1 | //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | //===----------------------------------------------------------------------===// |
10 | // |
11 | /// \file |
12 | /// |
13 | /// This file contains definition for AMDGPU ISA disassembler |
14 | // |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? |
18 | |
19 | #include "Disassembler/AMDGPUDisassembler.h" |
20 | #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
21 | #include "SIDefines.h" |
22 | #include "SIRegisterInfo.h" |
23 | #include "TargetInfo/AMDGPUTargetInfo.h" |
24 | #include "Utils/AMDGPUAsmUtils.h" |
25 | #include "Utils/AMDGPUBaseInfo.h" |
26 | #include "llvm-c/DisassemblerTypes.h" |
27 | #include "llvm/BinaryFormat/ELF.h" |
28 | #include "llvm/MC/MCAsmInfo.h" |
29 | #include "llvm/MC/MCContext.h" |
30 | #include "llvm/MC/MCDecoderOps.h" |
31 | #include "llvm/MC/MCExpr.h" |
32 | #include "llvm/MC/MCInstrDesc.h" |
33 | #include "llvm/MC/MCRegisterInfo.h" |
34 | #include "llvm/MC/MCSubtargetInfo.h" |
35 | #include "llvm/MC/TargetRegistry.h" |
36 | #include "llvm/Support/AMDHSAKernelDescriptor.h" |
37 | |
38 | using namespace llvm; |
39 | |
40 | #define DEBUG_TYPE "amdgpu-disassembler" |
41 | |
42 | #define SGPR_MAX \ |
43 | (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ |
44 | : AMDGPU::EncValues::SGPR_MAX_SI) |
45 | |
46 | using DecodeStatus = llvm::MCDisassembler::DecodeStatus; |
47 | |
48 | static const MCSubtargetInfo &addDefaultWaveSize(const MCSubtargetInfo &STI, |
49 | MCContext &Ctx) { |
50 | if (!STI.hasFeature(Feature: AMDGPU::FeatureWavefrontSize64) && |
51 | !STI.hasFeature(Feature: AMDGPU::FeatureWavefrontSize32)) { |
52 | MCSubtargetInfo &STICopy = Ctx.getSubtargetCopy(STI); |
53 | // If there is no default wave size it must be a generation before gfx10, |
54 | // these have FeatureWavefrontSize64 in their definition already. For gfx10+ |
55 | // set wave32 as a default. |
56 | STICopy.ToggleFeature(FB: AMDGPU::FeatureWavefrontSize32); |
57 | return STICopy; |
58 | } |
59 | |
60 | return STI; |
61 | } |
62 | |
63 | AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, |
64 | MCContext &Ctx, MCInstrInfo const *MCII) |
65 | : MCDisassembler(addDefaultWaveSize(STI, Ctx), Ctx), MCII(MCII), |
66 | MRI(*Ctx.getRegisterInfo()), MAI(*Ctx.getAsmInfo()), |
67 | TargetMaxInstBytes(MAI.getMaxInstLength(STI: &STI)), |
68 | CodeObjectVersion(AMDGPU::getDefaultAMDHSACodeObjectVersion()) { |
69 | // ToDo: AMDGPUDisassembler supports only VI ISA. |
70 | if (!STI.hasFeature(Feature: AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus()) |
71 | report_fatal_error(reason: "Disassembly not yet supported for subtarget" ); |
72 | |
73 | for (auto [Symbol, Code] : AMDGPU::UCVersion::getGFXVersions()) |
74 | createConstantSymbolExpr(Id: Symbol, Val: Code); |
75 | |
76 | UCVersionW64Expr = createConstantSymbolExpr(Id: "UC_VERSION_W64_BIT" , Val: 0x2000); |
77 | UCVersionW32Expr = createConstantSymbolExpr(Id: "UC_VERSION_W32_BIT" , Val: 0x4000); |
78 | UCVersionMDPExpr = createConstantSymbolExpr(Id: "UC_VERSION_MDP_BIT" , Val: 0x8000); |
79 | } |
80 | |
81 | void AMDGPUDisassembler::setABIVersion(unsigned Version) { |
82 | CodeObjectVersion = AMDGPU::getAMDHSACodeObjectVersion(ABIVersion: Version); |
83 | } |
84 | |
85 | inline static MCDisassembler::DecodeStatus |
86 | addOperand(MCInst &Inst, const MCOperand& Opnd) { |
87 | Inst.addOperand(Op: Opnd); |
88 | return Opnd.isValid() ? |
89 | MCDisassembler::Success : |
90 | MCDisassembler::Fail; |
91 | } |
92 | |
93 | static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, |
94 | uint16_t NameIdx) { |
95 | int OpIdx = AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), NamedIdx: NameIdx); |
96 | if (OpIdx != -1) { |
97 | auto I = MI.begin(); |
98 | std::advance(i&: I, n: OpIdx); |
99 | MI.insert(I, Op); |
100 | } |
101 | return OpIdx; |
102 | } |
103 | |
104 | static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm, |
105 | uint64_t Addr, |
106 | const MCDisassembler *Decoder) { |
107 | auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
108 | |
109 | // Our branches take a simm16, but we need two extra bits to account for the |
110 | // factor of 4. |
111 | APInt SignedOffset(18, Imm * 4, true); |
112 | int64_t Offset = (SignedOffset.sext(width: 64) + 4 + Addr).getSExtValue(); |
113 | |
114 | if (DAsm->tryAddingSymbolicOperand(Inst, Value: Offset, Address: Addr, IsBranch: true, Offset: 2, OpSize: 2, InstSize: 0)) |
115 | return MCDisassembler::Success; |
116 | return addOperand(Inst, Opnd: MCOperand::createImm(Val: Imm)); |
117 | } |
118 | |
119 | static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, |
120 | const MCDisassembler *Decoder) { |
121 | auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
122 | int64_t Offset; |
123 | if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets. |
124 | Offset = SignExtend64<24>(x: Imm); |
125 | } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. |
126 | Offset = Imm & 0xFFFFF; |
127 | } else { // GFX9+ supports 21-bit signed offsets. |
128 | Offset = SignExtend64<21>(x: Imm); |
129 | } |
130 | return addOperand(Inst, Opnd: MCOperand::createImm(Val: Offset)); |
131 | } |
132 | |
133 | static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, |
134 | const MCDisassembler *Decoder) { |
135 | auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
136 | return addOperand(Inst, Opnd: DAsm->decodeBoolReg(Val)); |
137 | } |
138 | |
139 | static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val, |
140 | uint64_t Addr, |
141 | const MCDisassembler *Decoder) { |
142 | auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); |
143 | return addOperand(Inst, Opnd: DAsm->decodeSplitBarrier(Val)); |
144 | } |
145 | |
146 | static DecodeStatus decodeDpp8FI(MCInst &Inst, unsigned Val, uint64_t Addr, |
147 | const MCDisassembler *Decoder) { |
148 | auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); |
149 | return addOperand(Inst, Opnd: DAsm->decodeDpp8FI(Val)); |
150 | } |
151 | |
152 | #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ |
153 | static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ |
154 | uint64_t /*Addr*/, \ |
155 | const MCDisassembler *Decoder) { \ |
156 | auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ |
157 | return addOperand(Inst, DAsm->DecoderName(Imm)); \ |
158 | } |
159 | |
160 | // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is |
161 | // number of register. Used by VGPR only and AGPR only operands. |
162 | #define DECODE_OPERAND_REG_8(RegClass) \ |
163 | static DecodeStatus Decode##RegClass##RegisterClass( \ |
164 | MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ |
165 | const MCDisassembler *Decoder) { \ |
166 | assert(Imm < (1 << 8) && "8-bit encoding"); \ |
167 | auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ |
168 | return addOperand( \ |
169 | Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm)); \ |
170 | } |
171 | |
172 | #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral, \ |
173 | ImmWidth) \ |
174 | static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ |
175 | const MCDisassembler *Decoder) { \ |
176 | assert(Imm < (1 << EncSize) && #EncSize "-bit encoding"); \ |
177 | auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ |
178 | return addOperand(Inst, \ |
179 | DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm, \ |
180 | MandatoryLiteral, ImmWidth)); \ |
181 | } |
182 | |
183 | static DecodeStatus decodeSrcOp(MCInst &Inst, unsigned EncSize, |
184 | AMDGPUDisassembler::OpWidthTy OpWidth, |
185 | unsigned Imm, unsigned EncImm, |
186 | bool MandatoryLiteral, unsigned ImmWidth, |
187 | AMDGPU::OperandSemantics Sema, |
188 | const MCDisassembler *Decoder) { |
189 | assert(Imm < (1U << EncSize) && "Operand doesn't fit encoding!" ); |
190 | auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); |
191 | return addOperand(Inst, Opnd: DAsm->decodeSrcOp(Width: OpWidth, Val: EncImm, MandatoryLiteral, |
192 | ImmWidth, Sema)); |
193 | } |
194 | |
195 | // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to |
196 | // get register class. Used by SGPR only operands. |
197 | #define DECODE_OPERAND_REG_7(RegClass, OpWidth) \ |
198 | DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0) |
199 | |
200 | // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register, |
201 | // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC). |
202 | // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp. |
203 | // Used by AV_ register classes (AGPR or VGPR only register operands). |
204 | template <AMDGPUDisassembler::OpWidthTy OpWidth> |
205 | static DecodeStatus decodeAV10(MCInst &Inst, unsigned Imm, uint64_t /* Addr */, |
206 | const MCDisassembler *Decoder) { |
207 | return decodeSrcOp(Inst, EncSize: 10, OpWidth, Imm, EncImm: Imm | AMDGPU::EncValues::IS_VGPR, |
208 | MandatoryLiteral: false, ImmWidth: 0, Sema: AMDGPU::OperandSemantics::INT, Decoder); |
209 | } |
210 | |
211 | // Decoder for Src(9-bit encoding) registers only. |
212 | template <AMDGPUDisassembler::OpWidthTy OpWidth> |
213 | static DecodeStatus decodeSrcReg9(MCInst &Inst, unsigned Imm, |
214 | uint64_t /* Addr */, |
215 | const MCDisassembler *Decoder) { |
216 | return decodeSrcOp(Inst, EncSize: 9, OpWidth, Imm, EncImm: Imm, MandatoryLiteral: false, ImmWidth: 0, |
217 | Sema: AMDGPU::OperandSemantics::INT, Decoder); |
218 | } |
219 | |
220 | // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set |
221 | // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers |
222 | // only. |
223 | template <AMDGPUDisassembler::OpWidthTy OpWidth> |
224 | static DecodeStatus decodeSrcA9(MCInst &Inst, unsigned Imm, uint64_t /* Addr */, |
225 | const MCDisassembler *Decoder) { |
226 | return decodeSrcOp(Inst, EncSize: 9, OpWidth, Imm, EncImm: Imm | 512, MandatoryLiteral: false, ImmWidth: 0, |
227 | Sema: AMDGPU::OperandSemantics::INT, Decoder); |
228 | } |
229 | |
230 | // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding |
231 | // Imm{9} is acc, registers only. |
232 | template <AMDGPUDisassembler::OpWidthTy OpWidth> |
233 | static DecodeStatus decodeSrcAV10(MCInst &Inst, unsigned Imm, |
234 | uint64_t /* Addr */, |
235 | const MCDisassembler *Decoder) { |
236 | return decodeSrcOp(Inst, EncSize: 10, OpWidth, Imm, EncImm: Imm, MandatoryLiteral: false, ImmWidth: 0, |
237 | Sema: AMDGPU::OperandSemantics::INT, Decoder); |
238 | } |
239 | |
240 | // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be |
241 | // register from RegClass or immediate. Registers that don't belong to RegClass |
242 | // will be decoded and InstPrinter will report warning. Immediate will be |
243 | // decoded into constant of size ImmWidth, should match width of immediate used |
244 | // by OperandType (important for floating point types). |
245 | template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth, |
246 | unsigned OperandSemantics> |
247 | static DecodeStatus decodeSrcRegOrImm9(MCInst &Inst, unsigned Imm, |
248 | uint64_t /* Addr */, |
249 | const MCDisassembler *Decoder) { |
250 | return decodeSrcOp(Inst, EncSize: 9, OpWidth, Imm, EncImm: Imm, MandatoryLiteral: false, ImmWidth, |
251 | Sema: (AMDGPU::OperandSemantics)OperandSemantics, Decoder); |
252 | } |
253 | |
254 | // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc) |
255 | // and decode using 'enum10' from decodeSrcOp. |
256 | template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth, |
257 | unsigned OperandSemantics> |
258 | static DecodeStatus decodeSrcRegOrImmA9(MCInst &Inst, unsigned Imm, |
259 | uint64_t /* Addr */, |
260 | const MCDisassembler *Decoder) { |
261 | return decodeSrcOp(Inst, EncSize: 9, OpWidth, Imm, EncImm: Imm | 512, MandatoryLiteral: false, ImmWidth, |
262 | Sema: (AMDGPU::OperandSemantics)OperandSemantics, Decoder); |
263 | } |
264 | |
265 | template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth, |
266 | unsigned OperandSemantics> |
267 | static DecodeStatus decodeSrcRegOrImmDeferred9(MCInst &Inst, unsigned Imm, |
268 | uint64_t /* Addr */, |
269 | const MCDisassembler *Decoder) { |
270 | return decodeSrcOp(Inst, EncSize: 9, OpWidth, Imm, EncImm: Imm, MandatoryLiteral: true, ImmWidth, |
271 | Sema: (AMDGPU::OperandSemantics)OperandSemantics, Decoder); |
272 | } |
273 | |
274 | // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass' |
275 | // when RegisterClass is used as an operand. Most often used for destination |
276 | // operands. |
277 | |
278 | DECODE_OPERAND_REG_8(VGPR_32) |
279 | DECODE_OPERAND_REG_8(VGPR_32_Lo128) |
280 | DECODE_OPERAND_REG_8(VReg_64) |
281 | DECODE_OPERAND_REG_8(VReg_96) |
282 | DECODE_OPERAND_REG_8(VReg_128) |
283 | DECODE_OPERAND_REG_8(VReg_256) |
284 | DECODE_OPERAND_REG_8(VReg_288) |
285 | DECODE_OPERAND_REG_8(VReg_352) |
286 | DECODE_OPERAND_REG_8(VReg_384) |
287 | DECODE_OPERAND_REG_8(VReg_512) |
288 | DECODE_OPERAND_REG_8(VReg_1024) |
289 | |
290 | DECODE_OPERAND_REG_7(SReg_32, OPW32) |
291 | DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32) |
292 | DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32) |
293 | DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32) |
294 | DECODE_OPERAND_REG_7(SReg_64, OPW64) |
295 | DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64) |
296 | DECODE_OPERAND_REG_7(SReg_96, OPW96) |
297 | DECODE_OPERAND_REG_7(SReg_128, OPW128) |
298 | DECODE_OPERAND_REG_7(SReg_256, OPW256) |
299 | DECODE_OPERAND_REG_7(SReg_512, OPW512) |
300 | |
301 | DECODE_OPERAND_REG_8(AGPR_32) |
302 | DECODE_OPERAND_REG_8(AReg_64) |
303 | DECODE_OPERAND_REG_8(AReg_128) |
304 | DECODE_OPERAND_REG_8(AReg_256) |
305 | DECODE_OPERAND_REG_8(AReg_512) |
306 | DECODE_OPERAND_REG_8(AReg_1024) |
307 | |
308 | static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm, |
309 | uint64_t /*Addr*/, |
310 | const MCDisassembler *Decoder) { |
311 | assert(isUInt<10>(Imm) && "10-bit encoding expected" ); |
312 | assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used" ); |
313 | |
314 | bool IsHi = Imm & (1 << 9); |
315 | unsigned RegIdx = Imm & 0xff; |
316 | auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); |
317 | return addOperand(Inst, Opnd: DAsm->createVGPR16Operand(RegIdx, IsHi)); |
318 | } |
319 | |
320 | static DecodeStatus |
321 | DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, |
322 | const MCDisassembler *Decoder) { |
323 | assert(isUInt<8>(Imm) && "8-bit encoding expected" ); |
324 | |
325 | bool IsHi = Imm & (1 << 7); |
326 | unsigned RegIdx = Imm & 0x7f; |
327 | auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); |
328 | return addOperand(Inst, Opnd: DAsm->createVGPR16Operand(RegIdx, IsHi)); |
329 | } |
330 | |
331 | static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm, |
332 | uint64_t /*Addr*/, |
333 | const MCDisassembler *Decoder) { |
334 | assert(isUInt<9>(Imm) && "9-bit encoding expected" ); |
335 | |
336 | const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); |
337 | bool IsVGPR = Imm & (1 << 8); |
338 | if (IsVGPR) { |
339 | bool IsHi = Imm & (1 << 7); |
340 | unsigned RegIdx = Imm & 0x7f; |
341 | return addOperand(Inst, Opnd: DAsm->createVGPR16Operand(RegIdx, IsHi)); |
342 | } |
343 | return addOperand(Inst, Opnd: DAsm->decodeNonVGPRSrcOp(Width: AMDGPUDisassembler::OPW16, |
344 | Val: Imm & 0xFF, MandatoryLiteral: false, ImmWidth: 16)); |
345 | } |
346 | |
347 | static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm, |
348 | uint64_t /*Addr*/, |
349 | const MCDisassembler *Decoder) { |
350 | assert(isUInt<10>(Imm) && "10-bit encoding expected" ); |
351 | |
352 | const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); |
353 | bool IsVGPR = Imm & (1 << 8); |
354 | if (IsVGPR) { |
355 | bool IsHi = Imm & (1 << 9); |
356 | unsigned RegIdx = Imm & 0xff; |
357 | return addOperand(Inst, Opnd: DAsm->createVGPR16Operand(RegIdx, IsHi)); |
358 | } |
359 | return addOperand(Inst, Opnd: DAsm->decodeNonVGPRSrcOp(Width: AMDGPUDisassembler::OPW16, |
360 | Val: Imm & 0xFF, MandatoryLiteral: false, ImmWidth: 16)); |
361 | } |
362 | |
363 | static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm, |
364 | uint64_t Addr, |
365 | const MCDisassembler *Decoder) { |
366 | const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); |
367 | return addOperand(Inst, Opnd: DAsm->decodeMandatoryLiteralConstant(Imm)); |
368 | } |
369 | |
370 | static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val, |
371 | uint64_t Addr, const void *Decoder) { |
372 | const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); |
373 | return addOperand(Inst, Opnd: DAsm->decodeVOPDDstYOp(Inst, Val)); |
374 | } |
375 | |
376 | static bool IsAGPROperand(const MCInst &Inst, int OpIdx, |
377 | const MCRegisterInfo *MRI) { |
378 | if (OpIdx < 0) |
379 | return false; |
380 | |
381 | const MCOperand &Op = Inst.getOperand(i: OpIdx); |
382 | if (!Op.isReg()) |
383 | return false; |
384 | |
385 | unsigned Sub = MRI->getSubReg(Reg: Op.getReg(), Idx: AMDGPU::sub0); |
386 | auto Reg = Sub ? Sub : Op.getReg(); |
387 | return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; |
388 | } |
389 | |
390 | static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm, |
391 | AMDGPUDisassembler::OpWidthTy Opw, |
392 | const MCDisassembler *Decoder) { |
393 | auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
394 | if (!DAsm->isGFX90A()) { |
395 | Imm &= 511; |
396 | } else { |
397 | // If atomic has both vdata and vdst their register classes are tied. |
398 | // The bit is decoded along with the vdst, first operand. We need to |
399 | // change register class to AGPR if vdst was AGPR. |
400 | // If a DS instruction has both data0 and data1 their register classes |
401 | // are also tied. |
402 | unsigned Opc = Inst.getOpcode(); |
403 | uint64_t TSFlags = DAsm->getMCII()->get(Opcode: Opc).TSFlags; |
404 | uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 |
405 | : AMDGPU::OpName::vdata; |
406 | const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); |
407 | int DataIdx = AMDGPU::getNamedOperandIdx(Opcode: Opc, NamedIdx: DataNameIdx); |
408 | if ((int)Inst.getNumOperands() == DataIdx) { |
409 | int DstIdx = AMDGPU::getNamedOperandIdx(Opcode: Opc, NamedIdx: AMDGPU::OpName::vdst); |
410 | if (IsAGPROperand(Inst, OpIdx: DstIdx, MRI)) |
411 | Imm |= 512; |
412 | } |
413 | |
414 | if (TSFlags & SIInstrFlags::DS) { |
415 | int Data2Idx = AMDGPU::getNamedOperandIdx(Opcode: Opc, NamedIdx: AMDGPU::OpName::data1); |
416 | if ((int)Inst.getNumOperands() == Data2Idx && |
417 | IsAGPROperand(Inst, OpIdx: DataIdx, MRI)) |
418 | Imm |= 512; |
419 | } |
420 | } |
421 | return addOperand(Inst, Opnd: DAsm->decodeSrcOp(Width: Opw, Val: Imm | 256)); |
422 | } |
423 | |
424 | template <AMDGPUDisassembler::OpWidthTy Opw> |
425 | static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm, |
426 | uint64_t /* Addr */, |
427 | const MCDisassembler *Decoder) { |
428 | return decodeAVLdSt(Inst, Imm, Opw, Decoder); |
429 | } |
430 | |
431 | static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm, |
432 | uint64_t Addr, |
433 | const MCDisassembler *Decoder) { |
434 | assert(Imm < (1 << 9) && "9-bit encoding" ); |
435 | auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); |
436 | return addOperand(Inst, |
437 | Opnd: DAsm->decodeSrcOp(Width: AMDGPUDisassembler::OPW64, Val: Imm, MandatoryLiteral: false, ImmWidth: 64, |
438 | Sema: AMDGPU::OperandSemantics::FP64)); |
439 | } |
440 | |
441 | #define DECODE_SDWA(DecName) \ |
442 | DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) |
443 | |
444 | DECODE_SDWA(Src32) |
445 | DECODE_SDWA(Src16) |
446 | DECODE_SDWA(VopcDst) |
447 | |
448 | static DecodeStatus decodeVersionImm(MCInst &Inst, unsigned Imm, |
449 | uint64_t /* Addr */, |
450 | const MCDisassembler *Decoder) { |
451 | auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); |
452 | return addOperand(Inst, Opnd: DAsm->decodeVersionImm(Imm)); |
453 | } |
454 | |
455 | #include "AMDGPUGenDisassemblerTables.inc" |
456 | |
457 | //===----------------------------------------------------------------------===// |
458 | // |
459 | //===----------------------------------------------------------------------===// |
460 | |
461 | template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { |
462 | assert(Bytes.size() >= sizeof(T)); |
463 | const auto Res = |
464 | support::endian::read<T, llvm::endianness::little>(Bytes.data()); |
465 | Bytes = Bytes.slice(N: sizeof(T)); |
466 | return Res; |
467 | } |
468 | |
469 | static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) { |
470 | assert(Bytes.size() >= 12); |
471 | uint64_t Lo = |
472 | support::endian::read<uint64_t, llvm::endianness::little>(P: Bytes.data()); |
473 | Bytes = Bytes.slice(N: 8); |
474 | uint64_t Hi = |
475 | support::endian::read<uint32_t, llvm::endianness::little>(P: Bytes.data()); |
476 | Bytes = Bytes.slice(N: 4); |
477 | return DecoderUInt128(Lo, Hi); |
478 | } |
479 | |
480 | DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, |
481 | ArrayRef<uint8_t> Bytes_, |
482 | uint64_t Address, |
483 | raw_ostream &CS) const { |
484 | unsigned MaxInstBytesNum = std::min(a: (size_t)TargetMaxInstBytes, b: Bytes_.size()); |
485 | Bytes = Bytes_.slice(N: 0, M: MaxInstBytesNum); |
486 | |
487 | // In case the opcode is not recognized we'll assume a Size of 4 bytes (unless |
488 | // there are fewer bytes left). This will be overridden on success. |
489 | Size = std::min(a: (size_t)4, b: Bytes_.size()); |
490 | |
491 | do { |
492 | // ToDo: better to switch encoding length using some bit predicate |
493 | // but it is unknown yet, so try all we can |
494 | |
495 | // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 |
496 | // encodings |
497 | if (isGFX11Plus() && Bytes.size() >= 12 ) { |
498 | DecoderUInt128 DecW = eat12Bytes(Bytes); |
499 | |
500 | if (isGFX11() && |
501 | tryDecodeInst(Table1: DecoderTableGFX1196, Table2: DecoderTableGFX11_FAKE1696, MI, |
502 | Inst: DecW, Address, Comments&: CS)) |
503 | break; |
504 | |
505 | if (isGFX12() && |
506 | tryDecodeInst(Table1: DecoderTableGFX1296, Table2: DecoderTableGFX12_FAKE1696, MI, |
507 | Inst: DecW, Address, Comments&: CS)) |
508 | break; |
509 | |
510 | if (isGFX12() && |
511 | tryDecodeInst(Table: DecoderTableGFX12W6496, MI, Inst: DecW, Address, Comments&: CS)) |
512 | break; |
513 | |
514 | // Reinitialize Bytes |
515 | Bytes = Bytes_.slice(N: 0, M: MaxInstBytesNum); |
516 | } |
517 | |
518 | if (Bytes.size() >= 8) { |
519 | const uint64_t QW = eatBytes<uint64_t>(Bytes); |
520 | |
521 | if (STI.hasFeature(Feature: AMDGPU::FeatureGFX10_BEncoding) && |
522 | tryDecodeInst(Table: DecoderTableGFX10_B64, MI, Inst: QW, Address, Comments&: CS)) |
523 | break; |
524 | |
525 | if (STI.hasFeature(Feature: AMDGPU::FeatureUnpackedD16VMem) && |
526 | tryDecodeInst(Table: DecoderTableGFX80_UNPACKED64, MI, Inst: QW, Address, Comments&: CS)) |
527 | break; |
528 | |
529 | // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and |
530 | // v_mad_mixhi_f16 for FMA variants. Try to decode using this special |
531 | // table first so we print the correct name. |
532 | if (STI.hasFeature(Feature: AMDGPU::FeatureFmaMixInsts) && |
533 | tryDecodeInst(Table: DecoderTableGFX9_DL64, MI, Inst: QW, Address, Comments&: CS)) |
534 | break; |
535 | |
536 | if (STI.hasFeature(Feature: AMDGPU::FeatureGFX940Insts) && |
537 | tryDecodeInst(Table: DecoderTableGFX94064, MI, Inst: QW, Address, Comments&: CS)) |
538 | break; |
539 | |
540 | if (STI.hasFeature(Feature: AMDGPU::FeatureGFX90AInsts) && |
541 | tryDecodeInst(Table: DecoderTableGFX90A64, MI, Inst: QW, Address, Comments&: CS)) |
542 | break; |
543 | |
544 | if ((isVI() || isGFX9()) && |
545 | tryDecodeInst(Table: DecoderTableGFX864, MI, Inst: QW, Address, Comments&: CS)) |
546 | break; |
547 | |
548 | if (isGFX9() && tryDecodeInst(Table: DecoderTableGFX964, MI, Inst: QW, Address, Comments&: CS)) |
549 | break; |
550 | |
551 | if (isGFX10() && tryDecodeInst(Table: DecoderTableGFX1064, MI, Inst: QW, Address, Comments&: CS)) |
552 | break; |
553 | |
554 | if (isGFX12() && |
555 | tryDecodeInst(Table1: DecoderTableGFX1264, Table2: DecoderTableGFX12_FAKE1664, MI, Inst: QW, |
556 | Address, Comments&: CS)) |
557 | break; |
558 | |
559 | if (isGFX11() && |
560 | tryDecodeInst(Table1: DecoderTableGFX1164, Table2: DecoderTableGFX11_FAKE1664, MI, Inst: QW, |
561 | Address, Comments&: CS)) |
562 | break; |
563 | |
564 | if (isGFX11() && |
565 | tryDecodeInst(Table: DecoderTableGFX11W6464, MI, Inst: QW, Address, Comments&: CS)) |
566 | break; |
567 | |
568 | if (isGFX12() && |
569 | tryDecodeInst(Table: DecoderTableGFX12W6464, MI, Inst: QW, Address, Comments&: CS)) |
570 | break; |
571 | |
572 | // Reinitialize Bytes |
573 | Bytes = Bytes_.slice(N: 0, M: MaxInstBytesNum); |
574 | } |
575 | |
576 | // Try decode 32-bit instruction |
577 | if (Bytes.size() >= 4) { |
578 | const uint32_t DW = eatBytes<uint32_t>(Bytes); |
579 | |
580 | if ((isVI() || isGFX9()) && |
581 | tryDecodeInst(Table: DecoderTableGFX832, MI, Inst: DW, Address, Comments&: CS)) |
582 | break; |
583 | |
584 | if (tryDecodeInst(Table: DecoderTableAMDGPU32, MI, Inst: DW, Address, Comments&: CS)) |
585 | break; |
586 | |
587 | if (isGFX9() && tryDecodeInst(Table: DecoderTableGFX932, MI, Inst: DW, Address, Comments&: CS)) |
588 | break; |
589 | |
590 | if (STI.hasFeature(Feature: AMDGPU::FeatureGFX90AInsts) && |
591 | tryDecodeInst(Table: DecoderTableGFX90A32, MI, Inst: DW, Address, Comments&: CS)) |
592 | break; |
593 | |
594 | if (STI.hasFeature(Feature: AMDGPU::FeatureGFX10_BEncoding) && |
595 | tryDecodeInst(Table: DecoderTableGFX10_B32, MI, Inst: DW, Address, Comments&: CS)) |
596 | break; |
597 | |
598 | if (isGFX10() && tryDecodeInst(Table: DecoderTableGFX1032, MI, Inst: DW, Address, Comments&: CS)) |
599 | break; |
600 | |
601 | if (isGFX11() && |
602 | tryDecodeInst(Table1: DecoderTableGFX1132, Table2: DecoderTableGFX11_FAKE1632, MI, Inst: DW, |
603 | Address, Comments&: CS)) |
604 | break; |
605 | |
606 | if (isGFX12() && |
607 | tryDecodeInst(Table1: DecoderTableGFX1232, Table2: DecoderTableGFX12_FAKE1632, MI, Inst: DW, |
608 | Address, Comments&: CS)) |
609 | break; |
610 | } |
611 | |
612 | return MCDisassembler::Fail; |
613 | } while (false); |
614 | |
615 | if (MCII->get(Opcode: MI.getOpcode()).TSFlags & SIInstrFlags::DPP) { |
616 | if (isMacDPP(MI)) |
617 | convertMacDPPInst(MI); |
618 | |
619 | if (MCII->get(Opcode: MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) |
620 | convertVOP3PDPPInst(MI); |
621 | else if ((MCII->get(Opcode: MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) || |
622 | AMDGPU::isVOPC64DPP(Opc: MI.getOpcode())) |
623 | convertVOPCDPPInst(MI); // Special VOP3 case |
624 | else if (AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), NamedIdx: AMDGPU::OpName::dpp8) != |
625 | -1) |
626 | convertDPP8Inst(MI); |
627 | else if (MCII->get(Opcode: MI.getOpcode()).TSFlags & SIInstrFlags::VOP3) |
628 | convertVOP3DPPInst(MI); // Regular VOP3 case |
629 | } |
630 | |
631 | if (AMDGPU::isMAC(Opc: MI.getOpcode())) { |
632 | // Insert dummy unused src2_modifiers. |
633 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: 0), |
634 | NameIdx: AMDGPU::OpName::src2_modifiers); |
635 | } |
636 | |
637 | if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp || |
638 | MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp) { |
639 | // Insert dummy unused src2_modifiers. |
640 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: 0), |
641 | NameIdx: AMDGPU::OpName::src2_modifiers); |
642 | } |
643 | |
644 | if ((MCII->get(Opcode: MI.getOpcode()).TSFlags & SIInstrFlags::DS) && |
645 | !AMDGPU::hasGDS(STI)) { |
646 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: 0), NameIdx: AMDGPU::OpName::gds); |
647 | } |
648 | |
649 | if (MCII->get(Opcode: MI.getOpcode()).TSFlags & |
650 | (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD)) { |
651 | int CPolPos = AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), |
652 | NamedIdx: AMDGPU::OpName::cpol); |
653 | if (CPolPos != -1) { |
654 | unsigned CPol = |
655 | (MCII->get(Opcode: MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? |
656 | AMDGPU::CPol::GLC : 0; |
657 | if (MI.getNumOperands() <= (unsigned)CPolPos) { |
658 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: CPol), |
659 | NameIdx: AMDGPU::OpName::cpol); |
660 | } else if (CPol) { |
661 | MI.getOperand(i: CPolPos).setImm(MI.getOperand(i: CPolPos).getImm() | CPol); |
662 | } |
663 | } |
664 | } |
665 | |
666 | if ((MCII->get(Opcode: MI.getOpcode()).TSFlags & |
667 | (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && |
668 | (STI.hasFeature(Feature: AMDGPU::FeatureGFX90AInsts))) { |
669 | // GFX90A lost TFE, its place is occupied by ACC. |
670 | int TFEOpIdx = |
671 | AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), NamedIdx: AMDGPU::OpName::tfe); |
672 | if (TFEOpIdx != -1) { |
673 | auto TFEIter = MI.begin(); |
674 | std::advance(i&: TFEIter, n: TFEOpIdx); |
675 | MI.insert(I: TFEIter, Op: MCOperand::createImm(Val: 0)); |
676 | } |
677 | } |
678 | |
679 | if (MCII->get(Opcode: MI.getOpcode()).TSFlags & |
680 | (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) { |
681 | int SWZOpIdx = |
682 | AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), NamedIdx: AMDGPU::OpName::swz); |
683 | if (SWZOpIdx != -1) { |
684 | auto SWZIter = MI.begin(); |
685 | std::advance(i&: SWZIter, n: SWZOpIdx); |
686 | MI.insert(I: SWZIter, Op: MCOperand::createImm(Val: 0)); |
687 | } |
688 | } |
689 | |
690 | if (MCII->get(Opcode: MI.getOpcode()).TSFlags & SIInstrFlags::MIMG) { |
691 | int VAddr0Idx = |
692 | AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), NamedIdx: AMDGPU::OpName::vaddr0); |
693 | int RsrcIdx = |
694 | AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), NamedIdx: AMDGPU::OpName::srsrc); |
695 | unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; |
696 | if (VAddr0Idx >= 0 && NSAArgs > 0) { |
697 | unsigned NSAWords = (NSAArgs + 3) / 4; |
698 | if (Bytes.size() < 4 * NSAWords) |
699 | return MCDisassembler::Fail; |
700 | for (unsigned i = 0; i < NSAArgs; ++i) { |
701 | const unsigned VAddrIdx = VAddr0Idx + 1 + i; |
702 | auto VAddrRCID = |
703 | MCII->get(Opcode: MI.getOpcode()).operands()[VAddrIdx].RegClass; |
704 | MI.insert(I: MI.begin() + VAddrIdx, Op: createRegOperand(RegClassID: VAddrRCID, Val: Bytes[i])); |
705 | } |
706 | Bytes = Bytes.slice(N: 4 * NSAWords); |
707 | } |
708 | |
709 | convertMIMGInst(MI); |
710 | } |
711 | |
712 | if (MCII->get(Opcode: MI.getOpcode()).TSFlags & |
713 | (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE)) |
714 | convertMIMGInst(MI); |
715 | |
716 | if (MCII->get(Opcode: MI.getOpcode()).TSFlags & SIInstrFlags::EXP) |
717 | convertEXPInst(MI); |
718 | |
719 | if (MCII->get(Opcode: MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP) |
720 | convertVINTERPInst(MI); |
721 | |
722 | if (MCII->get(Opcode: MI.getOpcode()).TSFlags & SIInstrFlags::SDWA) |
723 | convertSDWAInst(MI); |
724 | |
725 | int VDstIn_Idx = AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), |
726 | NamedIdx: AMDGPU::OpName::vdst_in); |
727 | if (VDstIn_Idx != -1) { |
728 | int Tied = MCII->get(Opcode: MI.getOpcode()).getOperandConstraint(OpNum: VDstIn_Idx, |
729 | Constraint: MCOI::OperandConstraint::TIED_TO); |
730 | if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || |
731 | !MI.getOperand(i: VDstIn_Idx).isReg() || |
732 | MI.getOperand(i: VDstIn_Idx).getReg() != MI.getOperand(i: Tied).getReg())) { |
733 | if (MI.getNumOperands() > (unsigned)VDstIn_Idx) |
734 | MI.erase(I: &MI.getOperand(i: VDstIn_Idx)); |
735 | insertNamedMCOperand(MI, |
736 | Op: MCOperand::createReg(Reg: MI.getOperand(i: Tied).getReg()), |
737 | NameIdx: AMDGPU::OpName::vdst_in); |
738 | } |
739 | } |
740 | |
741 | int ImmLitIdx = |
742 | AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), NamedIdx: AMDGPU::OpName::imm); |
743 | bool IsSOPK = MCII->get(Opcode: MI.getOpcode()).TSFlags & SIInstrFlags::SOPK; |
744 | if (ImmLitIdx != -1 && !IsSOPK) |
745 | convertFMAanyK(MI, ImmLitIdx); |
746 | |
747 | Size = MaxInstBytesNum - Bytes.size(); |
748 | return MCDisassembler::Success; |
749 | } |
750 | |
751 | void AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { |
752 | if (STI.hasFeature(Feature: AMDGPU::FeatureGFX11Insts)) { |
753 | // The MCInst still has these fields even though they are no longer encoded |
754 | // in the GFX11 instruction. |
755 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: 0), NameIdx: AMDGPU::OpName::vm); |
756 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: 0), NameIdx: AMDGPU::OpName::compr); |
757 | } |
758 | } |
759 | |
760 | void AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { |
761 | if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || |
762 | MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 || |
763 | MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || |
764 | MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 || |
765 | MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || |
766 | MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 || |
767 | MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 || |
768 | MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) { |
769 | // The MCInst has this field that is not directly encoded in the |
770 | // instruction. |
771 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: 0), NameIdx: AMDGPU::OpName::op_sel); |
772 | } |
773 | } |
774 | |
775 | void AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { |
776 | if (STI.hasFeature(Feature: AMDGPU::FeatureGFX9) || |
777 | STI.hasFeature(Feature: AMDGPU::FeatureGFX10)) { |
778 | if (AMDGPU::hasNamedOperand(Opcode: MI.getOpcode(), NamedIdx: AMDGPU::OpName::sdst)) |
779 | // VOPC - insert clamp |
780 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: 0), NameIdx: AMDGPU::OpName::clamp); |
781 | } else if (STI.hasFeature(Feature: AMDGPU::FeatureVolcanicIslands)) { |
782 | int SDst = AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), NamedIdx: AMDGPU::OpName::sdst); |
783 | if (SDst != -1) { |
784 | // VOPC - insert VCC register as sdst |
785 | insertNamedMCOperand(MI, Op: createRegOperand(RegId: AMDGPU::VCC), |
786 | NameIdx: AMDGPU::OpName::sdst); |
787 | } else { |
788 | // VOP1/2 - insert omod if present in instruction |
789 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: 0), NameIdx: AMDGPU::OpName::omod); |
790 | } |
791 | } |
792 | } |
793 | |
794 | struct VOPModifiers { |
795 | unsigned OpSel = 0; |
796 | unsigned OpSelHi = 0; |
797 | unsigned NegLo = 0; |
798 | unsigned NegHi = 0; |
799 | }; |
800 | |
801 | // Reconstruct values of VOP3/VOP3P operands such as op_sel. |
802 | // Note that these values do not affect disassembler output, |
803 | // so this is only necessary for consistency with src_modifiers. |
804 | static VOPModifiers collectVOPModifiers(const MCInst &MI, |
805 | bool IsVOP3P = false) { |
806 | VOPModifiers Modifiers; |
807 | unsigned Opc = MI.getOpcode(); |
808 | const int ModOps[] = {AMDGPU::OpName::src0_modifiers, |
809 | AMDGPU::OpName::src1_modifiers, |
810 | AMDGPU::OpName::src2_modifiers}; |
811 | for (int J = 0; J < 3; ++J) { |
812 | int OpIdx = AMDGPU::getNamedOperandIdx(Opcode: Opc, NamedIdx: ModOps[J]); |
813 | if (OpIdx == -1) |
814 | continue; |
815 | |
816 | unsigned Val = MI.getOperand(i: OpIdx).getImm(); |
817 | |
818 | Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; |
819 | if (IsVOP3P) { |
820 | Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; |
821 | Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J; |
822 | Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J; |
823 | } else if (J == 0) { |
824 | Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3; |
825 | } |
826 | } |
827 | |
828 | return Modifiers; |
829 | } |
830 | |
831 | // Instructions decode the op_sel/suffix bits into the src_modifier |
832 | // operands. Copy those bits into the src operands for true16 VGPRs. |
833 | void AMDGPUDisassembler::convertTrue16OpSel(MCInst &MI) const { |
834 | const unsigned Opc = MI.getOpcode(); |
835 | const MCRegisterClass &ConversionRC = |
836 | MRI.getRegClass(i: AMDGPU::VGPR_16RegClassID); |
837 | constexpr std::array<std::tuple<int, int, unsigned>, 4> OpAndOpMods = { |
838 | ._M_elems: {{AMDGPU::OpName::src0, AMDGPU::OpName::src0_modifiers, |
839 | SISrcMods::OP_SEL_0}, |
840 | {AMDGPU::OpName::src1, AMDGPU::OpName::src1_modifiers, |
841 | SISrcMods::OP_SEL_0}, |
842 | {AMDGPU::OpName::src2, AMDGPU::OpName::src2_modifiers, |
843 | SISrcMods::OP_SEL_0}, |
844 | {AMDGPU::OpName::vdst, AMDGPU::OpName::src0_modifiers, |
845 | SISrcMods::DST_OP_SEL}}}; |
846 | for (const auto &[OpName, OpModsName, OpSelMask] : OpAndOpMods) { |
847 | int OpIdx = AMDGPU::getNamedOperandIdx(Opcode: Opc, NamedIdx: OpName); |
848 | int OpModsIdx = AMDGPU::getNamedOperandIdx(Opcode: Opc, NamedIdx: OpModsName); |
849 | if (OpIdx == -1 || OpModsIdx == -1) |
850 | continue; |
851 | MCOperand &Op = MI.getOperand(i: OpIdx); |
852 | if (!Op.isReg()) |
853 | continue; |
854 | if (!ConversionRC.contains(Reg: Op.getReg())) |
855 | continue; |
856 | unsigned OpEnc = MRI.getEncodingValue(RegNo: Op.getReg()); |
857 | const MCOperand &OpMods = MI.getOperand(i: OpModsIdx); |
858 | unsigned ModVal = OpMods.getImm(); |
859 | if (ModVal & OpSelMask) { // isHi |
860 | unsigned RegIdx = OpEnc & AMDGPU::HWEncoding::REG_IDX_MASK; |
861 | Op.setReg(ConversionRC.getRegister(i: RegIdx * 2 + 1)); |
862 | } |
863 | } |
864 | } |
865 | |
866 | // MAC opcodes have special old and src2 operands. |
867 | // src2 is tied to dst, while old is not tied (but assumed to be). |
868 | bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const { |
869 | constexpr int DST_IDX = 0; |
870 | auto Opcode = MI.getOpcode(); |
871 | const auto &Desc = MCII->get(Opcode); |
872 | auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, NamedIdx: AMDGPU::OpName::old); |
873 | |
874 | if (OldIdx != -1 && Desc.getOperandConstraint( |
875 | OpNum: OldIdx, Constraint: MCOI::OperandConstraint::TIED_TO) == -1) { |
876 | assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2)); |
877 | assert(Desc.getOperandConstraint( |
878 | AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2), |
879 | MCOI::OperandConstraint::TIED_TO) == DST_IDX); |
880 | (void)DST_IDX; |
881 | return true; |
882 | } |
883 | |
884 | return false; |
885 | } |
886 | |
887 | // Create dummy old operand and insert dummy unused src2_modifiers |
888 | void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const { |
889 | assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands()); |
890 | insertNamedMCOperand(MI, Op: MCOperand::createReg(Reg: 0), NameIdx: AMDGPU::OpName::old); |
891 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: 0), |
892 | NameIdx: AMDGPU::OpName::src2_modifiers); |
893 | } |
894 | |
895 | void AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { |
896 | unsigned Opc = MI.getOpcode(); |
897 | |
898 | int VDstInIdx = |
899 | AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), NamedIdx: AMDGPU::OpName::vdst_in); |
900 | if (VDstInIdx != -1) |
901 | insertNamedMCOperand(MI, Op: MI.getOperand(i: 0), NameIdx: AMDGPU::OpName::vdst_in); |
902 | |
903 | unsigned DescNumOps = MCII->get(Opcode: Opc).getNumOperands(); |
904 | if (MI.getNumOperands() < DescNumOps && |
905 | AMDGPU::hasNamedOperand(Opcode: Opc, NamedIdx: AMDGPU::OpName::op_sel)) { |
906 | convertTrue16OpSel(MI); |
907 | auto Mods = collectVOPModifiers(MI); |
908 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: Mods.OpSel), |
909 | NameIdx: AMDGPU::OpName::op_sel); |
910 | } else { |
911 | // Insert dummy unused src modifiers. |
912 | if (MI.getNumOperands() < DescNumOps && |
913 | AMDGPU::hasNamedOperand(Opcode: Opc, NamedIdx: AMDGPU::OpName::src0_modifiers)) |
914 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: 0), |
915 | NameIdx: AMDGPU::OpName::src0_modifiers); |
916 | |
917 | if (MI.getNumOperands() < DescNumOps && |
918 | AMDGPU::hasNamedOperand(Opcode: Opc, NamedIdx: AMDGPU::OpName::src1_modifiers)) |
919 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: 0), |
920 | NameIdx: AMDGPU::OpName::src1_modifiers); |
921 | } |
922 | } |
923 | |
924 | void AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const { |
925 | convertTrue16OpSel(MI); |
926 | |
927 | int VDstInIdx = |
928 | AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), NamedIdx: AMDGPU::OpName::vdst_in); |
929 | if (VDstInIdx != -1) |
930 | insertNamedMCOperand(MI, Op: MI.getOperand(i: 0), NameIdx: AMDGPU::OpName::vdst_in); |
931 | |
932 | unsigned Opc = MI.getOpcode(); |
933 | unsigned DescNumOps = MCII->get(Opcode: Opc).getNumOperands(); |
934 | if (MI.getNumOperands() < DescNumOps && |
935 | AMDGPU::hasNamedOperand(Opcode: Opc, NamedIdx: AMDGPU::OpName::op_sel)) { |
936 | auto Mods = collectVOPModifiers(MI); |
937 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: Mods.OpSel), |
938 | NameIdx: AMDGPU::OpName::op_sel); |
939 | } |
940 | } |
941 | |
942 | // Note that before gfx10, the MIMG encoding provided no information about |
943 | // VADDR size. Consequently, decoded instructions always show address as if it |
944 | // has 1 dword, which could be not really so. |
945 | void AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { |
946 | auto TSFlags = MCII->get(Opcode: MI.getOpcode()).TSFlags; |
947 | |
948 | int VDstIdx = AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), |
949 | NamedIdx: AMDGPU::OpName::vdst); |
950 | |
951 | int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), |
952 | NamedIdx: AMDGPU::OpName::vdata); |
953 | int VAddr0Idx = |
954 | AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), NamedIdx: AMDGPU::OpName::vaddr0); |
955 | int RsrcOpName = (TSFlags & SIInstrFlags::MIMG) ? AMDGPU::OpName::srsrc |
956 | : AMDGPU::OpName::rsrc; |
957 | int RsrcIdx = AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), NamedIdx: RsrcOpName); |
958 | int DMaskIdx = AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), |
959 | NamedIdx: AMDGPU::OpName::dmask); |
960 | |
961 | int TFEIdx = AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), |
962 | NamedIdx: AMDGPU::OpName::tfe); |
963 | int D16Idx = AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), |
964 | NamedIdx: AMDGPU::OpName::d16); |
965 | |
966 | const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Opc: MI.getOpcode()); |
967 | const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = |
968 | AMDGPU::getMIMGBaseOpcodeInfo(BaseOpcode: Info->BaseOpcode); |
969 | |
970 | assert(VDataIdx != -1); |
971 | if (BaseOpcode->BVH) { |
972 | // Add A16 operand for intersect_ray instructions |
973 | addOperand(Inst&: MI, Opnd: MCOperand::createImm(Val: BaseOpcode->A16)); |
974 | return; |
975 | } |
976 | |
977 | bool IsAtomic = (VDstIdx != -1); |
978 | bool IsGather4 = TSFlags & SIInstrFlags::Gather4; |
979 | bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE; |
980 | bool IsNSA = false; |
981 | bool IsPartialNSA = false; |
982 | unsigned AddrSize = Info->VAddrDwords; |
983 | |
984 | if (isGFX10Plus()) { |
985 | unsigned DimIdx = |
986 | AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), NamedIdx: AMDGPU::OpName::dim); |
987 | int A16Idx = |
988 | AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), NamedIdx: AMDGPU::OpName::a16); |
989 | const AMDGPU::MIMGDimInfo *Dim = |
990 | AMDGPU::getMIMGDimInfoByEncoding(DimEnc: MI.getOperand(i: DimIdx).getImm()); |
991 | const bool IsA16 = (A16Idx != -1 && MI.getOperand(i: A16Idx).getImm()); |
992 | |
993 | AddrSize = |
994 | AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, IsG16Supported: AMDGPU::hasG16(STI)); |
995 | |
996 | // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms. |
997 | // VIMAGE insts other than BVH never use vaddr4. |
998 | IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || |
999 | Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA || |
1000 | Info->MIMGEncoding == AMDGPU::MIMGEncGfx12; |
1001 | if (!IsNSA) { |
1002 | if (!IsVSample && AddrSize > 12) |
1003 | AddrSize = 16; |
1004 | } else { |
1005 | if (AddrSize > Info->VAddrDwords) { |
1006 | if (!STI.hasFeature(Feature: AMDGPU::FeaturePartialNSAEncoding)) { |
1007 | // The NSA encoding does not contain enough operands for the |
1008 | // combination of base opcode / dimension. Should this be an error? |
1009 | return; |
1010 | } |
1011 | IsPartialNSA = true; |
1012 | } |
1013 | } |
1014 | } |
1015 | |
1016 | unsigned DMask = MI.getOperand(i: DMaskIdx).getImm() & 0xf; |
1017 | unsigned DstSize = IsGather4 ? 4 : std::max(a: llvm::popcount(Value: DMask), b: 1); |
1018 | |
1019 | bool D16 = D16Idx >= 0 && MI.getOperand(i: D16Idx).getImm(); |
1020 | if (D16 && AMDGPU::hasPackedD16(STI)) { |
1021 | DstSize = (DstSize + 1) / 2; |
1022 | } |
1023 | |
1024 | if (TFEIdx != -1 && MI.getOperand(i: TFEIdx).getImm()) |
1025 | DstSize += 1; |
1026 | |
1027 | if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) |
1028 | return; |
1029 | |
1030 | int NewOpcode = |
1031 | AMDGPU::getMIMGOpcode(BaseOpcode: Info->BaseOpcode, MIMGEncoding: Info->MIMGEncoding, VDataDwords: DstSize, VAddrDwords: AddrSize); |
1032 | if (NewOpcode == -1) |
1033 | return; |
1034 | |
1035 | // Widen the register to the correct number of enabled channels. |
1036 | unsigned NewVdata = AMDGPU::NoRegister; |
1037 | if (DstSize != Info->VDataDwords) { |
1038 | auto DataRCID = MCII->get(Opcode: NewOpcode).operands()[VDataIdx].RegClass; |
1039 | |
1040 | // Get first subregister of VData |
1041 | unsigned Vdata0 = MI.getOperand(i: VDataIdx).getReg(); |
1042 | unsigned VdataSub0 = MRI.getSubReg(Reg: Vdata0, Idx: AMDGPU::sub0); |
1043 | Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; |
1044 | |
1045 | NewVdata = MRI.getMatchingSuperReg(Reg: Vdata0, SubIdx: AMDGPU::sub0, |
1046 | RC: &MRI.getRegClass(i: DataRCID)); |
1047 | if (NewVdata == AMDGPU::NoRegister) { |
1048 | // It's possible to encode this such that the low register + enabled |
1049 | // components exceeds the register count. |
1050 | return; |
1051 | } |
1052 | } |
1053 | |
1054 | // If not using NSA on GFX10+, widen vaddr0 address register to correct size. |
1055 | // If using partial NSA on GFX11+ widen last address register. |
1056 | int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx; |
1057 | unsigned NewVAddrSA = AMDGPU::NoRegister; |
1058 | if (STI.hasFeature(Feature: AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) && |
1059 | AddrSize != Info->VAddrDwords) { |
1060 | unsigned VAddrSA = MI.getOperand(i: VAddrSAIdx).getReg(); |
1061 | unsigned VAddrSubSA = MRI.getSubReg(Reg: VAddrSA, Idx: AMDGPU::sub0); |
1062 | VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA; |
1063 | |
1064 | auto AddrRCID = MCII->get(Opcode: NewOpcode).operands()[VAddrSAIdx].RegClass; |
1065 | NewVAddrSA = MRI.getMatchingSuperReg(Reg: VAddrSA, SubIdx: AMDGPU::sub0, |
1066 | RC: &MRI.getRegClass(i: AddrRCID)); |
1067 | if (!NewVAddrSA) |
1068 | return; |
1069 | } |
1070 | |
1071 | MI.setOpcode(NewOpcode); |
1072 | |
1073 | if (NewVdata != AMDGPU::NoRegister) { |
1074 | MI.getOperand(i: VDataIdx) = MCOperand::createReg(Reg: NewVdata); |
1075 | |
1076 | if (IsAtomic) { |
1077 | // Atomic operations have an additional operand (a copy of data) |
1078 | MI.getOperand(i: VDstIdx) = MCOperand::createReg(Reg: NewVdata); |
1079 | } |
1080 | } |
1081 | |
1082 | if (NewVAddrSA) { |
1083 | MI.getOperand(i: VAddrSAIdx) = MCOperand::createReg(Reg: NewVAddrSA); |
1084 | } else if (IsNSA) { |
1085 | assert(AddrSize <= Info->VAddrDwords); |
1086 | MI.erase(First: MI.begin() + VAddr0Idx + AddrSize, |
1087 | Last: MI.begin() + VAddr0Idx + Info->VAddrDwords); |
1088 | } |
1089 | } |
1090 | |
1091 | // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen |
1092 | // decoder only adds to src_modifiers, so manually add the bits to the other |
1093 | // operands. |
1094 | void AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { |
1095 | unsigned Opc = MI.getOpcode(); |
1096 | unsigned DescNumOps = MCII->get(Opcode: Opc).getNumOperands(); |
1097 | auto Mods = collectVOPModifiers(MI, IsVOP3P: true); |
1098 | |
1099 | if (MI.getNumOperands() < DescNumOps && |
1100 | AMDGPU::hasNamedOperand(Opcode: Opc, NamedIdx: AMDGPU::OpName::vdst_in)) |
1101 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: 0), NameIdx: AMDGPU::OpName::vdst_in); |
1102 | |
1103 | if (MI.getNumOperands() < DescNumOps && |
1104 | AMDGPU::hasNamedOperand(Opcode: Opc, NamedIdx: AMDGPU::OpName::op_sel)) |
1105 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: Mods.OpSel), |
1106 | NameIdx: AMDGPU::OpName::op_sel); |
1107 | if (MI.getNumOperands() < DescNumOps && |
1108 | AMDGPU::hasNamedOperand(Opcode: Opc, NamedIdx: AMDGPU::OpName::op_sel_hi)) |
1109 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: Mods.OpSelHi), |
1110 | NameIdx: AMDGPU::OpName::op_sel_hi); |
1111 | if (MI.getNumOperands() < DescNumOps && |
1112 | AMDGPU::hasNamedOperand(Opcode: Opc, NamedIdx: AMDGPU::OpName::neg_lo)) |
1113 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: Mods.NegLo), |
1114 | NameIdx: AMDGPU::OpName::neg_lo); |
1115 | if (MI.getNumOperands() < DescNumOps && |
1116 | AMDGPU::hasNamedOperand(Opcode: Opc, NamedIdx: AMDGPU::OpName::neg_hi)) |
1117 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: Mods.NegHi), |
1118 | NameIdx: AMDGPU::OpName::neg_hi); |
1119 | } |
1120 | |
1121 | // Create dummy old operand and insert optional operands |
1122 | void AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const { |
1123 | unsigned Opc = MI.getOpcode(); |
1124 | unsigned DescNumOps = MCII->get(Opcode: Opc).getNumOperands(); |
1125 | |
1126 | if (MI.getNumOperands() < DescNumOps && |
1127 | AMDGPU::hasNamedOperand(Opcode: Opc, NamedIdx: AMDGPU::OpName::old)) |
1128 | insertNamedMCOperand(MI, Op: MCOperand::createReg(Reg: 0), NameIdx: AMDGPU::OpName::old); |
1129 | |
1130 | if (MI.getNumOperands() < DescNumOps && |
1131 | AMDGPU::hasNamedOperand(Opcode: Opc, NamedIdx: AMDGPU::OpName::src0_modifiers)) |
1132 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: 0), |
1133 | NameIdx: AMDGPU::OpName::src0_modifiers); |
1134 | |
1135 | if (MI.getNumOperands() < DescNumOps && |
1136 | AMDGPU::hasNamedOperand(Opcode: Opc, NamedIdx: AMDGPU::OpName::src1_modifiers)) |
1137 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: 0), |
1138 | NameIdx: AMDGPU::OpName::src1_modifiers); |
1139 | } |
1140 | |
1141 | void AMDGPUDisassembler::convertFMAanyK(MCInst &MI, int ImmLitIdx) const { |
1142 | assert(HasLiteral && "Should have decoded a literal" ); |
1143 | const MCInstrDesc &Desc = MCII->get(Opcode: MI.getOpcode()); |
1144 | unsigned DescNumOps = Desc.getNumOperands(); |
1145 | insertNamedMCOperand(MI, Op: MCOperand::createImm(Val: Literal), |
1146 | NameIdx: AMDGPU::OpName::immDeferred); |
1147 | assert(DescNumOps == MI.getNumOperands()); |
1148 | for (unsigned I = 0; I < DescNumOps; ++I) { |
1149 | auto &Op = MI.getOperand(i: I); |
1150 | auto OpType = Desc.operands()[I].OperandType; |
1151 | bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || |
1152 | OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); |
1153 | if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && |
1154 | IsDeferredOp) |
1155 | Op.setImm(Literal); |
1156 | } |
1157 | } |
1158 | |
1159 | const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { |
1160 | return getContext().getRegisterInfo()-> |
1161 | getRegClassName(Class: &AMDGPUMCRegisterClasses[RegClassID]); |
1162 | } |
1163 | |
1164 | inline |
1165 | MCOperand AMDGPUDisassembler::errOperand(unsigned V, |
1166 | const Twine& ErrMsg) const { |
1167 | *CommentStream << "Error: " + ErrMsg; |
1168 | |
1169 | // ToDo: add support for error operands to MCInst.h |
1170 | // return MCOperand::createError(V); |
1171 | return MCOperand(); |
1172 | } |
1173 | |
1174 | inline |
1175 | MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { |
1176 | return MCOperand::createReg(Reg: AMDGPU::getMCReg(Reg: RegId, STI)); |
1177 | } |
1178 | |
1179 | inline |
1180 | MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, |
1181 | unsigned Val) const { |
1182 | const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; |
1183 | if (Val >= RegCl.getNumRegs()) |
1184 | return errOperand(V: Val, ErrMsg: Twine(getRegClassName(RegClassID)) + |
1185 | ": unknown register " + Twine(Val)); |
1186 | return createRegOperand(RegId: RegCl.getRegister(i: Val)); |
1187 | } |
1188 | |
1189 | inline |
1190 | MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, |
1191 | unsigned Val) const { |
1192 | // ToDo: SI/CI have 104 SGPRs, VI - 102 |
1193 | // Valery: here we accepting as much as we can, let assembler sort it out |
1194 | int shift = 0; |
1195 | switch (SRegClassID) { |
1196 | case AMDGPU::SGPR_32RegClassID: |
1197 | case AMDGPU::TTMP_32RegClassID: |
1198 | break; |
1199 | case AMDGPU::SGPR_64RegClassID: |
1200 | case AMDGPU::TTMP_64RegClassID: |
1201 | shift = 1; |
1202 | break; |
1203 | case AMDGPU::SGPR_96RegClassID: |
1204 | case AMDGPU::TTMP_96RegClassID: |
1205 | case AMDGPU::SGPR_128RegClassID: |
1206 | case AMDGPU::TTMP_128RegClassID: |
1207 | // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in |
1208 | // this bundle? |
1209 | case AMDGPU::SGPR_256RegClassID: |
1210 | case AMDGPU::TTMP_256RegClassID: |
1211 | // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in |
1212 | // this bundle? |
1213 | case AMDGPU::SGPR_288RegClassID: |
1214 | case AMDGPU::TTMP_288RegClassID: |
1215 | case AMDGPU::SGPR_320RegClassID: |
1216 | case AMDGPU::TTMP_320RegClassID: |
1217 | case AMDGPU::SGPR_352RegClassID: |
1218 | case AMDGPU::TTMP_352RegClassID: |
1219 | case AMDGPU::SGPR_384RegClassID: |
1220 | case AMDGPU::TTMP_384RegClassID: |
1221 | case AMDGPU::SGPR_512RegClassID: |
1222 | case AMDGPU::TTMP_512RegClassID: |
1223 | shift = 2; |
1224 | break; |
1225 | // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in |
1226 | // this bundle? |
1227 | default: |
1228 | llvm_unreachable("unhandled register class" ); |
1229 | } |
1230 | |
1231 | if (Val % (1 << shift)) { |
1232 | *CommentStream << "Warning: " << getRegClassName(RegClassID: SRegClassID) |
1233 | << ": scalar reg isn't aligned " << Val; |
1234 | } |
1235 | |
1236 | return createRegOperand(RegClassID: SRegClassID, Val: Val >> shift); |
1237 | } |
1238 | |
1239 | MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx, |
1240 | bool IsHi) const { |
1241 | unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0); |
1242 | return createRegOperand(RegClassID: AMDGPU::VGPR_16RegClassID, Val: RegIdxInVGPR16); |
1243 | } |
1244 | |
1245 | // Decode Literals for insts which always have a literal in the encoding |
1246 | MCOperand |
1247 | AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { |
1248 | if (HasLiteral) { |
1249 | assert( |
1250 | AMDGPU::hasVOPD(STI) && |
1251 | "Should only decode multiple kimm with VOPD, check VSrc operand types" ); |
1252 | if (Literal != Val) |
1253 | return errOperand(V: Val, ErrMsg: "More than one unique literal is illegal" ); |
1254 | } |
1255 | HasLiteral = true; |
1256 | Literal = Val; |
1257 | return MCOperand::createImm(Val: Literal); |
1258 | } |
1259 | |
1260 | MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const { |
1261 | // For now all literal constants are supposed to be unsigned integer |
1262 | // ToDo: deal with signed/unsigned 64-bit integer constants |
1263 | // ToDo: deal with float/double constants |
1264 | if (!HasLiteral) { |
1265 | if (Bytes.size() < 4) { |
1266 | return errOperand(V: 0, ErrMsg: "cannot read literal, inst bytes left " + |
1267 | Twine(Bytes.size())); |
1268 | } |
1269 | HasLiteral = true; |
1270 | Literal = Literal64 = eatBytes<uint32_t>(Bytes); |
1271 | if (ExtendFP64) |
1272 | Literal64 <<= 32; |
1273 | } |
1274 | return MCOperand::createImm(Val: ExtendFP64 ? Literal64 : Literal); |
1275 | } |
1276 | |
1277 | MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { |
1278 | using namespace AMDGPU::EncValues; |
1279 | |
1280 | assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); |
1281 | return MCOperand::createImm(Val: (Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? |
1282 | (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : |
1283 | (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); |
1284 | // Cast prevents negative overflow. |
1285 | } |
1286 | |
1287 | static int64_t getInlineImmVal32(unsigned Imm) { |
1288 | switch (Imm) { |
1289 | case 240: |
1290 | return llvm::bit_cast<uint32_t>(from: 0.5f); |
1291 | case 241: |
1292 | return llvm::bit_cast<uint32_t>(from: -0.5f); |
1293 | case 242: |
1294 | return llvm::bit_cast<uint32_t>(from: 1.0f); |
1295 | case 243: |
1296 | return llvm::bit_cast<uint32_t>(from: -1.0f); |
1297 | case 244: |
1298 | return llvm::bit_cast<uint32_t>(from: 2.0f); |
1299 | case 245: |
1300 | return llvm::bit_cast<uint32_t>(from: -2.0f); |
1301 | case 246: |
1302 | return llvm::bit_cast<uint32_t>(from: 4.0f); |
1303 | case 247: |
1304 | return llvm::bit_cast<uint32_t>(from: -4.0f); |
1305 | case 248: // 1 / (2 * PI) |
1306 | return 0x3e22f983; |
1307 | default: |
1308 | llvm_unreachable("invalid fp inline imm" ); |
1309 | } |
1310 | } |
1311 | |
1312 | static int64_t getInlineImmVal64(unsigned Imm) { |
1313 | switch (Imm) { |
1314 | case 240: |
1315 | return llvm::bit_cast<uint64_t>(from: 0.5); |
1316 | case 241: |
1317 | return llvm::bit_cast<uint64_t>(from: -0.5); |
1318 | case 242: |
1319 | return llvm::bit_cast<uint64_t>(from: 1.0); |
1320 | case 243: |
1321 | return llvm::bit_cast<uint64_t>(from: -1.0); |
1322 | case 244: |
1323 | return llvm::bit_cast<uint64_t>(from: 2.0); |
1324 | case 245: |
1325 | return llvm::bit_cast<uint64_t>(from: -2.0); |
1326 | case 246: |
1327 | return llvm::bit_cast<uint64_t>(from: 4.0); |
1328 | case 247: |
1329 | return llvm::bit_cast<uint64_t>(from: -4.0); |
1330 | case 248: // 1 / (2 * PI) |
1331 | return 0x3fc45f306dc9c882; |
1332 | default: |
1333 | llvm_unreachable("invalid fp inline imm" ); |
1334 | } |
1335 | } |
1336 | |
1337 | static int64_t getInlineImmValF16(unsigned Imm) { |
1338 | switch (Imm) { |
1339 | case 240: |
1340 | return 0x3800; |
1341 | case 241: |
1342 | return 0xB800; |
1343 | case 242: |
1344 | return 0x3C00; |
1345 | case 243: |
1346 | return 0xBC00; |
1347 | case 244: |
1348 | return 0x4000; |
1349 | case 245: |
1350 | return 0xC000; |
1351 | case 246: |
1352 | return 0x4400; |
1353 | case 247: |
1354 | return 0xC400; |
1355 | case 248: // 1 / (2 * PI) |
1356 | return 0x3118; |
1357 | default: |
1358 | llvm_unreachable("invalid fp inline imm" ); |
1359 | } |
1360 | } |
1361 | |
1362 | static int64_t getInlineImmValBF16(unsigned Imm) { |
1363 | switch (Imm) { |
1364 | case 240: |
1365 | return 0x3F00; |
1366 | case 241: |
1367 | return 0xBF00; |
1368 | case 242: |
1369 | return 0x3F80; |
1370 | case 243: |
1371 | return 0xBF80; |
1372 | case 244: |
1373 | return 0x4000; |
1374 | case 245: |
1375 | return 0xC000; |
1376 | case 246: |
1377 | return 0x4080; |
1378 | case 247: |
1379 | return 0xC080; |
1380 | case 248: // 1 / (2 * PI) |
1381 | return 0x3E22; |
1382 | default: |
1383 | llvm_unreachable("invalid fp inline imm" ); |
1384 | } |
1385 | } |
1386 | |
1387 | static int64_t getInlineImmVal16(unsigned Imm, AMDGPU::OperandSemantics Sema) { |
1388 | return (Sema == AMDGPU::OperandSemantics::BF16) ? getInlineImmValBF16(Imm) |
1389 | : getInlineImmValF16(Imm); |
1390 | } |
1391 | |
1392 | MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm, |
1393 | AMDGPU::OperandSemantics Sema) { |
1394 | assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN && |
1395 | Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); |
1396 | |
1397 | // ToDo: case 248: 1/(2*PI) - is allowed only on VI |
1398 | // ImmWidth 0 is a default case where operand should not allow immediates. |
1399 | // Imm value is still decoded into 32 bit immediate operand, inst printer will |
1400 | // use it to print verbose error message. |
1401 | switch (ImmWidth) { |
1402 | case 0: |
1403 | case 32: |
1404 | return MCOperand::createImm(Val: getInlineImmVal32(Imm)); |
1405 | case 64: |
1406 | return MCOperand::createImm(Val: getInlineImmVal64(Imm)); |
1407 | case 16: |
1408 | return MCOperand::createImm(Val: getInlineImmVal16(Imm, Sema)); |
1409 | default: |
1410 | llvm_unreachable("implement me" ); |
1411 | } |
1412 | } |
1413 | |
1414 | unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { |
1415 | using namespace AMDGPU; |
1416 | |
1417 | assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); |
1418 | switch (Width) { |
1419 | default: // fall |
1420 | case OPW32: |
1421 | case OPW16: |
1422 | case OPWV216: |
1423 | return VGPR_32RegClassID; |
1424 | case OPW64: |
1425 | case OPWV232: return VReg_64RegClassID; |
1426 | case OPW96: return VReg_96RegClassID; |
1427 | case OPW128: return VReg_128RegClassID; |
1428 | case OPW160: return VReg_160RegClassID; |
1429 | case OPW256: return VReg_256RegClassID; |
1430 | case OPW288: return VReg_288RegClassID; |
1431 | case OPW320: return VReg_320RegClassID; |
1432 | case OPW352: return VReg_352RegClassID; |
1433 | case OPW384: return VReg_384RegClassID; |
1434 | case OPW512: return VReg_512RegClassID; |
1435 | case OPW1024: return VReg_1024RegClassID; |
1436 | } |
1437 | } |
1438 | |
1439 | unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { |
1440 | using namespace AMDGPU; |
1441 | |
1442 | assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); |
1443 | switch (Width) { |
1444 | default: // fall |
1445 | case OPW32: |
1446 | case OPW16: |
1447 | case OPWV216: |
1448 | return AGPR_32RegClassID; |
1449 | case OPW64: |
1450 | case OPWV232: return AReg_64RegClassID; |
1451 | case OPW96: return AReg_96RegClassID; |
1452 | case OPW128: return AReg_128RegClassID; |
1453 | case OPW160: return AReg_160RegClassID; |
1454 | case OPW256: return AReg_256RegClassID; |
1455 | case OPW288: return AReg_288RegClassID; |
1456 | case OPW320: return AReg_320RegClassID; |
1457 | case OPW352: return AReg_352RegClassID; |
1458 | case OPW384: return AReg_384RegClassID; |
1459 | case OPW512: return AReg_512RegClassID; |
1460 | case OPW1024: return AReg_1024RegClassID; |
1461 | } |
1462 | } |
1463 | |
1464 | |
1465 | unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { |
1466 | using namespace AMDGPU; |
1467 | |
1468 | assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); |
1469 | switch (Width) { |
1470 | default: // fall |
1471 | case OPW32: |
1472 | case OPW16: |
1473 | case OPWV216: |
1474 | return SGPR_32RegClassID; |
1475 | case OPW64: |
1476 | case OPWV232: return SGPR_64RegClassID; |
1477 | case OPW96: return SGPR_96RegClassID; |
1478 | case OPW128: return SGPR_128RegClassID; |
1479 | case OPW160: return SGPR_160RegClassID; |
1480 | case OPW256: return SGPR_256RegClassID; |
1481 | case OPW288: return SGPR_288RegClassID; |
1482 | case OPW320: return SGPR_320RegClassID; |
1483 | case OPW352: return SGPR_352RegClassID; |
1484 | case OPW384: return SGPR_384RegClassID; |
1485 | case OPW512: return SGPR_512RegClassID; |
1486 | } |
1487 | } |
1488 | |
1489 | unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { |
1490 | using namespace AMDGPU; |
1491 | |
1492 | assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); |
1493 | switch (Width) { |
1494 | default: // fall |
1495 | case OPW32: |
1496 | case OPW16: |
1497 | case OPWV216: |
1498 | return TTMP_32RegClassID; |
1499 | case OPW64: |
1500 | case OPWV232: return TTMP_64RegClassID; |
1501 | case OPW128: return TTMP_128RegClassID; |
1502 | case OPW256: return TTMP_256RegClassID; |
1503 | case OPW288: return TTMP_288RegClassID; |
1504 | case OPW320: return TTMP_320RegClassID; |
1505 | case OPW352: return TTMP_352RegClassID; |
1506 | case OPW384: return TTMP_384RegClassID; |
1507 | case OPW512: return TTMP_512RegClassID; |
1508 | } |
1509 | } |
1510 | |
1511 | int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { |
1512 | using namespace AMDGPU::EncValues; |
1513 | |
1514 | unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; |
1515 | unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; |
1516 | |
1517 | return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; |
1518 | } |
1519 | |
1520 | MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, |
1521 | bool MandatoryLiteral, |
1522 | unsigned ImmWidth, |
1523 | AMDGPU::OperandSemantics Sema) const { |
1524 | using namespace AMDGPU::EncValues; |
1525 | |
1526 | assert(Val < 1024); // enum10 |
1527 | |
1528 | bool IsAGPR = Val & 512; |
1529 | Val &= 511; |
1530 | |
1531 | if (VGPR_MIN <= Val && Val <= VGPR_MAX) { |
1532 | return createRegOperand(RegClassID: IsAGPR ? getAgprClassId(Width) |
1533 | : getVgprClassId(Width), Val: Val - VGPR_MIN); |
1534 | } |
1535 | return decodeNonVGPRSrcOp(Width, Val: Val & 0xFF, MandatoryLiteral, ImmWidth, |
1536 | Sema); |
1537 | } |
1538 | |
1539 | MCOperand |
1540 | AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width, unsigned Val, |
1541 | bool MandatoryLiteral, unsigned ImmWidth, |
1542 | AMDGPU::OperandSemantics Sema) const { |
1543 | // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been |
1544 | // decoded earlier. |
1545 | assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0" ); |
1546 | using namespace AMDGPU::EncValues; |
1547 | |
1548 | if (Val <= SGPR_MAX) { |
1549 | // "SGPR_MIN <= Val" is always true and causes compilation warning. |
1550 | static_assert(SGPR_MIN == 0); |
1551 | return createSRegOperand(SRegClassID: getSgprClassId(Width), Val: Val - SGPR_MIN); |
1552 | } |
1553 | |
1554 | int TTmpIdx = getTTmpIdx(Val); |
1555 | if (TTmpIdx >= 0) { |
1556 | return createSRegOperand(SRegClassID: getTtmpClassId(Width), Val: TTmpIdx); |
1557 | } |
1558 | |
1559 | if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) |
1560 | return decodeIntImmed(Imm: Val); |
1561 | |
1562 | if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) |
1563 | return decodeFPImmed(ImmWidth, Imm: Val, Sema); |
1564 | |
1565 | if (Val == LITERAL_CONST) { |
1566 | if (MandatoryLiteral) |
1567 | // Keep a sentinel value for deferred setting |
1568 | return MCOperand::createImm(Val: LITERAL_CONST); |
1569 | return decodeLiteralConstant(ExtendFP64: Sema == AMDGPU::OperandSemantics::FP64); |
1570 | } |
1571 | |
1572 | switch (Width) { |
1573 | case OPW32: |
1574 | case OPW16: |
1575 | case OPWV216: |
1576 | return decodeSpecialReg32(Val); |
1577 | case OPW64: |
1578 | case OPWV232: |
1579 | return decodeSpecialReg64(Val); |
1580 | default: |
1581 | llvm_unreachable("unexpected immediate type" ); |
1582 | } |
1583 | } |
1584 | |
1585 | // Bit 0 of DstY isn't stored in the instruction, because it's always the |
1586 | // opposite of bit 0 of DstX. |
1587 | MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst, |
1588 | unsigned Val) const { |
1589 | int VDstXInd = |
1590 | AMDGPU::getNamedOperandIdx(Opcode: Inst.getOpcode(), NamedIdx: AMDGPU::OpName::vdstX); |
1591 | assert(VDstXInd != -1); |
1592 | assert(Inst.getOperand(VDstXInd).isReg()); |
1593 | unsigned XDstReg = MRI.getEncodingValue(RegNo: Inst.getOperand(i: VDstXInd).getReg()); |
1594 | Val |= ~XDstReg & 1; |
1595 | auto Width = llvm::AMDGPUDisassembler::OPW32; |
1596 | return createRegOperand(RegClassID: getVgprClassId(Width), Val); |
1597 | } |
1598 | |
1599 | MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { |
1600 | using namespace AMDGPU; |
1601 | |
1602 | switch (Val) { |
1603 | // clang-format off |
1604 | case 102: return createRegOperand(RegId: FLAT_SCR_LO); |
1605 | case 103: return createRegOperand(RegId: FLAT_SCR_HI); |
1606 | case 104: return createRegOperand(RegId: XNACK_MASK_LO); |
1607 | case 105: return createRegOperand(RegId: XNACK_MASK_HI); |
1608 | case 106: return createRegOperand(RegId: VCC_LO); |
1609 | case 107: return createRegOperand(RegId: VCC_HI); |
1610 | case 108: return createRegOperand(RegId: TBA_LO); |
1611 | case 109: return createRegOperand(RegId: TBA_HI); |
1612 | case 110: return createRegOperand(RegId: TMA_LO); |
1613 | case 111: return createRegOperand(RegId: TMA_HI); |
1614 | case 124: |
1615 | return isGFX11Plus() ? createRegOperand(RegId: SGPR_NULL) : createRegOperand(RegId: M0); |
1616 | case 125: |
1617 | return isGFX11Plus() ? createRegOperand(RegId: M0) : createRegOperand(RegId: SGPR_NULL); |
1618 | case 126: return createRegOperand(RegId: EXEC_LO); |
1619 | case 127: return createRegOperand(RegId: EXEC_HI); |
1620 | case 235: return createRegOperand(RegId: SRC_SHARED_BASE_LO); |
1621 | case 236: return createRegOperand(RegId: SRC_SHARED_LIMIT_LO); |
1622 | case 237: return createRegOperand(RegId: SRC_PRIVATE_BASE_LO); |
1623 | case 238: return createRegOperand(RegId: SRC_PRIVATE_LIMIT_LO); |
1624 | case 239: return createRegOperand(RegId: SRC_POPS_EXITING_WAVE_ID); |
1625 | case 251: return createRegOperand(RegId: SRC_VCCZ); |
1626 | case 252: return createRegOperand(RegId: SRC_EXECZ); |
1627 | case 253: return createRegOperand(RegId: SRC_SCC); |
1628 | case 254: return createRegOperand(RegId: LDS_DIRECT); |
1629 | default: break; |
1630 | // clang-format on |
1631 | } |
1632 | return errOperand(V: Val, ErrMsg: "unknown operand encoding " + Twine(Val)); |
1633 | } |
1634 | |
1635 | MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { |
1636 | using namespace AMDGPU; |
1637 | |
1638 | switch (Val) { |
1639 | case 102: return createRegOperand(RegId: FLAT_SCR); |
1640 | case 104: return createRegOperand(RegId: XNACK_MASK); |
1641 | case 106: return createRegOperand(RegId: VCC); |
1642 | case 108: return createRegOperand(RegId: TBA); |
1643 | case 110: return createRegOperand(RegId: TMA); |
1644 | case 124: |
1645 | if (isGFX11Plus()) |
1646 | return createRegOperand(RegId: SGPR_NULL); |
1647 | break; |
1648 | case 125: |
1649 | if (!isGFX11Plus()) |
1650 | return createRegOperand(RegId: SGPR_NULL); |
1651 | break; |
1652 | case 126: return createRegOperand(RegId: EXEC); |
1653 | case 235: return createRegOperand(RegId: SRC_SHARED_BASE); |
1654 | case 236: return createRegOperand(RegId: SRC_SHARED_LIMIT); |
1655 | case 237: return createRegOperand(RegId: SRC_PRIVATE_BASE); |
1656 | case 238: return createRegOperand(RegId: SRC_PRIVATE_LIMIT); |
1657 | case 239: return createRegOperand(RegId: SRC_POPS_EXITING_WAVE_ID); |
1658 | case 251: return createRegOperand(RegId: SRC_VCCZ); |
1659 | case 252: return createRegOperand(RegId: SRC_EXECZ); |
1660 | case 253: return createRegOperand(RegId: SRC_SCC); |
1661 | default: break; |
1662 | } |
1663 | return errOperand(V: Val, ErrMsg: "unknown operand encoding " + Twine(Val)); |
1664 | } |
1665 | |
1666 | MCOperand |
1667 | AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, const unsigned Val, |
1668 | unsigned ImmWidth, |
1669 | AMDGPU::OperandSemantics Sema) const { |
1670 | using namespace AMDGPU::SDWA; |
1671 | using namespace AMDGPU::EncValues; |
1672 | |
1673 | if (STI.hasFeature(Feature: AMDGPU::FeatureGFX9) || |
1674 | STI.hasFeature(Feature: AMDGPU::FeatureGFX10)) { |
1675 | // XXX: cast to int is needed to avoid stupid warning: |
1676 | // compare with unsigned is always true |
1677 | if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && |
1678 | Val <= SDWA9EncValues::SRC_VGPR_MAX) { |
1679 | return createRegOperand(RegClassID: getVgprClassId(Width), |
1680 | Val: Val - SDWA9EncValues::SRC_VGPR_MIN); |
1681 | } |
1682 | if (SDWA9EncValues::SRC_SGPR_MIN <= Val && |
1683 | Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 |
1684 | : SDWA9EncValues::SRC_SGPR_MAX_SI)) { |
1685 | return createSRegOperand(SRegClassID: getSgprClassId(Width), |
1686 | Val: Val - SDWA9EncValues::SRC_SGPR_MIN); |
1687 | } |
1688 | if (SDWA9EncValues::SRC_TTMP_MIN <= Val && |
1689 | Val <= SDWA9EncValues::SRC_TTMP_MAX) { |
1690 | return createSRegOperand(SRegClassID: getTtmpClassId(Width), |
1691 | Val: Val - SDWA9EncValues::SRC_TTMP_MIN); |
1692 | } |
1693 | |
1694 | const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; |
1695 | |
1696 | if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) |
1697 | return decodeIntImmed(Imm: SVal); |
1698 | |
1699 | if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) |
1700 | return decodeFPImmed(ImmWidth, Imm: SVal, Sema); |
1701 | |
1702 | return decodeSpecialReg32(Val: SVal); |
1703 | } |
1704 | if (STI.hasFeature(Feature: AMDGPU::FeatureVolcanicIslands)) |
1705 | return createRegOperand(RegClassID: getVgprClassId(Width), Val); |
1706 | llvm_unreachable("unsupported target" ); |
1707 | } |
1708 | |
1709 | MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { |
1710 | return decodeSDWASrc(Width: OPW16, Val, ImmWidth: 16, Sema: AMDGPU::OperandSemantics::FP16); |
1711 | } |
1712 | |
1713 | MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { |
1714 | return decodeSDWASrc(Width: OPW32, Val, ImmWidth: 32, Sema: AMDGPU::OperandSemantics::FP32); |
1715 | } |
1716 | |
1717 | MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { |
1718 | using namespace AMDGPU::SDWA; |
1719 | |
1720 | assert((STI.hasFeature(AMDGPU::FeatureGFX9) || |
1721 | STI.hasFeature(AMDGPU::FeatureGFX10)) && |
1722 | "SDWAVopcDst should be present only on GFX9+" ); |
1723 | |
1724 | bool IsWave64 = STI.hasFeature(Feature: AMDGPU::FeatureWavefrontSize64); |
1725 | |
1726 | if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { |
1727 | Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; |
1728 | |
1729 | int TTmpIdx = getTTmpIdx(Val); |
1730 | if (TTmpIdx >= 0) { |
1731 | auto TTmpClsId = getTtmpClassId(Width: IsWave64 ? OPW64 : OPW32); |
1732 | return createSRegOperand(SRegClassID: TTmpClsId, Val: TTmpIdx); |
1733 | } |
1734 | if (Val > SGPR_MAX) { |
1735 | return IsWave64 ? decodeSpecialReg64(Val) : decodeSpecialReg32(Val); |
1736 | } |
1737 | return createSRegOperand(SRegClassID: getSgprClassId(Width: IsWave64 ? OPW64 : OPW32), Val); |
1738 | } |
1739 | return createRegOperand(RegId: IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); |
1740 | } |
1741 | |
1742 | MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { |
1743 | return STI.hasFeature(Feature: AMDGPU::FeatureWavefrontSize64) |
1744 | ? decodeSrcOp(Width: OPW64, Val) |
1745 | : decodeSrcOp(Width: OPW32, Val); |
1746 | } |
1747 | |
1748 | MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const { |
1749 | return decodeSrcOp(Width: OPW32, Val); |
1750 | } |
1751 | |
1752 | MCOperand AMDGPUDisassembler::decodeDpp8FI(unsigned Val) const { |
1753 | if (Val != AMDGPU::DPP::DPP8_FI_0 && Val != AMDGPU::DPP::DPP8_FI_1) |
1754 | return MCOperand(); |
1755 | return MCOperand::createImm(Val); |
1756 | } |
1757 | |
1758 | MCOperand AMDGPUDisassembler::decodeVersionImm(unsigned Imm) const { |
1759 | using VersionField = AMDGPU::EncodingField<7, 0>; |
1760 | using W64Bit = AMDGPU::EncodingBit<13>; |
1761 | using W32Bit = AMDGPU::EncodingBit<14>; |
1762 | using MDPBit = AMDGPU::EncodingBit<15>; |
1763 | using Encoding = AMDGPU::EncodingFields<VersionField, W64Bit, W32Bit, MDPBit>; |
1764 | |
1765 | auto [Version, W64, W32, MDP] = Encoding::decode(Encoded: Imm); |
1766 | |
1767 | // Decode into a plain immediate if any unused bits are raised. |
1768 | if (Encoding::encode(Values: Version, Values: W64, Values: W32, Values: MDP) != Imm) |
1769 | return MCOperand::createImm(Val: Imm); |
1770 | |
1771 | const auto &Versions = AMDGPU::UCVersion::getGFXVersions(); |
1772 | auto I = find_if(Range: Versions, |
1773 | P: [Version = Version](const AMDGPU::UCVersion::GFXVersion &V) { |
1774 | return V.Code == Version; |
1775 | }); |
1776 | MCContext &Ctx = getContext(); |
1777 | const MCExpr *E; |
1778 | if (I == Versions.end()) |
1779 | E = MCConstantExpr::create(Value: Version, Ctx); |
1780 | else |
1781 | E = MCSymbolRefExpr::create(Symbol: Ctx.getOrCreateSymbol(Name: I->Symbol), Ctx); |
1782 | |
1783 | if (W64) |
1784 | E = MCBinaryExpr::createOr(LHS: E, RHS: UCVersionW64Expr, Ctx); |
1785 | if (W32) |
1786 | E = MCBinaryExpr::createOr(LHS: E, RHS: UCVersionW32Expr, Ctx); |
1787 | if (MDP) |
1788 | E = MCBinaryExpr::createOr(LHS: E, RHS: UCVersionMDPExpr, Ctx); |
1789 | |
1790 | return MCOperand::createExpr(Val: E); |
1791 | } |
1792 | |
1793 | bool AMDGPUDisassembler::isVI() const { |
1794 | return STI.hasFeature(Feature: AMDGPU::FeatureVolcanicIslands); |
1795 | } |
1796 | |
1797 | bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } |
1798 | |
1799 | bool AMDGPUDisassembler::isGFX90A() const { |
1800 | return STI.hasFeature(Feature: AMDGPU::FeatureGFX90AInsts); |
1801 | } |
1802 | |
1803 | bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } |
1804 | |
1805 | bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } |
1806 | |
1807 | bool AMDGPUDisassembler::isGFX10Plus() const { |
1808 | return AMDGPU::isGFX10Plus(STI); |
1809 | } |
1810 | |
1811 | bool AMDGPUDisassembler::isGFX11() const { |
1812 | return STI.hasFeature(Feature: AMDGPU::FeatureGFX11); |
1813 | } |
1814 | |
1815 | bool AMDGPUDisassembler::isGFX11Plus() const { |
1816 | return AMDGPU::isGFX11Plus(STI); |
1817 | } |
1818 | |
1819 | bool AMDGPUDisassembler::isGFX12() const { |
1820 | return STI.hasFeature(Feature: AMDGPU::FeatureGFX12); |
1821 | } |
1822 | |
1823 | bool AMDGPUDisassembler::isGFX12Plus() const { |
1824 | return AMDGPU::isGFX12Plus(STI); |
1825 | } |
1826 | |
1827 | bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { |
1828 | return STI.hasFeature(Feature: AMDGPU::FeatureArchitectedFlatScratch); |
1829 | } |
1830 | |
1831 | bool AMDGPUDisassembler::hasKernargPreload() const { |
1832 | return AMDGPU::hasKernargPreload(STI); |
1833 | } |
1834 | |
1835 | //===----------------------------------------------------------------------===// |
1836 | // AMDGPU specific symbol handling |
1837 | //===----------------------------------------------------------------------===// |
1838 | |
1839 | /// Print a string describing the reserved bit range specified by Mask with |
1840 | /// offset BaseBytes for use in error comments. Mask is a single continuous |
1841 | /// range of 1s surrounded by zeros. The format here is meant to align with the |
1842 | /// tables that describe these bits in llvm.org/docs/AMDGPUUsage.html. |
1843 | static SmallString<32> getBitRangeFromMask(uint32_t Mask, unsigned BaseBytes) { |
1844 | SmallString<32> Result; |
1845 | raw_svector_ostream S(Result); |
1846 | |
1847 | int TrailingZeros = llvm::countr_zero(Val: Mask); |
1848 | int PopCount = llvm::popcount(Value: Mask); |
1849 | |
1850 | if (PopCount == 1) { |
1851 | S << "bit (" << (TrailingZeros + BaseBytes * CHAR_BIT) << ')'; |
1852 | } else { |
1853 | S << "bits in range (" |
1854 | << (TrailingZeros + PopCount - 1 + BaseBytes * CHAR_BIT) << ':' |
1855 | << (TrailingZeros + BaseBytes * CHAR_BIT) << ')'; |
1856 | } |
1857 | |
1858 | return Result; |
1859 | } |
1860 | |
1861 | #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK)) |
1862 | #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ |
1863 | do { \ |
1864 | KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n'; \ |
1865 | } while (0) |
1866 | #define (DIRECTIVE, MASK) \ |
1867 | do { \ |
1868 | KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " " \ |
1869 | << GET_FIELD(MASK) << '\n'; \ |
1870 | } while (0) |
1871 | |
1872 | #define CHECK_RESERVED_BITS_IMPL(MASK, DESC, MSG) \ |
1873 | do { \ |
1874 | if (FourByteBuffer & (MASK)) { \ |
1875 | return createStringError(std::errc::invalid_argument, \ |
1876 | "kernel descriptor " DESC \ |
1877 | " reserved %s set" MSG, \ |
1878 | getBitRangeFromMask((MASK), 0).c_str()); \ |
1879 | } \ |
1880 | } while (0) |
1881 | |
1882 | #define CHECK_RESERVED_BITS(MASK) CHECK_RESERVED_BITS_IMPL(MASK, #MASK, "") |
1883 | #define CHECK_RESERVED_BITS_MSG(MASK, MSG) \ |
1884 | CHECK_RESERVED_BITS_IMPL(MASK, #MASK, ", " MSG) |
1885 | #define CHECK_RESERVED_BITS_DESC(MASK, DESC) \ |
1886 | CHECK_RESERVED_BITS_IMPL(MASK, DESC, "") |
1887 | #define CHECK_RESERVED_BITS_DESC_MSG(MASK, DESC, MSG) \ |
1888 | CHECK_RESERVED_BITS_IMPL(MASK, DESC, ", " MSG) |
1889 | |
1890 | // NOLINTNEXTLINE(readability-identifier-naming) |
1891 | Expected<bool> AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( |
1892 | uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { |
1893 | using namespace amdhsa; |
1894 | StringRef Indent = "\t" ; |
1895 | |
1896 | // We cannot accurately backward compute #VGPRs used from |
1897 | // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same |
1898 | // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we |
1899 | // simply calculate the inverse of what the assembler does. |
1900 | |
1901 | uint32_t GranulatedWorkitemVGPRCount = |
1902 | GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT); |
1903 | |
1904 | uint32_t NextFreeVGPR = |
1905 | (GranulatedWorkitemVGPRCount + 1) * |
1906 | AMDGPU::IsaInfo::getVGPREncodingGranule(STI: &STI, EnableWavefrontSize32); |
1907 | |
1908 | KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; |
1909 | |
1910 | // We cannot backward compute values used to calculate |
1911 | // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following |
1912 | // directives can't be computed: |
1913 | // .amdhsa_reserve_vcc |
1914 | // .amdhsa_reserve_flat_scratch |
1915 | // .amdhsa_reserve_xnack_mask |
1916 | // They take their respective default values if not specified in the assembly. |
1917 | // |
1918 | // GRANULATED_WAVEFRONT_SGPR_COUNT |
1919 | // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) |
1920 | // |
1921 | // We compute the inverse as though all directives apart from NEXT_FREE_SGPR |
1922 | // are set to 0. So while disassembling we consider that: |
1923 | // |
1924 | // GRANULATED_WAVEFRONT_SGPR_COUNT |
1925 | // = f(NEXT_FREE_SGPR + 0 + 0 + 0) |
1926 | // |
1927 | // The disassembler cannot recover the original values of those 3 directives. |
1928 | |
1929 | uint32_t GranulatedWavefrontSGPRCount = |
1930 | GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT); |
1931 | |
1932 | if (isGFX10Plus()) |
1933 | CHECK_RESERVED_BITS_MSG(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT, |
1934 | "must be zero on gfx10+" ); |
1935 | |
1936 | uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * |
1937 | AMDGPU::IsaInfo::getSGPREncodingGranule(STI: &STI); |
1938 | |
1939 | KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; |
1940 | if (!hasArchitectedFlatScratch()) |
1941 | KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; |
1942 | KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; |
1943 | KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n" ; |
1944 | |
1945 | CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_PRIORITY); |
1946 | |
1947 | PRINT_DIRECTIVE(".amdhsa_float_round_mode_32" , |
1948 | COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); |
1949 | PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64" , |
1950 | COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); |
1951 | PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32" , |
1952 | COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); |
1953 | PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64" , |
1954 | COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); |
1955 | |
1956 | CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_PRIV); |
1957 | |
1958 | if (!isGFX12Plus()) |
1959 | PRINT_DIRECTIVE(".amdhsa_dx10_clamp" , |
1960 | COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP); |
1961 | |
1962 | CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_DEBUG_MODE); |
1963 | |
1964 | if (!isGFX12Plus()) |
1965 | PRINT_DIRECTIVE(".amdhsa_ieee_mode" , |
1966 | COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE); |
1967 | |
1968 | CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_BULKY); |
1969 | CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_CDBG_USER); |
1970 | |
1971 | if (isGFX9Plus()) |
1972 | PRINT_DIRECTIVE(".amdhsa_fp16_overflow" , COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL); |
1973 | |
1974 | if (!isGFX9Plus()) |
1975 | CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0, |
1976 | "COMPUTE_PGM_RSRC1" , "must be zero pre-gfx9" ); |
1977 | |
1978 | CHECK_RESERVED_BITS_DESC(COMPUTE_PGM_RSRC1_RESERVED1, "COMPUTE_PGM_RSRC1" ); |
1979 | |
1980 | if (!isGFX10Plus()) |
1981 | CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2, |
1982 | "COMPUTE_PGM_RSRC1" , "must be zero pre-gfx10" ); |
1983 | |
1984 | if (isGFX10Plus()) { |
1985 | PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode" , |
1986 | COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE); |
1987 | PRINT_DIRECTIVE(".amdhsa_memory_ordered" , COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED); |
1988 | PRINT_DIRECTIVE(".amdhsa_forward_progress" , COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS); |
1989 | } |
1990 | |
1991 | if (isGFX12Plus()) |
1992 | PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling" , |
1993 | COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN); |
1994 | |
1995 | return true; |
1996 | } |
1997 | |
1998 | // NOLINTNEXTLINE(readability-identifier-naming) |
1999 | Expected<bool> AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( |
2000 | uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { |
2001 | using namespace amdhsa; |
2002 | StringRef Indent = "\t" ; |
2003 | if (hasArchitectedFlatScratch()) |
2004 | PRINT_DIRECTIVE(".amdhsa_enable_private_segment" , |
2005 | COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); |
2006 | else |
2007 | PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset" , |
2008 | COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); |
2009 | PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x" , |
2010 | COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); |
2011 | PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y" , |
2012 | COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); |
2013 | PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z" , |
2014 | COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); |
2015 | PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info" , |
2016 | COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); |
2017 | PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id" , |
2018 | COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); |
2019 | |
2020 | CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH); |
2021 | CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY); |
2022 | CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE); |
2023 | |
2024 | PRINT_DIRECTIVE( |
2025 | ".amdhsa_exception_fp_ieee_invalid_op" , |
2026 | COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); |
2027 | PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src" , |
2028 | COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); |
2029 | PRINT_DIRECTIVE( |
2030 | ".amdhsa_exception_fp_ieee_div_zero" , |
2031 | COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); |
2032 | PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow" , |
2033 | COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); |
2034 | PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow" , |
2035 | COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); |
2036 | PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact" , |
2037 | COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); |
2038 | PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero" , |
2039 | COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); |
2040 | |
2041 | CHECK_RESERVED_BITS_DESC(COMPUTE_PGM_RSRC2_RESERVED0, "COMPUTE_PGM_RSRC2" ); |
2042 | |
2043 | return true; |
2044 | } |
2045 | |
2046 | // NOLINTNEXTLINE(readability-identifier-naming) |
2047 | Expected<bool> AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3( |
2048 | uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { |
2049 | using namespace amdhsa; |
2050 | StringRef Indent = "\t" ; |
2051 | if (isGFX90A()) { |
2052 | KdStream << Indent << ".amdhsa_accum_offset " |
2053 | << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4 |
2054 | << '\n'; |
2055 | |
2056 | PRINT_DIRECTIVE(".amdhsa_tg_split" , COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT); |
2057 | |
2058 | CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX90A_RESERVED0, |
2059 | "COMPUTE_PGM_RSRC3" , "must be zero on gfx90a" ); |
2060 | CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX90A_RESERVED1, |
2061 | "COMPUTE_PGM_RSRC3" , "must be zero on gfx90a" ); |
2062 | } else if (isGFX10Plus()) { |
2063 | // Bits [0-3]. |
2064 | if (!isGFX12Plus()) { |
2065 | if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) { |
2066 | PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count" , |
2067 | COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT); |
2068 | } else { |
2069 | PRINT_PSEUDO_DIRECTIVE_COMMENT( |
2070 | "SHARED_VGPR_COUNT" , |
2071 | COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT); |
2072 | } |
2073 | } else { |
2074 | CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0, |
2075 | "COMPUTE_PGM_RSRC3" , |
2076 | "must be zero on gfx12+" ); |
2077 | } |
2078 | |
2079 | // Bits [4-11]. |
2080 | if (isGFX11()) { |
2081 | PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE" , |
2082 | COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE); |
2083 | PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START" , |
2084 | COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START); |
2085 | PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END" , |
2086 | COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END); |
2087 | } else if (isGFX12Plus()) { |
2088 | PRINT_PSEUDO_DIRECTIVE_COMMENT( |
2089 | "INST_PREF_SIZE" , COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE); |
2090 | } else { |
2091 | CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_RESERVED1, |
2092 | "COMPUTE_PGM_RSRC3" , |
2093 | "must be zero on gfx10" ); |
2094 | } |
2095 | |
2096 | // Bits [12]. |
2097 | CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2, |
2098 | "COMPUTE_PGM_RSRC3" , "must be zero on gfx10+" ); |
2099 | |
2100 | // Bits [13]. |
2101 | if (isGFX12Plus()) { |
2102 | PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN" , |
2103 | COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN); |
2104 | } else { |
2105 | CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3, |
2106 | "COMPUTE_PGM_RSRC3" , |
2107 | "must be zero on gfx10 or gfx11" ); |
2108 | } |
2109 | |
2110 | // Bits [14-30]. |
2111 | CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4, |
2112 | "COMPUTE_PGM_RSRC3" , "must be zero on gfx10+" ); |
2113 | |
2114 | // Bits [31]. |
2115 | if (isGFX11Plus()) { |
2116 | PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP" , |
2117 | COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP); |
2118 | } else { |
2119 | CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_RESERVED5, |
2120 | "COMPUTE_PGM_RSRC3" , |
2121 | "must be zero on gfx10" ); |
2122 | } |
2123 | } else if (FourByteBuffer) { |
2124 | return createStringError( |
2125 | EC: std::errc::invalid_argument, |
2126 | Fmt: "kernel descriptor COMPUTE_PGM_RSRC3 must be all zero before gfx9" ); |
2127 | } |
2128 | return true; |
2129 | } |
2130 | #undef PRINT_PSEUDO_DIRECTIVE_COMMENT |
2131 | #undef PRINT_DIRECTIVE |
2132 | #undef GET_FIELD |
2133 | #undef CHECK_RESERVED_BITS_IMPL |
2134 | #undef CHECK_RESERVED_BITS |
2135 | #undef CHECK_RESERVED_BITS_MSG |
2136 | #undef CHECK_RESERVED_BITS_DESC |
2137 | #undef CHECK_RESERVED_BITS_DESC_MSG |
2138 | |
2139 | /// Create an error object to return from onSymbolStart for reserved kernel |
2140 | /// descriptor bits being set. |
2141 | static Error createReservedKDBitsError(uint32_t Mask, unsigned BaseBytes, |
2142 | const char *Msg = "" ) { |
2143 | return createStringError( |
2144 | EC: std::errc::invalid_argument, Fmt: "kernel descriptor reserved %s set%s%s" , |
2145 | Vals: getBitRangeFromMask(Mask, BaseBytes).c_str(), Vals: *Msg ? ", " : "" , Vals: Msg); |
2146 | } |
2147 | |
2148 | /// Create an error object to return from onSymbolStart for reserved kernel |
2149 | /// descriptor bytes being set. |
2150 | static Error createReservedKDBytesError(unsigned BaseInBytes, |
2151 | unsigned WidthInBytes) { |
2152 | // Create an error comment in the same format as the "Kernel Descriptor" |
2153 | // table here: https://llvm.org/docs/AMDGPUUsage.html#kernel-descriptor . |
2154 | return createStringError( |
2155 | EC: std::errc::invalid_argument, |
2156 | Fmt: "kernel descriptor reserved bits in range (%u:%u) set" , |
2157 | Vals: (BaseInBytes + WidthInBytes) * CHAR_BIT - 1, Vals: BaseInBytes * CHAR_BIT); |
2158 | } |
2159 | |
2160 | Expected<bool> AMDGPUDisassembler::( |
2161 | DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, |
2162 | raw_string_ostream &KdStream) const { |
2163 | #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ |
2164 | do { \ |
2165 | KdStream << Indent << DIRECTIVE " " \ |
2166 | << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ |
2167 | } while (0) |
2168 | |
2169 | uint16_t TwoByteBuffer = 0; |
2170 | uint32_t FourByteBuffer = 0; |
2171 | |
2172 | StringRef ReservedBytes; |
2173 | StringRef Indent = "\t" ; |
2174 | |
2175 | assert(Bytes.size() == 64); |
2176 | DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); |
2177 | |
2178 | switch (Cursor.tell()) { |
2179 | case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: |
2180 | FourByteBuffer = DE.getU32(C&: Cursor); |
2181 | KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer |
2182 | << '\n'; |
2183 | return true; |
2184 | |
2185 | case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: |
2186 | FourByteBuffer = DE.getU32(C&: Cursor); |
2187 | KdStream << Indent << ".amdhsa_private_segment_fixed_size " |
2188 | << FourByteBuffer << '\n'; |
2189 | return true; |
2190 | |
2191 | case amdhsa::KERNARG_SIZE_OFFSET: |
2192 | FourByteBuffer = DE.getU32(C&: Cursor); |
2193 | KdStream << Indent << ".amdhsa_kernarg_size " |
2194 | << FourByteBuffer << '\n'; |
2195 | return true; |
2196 | |
2197 | case amdhsa::RESERVED0_OFFSET: |
2198 | // 4 reserved bytes, must be 0. |
2199 | ReservedBytes = DE.getBytes(C&: Cursor, Length: 4); |
2200 | for (int I = 0; I < 4; ++I) { |
2201 | if (ReservedBytes[I] != 0) |
2202 | return createReservedKDBytesError(BaseInBytes: amdhsa::RESERVED0_OFFSET, WidthInBytes: 4); |
2203 | } |
2204 | return true; |
2205 | |
2206 | case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: |
2207 | // KERNEL_CODE_ENTRY_BYTE_OFFSET |
2208 | // So far no directive controls this for Code Object V3, so simply skip for |
2209 | // disassembly. |
2210 | DE.skip(C&: Cursor, Length: 8); |
2211 | return true; |
2212 | |
2213 | case amdhsa::RESERVED1_OFFSET: |
2214 | // 20 reserved bytes, must be 0. |
2215 | ReservedBytes = DE.getBytes(C&: Cursor, Length: 20); |
2216 | for (int I = 0; I < 20; ++I) { |
2217 | if (ReservedBytes[I] != 0) |
2218 | return createReservedKDBytesError(BaseInBytes: amdhsa::RESERVED1_OFFSET, WidthInBytes: 20); |
2219 | } |
2220 | return true; |
2221 | |
2222 | case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: |
2223 | FourByteBuffer = DE.getU32(C&: Cursor); |
2224 | return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream); |
2225 | |
2226 | case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: |
2227 | FourByteBuffer = DE.getU32(C&: Cursor); |
2228 | return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream); |
2229 | |
2230 | case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: |
2231 | FourByteBuffer = DE.getU32(C&: Cursor); |
2232 | return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream); |
2233 | |
2234 | case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: |
2235 | using namespace amdhsa; |
2236 | TwoByteBuffer = DE.getU16(C&: Cursor); |
2237 | |
2238 | if (!hasArchitectedFlatScratch()) |
2239 | PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer" , |
2240 | KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); |
2241 | PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr" , |
2242 | KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); |
2243 | PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr" , |
2244 | KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); |
2245 | PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr" , |
2246 | KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); |
2247 | PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id" , |
2248 | KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); |
2249 | if (!hasArchitectedFlatScratch()) |
2250 | PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init" , |
2251 | KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); |
2252 | PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size" , |
2253 | KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); |
2254 | |
2255 | if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) |
2256 | return createReservedKDBitsError(Mask: KERNEL_CODE_PROPERTY_RESERVED0, |
2257 | BaseBytes: amdhsa::KERNEL_CODE_PROPERTIES_OFFSET); |
2258 | |
2259 | // Reserved for GFX9 |
2260 | if (isGFX9() && |
2261 | (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { |
2262 | return createReservedKDBitsError( |
2263 | Mask: KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, |
2264 | BaseBytes: amdhsa::KERNEL_CODE_PROPERTIES_OFFSET, Msg: "must be zero on gfx9" ); |
2265 | } |
2266 | if (isGFX10Plus()) { |
2267 | PRINT_DIRECTIVE(".amdhsa_wavefront_size32" , |
2268 | KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); |
2269 | } |
2270 | |
2271 | if (CodeObjectVersion >= AMDGPU::AMDHSA_COV5) |
2272 | PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack" , |
2273 | KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK); |
2274 | |
2275 | if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) { |
2276 | return createReservedKDBitsError(Mask: KERNEL_CODE_PROPERTY_RESERVED1, |
2277 | BaseBytes: amdhsa::KERNEL_CODE_PROPERTIES_OFFSET); |
2278 | } |
2279 | |
2280 | return true; |
2281 | |
2282 | case amdhsa::KERNARG_PRELOAD_OFFSET: |
2283 | using namespace amdhsa; |
2284 | TwoByteBuffer = DE.getU16(C&: Cursor); |
2285 | if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) { |
2286 | PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length" , |
2287 | KERNARG_PRELOAD_SPEC_LENGTH); |
2288 | } |
2289 | |
2290 | if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) { |
2291 | PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset" , |
2292 | KERNARG_PRELOAD_SPEC_OFFSET); |
2293 | } |
2294 | return true; |
2295 | |
2296 | case amdhsa::RESERVED3_OFFSET: |
2297 | // 4 bytes from here are reserved, must be 0. |
2298 | ReservedBytes = DE.getBytes(C&: Cursor, Length: 4); |
2299 | for (int I = 0; I < 4; ++I) { |
2300 | if (ReservedBytes[I] != 0) |
2301 | return createReservedKDBytesError(BaseInBytes: amdhsa::RESERVED3_OFFSET, WidthInBytes: 4); |
2302 | } |
2303 | return true; |
2304 | |
2305 | default: |
2306 | llvm_unreachable("Unhandled index. Case statements cover everything." ); |
2307 | return true; |
2308 | } |
2309 | #undef PRINT_DIRECTIVE |
2310 | } |
2311 | |
2312 | Expected<bool> AMDGPUDisassembler::decodeKernelDescriptor( |
2313 | StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { |
2314 | |
2315 | // CP microcode requires the kernel descriptor to be 64 aligned. |
2316 | if (Bytes.size() != 64 || KdAddress % 64 != 0) |
2317 | return createStringError(EC: std::errc::invalid_argument, |
2318 | Fmt: "kernel descriptor must be 64-byte aligned" ); |
2319 | |
2320 | // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10 |
2321 | // requires us to know the setting of .amdhsa_wavefront_size32 in order to |
2322 | // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong |
2323 | // order. Workaround this by first looking up .amdhsa_wavefront_size32 here |
2324 | // when required. |
2325 | if (isGFX10Plus()) { |
2326 | uint16_t KernelCodeProperties = |
2327 | support::endian::read16(P: &Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET], |
2328 | E: llvm::endianness::little); |
2329 | EnableWavefrontSize32 = |
2330 | AMDHSA_BITS_GET(KernelCodeProperties, |
2331 | amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); |
2332 | } |
2333 | |
2334 | std::string Kd; |
2335 | raw_string_ostream KdStream(Kd); |
2336 | KdStream << ".amdhsa_kernel " << KdName << '\n'; |
2337 | |
2338 | DataExtractor::Cursor C(0); |
2339 | while (C && C.tell() < Bytes.size()) { |
2340 | Expected<bool> Res = decodeKernelDescriptorDirective(Cursor&: C, Bytes, KdStream); |
2341 | |
2342 | cantFail(Err: C.takeError()); |
2343 | |
2344 | if (!Res) |
2345 | return Res; |
2346 | } |
2347 | KdStream << ".end_amdhsa_kernel\n" ; |
2348 | outs() << KdStream.str(); |
2349 | return true; |
2350 | } |
2351 | |
2352 | Expected<bool> AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, |
2353 | uint64_t &Size, |
2354 | ArrayRef<uint8_t> Bytes, |
2355 | uint64_t Address) const { |
2356 | // Right now only kernel descriptor needs to be handled. |
2357 | // We ignore all other symbols for target specific handling. |
2358 | // TODO: |
2359 | // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code |
2360 | // Object V2 and V3 when symbols are marked protected. |
2361 | |
2362 | // amd_kernel_code_t for Code Object V2. |
2363 | if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { |
2364 | Size = 256; |
2365 | return createStringError(EC: std::errc::invalid_argument, |
2366 | Fmt: "code object v2 is not supported" ); |
2367 | } |
2368 | |
2369 | // Code Object V3 kernel descriptors. |
2370 | StringRef Name = Symbol.Name; |
2371 | if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(Suffix: StringRef(".kd" ))) { |
2372 | Size = 64; // Size = 64 regardless of success or failure. |
2373 | return decodeKernelDescriptor(KdName: Name.drop_back(N: 3), Bytes, KdAddress: Address); |
2374 | } |
2375 | |
2376 | return false; |
2377 | } |
2378 | |
2379 | const MCExpr *AMDGPUDisassembler::createConstantSymbolExpr(StringRef Id, |
2380 | int64_t Val) { |
2381 | MCContext &Ctx = getContext(); |
2382 | MCSymbol *Sym = Ctx.getOrCreateSymbol(Name: Id); |
2383 | // Note: only set value to Val on a new symbol in case an dissassembler |
2384 | // has already been initialized in this context. |
2385 | if (!Sym->isVariable()) { |
2386 | Sym->setVariableValue(MCConstantExpr::create(Value: Val, Ctx)); |
2387 | } else { |
2388 | int64_t Res = ~Val; |
2389 | bool Valid = Sym->getVariableValue()->evaluateAsAbsolute(Res); |
2390 | if (!Valid || Res != Val) |
2391 | Ctx.reportWarning(L: SMLoc(), Msg: "unsupported redefinition of " + Id); |
2392 | } |
2393 | return MCSymbolRefExpr::create(Symbol: Sym, Ctx); |
2394 | } |
2395 | |
2396 | //===----------------------------------------------------------------------===// |
2397 | // AMDGPUSymbolizer |
2398 | //===----------------------------------------------------------------------===// |
2399 | |
2400 | // Try to find symbol name for specified label |
2401 | bool AMDGPUSymbolizer::tryAddingSymbolicOperand( |
2402 | MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, |
2403 | uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, |
2404 | uint64_t /*OpSize*/, uint64_t /*InstSize*/) { |
2405 | |
2406 | if (!IsBranch) { |
2407 | return false; |
2408 | } |
2409 | |
2410 | auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); |
2411 | if (!Symbols) |
2412 | return false; |
2413 | |
2414 | auto Result = llvm::find_if(Range&: *Symbols, P: [Value](const SymbolInfoTy &Val) { |
2415 | return Val.Addr == static_cast<uint64_t>(Value) && |
2416 | Val.Type == ELF::STT_NOTYPE; |
2417 | }); |
2418 | if (Result != Symbols->end()) { |
2419 | auto *Sym = Ctx.getOrCreateSymbol(Name: Result->Name); |
2420 | const auto *Add = MCSymbolRefExpr::create(Symbol: Sym, Ctx); |
2421 | Inst.addOperand(Op: MCOperand::createExpr(Val: Add)); |
2422 | return true; |
2423 | } |
2424 | // Add to list of referenced addresses, so caller can synthesize a label. |
2425 | ReferencedAddresses.push_back(x: static_cast<uint64_t>(Value)); |
2426 | return false; |
2427 | } |
2428 | |
2429 | void AMDGPUSymbolizer::(raw_ostream &cStream, |
2430 | int64_t Value, |
2431 | uint64_t Address) { |
2432 | llvm_unreachable("unimplemented" ); |
2433 | } |
2434 | |
2435 | //===----------------------------------------------------------------------===// |
2436 | // Initialization |
2437 | //===----------------------------------------------------------------------===// |
2438 | |
2439 | static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, |
2440 | LLVMOpInfoCallback /*GetOpInfo*/, |
2441 | LLVMSymbolLookupCallback /*SymbolLookUp*/, |
2442 | void *DisInfo, |
2443 | MCContext *Ctx, |
2444 | std::unique_ptr<MCRelocationInfo> &&RelInfo) { |
2445 | return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); |
2446 | } |
2447 | |
2448 | static MCDisassembler *createAMDGPUDisassembler(const Target &T, |
2449 | const MCSubtargetInfo &STI, |
2450 | MCContext &Ctx) { |
2451 | return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); |
2452 | } |
2453 | |
2454 | extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { |
2455 | TargetRegistry::RegisterMCDisassembler(T&: getTheGCNTarget(), |
2456 | Fn: createAMDGPUDisassembler); |
2457 | TargetRegistry::RegisterMCSymbolizer(T&: getTheGCNTarget(), |
2458 | Fn: createAMDGPUSymbolizer); |
2459 | } |
2460 | |