1//===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//
10//===----------------------------------------------------------------------===//
11
12#include "ARMTargetMachine.h"
13#include "ARM.h"
14#include "ARMMachineFunctionInfo.h"
15#include "ARMMacroFusion.h"
16#include "ARMSubtarget.h"
17#include "ARMTargetObjectFile.h"
18#include "ARMTargetTransformInfo.h"
19#include "MCTargetDesc/ARMMCTargetDesc.h"
20#include "TargetInfo/ARMTargetInfo.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/Analysis/TargetTransformInfo.h"
24#include "llvm/CodeGen/ExecutionDomainFix.h"
25#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
26#include "llvm/CodeGen/GlobalISel/CallLowering.h"
27#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
28#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
29#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
30#include "llvm/CodeGen/GlobalISel/Legalizer.h"
31#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
32#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
33#include "llvm/CodeGen/MIRParser/MIParser.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineScheduler.h"
36#include "llvm/CodeGen/Passes.h"
37#include "llvm/CodeGen/RegisterBankInfo.h"
38#include "llvm/CodeGen/TargetPassConfig.h"
39#include "llvm/IR/Attributes.h"
40#include "llvm/IR/DataLayout.h"
41#include "llvm/IR/Function.h"
42#include "llvm/MC/TargetRegistry.h"
43#include "llvm/Pass.h"
44#include "llvm/Support/CodeGen.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Target/TargetLoweringObjectFile.h"
48#include "llvm/Target/TargetOptions.h"
49#include "llvm/TargetParser/ARMTargetParser.h"
50#include "llvm/TargetParser/TargetParser.h"
51#include "llvm/TargetParser/Triple.h"
52#include "llvm/Transforms/CFGuard.h"
53#include "llvm/Transforms/IPO.h"
54#include "llvm/Transforms/Scalar.h"
55#include <cassert>
56#include <memory>
57#include <optional>
58#include <string>
59
60using namespace llvm;
61
62static cl::opt<bool>
63DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
64 cl::desc("Inhibit optimization of S->D register accesses on A15"),
65 cl::init(Val: false));
66
67static cl::opt<bool>
68EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
69 cl::desc("Run SimplifyCFG after expanding atomic operations"
70 " to make use of cmpxchg flow-based information"),
71 cl::init(Val: true));
72
73static cl::opt<bool>
74EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
75 cl::desc("Enable ARM load/store optimization pass"),
76 cl::init(Val: true));
77
78// FIXME: Unify control over GlobalMerge.
79static cl::opt<cl::boolOrDefault>
80EnableGlobalMerge("arm-global-merge", cl::Hidden,
81 cl::desc("Enable the global merge pass"));
82
83namespace llvm {
84 void initializeARMExecutionDomainFixPass(PassRegistry&);
85}
86
87extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMTarget() {
88 // Register the target.
89 RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget());
90 RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget());
91 RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget());
92 RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget());
93
94 PassRegistry &Registry = *PassRegistry::getPassRegistry();
95 initializeGlobalISel(Registry);
96 initializeARMLoadStoreOptPass(Registry);
97 initializeARMPreAllocLoadStoreOptPass(Registry);
98 initializeARMParallelDSPPass(Registry);
99 initializeARMBranchTargetsPass(Registry);
100 initializeARMConstantIslandsPass(Registry);
101 initializeARMExecutionDomainFixPass(Registry);
102 initializeARMExpandPseudoPass(Registry);
103 initializeThumb2SizeReducePass(Registry);
104 initializeMVEVPTBlockPass(Registry);
105 initializeMVETPAndVPTOptimisationsPass(Registry);
106 initializeMVETailPredicationPass(Registry);
107 initializeARMLowOverheadLoopsPass(Registry);
108 initializeARMBlockPlacementPass(Registry);
109 initializeMVEGatherScatterLoweringPass(Registry);
110 initializeARMSLSHardeningPass(Registry);
111 initializeMVELaneInterleavingPass(Registry);
112 initializeARMFixCortexA57AES1742098Pass(Registry);
113 initializeARMDAGToDAGISelLegacyPass(Registry);
114}
115
116static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
117 if (TT.isOSBinFormatMachO())
118 return std::make_unique<TargetLoweringObjectFileMachO>();
119 if (TT.isOSWindows())
120 return std::make_unique<TargetLoweringObjectFileCOFF>();
121 return std::make_unique<ARMElfTargetObjectFile>();
122}
123
124static ARMBaseTargetMachine::ARMABI
125computeTargetABI(const Triple &TT, StringRef CPU,
126 const TargetOptions &Options) {
127 StringRef ABIName = Options.MCOptions.getABIName();
128
129 if (ABIName.empty())
130 ABIName = ARM::computeDefaultTargetABI(TT, CPU);
131
132 if (ABIName == "aapcs16")
133 return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
134 else if (ABIName.starts_with(Prefix: "aapcs"))
135 return ARMBaseTargetMachine::ARM_ABI_AAPCS;
136 else if (ABIName.starts_with(Prefix: "apcs"))
137 return ARMBaseTargetMachine::ARM_ABI_APCS;
138
139 llvm_unreachable("Unhandled/unknown ABI Name!");
140 return ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
141}
142
143static std::string computeDataLayout(const Triple &TT, StringRef CPU,
144 const TargetOptions &Options,
145 bool isLittle) {
146 auto ABI = computeTargetABI(TT, CPU, Options);
147 std::string Ret;
148
149 if (isLittle)
150 // Little endian.
151 Ret += "e";
152 else
153 // Big endian.
154 Ret += "E";
155
156 Ret += DataLayout::getManglingComponent(T: TT);
157
158 // Pointers are 32 bits and aligned to 32 bits.
159 Ret += "-p:32:32";
160
161 // Function pointers are aligned to 8 bits (because the LSB stores the
162 // ARM/Thumb state).
163 Ret += "-Fi8";
164
165 // ABIs other than APCS have 64 bit integers with natural alignment.
166 if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
167 Ret += "-i64:64";
168
169 // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
170 // bits, others to 64 bits. We always try to align to 64 bits.
171 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
172 Ret += "-f64:32:64";
173
174 // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
175 // to 64. We always ty to give them natural alignment.
176 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
177 Ret += "-v64:32:64-v128:32:128";
178 else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
179 Ret += "-v128:64:128";
180
181 // Try to align aggregates to 32 bits (the default is 64 bits, which has no
182 // particular hardware support on 32-bit ARM).
183 Ret += "-a:0:32";
184
185 // Integer registers are 32 bits.
186 Ret += "-n32";
187
188 // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
189 // aligned everywhere else.
190 if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
191 Ret += "-S128";
192 else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
193 Ret += "-S64";
194 else
195 Ret += "-S32";
196
197 return Ret;
198}
199
200static Reloc::Model getEffectiveRelocModel(const Triple &TT,
201 std::optional<Reloc::Model> RM) {
202 if (!RM)
203 // Default relocation model on Darwin is PIC.
204 return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
205
206 if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI)
207 assert(TT.isOSBinFormatELF() &&
208 "ROPI/RWPI currently only supported for ELF");
209
210 // DynamicNoPIC is only used on darwin.
211 if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
212 return Reloc::Static;
213
214 return *RM;
215}
216
217/// Create an ARM architecture model.
218///
219ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
220 StringRef CPU, StringRef FS,
221 const TargetOptions &Options,
222 std::optional<Reloc::Model> RM,
223 std::optional<CodeModel::Model> CM,
224 CodeGenOptLevel OL, bool isLittle)
225 : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
226 CPU, FS, Options, getEffectiveRelocModel(TT, RM),
227 getEffectiveCodeModel(CM, Default: CodeModel::Small), OL),
228 TargetABI(computeTargetABI(TT, CPU, Options)),
229 TLOF(createTLOF(TT: getTargetTriple())), isLittle(isLittle) {
230
231 // Default to triple-appropriate float ABI
232 if (Options.FloatABIType == FloatABI::Default) {
233 if (isTargetHardFloat())
234 this->Options.FloatABIType = FloatABI::Hard;
235 else
236 this->Options.FloatABIType = FloatABI::Soft;
237 }
238
239 // Default to triple-appropriate EABI
240 if (Options.EABIVersion == EABI::Default ||
241 Options.EABIVersion == EABI::Unknown) {
242 // musl is compatible with glibc with regard to EABI version
243 if ((TargetTriple.getEnvironment() == Triple::GNUEABI ||
244 TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
245 TargetTriple.getEnvironment() == Triple::MuslEABI ||
246 TargetTriple.getEnvironment() == Triple::MuslEABIHF ||
247 TargetTriple.getEnvironment() == Triple::OpenHOS) &&
248 !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin()))
249 this->Options.EABIVersion = EABI::GNU;
250 else
251 this->Options.EABIVersion = EABI::EABI5;
252 }
253
254 if (TT.isOSBinFormatMachO()) {
255 this->Options.TrapUnreachable = true;
256 this->Options.NoTrapAfterNoreturn = true;
257 }
258
259 // ARM supports the debug entry values.
260 setSupportsDebugEntryValues(true);
261
262 initAsmInfo();
263
264 // ARM supports the MachineOutliner.
265 setMachineOutliner(true);
266 setSupportsDefaultOutlining(true);
267}
268
269ARMBaseTargetMachine::~ARMBaseTargetMachine() = default;
270
271MachineFunctionInfo *ARMBaseTargetMachine::createMachineFunctionInfo(
272 BumpPtrAllocator &Allocator, const Function &F,
273 const TargetSubtargetInfo *STI) const {
274 return ARMFunctionInfo::create<ARMFunctionInfo>(
275 Allocator, F, STI: static_cast<const ARMSubtarget *>(STI));
276}
277
278const ARMSubtarget *
279ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
280 Attribute CPUAttr = F.getFnAttribute(Kind: "target-cpu");
281 Attribute FSAttr = F.getFnAttribute(Kind: "target-features");
282
283 std::string CPU =
284 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
285 std::string FS =
286 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
287
288 // FIXME: This is related to the code below to reset the target options,
289 // we need to know whether or not the soft float flag is set on the
290 // function before we can generate a subtarget. We also need to use
291 // it as a key for the subtarget since that can be the only difference
292 // between two functions.
293 bool SoftFloat = F.getFnAttribute(Kind: "use-soft-float").getValueAsBool();
294 // If the soft float attribute is set on the function turn on the soft float
295 // subtarget feature.
296 if (SoftFloat)
297 FS += FS.empty() ? "+soft-float" : ",+soft-float";
298
299 // Use the optminsize to identify the subtarget, but don't use it in the
300 // feature string.
301 std::string Key = CPU + FS;
302 if (F.hasMinSize())
303 Key += "+minsize";
304
305 auto &I = SubtargetMap[Key];
306 if (!I) {
307 // This needs to be done before we create a new subtarget since any
308 // creation will depend on the TM and the code generation flags on the
309 // function that reside in TargetOptions.
310 resetTargetOptions(F);
311 I = std::make_unique<ARMSubtarget>(args: TargetTriple, args&: CPU, args&: FS, args: *this, args: isLittle,
312 args: F.hasMinSize());
313
314 if (!I->isThumb() && !I->hasARMOps())
315 F.getContext().emitError(ErrorStr: "Function '" + F.getName() + "' uses ARM "
316 "instructions, but the target does not support ARM mode execution.");
317 }
318
319 return I.get();
320}
321
322TargetTransformInfo
323ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) const {
324 return TargetTransformInfo(ARMTTIImpl(this, F));
325}
326
327ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
328 StringRef CPU, StringRef FS,
329 const TargetOptions &Options,
330 std::optional<Reloc::Model> RM,
331 std::optional<CodeModel::Model> CM,
332 CodeGenOptLevel OL, bool JIT)
333 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
334
335ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
336 StringRef CPU, StringRef FS,
337 const TargetOptions &Options,
338 std::optional<Reloc::Model> RM,
339 std::optional<CodeModel::Model> CM,
340 CodeGenOptLevel OL, bool JIT)
341 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
342
343namespace {
344
345/// ARM Code Generator Pass Configuration Options.
346class ARMPassConfig : public TargetPassConfig {
347public:
348 ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM)
349 : TargetPassConfig(TM, PM) {}
350
351 ARMBaseTargetMachine &getARMTargetMachine() const {
352 return getTM<ARMBaseTargetMachine>();
353 }
354
355 ScheduleDAGInstrs *
356 createMachineScheduler(MachineSchedContext *C) const override {
357 ScheduleDAGMILive *DAG = createGenericSchedLive(C);
358 // add DAG Mutations here.
359 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
360 if (ST.hasFusion())
361 DAG->addMutation(Mutation: createARMMacroFusionDAGMutation());
362 return DAG;
363 }
364
365 ScheduleDAGInstrs *
366 createPostMachineScheduler(MachineSchedContext *C) const override {
367 ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
368 // add DAG Mutations here.
369 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
370 if (ST.hasFusion())
371 DAG->addMutation(Mutation: createARMMacroFusionDAGMutation());
372 return DAG;
373 }
374
375 void addIRPasses() override;
376 void addCodeGenPrepare() override;
377 bool addPreISel() override;
378 bool addInstSelector() override;
379 bool addIRTranslator() override;
380 bool addLegalizeMachineIR() override;
381 bool addRegBankSelect() override;
382 bool addGlobalInstructionSelect() override;
383 void addPreRegAlloc() override;
384 void addPreSched2() override;
385 void addPreEmitPass() override;
386 void addPreEmitPass2() override;
387
388 std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
389};
390
391class ARMExecutionDomainFix : public ExecutionDomainFix {
392public:
393 static char ID;
394 ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {}
395 StringRef getPassName() const override {
396 return "ARM Execution Domain Fix";
397 }
398};
399char ARMExecutionDomainFix::ID;
400
401} // end anonymous namespace
402
403INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix",
404 "ARM Execution Domain Fix", false, false)
405INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
406INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix",
407 "ARM Execution Domain Fix", false, false)
408
409TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
410 return new ARMPassConfig(*this, PM);
411}
412
413std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const {
414 return getStandardCSEConfigForOpt(Level: TM->getOptLevel());
415}
416
417void ARMPassConfig::addIRPasses() {
418 if (TM->Options.ThreadModel == ThreadModel::Single)
419 addPass(P: createLowerAtomicPass());
420 else
421 addPass(P: createAtomicExpandLegacyPass());
422
423 // Cmpxchg instructions are often used with a subsequent comparison to
424 // determine whether it succeeded. We can exploit existing control-flow in
425 // ldrex/strex loops to simplify this, but it needs tidying up.
426 if (TM->getOptLevel() != CodeGenOptLevel::None && EnableAtomicTidy)
427 addPass(P: createCFGSimplificationPass(
428 Options: SimplifyCFGOptions().hoistCommonInsts(B: true).sinkCommonInsts(B: true),
429 Ftor: [this](const Function &F) {
430 const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
431 return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
432 }));
433
434 addPass(P: createMVEGatherScatterLoweringPass());
435 addPass(P: createMVELaneInterleavingPass());
436
437 TargetPassConfig::addIRPasses();
438
439 // Run the parallel DSP pass.
440 if (getOptLevel() == CodeGenOptLevel::Aggressive)
441 addPass(P: createARMParallelDSPPass());
442
443 // Match complex arithmetic patterns
444 if (TM->getOptLevel() >= CodeGenOptLevel::Default)
445 addPass(P: createComplexDeinterleavingPass(TM));
446
447 // Match interleaved memory accesses to ldN/stN intrinsics.
448 if (TM->getOptLevel() != CodeGenOptLevel::None)
449 addPass(P: createInterleavedAccessPass());
450
451 // Add Control Flow Guard checks.
452 if (TM->getTargetTriple().isOSWindows())
453 addPass(P: createCFGuardCheckPass());
454
455 if (TM->Options.JMCInstrument)
456 addPass(P: createJMCInstrumenterPass());
457}
458
459void ARMPassConfig::addCodeGenPrepare() {
460 if (getOptLevel() != CodeGenOptLevel::None)
461 addPass(P: createTypePromotionLegacyPass());
462 TargetPassConfig::addCodeGenPrepare();
463}
464
465bool ARMPassConfig::addPreISel() {
466 if ((TM->getOptLevel() != CodeGenOptLevel::None &&
467 EnableGlobalMerge == cl::BOU_UNSET) ||
468 EnableGlobalMerge == cl::BOU_TRUE) {
469 // FIXME: This is using the thumb1 only constant value for
470 // maximal global offset for merging globals. We may want
471 // to look into using the old value for non-thumb1 code of
472 // 4095 based on the TargetMachine, but this starts to become
473 // tricky when doing code gen per function.
474 bool OnlyOptimizeForSize =
475 (TM->getOptLevel() < CodeGenOptLevel::Aggressive) &&
476 (EnableGlobalMerge == cl::BOU_UNSET);
477 // Merging of extern globals is enabled by default on non-Mach-O as we
478 // expect it to be generally either beneficial or harmless. On Mach-O it
479 // is disabled as we emit the .subsections_via_symbols directive which
480 // means that merging extern globals is not safe.
481 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
482 addPass(P: createGlobalMergePass(TM, MaximalOffset: 127, OnlyOptimizeForSize,
483 MergeExternalByDefault));
484 }
485
486 if (TM->getOptLevel() != CodeGenOptLevel::None) {
487 addPass(P: createHardwareLoopsLegacyPass());
488 addPass(P: createMVETailPredicationPass());
489 // FIXME: IR passes can delete address-taken basic blocks, deleting
490 // corresponding blockaddresses. ARMConstantPoolConstant holds references to
491 // address-taken basic blocks which can be invalidated if the function
492 // containing the blockaddress has already been codegen'd and the basic
493 // block is removed. Work around this by forcing all IR passes to run before
494 // any ISel takes place. We should have a more principled way of handling
495 // this. See D99707 for more details.
496 addPass(P: createBarrierNoopPass());
497 }
498
499 return false;
500}
501
502bool ARMPassConfig::addInstSelector() {
503 addPass(P: createARMISelDag(TM&: getARMTargetMachine(), OptLevel: getOptLevel()));
504 return false;
505}
506
507bool ARMPassConfig::addIRTranslator() {
508 addPass(P: new IRTranslator(getOptLevel()));
509 return false;
510}
511
512bool ARMPassConfig::addLegalizeMachineIR() {
513 addPass(P: new Legalizer());
514 return false;
515}
516
517bool ARMPassConfig::addRegBankSelect() {
518 addPass(P: new RegBankSelect());
519 return false;
520}
521
522bool ARMPassConfig::addGlobalInstructionSelect() {
523 addPass(P: new InstructionSelect(getOptLevel()));
524 return false;
525}
526
527void ARMPassConfig::addPreRegAlloc() {
528 if (getOptLevel() != CodeGenOptLevel::None) {
529 if (getOptLevel() == CodeGenOptLevel::Aggressive)
530 addPass(PassID: &MachinePipelinerID);
531
532 addPass(P: createMVETPAndVPTOptimisationsPass());
533
534 addPass(P: createMLxExpansionPass());
535
536 if (EnableARMLoadStoreOpt)
537 addPass(P: createARMLoadStoreOptimizationPass(/* pre-register alloc */ PreAlloc: true));
538
539 if (!DisableA15SDOptimization)
540 addPass(P: createA15SDOptimizerPass());
541 }
542}
543
544void ARMPassConfig::addPreSched2() {
545 if (getOptLevel() != CodeGenOptLevel::None) {
546 if (EnableARMLoadStoreOpt)
547 addPass(P: createARMLoadStoreOptimizationPass());
548
549 addPass(P: new ARMExecutionDomainFix());
550 addPass(P: createBreakFalseDeps());
551 }
552
553 // Expand some pseudo instructions into multiple instructions to allow
554 // proper scheduling.
555 addPass(P: createARMExpandPseudoPass());
556
557 if (getOptLevel() != CodeGenOptLevel::None) {
558 // When optimising for size, always run the Thumb2SizeReduction pass before
559 // IfConversion. Otherwise, check whether IT blocks are restricted
560 // (e.g. in v8, IfConversion depends on Thumb instruction widths)
561 addPass(P: createThumb2SizeReductionPass(Ftor: [this](const Function &F) {
562 return this->TM->getSubtarget<ARMSubtarget>(F).hasMinSize() ||
563 this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
564 }));
565
566 addPass(P: createIfConverter(Ftor: [](const MachineFunction &MF) {
567 return !MF.getSubtarget<ARMSubtarget>().isThumb1Only();
568 }));
569 }
570 addPass(P: createThumb2ITBlockPass());
571
572 // Add both scheduling passes to give the subtarget an opportunity to pick
573 // between them.
574 if (getOptLevel() != CodeGenOptLevel::None) {
575 addPass(PassID: &PostMachineSchedulerID);
576 addPass(PassID: &PostRASchedulerID);
577 }
578
579 addPass(P: createMVEVPTBlockPass());
580 addPass(P: createARMIndirectThunks());
581 addPass(P: createARMSLSHardeningPass());
582}
583
584void ARMPassConfig::addPreEmitPass() {
585 addPass(P: createThumb2SizeReductionPass());
586
587 // Constant island pass work on unbundled instructions.
588 addPass(P: createUnpackMachineBundles(Ftor: [](const MachineFunction &MF) {
589 return MF.getSubtarget<ARMSubtarget>().isThumb2();
590 }));
591
592 // Don't optimize barriers or block placement at -O0.
593 if (getOptLevel() != CodeGenOptLevel::None) {
594 addPass(P: createARMBlockPlacementPass());
595 addPass(P: createARMOptimizeBarriersPass());
596 }
597}
598
599void ARMPassConfig::addPreEmitPass2() {
600 // Inserts fixup instructions before unsafe AES operations. Instructions may
601 // be inserted at the start of blocks and at within blocks so this pass has to
602 // come before those below.
603 addPass(P: createARMFixCortexA57AES1742098Pass());
604 // Inserts BTIs at the start of functions and indirectly-called basic blocks,
605 // so passes cannot add to the start of basic blocks once this has run.
606 addPass(P: createARMBranchTargetsPass());
607 // Inserts Constant Islands. Block sizes cannot be increased after this point,
608 // as this may push the branch ranges and load offsets of accessing constant
609 // pools out of range..
610 addPass(P: createARMConstantIslandPass());
611 // Finalises Low-Overhead Loops. This replaces pseudo instructions with real
612 // instructions, but the pseudos all have conservative sizes so that block
613 // sizes will only be decreased by this pass.
614 addPass(P: createARMLowOverheadLoopsPass());
615
616 if (TM->getTargetTriple().isOSWindows()) {
617 // Identify valid longjmp targets for Windows Control Flow Guard.
618 addPass(P: createCFGuardLongjmpPass());
619 // Identify valid eh continuation targets for Windows EHCont Guard.
620 addPass(P: createEHContGuardCatchretPass());
621 }
622}
623
624yaml::MachineFunctionInfo *
625ARMBaseTargetMachine::createDefaultFuncInfoYAML() const {
626 return new yaml::ARMFunctionInfo();
627}
628
629yaml::MachineFunctionInfo *
630ARMBaseTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
631 const auto *MFI = MF.getInfo<ARMFunctionInfo>();
632 return new yaml::ARMFunctionInfo(*MFI);
633}
634
635bool ARMBaseTargetMachine::parseMachineFunctionInfo(
636 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS,
637 SMDiagnostic &Error, SMRange &SourceRange) const {
638 const auto &YamlMFI = static_cast<const yaml::ARMFunctionInfo &>(MFI);
639 MachineFunction &MF = PFS.MF;
640 MF.getInfo<ARMFunctionInfo>()->initializeBaseYamlFields(YamlMFI);
641 return false;
642}
643