
1460 | case Intrinsic::amdgcn_struct_tbuffer_load: |
1461 | case Intrinsic::amdgcn_struct_ptr_tbuffer_load: |
1462 | return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts); |
1463 | default: { |
1464 | if (getAMDGPUImageDMaskIntrinsic(Intr: II.getIntrinsicID())) { |
1465 | return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, DMaskIdx: 0); |
1466 | } |
1467 | break; |
1468 | } |
1469 | } |
1470 | return std::nullopt; |
1471 | } |
1472 | |