1 | //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// Custom DAG lowering for R600 |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "R600ISelLowering.h" |
15 | #include "AMDGPU.h" |
16 | #include "MCTargetDesc/R600MCTargetDesc.h" |
17 | #include "R600Defines.h" |
18 | #include "R600InstrInfo.h" |
19 | #include "R600MachineFunctionInfo.h" |
20 | #include "R600Subtarget.h" |
21 | #include "R600TargetMachine.h" |
22 | #include "llvm/CodeGen/MachineFunction.h" |
23 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
24 | #include "llvm/IR/IntrinsicsR600.h" |
25 | |
26 | using namespace llvm; |
27 | |
28 | #include "R600GenCallingConv.inc" |
29 | |
30 | R600TargetLowering::R600TargetLowering(const TargetMachine &TM, |
31 | const R600Subtarget &STI) |
32 | : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) { |
33 | addRegisterClass(VT: MVT::f32, RC: &R600::R600_Reg32RegClass); |
34 | addRegisterClass(VT: MVT::i32, RC: &R600::R600_Reg32RegClass); |
35 | addRegisterClass(VT: MVT::v2f32, RC: &R600::R600_Reg64RegClass); |
36 | addRegisterClass(VT: MVT::v2i32, RC: &R600::R600_Reg64RegClass); |
37 | addRegisterClass(VT: MVT::v4f32, RC: &R600::R600_Reg128RegClass); |
38 | addRegisterClass(VT: MVT::v4i32, RC: &R600::R600_Reg128RegClass); |
39 | |
40 | setBooleanContents(ZeroOrNegativeOneBooleanContent); |
41 | setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
42 | |
43 | computeRegisterProperties(TRI: Subtarget->getRegisterInfo()); |
44 | |
45 | // Legalize loads and stores to the private address space. |
46 | setOperationAction(Ops: ISD::LOAD, VTs: {MVT::i32, MVT::v2i32, MVT::v4i32}, Action: Custom); |
47 | |
48 | // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address |
49 | // spaces, so it is custom lowered to handle those where it isn't. |
50 | for (auto Op : {ISD::SEXTLOAD, ISD::ZEXTLOAD, ISD::EXTLOAD}) |
51 | for (MVT VT : MVT::integer_valuetypes()) { |
52 | setLoadExtAction(ExtType: Op, ValVT: VT, MemVT: MVT::i1, Action: Promote); |
53 | setLoadExtAction(ExtType: Op, ValVT: VT, MemVT: MVT::i8, Action: Custom); |
54 | setLoadExtAction(ExtType: Op, ValVT: VT, MemVT: MVT::i16, Action: Custom); |
55 | } |
56 | |
57 | // Workaround for LegalizeDAG asserting on expansion of i1 vector loads. |
58 | setLoadExtAction(ExtTypes: {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, ValVT: MVT::v2i32, |
59 | MemVT: MVT::v2i1, Action: Expand); |
60 | |
61 | setLoadExtAction(ExtTypes: {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, ValVT: MVT::v4i32, |
62 | MemVT: MVT::v4i1, Action: Expand); |
63 | |
64 | setOperationAction(Ops: ISD::STORE, VTs: {MVT::i8, MVT::i32, MVT::v2i32, MVT::v4i32}, |
65 | Action: Custom); |
66 | |
67 | setTruncStoreAction(ValVT: MVT::i32, MemVT: MVT::i8, Action: Custom); |
68 | setTruncStoreAction(ValVT: MVT::i32, MemVT: MVT::i16, Action: Custom); |
69 | // We need to include these since trunc STORES to PRIVATE need |
70 | // special handling to accommodate RMW |
71 | setTruncStoreAction(ValVT: MVT::v2i32, MemVT: MVT::v2i16, Action: Custom); |
72 | setTruncStoreAction(ValVT: MVT::v4i32, MemVT: MVT::v4i16, Action: Custom); |
73 | setTruncStoreAction(ValVT: MVT::v8i32, MemVT: MVT::v8i16, Action: Custom); |
74 | setTruncStoreAction(ValVT: MVT::v16i32, MemVT: MVT::v16i16, Action: Custom); |
75 | setTruncStoreAction(ValVT: MVT::v32i32, MemVT: MVT::v32i16, Action: Custom); |
76 | setTruncStoreAction(ValVT: MVT::v2i32, MemVT: MVT::v2i8, Action: Custom); |
77 | setTruncStoreAction(ValVT: MVT::v4i32, MemVT: MVT::v4i8, Action: Custom); |
78 | setTruncStoreAction(ValVT: MVT::v8i32, MemVT: MVT::v8i8, Action: Custom); |
79 | setTruncStoreAction(ValVT: MVT::v16i32, MemVT: MVT::v16i8, Action: Custom); |
80 | setTruncStoreAction(ValVT: MVT::v32i32, MemVT: MVT::v32i8, Action: Custom); |
81 | |
82 | // Workaround for LegalizeDAG asserting on expansion of i1 vector stores. |
83 | setTruncStoreAction(ValVT: MVT::v2i32, MemVT: MVT::v2i1, Action: Expand); |
84 | setTruncStoreAction(ValVT: MVT::v4i32, MemVT: MVT::v4i1, Action: Expand); |
85 | |
86 | // Set condition code actions |
87 | setCondCodeAction(CCs: {ISD::SETO, ISD::SETUO, ISD::SETLT, ISD::SETLE, ISD::SETOLT, |
88 | ISD::SETOLE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGE, |
89 | ISD::SETUGT, ISD::SETULT, ISD::SETULE}, |
90 | VT: MVT::f32, Action: Expand); |
91 | |
92 | setCondCodeAction(CCs: {ISD::SETLE, ISD::SETLT, ISD::SETULE, ISD::SETULT}, |
93 | VT: MVT::i32, Action: Expand); |
94 | |
95 | setOperationAction(Ops: {ISD::FCOS, ISD::FSIN}, VT: MVT::f32, Action: Custom); |
96 | |
97 | setOperationAction(Ops: ISD::SETCC, VTs: {MVT::v4i32, MVT::v2i32}, Action: Expand); |
98 | |
99 | setOperationAction(Ops: ISD::BR_CC, VTs: {MVT::i32, MVT::f32}, Action: Expand); |
100 | setOperationAction(Op: ISD::BRCOND, VT: MVT::Other, Action: Custom); |
101 | |
102 | setOperationAction(Op: ISD::FSUB, VT: MVT::f32, Action: Expand); |
103 | |
104 | setOperationAction(Ops: {ISD::FCEIL, ISD::FTRUNC, ISD::FROUNDEVEN, ISD::FFLOOR}, |
105 | VT: MVT::f64, Action: Custom); |
106 | |
107 | setOperationAction(Ops: ISD::SELECT_CC, VTs: {MVT::f32, MVT::i32}, Action: Custom); |
108 | |
109 | setOperationAction(Ops: ISD::SETCC, VTs: {MVT::i32, MVT::f32}, Action: Expand); |
110 | setOperationAction(Ops: {ISD::FP_TO_UINT, ISD::FP_TO_SINT}, VTs: {MVT::i1, MVT::i64}, |
111 | Action: Custom); |
112 | |
113 | setOperationAction(Ops: ISD::SELECT, VTs: {MVT::i32, MVT::f32, MVT::v2i32, MVT::v4i32}, |
114 | Action: Expand); |
115 | |
116 | // ADD, SUB overflow. |
117 | // TODO: turn these into Legal? |
118 | if (Subtarget->hasCARRY()) |
119 | setOperationAction(Op: ISD::UADDO, VT: MVT::i32, Action: Custom); |
120 | |
121 | if (Subtarget->hasBORROW()) |
122 | setOperationAction(Op: ISD::USUBO, VT: MVT::i32, Action: Custom); |
123 | |
124 | // Expand sign extension of vectors |
125 | if (!Subtarget->hasBFE()) |
126 | setOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: MVT::i1, Action: Expand); |
127 | |
128 | setOperationAction(Ops: ISD::SIGN_EXTEND_INREG, VTs: {MVT::v2i1, MVT::v4i1}, Action: Expand); |
129 | |
130 | if (!Subtarget->hasBFE()) |
131 | setOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: MVT::i8, Action: Expand); |
132 | setOperationAction(Ops: ISD::SIGN_EXTEND_INREG, VTs: {MVT::v2i8, MVT::v4i8}, Action: Expand); |
133 | |
134 | if (!Subtarget->hasBFE()) |
135 | setOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: MVT::i16, Action: Expand); |
136 | setOperationAction(Ops: ISD::SIGN_EXTEND_INREG, VTs: {MVT::v2i16, MVT::v4i16}, Action: Expand); |
137 | |
138 | setOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: MVT::i32, Action: Legal); |
139 | setOperationAction(Ops: ISD::SIGN_EXTEND_INREG, VTs: {MVT::v2i32, MVT::v4i32}, Action: Expand); |
140 | |
141 | setOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: MVT::Other, Action: Expand); |
142 | |
143 | setOperationAction(Op: ISD::FrameIndex, VT: MVT::i32, Action: Custom); |
144 | |
145 | setOperationAction(Ops: ISD::EXTRACT_VECTOR_ELT, |
146 | VTs: {MVT::v2i32, MVT::v2f32, MVT::v4i32, MVT::v4f32}, Action: Custom); |
147 | |
148 | setOperationAction(Ops: ISD::INSERT_VECTOR_ELT, |
149 | VTs: {MVT::v2i32, MVT::v2f32, MVT::v4i32, MVT::v4f32}, Action: Custom); |
150 | |
151 | // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32 |
152 | // to be Legal/Custom in order to avoid library calls. |
153 | setOperationAction(Ops: {ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, VT: MVT::i32, |
154 | Action: Custom); |
155 | |
156 | if (!Subtarget->hasFMA()) |
157 | setOperationAction(Ops: ISD::FMA, VTs: {MVT::f32, MVT::f64}, Action: Expand); |
158 | |
159 | // FIXME: May need no denormals check |
160 | setOperationAction(Op: ISD::FMAD, VT: MVT::f32, Action: Legal); |
161 | |
162 | if (!Subtarget->hasBFI()) |
163 | // fcopysign can be done in a single instruction with BFI. |
164 | setOperationAction(Ops: ISD::FCOPYSIGN, VTs: {MVT::f32, MVT::f64}, Action: Expand); |
165 | |
166 | if (!Subtarget->hasBCNT(Size: 32)) |
167 | setOperationAction(Op: ISD::CTPOP, VT: MVT::i32, Action: Expand); |
168 | |
169 | if (!Subtarget->hasBCNT(Size: 64)) |
170 | setOperationAction(Op: ISD::CTPOP, VT: MVT::i64, Action: Expand); |
171 | |
172 | if (Subtarget->hasFFBH()) |
173 | setOperationAction(Op: ISD::CTLZ_ZERO_UNDEF, VT: MVT::i32, Action: Custom); |
174 | |
175 | if (Subtarget->hasFFBL()) |
176 | setOperationAction(Op: ISD::CTTZ_ZERO_UNDEF, VT: MVT::i32, Action: Custom); |
177 | |
178 | // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we |
179 | // need it for R600. |
180 | if (Subtarget->hasBFE()) |
181 | setHasExtractBitsInsn(true); |
182 | |
183 | setOperationAction(Op: ISD::GlobalAddress, VT: MVT::i32, Action: Custom); |
184 | setOperationAction(Op: ISD::ADDRSPACECAST, VT: MVT::i32, Action: Custom); |
185 | |
186 | const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; |
187 | for (MVT VT : ScalarIntVTs) |
188 | setOperationAction(Ops: {ISD::ADDC, ISD::SUBC, ISD::ADDE, ISD::SUBE}, VT, |
189 | Action: Expand); |
190 | |
191 | // LLVM will expand these to atomic_cmp_swap(0) |
192 | // and atomic_swap, respectively. |
193 | setOperationAction(Ops: {ISD::ATOMIC_LOAD, ISD::ATOMIC_STORE}, VT: MVT::i32, Action: Expand); |
194 | |
195 | // We need to custom lower some of the intrinsics |
196 | setOperationAction(Ops: {ISD::INTRINSIC_VOID, ISD::INTRINSIC_WO_CHAIN}, VT: MVT::Other, |
197 | Action: Custom); |
198 | |
199 | setSchedulingPreference(Sched::Source); |
200 | |
201 | setTargetDAGCombine({ISD::FP_ROUND, ISD::FP_TO_SINT, ISD::EXTRACT_VECTOR_ELT, |
202 | ISD::SELECT_CC, ISD::INSERT_VECTOR_ELT, ISD::LOAD}); |
203 | } |
204 | |
205 | static inline bool isEOP(MachineBasicBlock::iterator I) { |
206 | if (std::next(x: I) == I->getParent()->end()) |
207 | return false; |
208 | return std::next(x: I)->getOpcode() == R600::RETURN; |
209 | } |
210 | |
211 | MachineBasicBlock * |
212 | R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
213 | MachineBasicBlock *BB) const { |
214 | MachineFunction *MF = BB->getParent(); |
215 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
216 | MachineBasicBlock::iterator I = MI; |
217 | const R600InstrInfo *TII = Subtarget->getInstrInfo(); |
218 | |
219 | switch (MI.getOpcode()) { |
220 | default: |
221 | // Replace LDS_*_RET instruction that don't have any uses with the |
222 | // equivalent LDS_*_NORET instruction. |
223 | if (TII->isLDSRetInstr(Opcode: MI.getOpcode())) { |
224 | int DstIdx = TII->getOperandIdx(Opcode: MI.getOpcode(), Op: R600::OpName::dst); |
225 | assert(DstIdx != -1); |
226 | MachineInstrBuilder NewMI; |
227 | // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add |
228 | // LDS_1A2D support and remove this special case. |
229 | if (!MRI.use_empty(RegNo: MI.getOperand(i: DstIdx).getReg()) || |
230 | MI.getOpcode() == R600::LDS_CMPST_RET) |
231 | return BB; |
232 | |
233 | NewMI = BuildMI(BB&: *BB, I, MIMD: BB->findDebugLoc(MBBI: I), |
234 | MCID: TII->get(Opcode: R600::getLDSNoRetOp(Opcode: MI.getOpcode()))); |
235 | for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI.operands())) |
236 | NewMI.add(MO); |
237 | } else { |
238 | return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, MBB: BB); |
239 | } |
240 | break; |
241 | |
242 | case R600::FABS_R600: { |
243 | MachineInstr *NewMI = TII->buildDefaultInstruction( |
244 | MBB&: *BB, I, Opcode: R600::MOV, DstReg: MI.getOperand(i: 0).getReg(), |
245 | Src0Reg: MI.getOperand(i: 1).getReg()); |
246 | TII->addFlag(MI&: *NewMI, Operand: 0, MO_FLAG_ABS); |
247 | break; |
248 | } |
249 | |
250 | case R600::FNEG_R600: { |
251 | MachineInstr *NewMI = TII->buildDefaultInstruction( |
252 | MBB&: *BB, I, Opcode: R600::MOV, DstReg: MI.getOperand(i: 0).getReg(), |
253 | Src0Reg: MI.getOperand(i: 1).getReg()); |
254 | TII->addFlag(MI&: *NewMI, Operand: 0, MO_FLAG_NEG); |
255 | break; |
256 | } |
257 | |
258 | case R600::MASK_WRITE: { |
259 | Register maskedRegister = MI.getOperand(i: 0).getReg(); |
260 | assert(maskedRegister.isVirtual()); |
261 | MachineInstr * defInstr = MRI.getVRegDef(Reg: maskedRegister); |
262 | TII->addFlag(MI&: *defInstr, Operand: 0, MO_FLAG_MASK); |
263 | break; |
264 | } |
265 | |
266 | case R600::MOV_IMM_F32: |
267 | TII->buildMovImm(BB&: *BB, I, DstReg: MI.getOperand(i: 0).getReg(), Imm: MI.getOperand(i: 1) |
268 | .getFPImm() |
269 | ->getValueAPF() |
270 | .bitcastToAPInt() |
271 | .getZExtValue()); |
272 | break; |
273 | |
274 | case R600::MOV_IMM_I32: |
275 | TII->buildMovImm(BB&: *BB, I, DstReg: MI.getOperand(i: 0).getReg(), |
276 | Imm: MI.getOperand(i: 1).getImm()); |
277 | break; |
278 | |
279 | case R600::MOV_IMM_GLOBAL_ADDR: { |
280 | //TODO: Perhaps combine this instruction with the next if possible |
281 | auto MIB = TII->buildDefaultInstruction( |
282 | MBB&: *BB, I: MI, Opcode: R600::MOV, DstReg: MI.getOperand(i: 0).getReg(), Src0Reg: R600::ALU_LITERAL_X); |
283 | int Idx = TII->getOperandIdx(MI: *MIB, Op: R600::OpName::literal); |
284 | //TODO: Ugh this is rather ugly |
285 | const MachineOperand &MO = MI.getOperand(i: 1); |
286 | MIB->getOperand(i: Idx).ChangeToGA(GV: MO.getGlobal(), Offset: MO.getOffset(), |
287 | TargetFlags: MO.getTargetFlags()); |
288 | break; |
289 | } |
290 | |
291 | case R600::CONST_COPY: { |
292 | MachineInstr *NewMI = TII->buildDefaultInstruction( |
293 | MBB&: *BB, I: MI, Opcode: R600::MOV, DstReg: MI.getOperand(i: 0).getReg(), Src0Reg: R600::ALU_CONST); |
294 | TII->setImmOperand(MI&: *NewMI, Op: R600::OpName::src0_sel, |
295 | Imm: MI.getOperand(i: 1).getImm()); |
296 | break; |
297 | } |
298 | |
299 | case R600::RAT_WRITE_CACHELESS_32_eg: |
300 | case R600::RAT_WRITE_CACHELESS_64_eg: |
301 | case R600::RAT_WRITE_CACHELESS_128_eg: |
302 | BuildMI(BB&: *BB, I, MIMD: BB->findDebugLoc(MBBI: I), MCID: TII->get(Opcode: MI.getOpcode())) |
303 | .add(MO: MI.getOperand(i: 0)) |
304 | .add(MO: MI.getOperand(i: 1)) |
305 | .addImm(Val: isEOP(I)); // Set End of program bit |
306 | break; |
307 | |
308 | case R600::RAT_STORE_TYPED_eg: |
309 | BuildMI(BB&: *BB, I, MIMD: BB->findDebugLoc(MBBI: I), MCID: TII->get(Opcode: MI.getOpcode())) |
310 | .add(MO: MI.getOperand(i: 0)) |
311 | .add(MO: MI.getOperand(i: 1)) |
312 | .add(MO: MI.getOperand(i: 2)) |
313 | .addImm(Val: isEOP(I)); // Set End of program bit |
314 | break; |
315 | |
316 | case R600::BRANCH: |
317 | BuildMI(BB&: *BB, I, MIMD: BB->findDebugLoc(MBBI: I), MCID: TII->get(Opcode: R600::JUMP)) |
318 | .add(MO: MI.getOperand(i: 0)); |
319 | break; |
320 | |
321 | case R600::BRANCH_COND_f32: { |
322 | MachineInstr *NewMI = |
323 | BuildMI(BB&: *BB, I, MIMD: BB->findDebugLoc(MBBI: I), MCID: TII->get(Opcode: R600::PRED_X), |
324 | DestReg: R600::PREDICATE_BIT) |
325 | .add(MO: MI.getOperand(i: 1)) |
326 | .addImm(Val: R600::PRED_SETNE) |
327 | .addImm(Val: 0); // Flags |
328 | TII->addFlag(MI&: *NewMI, Operand: 0, MO_FLAG_PUSH); |
329 | BuildMI(BB&: *BB, I, MIMD: BB->findDebugLoc(MBBI: I), MCID: TII->get(Opcode: R600::JUMP_COND)) |
330 | .add(MO: MI.getOperand(i: 0)) |
331 | .addReg(RegNo: R600::PREDICATE_BIT, flags: RegState::Kill); |
332 | break; |
333 | } |
334 | |
335 | case R600::BRANCH_COND_i32: { |
336 | MachineInstr *NewMI = |
337 | BuildMI(BB&: *BB, I, MIMD: BB->findDebugLoc(MBBI: I), MCID: TII->get(Opcode: R600::PRED_X), |
338 | DestReg: R600::PREDICATE_BIT) |
339 | .add(MO: MI.getOperand(i: 1)) |
340 | .addImm(Val: R600::PRED_SETNE_INT) |
341 | .addImm(Val: 0); // Flags |
342 | TII->addFlag(MI&: *NewMI, Operand: 0, MO_FLAG_PUSH); |
343 | BuildMI(BB&: *BB, I, MIMD: BB->findDebugLoc(MBBI: I), MCID: TII->get(Opcode: R600::JUMP_COND)) |
344 | .add(MO: MI.getOperand(i: 0)) |
345 | .addReg(RegNo: R600::PREDICATE_BIT, flags: RegState::Kill); |
346 | break; |
347 | } |
348 | |
349 | case R600::EG_ExportSwz: |
350 | case R600::R600_ExportSwz: { |
351 | // Instruction is left unmodified if its not the last one of its type |
352 | bool isLastInstructionOfItsType = true; |
353 | unsigned InstExportType = MI.getOperand(i: 1).getImm(); |
354 | for (MachineBasicBlock::iterator NextExportInst = std::next(x: I), |
355 | EndBlock = BB->end(); NextExportInst != EndBlock; |
356 | NextExportInst = std::next(x: NextExportInst)) { |
357 | if (NextExportInst->getOpcode() == R600::EG_ExportSwz || |
358 | NextExportInst->getOpcode() == R600::R600_ExportSwz) { |
359 | unsigned CurrentInstExportType = NextExportInst->getOperand(i: 1) |
360 | .getImm(); |
361 | if (CurrentInstExportType == InstExportType) { |
362 | isLastInstructionOfItsType = false; |
363 | break; |
364 | } |
365 | } |
366 | } |
367 | bool EOP = isEOP(I); |
368 | if (!EOP && !isLastInstructionOfItsType) |
369 | return BB; |
370 | unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40; |
371 | BuildMI(BB&: *BB, I, MIMD: BB->findDebugLoc(MBBI: I), MCID: TII->get(Opcode: MI.getOpcode())) |
372 | .add(MO: MI.getOperand(i: 0)) |
373 | .add(MO: MI.getOperand(i: 1)) |
374 | .add(MO: MI.getOperand(i: 2)) |
375 | .add(MO: MI.getOperand(i: 3)) |
376 | .add(MO: MI.getOperand(i: 4)) |
377 | .add(MO: MI.getOperand(i: 5)) |
378 | .add(MO: MI.getOperand(i: 6)) |
379 | .addImm(Val: CfInst) |
380 | .addImm(Val: EOP); |
381 | break; |
382 | } |
383 | case R600::RETURN: { |
384 | return BB; |
385 | } |
386 | } |
387 | |
388 | MI.eraseFromParent(); |
389 | return BB; |
390 | } |
391 | |
392 | //===----------------------------------------------------------------------===// |
393 | // Custom DAG Lowering Operations |
394 | //===----------------------------------------------------------------------===// |
395 | |
396 | SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
397 | MachineFunction &MF = DAG.getMachineFunction(); |
398 | R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>(); |
399 | switch (Op.getOpcode()) { |
400 | default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); |
401 | case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); |
402 | case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); |
403 | case ISD::SHL_PARTS: |
404 | case ISD::SRA_PARTS: |
405 | case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG); |
406 | case ISD::UADDO: return LowerUADDSUBO(Op, DAG, mainop: ISD::ADD, ovf: AMDGPUISD::CARRY); |
407 | case ISD::USUBO: return LowerUADDSUBO(Op, DAG, mainop: ISD::SUB, ovf: AMDGPUISD::BORROW); |
408 | case ISD::FCOS: |
409 | case ISD::FSIN: return LowerTrig(Op, DAG); |
410 | case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); |
411 | case ISD::STORE: return LowerSTORE(Op, DAG); |
412 | case ISD::LOAD: { |
413 | SDValue Result = LowerLOAD(Op, DAG); |
414 | assert((!Result.getNode() || |
415 | Result.getNode()->getNumValues() == 2) && |
416 | "Load should return a value and a chain" ); |
417 | return Result; |
418 | } |
419 | |
420 | case ISD::BRCOND: return LowerBRCOND(Op, DAG); |
421 | case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG); |
422 | case ISD::FrameIndex: return lowerFrameIndex(Op, DAG); |
423 | case ISD::ADDRSPACECAST: |
424 | return lowerADDRSPACECAST(Op, DAG); |
425 | case ISD::INTRINSIC_VOID: { |
426 | SDValue Chain = Op.getOperand(i: 0); |
427 | unsigned IntrinsicID = Op.getConstantOperandVal(i: 1); |
428 | switch (IntrinsicID) { |
429 | case Intrinsic::r600_store_swizzle: { |
430 | SDLoc DL(Op); |
431 | const SDValue Args[8] = { |
432 | Chain, |
433 | Op.getOperand(i: 2), // Export Value |
434 | Op.getOperand(i: 3), // ArrayBase |
435 | Op.getOperand(i: 4), // Type |
436 | DAG.getConstant(Val: 0, DL, VT: MVT::i32), // SWZ_X |
437 | DAG.getConstant(Val: 1, DL, VT: MVT::i32), // SWZ_Y |
438 | DAG.getConstant(Val: 2, DL, VT: MVT::i32), // SWZ_Z |
439 | DAG.getConstant(Val: 3, DL, VT: MVT::i32) // SWZ_W |
440 | }; |
441 | return DAG.getNode(Opcode: AMDGPUISD::R600_EXPORT, DL, VT: Op.getValueType(), Ops: Args); |
442 | } |
443 | |
444 | // default for switch(IntrinsicID) |
445 | default: break; |
446 | } |
447 | // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode()) |
448 | break; |
449 | } |
450 | case ISD::INTRINSIC_WO_CHAIN: { |
451 | unsigned IntrinsicID = Op.getConstantOperandVal(i: 0); |
452 | EVT VT = Op.getValueType(); |
453 | SDLoc DL(Op); |
454 | switch (IntrinsicID) { |
455 | case Intrinsic::r600_tex: |
456 | case Intrinsic::r600_texc: { |
457 | unsigned TextureOp; |
458 | switch (IntrinsicID) { |
459 | case Intrinsic::r600_tex: |
460 | TextureOp = 0; |
461 | break; |
462 | case Intrinsic::r600_texc: |
463 | TextureOp = 1; |
464 | break; |
465 | default: |
466 | llvm_unreachable("unhandled texture operation" ); |
467 | } |
468 | |
469 | SDValue TexArgs[19] = { |
470 | DAG.getConstant(Val: TextureOp, DL, VT: MVT::i32), |
471 | Op.getOperand(i: 1), |
472 | DAG.getConstant(Val: 0, DL, VT: MVT::i32), |
473 | DAG.getConstant(Val: 1, DL, VT: MVT::i32), |
474 | DAG.getConstant(Val: 2, DL, VT: MVT::i32), |
475 | DAG.getConstant(Val: 3, DL, VT: MVT::i32), |
476 | Op.getOperand(i: 2), |
477 | Op.getOperand(i: 3), |
478 | Op.getOperand(i: 4), |
479 | DAG.getConstant(Val: 0, DL, VT: MVT::i32), |
480 | DAG.getConstant(Val: 1, DL, VT: MVT::i32), |
481 | DAG.getConstant(Val: 2, DL, VT: MVT::i32), |
482 | DAG.getConstant(Val: 3, DL, VT: MVT::i32), |
483 | Op.getOperand(i: 5), |
484 | Op.getOperand(i: 6), |
485 | Op.getOperand(i: 7), |
486 | Op.getOperand(i: 8), |
487 | Op.getOperand(i: 9), |
488 | Op.getOperand(i: 10) |
489 | }; |
490 | return DAG.getNode(Opcode: AMDGPUISD::TEXTURE_FETCH, DL, VT: MVT::v4f32, Ops: TexArgs); |
491 | } |
492 | case Intrinsic::r600_dot4: { |
493 | SDValue Args[8] = { |
494 | DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::f32, N1: Op.getOperand(i: 1), |
495 | N2: DAG.getConstant(Val: 0, DL, VT: MVT::i32)), |
496 | DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::f32, N1: Op.getOperand(i: 2), |
497 | N2: DAG.getConstant(Val: 0, DL, VT: MVT::i32)), |
498 | DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::f32, N1: Op.getOperand(i: 1), |
499 | N2: DAG.getConstant(Val: 1, DL, VT: MVT::i32)), |
500 | DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::f32, N1: Op.getOperand(i: 2), |
501 | N2: DAG.getConstant(Val: 1, DL, VT: MVT::i32)), |
502 | DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::f32, N1: Op.getOperand(i: 1), |
503 | N2: DAG.getConstant(Val: 2, DL, VT: MVT::i32)), |
504 | DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::f32, N1: Op.getOperand(i: 2), |
505 | N2: DAG.getConstant(Val: 2, DL, VT: MVT::i32)), |
506 | DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::f32, N1: Op.getOperand(i: 1), |
507 | N2: DAG.getConstant(Val: 3, DL, VT: MVT::i32)), |
508 | DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::f32, N1: Op.getOperand(i: 2), |
509 | N2: DAG.getConstant(Val: 3, DL, VT: MVT::i32)) |
510 | }; |
511 | return DAG.getNode(Opcode: AMDGPUISD::DOT4, DL, VT: MVT::f32, Ops: Args); |
512 | } |
513 | |
514 | case Intrinsic::r600_implicitarg_ptr: { |
515 | MVT PtrVT = getPointerTy(DL: DAG.getDataLayout(), AS: AMDGPUAS::PARAM_I_ADDRESS); |
516 | uint32_t ByteOffset = getImplicitParameterOffset(MF, Param: FIRST_IMPLICIT); |
517 | return DAG.getConstant(Val: ByteOffset, DL, VT: PtrVT); |
518 | } |
519 | case Intrinsic::r600_read_ngroups_x: |
520 | return LowerImplicitParameter(DAG, VT, DL, DwordOffset: 0); |
521 | case Intrinsic::r600_read_ngroups_y: |
522 | return LowerImplicitParameter(DAG, VT, DL, DwordOffset: 1); |
523 | case Intrinsic::r600_read_ngroups_z: |
524 | return LowerImplicitParameter(DAG, VT, DL, DwordOffset: 2); |
525 | case Intrinsic::r600_read_global_size_x: |
526 | return LowerImplicitParameter(DAG, VT, DL, DwordOffset: 3); |
527 | case Intrinsic::r600_read_global_size_y: |
528 | return LowerImplicitParameter(DAG, VT, DL, DwordOffset: 4); |
529 | case Intrinsic::r600_read_global_size_z: |
530 | return LowerImplicitParameter(DAG, VT, DL, DwordOffset: 5); |
531 | case Intrinsic::r600_read_local_size_x: |
532 | return LowerImplicitParameter(DAG, VT, DL, DwordOffset: 6); |
533 | case Intrinsic::r600_read_local_size_y: |
534 | return LowerImplicitParameter(DAG, VT, DL, DwordOffset: 7); |
535 | case Intrinsic::r600_read_local_size_z: |
536 | return LowerImplicitParameter(DAG, VT, DL, DwordOffset: 8); |
537 | |
538 | case Intrinsic::r600_read_tgid_x: |
539 | case Intrinsic::amdgcn_workgroup_id_x: |
540 | return CreateLiveInRegisterRaw(DAG, RC: &R600::R600_TReg32RegClass, |
541 | Reg: R600::T1_X, VT); |
542 | case Intrinsic::r600_read_tgid_y: |
543 | case Intrinsic::amdgcn_workgroup_id_y: |
544 | return CreateLiveInRegisterRaw(DAG, RC: &R600::R600_TReg32RegClass, |
545 | Reg: R600::T1_Y, VT); |
546 | case Intrinsic::r600_read_tgid_z: |
547 | case Intrinsic::amdgcn_workgroup_id_z: |
548 | return CreateLiveInRegisterRaw(DAG, RC: &R600::R600_TReg32RegClass, |
549 | Reg: R600::T1_Z, VT); |
550 | case Intrinsic::r600_read_tidig_x: |
551 | case Intrinsic::amdgcn_workitem_id_x: |
552 | return CreateLiveInRegisterRaw(DAG, RC: &R600::R600_TReg32RegClass, |
553 | Reg: R600::T0_X, VT); |
554 | case Intrinsic::r600_read_tidig_y: |
555 | case Intrinsic::amdgcn_workitem_id_y: |
556 | return CreateLiveInRegisterRaw(DAG, RC: &R600::R600_TReg32RegClass, |
557 | Reg: R600::T0_Y, VT); |
558 | case Intrinsic::r600_read_tidig_z: |
559 | case Intrinsic::amdgcn_workitem_id_z: |
560 | return CreateLiveInRegisterRaw(DAG, RC: &R600::R600_TReg32RegClass, |
561 | Reg: R600::T0_Z, VT); |
562 | |
563 | case Intrinsic::r600_recipsqrt_ieee: |
564 | return DAG.getNode(Opcode: AMDGPUISD::RSQ, DL, VT, Operand: Op.getOperand(i: 1)); |
565 | |
566 | case Intrinsic::r600_recipsqrt_clamped: |
567 | return DAG.getNode(Opcode: AMDGPUISD::RSQ_CLAMP, DL, VT, Operand: Op.getOperand(i: 1)); |
568 | default: |
569 | return Op; |
570 | } |
571 | |
572 | // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode()) |
573 | break; |
574 | } |
575 | } // end switch(Op.getOpcode()) |
576 | return SDValue(); |
577 | } |
578 | |
579 | void R600TargetLowering::ReplaceNodeResults(SDNode *N, |
580 | SmallVectorImpl<SDValue> &Results, |
581 | SelectionDAG &DAG) const { |
582 | switch (N->getOpcode()) { |
583 | default: |
584 | AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG); |
585 | return; |
586 | case ISD::FP_TO_UINT: |
587 | if (N->getValueType(ResNo: 0) == MVT::i1) { |
588 | Results.push_back(Elt: lowerFP_TO_UINT(Op: N->getOperand(Num: 0), DAG)); |
589 | return; |
590 | } |
591 | // Since we don't care about out of bounds values we can use FP_TO_SINT for |
592 | // uints too. The DAGLegalizer code for uint considers some extra cases |
593 | // which are not necessary here. |
594 | [[fallthrough]]; |
595 | case ISD::FP_TO_SINT: { |
596 | if (N->getValueType(ResNo: 0) == MVT::i1) { |
597 | Results.push_back(Elt: lowerFP_TO_SINT(Op: N->getOperand(Num: 0), DAG)); |
598 | return; |
599 | } |
600 | |
601 | SDValue Result; |
602 | if (expandFP_TO_SINT(N, Result, DAG)) |
603 | Results.push_back(Elt: Result); |
604 | return; |
605 | } |
606 | case ISD::SDIVREM: { |
607 | SDValue Op = SDValue(N, 1); |
608 | SDValue RES = LowerSDIVREM(Op, DAG); |
609 | Results.push_back(Elt: RES); |
610 | Results.push_back(Elt: RES.getValue(R: 1)); |
611 | break; |
612 | } |
613 | case ISD::UDIVREM: { |
614 | SDValue Op = SDValue(N, 0); |
615 | LowerUDIVREM64(Op, DAG, Results); |
616 | break; |
617 | } |
618 | } |
619 | } |
620 | |
621 | SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG, |
622 | SDValue Vector) const { |
623 | SDLoc DL(Vector); |
624 | EVT VecVT = Vector.getValueType(); |
625 | EVT EltVT = VecVT.getVectorElementType(); |
626 | SmallVector<SDValue, 8> Args; |
627 | |
628 | for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) { |
629 | Args.push_back(Elt: DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: EltVT, N1: Vector, |
630 | N2: DAG.getVectorIdxConstant(Val: i, DL))); |
631 | } |
632 | |
633 | return DAG.getNode(Opcode: AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VT: VecVT, Ops: Args); |
634 | } |
635 | |
636 | SDValue R600TargetLowering::(SDValue Op, |
637 | SelectionDAG &DAG) const { |
638 | SDLoc DL(Op); |
639 | SDValue Vector = Op.getOperand(i: 0); |
640 | SDValue Index = Op.getOperand(i: 1); |
641 | |
642 | if (isa<ConstantSDNode>(Val: Index) || |
643 | Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR) |
644 | return Op; |
645 | |
646 | Vector = vectorToVerticalVector(DAG, Vector); |
647 | return DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: Op.getValueType(), |
648 | N1: Vector, N2: Index); |
649 | } |
650 | |
651 | SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, |
652 | SelectionDAG &DAG) const { |
653 | SDLoc DL(Op); |
654 | SDValue Vector = Op.getOperand(i: 0); |
655 | SDValue Value = Op.getOperand(i: 1); |
656 | SDValue Index = Op.getOperand(i: 2); |
657 | |
658 | if (isa<ConstantSDNode>(Val: Index) || |
659 | Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR) |
660 | return Op; |
661 | |
662 | Vector = vectorToVerticalVector(DAG, Vector); |
663 | SDValue Insert = DAG.getNode(Opcode: ISD::INSERT_VECTOR_ELT, DL, VT: Op.getValueType(), |
664 | N1: Vector, N2: Value, N3: Index); |
665 | return vectorToVerticalVector(DAG, Vector: Insert); |
666 | } |
667 | |
668 | SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, |
669 | SDValue Op, |
670 | SelectionDAG &DAG) const { |
671 | GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Val&: Op); |
672 | if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) |
673 | return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); |
674 | |
675 | const DataLayout &DL = DAG.getDataLayout(); |
676 | const GlobalValue *GV = GSD->getGlobal(); |
677 | MVT ConstPtrVT = getPointerTy(DL, AS: AMDGPUAS::CONSTANT_ADDRESS); |
678 | |
679 | SDValue GA = DAG.getTargetGlobalAddress(GV, DL: SDLoc(GSD), VT: ConstPtrVT); |
680 | return DAG.getNode(Opcode: AMDGPUISD::CONST_DATA_PTR, DL: SDLoc(GSD), VT: ConstPtrVT, Operand: GA); |
681 | } |
682 | |
683 | SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { |
684 | // On hw >= R700, COS/SIN input must be between -1. and 1. |
685 | // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5) |
686 | EVT VT = Op.getValueType(); |
687 | SDValue Arg = Op.getOperand(i: 0); |
688 | SDLoc DL(Op); |
689 | |
690 | // TODO: Should this propagate fast-math-flags? |
691 | SDValue FractPart = DAG.getNode(Opcode: AMDGPUISD::FRACT, DL, VT, |
692 | Operand: DAG.getNode(Opcode: ISD::FADD, DL, VT, |
693 | N1: DAG.getNode(Opcode: ISD::FMUL, DL, VT, N1: Arg, |
694 | N2: DAG.getConstantFP(Val: 0.15915494309, DL, VT: MVT::f32)), |
695 | N2: DAG.getConstantFP(Val: 0.5, DL, VT: MVT::f32))); |
696 | unsigned TrigNode; |
697 | switch (Op.getOpcode()) { |
698 | case ISD::FCOS: |
699 | TrigNode = AMDGPUISD::COS_HW; |
700 | break; |
701 | case ISD::FSIN: |
702 | TrigNode = AMDGPUISD::SIN_HW; |
703 | break; |
704 | default: |
705 | llvm_unreachable("Wrong trig opcode" ); |
706 | } |
707 | SDValue TrigVal = DAG.getNode(Opcode: TrigNode, DL, VT, |
708 | Operand: DAG.getNode(Opcode: ISD::FADD, DL, VT, N1: FractPart, |
709 | N2: DAG.getConstantFP(Val: -0.5, DL, VT: MVT::f32))); |
710 | if (Gen >= AMDGPUSubtarget::R700) |
711 | return TrigVal; |
712 | // On R600 hw, COS/SIN input must be between -Pi and Pi. |
713 | return DAG.getNode(Opcode: ISD::FMUL, DL, VT, N1: TrigVal, |
714 | N2: DAG.getConstantFP(Val: numbers::pif, DL, VT: MVT::f32)); |
715 | } |
716 | |
717 | SDValue R600TargetLowering::LowerShiftParts(SDValue Op, |
718 | SelectionDAG &DAG) const { |
719 | SDValue Lo, Hi; |
720 | expandShiftParts(N: Op.getNode(), Lo, Hi, DAG); |
721 | return DAG.getMergeValues(Ops: {Lo, Hi}, dl: SDLoc(Op)); |
722 | } |
723 | |
724 | SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG, |
725 | unsigned mainop, unsigned ovf) const { |
726 | SDLoc DL(Op); |
727 | EVT VT = Op.getValueType(); |
728 | |
729 | SDValue Lo = Op.getOperand(i: 0); |
730 | SDValue Hi = Op.getOperand(i: 1); |
731 | |
732 | SDValue OVF = DAG.getNode(Opcode: ovf, DL, VT, N1: Lo, N2: Hi); |
733 | // Extend sign. |
734 | OVF = DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL, VT, N1: OVF, |
735 | N2: DAG.getValueType(MVT::i1)); |
736 | |
737 | SDValue Res = DAG.getNode(Opcode: mainop, DL, VT, N1: Lo, N2: Hi); |
738 | |
739 | return DAG.getNode(Opcode: ISD::MERGE_VALUES, DL, VTList: DAG.getVTList(VT1: VT, VT2: VT), N1: Res, N2: OVF); |
740 | } |
741 | |
742 | SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const { |
743 | SDLoc DL(Op); |
744 | return DAG.getNode( |
745 | Opcode: ISD::SETCC, |
746 | DL, |
747 | VT: MVT::i1, |
748 | N1: Op, N2: DAG.getConstantFP(Val: 1.0f, DL, VT: MVT::f32), |
749 | N3: DAG.getCondCode(Cond: ISD::SETEQ)); |
750 | } |
751 | |
752 | SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const { |
753 | SDLoc DL(Op); |
754 | return DAG.getNode( |
755 | Opcode: ISD::SETCC, |
756 | DL, |
757 | VT: MVT::i1, |
758 | N1: Op, N2: DAG.getConstantFP(Val: -1.0f, DL, VT: MVT::f32), |
759 | N3: DAG.getCondCode(Cond: ISD::SETEQ)); |
760 | } |
761 | |
762 | SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT, |
763 | const SDLoc &DL, |
764 | unsigned DwordOffset) const { |
765 | unsigned ByteOffset = DwordOffset * 4; |
766 | PointerType * PtrType = PointerType::get(ElementType: VT.getTypeForEVT(Context&: *DAG.getContext()), |
767 | AddressSpace: AMDGPUAS::PARAM_I_ADDRESS); |
768 | |
769 | // We shouldn't be using an offset wider than 16-bits for implicit parameters. |
770 | assert(isInt<16>(ByteOffset)); |
771 | |
772 | return DAG.getLoad(VT, dl: DL, Chain: DAG.getEntryNode(), |
773 | Ptr: DAG.getConstant(Val: ByteOffset, DL, VT: MVT::i32), // PTR |
774 | PtrInfo: MachinePointerInfo(ConstantPointerNull::get(T: PtrType))); |
775 | } |
776 | |
777 | bool R600TargetLowering::isZero(SDValue Op) const { |
778 | if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Val&: Op)) |
779 | return Cst->isZero(); |
780 | if (ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Val&: Op)) |
781 | return CstFP->isZero(); |
782 | return false; |
783 | } |
784 | |
785 | bool R600TargetLowering::isHWTrueValue(SDValue Op) const { |
786 | if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Val&: Op)) { |
787 | return CFP->isExactlyValue(V: 1.0); |
788 | } |
789 | return isAllOnesConstant(V: Op); |
790 | } |
791 | |
792 | bool R600TargetLowering::isHWFalseValue(SDValue Op) const { |
793 | if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Val&: Op)) { |
794 | return CFP->getValueAPF().isZero(); |
795 | } |
796 | return isNullConstant(V: Op); |
797 | } |
798 | |
799 | SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { |
800 | SDLoc DL(Op); |
801 | EVT VT = Op.getValueType(); |
802 | |
803 | SDValue LHS = Op.getOperand(i: 0); |
804 | SDValue RHS = Op.getOperand(i: 1); |
805 | SDValue True = Op.getOperand(i: 2); |
806 | SDValue False = Op.getOperand(i: 3); |
807 | SDValue CC = Op.getOperand(i: 4); |
808 | SDValue Temp; |
809 | |
810 | if (VT == MVT::f32) { |
811 | DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); |
812 | SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI); |
813 | if (MinMax) |
814 | return MinMax; |
815 | } |
816 | |
817 | // LHS and RHS are guaranteed to be the same value type |
818 | EVT CompareVT = LHS.getValueType(); |
819 | |
820 | // Check if we can lower this to a native operation. |
821 | |
822 | // Try to lower to a SET* instruction: |
823 | // |
824 | // SET* can match the following patterns: |
825 | // |
826 | // select_cc f32, f32, -1, 0, cc_supported |
827 | // select_cc f32, f32, 1.0f, 0.0f, cc_supported |
828 | // select_cc i32, i32, -1, 0, cc_supported |
829 | // |
830 | |
831 | // Move hardware True/False values to the correct operand. |
832 | if (isHWTrueValue(Op: False) && isHWFalseValue(Op: True)) { |
833 | ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Val&: CC)->get(); |
834 | ISD::CondCode InverseCC = ISD::getSetCCInverse(Operation: CCOpcode, Type: CompareVT); |
835 | if (isCondCodeLegal(CC: InverseCC, VT: CompareVT.getSimpleVT())) { |
836 | std::swap(a&: False, b&: True); |
837 | CC = DAG.getCondCode(Cond: InverseCC); |
838 | } else { |
839 | ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(Operation: InverseCC); |
840 | if (isCondCodeLegal(CC: SwapInvCC, VT: CompareVT.getSimpleVT())) { |
841 | std::swap(a&: False, b&: True); |
842 | std::swap(a&: LHS, b&: RHS); |
843 | CC = DAG.getCondCode(Cond: SwapInvCC); |
844 | } |
845 | } |
846 | } |
847 | |
848 | if (isHWTrueValue(Op: True) && isHWFalseValue(Op: False) && |
849 | (CompareVT == VT || VT == MVT::i32)) { |
850 | // This can be matched by a SET* instruction. |
851 | return DAG.getNode(Opcode: ISD::SELECT_CC, DL, VT, N1: LHS, N2: RHS, N3: True, N4: False, N5: CC); |
852 | } |
853 | |
854 | // Try to lower to a CND* instruction: |
855 | // |
856 | // CND* can match the following patterns: |
857 | // |
858 | // select_cc f32, 0.0, f32, f32, cc_supported |
859 | // select_cc f32, 0.0, i32, i32, cc_supported |
860 | // select_cc i32, 0, f32, f32, cc_supported |
861 | // select_cc i32, 0, i32, i32, cc_supported |
862 | // |
863 | |
864 | // Try to move the zero value to the RHS |
865 | if (isZero(Op: LHS)) { |
866 | ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Val&: CC)->get(); |
867 | // Try swapping the operands |
868 | ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(Operation: CCOpcode); |
869 | if (isCondCodeLegal(CC: CCSwapped, VT: CompareVT.getSimpleVT())) { |
870 | std::swap(a&: LHS, b&: RHS); |
871 | CC = DAG.getCondCode(Cond: CCSwapped); |
872 | } else { |
873 | // Try inverting the condition and then swapping the operands |
874 | ISD::CondCode CCInv = ISD::getSetCCInverse(Operation: CCOpcode, Type: CompareVT); |
875 | CCSwapped = ISD::getSetCCSwappedOperands(Operation: CCInv); |
876 | if (isCondCodeLegal(CC: CCSwapped, VT: CompareVT.getSimpleVT())) { |
877 | std::swap(a&: True, b&: False); |
878 | std::swap(a&: LHS, b&: RHS); |
879 | CC = DAG.getCondCode(Cond: CCSwapped); |
880 | } |
881 | } |
882 | } |
883 | if (isZero(Op: RHS)) { |
884 | SDValue Cond = LHS; |
885 | SDValue Zero = RHS; |
886 | ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Val&: CC)->get(); |
887 | if (CompareVT != VT) { |
888 | // Bitcast True / False to the correct types. This will end up being |
889 | // a nop, but it allows us to define only a single pattern in the |
890 | // .TD files for each CND* instruction rather than having to have |
891 | // one pattern for integer True/False and one for fp True/False |
892 | True = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: CompareVT, Operand: True); |
893 | False = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: CompareVT, Operand: False); |
894 | } |
895 | |
896 | switch (CCOpcode) { |
897 | case ISD::SETONE: |
898 | case ISD::SETUNE: |
899 | case ISD::SETNE: |
900 | CCOpcode = ISD::getSetCCInverse(Operation: CCOpcode, Type: CompareVT); |
901 | Temp = True; |
902 | True = False; |
903 | False = Temp; |
904 | break; |
905 | default: |
906 | break; |
907 | } |
908 | SDValue SelectNode = DAG.getNode(Opcode: ISD::SELECT_CC, DL, VT: CompareVT, |
909 | N1: Cond, N2: Zero, |
910 | N3: True, N4: False, |
911 | N5: DAG.getCondCode(Cond: CCOpcode)); |
912 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: SelectNode); |
913 | } |
914 | |
915 | // If we make it this for it means we have no native instructions to handle |
916 | // this SELECT_CC, so we must lower it. |
917 | SDValue HWTrue, HWFalse; |
918 | |
919 | if (CompareVT == MVT::f32) { |
920 | HWTrue = DAG.getConstantFP(Val: 1.0f, DL, VT: CompareVT); |
921 | HWFalse = DAG.getConstantFP(Val: 0.0f, DL, VT: CompareVT); |
922 | } else if (CompareVT == MVT::i32) { |
923 | HWTrue = DAG.getConstant(Val: -1, DL, VT: CompareVT); |
924 | HWFalse = DAG.getConstant(Val: 0, DL, VT: CompareVT); |
925 | } |
926 | else { |
927 | llvm_unreachable("Unhandled value type in LowerSELECT_CC" ); |
928 | } |
929 | |
930 | // Lower this unsupported SELECT_CC into a combination of two supported |
931 | // SELECT_CC operations. |
932 | SDValue Cond = DAG.getNode(Opcode: ISD::SELECT_CC, DL, VT: CompareVT, N1: LHS, N2: RHS, N3: HWTrue, N4: HWFalse, N5: CC); |
933 | |
934 | return DAG.getNode(Opcode: ISD::SELECT_CC, DL, VT, |
935 | N1: Cond, N2: HWFalse, |
936 | N3: True, N4: False, |
937 | N5: DAG.getCondCode(Cond: ISD::SETNE)); |
938 | } |
939 | |
940 | SDValue R600TargetLowering::lowerADDRSPACECAST(SDValue Op, |
941 | SelectionDAG &DAG) const { |
942 | SDLoc SL(Op); |
943 | EVT VT = Op.getValueType(); |
944 | |
945 | const R600TargetMachine &TM = |
946 | static_cast<const R600TargetMachine &>(getTargetMachine()); |
947 | |
948 | const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Val&: Op); |
949 | unsigned SrcAS = ASC->getSrcAddressSpace(); |
950 | unsigned DestAS = ASC->getDestAddressSpace(); |
951 | |
952 | if (isNullConstant(V: Op.getOperand(i: 0)) && SrcAS == AMDGPUAS::FLAT_ADDRESS) |
953 | return DAG.getConstant(Val: TM.getNullPointerValue(AddrSpace: DestAS), DL: SL, VT); |
954 | |
955 | return Op; |
956 | } |
957 | |
958 | /// LLVM generates byte-addressed pointers. For indirect addressing, we need to |
959 | /// convert these pointers to a register index. Each register holds |
960 | /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the |
961 | /// \p StackWidth, which tells us how many of the 4 sub-registers will be used |
962 | /// for indirect addressing. |
963 | SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr, |
964 | unsigned StackWidth, |
965 | SelectionDAG &DAG) const { |
966 | unsigned SRLPad; |
967 | switch(StackWidth) { |
968 | case 1: |
969 | SRLPad = 2; |
970 | break; |
971 | case 2: |
972 | SRLPad = 3; |
973 | break; |
974 | case 4: |
975 | SRLPad = 4; |
976 | break; |
977 | default: llvm_unreachable("Invalid stack width" ); |
978 | } |
979 | |
980 | SDLoc DL(Ptr); |
981 | return DAG.getNode(Opcode: ISD::SRL, DL, VT: Ptr.getValueType(), N1: Ptr, |
982 | N2: DAG.getConstant(Val: SRLPad, DL, VT: MVT::i32)); |
983 | } |
984 | |
985 | void R600TargetLowering::getStackAddress(unsigned StackWidth, |
986 | unsigned ElemIdx, |
987 | unsigned &Channel, |
988 | unsigned &PtrIncr) const { |
989 | switch (StackWidth) { |
990 | default: |
991 | case 1: |
992 | Channel = 0; |
993 | if (ElemIdx > 0) { |
994 | PtrIncr = 1; |
995 | } else { |
996 | PtrIncr = 0; |
997 | } |
998 | break; |
999 | case 2: |
1000 | Channel = ElemIdx % 2; |
1001 | if (ElemIdx == 2) { |
1002 | PtrIncr = 1; |
1003 | } else { |
1004 | PtrIncr = 0; |
1005 | } |
1006 | break; |
1007 | case 4: |
1008 | Channel = ElemIdx; |
1009 | PtrIncr = 0; |
1010 | break; |
1011 | } |
1012 | } |
1013 | |
1014 | SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store, |
1015 | SelectionDAG &DAG) const { |
1016 | SDLoc DL(Store); |
1017 | //TODO: Who creates the i8 stores? |
1018 | assert(Store->isTruncatingStore() |
1019 | || Store->getValue().getValueType() == MVT::i8); |
1020 | assert(Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS); |
1021 | |
1022 | SDValue Mask; |
1023 | if (Store->getMemoryVT() == MVT::i8) { |
1024 | assert(Store->getAlign() >= 1); |
1025 | Mask = DAG.getConstant(Val: 0xff, DL, VT: MVT::i32); |
1026 | } else if (Store->getMemoryVT() == MVT::i16) { |
1027 | assert(Store->getAlign() >= 2); |
1028 | Mask = DAG.getConstant(Val: 0xffff, DL, VT: MVT::i32); |
1029 | } else { |
1030 | llvm_unreachable("Unsupported private trunc store" ); |
1031 | } |
1032 | |
1033 | SDValue OldChain = Store->getChain(); |
1034 | bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN); |
1035 | // Skip dummy |
1036 | SDValue Chain = VectorTrunc ? OldChain->getOperand(Num: 0) : OldChain; |
1037 | SDValue BasePtr = Store->getBasePtr(); |
1038 | SDValue Offset = Store->getOffset(); |
1039 | EVT MemVT = Store->getMemoryVT(); |
1040 | |
1041 | SDValue LoadPtr = BasePtr; |
1042 | if (!Offset.isUndef()) { |
1043 | LoadPtr = DAG.getNode(Opcode: ISD::ADD, DL, VT: MVT::i32, N1: BasePtr, N2: Offset); |
1044 | } |
1045 | |
1046 | // Get dword location |
1047 | // TODO: this should be eliminated by the future SHR ptr, 2 |
1048 | SDValue Ptr = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i32, N1: LoadPtr, |
1049 | N2: DAG.getConstant(Val: 0xfffffffc, DL, VT: MVT::i32)); |
1050 | |
1051 | // Load dword |
1052 | // TODO: can we be smarter about machine pointer info? |
1053 | MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS); |
1054 | SDValue Dst = DAG.getLoad(VT: MVT::i32, dl: DL, Chain, Ptr, PtrInfo); |
1055 | |
1056 | Chain = Dst.getValue(R: 1); |
1057 | |
1058 | // Get offset in dword |
1059 | SDValue ByteIdx = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i32, N1: LoadPtr, |
1060 | N2: DAG.getConstant(Val: 0x3, DL, VT: MVT::i32)); |
1061 | |
1062 | // Convert byte offset to bit shift |
1063 | SDValue ShiftAmt = DAG.getNode(Opcode: ISD::SHL, DL, VT: MVT::i32, N1: ByteIdx, |
1064 | N2: DAG.getConstant(Val: 3, DL, VT: MVT::i32)); |
1065 | |
1066 | // TODO: Contrary to the name of the function, |
1067 | // it also handles sub i32 non-truncating stores (like i1) |
1068 | SDValue SExtValue = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL, VT: MVT::i32, |
1069 | Operand: Store->getValue()); |
1070 | |
1071 | // Mask the value to the right type |
1072 | SDValue MaskedValue = DAG.getZeroExtendInReg(Op: SExtValue, DL, VT: MemVT); |
1073 | |
1074 | // Shift the value in place |
1075 | SDValue ShiftedValue = DAG.getNode(Opcode: ISD::SHL, DL, VT: MVT::i32, |
1076 | N1: MaskedValue, N2: ShiftAmt); |
1077 | |
1078 | // Shift the mask in place |
1079 | SDValue DstMask = DAG.getNode(Opcode: ISD::SHL, DL, VT: MVT::i32, N1: Mask, N2: ShiftAmt); |
1080 | |
1081 | // Invert the mask. NOTE: if we had native ROL instructions we could |
1082 | // use inverted mask |
1083 | DstMask = DAG.getNOT(DL, Val: DstMask, VT: MVT::i32); |
1084 | |
1085 | // Cleanup the target bits |
1086 | Dst = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i32, N1: Dst, N2: DstMask); |
1087 | |
1088 | // Add the new bits |
1089 | SDValue Value = DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i32, N1: Dst, N2: ShiftedValue); |
1090 | |
1091 | // Store dword |
1092 | // TODO: Can we be smarter about MachinePointerInfo? |
1093 | SDValue NewStore = DAG.getStore(Chain, dl: DL, Val: Value, Ptr, PtrInfo); |
1094 | |
1095 | // If we are part of expanded vector, make our neighbors depend on this store |
1096 | if (VectorTrunc) { |
1097 | // Make all other vector elements depend on this store |
1098 | Chain = DAG.getNode(Opcode: AMDGPUISD::DUMMY_CHAIN, DL, VT: MVT::Other, Operand: NewStore); |
1099 | DAG.ReplaceAllUsesOfValueWith(From: OldChain, To: Chain); |
1100 | } |
1101 | return NewStore; |
1102 | } |
1103 | |
1104 | SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { |
1105 | StoreSDNode *StoreNode = cast<StoreSDNode>(Val&: Op); |
1106 | unsigned AS = StoreNode->getAddressSpace(); |
1107 | |
1108 | SDValue Chain = StoreNode->getChain(); |
1109 | SDValue Ptr = StoreNode->getBasePtr(); |
1110 | SDValue Value = StoreNode->getValue(); |
1111 | |
1112 | EVT VT = Value.getValueType(); |
1113 | EVT MemVT = StoreNode->getMemoryVT(); |
1114 | EVT PtrVT = Ptr.getValueType(); |
1115 | |
1116 | SDLoc DL(Op); |
1117 | |
1118 | const bool TruncatingStore = StoreNode->isTruncatingStore(); |
1119 | |
1120 | // Neither LOCAL nor PRIVATE can do vectors at the moment |
1121 | if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS || |
1122 | TruncatingStore) && |
1123 | VT.isVector()) { |
1124 | if ((AS == AMDGPUAS::PRIVATE_ADDRESS) && TruncatingStore) { |
1125 | // Add an extra level of chain to isolate this vector |
1126 | SDValue NewChain = DAG.getNode(Opcode: AMDGPUISD::DUMMY_CHAIN, DL, VT: MVT::Other, Operand: Chain); |
1127 | // TODO: can the chain be replaced without creating a new store? |
1128 | SDValue NewStore = DAG.getTruncStore( |
1129 | Chain: NewChain, dl: DL, Val: Value, Ptr, PtrInfo: StoreNode->getPointerInfo(), SVT: MemVT, |
1130 | Alignment: StoreNode->getAlign(), MMOFlags: StoreNode->getMemOperand()->getFlags(), |
1131 | AAInfo: StoreNode->getAAInfo()); |
1132 | StoreNode = cast<StoreSDNode>(Val&: NewStore); |
1133 | } |
1134 | |
1135 | return scalarizeVectorStore(ST: StoreNode, DAG); |
1136 | } |
1137 | |
1138 | Align Alignment = StoreNode->getAlign(); |
1139 | if (Alignment < MemVT.getStoreSize() && |
1140 | !allowsMisalignedMemoryAccesses(VT: MemVT, AS, Alignment, |
1141 | Flags: StoreNode->getMemOperand()->getFlags(), |
1142 | IsFast: nullptr)) { |
1143 | return expandUnalignedStore(ST: StoreNode, DAG); |
1144 | } |
1145 | |
1146 | SDValue DWordAddr = DAG.getNode(Opcode: ISD::SRL, DL, VT: PtrVT, N1: Ptr, |
1147 | N2: DAG.getConstant(Val: 2, DL, VT: PtrVT)); |
1148 | |
1149 | if (AS == AMDGPUAS::GLOBAL_ADDRESS) { |
1150 | // It is beneficial to create MSKOR here instead of combiner to avoid |
1151 | // artificial dependencies introduced by RMW |
1152 | if (TruncatingStore) { |
1153 | assert(VT.bitsLE(MVT::i32)); |
1154 | SDValue MaskConstant; |
1155 | if (MemVT == MVT::i8) { |
1156 | MaskConstant = DAG.getConstant(Val: 0xFF, DL, VT: MVT::i32); |
1157 | } else { |
1158 | assert(MemVT == MVT::i16); |
1159 | assert(StoreNode->getAlign() >= 2); |
1160 | MaskConstant = DAG.getConstant(Val: 0xFFFF, DL, VT: MVT::i32); |
1161 | } |
1162 | |
1163 | SDValue ByteIndex = DAG.getNode(Opcode: ISD::AND, DL, VT: PtrVT, N1: Ptr, |
1164 | N2: DAG.getConstant(Val: 0x00000003, DL, VT: PtrVT)); |
1165 | SDValue BitShift = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: ByteIndex, |
1166 | N2: DAG.getConstant(Val: 3, DL, VT)); |
1167 | |
1168 | // Put the mask in correct place |
1169 | SDValue Mask = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: MaskConstant, N2: BitShift); |
1170 | |
1171 | // Put the value bits in correct place |
1172 | SDValue TruncValue = DAG.getNode(Opcode: ISD::AND, DL, VT, N1: Value, N2: MaskConstant); |
1173 | SDValue ShiftedValue = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: TruncValue, N2: BitShift); |
1174 | |
1175 | // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32 |
1176 | // vector instead. |
1177 | SDValue Src[4] = { |
1178 | ShiftedValue, |
1179 | DAG.getConstant(Val: 0, DL, VT: MVT::i32), |
1180 | DAG.getConstant(Val: 0, DL, VT: MVT::i32), |
1181 | Mask |
1182 | }; |
1183 | SDValue Input = DAG.getBuildVector(VT: MVT::v4i32, DL, Ops: Src); |
1184 | SDValue Args[3] = { Chain, Input, DWordAddr }; |
1185 | return DAG.getMemIntrinsicNode(Opcode: AMDGPUISD::STORE_MSKOR, dl: DL, |
1186 | VTList: Op->getVTList(), Ops: Args, MemVT, |
1187 | MMO: StoreNode->getMemOperand()); |
1188 | } |
1189 | if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(VT: MVT::i32)) { |
1190 | // Convert pointer from byte address to dword address. |
1191 | Ptr = DAG.getNode(Opcode: AMDGPUISD::DWORDADDR, DL, VT: PtrVT, Operand: DWordAddr); |
1192 | |
1193 | if (StoreNode->isIndexed()) { |
1194 | llvm_unreachable("Indexed stores not supported yet" ); |
1195 | } else { |
1196 | Chain = DAG.getStore(Chain, dl: DL, Val: Value, Ptr, MMO: StoreNode->getMemOperand()); |
1197 | } |
1198 | return Chain; |
1199 | } |
1200 | } |
1201 | |
1202 | // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes |
1203 | if (AS != AMDGPUAS::PRIVATE_ADDRESS) |
1204 | return SDValue(); |
1205 | |
1206 | if (MemVT.bitsLT(VT: MVT::i32)) |
1207 | return lowerPrivateTruncStore(Store: StoreNode, DAG); |
1208 | |
1209 | // Standard i32+ store, tag it with DWORDADDR to note that the address |
1210 | // has been shifted |
1211 | if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) { |
1212 | Ptr = DAG.getNode(Opcode: AMDGPUISD::DWORDADDR, DL, VT: PtrVT, Operand: DWordAddr); |
1213 | return DAG.getStore(Chain, dl: DL, Val: Value, Ptr, MMO: StoreNode->getMemOperand()); |
1214 | } |
1215 | |
1216 | // Tagged i32+ stores will be matched by patterns |
1217 | return SDValue(); |
1218 | } |
1219 | |
1220 | // return (512 + (kc_bank << 12) |
1221 | static int |
1222 | ConstantAddressBlock(unsigned AddressSpace) { |
1223 | switch (AddressSpace) { |
1224 | case AMDGPUAS::CONSTANT_BUFFER_0: |
1225 | return 512; |
1226 | case AMDGPUAS::CONSTANT_BUFFER_1: |
1227 | return 512 + 4096; |
1228 | case AMDGPUAS::CONSTANT_BUFFER_2: |
1229 | return 512 + 4096 * 2; |
1230 | case AMDGPUAS::CONSTANT_BUFFER_3: |
1231 | return 512 + 4096 * 3; |
1232 | case AMDGPUAS::CONSTANT_BUFFER_4: |
1233 | return 512 + 4096 * 4; |
1234 | case AMDGPUAS::CONSTANT_BUFFER_5: |
1235 | return 512 + 4096 * 5; |
1236 | case AMDGPUAS::CONSTANT_BUFFER_6: |
1237 | return 512 + 4096 * 6; |
1238 | case AMDGPUAS::CONSTANT_BUFFER_7: |
1239 | return 512 + 4096 * 7; |
1240 | case AMDGPUAS::CONSTANT_BUFFER_8: |
1241 | return 512 + 4096 * 8; |
1242 | case AMDGPUAS::CONSTANT_BUFFER_9: |
1243 | return 512 + 4096 * 9; |
1244 | case AMDGPUAS::CONSTANT_BUFFER_10: |
1245 | return 512 + 4096 * 10; |
1246 | case AMDGPUAS::CONSTANT_BUFFER_11: |
1247 | return 512 + 4096 * 11; |
1248 | case AMDGPUAS::CONSTANT_BUFFER_12: |
1249 | return 512 + 4096 * 12; |
1250 | case AMDGPUAS::CONSTANT_BUFFER_13: |
1251 | return 512 + 4096 * 13; |
1252 | case AMDGPUAS::CONSTANT_BUFFER_14: |
1253 | return 512 + 4096 * 14; |
1254 | case AMDGPUAS::CONSTANT_BUFFER_15: |
1255 | return 512 + 4096 * 15; |
1256 | default: |
1257 | return -1; |
1258 | } |
1259 | } |
1260 | |
1261 | SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op, |
1262 | SelectionDAG &DAG) const { |
1263 | SDLoc DL(Op); |
1264 | LoadSDNode *Load = cast<LoadSDNode>(Val&: Op); |
1265 | ISD::LoadExtType ExtType = Load->getExtensionType(); |
1266 | EVT MemVT = Load->getMemoryVT(); |
1267 | assert(Load->getAlign() >= MemVT.getStoreSize()); |
1268 | |
1269 | SDValue BasePtr = Load->getBasePtr(); |
1270 | SDValue Chain = Load->getChain(); |
1271 | SDValue Offset = Load->getOffset(); |
1272 | |
1273 | SDValue LoadPtr = BasePtr; |
1274 | if (!Offset.isUndef()) { |
1275 | LoadPtr = DAG.getNode(Opcode: ISD::ADD, DL, VT: MVT::i32, N1: BasePtr, N2: Offset); |
1276 | } |
1277 | |
1278 | // Get dword location |
1279 | // NOTE: this should be eliminated by the future SHR ptr, 2 |
1280 | SDValue Ptr = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i32, N1: LoadPtr, |
1281 | N2: DAG.getConstant(Val: 0xfffffffc, DL, VT: MVT::i32)); |
1282 | |
1283 | // Load dword |
1284 | // TODO: can we be smarter about machine pointer info? |
1285 | MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS); |
1286 | SDValue Read = DAG.getLoad(VT: MVT::i32, dl: DL, Chain, Ptr, PtrInfo); |
1287 | |
1288 | // Get offset within the register. |
1289 | SDValue ByteIdx = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i32, |
1290 | N1: LoadPtr, N2: DAG.getConstant(Val: 0x3, DL, VT: MVT::i32)); |
1291 | |
1292 | // Bit offset of target byte (byteIdx * 8). |
1293 | SDValue ShiftAmt = DAG.getNode(Opcode: ISD::SHL, DL, VT: MVT::i32, N1: ByteIdx, |
1294 | N2: DAG.getConstant(Val: 3, DL, VT: MVT::i32)); |
1295 | |
1296 | // Shift to the right. |
1297 | SDValue Ret = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i32, N1: Read, N2: ShiftAmt); |
1298 | |
1299 | // Eliminate the upper bits by setting them to ... |
1300 | EVT MemEltVT = MemVT.getScalarType(); |
1301 | |
1302 | if (ExtType == ISD::SEXTLOAD) { // ... ones. |
1303 | SDValue MemEltVTNode = DAG.getValueType(MemEltVT); |
1304 | Ret = DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL, VT: MVT::i32, N1: Ret, N2: MemEltVTNode); |
1305 | } else { // ... or zeros. |
1306 | Ret = DAG.getZeroExtendInReg(Op: Ret, DL, VT: MemEltVT); |
1307 | } |
1308 | |
1309 | SDValue Ops[] = { |
1310 | Ret, |
1311 | Read.getValue(R: 1) // This should be our output chain |
1312 | }; |
1313 | |
1314 | return DAG.getMergeValues(Ops, dl: DL); |
1315 | } |
1316 | |
1317 | SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { |
1318 | LoadSDNode *LoadNode = cast<LoadSDNode>(Val&: Op); |
1319 | unsigned AS = LoadNode->getAddressSpace(); |
1320 | EVT MemVT = LoadNode->getMemoryVT(); |
1321 | ISD::LoadExtType ExtType = LoadNode->getExtensionType(); |
1322 | |
1323 | if (AS == AMDGPUAS::PRIVATE_ADDRESS && |
1324 | ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(VT: MVT::i32)) { |
1325 | return lowerPrivateExtLoad(Op, DAG); |
1326 | } |
1327 | |
1328 | SDLoc DL(Op); |
1329 | EVT VT = Op.getValueType(); |
1330 | SDValue Chain = LoadNode->getChain(); |
1331 | SDValue Ptr = LoadNode->getBasePtr(); |
1332 | |
1333 | if ((LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || |
1334 | LoadNode->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) && |
1335 | VT.isVector()) { |
1336 | SDValue Ops[2]; |
1337 | std::tie(args&: Ops[0], args&: Ops[1]) = scalarizeVectorLoad(LD: LoadNode, DAG); |
1338 | return DAG.getMergeValues(Ops, dl: DL); |
1339 | } |
1340 | |
1341 | // This is still used for explicit load from addrspace(8) |
1342 | int ConstantBlock = ConstantAddressBlock(AddressSpace: LoadNode->getAddressSpace()); |
1343 | if (ConstantBlock > -1 && |
1344 | ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) || |
1345 | (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) { |
1346 | SDValue Result; |
1347 | if (isa<Constant>(Val: LoadNode->getMemOperand()->getValue()) || |
1348 | isa<ConstantSDNode>(Val: Ptr)) { |
1349 | return constBufferLoad(LoadNode, Block: LoadNode->getAddressSpace(), DAG); |
1350 | } |
1351 | // TODO: Does this even work? |
1352 | // non-constant ptr can't be folded, keeps it as a v4f32 load |
1353 | Result = DAG.getNode(Opcode: AMDGPUISD::CONST_ADDRESS, DL, VT: MVT::v4i32, |
1354 | N1: DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i32, N1: Ptr, |
1355 | N2: DAG.getConstant(Val: 4, DL, VT: MVT::i32)), |
1356 | N2: DAG.getConstant(Val: LoadNode->getAddressSpace() - |
1357 | AMDGPUAS::CONSTANT_BUFFER_0, |
1358 | DL, VT: MVT::i32)); |
1359 | |
1360 | if (!VT.isVector()) { |
1361 | Result = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::i32, N1: Result, |
1362 | N2: DAG.getConstant(Val: 0, DL, VT: MVT::i32)); |
1363 | } |
1364 | |
1365 | SDValue MergedValues[2] = { |
1366 | Result, |
1367 | Chain |
1368 | }; |
1369 | return DAG.getMergeValues(Ops: MergedValues, dl: DL); |
1370 | } |
1371 | |
1372 | // For most operations returning SDValue() will result in the node being |
1373 | // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we |
1374 | // need to manually expand loads that may be legal in some address spaces and |
1375 | // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for |
1376 | // compute shaders, since the data is sign extended when it is uploaded to the |
1377 | // buffer. However SEXT loads from other address spaces are not supported, so |
1378 | // we need to expand them here. |
1379 | if (LoadNode->getExtensionType() == ISD::SEXTLOAD) { |
1380 | assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8)); |
1381 | SDValue NewLoad = DAG.getExtLoad( |
1382 | ExtType: ISD::EXTLOAD, dl: DL, VT, Chain, Ptr, PtrInfo: LoadNode->getPointerInfo(), MemVT, |
1383 | Alignment: LoadNode->getAlign(), MMOFlags: LoadNode->getMemOperand()->getFlags()); |
1384 | SDValue Res = DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL, VT, N1: NewLoad, |
1385 | N2: DAG.getValueType(MemVT)); |
1386 | |
1387 | SDValue MergedValues[2] = { Res, Chain }; |
1388 | return DAG.getMergeValues(Ops: MergedValues, dl: DL); |
1389 | } |
1390 | |
1391 | if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) { |
1392 | return SDValue(); |
1393 | } |
1394 | |
1395 | // DWORDADDR ISD marks already shifted address |
1396 | if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) { |
1397 | assert(VT == MVT::i32); |
1398 | Ptr = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i32, N1: Ptr, N2: DAG.getConstant(Val: 2, DL, VT: MVT::i32)); |
1399 | Ptr = DAG.getNode(Opcode: AMDGPUISD::DWORDADDR, DL, VT: MVT::i32, Operand: Ptr); |
1400 | return DAG.getLoad(VT: MVT::i32, dl: DL, Chain, Ptr, MMO: LoadNode->getMemOperand()); |
1401 | } |
1402 | return SDValue(); |
1403 | } |
1404 | |
1405 | SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { |
1406 | SDValue Chain = Op.getOperand(i: 0); |
1407 | SDValue Cond = Op.getOperand(i: 1); |
1408 | SDValue Jump = Op.getOperand(i: 2); |
1409 | |
1410 | return DAG.getNode(Opcode: AMDGPUISD::BRANCH_COND, DL: SDLoc(Op), VT: Op.getValueType(), |
1411 | N1: Chain, N2: Jump, N3: Cond); |
1412 | } |
1413 | |
1414 | SDValue R600TargetLowering::lowerFrameIndex(SDValue Op, |
1415 | SelectionDAG &DAG) const { |
1416 | MachineFunction &MF = DAG.getMachineFunction(); |
1417 | const R600FrameLowering *TFL = Subtarget->getFrameLowering(); |
1418 | |
1419 | FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Val&: Op); |
1420 | |
1421 | unsigned FrameIndex = FIN->getIndex(); |
1422 | Register IgnoredFrameReg; |
1423 | StackOffset Offset = |
1424 | TFL->getFrameIndexReference(MF, FI: FrameIndex, FrameReg&: IgnoredFrameReg); |
1425 | return DAG.getConstant(Val: Offset.getFixed() * 4 * TFL->getStackWidth(MF), |
1426 | DL: SDLoc(Op), VT: Op.getValueType()); |
1427 | } |
1428 | |
1429 | CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC, |
1430 | bool IsVarArg) const { |
1431 | switch (CC) { |
1432 | case CallingConv::AMDGPU_KERNEL: |
1433 | case CallingConv::SPIR_KERNEL: |
1434 | case CallingConv::C: |
1435 | case CallingConv::Fast: |
1436 | case CallingConv::Cold: |
1437 | llvm_unreachable("kernels should not be handled here" ); |
1438 | case CallingConv::AMDGPU_VS: |
1439 | case CallingConv::AMDGPU_GS: |
1440 | case CallingConv::AMDGPU_PS: |
1441 | case CallingConv::AMDGPU_CS: |
1442 | case CallingConv::AMDGPU_HS: |
1443 | case CallingConv::AMDGPU_ES: |
1444 | case CallingConv::AMDGPU_LS: |
1445 | return CC_R600; |
1446 | default: |
1447 | report_fatal_error(reason: "Unsupported calling convention." ); |
1448 | } |
1449 | } |
1450 | |
1451 | /// XXX Only kernel functions are supported, so we can assume for now that |
1452 | /// every function is a kernel function, but in the future we should use |
1453 | /// separate calling conventions for kernel and non-kernel functions. |
1454 | SDValue R600TargetLowering::LowerFormalArguments( |
1455 | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
1456 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
1457 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
1458 | SmallVector<CCValAssign, 16> ArgLocs; |
1459 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, |
1460 | *DAG.getContext()); |
1461 | MachineFunction &MF = DAG.getMachineFunction(); |
1462 | SmallVector<ISD::InputArg, 8> LocalIns; |
1463 | |
1464 | if (AMDGPU::isShader(CC: CallConv)) { |
1465 | CCInfo.AnalyzeFormalArguments(Ins, Fn: CCAssignFnForCall(CC: CallConv, IsVarArg: isVarArg)); |
1466 | } else { |
1467 | analyzeFormalArgumentsCompute(State&: CCInfo, Ins); |
1468 | } |
1469 | |
1470 | for (unsigned i = 0, e = Ins.size(); i < e; ++i) { |
1471 | CCValAssign &VA = ArgLocs[i]; |
1472 | const ISD::InputArg &In = Ins[i]; |
1473 | EVT VT = In.VT; |
1474 | EVT MemVT = VA.getLocVT(); |
1475 | if (!VT.isVector() && MemVT.isVector()) { |
1476 | // Get load source type if scalarized. |
1477 | MemVT = MemVT.getVectorElementType(); |
1478 | } |
1479 | |
1480 | if (AMDGPU::isShader(CC: CallConv)) { |
1481 | Register Reg = MF.addLiveIn(PReg: VA.getLocReg(), RC: &R600::R600_Reg128RegClass); |
1482 | SDValue Register = DAG.getCopyFromReg(Chain, dl: DL, Reg, VT); |
1483 | InVals.push_back(Elt: Register); |
1484 | continue; |
1485 | } |
1486 | |
1487 | // i64 isn't a legal type, so the register type used ends up as i32, which |
1488 | // isn't expected here. It attempts to create this sextload, but it ends up |
1489 | // being invalid. Somehow this seems to work with i64 arguments, but breaks |
1490 | // for <1 x i64>. |
1491 | |
1492 | // The first 36 bytes of the input buffer contains information about |
1493 | // thread group and global sizes. |
1494 | ISD::LoadExtType Ext = ISD::NON_EXTLOAD; |
1495 | if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) { |
1496 | // FIXME: This should really check the extload type, but the handling of |
1497 | // extload vector parameters seems to be broken. |
1498 | |
1499 | // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD; |
1500 | Ext = ISD::SEXTLOAD; |
1501 | } |
1502 | |
1503 | // Compute the offset from the value. |
1504 | // XXX - I think PartOffset should give you this, but it seems to give the |
1505 | // size of the register which isn't useful. |
1506 | |
1507 | unsigned PartOffset = VA.getLocMemOffset(); |
1508 | Align Alignment = commonAlignment(A: Align(VT.getStoreSize()), Offset: PartOffset); |
1509 | |
1510 | MachinePointerInfo PtrInfo(AMDGPUAS::PARAM_I_ADDRESS); |
1511 | SDValue Arg = DAG.getLoad( |
1512 | AM: ISD::UNINDEXED, ExtType: Ext, VT, dl: DL, Chain, |
1513 | Ptr: DAG.getConstant(Val: PartOffset, DL, VT: MVT::i32), Offset: DAG.getUNDEF(VT: MVT::i32), |
1514 | PtrInfo, |
1515 | MemVT, Alignment, MMOFlags: MachineMemOperand::MONonTemporal | |
1516 | MachineMemOperand::MODereferenceable | |
1517 | MachineMemOperand::MOInvariant); |
1518 | |
1519 | InVals.push_back(Elt: Arg); |
1520 | } |
1521 | return Chain; |
1522 | } |
1523 | |
1524 | EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, |
1525 | EVT VT) const { |
1526 | if (!VT.isVector()) |
1527 | return MVT::i32; |
1528 | return VT.changeVectorElementTypeToInteger(); |
1529 | } |
1530 | |
1531 | bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, |
1532 | const MachineFunction &MF) const { |
1533 | // Local and Private addresses do not handle vectors. Limit to i32 |
1534 | if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS)) { |
1535 | return (MemVT.getSizeInBits() <= 32); |
1536 | } |
1537 | return true; |
1538 | } |
1539 | |
1540 | bool R600TargetLowering::allowsMisalignedMemoryAccesses( |
1541 | EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, |
1542 | unsigned *IsFast) const { |
1543 | if (IsFast) |
1544 | *IsFast = 0; |
1545 | |
1546 | if (!VT.isSimple() || VT == MVT::Other) |
1547 | return false; |
1548 | |
1549 | if (VT.bitsLT(VT: MVT::i32)) |
1550 | return false; |
1551 | |
1552 | // TODO: This is a rough estimate. |
1553 | if (IsFast) |
1554 | *IsFast = 1; |
1555 | |
1556 | return VT.bitsGT(VT: MVT::i32) && Alignment >= Align(4); |
1557 | } |
1558 | |
1559 | static SDValue CompactSwizzlableVector( |
1560 | SelectionDAG &DAG, SDValue VectorEntry, |
1561 | DenseMap<unsigned, unsigned> &RemapSwizzle) { |
1562 | assert(RemapSwizzle.empty()); |
1563 | |
1564 | SDLoc DL(VectorEntry); |
1565 | EVT EltTy = VectorEntry.getValueType().getVectorElementType(); |
1566 | |
1567 | SDValue NewBldVec[4]; |
1568 | for (unsigned i = 0; i < 4; i++) |
1569 | NewBldVec[i] = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: EltTy, N1: VectorEntry, |
1570 | N2: DAG.getIntPtrConstant(Val: i, DL)); |
1571 | |
1572 | for (unsigned i = 0; i < 4; i++) { |
1573 | if (NewBldVec[i].isUndef()) |
1574 | // We mask write here to teach later passes that the ith element of this |
1575 | // vector is undef. Thus we can use it to reduce 128 bits reg usage, |
1576 | // break false dependencies and additionally make assembly easier to read. |
1577 | RemapSwizzle[i] = 7; // SEL_MASK_WRITE |
1578 | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val&: NewBldVec[i])) { |
1579 | if (C->isZero()) { |
1580 | RemapSwizzle[i] = 4; // SEL_0 |
1581 | NewBldVec[i] = DAG.getUNDEF(VT: MVT::f32); |
1582 | } else if (C->isExactlyValue(V: 1.0)) { |
1583 | RemapSwizzle[i] = 5; // SEL_1 |
1584 | NewBldVec[i] = DAG.getUNDEF(VT: MVT::f32); |
1585 | } |
1586 | } |
1587 | |
1588 | if (NewBldVec[i].isUndef()) |
1589 | continue; |
1590 | |
1591 | for (unsigned j = 0; j < i; j++) { |
1592 | if (NewBldVec[i] == NewBldVec[j]) { |
1593 | NewBldVec[i] = DAG.getUNDEF(VT: NewBldVec[i].getValueType()); |
1594 | RemapSwizzle[i] = j; |
1595 | break; |
1596 | } |
1597 | } |
1598 | } |
1599 | |
1600 | return DAG.getBuildVector(VT: VectorEntry.getValueType(), DL: SDLoc(VectorEntry), |
1601 | Ops: NewBldVec); |
1602 | } |
1603 | |
1604 | static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry, |
1605 | DenseMap<unsigned, unsigned> &RemapSwizzle) { |
1606 | assert(RemapSwizzle.empty()); |
1607 | |
1608 | SDLoc DL(VectorEntry); |
1609 | EVT EltTy = VectorEntry.getValueType().getVectorElementType(); |
1610 | |
1611 | SDValue NewBldVec[4]; |
1612 | bool isUnmovable[4] = {false, false, false, false}; |
1613 | for (unsigned i = 0; i < 4; i++) |
1614 | NewBldVec[i] = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: EltTy, N1: VectorEntry, |
1615 | N2: DAG.getIntPtrConstant(Val: i, DL)); |
1616 | |
1617 | for (unsigned i = 0; i < 4; i++) { |
1618 | RemapSwizzle[i] = i; |
1619 | if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
1620 | unsigned Idx = NewBldVec[i].getConstantOperandVal(i: 1); |
1621 | if (i == Idx) |
1622 | isUnmovable[Idx] = true; |
1623 | } |
1624 | } |
1625 | |
1626 | for (unsigned i = 0; i < 4; i++) { |
1627 | if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
1628 | unsigned Idx = NewBldVec[i].getConstantOperandVal(i: 1); |
1629 | if (isUnmovable[Idx]) |
1630 | continue; |
1631 | // Swap i and Idx |
1632 | std::swap(a&: NewBldVec[Idx], b&: NewBldVec[i]); |
1633 | std::swap(a&: RemapSwizzle[i], b&: RemapSwizzle[Idx]); |
1634 | break; |
1635 | } |
1636 | } |
1637 | |
1638 | return DAG.getBuildVector(VT: VectorEntry.getValueType(), DL: SDLoc(VectorEntry), |
1639 | Ops: NewBldVec); |
1640 | } |
1641 | |
1642 | SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[], |
1643 | SelectionDAG &DAG, |
1644 | const SDLoc &DL) const { |
1645 | // Old -> New swizzle values |
1646 | DenseMap<unsigned, unsigned> SwizzleRemap; |
1647 | |
1648 | BuildVector = CompactSwizzlableVector(DAG, VectorEntry: BuildVector, RemapSwizzle&: SwizzleRemap); |
1649 | for (unsigned i = 0; i < 4; i++) { |
1650 | unsigned Idx = Swz[i]->getAsZExtVal(); |
1651 | if (SwizzleRemap.contains(Val: Idx)) |
1652 | Swz[i] = DAG.getConstant(Val: SwizzleRemap[Idx], DL, VT: MVT::i32); |
1653 | } |
1654 | |
1655 | SwizzleRemap.clear(); |
1656 | BuildVector = ReorganizeVector(DAG, VectorEntry: BuildVector, RemapSwizzle&: SwizzleRemap); |
1657 | for (unsigned i = 0; i < 4; i++) { |
1658 | unsigned Idx = Swz[i]->getAsZExtVal(); |
1659 | if (SwizzleRemap.contains(Val: Idx)) |
1660 | Swz[i] = DAG.getConstant(Val: SwizzleRemap[Idx], DL, VT: MVT::i32); |
1661 | } |
1662 | |
1663 | return BuildVector; |
1664 | } |
1665 | |
1666 | SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block, |
1667 | SelectionDAG &DAG) const { |
1668 | SDLoc DL(LoadNode); |
1669 | EVT VT = LoadNode->getValueType(ResNo: 0); |
1670 | SDValue Chain = LoadNode->getChain(); |
1671 | SDValue Ptr = LoadNode->getBasePtr(); |
1672 | assert (isa<ConstantSDNode>(Ptr)); |
1673 | |
1674 | //TODO: Support smaller loads |
1675 | if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(N: LoadNode)) |
1676 | return SDValue(); |
1677 | |
1678 | if (LoadNode->getAlign() < Align(4)) |
1679 | return SDValue(); |
1680 | |
1681 | int ConstantBlock = ConstantAddressBlock(AddressSpace: Block); |
1682 | |
1683 | SDValue Slots[4]; |
1684 | for (unsigned i = 0; i < 4; i++) { |
1685 | // We want Const position encoded with the following formula : |
1686 | // (((512 + (kc_bank << 12) + const_index) << 2) + chan) |
1687 | // const_index is Ptr computed by llvm using an alignment of 16. |
1688 | // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and |
1689 | // then div by 4 at the ISel step |
1690 | SDValue NewPtr = DAG.getNode(Opcode: ISD::ADD, DL, VT: Ptr.getValueType(), N1: Ptr, |
1691 | N2: DAG.getConstant(Val: 4 * i + ConstantBlock * 16, DL, VT: MVT::i32)); |
1692 | Slots[i] = DAG.getNode(Opcode: AMDGPUISD::CONST_ADDRESS, DL, VT: MVT::i32, Operand: NewPtr); |
1693 | } |
1694 | EVT NewVT = MVT::v4i32; |
1695 | unsigned NumElements = 4; |
1696 | if (VT.isVector()) { |
1697 | NewVT = VT; |
1698 | NumElements = VT.getVectorNumElements(); |
1699 | } |
1700 | SDValue Result = DAG.getBuildVector(VT: NewVT, DL, Ops: ArrayRef(Slots, NumElements)); |
1701 | if (!VT.isVector()) { |
1702 | Result = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::i32, N1: Result, |
1703 | N2: DAG.getConstant(Val: 0, DL, VT: MVT::i32)); |
1704 | } |
1705 | SDValue MergedValues[2] = { |
1706 | Result, |
1707 | Chain |
1708 | }; |
1709 | return DAG.getMergeValues(Ops: MergedValues, dl: DL); |
1710 | } |
1711 | |
1712 | //===----------------------------------------------------------------------===// |
1713 | // Custom DAG Optimizations |
1714 | //===----------------------------------------------------------------------===// |
1715 | |
1716 | SDValue R600TargetLowering::PerformDAGCombine(SDNode *N, |
1717 | DAGCombinerInfo &DCI) const { |
1718 | SelectionDAG &DAG = DCI.DAG; |
1719 | SDLoc DL(N); |
1720 | |
1721 | switch (N->getOpcode()) { |
1722 | // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a) |
1723 | case ISD::FP_ROUND: { |
1724 | SDValue Arg = N->getOperand(Num: 0); |
1725 | if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) { |
1726 | return DAG.getNode(Opcode: ISD::UINT_TO_FP, DL, VT: N->getValueType(ResNo: 0), |
1727 | Operand: Arg.getOperand(i: 0)); |
1728 | } |
1729 | break; |
1730 | } |
1731 | |
1732 | // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) -> |
1733 | // (i32 select_cc f32, f32, -1, 0 cc) |
1734 | // |
1735 | // Mesa's GLSL frontend generates the above pattern a lot and we can lower |
1736 | // this to one of the SET*_DX10 instructions. |
1737 | case ISD::FP_TO_SINT: { |
1738 | SDValue FNeg = N->getOperand(Num: 0); |
1739 | if (FNeg.getOpcode() != ISD::FNEG) { |
1740 | return SDValue(); |
1741 | } |
1742 | SDValue SelectCC = FNeg.getOperand(i: 0); |
1743 | if (SelectCC.getOpcode() != ISD::SELECT_CC || |
1744 | SelectCC.getOperand(i: 0).getValueType() != MVT::f32 || // LHS |
1745 | SelectCC.getOperand(i: 2).getValueType() != MVT::f32 || // True |
1746 | !isHWTrueValue(Op: SelectCC.getOperand(i: 2)) || |
1747 | !isHWFalseValue(Op: SelectCC.getOperand(i: 3))) { |
1748 | return SDValue(); |
1749 | } |
1750 | |
1751 | return DAG.getNode(Opcode: ISD::SELECT_CC, DL, VT: N->getValueType(ResNo: 0), |
1752 | N1: SelectCC.getOperand(i: 0), // LHS |
1753 | N2: SelectCC.getOperand(i: 1), // RHS |
1754 | N3: DAG.getConstant(Val: -1, DL, VT: MVT::i32), // True |
1755 | N4: DAG.getConstant(Val: 0, DL, VT: MVT::i32), // False |
1756 | N5: SelectCC.getOperand(i: 4)); // CC |
1757 | } |
1758 | |
1759 | // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx |
1760 | // => build_vector elt0, ... , NewEltIdx, ... , eltN |
1761 | case ISD::INSERT_VECTOR_ELT: { |
1762 | SDValue InVec = N->getOperand(Num: 0); |
1763 | SDValue InVal = N->getOperand(Num: 1); |
1764 | SDValue EltNo = N->getOperand(Num: 2); |
1765 | |
1766 | // If the inserted element is an UNDEF, just use the input vector. |
1767 | if (InVal.isUndef()) |
1768 | return InVec; |
1769 | |
1770 | EVT VT = InVec.getValueType(); |
1771 | |
1772 | // If we can't generate a legal BUILD_VECTOR, exit |
1773 | if (!isOperationLegal(Op: ISD::BUILD_VECTOR, VT)) |
1774 | return SDValue(); |
1775 | |
1776 | // Check that we know which element is being inserted |
1777 | if (!isa<ConstantSDNode>(Val: EltNo)) |
1778 | return SDValue(); |
1779 | unsigned Elt = EltNo->getAsZExtVal(); |
1780 | |
1781 | // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially |
1782 | // be converted to a BUILD_VECTOR). Fill in the Ops vector with the |
1783 | // vector elements. |
1784 | SmallVector<SDValue, 8> Ops; |
1785 | if (InVec.getOpcode() == ISD::BUILD_VECTOR) { |
1786 | Ops.append(in_start: InVec.getNode()->op_begin(), |
1787 | in_end: InVec.getNode()->op_end()); |
1788 | } else if (InVec.isUndef()) { |
1789 | unsigned NElts = VT.getVectorNumElements(); |
1790 | Ops.append(NumInputs: NElts, Elt: DAG.getUNDEF(VT: InVal.getValueType())); |
1791 | } else { |
1792 | return SDValue(); |
1793 | } |
1794 | |
1795 | // Insert the element |
1796 | if (Elt < Ops.size()) { |
1797 | // All the operands of BUILD_VECTOR must have the same type; |
1798 | // we enforce that here. |
1799 | EVT OpVT = Ops[0].getValueType(); |
1800 | if (InVal.getValueType() != OpVT) |
1801 | InVal = OpVT.bitsGT(VT: InVal.getValueType()) ? |
1802 | DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: OpVT, Operand: InVal) : |
1803 | DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: OpVT, Operand: InVal); |
1804 | Ops[Elt] = InVal; |
1805 | } |
1806 | |
1807 | // Return the new vector |
1808 | return DAG.getBuildVector(VT, DL, Ops); |
1809 | } |
1810 | |
1811 | // Extract_vec (Build_vector) generated by custom lowering |
1812 | // also needs to be customly combined |
1813 | case ISD::EXTRACT_VECTOR_ELT: { |
1814 | SDValue Arg = N->getOperand(Num: 0); |
1815 | if (Arg.getOpcode() == ISD::BUILD_VECTOR) { |
1816 | if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1))) { |
1817 | unsigned Element = Const->getZExtValue(); |
1818 | return Arg->getOperand(Num: Element); |
1819 | } |
1820 | } |
1821 | if (Arg.getOpcode() == ISD::BITCAST && |
1822 | Arg.getOperand(i: 0).getOpcode() == ISD::BUILD_VECTOR && |
1823 | (Arg.getOperand(i: 0).getValueType().getVectorNumElements() == |
1824 | Arg.getValueType().getVectorNumElements())) { |
1825 | if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1))) { |
1826 | unsigned Element = Const->getZExtValue(); |
1827 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VTList: N->getVTList(), |
1828 | N: Arg->getOperand(Num: 0).getOperand(i: Element)); |
1829 | } |
1830 | } |
1831 | break; |
1832 | } |
1833 | |
1834 | case ISD::SELECT_CC: { |
1835 | // Try common optimizations |
1836 | if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI)) |
1837 | return Ret; |
1838 | |
1839 | // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq -> |
1840 | // selectcc x, y, a, b, inv(cc) |
1841 | // |
1842 | // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne -> |
1843 | // selectcc x, y, a, b, cc |
1844 | SDValue LHS = N->getOperand(Num: 0); |
1845 | if (LHS.getOpcode() != ISD::SELECT_CC) { |
1846 | return SDValue(); |
1847 | } |
1848 | |
1849 | SDValue RHS = N->getOperand(Num: 1); |
1850 | SDValue True = N->getOperand(Num: 2); |
1851 | SDValue False = N->getOperand(Num: 3); |
1852 | ISD::CondCode NCC = cast<CondCodeSDNode>(Val: N->getOperand(Num: 4))->get(); |
1853 | |
1854 | if (LHS.getOperand(i: 2).getNode() != True.getNode() || |
1855 | LHS.getOperand(i: 3).getNode() != False.getNode() || |
1856 | RHS.getNode() != False.getNode()) { |
1857 | return SDValue(); |
1858 | } |
1859 | |
1860 | switch (NCC) { |
1861 | default: return SDValue(); |
1862 | case ISD::SETNE: return LHS; |
1863 | case ISD::SETEQ: { |
1864 | ISD::CondCode LHSCC = cast<CondCodeSDNode>(Val: LHS.getOperand(i: 4))->get(); |
1865 | LHSCC = ISD::getSetCCInverse(Operation: LHSCC, Type: LHS.getOperand(i: 0).getValueType()); |
1866 | if (DCI.isBeforeLegalizeOps() || |
1867 | isCondCodeLegal(CC: LHSCC, VT: LHS.getOperand(i: 0).getSimpleValueType())) |
1868 | return DAG.getSelectCC(DL, |
1869 | LHS: LHS.getOperand(i: 0), |
1870 | RHS: LHS.getOperand(i: 1), |
1871 | True: LHS.getOperand(i: 2), |
1872 | False: LHS.getOperand(i: 3), |
1873 | Cond: LHSCC); |
1874 | break; |
1875 | } |
1876 | } |
1877 | return SDValue(); |
1878 | } |
1879 | |
1880 | case AMDGPUISD::R600_EXPORT: { |
1881 | SDValue Arg = N->getOperand(Num: 1); |
1882 | if (Arg.getOpcode() != ISD::BUILD_VECTOR) |
1883 | break; |
1884 | |
1885 | SDValue NewArgs[8] = { |
1886 | N->getOperand(Num: 0), // Chain |
1887 | SDValue(), |
1888 | N->getOperand(Num: 2), // ArrayBase |
1889 | N->getOperand(Num: 3), // Type |
1890 | N->getOperand(Num: 4), // SWZ_X |
1891 | N->getOperand(Num: 5), // SWZ_Y |
1892 | N->getOperand(Num: 6), // SWZ_Z |
1893 | N->getOperand(Num: 7) // SWZ_W |
1894 | }; |
1895 | NewArgs[1] = OptimizeSwizzle(BuildVector: N->getOperand(Num: 1), Swz: &NewArgs[4], DAG, DL); |
1896 | return DAG.getNode(Opcode: AMDGPUISD::R600_EXPORT, DL, VTList: N->getVTList(), Ops: NewArgs); |
1897 | } |
1898 | case AMDGPUISD::TEXTURE_FETCH: { |
1899 | SDValue Arg = N->getOperand(Num: 1); |
1900 | if (Arg.getOpcode() != ISD::BUILD_VECTOR) |
1901 | break; |
1902 | |
1903 | SDValue NewArgs[19] = { |
1904 | N->getOperand(Num: 0), |
1905 | N->getOperand(Num: 1), |
1906 | N->getOperand(Num: 2), |
1907 | N->getOperand(Num: 3), |
1908 | N->getOperand(Num: 4), |
1909 | N->getOperand(Num: 5), |
1910 | N->getOperand(Num: 6), |
1911 | N->getOperand(Num: 7), |
1912 | N->getOperand(Num: 8), |
1913 | N->getOperand(Num: 9), |
1914 | N->getOperand(Num: 10), |
1915 | N->getOperand(Num: 11), |
1916 | N->getOperand(Num: 12), |
1917 | N->getOperand(Num: 13), |
1918 | N->getOperand(Num: 14), |
1919 | N->getOperand(Num: 15), |
1920 | N->getOperand(Num: 16), |
1921 | N->getOperand(Num: 17), |
1922 | N->getOperand(Num: 18), |
1923 | }; |
1924 | NewArgs[1] = OptimizeSwizzle(BuildVector: N->getOperand(Num: 1), Swz: &NewArgs[2], DAG, DL); |
1925 | return DAG.getNode(Opcode: AMDGPUISD::TEXTURE_FETCH, DL, VTList: N->getVTList(), Ops: NewArgs); |
1926 | } |
1927 | |
1928 | case ISD::LOAD: { |
1929 | LoadSDNode *LoadNode = cast<LoadSDNode>(Val: N); |
1930 | SDValue Ptr = LoadNode->getBasePtr(); |
1931 | if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS && |
1932 | isa<ConstantSDNode>(Val: Ptr)) |
1933 | return constBufferLoad(LoadNode, Block: AMDGPUAS::CONSTANT_BUFFER_0, DAG); |
1934 | break; |
1935 | } |
1936 | |
1937 | default: break; |
1938 | } |
1939 | |
1940 | return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); |
1941 | } |
1942 | |
1943 | bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx, |
1944 | SDValue &Src, SDValue &Neg, SDValue &Abs, |
1945 | SDValue &Sel, SDValue &Imm, |
1946 | SelectionDAG &DAG) const { |
1947 | const R600InstrInfo *TII = Subtarget->getInstrInfo(); |
1948 | if (!Src.isMachineOpcode()) |
1949 | return false; |
1950 | |
1951 | switch (Src.getMachineOpcode()) { |
1952 | case R600::FNEG_R600: |
1953 | if (!Neg.getNode()) |
1954 | return false; |
1955 | Src = Src.getOperand(i: 0); |
1956 | Neg = DAG.getTargetConstant(Val: 1, DL: SDLoc(ParentNode), VT: MVT::i32); |
1957 | return true; |
1958 | case R600::FABS_R600: |
1959 | if (!Abs.getNode()) |
1960 | return false; |
1961 | Src = Src.getOperand(i: 0); |
1962 | Abs = DAG.getTargetConstant(Val: 1, DL: SDLoc(ParentNode), VT: MVT::i32); |
1963 | return true; |
1964 | case R600::CONST_COPY: { |
1965 | unsigned Opcode = ParentNode->getMachineOpcode(); |
1966 | bool HasDst = TII->getOperandIdx(Opcode, Op: R600::OpName::dst) > -1; |
1967 | |
1968 | if (!Sel.getNode()) |
1969 | return false; |
1970 | |
1971 | SDValue CstOffset = Src.getOperand(i: 0); |
1972 | if (ParentNode->getValueType(ResNo: 0).isVector()) |
1973 | return false; |
1974 | |
1975 | // Gather constants values |
1976 | int SrcIndices[] = { |
1977 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0), |
1978 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1), |
1979 | TII->getOperandIdx(Opcode, Op: R600::OpName::src2), |
1980 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0_X), |
1981 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0_Y), |
1982 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0_Z), |
1983 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0_W), |
1984 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1_X), |
1985 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1_Y), |
1986 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1_Z), |
1987 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1_W) |
1988 | }; |
1989 | std::vector<unsigned> Consts; |
1990 | for (int OtherSrcIdx : SrcIndices) { |
1991 | int OtherSelIdx = TII->getSelIdx(Opcode, SrcIdx: OtherSrcIdx); |
1992 | if (OtherSrcIdx < 0 || OtherSelIdx < 0) |
1993 | continue; |
1994 | if (HasDst) { |
1995 | OtherSrcIdx--; |
1996 | OtherSelIdx--; |
1997 | } |
1998 | if (RegisterSDNode *Reg = |
1999 | dyn_cast<RegisterSDNode>(Val: ParentNode->getOperand(Num: OtherSrcIdx))) { |
2000 | if (Reg->getReg() == R600::ALU_CONST) { |
2001 | Consts.push_back(x: ParentNode->getConstantOperandVal(Num: OtherSelIdx)); |
2002 | } |
2003 | } |
2004 | } |
2005 | |
2006 | ConstantSDNode *Cst = cast<ConstantSDNode>(Val&: CstOffset); |
2007 | Consts.push_back(x: Cst->getZExtValue()); |
2008 | if (!TII->fitsConstReadLimitations(Consts)) { |
2009 | return false; |
2010 | } |
2011 | |
2012 | Sel = CstOffset; |
2013 | Src = DAG.getRegister(Reg: R600::ALU_CONST, VT: MVT::f32); |
2014 | return true; |
2015 | } |
2016 | case R600::MOV_IMM_GLOBAL_ADDR: |
2017 | // Check if the Imm slot is used. Taken from below. |
2018 | if (Imm->getAsZExtVal()) |
2019 | return false; |
2020 | Imm = Src.getOperand(i: 0); |
2021 | Src = DAG.getRegister(Reg: R600::ALU_LITERAL_X, VT: MVT::i32); |
2022 | return true; |
2023 | case R600::MOV_IMM_I32: |
2024 | case R600::MOV_IMM_F32: { |
2025 | unsigned ImmReg = R600::ALU_LITERAL_X; |
2026 | uint64_t ImmValue = 0; |
2027 | |
2028 | if (Src.getMachineOpcode() == R600::MOV_IMM_F32) { |
2029 | ConstantFPSDNode *FPC = cast<ConstantFPSDNode>(Val: Src.getOperand(i: 0)); |
2030 | float FloatValue = FPC->getValueAPF().convertToFloat(); |
2031 | if (FloatValue == 0.0) { |
2032 | ImmReg = R600::ZERO; |
2033 | } else if (FloatValue == 0.5) { |
2034 | ImmReg = R600::HALF; |
2035 | } else if (FloatValue == 1.0) { |
2036 | ImmReg = R600::ONE; |
2037 | } else { |
2038 | ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue(); |
2039 | } |
2040 | } else { |
2041 | uint64_t Value = Src.getConstantOperandVal(i: 0); |
2042 | if (Value == 0) { |
2043 | ImmReg = R600::ZERO; |
2044 | } else if (Value == 1) { |
2045 | ImmReg = R600::ONE_INT; |
2046 | } else { |
2047 | ImmValue = Value; |
2048 | } |
2049 | } |
2050 | |
2051 | // Check that we aren't already using an immediate. |
2052 | // XXX: It's possible for an instruction to have more than one |
2053 | // immediate operand, but this is not supported yet. |
2054 | if (ImmReg == R600::ALU_LITERAL_X) { |
2055 | if (!Imm.getNode()) |
2056 | return false; |
2057 | ConstantSDNode *C = cast<ConstantSDNode>(Val&: Imm); |
2058 | if (C->getZExtValue()) |
2059 | return false; |
2060 | Imm = DAG.getTargetConstant(Val: ImmValue, DL: SDLoc(ParentNode), VT: MVT::i32); |
2061 | } |
2062 | Src = DAG.getRegister(Reg: ImmReg, VT: MVT::i32); |
2063 | return true; |
2064 | } |
2065 | default: |
2066 | return false; |
2067 | } |
2068 | } |
2069 | |
2070 | /// Fold the instructions after selecting them |
2071 | SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node, |
2072 | SelectionDAG &DAG) const { |
2073 | const R600InstrInfo *TII = Subtarget->getInstrInfo(); |
2074 | if (!Node->isMachineOpcode()) |
2075 | return Node; |
2076 | |
2077 | unsigned Opcode = Node->getMachineOpcode(); |
2078 | SDValue FakeOp; |
2079 | |
2080 | std::vector<SDValue> Ops(Node->op_begin(), Node->op_end()); |
2081 | |
2082 | if (Opcode == R600::DOT_4) { |
2083 | int OperandIdx[] = { |
2084 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0_X), |
2085 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0_Y), |
2086 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0_Z), |
2087 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0_W), |
2088 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1_X), |
2089 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1_Y), |
2090 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1_Z), |
2091 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1_W) |
2092 | }; |
2093 | int NegIdx[] = { |
2094 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0_neg_X), |
2095 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0_neg_Y), |
2096 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0_neg_Z), |
2097 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0_neg_W), |
2098 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1_neg_X), |
2099 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1_neg_Y), |
2100 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1_neg_Z), |
2101 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1_neg_W) |
2102 | }; |
2103 | int AbsIdx[] = { |
2104 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0_abs_X), |
2105 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0_abs_Y), |
2106 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0_abs_Z), |
2107 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0_abs_W), |
2108 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1_abs_X), |
2109 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1_abs_Y), |
2110 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1_abs_Z), |
2111 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1_abs_W) |
2112 | }; |
2113 | for (unsigned i = 0; i < 8; i++) { |
2114 | if (OperandIdx[i] < 0) |
2115 | return Node; |
2116 | SDValue &Src = Ops[OperandIdx[i] - 1]; |
2117 | SDValue &Neg = Ops[NegIdx[i] - 1]; |
2118 | SDValue &Abs = Ops[AbsIdx[i] - 1]; |
2119 | bool HasDst = TII->getOperandIdx(Opcode, Op: R600::OpName::dst) > -1; |
2120 | int SelIdx = TII->getSelIdx(Opcode, SrcIdx: OperandIdx[i]); |
2121 | if (HasDst) |
2122 | SelIdx--; |
2123 | SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp; |
2124 | if (FoldOperand(ParentNode: Node, SrcIdx: i, Src, Neg, Abs, Sel, Imm&: FakeOp, DAG)) |
2125 | return DAG.getMachineNode(Opcode, dl: SDLoc(Node), VTs: Node->getVTList(), Ops); |
2126 | } |
2127 | } else if (Opcode == R600::REG_SEQUENCE) { |
2128 | for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) { |
2129 | SDValue &Src = Ops[i]; |
2130 | if (FoldOperand(ParentNode: Node, SrcIdx: i, Src, Neg&: FakeOp, Abs&: FakeOp, Sel&: FakeOp, Imm&: FakeOp, DAG)) |
2131 | return DAG.getMachineNode(Opcode, dl: SDLoc(Node), VTs: Node->getVTList(), Ops); |
2132 | } |
2133 | } else { |
2134 | if (!TII->hasInstrModifiers(Opcode)) |
2135 | return Node; |
2136 | int OperandIdx[] = { |
2137 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0), |
2138 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1), |
2139 | TII->getOperandIdx(Opcode, Op: R600::OpName::src2) |
2140 | }; |
2141 | int NegIdx[] = { |
2142 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0_neg), |
2143 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1_neg), |
2144 | TII->getOperandIdx(Opcode, Op: R600::OpName::src2_neg) |
2145 | }; |
2146 | int AbsIdx[] = { |
2147 | TII->getOperandIdx(Opcode, Op: R600::OpName::src0_abs), |
2148 | TII->getOperandIdx(Opcode, Op: R600::OpName::src1_abs), |
2149 | -1 |
2150 | }; |
2151 | for (unsigned i = 0; i < 3; i++) { |
2152 | if (OperandIdx[i] < 0) |
2153 | return Node; |
2154 | SDValue &Src = Ops[OperandIdx[i] - 1]; |
2155 | SDValue &Neg = Ops[NegIdx[i] - 1]; |
2156 | SDValue FakeAbs; |
2157 | SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs; |
2158 | bool HasDst = TII->getOperandIdx(Opcode, Op: R600::OpName::dst) > -1; |
2159 | int SelIdx = TII->getSelIdx(Opcode, SrcIdx: OperandIdx[i]); |
2160 | int ImmIdx = TII->getOperandIdx(Opcode, Op: R600::OpName::literal); |
2161 | if (HasDst) { |
2162 | SelIdx--; |
2163 | ImmIdx--; |
2164 | } |
2165 | SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp; |
2166 | SDValue &Imm = Ops[ImmIdx]; |
2167 | if (FoldOperand(ParentNode: Node, SrcIdx: i, Src, Neg, Abs, Sel, Imm, DAG)) |
2168 | return DAG.getMachineNode(Opcode, dl: SDLoc(Node), VTs: Node->getVTList(), Ops); |
2169 | } |
2170 | } |
2171 | |
2172 | return Node; |
2173 | } |
2174 | |
2175 | TargetLowering::AtomicExpansionKind |
2176 | R600TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { |
2177 | switch (RMW->getOperation()) { |
2178 | case AtomicRMWInst::UIncWrap: |
2179 | case AtomicRMWInst::UDecWrap: |
2180 | // FIXME: Cayman at least appears to have instructions for this, but the |
2181 | // instruction defintions appear to be missing. |
2182 | return AtomicExpansionKind::CmpXChg; |
2183 | default: |
2184 | break; |
2185 | } |
2186 | |
2187 | return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); |
2188 | } |
2189 | |