1//===-- PPCMCTargetDesc.h - PowerPC Target Descriptions ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides PowerPC specific target descriptions.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_LIB_TARGET_POWERPC_MCTARGETDESC_PPCMCTARGETDESC_H
14#define LLVM_LIB_TARGET_POWERPC_MCTARGETDESC_PPCMCTARGETDESC_H
15
16// GCC #defines PPC on Linux but we use it as our namespace name
17#undef PPC
18
19#include "llvm/MC/MCRegisterInfo.h"
20#include "llvm/Support/MathExtras.h"
21#include <cstdint>
22#include <memory>
23
24namespace llvm {
25
26class MCAsmBackend;
27class MCCodeEmitter;
28class MCContext;
29class MCInstrDesc;
30class MCInstrInfo;
31class MCObjectTargetWriter;
32class MCRegisterInfo;
33class MCSubtargetInfo;
34class MCTargetOptions;
35class Target;
36
37namespace PPC {
38/// stripRegisterPrefix - This method strips the character prefix from a
39/// register name so that only the number is left. Used by for linux asm.
40const char *stripRegisterPrefix(const char *RegName);
41
42/// getRegNumForOperand - some operands use different numbering schemes
43/// for the same registers. For example, a VSX instruction may have any of
44/// vs0-vs63 allocated whereas an Altivec instruction could only have
45/// vs32-vs63 allocated (numbered as v0-v31). This function returns the actual
46/// register number needed for the opcode/operand number combination.
47/// The operand number argument will be useful when we need to extend this
48/// to instructions that use both Altivec and VSX numbering (for different
49/// operands).
50unsigned getRegNumForOperand(const MCInstrDesc &Desc, unsigned Reg,
51 unsigned OpNo);
52
53} // namespace PPC
54
55MCCodeEmitter *createPPCMCCodeEmitter(const MCInstrInfo &MCII,
56 MCContext &Ctx);
57
58MCAsmBackend *createPPCAsmBackend(const Target &T, const MCSubtargetInfo &STI,
59 const MCRegisterInfo &MRI,
60 const MCTargetOptions &Options);
61
62/// Construct an PPC ELF object writer.
63std::unique_ptr<MCObjectTargetWriter> createPPCELFObjectWriter(bool Is64Bit,
64 uint8_t OSABI);
65/// Construct a PPC Mach-O object writer.
66std::unique_ptr<MCObjectTargetWriter>
67createPPCMachObjectWriter(bool Is64Bit, uint32_t CPUType, uint32_t CPUSubtype);
68
69/// Construct a PPC XCOFF object writer.
70std::unique_ptr<MCObjectTargetWriter> createPPCXCOFFObjectWriter(bool Is64Bit);
71
72/// Returns true iff Val consists of one contiguous run of 1s with any number of
73/// 0s on either side. The 1s are allowed to wrap from LSB to MSB, so
74/// 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is not,
75/// since all 1s are not contiguous.
76static inline bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
77 if (!Val)
78 return false;
79
80 if (isShiftedMask_32(Value: Val)) {
81 // look for the first non-zero bit
82 MB = llvm::countl_zero(Val);
83 // look for the first zero bit after the run of ones
84 ME = llvm::countl_zero(Val: (Val - 1) ^ Val);
85 return true;
86 } else {
87 Val = ~Val; // invert mask
88 if (isShiftedMask_32(Value: Val)) {
89 // effectively look for the first zero bit
90 ME = llvm::countl_zero(Val) - 1;
91 // effectively look for the first one bit after the run of zeros
92 MB = llvm::countl_zero(Val: (Val - 1) ^ Val) + 1;
93 return true;
94 }
95 }
96 // no run present
97 return false;
98}
99
100static inline bool isRunOfOnes64(uint64_t Val, unsigned &MB, unsigned &ME) {
101 if (!Val)
102 return false;
103
104 if (isShiftedMask_64(Value: Val)) {
105 // look for the first non-zero bit
106 MB = llvm::countl_zero(Val);
107 // look for the first zero bit after the run of ones
108 ME = llvm::countl_zero(Val: (Val - 1) ^ Val);
109 return true;
110 } else {
111 Val = ~Val; // invert mask
112 if (isShiftedMask_64(Value: Val)) {
113 // effectively look for the first zero bit
114 ME = llvm::countl_zero(Val) - 1;
115 // effectively look for the first one bit after the run of zeros
116 MB = llvm::countl_zero(Val: (Val - 1) ^ Val) + 1;
117 return true;
118 }
119 }
120 // no run present
121 return false;
122}
123
124/// PPCII - This namespace holds all of the PowerPC target-specific
125/// per-instruction flags. These must match the corresponding definitions in
126/// PPC.td and PPCInstrFormats.td.
127namespace PPCII {
128enum {
129 // PPC970 Instruction Flags. These flags describe the characteristics of the
130 // PowerPC 970 (aka G5) dispatch groups and how they are formed out of
131 // raw machine instructions.
132
133 /// PPC970_First - This instruction starts a new dispatch group, so it will
134 /// always be the first one in the group.
135 PPC970_First = 0x1,
136
137 /// PPC970_Single - This instruction starts a new dispatch group and
138 /// terminates it, so it will be the sole instruction in the group.
139 PPC970_Single = 0x2,
140
141 /// PPC970_Cracked - This instruction is cracked into two pieces, requiring
142 /// two dispatch pipes to be available to issue.
143 PPC970_Cracked = 0x4,
144
145 /// PPC970_Mask/Shift - This is a bitmask that selects the pipeline type that
146 /// an instruction is issued to.
147 PPC970_Shift = 3,
148 PPC970_Mask = 0x07 << PPC970_Shift
149};
150enum PPC970_Unit {
151 /// These are the various PPC970 execution unit pipelines. Each instruction
152 /// is one of these.
153 PPC970_Pseudo = 0 << PPC970_Shift, // Pseudo instruction
154 PPC970_FXU = 1 << PPC970_Shift, // Fixed Point (aka Integer/ALU) Unit
155 PPC970_LSU = 2 << PPC970_Shift, // Load Store Unit
156 PPC970_FPU = 3 << PPC970_Shift, // Floating Point Unit
157 PPC970_CRU = 4 << PPC970_Shift, // Control Register Unit
158 PPC970_VALU = 5 << PPC970_Shift, // Vector ALU
159 PPC970_VPERM = 6 << PPC970_Shift, // Vector Permute Unit
160 PPC970_BRU = 7 << PPC970_Shift // Branch Unit
161};
162
163enum {
164 /// Shift count to bypass PPC970 flags
165 NewDef_Shift = 6,
166
167 /// This instruction is an X-Form memory operation.
168 XFormMemOp = 0x1 << NewDef_Shift,
169 /// This instruction is prefixed.
170 Prefixed = 0x1 << (NewDef_Shift + 1),
171 /// This instruction produced a sign extended result.
172 SExt32To64 = 0x1 << (NewDef_Shift + 2),
173 /// This instruction produced a zero extended result.
174 ZExt32To64 = 0x1 << (NewDef_Shift + 3)
175};
176} // end namespace PPCII
177
178} // end namespace llvm
179
180// Defines symbolic names for PowerPC registers. This defines a mapping from
181// register name to register number.
182//
183#define GET_REGINFO_ENUM
184#include "PPCGenRegisterInfo.inc"
185
186// Defines symbolic names for the PowerPC instructions.
187//
188#define GET_INSTRINFO_ENUM
189#define GET_INSTRINFO_SCHED_ENUM
190#define GET_INSTRINFO_MC_HELPER_DECLS
191#include "PPCGenInstrInfo.inc"
192
193#define GET_SUBTARGETINFO_ENUM
194#include "PPCGenSubtargetInfo.inc"
195
196#define PPC_REGS0_7(X) \
197 { \
198 X##0, X##1, X##2, X##3, X##4, X##5, X##6, X##7 \
199 }
200
201#define PPC_REGS0_31(X) \
202 { \
203 X##0, X##1, X##2, X##3, X##4, X##5, X##6, X##7, X##8, X##9, X##10, X##11, \
204 X##12, X##13, X##14, X##15, X##16, X##17, X##18, X##19, X##20, X##21, \
205 X##22, X##23, X##24, X##25, X##26, X##27, X##28, X##29, X##30, X##31 \
206 }
207
208#define PPC_REGS_EVEN0_30(X) \
209 { \
210 X##0, X##2, X##4, X##6, X##8, X##10, X##12, X##14, X##16, X##18, X##20, \
211 X##22, X##24, X##26, X##28, X##30 \
212 }
213
214#define PPC_REGS0_63(X) \
215 { \
216 X##0, X##1, X##2, X##3, X##4, X##5, X##6, X##7, X##8, X##9, X##10, X##11, \
217 X##12, X##13, X##14, X##15, X##16, X##17, X##18, X##19, X##20, X##21, \
218 X##22, X##23, X##24, X##25, X##26, X##27, X##28, X##29, X##30, X##31, \
219 X##32, X##33, X##34, X##35, X##36, X##37, X##38, X##39, X##40, X##41, \
220 X##42, X##43, X##44, X##45, X##46, X##47, X##48, X##49, X##50, X##51, \
221 X##52, X##53, X##54, X##55, X##56, X##57, X##58, X##59, X##60, X##61, \
222 X##62, X##63 \
223 }
224
225#define PPC_REGS_NO0_31(Z, X) \
226 { \
227 Z, X##1, X##2, X##3, X##4, X##5, X##6, X##7, X##8, X##9, X##10, X##11, \
228 X##12, X##13, X##14, X##15, X##16, X##17, X##18, X##19, X##20, X##21, \
229 X##22, X##23, X##24, X##25, X##26, X##27, X##28, X##29, X##30, X##31 \
230 }
231
232#define PPC_REGS_LO_HI(LO, HI) \
233 { \
234 LO##0, LO##1, LO##2, LO##3, LO##4, LO##5, LO##6, LO##7, LO##8, LO##9, \
235 LO##10, LO##11, LO##12, LO##13, LO##14, LO##15, LO##16, LO##17, \
236 LO##18, LO##19, LO##20, LO##21, LO##22, LO##23, LO##24, LO##25, \
237 LO##26, LO##27, LO##28, LO##29, LO##30, LO##31, HI##0, HI##1, HI##2, \
238 HI##3, HI##4, HI##5, HI##6, HI##7, HI##8, HI##9, HI##10, HI##11, \
239 HI##12, HI##13, HI##14, HI##15, HI##16, HI##17, HI##18, HI##19, \
240 HI##20, HI##21, HI##22, HI##23, HI##24, HI##25, HI##26, HI##27, \
241 HI##28, HI##29, HI##30, HI##31 \
242 }
243
244#define PPC_REGS0_7(X) \
245 { \
246 X##0, X##1, X##2, X##3, X##4, X##5, X##6, X##7 \
247 }
248
249#define PPC_REGS0_3(X) \
250 { \
251 X##0, X##1, X##2, X##3 \
252 }
253
254using llvm::MCPhysReg;
255
256#define DEFINE_PPC_REGCLASSES \
257 static const MCPhysReg RRegs[32] = PPC_REGS0_31(PPC::R); \
258 static const MCPhysReg XRegs[32] = PPC_REGS0_31(PPC::X); \
259 static const MCPhysReg FRegs[32] = PPC_REGS0_31(PPC::F); \
260 static const MCPhysReg FpRegs[16] = PPC_REGS_EVEN0_30(PPC::Fpair); \
261 static const MCPhysReg VSRpRegs[32] = PPC_REGS0_31(PPC::VSRp); \
262 static const MCPhysReg SPERegs[32] = PPC_REGS0_31(PPC::S); \
263 static const MCPhysReg VFRegs[32] = PPC_REGS0_31(PPC::VF); \
264 static const MCPhysReg VRegs[32] = PPC_REGS0_31(PPC::V); \
265 static const MCPhysReg RRegsNoR0[32] = PPC_REGS_NO0_31(PPC::ZERO, PPC::R); \
266 static const MCPhysReg XRegsNoX0[32] = PPC_REGS_NO0_31(PPC::ZERO8, PPC::X); \
267 static const MCPhysReg VSRegs[64] = PPC_REGS_LO_HI(PPC::VSL, PPC::V); \
268 static const MCPhysReg VSFRegs[64] = PPC_REGS_LO_HI(PPC::F, PPC::VF); \
269 static const MCPhysReg VSSRegs[64] = PPC_REGS_LO_HI(PPC::F, PPC::VF); \
270 static const MCPhysReg CRBITRegs[32] = { \
271 PPC::CR0LT, PPC::CR0GT, PPC::CR0EQ, PPC::CR0UN, PPC::CR1LT, PPC::CR1GT, \
272 PPC::CR1EQ, PPC::CR1UN, PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN, \
273 PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN, PPC::CR4LT, PPC::CR4GT, \
274 PPC::CR4EQ, PPC::CR4UN, PPC::CR5LT, PPC::CR5GT, PPC::CR5EQ, PPC::CR5UN, \
275 PPC::CR6LT, PPC::CR6GT, PPC::CR6EQ, PPC::CR6UN, PPC::CR7LT, PPC::CR7GT, \
276 PPC::CR7EQ, PPC::CR7UN}; \
277 static const MCPhysReg CRRegs[8] = PPC_REGS0_7(PPC::CR); \
278 static const MCPhysReg ACCRegs[8] = PPC_REGS0_7(PPC::ACC); \
279 static const MCPhysReg WACCRegs[8] = PPC_REGS0_7(PPC::WACC); \
280 static const MCPhysReg WACC_HIRegs[8] = PPC_REGS0_7(PPC::WACC_HI); \
281 static const MCPhysReg DMRROWpRegs[32] = PPC_REGS0_31(PPC::DMRROWp); \
282 static const MCPhysReg DMRROWRegs[64] = PPC_REGS0_63(PPC::DMRROW); \
283 static const MCPhysReg DMRRegs[8] = PPC_REGS0_7(PPC::DMR); \
284 static const MCPhysReg DMRpRegs[4] = PPC_REGS0_3(PPC::DMRp);
285
286namespace llvm {
287namespace PPC {
288static inline bool isVFRegister(unsigned Reg) {
289 return Reg >= PPC::VF0 && Reg <= PPC::VF31;
290}
291
292static inline bool isVRRegister(unsigned Reg) {
293 return Reg >= PPC::V0 && Reg <= PPC::V31;
294}
295} // namespace PPC
296} // namespace llvm
297
298#endif // LLVM_LIB_TARGET_POWERPC_MCTARGETDESC_PPCMCTARGETDESC_H
299