1 | //===--- HexagonGenMemAbsolute.cpp - Generate Load/Store Set Absolute ---===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | // This pass traverses through all the basic blocks in a function and converts |
10 | // an indexed load/store with offset "0" to a absolute-set load/store |
11 | // instruction as long as the use of the register in the new instruction |
12 | // dominates the rest of the uses and there are more than 2 uses. |
13 | |
14 | #include "HexagonTargetMachine.h" |
15 | #include "llvm/ADT/Statistic.h" |
16 | #include "llvm/CodeGen/MachineDominators.h" |
17 | #include "llvm/CodeGen/MachineFunctionPass.h" |
18 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
19 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
20 | #include "llvm/CodeGen/Passes.h" |
21 | #include "llvm/CodeGen/TargetInstrInfo.h" |
22 | #include "llvm/Support/Debug.h" |
23 | #include "llvm/Support/raw_ostream.h" |
24 | #include "llvm/Target/TargetMachine.h" |
25 | |
26 | #define DEBUG_TYPE "hexagon-abs" |
27 | |
28 | using namespace llvm; |
29 | |
30 | STATISTIC(HexagonNumLoadAbsConversions, |
31 | "Number of Load instructions converted to absolute-set form" ); |
32 | STATISTIC(HexagonNumStoreAbsConversions, |
33 | "Number of Store instructions converted to absolute-set form" ); |
34 | |
35 | namespace llvm { |
36 | FunctionPass *createHexagonGenMemAbsolute(); |
37 | void initializeHexagonGenMemAbsolutePass(PassRegistry &Registry); |
38 | } // namespace llvm |
39 | |
40 | namespace { |
41 | |
42 | class HexagonGenMemAbsolute : public MachineFunctionPass { |
43 | const HexagonInstrInfo *TII; |
44 | MachineRegisterInfo *MRI; |
45 | const TargetRegisterInfo *TRI; |
46 | |
47 | public: |
48 | static char ID; |
49 | HexagonGenMemAbsolute() : MachineFunctionPass(ID), TII(0), MRI(0), TRI(0) { |
50 | initializeHexagonGenMemAbsolutePass(Registry&: *PassRegistry::getPassRegistry()); |
51 | } |
52 | |
53 | StringRef getPassName() const override { |
54 | return "Hexagon Generate Load/Store Set Absolute Address Instruction" ; |
55 | } |
56 | |
57 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
58 | MachineFunctionPass::getAnalysisUsage(AU); |
59 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
60 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
61 | } |
62 | |
63 | bool runOnMachineFunction(MachineFunction &Fn) override; |
64 | |
65 | private: |
66 | static bool isValidIndexedLoad(int &Opcode, int &NewOpcode); |
67 | static bool isValidIndexedStore(int &Opcode, int &NewOpcode); |
68 | }; |
69 | } // namespace |
70 | |
71 | char HexagonGenMemAbsolute::ID = 0; |
72 | |
73 | INITIALIZE_PASS(HexagonGenMemAbsolute, "hexagon-gen-load-absolute" , |
74 | "Hexagon Generate Load/Store Set Absolute Address Instruction" , |
75 | false, false) |
76 | |
77 | bool HexagonGenMemAbsolute::runOnMachineFunction(MachineFunction &Fn) { |
78 | if (skipFunction(F: Fn.getFunction())) |
79 | return false; |
80 | |
81 | TII = Fn.getSubtarget<HexagonSubtarget>().getInstrInfo(); |
82 | MRI = &Fn.getRegInfo(); |
83 | TRI = Fn.getRegInfo().getTargetRegisterInfo(); |
84 | |
85 | MachineDominatorTree &MDT = |
86 | getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
87 | |
88 | // Loop over all of the basic blocks |
89 | for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end(); |
90 | MBBb != MBBe; ++MBBb) { |
91 | MachineBasicBlock *MBB = &*MBBb; |
92 | // Traverse the basic block |
93 | for (MachineBasicBlock::iterator MII = MBB->begin(); MII != MBB->end(); |
94 | ++MII) { |
95 | MachineInstr *MI = &*MII; |
96 | int Opc = MI->getOpcode(); |
97 | if (Opc != Hexagon::CONST32 && Opc != Hexagon::A2_tfrsi) |
98 | continue; |
99 | |
100 | const MachineOperand &MO = MI->getOperand(i: 0); |
101 | if (!MO.isReg() || !MO.isDef()) |
102 | continue; |
103 | |
104 | unsigned DstReg = MO.getReg(); |
105 | if (MRI->use_nodbg_empty(RegNo: DstReg)) |
106 | continue; |
107 | |
108 | typedef MachineRegisterInfo::use_nodbg_iterator use_iterator; |
109 | use_iterator NextUseMI = MRI->use_nodbg_begin(RegNo: DstReg); |
110 | |
111 | MachineInstr *NextMI = NextUseMI->getParent(); |
112 | int NextOpc = NextMI->getOpcode(); |
113 | int NewOpc; |
114 | bool IsLoad = isValidIndexedLoad(Opcode&: NextOpc, NewOpcode&: NewOpc); |
115 | |
116 | if (!IsLoad && !isValidIndexedStore(Opcode&: NextOpc, NewOpcode&: NewOpc)) |
117 | continue; |
118 | |
119 | // Base and Offset positions for load and store instructions |
120 | // Load R(dest), R(base), Imm -> R(dest) = mem(R(base) + Imm) |
121 | // Store R(base), Imm, R (src) -> mem(R(base) + Imm) = R(src) |
122 | unsigned BaseRegPos, ImmPos, RegPos; |
123 | if (!TII->getBaseAndOffsetPosition(MI: *NextMI, BasePos&: BaseRegPos, OffsetPos&: ImmPos)) |
124 | continue; |
125 | RegPos = IsLoad ? 0 : 2; |
126 | |
127 | bool IsGlobal = MI->getOperand(i: 1).isGlobal(); |
128 | if (!MI->getOperand(i: 1).isImm() && !IsGlobal) |
129 | continue; |
130 | |
131 | const MachineOperand *BaseOp = nullptr; |
132 | int64_t Offset; |
133 | bool Scalable; |
134 | TII->getMemOperandWithOffset(MI: *NextMI, BaseOp, Offset, OffsetIsScalable&: Scalable, TRI); |
135 | |
136 | // Ensure BaseOp is non-null and register type. |
137 | if (!BaseOp || !BaseOp->isReg()) |
138 | continue; |
139 | |
140 | if (Scalable) |
141 | continue; |
142 | |
143 | unsigned BaseReg = BaseOp->getReg(); |
144 | if ((DstReg != BaseReg) || (Offset != 0)) |
145 | continue; |
146 | |
147 | const MachineOperand &MO0 = NextMI->getOperand(i: RegPos); |
148 | |
149 | if (!MO0.isReg()) |
150 | continue; |
151 | |
152 | unsigned LoadStoreReg = MO0.getReg(); |
153 | |
154 | // Store: Bail out if the src and base are same (def and use on same |
155 | // register). |
156 | if (LoadStoreReg == BaseReg) |
157 | continue; |
158 | |
159 | // Insert the absolute-set instruction "I" only if the use of the |
160 | // BaseReg in "I" dominates the rest of the uses of BaseReg and if |
161 | // there are more than 2 uses of this BaseReg. |
162 | bool Dominates = true; |
163 | unsigned Counter = 0; |
164 | for (use_iterator I = NextUseMI, E = MRI->use_nodbg_end(); I != E; ++I) { |
165 | Counter++; |
166 | if (!MDT.dominates(A: NextMI, B: I->getParent())) |
167 | Dominates = false; |
168 | } |
169 | |
170 | if ((!Dominates) || (Counter < 3)) |
171 | continue; |
172 | |
173 | // If we reach here, we have met all the conditions required for the |
174 | // replacement of the absolute instruction. |
175 | LLVM_DEBUG({ |
176 | dbgs() << "Found a pair of instructions for absolute-set " |
177 | << (IsLoad ? "load" : "store" ) << "\n" ; |
178 | dbgs() << *MI; |
179 | dbgs() << *NextMI; |
180 | }); |
181 | MachineBasicBlock *ParentBlock = NextMI->getParent(); |
182 | MachineInstrBuilder MIB; |
183 | if (IsLoad) { // Insert absolute-set load instruction |
184 | ++HexagonNumLoadAbsConversions; |
185 | MIB = BuildMI(BB&: *ParentBlock, I: NextMI, MIMD: NextMI->getDebugLoc(), |
186 | MCID: TII->get(Opcode: NewOpc), DestReg: LoadStoreReg) |
187 | .addReg(RegNo: DstReg, flags: RegState::Define); |
188 | } else { // Insert absolute-set store instruction |
189 | ++HexagonNumStoreAbsConversions; |
190 | MIB = BuildMI(BB&: *ParentBlock, I: NextMI, MIMD: NextMI->getDebugLoc(), |
191 | MCID: TII->get(Opcode: NewOpc), DestReg: DstReg); |
192 | } |
193 | |
194 | MachineOperand ImmOperand = MI->getOperand(i: 1); |
195 | if (IsGlobal) |
196 | MIB.addGlobalAddress(GV: ImmOperand.getGlobal(), Offset: ImmOperand.getOffset(), |
197 | TargetFlags: ImmOperand.getTargetFlags()); |
198 | else |
199 | MIB.addImm(Val: ImmOperand.getImm()); |
200 | |
201 | if (IsLoad) |
202 | MIB->getOperand(i: 0).setSubReg(MO0.getSubReg()); |
203 | else |
204 | MIB.addReg(RegNo: LoadStoreReg, flags: 0, SubReg: MO0.getSubReg()); |
205 | |
206 | LLVM_DEBUG(dbgs() << "Replaced with " << *MIB << "\n" ); |
207 | // Erase the instructions that got replaced. |
208 | MII = MBB->erase(I: MI); |
209 | --MII; |
210 | NextMI->getParent()->erase(I: NextMI); |
211 | } |
212 | } |
213 | |
214 | return true; |
215 | } |
216 | |
217 | bool HexagonGenMemAbsolute::isValidIndexedLoad(int &Opc, int &NewOpc) { |
218 | |
219 | bool Result = true; |
220 | switch (Opc) { |
221 | case Hexagon::L2_loadrb_io: |
222 | NewOpc = Hexagon::L4_loadrb_ap; |
223 | break; |
224 | case Hexagon::L2_loadrh_io: |
225 | NewOpc = Hexagon::L4_loadrh_ap; |
226 | break; |
227 | case Hexagon::L2_loadri_io: |
228 | NewOpc = Hexagon::L4_loadri_ap; |
229 | break; |
230 | case Hexagon::L2_loadrd_io: |
231 | NewOpc = Hexagon::L4_loadrd_ap; |
232 | break; |
233 | case Hexagon::L2_loadruh_io: |
234 | NewOpc = Hexagon::L4_loadruh_ap; |
235 | break; |
236 | case Hexagon::L2_loadrub_io: |
237 | NewOpc = Hexagon::L4_loadrub_ap; |
238 | break; |
239 | default: |
240 | Result = false; |
241 | } |
242 | |
243 | return Result; |
244 | } |
245 | |
246 | bool HexagonGenMemAbsolute::isValidIndexedStore(int &Opc, int &NewOpc) { |
247 | |
248 | bool Result = true; |
249 | switch (Opc) { |
250 | case Hexagon::S2_storerd_io: |
251 | NewOpc = Hexagon::S4_storerd_ap; |
252 | break; |
253 | case Hexagon::S2_storeri_io: |
254 | NewOpc = Hexagon::S4_storeri_ap; |
255 | break; |
256 | case Hexagon::S2_storerh_io: |
257 | NewOpc = Hexagon::S4_storerh_ap; |
258 | break; |
259 | case Hexagon::S2_storerb_io: |
260 | NewOpc = Hexagon::S4_storerb_ap; |
261 | break; |
262 | default: |
263 | Result = false; |
264 | } |
265 | |
266 | return Result; |
267 | } |
268 | |
269 | //===----------------------------------------------------------------------===// |
270 | // Public Constructor Functions |
271 | //===----------------------------------------------------------------------===// |
272 | |
273 | FunctionPass *llvm::createHexagonGenMemAbsolute() { |
274 | return new HexagonGenMemAbsolute(); |
275 | } |
276 | |