1 | //===-- RISCVBaseInfo.cpp - Top level definitions for RISC-V MC -----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains small standalone enum definitions for the RISC-V target |
10 | // useful for the compiler back-end and the MC libraries. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "RISCVBaseInfo.h" |
15 | #include "llvm/ADT/ArrayRef.h" |
16 | #include "llvm/MC/MCInst.h" |
17 | #include "llvm/MC/MCRegisterInfo.h" |
18 | #include "llvm/MC/MCSubtargetInfo.h" |
19 | #include "llvm/Support/raw_ostream.h" |
20 | #include "llvm/TargetParser/TargetParser.h" |
21 | #include "llvm/TargetParser/Triple.h" |
22 | |
23 | namespace llvm { |
24 | |
25 | extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures]; |
26 | |
27 | namespace RISCVSysReg { |
28 | #define GET_SysRegsList_IMPL |
29 | #include "RISCVGenSearchableTables.inc" |
30 | } // namespace RISCVSysReg |
31 | |
32 | namespace RISCVInsnOpcode { |
33 | #define GET_RISCVOpcodesList_IMPL |
34 | #include "RISCVGenSearchableTables.inc" |
35 | } // namespace RISCVInsnOpcode |
36 | |
37 | namespace RISCVABI { |
38 | ABI computeTargetABI(const Triple &TT, const FeatureBitset &FeatureBits, |
39 | StringRef ABIName) { |
40 | auto TargetABI = getTargetABI(ABIName); |
41 | bool IsRV64 = TT.isArch64Bit(); |
42 | bool IsRVE = FeatureBits[RISCV::FeatureStdExtE]; |
43 | |
44 | if (!ABIName.empty() && TargetABI == ABI_Unknown) { |
45 | errs() |
46 | << "'" << ABIName |
47 | << "' is not a recognized ABI for this target (ignoring target-abi)\n" ; |
48 | } else if (ABIName.starts_with(Prefix: "ilp32" ) && IsRV64) { |
49 | errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring " |
50 | "target-abi)\n" ; |
51 | TargetABI = ABI_Unknown; |
52 | } else if (ABIName.starts_with(Prefix: "lp64" ) && !IsRV64) { |
53 | errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring " |
54 | "target-abi)\n" ; |
55 | TargetABI = ABI_Unknown; |
56 | } else if (!IsRV64 && IsRVE && TargetABI != ABI_ILP32E && |
57 | TargetABI != ABI_Unknown) { |
58 | // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser |
59 | errs() |
60 | << "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n" ; |
61 | TargetABI = ABI_Unknown; |
62 | } else if (IsRV64 && IsRVE && TargetABI != ABI_LP64E && |
63 | TargetABI != ABI_Unknown) { |
64 | // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser |
65 | errs() |
66 | << "Only the lp64e ABI is supported for RV64E (ignoring target-abi)\n" ; |
67 | TargetABI = ABI_Unknown; |
68 | } |
69 | |
70 | if ((TargetABI == RISCVABI::ABI::ABI_ILP32E || |
71 | (TargetABI == ABI_Unknown && IsRVE && !IsRV64)) && |
72 | FeatureBits[RISCV::FeatureStdExtD]) |
73 | report_fatal_error(reason: "ILP32E cannot be used with the D ISA extension" ); |
74 | |
75 | if (TargetABI != ABI_Unknown) |
76 | return TargetABI; |
77 | |
78 | // If no explicit ABI is given, try to compute the default ABI. |
79 | auto ISAInfo = RISCVFeatures::parseFeatureBits(IsRV64, FeatureBits); |
80 | if (!ISAInfo) |
81 | report_fatal_error(Err: ISAInfo.takeError()); |
82 | return getTargetABI(ABIName: (*ISAInfo)->computeDefaultABI()); |
83 | } |
84 | |
85 | ABI getTargetABI(StringRef ABIName) { |
86 | auto TargetABI = StringSwitch<ABI>(ABIName) |
87 | .Case(S: "ilp32" , Value: ABI_ILP32) |
88 | .Case(S: "ilp32f" , Value: ABI_ILP32F) |
89 | .Case(S: "ilp32d" , Value: ABI_ILP32D) |
90 | .Case(S: "ilp32e" , Value: ABI_ILP32E) |
91 | .Case(S: "lp64" , Value: ABI_LP64) |
92 | .Case(S: "lp64f" , Value: ABI_LP64F) |
93 | .Case(S: "lp64d" , Value: ABI_LP64D) |
94 | .Case(S: "lp64e" , Value: ABI_LP64E) |
95 | .Default(Value: ABI_Unknown); |
96 | return TargetABI; |
97 | } |
98 | |
99 | // To avoid the BP value clobbered by a function call, we need to choose a |
100 | // callee saved register to save the value. RV32E only has X8 and X9 as callee |
101 | // saved registers and X8 will be used as fp. So we choose X9 as bp. |
102 | MCRegister getBPReg() { return RISCV::X9; } |
103 | |
104 | // Returns the register holding shadow call stack pointer. |
105 | MCRegister getSCSPReg() { return RISCV::X3; } |
106 | |
107 | } // namespace RISCVABI |
108 | |
109 | namespace RISCVFeatures { |
110 | |
111 | void validate(const Triple &TT, const FeatureBitset &FeatureBits) { |
112 | if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit]) |
113 | report_fatal_error(reason: "RV64 target requires an RV64 CPU" ); |
114 | if (!TT.isArch64Bit() && !FeatureBits[RISCV::Feature32Bit]) |
115 | report_fatal_error(reason: "RV32 target requires an RV32 CPU" ); |
116 | if (FeatureBits[RISCV::Feature32Bit] && |
117 | FeatureBits[RISCV::Feature64Bit]) |
118 | report_fatal_error(reason: "RV32 and RV64 can't be combined" ); |
119 | } |
120 | |
121 | llvm::Expected<std::unique_ptr<RISCVISAInfo>> |
122 | parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits) { |
123 | unsigned XLen = IsRV64 ? 64 : 32; |
124 | std::vector<std::string> FeatureVector; |
125 | // Convert FeatureBitset to FeatureVector. |
126 | for (auto Feature : RISCVFeatureKV) { |
127 | if (FeatureBits[Feature.Value] && |
128 | llvm::RISCVISAInfo::isSupportedExtensionFeature(Ext: Feature.Key)) |
129 | FeatureVector.push_back(x: std::string("+" ) + Feature.Key); |
130 | } |
131 | return llvm::RISCVISAInfo::parseFeatures(XLen, Features: FeatureVector); |
132 | } |
133 | |
134 | } // namespace RISCVFeatures |
135 | |
136 | // Include the auto-generated portion of the compress emitter. |
137 | #define GEN_UNCOMPRESS_INSTR |
138 | #define GEN_COMPRESS_INSTR |
139 | #include "RISCVGenCompressInstEmitter.inc" |
140 | |
141 | bool RISCVRVC::compress(MCInst &OutInst, const MCInst &MI, |
142 | const MCSubtargetInfo &STI) { |
143 | return compressInst(OutInst, MI, STI); |
144 | } |
145 | |
146 | bool RISCVRVC::uncompress(MCInst &OutInst, const MCInst &MI, |
147 | const MCSubtargetInfo &STI) { |
148 | return uncompressInst(OutInst, MI, STI); |
149 | } |
150 | |
151 | // Lookup table for fli.s for entries 2-31. |
152 | static constexpr std::pair<uint8_t, uint8_t> LoadFP32ImmArr[] = { |
153 | {0b01101111, 0b00}, {0b01110000, 0b00}, {0b01110111, 0b00}, |
154 | {0b01111000, 0b00}, {0b01111011, 0b00}, {0b01111100, 0b00}, |
155 | {0b01111101, 0b00}, {0b01111101, 0b01}, {0b01111101, 0b10}, |
156 | {0b01111101, 0b11}, {0b01111110, 0b00}, {0b01111110, 0b01}, |
157 | {0b01111110, 0b10}, {0b01111110, 0b11}, {0b01111111, 0b00}, |
158 | {0b01111111, 0b01}, {0b01111111, 0b10}, {0b01111111, 0b11}, |
159 | {0b10000000, 0b00}, {0b10000000, 0b01}, {0b10000000, 0b10}, |
160 | {0b10000001, 0b00}, {0b10000010, 0b00}, {0b10000011, 0b00}, |
161 | {0b10000110, 0b00}, {0b10000111, 0b00}, {0b10001110, 0b00}, |
162 | {0b10001111, 0b00}, {0b11111111, 0b00}, {0b11111111, 0b10}, |
163 | }; |
164 | |
165 | int RISCVLoadFPImm::getLoadFPImm(APFloat FPImm) { |
166 | assert((&FPImm.getSemantics() == &APFloat::IEEEsingle() || |
167 | &FPImm.getSemantics() == &APFloat::IEEEdouble() || |
168 | &FPImm.getSemantics() == &APFloat::IEEEhalf()) && |
169 | "Unexpected semantics" ); |
170 | |
171 | // Handle the minimum normalized value which is different for each type. |
172 | if (FPImm.isSmallestNormalized() && !FPImm.isNegative()) |
173 | return 1; |
174 | |
175 | // Convert to single precision to use its lookup table. |
176 | bool LosesInfo; |
177 | APFloat::opStatus Status = FPImm.convert( |
178 | ToSemantics: APFloat::IEEEsingle(), RM: APFloat::rmNearestTiesToEven, losesInfo: &LosesInfo); |
179 | if (Status != APFloat::opOK || LosesInfo) |
180 | return -1; |
181 | |
182 | APInt Imm = FPImm.bitcastToAPInt(); |
183 | |
184 | if (Imm.extractBitsAsZExtValue(numBits: 21, bitPosition: 0) != 0) |
185 | return -1; |
186 | |
187 | bool Sign = Imm.extractBitsAsZExtValue(numBits: 1, bitPosition: 31); |
188 | uint8_t Mantissa = Imm.extractBitsAsZExtValue(numBits: 2, bitPosition: 21); |
189 | uint8_t Exp = Imm.extractBitsAsZExtValue(numBits: 8, bitPosition: 23); |
190 | |
191 | auto EMI = llvm::lower_bound(Range: LoadFP32ImmArr, Value: std::make_pair(x&: Exp, y&: Mantissa)); |
192 | if (EMI == std::end(arr: LoadFP32ImmArr) || EMI->first != Exp || |
193 | EMI->second != Mantissa) |
194 | return -1; |
195 | |
196 | // Table doesn't have entry 0 or 1. |
197 | int Entry = std::distance(first: std::begin(arr: LoadFP32ImmArr), last: EMI) + 2; |
198 | |
199 | // The only legal negative value is -1.0(entry 0). 1.0 is entry 16. |
200 | if (Sign) { |
201 | if (Entry == 16) |
202 | return 0; |
203 | return -1; |
204 | } |
205 | |
206 | return Entry; |
207 | } |
208 | |
209 | float RISCVLoadFPImm::getFPImm(unsigned Imm) { |
210 | assert(Imm != 1 && Imm != 30 && Imm != 31 && "Unsupported immediate" ); |
211 | |
212 | // Entry 0 is -1.0, the only negative value. Entry 16 is 1.0. |
213 | uint32_t Sign = 0; |
214 | if (Imm == 0) { |
215 | Sign = 0b1; |
216 | Imm = 16; |
217 | } |
218 | |
219 | uint32_t Exp = LoadFP32ImmArr[Imm - 2].first; |
220 | uint32_t Mantissa = LoadFP32ImmArr[Imm - 2].second; |
221 | |
222 | uint32_t I = Sign << 31 | Exp << 23 | Mantissa << 21; |
223 | return bit_cast<float>(from: I); |
224 | } |
225 | |
226 | void RISCVZC::printRlist(unsigned SlistEncode, raw_ostream &OS) { |
227 | OS << "{ra" ; |
228 | if (SlistEncode > 4) { |
229 | OS << ", s0" ; |
230 | if (SlistEncode == 15) |
231 | OS << "-s11" ; |
232 | else if (SlistEncode > 5 && SlistEncode <= 14) |
233 | OS << "-s" << (SlistEncode - 5); |
234 | } |
235 | OS << "}" ; |
236 | } |
237 | |
238 | } // namespace llvm |
239 | |