1 | //===-------------- BPFMIChecking.cpp - MI Checking Legality -------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass performs checking to signal errors for certain illegal usages at |
10 | // MachineInstruction layer. Specially, the result of XADD{32,64} insn should |
11 | // not be used. The pass is done at the PreEmit pass right before the |
12 | // machine code is emitted at which point the register liveness information |
13 | // is still available. |
14 | // |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #include "BPF.h" |
18 | #include "BPFInstrInfo.h" |
19 | #include "BPFTargetMachine.h" |
20 | #include "llvm/CodeGen/MachineFunctionPass.h" |
21 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
22 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
23 | #include "llvm/IR/DiagnosticInfo.h" |
24 | #include "llvm/Support/Debug.h" |
25 | |
26 | using namespace llvm; |
27 | |
28 | #define DEBUG_TYPE "bpf-mi-checking" |
29 | |
30 | namespace { |
31 | |
32 | struct BPFMIPreEmitChecking : public MachineFunctionPass { |
33 | |
34 | static char ID; |
35 | MachineFunction *MF; |
36 | const TargetRegisterInfo *TRI; |
37 | |
38 | BPFMIPreEmitChecking() : MachineFunctionPass(ID) { |
39 | initializeBPFMIPreEmitCheckingPass(*PassRegistry::getPassRegistry()); |
40 | } |
41 | |
42 | private: |
43 | // Initialize class variables. |
44 | void initialize(MachineFunction &MFParm); |
45 | |
46 | bool processAtomicInsts(); |
47 | |
48 | public: |
49 | |
50 | // Main entry point for this pass. |
51 | bool runOnMachineFunction(MachineFunction &MF) override { |
52 | if (!skipFunction(F: MF.getFunction())) { |
53 | initialize(MFParm&: MF); |
54 | return processAtomicInsts(); |
55 | } |
56 | return false; |
57 | } |
58 | }; |
59 | |
60 | // Initialize class variables. |
61 | void BPFMIPreEmitChecking::initialize(MachineFunction &MFParm) { |
62 | MF = &MFParm; |
63 | TRI = MF->getSubtarget<BPFSubtarget>().getRegisterInfo(); |
64 | LLVM_DEBUG(dbgs() << "*** BPF PreEmit checking pass ***\n\n" ); |
65 | } |
66 | |
67 | // Make sure all Defs of XADD are dead, meaning any result of XADD insn is not |
68 | // used. |
69 | // |
70 | // NOTE: BPF backend hasn't enabled sub-register liveness track, so when the |
71 | // source and destination operands of XADD are GPR32, there is no sub-register |
72 | // dead info. If we rely on the generic MachineInstr::allDefsAreDead, then we |
73 | // will raise false alarm on GPR32 Def. |
74 | // |
75 | // To support GPR32 Def, ideally we could just enable sub-registr liveness track |
76 | // on BPF backend, then allDefsAreDead could work on GPR32 Def. This requires |
77 | // implementing TargetSubtargetInfo::enableSubRegLiveness on BPF. |
78 | // |
79 | // However, sub-register liveness tracking module inside LLVM is actually |
80 | // designed for the situation where one register could be split into more than |
81 | // one sub-registers for which case each sub-register could have their own |
82 | // liveness and kill one of them doesn't kill others. So, tracking liveness for |
83 | // each make sense. |
84 | // |
85 | // For BPF, each 64-bit register could only have one 32-bit sub-register. This |
86 | // is exactly the case which LLVM think brings no benefits for doing |
87 | // sub-register tracking, because the live range of sub-register must always |
88 | // equal to its parent register, therefore liveness tracking is disabled even |
89 | // the back-end has implemented enableSubRegLiveness. The detailed information |
90 | // is at r232695: |
91 | // |
92 | // Author: Matthias Braun <matze@braunis.de> |
93 | // Date: Thu Mar 19 00:21:58 2015 +0000 |
94 | // Do not track subregister liveness when it brings no benefits |
95 | // |
96 | // Hence, for BPF, we enhance MachineInstr::allDefsAreDead. Given the solo |
97 | // sub-register always has the same liveness as its parent register, LLVM is |
98 | // already attaching a implicit 64-bit register Def whenever the there is |
99 | // a sub-register Def. The liveness of the implicit 64-bit Def is available. |
100 | // For example, for "lock *(u32 *)(r0 + 4) += w9", the MachineOperand info could |
101 | // be: |
102 | // |
103 | // $w9 = XADDW32 killed $r0, 4, $w9(tied-def 0), |
104 | // implicit killed $r9, implicit-def dead $r9 |
105 | // |
106 | // Even though w9 is not marked as Dead, the parent register r9 is marked as |
107 | // Dead correctly, and it is safe to use such information or our purpose. |
108 | static bool hasLiveDefs(const MachineInstr &MI, const TargetRegisterInfo *TRI) { |
109 | const MCRegisterClass *GPR64RegClass = |
110 | &BPFMCRegisterClasses[BPF::GPRRegClassID]; |
111 | std::vector<unsigned> GPR32LiveDefs; |
112 | std::vector<unsigned> GPR64DeadDefs; |
113 | |
114 | for (const MachineOperand &MO : MI.operands()) { |
115 | bool RegIsGPR64; |
116 | |
117 | if (!MO.isReg() || MO.isUse()) |
118 | continue; |
119 | |
120 | RegIsGPR64 = GPR64RegClass->contains(Reg: MO.getReg()); |
121 | if (!MO.isDead()) { |
122 | // It is a GPR64 live Def, we are sure it is live. */ |
123 | if (RegIsGPR64) |
124 | return true; |
125 | // It is a GPR32 live Def, we are unsure whether it is really dead due to |
126 | // no sub-register liveness tracking. Push it to vector for deferred |
127 | // check. |
128 | GPR32LiveDefs.push_back(x: MO.getReg()); |
129 | continue; |
130 | } |
131 | |
132 | // Record any GPR64 dead Def as some unmarked GPR32 could be alias of its |
133 | // low 32-bit. |
134 | if (RegIsGPR64) |
135 | GPR64DeadDefs.push_back(x: MO.getReg()); |
136 | } |
137 | |
138 | // No GPR32 live Def, safe to return false. |
139 | if (GPR32LiveDefs.empty()) |
140 | return false; |
141 | |
142 | // No GPR64 dead Def, so all those GPR32 live Def can't have alias, therefore |
143 | // must be truely live, safe to return true. |
144 | if (GPR64DeadDefs.empty()) |
145 | return true; |
146 | |
147 | // Otherwise, return true if any aliased SuperReg of GPR32 is not dead. |
148 | for (auto I : GPR32LiveDefs) |
149 | for (MCPhysReg SR : TRI->superregs(Reg: I)) |
150 | if (!llvm::is_contained(Range&: GPR64DeadDefs, Element: SR)) |
151 | return true; |
152 | |
153 | return false; |
154 | } |
155 | |
156 | bool BPFMIPreEmitChecking::processAtomicInsts() { |
157 | for (MachineBasicBlock &MBB : *MF) { |
158 | for (MachineInstr &MI : MBB) { |
159 | if (MI.getOpcode() != BPF::XADDW && |
160 | MI.getOpcode() != BPF::XADDD && |
161 | MI.getOpcode() != BPF::XADDW32) |
162 | continue; |
163 | |
164 | LLVM_DEBUG(MI.dump()); |
165 | if (hasLiveDefs(MI, TRI)) { |
166 | DebugLoc Empty; |
167 | const DebugLoc &DL = MI.getDebugLoc(); |
168 | const Function &F = MF->getFunction(); |
169 | F.getContext().diagnose(DI: DiagnosticInfoUnsupported{ |
170 | F, "Invalid usage of the XADD return value" , DL}); |
171 | } |
172 | } |
173 | } |
174 | |
175 | // Check return values of atomic_fetch_and_{add,and,or,xor}. |
176 | // If the return is not used, the atomic_fetch_and_<op> instruction |
177 | // is replaced with atomic_<op> instruction. |
178 | MachineInstr *ToErase = nullptr; |
179 | bool Changed = false; |
180 | const BPFInstrInfo *TII = MF->getSubtarget<BPFSubtarget>().getInstrInfo(); |
181 | for (MachineBasicBlock &MBB : *MF) { |
182 | for (MachineInstr &MI : MBB) { |
183 | if (ToErase) { |
184 | ToErase->eraseFromParent(); |
185 | ToErase = nullptr; |
186 | } |
187 | |
188 | if (MI.getOpcode() != BPF::XFADDW32 && MI.getOpcode() != BPF::XFADDD && |
189 | MI.getOpcode() != BPF::XFANDW32 && MI.getOpcode() != BPF::XFANDD && |
190 | MI.getOpcode() != BPF::XFXORW32 && MI.getOpcode() != BPF::XFXORD && |
191 | MI.getOpcode() != BPF::XFORW32 && MI.getOpcode() != BPF::XFORD) |
192 | continue; |
193 | |
194 | if (hasLiveDefs(MI, TRI)) |
195 | continue; |
196 | |
197 | LLVM_DEBUG(dbgs() << "Transforming " ; MI.dump()); |
198 | unsigned newOpcode; |
199 | switch (MI.getOpcode()) { |
200 | case BPF::XFADDW32: |
201 | newOpcode = BPF::XADDW32; |
202 | break; |
203 | case BPF::XFADDD: |
204 | newOpcode = BPF::XADDD; |
205 | break; |
206 | case BPF::XFANDW32: |
207 | newOpcode = BPF::XANDW32; |
208 | break; |
209 | case BPF::XFANDD: |
210 | newOpcode = BPF::XANDD; |
211 | break; |
212 | case BPF::XFXORW32: |
213 | newOpcode = BPF::XXORW32; |
214 | break; |
215 | case BPF::XFXORD: |
216 | newOpcode = BPF::XXORD; |
217 | break; |
218 | case BPF::XFORW32: |
219 | newOpcode = BPF::XORW32; |
220 | break; |
221 | case BPF::XFORD: |
222 | newOpcode = BPF::XORD; |
223 | break; |
224 | default: |
225 | llvm_unreachable("Incorrect Atomic Instruction Opcode" ); |
226 | } |
227 | |
228 | BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: newOpcode)) |
229 | .add(MO: MI.getOperand(i: 0)) |
230 | .add(MO: MI.getOperand(i: 1)) |
231 | .add(MO: MI.getOperand(i: 2)) |
232 | .add(MO: MI.getOperand(i: 3)); |
233 | |
234 | ToErase = &MI; |
235 | Changed = true; |
236 | } |
237 | } |
238 | |
239 | return Changed; |
240 | } |
241 | |
242 | } // end default namespace |
243 | |
244 | INITIALIZE_PASS(BPFMIPreEmitChecking, "bpf-mi-pemit-checking" , |
245 | "BPF PreEmit Checking" , false, false) |
246 | |
247 | char BPFMIPreEmitChecking::ID = 0; |
248 | FunctionPass* llvm::createBPFMIPreEmitCheckingPass() |
249 | { |
250 | return new BPFMIPreEmitChecking(); |
251 | } |
252 | |