1 | //===-- RISCVInstrInfo.cpp - RISC-V Instruction Information -----*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains the RISC-V implementation of the TargetInstrInfo class. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "RISCVInstrInfo.h" |
14 | #include "MCTargetDesc/RISCVMatInt.h" |
15 | #include "RISCV.h" |
16 | #include "RISCVMachineFunctionInfo.h" |
17 | #include "RISCVSubtarget.h" |
18 | #include "RISCVTargetMachine.h" |
19 | #include "llvm/ADT/STLExtras.h" |
20 | #include "llvm/ADT/SmallVector.h" |
21 | #include "llvm/Analysis/MemoryLocation.h" |
22 | #include "llvm/Analysis/ValueTracking.h" |
23 | #include "llvm/CodeGen/LiveIntervals.h" |
24 | #include "llvm/CodeGen/LiveVariables.h" |
25 | #include "llvm/CodeGen/MachineCombinerPattern.h" |
26 | #include "llvm/CodeGen/MachineFunctionPass.h" |
27 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
28 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
29 | #include "llvm/CodeGen/MachineTraceMetrics.h" |
30 | #include "llvm/CodeGen/RegisterScavenging.h" |
31 | #include "llvm/CodeGen/StackMaps.h" |
32 | #include "llvm/IR/DebugInfoMetadata.h" |
33 | #include "llvm/IR/Module.h" |
34 | #include "llvm/MC/MCInstBuilder.h" |
35 | #include "llvm/MC/TargetRegistry.h" |
36 | #include "llvm/Support/ErrorHandling.h" |
37 | |
38 | using namespace llvm; |
39 | |
40 | #define GEN_CHECK_COMPRESS_INSTR |
41 | #include "RISCVGenCompressInstEmitter.inc" |
42 | |
43 | #define GET_INSTRINFO_CTOR_DTOR |
44 | #define GET_INSTRINFO_NAMED_OPS |
45 | #include "RISCVGenInstrInfo.inc" |
46 | |
47 | static cl::opt<bool> PreferWholeRegisterMove( |
48 | "riscv-prefer-whole-register-move" , cl::init(Val: false), cl::Hidden, |
49 | cl::desc("Prefer whole register move for vector registers." )); |
50 | |
51 | static cl::opt<MachineTraceStrategy> ForceMachineCombinerStrategy( |
52 | "riscv-force-machine-combiner-strategy" , cl::Hidden, |
53 | cl::desc("Force machine combiner to use a specific strategy for machine " |
54 | "trace metrics evaluation." ), |
55 | cl::init(Val: MachineTraceStrategy::TS_NumStrategies), |
56 | cl::values(clEnumValN(MachineTraceStrategy::TS_Local, "local" , |
57 | "Local strategy." ), |
58 | clEnumValN(MachineTraceStrategy::TS_MinInstrCount, "min-instr" , |
59 | "MinInstrCount strategy." ))); |
60 | |
61 | namespace llvm::RISCVVPseudosTable { |
62 | |
63 | using namespace RISCV; |
64 | |
65 | #define GET_RISCVVPseudosTable_IMPL |
66 | #include "RISCVGenSearchableTables.inc" |
67 | |
68 | } // namespace llvm::RISCVVPseudosTable |
69 | |
70 | namespace llvm::RISCV { |
71 | |
72 | #define GET_RISCVMaskedPseudosTable_IMPL |
73 | #include "RISCVGenSearchableTables.inc" |
74 | |
75 | } // end namespace llvm::RISCV |
76 | |
77 | RISCVInstrInfo::RISCVInstrInfo(RISCVSubtarget &STI) |
78 | : RISCVGenInstrInfo(RISCV::ADJCALLSTACKDOWN, RISCV::ADJCALLSTACKUP), |
79 | STI(STI) {} |
80 | |
81 | MCInst RISCVInstrInfo::getNop() const { |
82 | if (STI.hasStdExtCOrZca()) |
83 | return MCInstBuilder(RISCV::C_NOP); |
84 | return MCInstBuilder(RISCV::ADDI) |
85 | .addReg(Reg: RISCV::X0) |
86 | .addReg(Reg: RISCV::X0) |
87 | .addImm(Val: 0); |
88 | } |
89 | |
90 | Register RISCVInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, |
91 | int &FrameIndex) const { |
92 | unsigned Dummy; |
93 | return isLoadFromStackSlot(MI, FrameIndex, MemBytes&: Dummy); |
94 | } |
95 | |
96 | Register RISCVInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, |
97 | int &FrameIndex, |
98 | unsigned &MemBytes) const { |
99 | switch (MI.getOpcode()) { |
100 | default: |
101 | return 0; |
102 | case RISCV::LB: |
103 | case RISCV::LBU: |
104 | MemBytes = 1; |
105 | break; |
106 | case RISCV::LH: |
107 | case RISCV::LHU: |
108 | case RISCV::FLH: |
109 | MemBytes = 2; |
110 | break; |
111 | case RISCV::LW: |
112 | case RISCV::FLW: |
113 | case RISCV::LWU: |
114 | MemBytes = 4; |
115 | break; |
116 | case RISCV::LD: |
117 | case RISCV::FLD: |
118 | MemBytes = 8; |
119 | break; |
120 | } |
121 | |
122 | if (MI.getOperand(i: 1).isFI() && MI.getOperand(i: 2).isImm() && |
123 | MI.getOperand(i: 2).getImm() == 0) { |
124 | FrameIndex = MI.getOperand(i: 1).getIndex(); |
125 | return MI.getOperand(i: 0).getReg(); |
126 | } |
127 | |
128 | return 0; |
129 | } |
130 | |
131 | Register RISCVInstrInfo::isStoreToStackSlot(const MachineInstr &MI, |
132 | int &FrameIndex) const { |
133 | unsigned Dummy; |
134 | return isStoreToStackSlot(MI, FrameIndex, MemBytes&: Dummy); |
135 | } |
136 | |
137 | Register RISCVInstrInfo::isStoreToStackSlot(const MachineInstr &MI, |
138 | int &FrameIndex, |
139 | unsigned &MemBytes) const { |
140 | switch (MI.getOpcode()) { |
141 | default: |
142 | return 0; |
143 | case RISCV::SB: |
144 | MemBytes = 1; |
145 | break; |
146 | case RISCV::SH: |
147 | case RISCV::FSH: |
148 | MemBytes = 2; |
149 | break; |
150 | case RISCV::SW: |
151 | case RISCV::FSW: |
152 | MemBytes = 4; |
153 | break; |
154 | case RISCV::SD: |
155 | case RISCV::FSD: |
156 | MemBytes = 8; |
157 | break; |
158 | } |
159 | |
160 | if (MI.getOperand(i: 1).isFI() && MI.getOperand(i: 2).isImm() && |
161 | MI.getOperand(i: 2).getImm() == 0) { |
162 | FrameIndex = MI.getOperand(i: 1).getIndex(); |
163 | return MI.getOperand(i: 0).getReg(); |
164 | } |
165 | |
166 | return 0; |
167 | } |
168 | |
169 | bool RISCVInstrInfo::isReallyTriviallyReMaterializable( |
170 | const MachineInstr &MI) const { |
171 | if (RISCV::getRVVMCOpcode(RVVPseudoOpcode: MI.getOpcode()) == RISCV::VID_V && |
172 | MI.getOperand(i: 1).isUndef() && |
173 | /* After RISCVInsertVSETVLI most pseudos will have implicit uses on vl and |
174 | vtype. Make sure we only rematerialize before RISCVInsertVSETVLI |
175 | i.e. -riscv-vsetvl-after-rvv-regalloc=true */ |
176 | !MI.hasRegisterImplicitUseOperand(Reg: RISCV::VTYPE)) |
177 | return true; |
178 | return TargetInstrInfo::isReallyTriviallyReMaterializable(MI); |
179 | } |
180 | |
181 | static bool forwardCopyWillClobberTuple(unsigned DstReg, unsigned SrcReg, |
182 | unsigned NumRegs) { |
183 | return DstReg > SrcReg && (DstReg - SrcReg) < NumRegs; |
184 | } |
185 | |
186 | static bool isConvertibleToVMV_V_V(const RISCVSubtarget &STI, |
187 | const MachineBasicBlock &MBB, |
188 | MachineBasicBlock::const_iterator MBBI, |
189 | MachineBasicBlock::const_iterator &DefMBBI, |
190 | RISCVII::VLMUL LMul) { |
191 | if (PreferWholeRegisterMove) |
192 | return false; |
193 | |
194 | assert(MBBI->getOpcode() == TargetOpcode::COPY && |
195 | "Unexpected COPY instruction." ); |
196 | Register SrcReg = MBBI->getOperand(i: 1).getReg(); |
197 | const TargetRegisterInfo *TRI = STI.getRegisterInfo(); |
198 | |
199 | bool FoundDef = false; |
200 | bool FirstVSetVLI = false; |
201 | unsigned FirstSEW = 0; |
202 | while (MBBI != MBB.begin()) { |
203 | --MBBI; |
204 | if (MBBI->isMetaInstruction()) |
205 | continue; |
206 | |
207 | if (MBBI->getOpcode() == RISCV::PseudoVSETVLI || |
208 | MBBI->getOpcode() == RISCV::PseudoVSETVLIX0 || |
209 | MBBI->getOpcode() == RISCV::PseudoVSETIVLI) { |
210 | // There is a vsetvli between COPY and source define instruction. |
211 | // vy = def_vop ... (producing instruction) |
212 | // ... |
213 | // vsetvli |
214 | // ... |
215 | // vx = COPY vy |
216 | if (!FoundDef) { |
217 | if (!FirstVSetVLI) { |
218 | FirstVSetVLI = true; |
219 | unsigned FirstVType = MBBI->getOperand(i: 2).getImm(); |
220 | RISCVII::VLMUL FirstLMul = RISCVVType::getVLMUL(VType: FirstVType); |
221 | FirstSEW = RISCVVType::getSEW(VType: FirstVType); |
222 | // The first encountered vsetvli must have the same lmul as the |
223 | // register class of COPY. |
224 | if (FirstLMul != LMul) |
225 | return false; |
226 | } |
227 | // Only permit `vsetvli x0, x0, vtype` between COPY and the source |
228 | // define instruction. |
229 | if (MBBI->getOperand(i: 0).getReg() != RISCV::X0) |
230 | return false; |
231 | if (MBBI->getOperand(i: 1).isImm()) |
232 | return false; |
233 | if (MBBI->getOperand(i: 1).getReg() != RISCV::X0) |
234 | return false; |
235 | continue; |
236 | } |
237 | |
238 | // MBBI is the first vsetvli before the producing instruction. |
239 | unsigned VType = MBBI->getOperand(i: 2).getImm(); |
240 | // If there is a vsetvli between COPY and the producing instruction. |
241 | if (FirstVSetVLI) { |
242 | // If SEW is different, return false. |
243 | if (RISCVVType::getSEW(VType) != FirstSEW) |
244 | return false; |
245 | } |
246 | |
247 | // If the vsetvli is tail undisturbed, keep the whole register move. |
248 | if (!RISCVVType::isTailAgnostic(VType)) |
249 | return false; |
250 | |
251 | // The checking is conservative. We only have register classes for |
252 | // LMUL = 1/2/4/8. We should be able to convert vmv1r.v to vmv.v.v |
253 | // for fractional LMUL operations. However, we could not use the vsetvli |
254 | // lmul for widening operations. The result of widening operation is |
255 | // 2 x LMUL. |
256 | return LMul == RISCVVType::getVLMUL(VType); |
257 | } else if (MBBI->isInlineAsm() || MBBI->isCall()) { |
258 | return false; |
259 | } else if (MBBI->getNumDefs()) { |
260 | // Check all the instructions which will change VL. |
261 | // For example, vleff has implicit def VL. |
262 | if (MBBI->modifiesRegister(Reg: RISCV::VL, /*TRI=*/nullptr)) |
263 | return false; |
264 | |
265 | // Only converting whole register copies to vmv.v.v when the defining |
266 | // value appears in the explicit operands. |
267 | for (const MachineOperand &MO : MBBI->explicit_operands()) { |
268 | if (!MO.isReg() || !MO.isDef()) |
269 | continue; |
270 | if (!FoundDef && TRI->regsOverlap(RegA: MO.getReg(), RegB: SrcReg)) { |
271 | // We only permit the source of COPY has the same LMUL as the defined |
272 | // operand. |
273 | // There are cases we need to keep the whole register copy if the LMUL |
274 | // is different. |
275 | // For example, |
276 | // $x0 = PseudoVSETIVLI 4, 73 // vsetivli zero, 4, e16,m2,ta,m |
277 | // $v28m4 = PseudoVWADD_VV_M2 $v26m2, $v8m2 |
278 | // # The COPY may be created by vlmul_trunc intrinsic. |
279 | // $v26m2 = COPY renamable $v28m2, implicit killed $v28m4 |
280 | // |
281 | // After widening, the valid value will be 4 x e32 elements. If we |
282 | // convert the COPY to vmv.v.v, it will only copy 4 x e16 elements. |
283 | // FIXME: The COPY of subregister of Zvlsseg register will not be able |
284 | // to convert to vmv.v.[v|i] under the constraint. |
285 | if (MO.getReg() != SrcReg) |
286 | return false; |
287 | |
288 | // In widening reduction instructions with LMUL_1 input vector case, |
289 | // only checking the LMUL is insufficient due to reduction result is |
290 | // always LMUL_1. |
291 | // For example, |
292 | // $x11 = PseudoVSETIVLI 1, 64 // vsetivli a1, 1, e8, m1, ta, mu |
293 | // $v8m1 = PseudoVWREDSUM_VS_M1 $v26, $v27 |
294 | // $v26 = COPY killed renamable $v8 |
295 | // After widening, The valid value will be 1 x e16 elements. If we |
296 | // convert the COPY to vmv.v.v, it will only copy 1 x e8 elements. |
297 | uint64_t TSFlags = MBBI->getDesc().TSFlags; |
298 | if (RISCVII::isRVVWideningReduction(TSFlags)) |
299 | return false; |
300 | |
301 | // If the producing instruction does not depend on vsetvli, do not |
302 | // convert COPY to vmv.v.v. For example, VL1R_V or PseudoVRELOAD. |
303 | if (!RISCVII::hasSEWOp(TSFlags) || !RISCVII::hasVLOp(TSFlags)) |
304 | return false; |
305 | |
306 | // Found the definition. |
307 | FoundDef = true; |
308 | DefMBBI = MBBI; |
309 | break; |
310 | } |
311 | } |
312 | } |
313 | } |
314 | |
315 | return false; |
316 | } |
317 | |
318 | void RISCVInstrInfo::copyPhysRegVector( |
319 | MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, |
320 | const DebugLoc &DL, MCRegister DstReg, MCRegister SrcReg, bool KillSrc, |
321 | const TargetRegisterClass *RegClass) const { |
322 | const TargetRegisterInfo *TRI = STI.getRegisterInfo(); |
323 | RISCVII::VLMUL LMul = RISCVRI::getLMul(TSFlags: RegClass->TSFlags); |
324 | unsigned NF = RISCVRI::getNF(TSFlags: RegClass->TSFlags); |
325 | |
326 | uint16_t SrcEncoding = TRI->getEncodingValue(RegNo: SrcReg); |
327 | uint16_t DstEncoding = TRI->getEncodingValue(RegNo: DstReg); |
328 | auto [LMulVal, Fractional] = RISCVVType::decodeVLMUL(VLMUL: LMul); |
329 | assert(!Fractional && "It is impossible be fractional lmul here." ); |
330 | unsigned NumRegs = NF * LMulVal; |
331 | bool ReversedCopy = |
332 | forwardCopyWillClobberTuple(DstReg: DstEncoding, SrcReg: SrcEncoding, NumRegs); |
333 | if (ReversedCopy) { |
334 | // If the src and dest overlap when copying a tuple, we need to copy the |
335 | // registers in reverse. |
336 | SrcEncoding += NumRegs - 1; |
337 | DstEncoding += NumRegs - 1; |
338 | } |
339 | |
340 | unsigned I = 0; |
341 | auto GetCopyInfo = [&](uint16_t SrcEncoding, uint16_t DstEncoding) |
342 | -> std::tuple<RISCVII::VLMUL, const TargetRegisterClass &, unsigned, |
343 | unsigned, unsigned> { |
344 | if (ReversedCopy) { |
345 | // For reversed copying, if there are enough aligned registers(8/4/2), we |
346 | // can do a larger copy(LMUL8/4/2). |
347 | // Besides, we have already known that DstEncoding is larger than |
348 | // SrcEncoding in forwardCopyWillClobberTuple, so the difference between |
349 | // DstEncoding and SrcEncoding should be >= LMUL value we try to use to |
350 | // avoid clobbering. |
351 | uint16_t Diff = DstEncoding - SrcEncoding; |
352 | if (I + 8 <= NumRegs && Diff >= 8 && SrcEncoding % 8 == 7 && |
353 | DstEncoding % 8 == 7) |
354 | return {RISCVII::LMUL_8, RISCV::VRM8RegClass, RISCV::VMV8R_V, |
355 | RISCV::PseudoVMV_V_V_M8, RISCV::PseudoVMV_V_I_M8}; |
356 | if (I + 4 <= NumRegs && Diff >= 4 && SrcEncoding % 4 == 3 && |
357 | DstEncoding % 4 == 3) |
358 | return {RISCVII::LMUL_4, RISCV::VRM4RegClass, RISCV::VMV4R_V, |
359 | RISCV::PseudoVMV_V_V_M4, RISCV::PseudoVMV_V_I_M4}; |
360 | if (I + 2 <= NumRegs && Diff >= 2 && SrcEncoding % 2 == 1 && |
361 | DstEncoding % 2 == 1) |
362 | return {RISCVII::LMUL_2, RISCV::VRM2RegClass, RISCV::VMV2R_V, |
363 | RISCV::PseudoVMV_V_V_M2, RISCV::PseudoVMV_V_I_M2}; |
364 | // Or we should do LMUL1 copying. |
365 | return {RISCVII::LMUL_1, RISCV::VRRegClass, RISCV::VMV1R_V, |
366 | RISCV::PseudoVMV_V_V_M1, RISCV::PseudoVMV_V_I_M1}; |
367 | } |
368 | |
369 | // For forward copying, if source register encoding and destination register |
370 | // encoding are aligned to 8/4/2, we can do a LMUL8/4/2 copying. |
371 | if (I + 8 <= NumRegs && SrcEncoding % 8 == 0 && DstEncoding % 8 == 0) |
372 | return {RISCVII::LMUL_8, RISCV::VRM8RegClass, RISCV::VMV8R_V, |
373 | RISCV::PseudoVMV_V_V_M8, RISCV::PseudoVMV_V_I_M8}; |
374 | if (I + 4 <= NumRegs && SrcEncoding % 4 == 0 && DstEncoding % 4 == 0) |
375 | return {RISCVII::LMUL_4, RISCV::VRM4RegClass, RISCV::VMV4R_V, |
376 | RISCV::PseudoVMV_V_V_M4, RISCV::PseudoVMV_V_I_M4}; |
377 | if (I + 2 <= NumRegs && SrcEncoding % 2 == 0 && DstEncoding % 2 == 0) |
378 | return {RISCVII::LMUL_2, RISCV::VRM2RegClass, RISCV::VMV2R_V, |
379 | RISCV::PseudoVMV_V_V_M2, RISCV::PseudoVMV_V_I_M2}; |
380 | // Or we should do LMUL1 copying. |
381 | return {RISCVII::LMUL_1, RISCV::VRRegClass, RISCV::VMV1R_V, |
382 | RISCV::PseudoVMV_V_V_M1, RISCV::PseudoVMV_V_I_M1}; |
383 | }; |
384 | auto FindRegWithEncoding = [TRI](const TargetRegisterClass &RegClass, |
385 | uint16_t Encoding) { |
386 | MCRegister Reg = RISCV::V0 + Encoding; |
387 | if (&RegClass == &RISCV::VRRegClass) |
388 | return Reg; |
389 | return TRI->getMatchingSuperReg(Reg, SubIdx: RISCV::sub_vrm1_0, RC: &RegClass); |
390 | }; |
391 | while (I != NumRegs) { |
392 | // For non-segment copying, we only do this once as the registers are always |
393 | // aligned. |
394 | // For segment copying, we may do this several times. If the registers are |
395 | // aligned to larger LMUL, we can eliminate some copyings. |
396 | auto [LMulCopied, RegClass, Opc, VVOpc, VIOpc] = |
397 | GetCopyInfo(SrcEncoding, DstEncoding); |
398 | auto [NumCopied, _] = RISCVVType::decodeVLMUL(VLMUL: LMulCopied); |
399 | |
400 | MachineBasicBlock::const_iterator DefMBBI; |
401 | if (LMul == LMulCopied && |
402 | isConvertibleToVMV_V_V(STI, MBB, MBBI, DefMBBI, LMul)) { |
403 | Opc = VVOpc; |
404 | if (DefMBBI->getOpcode() == VIOpc) |
405 | Opc = VIOpc; |
406 | } |
407 | |
408 | // Emit actual copying. |
409 | // For reversed copying, the encoding should be decreased. |
410 | MCRegister ActualSrcReg = FindRegWithEncoding( |
411 | RegClass, ReversedCopy ? (SrcEncoding - NumCopied + 1) : SrcEncoding); |
412 | MCRegister ActualDstReg = FindRegWithEncoding( |
413 | RegClass, ReversedCopy ? (DstEncoding - NumCopied + 1) : DstEncoding); |
414 | |
415 | auto MIB = BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: Opc), DestReg: ActualDstReg); |
416 | bool UseVMV_V_I = RISCV::getRVVMCOpcode(RVVPseudoOpcode: Opc) == RISCV::VMV_V_I; |
417 | bool UseVMV = UseVMV_V_I || RISCV::getRVVMCOpcode(RVVPseudoOpcode: Opc) == RISCV::VMV_V_V; |
418 | if (UseVMV) |
419 | MIB.addReg(RegNo: ActualDstReg, flags: RegState::Undef); |
420 | if (UseVMV_V_I) |
421 | MIB = MIB.add(MO: DefMBBI->getOperand(i: 2)); |
422 | else |
423 | MIB = MIB.addReg(RegNo: ActualSrcReg, flags: getKillRegState(B: KillSrc)); |
424 | if (UseVMV) { |
425 | const MCInstrDesc &Desc = DefMBBI->getDesc(); |
426 | MIB.add(MO: DefMBBI->getOperand(i: RISCVII::getVLOpNum(Desc))); // AVL |
427 | MIB.add(MO: DefMBBI->getOperand(i: RISCVII::getSEWOpNum(Desc))); // SEW |
428 | MIB.addImm(Val: 0); // tu, mu |
429 | MIB.addReg(RegNo: RISCV::VL, flags: RegState::Implicit); |
430 | MIB.addReg(RegNo: RISCV::VTYPE, flags: RegState::Implicit); |
431 | } |
432 | |
433 | // If we are copying reversely, we should decrease the encoding. |
434 | SrcEncoding += (ReversedCopy ? -NumCopied : NumCopied); |
435 | DstEncoding += (ReversedCopy ? -NumCopied : NumCopied); |
436 | I += NumCopied; |
437 | } |
438 | } |
439 | |
440 | void RISCVInstrInfo::copyPhysReg(MachineBasicBlock &MBB, |
441 | MachineBasicBlock::iterator MBBI, |
442 | const DebugLoc &DL, MCRegister DstReg, |
443 | MCRegister SrcReg, bool KillSrc) const { |
444 | const TargetRegisterInfo *TRI = STI.getRegisterInfo(); |
445 | |
446 | if (RISCV::GPRRegClass.contains(Reg1: DstReg, Reg2: SrcReg)) { |
447 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: RISCV::ADDI), DestReg: DstReg) |
448 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: KillSrc)) |
449 | .addImm(Val: 0); |
450 | return; |
451 | } |
452 | |
453 | if (RISCV::GPRPairRegClass.contains(Reg1: DstReg, Reg2: SrcReg)) { |
454 | // Emit an ADDI for both parts of GPRPair. |
455 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: RISCV::ADDI), |
456 | DestReg: TRI->getSubReg(Reg: DstReg, Idx: RISCV::sub_gpr_even)) |
457 | .addReg(RegNo: TRI->getSubReg(Reg: SrcReg, Idx: RISCV::sub_gpr_even), |
458 | flags: getKillRegState(B: KillSrc)) |
459 | .addImm(Val: 0); |
460 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: RISCV::ADDI), |
461 | DestReg: TRI->getSubReg(Reg: DstReg, Idx: RISCV::sub_gpr_odd)) |
462 | .addReg(RegNo: TRI->getSubReg(Reg: SrcReg, Idx: RISCV::sub_gpr_odd), |
463 | flags: getKillRegState(B: KillSrc)) |
464 | .addImm(Val: 0); |
465 | return; |
466 | } |
467 | |
468 | // Handle copy from csr |
469 | if (RISCV::VCSRRegClass.contains(Reg: SrcReg) && |
470 | RISCV::GPRRegClass.contains(Reg: DstReg)) { |
471 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: RISCV::CSRRS), DestReg: DstReg) |
472 | .addImm(Val: RISCVSysReg::lookupSysRegByName(Name: TRI->getName(RegNo: SrcReg))->Encoding) |
473 | .addReg(RegNo: RISCV::X0); |
474 | return; |
475 | } |
476 | |
477 | if (RISCV::FPR16RegClass.contains(Reg1: DstReg, Reg2: SrcReg)) { |
478 | unsigned Opc; |
479 | if (STI.hasStdExtZfh()) { |
480 | Opc = RISCV::FSGNJ_H; |
481 | } else { |
482 | assert(STI.hasStdExtF() && |
483 | (STI.hasStdExtZfhmin() || STI.hasStdExtZfbfmin()) && |
484 | "Unexpected extensions" ); |
485 | // Zfhmin/Zfbfmin doesn't have FSGNJ_H, replace FSGNJ_H with FSGNJ_S. |
486 | DstReg = TRI->getMatchingSuperReg(Reg: DstReg, SubIdx: RISCV::sub_16, |
487 | RC: &RISCV::FPR32RegClass); |
488 | SrcReg = TRI->getMatchingSuperReg(Reg: SrcReg, SubIdx: RISCV::sub_16, |
489 | RC: &RISCV::FPR32RegClass); |
490 | Opc = RISCV::FSGNJ_S; |
491 | } |
492 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: Opc), DestReg: DstReg) |
493 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: KillSrc)) |
494 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: KillSrc)); |
495 | return; |
496 | } |
497 | |
498 | if (RISCV::FPR32RegClass.contains(Reg1: DstReg, Reg2: SrcReg)) { |
499 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: RISCV::FSGNJ_S), DestReg: DstReg) |
500 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: KillSrc)) |
501 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: KillSrc)); |
502 | return; |
503 | } |
504 | |
505 | if (RISCV::FPR64RegClass.contains(Reg1: DstReg, Reg2: SrcReg)) { |
506 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: RISCV::FSGNJ_D), DestReg: DstReg) |
507 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: KillSrc)) |
508 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: KillSrc)); |
509 | return; |
510 | } |
511 | |
512 | if (RISCV::FPR32RegClass.contains(Reg: DstReg) && |
513 | RISCV::GPRRegClass.contains(Reg: SrcReg)) { |
514 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: RISCV::FMV_W_X), DestReg: DstReg) |
515 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: KillSrc)); |
516 | return; |
517 | } |
518 | |
519 | if (RISCV::GPRRegClass.contains(Reg: DstReg) && |
520 | RISCV::FPR32RegClass.contains(Reg: SrcReg)) { |
521 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: RISCV::FMV_X_W), DestReg: DstReg) |
522 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: KillSrc)); |
523 | return; |
524 | } |
525 | |
526 | if (RISCV::FPR64RegClass.contains(Reg: DstReg) && |
527 | RISCV::GPRRegClass.contains(Reg: SrcReg)) { |
528 | assert(STI.getXLen() == 64 && "Unexpected GPR size" ); |
529 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: RISCV::FMV_D_X), DestReg: DstReg) |
530 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: KillSrc)); |
531 | return; |
532 | } |
533 | |
534 | if (RISCV::GPRRegClass.contains(Reg: DstReg) && |
535 | RISCV::FPR64RegClass.contains(Reg: SrcReg)) { |
536 | assert(STI.getXLen() == 64 && "Unexpected GPR size" ); |
537 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: RISCV::FMV_X_D), DestReg: DstReg) |
538 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: KillSrc)); |
539 | return; |
540 | } |
541 | |
542 | // VR->VR copies. |
543 | static const TargetRegisterClass *RVVRegClasses[] = { |
544 | &RISCV::VRRegClass, &RISCV::VRM2RegClass, &RISCV::VRM4RegClass, |
545 | &RISCV::VRM8RegClass, &RISCV::VRN2M1RegClass, &RISCV::VRN2M2RegClass, |
546 | &RISCV::VRN2M4RegClass, &RISCV::VRN3M1RegClass, &RISCV::VRN3M2RegClass, |
547 | &RISCV::VRN4M1RegClass, &RISCV::VRN4M2RegClass, &RISCV::VRN5M1RegClass, |
548 | &RISCV::VRN6M1RegClass, &RISCV::VRN7M1RegClass, &RISCV::VRN8M1RegClass}; |
549 | for (const auto &RegClass : RVVRegClasses) { |
550 | if (RegClass->contains(Reg1: DstReg, Reg2: SrcReg)) { |
551 | copyPhysRegVector(MBB, MBBI, DL, DstReg, SrcReg, KillSrc, RegClass); |
552 | return; |
553 | } |
554 | } |
555 | |
556 | llvm_unreachable("Impossible reg-to-reg copy" ); |
557 | } |
558 | |
559 | void RISCVInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, |
560 | MachineBasicBlock::iterator I, |
561 | Register SrcReg, bool IsKill, int FI, |
562 | const TargetRegisterClass *RC, |
563 | const TargetRegisterInfo *TRI, |
564 | Register VReg) const { |
565 | MachineFunction *MF = MBB.getParent(); |
566 | MachineFrameInfo &MFI = MF->getFrameInfo(); |
567 | |
568 | unsigned Opcode; |
569 | bool IsScalableVector = true; |
570 | if (RISCV::GPRRegClass.hasSubClassEq(RC)) { |
571 | Opcode = TRI->getRegSizeInBits(RC: RISCV::GPRRegClass) == 32 ? |
572 | RISCV::SW : RISCV::SD; |
573 | IsScalableVector = false; |
574 | } else if (RISCV::GPRPairRegClass.hasSubClassEq(RC)) { |
575 | Opcode = RISCV::PseudoRV32ZdinxSD; |
576 | IsScalableVector = false; |
577 | } else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) { |
578 | Opcode = RISCV::FSH; |
579 | IsScalableVector = false; |
580 | } else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) { |
581 | Opcode = RISCV::FSW; |
582 | IsScalableVector = false; |
583 | } else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) { |
584 | Opcode = RISCV::FSD; |
585 | IsScalableVector = false; |
586 | } else if (RISCV::VRRegClass.hasSubClassEq(RC)) { |
587 | Opcode = RISCV::VS1R_V; |
588 | } else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) { |
589 | Opcode = RISCV::VS2R_V; |
590 | } else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) { |
591 | Opcode = RISCV::VS4R_V; |
592 | } else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) { |
593 | Opcode = RISCV::VS8R_V; |
594 | } else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC)) |
595 | Opcode = RISCV::PseudoVSPILL2_M1; |
596 | else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC)) |
597 | Opcode = RISCV::PseudoVSPILL2_M2; |
598 | else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC)) |
599 | Opcode = RISCV::PseudoVSPILL2_M4; |
600 | else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC)) |
601 | Opcode = RISCV::PseudoVSPILL3_M1; |
602 | else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC)) |
603 | Opcode = RISCV::PseudoVSPILL3_M2; |
604 | else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC)) |
605 | Opcode = RISCV::PseudoVSPILL4_M1; |
606 | else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC)) |
607 | Opcode = RISCV::PseudoVSPILL4_M2; |
608 | else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC)) |
609 | Opcode = RISCV::PseudoVSPILL5_M1; |
610 | else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC)) |
611 | Opcode = RISCV::PseudoVSPILL6_M1; |
612 | else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC)) |
613 | Opcode = RISCV::PseudoVSPILL7_M1; |
614 | else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC)) |
615 | Opcode = RISCV::PseudoVSPILL8_M1; |
616 | else |
617 | llvm_unreachable("Can't store this register to stack slot" ); |
618 | |
619 | if (IsScalableVector) { |
620 | MachineMemOperand *MMO = MF->getMachineMemOperand( |
621 | PtrInfo: MachinePointerInfo::getFixedStack(MF&: *MF, FI), F: MachineMemOperand::MOStore, |
622 | Size: LocationSize::beforeOrAfterPointer(), BaseAlignment: MFI.getObjectAlign(ObjectIdx: FI)); |
623 | |
624 | MFI.setStackID(ObjectIdx: FI, ID: TargetStackID::ScalableVector); |
625 | BuildMI(BB&: MBB, I, MIMD: DebugLoc(), MCID: get(Opcode)) |
626 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: IsKill)) |
627 | .addFrameIndex(Idx: FI) |
628 | .addMemOperand(MMO); |
629 | } else { |
630 | MachineMemOperand *MMO = MF->getMachineMemOperand( |
631 | PtrInfo: MachinePointerInfo::getFixedStack(MF&: *MF, FI), F: MachineMemOperand::MOStore, |
632 | Size: MFI.getObjectSize(ObjectIdx: FI), BaseAlignment: MFI.getObjectAlign(ObjectIdx: FI)); |
633 | |
634 | BuildMI(BB&: MBB, I, MIMD: DebugLoc(), MCID: get(Opcode)) |
635 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: IsKill)) |
636 | .addFrameIndex(Idx: FI) |
637 | .addImm(Val: 0) |
638 | .addMemOperand(MMO); |
639 | } |
640 | } |
641 | |
642 | void RISCVInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, |
643 | MachineBasicBlock::iterator I, |
644 | Register DstReg, int FI, |
645 | const TargetRegisterClass *RC, |
646 | const TargetRegisterInfo *TRI, |
647 | Register VReg) const { |
648 | MachineFunction *MF = MBB.getParent(); |
649 | MachineFrameInfo &MFI = MF->getFrameInfo(); |
650 | |
651 | unsigned Opcode; |
652 | bool IsScalableVector = true; |
653 | if (RISCV::GPRRegClass.hasSubClassEq(RC)) { |
654 | Opcode = TRI->getRegSizeInBits(RC: RISCV::GPRRegClass) == 32 ? |
655 | RISCV::LW : RISCV::LD; |
656 | IsScalableVector = false; |
657 | } else if (RISCV::GPRPairRegClass.hasSubClassEq(RC)) { |
658 | Opcode = RISCV::PseudoRV32ZdinxLD; |
659 | IsScalableVector = false; |
660 | } else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) { |
661 | Opcode = RISCV::FLH; |
662 | IsScalableVector = false; |
663 | } else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) { |
664 | Opcode = RISCV::FLW; |
665 | IsScalableVector = false; |
666 | } else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) { |
667 | Opcode = RISCV::FLD; |
668 | IsScalableVector = false; |
669 | } else if (RISCV::VRRegClass.hasSubClassEq(RC)) { |
670 | Opcode = RISCV::VL1RE8_V; |
671 | } else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) { |
672 | Opcode = RISCV::VL2RE8_V; |
673 | } else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) { |
674 | Opcode = RISCV::VL4RE8_V; |
675 | } else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) { |
676 | Opcode = RISCV::VL8RE8_V; |
677 | } else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC)) |
678 | Opcode = RISCV::PseudoVRELOAD2_M1; |
679 | else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC)) |
680 | Opcode = RISCV::PseudoVRELOAD2_M2; |
681 | else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC)) |
682 | Opcode = RISCV::PseudoVRELOAD2_M4; |
683 | else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC)) |
684 | Opcode = RISCV::PseudoVRELOAD3_M1; |
685 | else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC)) |
686 | Opcode = RISCV::PseudoVRELOAD3_M2; |
687 | else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC)) |
688 | Opcode = RISCV::PseudoVRELOAD4_M1; |
689 | else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC)) |
690 | Opcode = RISCV::PseudoVRELOAD4_M2; |
691 | else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC)) |
692 | Opcode = RISCV::PseudoVRELOAD5_M1; |
693 | else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC)) |
694 | Opcode = RISCV::PseudoVRELOAD6_M1; |
695 | else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC)) |
696 | Opcode = RISCV::PseudoVRELOAD7_M1; |
697 | else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC)) |
698 | Opcode = RISCV::PseudoVRELOAD8_M1; |
699 | else |
700 | llvm_unreachable("Can't load this register from stack slot" ); |
701 | |
702 | if (IsScalableVector) { |
703 | MachineMemOperand *MMO = MF->getMachineMemOperand( |
704 | PtrInfo: MachinePointerInfo::getFixedStack(MF&: *MF, FI), F: MachineMemOperand::MOLoad, |
705 | Size: LocationSize::beforeOrAfterPointer(), BaseAlignment: MFI.getObjectAlign(ObjectIdx: FI)); |
706 | |
707 | MFI.setStackID(ObjectIdx: FI, ID: TargetStackID::ScalableVector); |
708 | BuildMI(BB&: MBB, I, MIMD: DebugLoc(), MCID: get(Opcode), DestReg: DstReg) |
709 | .addFrameIndex(Idx: FI) |
710 | .addMemOperand(MMO); |
711 | } else { |
712 | MachineMemOperand *MMO = MF->getMachineMemOperand( |
713 | PtrInfo: MachinePointerInfo::getFixedStack(MF&: *MF, FI), F: MachineMemOperand::MOLoad, |
714 | Size: MFI.getObjectSize(ObjectIdx: FI), BaseAlignment: MFI.getObjectAlign(ObjectIdx: FI)); |
715 | |
716 | BuildMI(BB&: MBB, I, MIMD: DebugLoc(), MCID: get(Opcode), DestReg: DstReg) |
717 | .addFrameIndex(Idx: FI) |
718 | .addImm(Val: 0) |
719 | .addMemOperand(MMO); |
720 | } |
721 | } |
722 | |
723 | MachineInstr *RISCVInstrInfo::foldMemoryOperandImpl( |
724 | MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, |
725 | MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS, |
726 | VirtRegMap *VRM) const { |
727 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
728 | |
729 | // The below optimizations narrow the load so they are only valid for little |
730 | // endian. |
731 | // TODO: Support big endian by adding an offset into the frame object? |
732 | if (MF.getDataLayout().isBigEndian()) |
733 | return nullptr; |
734 | |
735 | // Fold load from stack followed by sext.b/sext.h/sext.w/zext.b/zext.h/zext.w. |
736 | if (Ops.size() != 1 || Ops[0] != 1) |
737 | return nullptr; |
738 | |
739 | unsigned LoadOpc; |
740 | switch (MI.getOpcode()) { |
741 | default: |
742 | if (RISCV::isSEXT_W(MI)) { |
743 | LoadOpc = RISCV::LW; |
744 | break; |
745 | } |
746 | if (RISCV::isZEXT_W(MI)) { |
747 | LoadOpc = RISCV::LWU; |
748 | break; |
749 | } |
750 | if (RISCV::isZEXT_B(MI)) { |
751 | LoadOpc = RISCV::LBU; |
752 | break; |
753 | } |
754 | return nullptr; |
755 | case RISCV::SEXT_H: |
756 | LoadOpc = RISCV::LH; |
757 | break; |
758 | case RISCV::SEXT_B: |
759 | LoadOpc = RISCV::LB; |
760 | break; |
761 | case RISCV::ZEXT_H_RV32: |
762 | case RISCV::ZEXT_H_RV64: |
763 | LoadOpc = RISCV::LHU; |
764 | break; |
765 | } |
766 | |
767 | MachineMemOperand *MMO = MF.getMachineMemOperand( |
768 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI: FrameIndex), |
769 | F: MachineMemOperand::MOLoad, Size: MFI.getObjectSize(ObjectIdx: FrameIndex), |
770 | BaseAlignment: MFI.getObjectAlign(ObjectIdx: FrameIndex)); |
771 | |
772 | Register DstReg = MI.getOperand(i: 0).getReg(); |
773 | return BuildMI(BB&: *MI.getParent(), I: InsertPt, MIMD: MI.getDebugLoc(), MCID: get(Opcode: LoadOpc), |
774 | DestReg: DstReg) |
775 | .addFrameIndex(Idx: FrameIndex) |
776 | .addImm(Val: 0) |
777 | .addMemOperand(MMO); |
778 | } |
779 | |
780 | void RISCVInstrInfo::movImm(MachineBasicBlock &MBB, |
781 | MachineBasicBlock::iterator MBBI, |
782 | const DebugLoc &DL, Register DstReg, uint64_t Val, |
783 | MachineInstr::MIFlag Flag, bool DstRenamable, |
784 | bool DstIsDead) const { |
785 | Register SrcReg = RISCV::X0; |
786 | |
787 | // For RV32, allow a sign or unsigned 32 bit value. |
788 | if (!STI.is64Bit() && !isInt<32>(x: Val)) { |
789 | // If have a uimm32 it will still fit in a register so we can allow it. |
790 | if (!isUInt<32>(x: Val)) |
791 | report_fatal_error(reason: "Should only materialize 32-bit constants for RV32" ); |
792 | |
793 | // Sign extend for generateInstSeq. |
794 | Val = SignExtend64<32>(x: Val); |
795 | } |
796 | |
797 | RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val, STI); |
798 | assert(!Seq.empty()); |
799 | |
800 | bool SrcRenamable = false; |
801 | unsigned Num = 0; |
802 | |
803 | for (const RISCVMatInt::Inst &Inst : Seq) { |
804 | bool LastItem = ++Num == Seq.size(); |
805 | unsigned DstRegState = getDeadRegState(B: DstIsDead && LastItem) | |
806 | getRenamableRegState(B: DstRenamable); |
807 | unsigned SrcRegState = getKillRegState(B: SrcReg != RISCV::X0) | |
808 | getRenamableRegState(B: SrcRenamable); |
809 | switch (Inst.getOpndKind()) { |
810 | case RISCVMatInt::Imm: |
811 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: Inst.getOpcode())) |
812 | .addReg(RegNo: DstReg, flags: RegState::Define | DstRegState) |
813 | .addImm(Val: Inst.getImm()) |
814 | .setMIFlag(Flag); |
815 | break; |
816 | case RISCVMatInt::RegX0: |
817 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: Inst.getOpcode())) |
818 | .addReg(RegNo: DstReg, flags: RegState::Define | DstRegState) |
819 | .addReg(RegNo: SrcReg, flags: SrcRegState) |
820 | .addReg(RegNo: RISCV::X0) |
821 | .setMIFlag(Flag); |
822 | break; |
823 | case RISCVMatInt::RegReg: |
824 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: Inst.getOpcode())) |
825 | .addReg(RegNo: DstReg, flags: RegState::Define | DstRegState) |
826 | .addReg(RegNo: SrcReg, flags: SrcRegState) |
827 | .addReg(RegNo: SrcReg, flags: SrcRegState) |
828 | .setMIFlag(Flag); |
829 | break; |
830 | case RISCVMatInt::RegImm: |
831 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: Inst.getOpcode())) |
832 | .addReg(RegNo: DstReg, flags: RegState::Define | DstRegState) |
833 | .addReg(RegNo: SrcReg, flags: SrcRegState) |
834 | .addImm(Val: Inst.getImm()) |
835 | .setMIFlag(Flag); |
836 | break; |
837 | } |
838 | |
839 | // Only the first instruction has X0 as its source. |
840 | SrcReg = DstReg; |
841 | SrcRenamable = DstRenamable; |
842 | } |
843 | } |
844 | |
845 | static RISCVCC::CondCode getCondFromBranchOpc(unsigned Opc) { |
846 | switch (Opc) { |
847 | default: |
848 | return RISCVCC::COND_INVALID; |
849 | case RISCV::CV_BEQIMM: |
850 | return RISCVCC::COND_EQ; |
851 | case RISCV::CV_BNEIMM: |
852 | return RISCVCC::COND_NE; |
853 | case RISCV::BEQ: |
854 | return RISCVCC::COND_EQ; |
855 | case RISCV::BNE: |
856 | return RISCVCC::COND_NE; |
857 | case RISCV::BLT: |
858 | return RISCVCC::COND_LT; |
859 | case RISCV::BGE: |
860 | return RISCVCC::COND_GE; |
861 | case RISCV::BLTU: |
862 | return RISCVCC::COND_LTU; |
863 | case RISCV::BGEU: |
864 | return RISCVCC::COND_GEU; |
865 | } |
866 | } |
867 | |
868 | // The contents of values added to Cond are not examined outside of |
869 | // RISCVInstrInfo, giving us flexibility in what to push to it. For RISCV, we |
870 | // push BranchOpcode, Reg1, Reg2. |
871 | static void parseCondBranch(MachineInstr &LastInst, MachineBasicBlock *&Target, |
872 | SmallVectorImpl<MachineOperand> &Cond) { |
873 | // Block ends with fall-through condbranch. |
874 | assert(LastInst.getDesc().isConditionalBranch() && |
875 | "Unknown conditional branch" ); |
876 | Target = LastInst.getOperand(i: 2).getMBB(); |
877 | unsigned CC = getCondFromBranchOpc(Opc: LastInst.getOpcode()); |
878 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: CC)); |
879 | Cond.push_back(Elt: LastInst.getOperand(i: 0)); |
880 | Cond.push_back(Elt: LastInst.getOperand(i: 1)); |
881 | } |
882 | |
883 | unsigned RISCVCC::getBrCond(RISCVCC::CondCode CC, bool Imm) { |
884 | switch (CC) { |
885 | default: |
886 | llvm_unreachable("Unknown condition code!" ); |
887 | case RISCVCC::COND_EQ: |
888 | return Imm ? RISCV::CV_BEQIMM : RISCV::BEQ; |
889 | case RISCVCC::COND_NE: |
890 | return Imm ? RISCV::CV_BNEIMM : RISCV::BNE; |
891 | case RISCVCC::COND_LT: |
892 | return RISCV::BLT; |
893 | case RISCVCC::COND_GE: |
894 | return RISCV::BGE; |
895 | case RISCVCC::COND_LTU: |
896 | return RISCV::BLTU; |
897 | case RISCVCC::COND_GEU: |
898 | return RISCV::BGEU; |
899 | } |
900 | } |
901 | |
902 | const MCInstrDesc &RISCVInstrInfo::getBrCond(RISCVCC::CondCode CC, |
903 | bool Imm) const { |
904 | return get(Opcode: RISCVCC::getBrCond(CC, Imm)); |
905 | } |
906 | |
907 | RISCVCC::CondCode RISCVCC::getOppositeBranchCondition(RISCVCC::CondCode CC) { |
908 | switch (CC) { |
909 | default: |
910 | llvm_unreachable("Unrecognized conditional branch" ); |
911 | case RISCVCC::COND_EQ: |
912 | return RISCVCC::COND_NE; |
913 | case RISCVCC::COND_NE: |
914 | return RISCVCC::COND_EQ; |
915 | case RISCVCC::COND_LT: |
916 | return RISCVCC::COND_GE; |
917 | case RISCVCC::COND_GE: |
918 | return RISCVCC::COND_LT; |
919 | case RISCVCC::COND_LTU: |
920 | return RISCVCC::COND_GEU; |
921 | case RISCVCC::COND_GEU: |
922 | return RISCVCC::COND_LTU; |
923 | } |
924 | } |
925 | |
926 | bool RISCVInstrInfo::analyzeBranch(MachineBasicBlock &MBB, |
927 | MachineBasicBlock *&TBB, |
928 | MachineBasicBlock *&FBB, |
929 | SmallVectorImpl<MachineOperand> &Cond, |
930 | bool AllowModify) const { |
931 | TBB = FBB = nullptr; |
932 | Cond.clear(); |
933 | |
934 | // If the block has no terminators, it just falls into the block after it. |
935 | MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); |
936 | if (I == MBB.end() || !isUnpredicatedTerminator(MI: *I)) |
937 | return false; |
938 | |
939 | // Count the number of terminators and find the first unconditional or |
940 | // indirect branch. |
941 | MachineBasicBlock::iterator FirstUncondOrIndirectBr = MBB.end(); |
942 | int NumTerminators = 0; |
943 | for (auto J = I.getReverse(); J != MBB.rend() && isUnpredicatedTerminator(MI: *J); |
944 | J++) { |
945 | NumTerminators++; |
946 | if (J->getDesc().isUnconditionalBranch() || |
947 | J->getDesc().isIndirectBranch()) { |
948 | FirstUncondOrIndirectBr = J.getReverse(); |
949 | } |
950 | } |
951 | |
952 | // If AllowModify is true, we can erase any terminators after |
953 | // FirstUncondOrIndirectBR. |
954 | if (AllowModify && FirstUncondOrIndirectBr != MBB.end()) { |
955 | while (std::next(x: FirstUncondOrIndirectBr) != MBB.end()) { |
956 | std::next(x: FirstUncondOrIndirectBr)->eraseFromParent(); |
957 | NumTerminators--; |
958 | } |
959 | I = FirstUncondOrIndirectBr; |
960 | } |
961 | |
962 | // We can't handle blocks that end in an indirect branch. |
963 | if (I->getDesc().isIndirectBranch()) |
964 | return true; |
965 | |
966 | // We can't handle Generic branch opcodes from Global ISel. |
967 | if (I->isPreISelOpcode()) |
968 | return true; |
969 | |
970 | // We can't handle blocks with more than 2 terminators. |
971 | if (NumTerminators > 2) |
972 | return true; |
973 | |
974 | // Handle a single unconditional branch. |
975 | if (NumTerminators == 1 && I->getDesc().isUnconditionalBranch()) { |
976 | TBB = getBranchDestBlock(MI: *I); |
977 | return false; |
978 | } |
979 | |
980 | // Handle a single conditional branch. |
981 | if (NumTerminators == 1 && I->getDesc().isConditionalBranch()) { |
982 | parseCondBranch(LastInst&: *I, Target&: TBB, Cond); |
983 | return false; |
984 | } |
985 | |
986 | // Handle a conditional branch followed by an unconditional branch. |
987 | if (NumTerminators == 2 && std::prev(x: I)->getDesc().isConditionalBranch() && |
988 | I->getDesc().isUnconditionalBranch()) { |
989 | parseCondBranch(LastInst&: *std::prev(x: I), Target&: TBB, Cond); |
990 | FBB = getBranchDestBlock(MI: *I); |
991 | return false; |
992 | } |
993 | |
994 | // Otherwise, we can't handle this. |
995 | return true; |
996 | } |
997 | |
998 | unsigned RISCVInstrInfo::removeBranch(MachineBasicBlock &MBB, |
999 | int *BytesRemoved) const { |
1000 | if (BytesRemoved) |
1001 | *BytesRemoved = 0; |
1002 | MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); |
1003 | if (I == MBB.end()) |
1004 | return 0; |
1005 | |
1006 | if (!I->getDesc().isUnconditionalBranch() && |
1007 | !I->getDesc().isConditionalBranch()) |
1008 | return 0; |
1009 | |
1010 | // Remove the branch. |
1011 | if (BytesRemoved) |
1012 | *BytesRemoved += getInstSizeInBytes(MI: *I); |
1013 | I->eraseFromParent(); |
1014 | |
1015 | I = MBB.end(); |
1016 | |
1017 | if (I == MBB.begin()) |
1018 | return 1; |
1019 | --I; |
1020 | if (!I->getDesc().isConditionalBranch()) |
1021 | return 1; |
1022 | |
1023 | // Remove the branch. |
1024 | if (BytesRemoved) |
1025 | *BytesRemoved += getInstSizeInBytes(MI: *I); |
1026 | I->eraseFromParent(); |
1027 | return 2; |
1028 | } |
1029 | |
1030 | // Inserts a branch into the end of the specific MachineBasicBlock, returning |
1031 | // the number of instructions inserted. |
1032 | unsigned RISCVInstrInfo::insertBranch( |
1033 | MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, |
1034 | ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const { |
1035 | if (BytesAdded) |
1036 | *BytesAdded = 0; |
1037 | |
1038 | // Shouldn't be a fall through. |
1039 | assert(TBB && "insertBranch must not be told to insert a fallthrough" ); |
1040 | assert((Cond.size() == 3 || Cond.size() == 0) && |
1041 | "RISC-V branch conditions have two components!" ); |
1042 | |
1043 | // Unconditional branch. |
1044 | if (Cond.empty()) { |
1045 | MachineInstr &MI = *BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: RISCV::PseudoBR)).addMBB(MBB: TBB); |
1046 | if (BytesAdded) |
1047 | *BytesAdded += getInstSizeInBytes(MI); |
1048 | return 1; |
1049 | } |
1050 | |
1051 | // Either a one or two-way conditional branch. |
1052 | auto CC = static_cast<RISCVCC::CondCode>(Cond[0].getImm()); |
1053 | MachineInstr &CondMI = *BuildMI(BB: &MBB, MIMD: DL, MCID: getBrCond(CC, Imm: Cond[2].isImm())) |
1054 | .add(MO: Cond[1]) |
1055 | .add(MO: Cond[2]) |
1056 | .addMBB(MBB: TBB); |
1057 | if (BytesAdded) |
1058 | *BytesAdded += getInstSizeInBytes(MI: CondMI); |
1059 | |
1060 | // One-way conditional branch. |
1061 | if (!FBB) |
1062 | return 1; |
1063 | |
1064 | // Two-way conditional branch. |
1065 | MachineInstr &MI = *BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: RISCV::PseudoBR)).addMBB(MBB: FBB); |
1066 | if (BytesAdded) |
1067 | *BytesAdded += getInstSizeInBytes(MI); |
1068 | return 2; |
1069 | } |
1070 | |
1071 | void RISCVInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB, |
1072 | MachineBasicBlock &DestBB, |
1073 | MachineBasicBlock &RestoreBB, |
1074 | const DebugLoc &DL, int64_t BrOffset, |
1075 | RegScavenger *RS) const { |
1076 | assert(RS && "RegScavenger required for long branching" ); |
1077 | assert(MBB.empty() && |
1078 | "new block should be inserted for expanding unconditional branch" ); |
1079 | assert(MBB.pred_size() == 1); |
1080 | assert(RestoreBB.empty() && |
1081 | "restore block should be inserted for restoring clobbered registers" ); |
1082 | |
1083 | MachineFunction *MF = MBB.getParent(); |
1084 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
1085 | RISCVMachineFunctionInfo *RVFI = MF->getInfo<RISCVMachineFunctionInfo>(); |
1086 | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
1087 | |
1088 | if (!isInt<32>(x: BrOffset)) |
1089 | report_fatal_error( |
1090 | reason: "Branch offsets outside of the signed 32-bit range not supported" ); |
1091 | |
1092 | // FIXME: A virtual register must be used initially, as the register |
1093 | // scavenger won't work with empty blocks (SIInstrInfo::insertIndirectBranch |
1094 | // uses the same workaround). |
1095 | Register ScratchReg = MRI.createVirtualRegister(RegClass: &RISCV::GPRJALRRegClass); |
1096 | auto II = MBB.end(); |
1097 | // We may also update the jump target to RestoreBB later. |
1098 | MachineInstr &MI = *BuildMI(BB&: MBB, I: II, MIMD: DL, MCID: get(Opcode: RISCV::PseudoJump)) |
1099 | .addReg(RegNo: ScratchReg, flags: RegState::Define | RegState::Dead) |
1100 | .addMBB(MBB: &DestBB, TargetFlags: RISCVII::MO_CALL); |
1101 | |
1102 | RS->enterBasicBlockEnd(MBB); |
1103 | Register TmpGPR = |
1104 | RS->scavengeRegisterBackwards(RC: RISCV::GPRRegClass, To: MI.getIterator(), |
1105 | /*RestoreAfter=*/false, /*SpAdj=*/SPAdj: 0, |
1106 | /*AllowSpill=*/false); |
1107 | if (TmpGPR != RISCV::NoRegister) |
1108 | RS->setRegUsed(Reg: TmpGPR); |
1109 | else { |
1110 | // The case when there is no scavenged register needs special handling. |
1111 | |
1112 | // Pick s11 because it doesn't make a difference. |
1113 | TmpGPR = RISCV::X27; |
1114 | |
1115 | int FrameIndex = RVFI->getBranchRelaxationScratchFrameIndex(); |
1116 | if (FrameIndex == -1) |
1117 | report_fatal_error(reason: "underestimated function size" ); |
1118 | |
1119 | storeRegToStackSlot(MBB, I: MI, SrcReg: TmpGPR, /*IsKill=*/true, FI: FrameIndex, |
1120 | RC: &RISCV::GPRRegClass, TRI, VReg: Register()); |
1121 | TRI->eliminateFrameIndex(MI: std::prev(x: MI.getIterator()), |
1122 | /*SpAdj=*/SPAdj: 0, /*FIOperandNum=*/1); |
1123 | |
1124 | MI.getOperand(i: 1).setMBB(&RestoreBB); |
1125 | |
1126 | loadRegFromStackSlot(MBB&: RestoreBB, I: RestoreBB.end(), DstReg: TmpGPR, FI: FrameIndex, |
1127 | RC: &RISCV::GPRRegClass, TRI, VReg: Register()); |
1128 | TRI->eliminateFrameIndex(MI: RestoreBB.back(), |
1129 | /*SpAdj=*/SPAdj: 0, /*FIOperandNum=*/1); |
1130 | } |
1131 | |
1132 | MRI.replaceRegWith(FromReg: ScratchReg, ToReg: TmpGPR); |
1133 | MRI.clearVirtRegs(); |
1134 | } |
1135 | |
1136 | bool RISCVInstrInfo::reverseBranchCondition( |
1137 | SmallVectorImpl<MachineOperand> &Cond) const { |
1138 | assert((Cond.size() == 3) && "Invalid branch condition!" ); |
1139 | auto CC = static_cast<RISCVCC::CondCode>(Cond[0].getImm()); |
1140 | Cond[0].setImm(getOppositeBranchCondition(CC)); |
1141 | return false; |
1142 | } |
1143 | |
1144 | bool RISCVInstrInfo::optimizeCondBranch(MachineInstr &MI) const { |
1145 | MachineBasicBlock *MBB = MI.getParent(); |
1146 | MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); |
1147 | |
1148 | MachineBasicBlock *TBB, *FBB; |
1149 | SmallVector<MachineOperand, 3> Cond; |
1150 | if (analyzeBranch(MBB&: *MBB, TBB, FBB, Cond, /*AllowModify=*/false)) |
1151 | return false; |
1152 | |
1153 | RISCVCC::CondCode CC = static_cast<RISCVCC::CondCode>(Cond[0].getImm()); |
1154 | assert(CC != RISCVCC::COND_INVALID); |
1155 | |
1156 | if (CC == RISCVCC::COND_EQ || CC == RISCVCC::COND_NE) |
1157 | return false; |
1158 | |
1159 | // For two constants C0 and C1 from |
1160 | // ``` |
1161 | // li Y, C0 |
1162 | // li Z, C1 |
1163 | // ``` |
1164 | // 1. if C1 = C0 + 1 |
1165 | // we can turn: |
1166 | // (a) blt Y, X -> bge X, Z |
1167 | // (b) bge Y, X -> blt X, Z |
1168 | // |
1169 | // 2. if C1 = C0 - 1 |
1170 | // we can turn: |
1171 | // (a) blt X, Y -> bge Z, X |
1172 | // (b) bge X, Y -> blt Z, X |
1173 | // |
1174 | // To make sure this optimization is really beneficial, we only |
1175 | // optimize for cases where Y had only one use (i.e. only used by the branch). |
1176 | |
1177 | // Right now we only care about LI (i.e. ADDI x0, imm) |
1178 | auto isLoadImm = [](const MachineInstr *MI, int64_t &Imm) -> bool { |
1179 | if (MI->getOpcode() == RISCV::ADDI && MI->getOperand(i: 1).isReg() && |
1180 | MI->getOperand(i: 1).getReg() == RISCV::X0) { |
1181 | Imm = MI->getOperand(i: 2).getImm(); |
1182 | return true; |
1183 | } |
1184 | return false; |
1185 | }; |
1186 | // Either a load from immediate instruction or X0. |
1187 | auto isFromLoadImm = [&](const MachineOperand &Op, int64_t &Imm) -> bool { |
1188 | if (!Op.isReg()) |
1189 | return false; |
1190 | Register Reg = Op.getReg(); |
1191 | return Reg.isVirtual() && isLoadImm(MRI.getVRegDef(Reg), Imm); |
1192 | }; |
1193 | |
1194 | MachineOperand &LHS = MI.getOperand(i: 0); |
1195 | MachineOperand &RHS = MI.getOperand(i: 1); |
1196 | // Try to find the register for constant Z; return |
1197 | // invalid register otherwise. |
1198 | auto searchConst = [&](int64_t C1) -> Register { |
1199 | MachineBasicBlock::reverse_iterator II(&MI), E = MBB->rend(); |
1200 | auto DefC1 = std::find_if(first: ++II, last: E, pred: [&](const MachineInstr &I) -> bool { |
1201 | int64_t Imm; |
1202 | return isLoadImm(&I, Imm) && Imm == C1 && |
1203 | I.getOperand(i: 0).getReg().isVirtual(); |
1204 | }); |
1205 | if (DefC1 != E) |
1206 | return DefC1->getOperand(i: 0).getReg(); |
1207 | |
1208 | return Register(); |
1209 | }; |
1210 | |
1211 | bool Modify = false; |
1212 | int64_t C0; |
1213 | if (isFromLoadImm(LHS, C0) && MRI.hasOneUse(RegNo: LHS.getReg())) { |
1214 | // Might be case 1. |
1215 | // Signed integer overflow is UB. (UINT64_MAX is bigger so we don't need |
1216 | // to worry about unsigned overflow here) |
1217 | if (C0 < INT64_MAX) |
1218 | if (Register RegZ = searchConst(C0 + 1)) { |
1219 | reverseBranchCondition(Cond); |
1220 | Cond[1] = MachineOperand::CreateReg(Reg: RHS.getReg(), /*isDef=*/false); |
1221 | Cond[2] = MachineOperand::CreateReg(Reg: RegZ, /*isDef=*/false); |
1222 | // We might extend the live range of Z, clear its kill flag to |
1223 | // account for this. |
1224 | MRI.clearKillFlags(Reg: RegZ); |
1225 | Modify = true; |
1226 | } |
1227 | } else if (isFromLoadImm(RHS, C0) && MRI.hasOneUse(RegNo: RHS.getReg())) { |
1228 | // Might be case 2. |
1229 | // For unsigned cases, we don't want C1 to wrap back to UINT64_MAX |
1230 | // when C0 is zero. |
1231 | if ((CC == RISCVCC::COND_GE || CC == RISCVCC::COND_LT) || C0) |
1232 | if (Register RegZ = searchConst(C0 - 1)) { |
1233 | reverseBranchCondition(Cond); |
1234 | Cond[1] = MachineOperand::CreateReg(Reg: RegZ, /*isDef=*/false); |
1235 | Cond[2] = MachineOperand::CreateReg(Reg: LHS.getReg(), /*isDef=*/false); |
1236 | // We might extend the live range of Z, clear its kill flag to |
1237 | // account for this. |
1238 | MRI.clearKillFlags(Reg: RegZ); |
1239 | Modify = true; |
1240 | } |
1241 | } |
1242 | |
1243 | if (!Modify) |
1244 | return false; |
1245 | |
1246 | // Build the new branch and remove the old one. |
1247 | BuildMI(BB&: *MBB, I&: MI, MIMD: MI.getDebugLoc(), |
1248 | MCID: getBrCond(CC: static_cast<RISCVCC::CondCode>(Cond[0].getImm()))) |
1249 | .add(MO: Cond[1]) |
1250 | .add(MO: Cond[2]) |
1251 | .addMBB(MBB: TBB); |
1252 | MI.eraseFromParent(); |
1253 | |
1254 | return true; |
1255 | } |
1256 | |
1257 | MachineBasicBlock * |
1258 | RISCVInstrInfo::getBranchDestBlock(const MachineInstr &MI) const { |
1259 | assert(MI.getDesc().isBranch() && "Unexpected opcode!" ); |
1260 | // The branch target is always the last operand. |
1261 | int NumOp = MI.getNumExplicitOperands(); |
1262 | return MI.getOperand(i: NumOp - 1).getMBB(); |
1263 | } |
1264 | |
1265 | bool RISCVInstrInfo::isBranchOffsetInRange(unsigned BranchOp, |
1266 | int64_t BrOffset) const { |
1267 | unsigned XLen = STI.getXLen(); |
1268 | // Ideally we could determine the supported branch offset from the |
1269 | // RISCVII::FormMask, but this can't be used for Pseudo instructions like |
1270 | // PseudoBR. |
1271 | switch (BranchOp) { |
1272 | default: |
1273 | llvm_unreachable("Unexpected opcode!" ); |
1274 | case RISCV::BEQ: |
1275 | case RISCV::BNE: |
1276 | case RISCV::BLT: |
1277 | case RISCV::BGE: |
1278 | case RISCV::BLTU: |
1279 | case RISCV::BGEU: |
1280 | case RISCV::CV_BEQIMM: |
1281 | case RISCV::CV_BNEIMM: |
1282 | return isIntN(N: 13, x: BrOffset); |
1283 | case RISCV::JAL: |
1284 | case RISCV::PseudoBR: |
1285 | return isIntN(N: 21, x: BrOffset); |
1286 | case RISCV::PseudoJump: |
1287 | return isIntN(N: 32, x: SignExtend64(X: BrOffset + 0x800, B: XLen)); |
1288 | } |
1289 | } |
1290 | |
1291 | // If the operation has a predicated pseudo instruction, return the pseudo |
1292 | // instruction opcode. Otherwise, return RISCV::INSTRUCTION_LIST_END. |
1293 | // TODO: Support more operations. |
1294 | unsigned getPredicatedOpcode(unsigned Opcode) { |
1295 | switch (Opcode) { |
1296 | case RISCV::ADD: return RISCV::PseudoCCADD; break; |
1297 | case RISCV::SUB: return RISCV::PseudoCCSUB; break; |
1298 | case RISCV::SLL: return RISCV::PseudoCCSLL; break; |
1299 | case RISCV::SRL: return RISCV::PseudoCCSRL; break; |
1300 | case RISCV::SRA: return RISCV::PseudoCCSRA; break; |
1301 | case RISCV::AND: return RISCV::PseudoCCAND; break; |
1302 | case RISCV::OR: return RISCV::PseudoCCOR; break; |
1303 | case RISCV::XOR: return RISCV::PseudoCCXOR; break; |
1304 | |
1305 | case RISCV::ADDI: return RISCV::PseudoCCADDI; break; |
1306 | case RISCV::SLLI: return RISCV::PseudoCCSLLI; break; |
1307 | case RISCV::SRLI: return RISCV::PseudoCCSRLI; break; |
1308 | case RISCV::SRAI: return RISCV::PseudoCCSRAI; break; |
1309 | case RISCV::ANDI: return RISCV::PseudoCCANDI; break; |
1310 | case RISCV::ORI: return RISCV::PseudoCCORI; break; |
1311 | case RISCV::XORI: return RISCV::PseudoCCXORI; break; |
1312 | |
1313 | case RISCV::ADDW: return RISCV::PseudoCCADDW; break; |
1314 | case RISCV::SUBW: return RISCV::PseudoCCSUBW; break; |
1315 | case RISCV::SLLW: return RISCV::PseudoCCSLLW; break; |
1316 | case RISCV::SRLW: return RISCV::PseudoCCSRLW; break; |
1317 | case RISCV::SRAW: return RISCV::PseudoCCSRAW; break; |
1318 | |
1319 | case RISCV::ADDIW: return RISCV::PseudoCCADDIW; break; |
1320 | case RISCV::SLLIW: return RISCV::PseudoCCSLLIW; break; |
1321 | case RISCV::SRLIW: return RISCV::PseudoCCSRLIW; break; |
1322 | case RISCV::SRAIW: return RISCV::PseudoCCSRAIW; break; |
1323 | |
1324 | case RISCV::ANDN: return RISCV::PseudoCCANDN; break; |
1325 | case RISCV::ORN: return RISCV::PseudoCCORN; break; |
1326 | case RISCV::XNOR: return RISCV::PseudoCCXNOR; break; |
1327 | } |
1328 | |
1329 | return RISCV::INSTRUCTION_LIST_END; |
1330 | } |
1331 | |
1332 | /// Identify instructions that can be folded into a CCMOV instruction, and |
1333 | /// return the defining instruction. |
1334 | static MachineInstr *canFoldAsPredicatedOp(Register Reg, |
1335 | const MachineRegisterInfo &MRI, |
1336 | const TargetInstrInfo *TII) { |
1337 | if (!Reg.isVirtual()) |
1338 | return nullptr; |
1339 | if (!MRI.hasOneNonDBGUse(RegNo: Reg)) |
1340 | return nullptr; |
1341 | MachineInstr *MI = MRI.getVRegDef(Reg); |
1342 | if (!MI) |
1343 | return nullptr; |
1344 | // Check if MI can be predicated and folded into the CCMOV. |
1345 | if (getPredicatedOpcode(Opcode: MI->getOpcode()) == RISCV::INSTRUCTION_LIST_END) |
1346 | return nullptr; |
1347 | // Don't predicate li idiom. |
1348 | if (MI->getOpcode() == RISCV::ADDI && MI->getOperand(i: 1).isReg() && |
1349 | MI->getOperand(i: 1).getReg() == RISCV::X0) |
1350 | return nullptr; |
1351 | // Check if MI has any other defs or physreg uses. |
1352 | for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI->operands())) { |
1353 | // Reject frame index operands, PEI can't handle the predicated pseudos. |
1354 | if (MO.isFI() || MO.isCPI() || MO.isJTI()) |
1355 | return nullptr; |
1356 | if (!MO.isReg()) |
1357 | continue; |
1358 | // MI can't have any tied operands, that would conflict with predication. |
1359 | if (MO.isTied()) |
1360 | return nullptr; |
1361 | if (MO.isDef()) |
1362 | return nullptr; |
1363 | // Allow constant physregs. |
1364 | if (MO.getReg().isPhysical() && !MRI.isConstantPhysReg(PhysReg: MO.getReg())) |
1365 | return nullptr; |
1366 | } |
1367 | bool DontMoveAcrossStores = true; |
1368 | if (!MI->isSafeToMove(/* AliasAnalysis = */ AA: nullptr, SawStore&: DontMoveAcrossStores)) |
1369 | return nullptr; |
1370 | return MI; |
1371 | } |
1372 | |
1373 | bool RISCVInstrInfo::analyzeSelect(const MachineInstr &MI, |
1374 | SmallVectorImpl<MachineOperand> &Cond, |
1375 | unsigned &TrueOp, unsigned &FalseOp, |
1376 | bool &Optimizable) const { |
1377 | assert(MI.getOpcode() == RISCV::PseudoCCMOVGPR && |
1378 | "Unknown select instruction" ); |
1379 | // CCMOV operands: |
1380 | // 0: Def. |
1381 | // 1: LHS of compare. |
1382 | // 2: RHS of compare. |
1383 | // 3: Condition code. |
1384 | // 4: False use. |
1385 | // 5: True use. |
1386 | TrueOp = 5; |
1387 | FalseOp = 4; |
1388 | Cond.push_back(Elt: MI.getOperand(i: 1)); |
1389 | Cond.push_back(Elt: MI.getOperand(i: 2)); |
1390 | Cond.push_back(Elt: MI.getOperand(i: 3)); |
1391 | // We can only fold when we support short forward branch opt. |
1392 | Optimizable = STI.hasShortForwardBranchOpt(); |
1393 | return false; |
1394 | } |
1395 | |
1396 | MachineInstr * |
1397 | RISCVInstrInfo::optimizeSelect(MachineInstr &MI, |
1398 | SmallPtrSetImpl<MachineInstr *> &SeenMIs, |
1399 | bool PreferFalse) const { |
1400 | assert(MI.getOpcode() == RISCV::PseudoCCMOVGPR && |
1401 | "Unknown select instruction" ); |
1402 | if (!STI.hasShortForwardBranchOpt()) |
1403 | return nullptr; |
1404 | |
1405 | MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
1406 | MachineInstr *DefMI = |
1407 | canFoldAsPredicatedOp(Reg: MI.getOperand(i: 5).getReg(), MRI, TII: this); |
1408 | bool Invert = !DefMI; |
1409 | if (!DefMI) |
1410 | DefMI = canFoldAsPredicatedOp(Reg: MI.getOperand(i: 4).getReg(), MRI, TII: this); |
1411 | if (!DefMI) |
1412 | return nullptr; |
1413 | |
1414 | // Find new register class to use. |
1415 | MachineOperand FalseReg = MI.getOperand(i: Invert ? 5 : 4); |
1416 | Register DestReg = MI.getOperand(i: 0).getReg(); |
1417 | const TargetRegisterClass *PreviousClass = MRI.getRegClass(Reg: FalseReg.getReg()); |
1418 | if (!MRI.constrainRegClass(Reg: DestReg, RC: PreviousClass)) |
1419 | return nullptr; |
1420 | |
1421 | unsigned PredOpc = getPredicatedOpcode(Opcode: DefMI->getOpcode()); |
1422 | assert(PredOpc != RISCV::INSTRUCTION_LIST_END && "Unexpected opcode!" ); |
1423 | |
1424 | // Create a new predicated version of DefMI. |
1425 | MachineInstrBuilder NewMI = |
1426 | BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: PredOpc), DestReg); |
1427 | |
1428 | // Copy the condition portion. |
1429 | NewMI.add(MO: MI.getOperand(i: 1)); |
1430 | NewMI.add(MO: MI.getOperand(i: 2)); |
1431 | |
1432 | // Add condition code, inverting if necessary. |
1433 | auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(i: 3).getImm()); |
1434 | if (Invert) |
1435 | CC = RISCVCC::getOppositeBranchCondition(CC); |
1436 | NewMI.addImm(Val: CC); |
1437 | |
1438 | // Copy the false register. |
1439 | NewMI.add(MO: FalseReg); |
1440 | |
1441 | // Copy all the DefMI operands. |
1442 | const MCInstrDesc &DefDesc = DefMI->getDesc(); |
1443 | for (unsigned i = 1, e = DefDesc.getNumOperands(); i != e; ++i) |
1444 | NewMI.add(MO: DefMI->getOperand(i)); |
1445 | |
1446 | // Update SeenMIs set: register newly created MI and erase removed DefMI. |
1447 | SeenMIs.insert(Ptr: NewMI); |
1448 | SeenMIs.erase(Ptr: DefMI); |
1449 | |
1450 | // If MI is inside a loop, and DefMI is outside the loop, then kill flags on |
1451 | // DefMI would be invalid when tranferred inside the loop. Checking for a |
1452 | // loop is expensive, but at least remove kill flags if they are in different |
1453 | // BBs. |
1454 | if (DefMI->getParent() != MI.getParent()) |
1455 | NewMI->clearKillInfo(); |
1456 | |
1457 | // The caller will erase MI, but not DefMI. |
1458 | DefMI->eraseFromParent(); |
1459 | return NewMI; |
1460 | } |
1461 | |
1462 | unsigned RISCVInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { |
1463 | if (MI.isMetaInstruction()) |
1464 | return 0; |
1465 | |
1466 | unsigned Opcode = MI.getOpcode(); |
1467 | |
1468 | if (Opcode == TargetOpcode::INLINEASM || |
1469 | Opcode == TargetOpcode::INLINEASM_BR) { |
1470 | const MachineFunction &MF = *MI.getParent()->getParent(); |
1471 | return getInlineAsmLength(Str: MI.getOperand(i: 0).getSymbolName(), |
1472 | MAI: *MF.getTarget().getMCAsmInfo()); |
1473 | } |
1474 | |
1475 | if (!MI.memoperands_empty()) { |
1476 | MachineMemOperand *MMO = *(MI.memoperands_begin()); |
1477 | if (STI.hasStdExtZihintntl() && MMO->isNonTemporal()) { |
1478 | if (STI.hasStdExtCOrZca() && STI.enableRVCHintInstrs()) { |
1479 | if (isCompressibleInst(MI, STI)) |
1480 | return 4; // c.ntl.all + c.load/c.store |
1481 | return 6; // c.ntl.all + load/store |
1482 | } |
1483 | return 8; // ntl.all + load/store |
1484 | } |
1485 | } |
1486 | |
1487 | if (Opcode == TargetOpcode::BUNDLE) |
1488 | return getInstBundleLength(MI); |
1489 | |
1490 | if (MI.getParent() && MI.getParent()->getParent()) { |
1491 | if (isCompressibleInst(MI, STI)) |
1492 | return 2; |
1493 | } |
1494 | |
1495 | switch (Opcode) { |
1496 | case TargetOpcode::STACKMAP: |
1497 | // The upper bound for a stackmap intrinsic is the full length of its shadow |
1498 | return StackMapOpers(&MI).getNumPatchBytes(); |
1499 | case TargetOpcode::PATCHPOINT: |
1500 | // The size of the patchpoint intrinsic is the number of bytes requested |
1501 | return PatchPointOpers(&MI).getNumPatchBytes(); |
1502 | case TargetOpcode::STATEPOINT: { |
1503 | // The size of the statepoint intrinsic is the number of bytes requested |
1504 | unsigned NumBytes = StatepointOpers(&MI).getNumPatchBytes(); |
1505 | // No patch bytes means at most a PseudoCall is emitted |
1506 | return std::max(a: NumBytes, b: 8U); |
1507 | } |
1508 | default: |
1509 | return get(Opcode).getSize(); |
1510 | } |
1511 | } |
1512 | |
1513 | unsigned RISCVInstrInfo::getInstBundleLength(const MachineInstr &MI) const { |
1514 | unsigned Size = 0; |
1515 | MachineBasicBlock::const_instr_iterator I = MI.getIterator(); |
1516 | MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); |
1517 | while (++I != E && I->isInsideBundle()) { |
1518 | assert(!I->isBundle() && "No nested bundle!" ); |
1519 | Size += getInstSizeInBytes(MI: *I); |
1520 | } |
1521 | return Size; |
1522 | } |
1523 | |
1524 | bool RISCVInstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const { |
1525 | const unsigned Opcode = MI.getOpcode(); |
1526 | switch (Opcode) { |
1527 | default: |
1528 | break; |
1529 | case RISCV::FSGNJ_D: |
1530 | case RISCV::FSGNJ_S: |
1531 | case RISCV::FSGNJ_H: |
1532 | case RISCV::FSGNJ_D_INX: |
1533 | case RISCV::FSGNJ_D_IN32X: |
1534 | case RISCV::FSGNJ_S_INX: |
1535 | case RISCV::FSGNJ_H_INX: |
1536 | // The canonical floating-point move is fsgnj rd, rs, rs. |
1537 | return MI.getOperand(i: 1).isReg() && MI.getOperand(i: 2).isReg() && |
1538 | MI.getOperand(i: 1).getReg() == MI.getOperand(i: 2).getReg(); |
1539 | case RISCV::ADDI: |
1540 | case RISCV::ORI: |
1541 | case RISCV::XORI: |
1542 | return (MI.getOperand(i: 1).isReg() && |
1543 | MI.getOperand(i: 1).getReg() == RISCV::X0) || |
1544 | (MI.getOperand(i: 2).isImm() && MI.getOperand(i: 2).getImm() == 0); |
1545 | } |
1546 | return MI.isAsCheapAsAMove(); |
1547 | } |
1548 | |
1549 | std::optional<DestSourcePair> |
1550 | RISCVInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { |
1551 | if (MI.isMoveReg()) |
1552 | return DestSourcePair{MI.getOperand(i: 0), MI.getOperand(i: 1)}; |
1553 | switch (MI.getOpcode()) { |
1554 | default: |
1555 | break; |
1556 | case RISCV::ADDI: |
1557 | // Operand 1 can be a frameindex but callers expect registers |
1558 | if (MI.getOperand(i: 1).isReg() && MI.getOperand(i: 2).isImm() && |
1559 | MI.getOperand(i: 2).getImm() == 0) |
1560 | return DestSourcePair{MI.getOperand(i: 0), MI.getOperand(i: 1)}; |
1561 | break; |
1562 | case RISCV::FSGNJ_D: |
1563 | case RISCV::FSGNJ_S: |
1564 | case RISCV::FSGNJ_H: |
1565 | case RISCV::FSGNJ_D_INX: |
1566 | case RISCV::FSGNJ_D_IN32X: |
1567 | case RISCV::FSGNJ_S_INX: |
1568 | case RISCV::FSGNJ_H_INX: |
1569 | // The canonical floating-point move is fsgnj rd, rs, rs. |
1570 | if (MI.getOperand(i: 1).isReg() && MI.getOperand(i: 2).isReg() && |
1571 | MI.getOperand(i: 1).getReg() == MI.getOperand(i: 2).getReg()) |
1572 | return DestSourcePair{MI.getOperand(i: 0), MI.getOperand(i: 1)}; |
1573 | break; |
1574 | } |
1575 | return std::nullopt; |
1576 | } |
1577 | |
1578 | MachineTraceStrategy RISCVInstrInfo::getMachineCombinerTraceStrategy() const { |
1579 | if (ForceMachineCombinerStrategy.getNumOccurrences() == 0) { |
1580 | // The option is unused. Choose Local strategy only for in-order cores. When |
1581 | // scheduling model is unspecified, use MinInstrCount strategy as more |
1582 | // generic one. |
1583 | const auto &SchedModel = STI.getSchedModel(); |
1584 | return (!SchedModel.hasInstrSchedModel() || SchedModel.isOutOfOrder()) |
1585 | ? MachineTraceStrategy::TS_MinInstrCount |
1586 | : MachineTraceStrategy::TS_Local; |
1587 | } |
1588 | // The strategy was forced by the option. |
1589 | return ForceMachineCombinerStrategy; |
1590 | } |
1591 | |
1592 | void RISCVInstrInfo::finalizeInsInstrs( |
1593 | MachineInstr &Root, unsigned &Pattern, |
1594 | SmallVectorImpl<MachineInstr *> &InsInstrs) const { |
1595 | int16_t FrmOpIdx = |
1596 | RISCV::getNamedOperandIdx(Opcode: Root.getOpcode(), NamedIdx: RISCV::OpName::frm); |
1597 | if (FrmOpIdx < 0) { |
1598 | assert(all_of(InsInstrs, |
1599 | [](MachineInstr *MI) { |
1600 | return RISCV::getNamedOperandIdx(MI->getOpcode(), |
1601 | RISCV::OpName::frm) < 0; |
1602 | }) && |
1603 | "New instructions require FRM whereas the old one does not have it" ); |
1604 | return; |
1605 | } |
1606 | |
1607 | const MachineOperand &FRM = Root.getOperand(i: FrmOpIdx); |
1608 | MachineFunction &MF = *Root.getMF(); |
1609 | |
1610 | for (auto *NewMI : InsInstrs) { |
1611 | // We'd already added the FRM operand. |
1612 | if (static_cast<unsigned>(RISCV::getNamedOperandIdx( |
1613 | Opcode: NewMI->getOpcode(), NamedIdx: RISCV::OpName::frm)) != NewMI->getNumOperands()) |
1614 | continue; |
1615 | MachineInstrBuilder MIB(MF, NewMI); |
1616 | MIB.add(MO: FRM); |
1617 | if (FRM.getImm() == RISCVFPRndMode::DYN) |
1618 | MIB.addUse(RegNo: RISCV::FRM, Flags: RegState::Implicit); |
1619 | } |
1620 | } |
1621 | |
1622 | static bool isFADD(unsigned Opc) { |
1623 | switch (Opc) { |
1624 | default: |
1625 | return false; |
1626 | case RISCV::FADD_H: |
1627 | case RISCV::FADD_S: |
1628 | case RISCV::FADD_D: |
1629 | return true; |
1630 | } |
1631 | } |
1632 | |
1633 | static bool isFSUB(unsigned Opc) { |
1634 | switch (Opc) { |
1635 | default: |
1636 | return false; |
1637 | case RISCV::FSUB_H: |
1638 | case RISCV::FSUB_S: |
1639 | case RISCV::FSUB_D: |
1640 | return true; |
1641 | } |
1642 | } |
1643 | |
1644 | static bool isFMUL(unsigned Opc) { |
1645 | switch (Opc) { |
1646 | default: |
1647 | return false; |
1648 | case RISCV::FMUL_H: |
1649 | case RISCV::FMUL_S: |
1650 | case RISCV::FMUL_D: |
1651 | return true; |
1652 | } |
1653 | } |
1654 | |
1655 | bool RISCVInstrInfo::isVectorAssociativeAndCommutative(const MachineInstr &Inst, |
1656 | bool Invert) const { |
1657 | #define OPCODE_LMUL_CASE(OPC) \ |
1658 | case RISCV::OPC##_M1: \ |
1659 | case RISCV::OPC##_M2: \ |
1660 | case RISCV::OPC##_M4: \ |
1661 | case RISCV::OPC##_M8: \ |
1662 | case RISCV::OPC##_MF2: \ |
1663 | case RISCV::OPC##_MF4: \ |
1664 | case RISCV::OPC##_MF8 |
1665 | |
1666 | #define OPCODE_LMUL_MASK_CASE(OPC) \ |
1667 | case RISCV::OPC##_M1_MASK: \ |
1668 | case RISCV::OPC##_M2_MASK: \ |
1669 | case RISCV::OPC##_M4_MASK: \ |
1670 | case RISCV::OPC##_M8_MASK: \ |
1671 | case RISCV::OPC##_MF2_MASK: \ |
1672 | case RISCV::OPC##_MF4_MASK: \ |
1673 | case RISCV::OPC##_MF8_MASK |
1674 | |
1675 | unsigned Opcode = Inst.getOpcode(); |
1676 | if (Invert) { |
1677 | if (auto InvOpcode = getInverseOpcode(Opcode)) |
1678 | Opcode = *InvOpcode; |
1679 | else |
1680 | return false; |
1681 | } |
1682 | |
1683 | // clang-format off |
1684 | switch (Opcode) { |
1685 | default: |
1686 | return false; |
1687 | OPCODE_LMUL_CASE(PseudoVADD_VV): |
1688 | OPCODE_LMUL_MASK_CASE(PseudoVADD_VV): |
1689 | OPCODE_LMUL_CASE(PseudoVMUL_VV): |
1690 | OPCODE_LMUL_MASK_CASE(PseudoVMUL_VV): |
1691 | return true; |
1692 | } |
1693 | // clang-format on |
1694 | |
1695 | #undef OPCODE_LMUL_MASK_CASE |
1696 | #undef OPCODE_LMUL_CASE |
1697 | } |
1698 | |
1699 | bool RISCVInstrInfo::areRVVInstsReassociable(const MachineInstr &Root, |
1700 | const MachineInstr &Prev) const { |
1701 | if (!areOpcodesEqualOrInverse(Opcode1: Root.getOpcode(), Opcode2: Prev.getOpcode())) |
1702 | return false; |
1703 | |
1704 | assert(Root.getMF() == Prev.getMF()); |
1705 | const MachineRegisterInfo *MRI = &Root.getMF()->getRegInfo(); |
1706 | const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo(); |
1707 | |
1708 | // Make sure vtype operands are also the same. |
1709 | const MCInstrDesc &Desc = get(Opcode: Root.getOpcode()); |
1710 | const uint64_t TSFlags = Desc.TSFlags; |
1711 | |
1712 | auto checkImmOperand = [&](unsigned OpIdx) { |
1713 | return Root.getOperand(i: OpIdx).getImm() == Prev.getOperand(i: OpIdx).getImm(); |
1714 | }; |
1715 | |
1716 | auto checkRegOperand = [&](unsigned OpIdx) { |
1717 | return Root.getOperand(i: OpIdx).getReg() == Prev.getOperand(i: OpIdx).getReg(); |
1718 | }; |
1719 | |
1720 | // PassThru |
1721 | // TODO: Potentially we can loosen the condition to consider Root to be |
1722 | // associable with Prev if Root has NoReg as passthru. In which case we |
1723 | // also need to loosen the condition on vector policies between these. |
1724 | if (!checkRegOperand(1)) |
1725 | return false; |
1726 | |
1727 | // SEW |
1728 | if (RISCVII::hasSEWOp(TSFlags) && |
1729 | !checkImmOperand(RISCVII::getSEWOpNum(Desc))) |
1730 | return false; |
1731 | |
1732 | // Mask |
1733 | if (RISCVII::usesMaskPolicy(TSFlags)) { |
1734 | const MachineBasicBlock *MBB = Root.getParent(); |
1735 | const MachineBasicBlock::const_reverse_iterator It1(&Root); |
1736 | const MachineBasicBlock::const_reverse_iterator It2(&Prev); |
1737 | Register MI1VReg; |
1738 | |
1739 | bool SeenMI2 = false; |
1740 | for (auto End = MBB->rend(), It = It1; It != End; ++It) { |
1741 | if (It == It2) { |
1742 | SeenMI2 = true; |
1743 | if (!MI1VReg.isValid()) |
1744 | // There is no V0 def between Root and Prev; they're sharing the |
1745 | // same V0. |
1746 | break; |
1747 | } |
1748 | |
1749 | if (It->modifiesRegister(Reg: RISCV::V0, TRI)) { |
1750 | Register SrcReg = It->getOperand(i: 1).getReg(); |
1751 | // If it's not VReg it'll be more difficult to track its defs, so |
1752 | // bailing out here just to be safe. |
1753 | if (!SrcReg.isVirtual()) |
1754 | return false; |
1755 | |
1756 | if (!MI1VReg.isValid()) { |
1757 | // This is the V0 def for Root. |
1758 | MI1VReg = SrcReg; |
1759 | continue; |
1760 | } |
1761 | |
1762 | // Some random mask updates. |
1763 | if (!SeenMI2) |
1764 | continue; |
1765 | |
1766 | // This is the V0 def for Prev; check if it's the same as that of |
1767 | // Root. |
1768 | if (MI1VReg != SrcReg) |
1769 | return false; |
1770 | else |
1771 | break; |
1772 | } |
1773 | } |
1774 | |
1775 | // If we haven't encountered Prev, it's likely that this function was |
1776 | // called in a wrong way (e.g. Root is before Prev). |
1777 | assert(SeenMI2 && "Prev is expected to appear before Root" ); |
1778 | } |
1779 | |
1780 | // Tail / Mask policies |
1781 | if (RISCVII::hasVecPolicyOp(TSFlags) && |
1782 | !checkImmOperand(RISCVII::getVecPolicyOpNum(Desc))) |
1783 | return false; |
1784 | |
1785 | // VL |
1786 | if (RISCVII::hasVLOp(TSFlags)) { |
1787 | unsigned OpIdx = RISCVII::getVLOpNum(Desc); |
1788 | const MachineOperand &Op1 = Root.getOperand(i: OpIdx); |
1789 | const MachineOperand &Op2 = Prev.getOperand(i: OpIdx); |
1790 | if (Op1.getType() != Op2.getType()) |
1791 | return false; |
1792 | switch (Op1.getType()) { |
1793 | case MachineOperand::MO_Register: |
1794 | if (Op1.getReg() != Op2.getReg()) |
1795 | return false; |
1796 | break; |
1797 | case MachineOperand::MO_Immediate: |
1798 | if (Op1.getImm() != Op2.getImm()) |
1799 | return false; |
1800 | break; |
1801 | default: |
1802 | llvm_unreachable("Unrecognized VL operand type" ); |
1803 | } |
1804 | } |
1805 | |
1806 | // Rounding modes |
1807 | if (RISCVII::hasRoundModeOp(TSFlags) && |
1808 | !checkImmOperand(RISCVII::getVLOpNum(Desc) - 1)) |
1809 | return false; |
1810 | |
1811 | return true; |
1812 | } |
1813 | |
1814 | // Most of our RVV pseudos have passthru operand, so the real operands |
1815 | // start from index = 2. |
1816 | bool RISCVInstrInfo::hasReassociableVectorSibling(const MachineInstr &Inst, |
1817 | bool &Commuted) const { |
1818 | const MachineBasicBlock *MBB = Inst.getParent(); |
1819 | const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); |
1820 | assert(RISCVII::isFirstDefTiedToFirstUse(get(Inst.getOpcode())) && |
1821 | "Expect the present of passthrough operand." ); |
1822 | MachineInstr *MI1 = MRI.getUniqueVRegDef(Reg: Inst.getOperand(i: 2).getReg()); |
1823 | MachineInstr *MI2 = MRI.getUniqueVRegDef(Reg: Inst.getOperand(i: 3).getReg()); |
1824 | |
1825 | // If only one operand has the same or inverse opcode and it's the second |
1826 | // source operand, the operands must be commuted. |
1827 | Commuted = !areRVVInstsReassociable(Root: Inst, Prev: *MI1) && |
1828 | areRVVInstsReassociable(Root: Inst, Prev: *MI2); |
1829 | if (Commuted) |
1830 | std::swap(a&: MI1, b&: MI2); |
1831 | |
1832 | return areRVVInstsReassociable(Root: Inst, Prev: *MI1) && |
1833 | (isVectorAssociativeAndCommutative(Inst: *MI1) || |
1834 | isVectorAssociativeAndCommutative(Inst: *MI1, /* Invert */ true)) && |
1835 | hasReassociableOperands(Inst: *MI1, MBB) && |
1836 | MRI.hasOneNonDBGUse(RegNo: MI1->getOperand(i: 0).getReg()); |
1837 | } |
1838 | |
1839 | bool RISCVInstrInfo::hasReassociableOperands( |
1840 | const MachineInstr &Inst, const MachineBasicBlock *MBB) const { |
1841 | if (!isVectorAssociativeAndCommutative(Inst) && |
1842 | !isVectorAssociativeAndCommutative(Inst, /*Invert=*/true)) |
1843 | return TargetInstrInfo::hasReassociableOperands(Inst, MBB); |
1844 | |
1845 | const MachineOperand &Op1 = Inst.getOperand(i: 2); |
1846 | const MachineOperand &Op2 = Inst.getOperand(i: 3); |
1847 | const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); |
1848 | |
1849 | // We need virtual register definitions for the operands that we will |
1850 | // reassociate. |
1851 | MachineInstr *MI1 = nullptr; |
1852 | MachineInstr *MI2 = nullptr; |
1853 | if (Op1.isReg() && Op1.getReg().isVirtual()) |
1854 | MI1 = MRI.getUniqueVRegDef(Reg: Op1.getReg()); |
1855 | if (Op2.isReg() && Op2.getReg().isVirtual()) |
1856 | MI2 = MRI.getUniqueVRegDef(Reg: Op2.getReg()); |
1857 | |
1858 | // And at least one operand must be defined in MBB. |
1859 | return MI1 && MI2 && (MI1->getParent() == MBB || MI2->getParent() == MBB); |
1860 | } |
1861 | |
1862 | void RISCVInstrInfo::getReassociateOperandIndices( |
1863 | const MachineInstr &Root, unsigned Pattern, |
1864 | std::array<unsigned, 5> &OperandIndices) const { |
1865 | TargetInstrInfo::getReassociateOperandIndices(Root, Pattern, OperandIndices); |
1866 | if (RISCV::getRVVMCOpcode(RVVPseudoOpcode: Root.getOpcode())) { |
1867 | // Skip the passthrough operand, so increment all indices by one. |
1868 | for (unsigned I = 0; I < 5; ++I) |
1869 | ++OperandIndices[I]; |
1870 | } |
1871 | } |
1872 | |
1873 | bool RISCVInstrInfo::hasReassociableSibling(const MachineInstr &Inst, |
1874 | bool &Commuted) const { |
1875 | if (isVectorAssociativeAndCommutative(Inst) || |
1876 | isVectorAssociativeAndCommutative(Inst, /*Invert=*/true)) |
1877 | return hasReassociableVectorSibling(Inst, Commuted); |
1878 | |
1879 | if (!TargetInstrInfo::hasReassociableSibling(Inst, Commuted)) |
1880 | return false; |
1881 | |
1882 | const MachineRegisterInfo &MRI = Inst.getMF()->getRegInfo(); |
1883 | unsigned OperandIdx = Commuted ? 2 : 1; |
1884 | const MachineInstr &Sibling = |
1885 | *MRI.getVRegDef(Reg: Inst.getOperand(i: OperandIdx).getReg()); |
1886 | |
1887 | int16_t InstFrmOpIdx = |
1888 | RISCV::getNamedOperandIdx(Opcode: Inst.getOpcode(), NamedIdx: RISCV::OpName::frm); |
1889 | int16_t SiblingFrmOpIdx = |
1890 | RISCV::getNamedOperandIdx(Opcode: Sibling.getOpcode(), NamedIdx: RISCV::OpName::frm); |
1891 | |
1892 | return (InstFrmOpIdx < 0 && SiblingFrmOpIdx < 0) || |
1893 | RISCV::hasEqualFRM(MI1: Inst, MI2: Sibling); |
1894 | } |
1895 | |
1896 | bool RISCVInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst, |
1897 | bool Invert) const { |
1898 | if (isVectorAssociativeAndCommutative(Inst, Invert)) |
1899 | return true; |
1900 | |
1901 | unsigned Opc = Inst.getOpcode(); |
1902 | if (Invert) { |
1903 | auto InverseOpcode = getInverseOpcode(Opcode: Opc); |
1904 | if (!InverseOpcode) |
1905 | return false; |
1906 | Opc = *InverseOpcode; |
1907 | } |
1908 | |
1909 | if (isFADD(Opc) || isFMUL(Opc)) |
1910 | return Inst.getFlag(Flag: MachineInstr::MIFlag::FmReassoc) && |
1911 | Inst.getFlag(Flag: MachineInstr::MIFlag::FmNsz); |
1912 | |
1913 | switch (Opc) { |
1914 | default: |
1915 | return false; |
1916 | case RISCV::ADD: |
1917 | case RISCV::ADDW: |
1918 | case RISCV::AND: |
1919 | case RISCV::OR: |
1920 | case RISCV::XOR: |
1921 | // From RISC-V ISA spec, if both the high and low bits of the same product |
1922 | // are required, then the recommended code sequence is: |
1923 | // |
1924 | // MULH[[S]U] rdh, rs1, rs2 |
1925 | // MUL rdl, rs1, rs2 |
1926 | // (source register specifiers must be in same order and rdh cannot be the |
1927 | // same as rs1 or rs2) |
1928 | // |
1929 | // Microarchitectures can then fuse these into a single multiply operation |
1930 | // instead of performing two separate multiplies. |
1931 | // MachineCombiner may reassociate MUL operands and lose the fusion |
1932 | // opportunity. |
1933 | case RISCV::MUL: |
1934 | case RISCV::MULW: |
1935 | case RISCV::MIN: |
1936 | case RISCV::MINU: |
1937 | case RISCV::MAX: |
1938 | case RISCV::MAXU: |
1939 | case RISCV::FMIN_H: |
1940 | case RISCV::FMIN_S: |
1941 | case RISCV::FMIN_D: |
1942 | case RISCV::FMAX_H: |
1943 | case RISCV::FMAX_S: |
1944 | case RISCV::FMAX_D: |
1945 | return true; |
1946 | } |
1947 | |
1948 | return false; |
1949 | } |
1950 | |
1951 | std::optional<unsigned> |
1952 | RISCVInstrInfo::getInverseOpcode(unsigned Opcode) const { |
1953 | #define RVV_OPC_LMUL_CASE(OPC, INV) \ |
1954 | case RISCV::OPC##_M1: \ |
1955 | return RISCV::INV##_M1; \ |
1956 | case RISCV::OPC##_M2: \ |
1957 | return RISCV::INV##_M2; \ |
1958 | case RISCV::OPC##_M4: \ |
1959 | return RISCV::INV##_M4; \ |
1960 | case RISCV::OPC##_M8: \ |
1961 | return RISCV::INV##_M8; \ |
1962 | case RISCV::OPC##_MF2: \ |
1963 | return RISCV::INV##_MF2; \ |
1964 | case RISCV::OPC##_MF4: \ |
1965 | return RISCV::INV##_MF4; \ |
1966 | case RISCV::OPC##_MF8: \ |
1967 | return RISCV::INV##_MF8 |
1968 | |
1969 | #define RVV_OPC_LMUL_MASK_CASE(OPC, INV) \ |
1970 | case RISCV::OPC##_M1_MASK: \ |
1971 | return RISCV::INV##_M1_MASK; \ |
1972 | case RISCV::OPC##_M2_MASK: \ |
1973 | return RISCV::INV##_M2_MASK; \ |
1974 | case RISCV::OPC##_M4_MASK: \ |
1975 | return RISCV::INV##_M4_MASK; \ |
1976 | case RISCV::OPC##_M8_MASK: \ |
1977 | return RISCV::INV##_M8_MASK; \ |
1978 | case RISCV::OPC##_MF2_MASK: \ |
1979 | return RISCV::INV##_MF2_MASK; \ |
1980 | case RISCV::OPC##_MF4_MASK: \ |
1981 | return RISCV::INV##_MF4_MASK; \ |
1982 | case RISCV::OPC##_MF8_MASK: \ |
1983 | return RISCV::INV##_MF8_MASK |
1984 | |
1985 | switch (Opcode) { |
1986 | default: |
1987 | return std::nullopt; |
1988 | case RISCV::FADD_H: |
1989 | return RISCV::FSUB_H; |
1990 | case RISCV::FADD_S: |
1991 | return RISCV::FSUB_S; |
1992 | case RISCV::FADD_D: |
1993 | return RISCV::FSUB_D; |
1994 | case RISCV::FSUB_H: |
1995 | return RISCV::FADD_H; |
1996 | case RISCV::FSUB_S: |
1997 | return RISCV::FADD_S; |
1998 | case RISCV::FSUB_D: |
1999 | return RISCV::FADD_D; |
2000 | case RISCV::ADD: |
2001 | return RISCV::SUB; |
2002 | case RISCV::SUB: |
2003 | return RISCV::ADD; |
2004 | case RISCV::ADDW: |
2005 | return RISCV::SUBW; |
2006 | case RISCV::SUBW: |
2007 | return RISCV::ADDW; |
2008 | // clang-format off |
2009 | RVV_OPC_LMUL_CASE(PseudoVADD_VV, PseudoVSUB_VV); |
2010 | RVV_OPC_LMUL_MASK_CASE(PseudoVADD_VV, PseudoVSUB_VV); |
2011 | RVV_OPC_LMUL_CASE(PseudoVSUB_VV, PseudoVADD_VV); |
2012 | RVV_OPC_LMUL_MASK_CASE(PseudoVSUB_VV, PseudoVADD_VV); |
2013 | // clang-format on |
2014 | } |
2015 | |
2016 | #undef RVV_OPC_LMUL_MASK_CASE |
2017 | #undef RVV_OPC_LMUL_CASE |
2018 | } |
2019 | |
2020 | static bool canCombineFPFusedMultiply(const MachineInstr &Root, |
2021 | const MachineOperand &MO, |
2022 | bool DoRegPressureReduce) { |
2023 | if (!MO.isReg() || !MO.getReg().isVirtual()) |
2024 | return false; |
2025 | const MachineRegisterInfo &MRI = Root.getMF()->getRegInfo(); |
2026 | MachineInstr *MI = MRI.getVRegDef(Reg: MO.getReg()); |
2027 | if (!MI || !isFMUL(Opc: MI->getOpcode())) |
2028 | return false; |
2029 | |
2030 | if (!Root.getFlag(Flag: MachineInstr::MIFlag::FmContract) || |
2031 | !MI->getFlag(Flag: MachineInstr::MIFlag::FmContract)) |
2032 | return false; |
2033 | |
2034 | // Try combining even if fmul has more than one use as it eliminates |
2035 | // dependency between fadd(fsub) and fmul. However, it can extend liveranges |
2036 | // for fmul operands, so reject the transformation in register pressure |
2037 | // reduction mode. |
2038 | if (DoRegPressureReduce && !MRI.hasOneNonDBGUse(RegNo: MI->getOperand(i: 0).getReg())) |
2039 | return false; |
2040 | |
2041 | // Do not combine instructions from different basic blocks. |
2042 | if (Root.getParent() != MI->getParent()) |
2043 | return false; |
2044 | return RISCV::hasEqualFRM(MI1: Root, MI2: *MI); |
2045 | } |
2046 | |
2047 | static bool getFPFusedMultiplyPatterns(MachineInstr &Root, |
2048 | SmallVectorImpl<unsigned> &Patterns, |
2049 | bool DoRegPressureReduce) { |
2050 | unsigned Opc = Root.getOpcode(); |
2051 | bool IsFAdd = isFADD(Opc); |
2052 | if (!IsFAdd && !isFSUB(Opc)) |
2053 | return false; |
2054 | bool Added = false; |
2055 | if (canCombineFPFusedMultiply(Root, MO: Root.getOperand(i: 1), |
2056 | DoRegPressureReduce)) { |
2057 | Patterns.push_back(Elt: IsFAdd ? RISCVMachineCombinerPattern::FMADD_AX |
2058 | : RISCVMachineCombinerPattern::FMSUB); |
2059 | Added = true; |
2060 | } |
2061 | if (canCombineFPFusedMultiply(Root, MO: Root.getOperand(i: 2), |
2062 | DoRegPressureReduce)) { |
2063 | Patterns.push_back(Elt: IsFAdd ? RISCVMachineCombinerPattern::FMADD_XA |
2064 | : RISCVMachineCombinerPattern::FNMSUB); |
2065 | Added = true; |
2066 | } |
2067 | return Added; |
2068 | } |
2069 | |
2070 | static bool getFPPatterns(MachineInstr &Root, |
2071 | SmallVectorImpl<unsigned> &Patterns, |
2072 | bool DoRegPressureReduce) { |
2073 | return getFPFusedMultiplyPatterns(Root, Patterns, DoRegPressureReduce); |
2074 | } |
2075 | |
2076 | /// Utility routine that checks if \param MO is defined by an |
2077 | /// \param CombineOpc instruction in the basic block \param MBB |
2078 | static const MachineInstr *canCombine(const MachineBasicBlock &MBB, |
2079 | const MachineOperand &MO, |
2080 | unsigned CombineOpc) { |
2081 | const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
2082 | const MachineInstr *MI = nullptr; |
2083 | |
2084 | if (MO.isReg() && MO.getReg().isVirtual()) |
2085 | MI = MRI.getUniqueVRegDef(Reg: MO.getReg()); |
2086 | // And it needs to be in the trace (otherwise, it won't have a depth). |
2087 | if (!MI || MI->getParent() != &MBB || MI->getOpcode() != CombineOpc) |
2088 | return nullptr; |
2089 | // Must only used by the user we combine with. |
2090 | if (!MRI.hasOneNonDBGUse(RegNo: MI->getOperand(i: 0).getReg())) |
2091 | return nullptr; |
2092 | |
2093 | return MI; |
2094 | } |
2095 | |
2096 | /// Utility routine that checks if \param MO is defined by a SLLI in \param |
2097 | /// MBB that can be combined by splitting across 2 SHXADD instructions. The |
2098 | /// first SHXADD shift amount is given by \param OuterShiftAmt. |
2099 | static bool canCombineShiftIntoShXAdd(const MachineBasicBlock &MBB, |
2100 | const MachineOperand &MO, |
2101 | unsigned OuterShiftAmt) { |
2102 | const MachineInstr *ShiftMI = canCombine(MBB, MO, CombineOpc: RISCV::SLLI); |
2103 | if (!ShiftMI) |
2104 | return false; |
2105 | |
2106 | unsigned InnerShiftAmt = ShiftMI->getOperand(i: 2).getImm(); |
2107 | if (InnerShiftAmt < OuterShiftAmt || (InnerShiftAmt - OuterShiftAmt) > 3) |
2108 | return false; |
2109 | |
2110 | return true; |
2111 | } |
2112 | |
2113 | // Returns the shift amount from a SHXADD instruction. Returns 0 if the |
2114 | // instruction is not a SHXADD. |
2115 | static unsigned getSHXADDShiftAmount(unsigned Opc) { |
2116 | switch (Opc) { |
2117 | default: |
2118 | return 0; |
2119 | case RISCV::SH1ADD: |
2120 | return 1; |
2121 | case RISCV::SH2ADD: |
2122 | return 2; |
2123 | case RISCV::SH3ADD: |
2124 | return 3; |
2125 | } |
2126 | } |
2127 | |
2128 | // Look for opportunities to combine (sh3add Z, (add X, (slli Y, 5))) into |
2129 | // (sh3add (sh2add Y, Z), X). |
2130 | static bool getSHXADDPatterns(const MachineInstr &Root, |
2131 | SmallVectorImpl<unsigned> &Patterns) { |
2132 | unsigned ShiftAmt = getSHXADDShiftAmount(Opc: Root.getOpcode()); |
2133 | if (!ShiftAmt) |
2134 | return false; |
2135 | |
2136 | const MachineBasicBlock &MBB = *Root.getParent(); |
2137 | |
2138 | const MachineInstr *AddMI = canCombine(MBB, MO: Root.getOperand(i: 2), CombineOpc: RISCV::ADD); |
2139 | if (!AddMI) |
2140 | return false; |
2141 | |
2142 | bool Found = false; |
2143 | if (canCombineShiftIntoShXAdd(MBB, MO: AddMI->getOperand(i: 1), OuterShiftAmt: ShiftAmt)) { |
2144 | Patterns.push_back(Elt: RISCVMachineCombinerPattern::SHXADD_ADD_SLLI_OP1); |
2145 | Found = true; |
2146 | } |
2147 | if (canCombineShiftIntoShXAdd(MBB, MO: AddMI->getOperand(i: 2), OuterShiftAmt: ShiftAmt)) { |
2148 | Patterns.push_back(Elt: RISCVMachineCombinerPattern::SHXADD_ADD_SLLI_OP2); |
2149 | Found = true; |
2150 | } |
2151 | |
2152 | return Found; |
2153 | } |
2154 | |
2155 | CombinerObjective RISCVInstrInfo::getCombinerObjective(unsigned Pattern) const { |
2156 | switch (Pattern) { |
2157 | case RISCVMachineCombinerPattern::FMADD_AX: |
2158 | case RISCVMachineCombinerPattern::FMADD_XA: |
2159 | case RISCVMachineCombinerPattern::FMSUB: |
2160 | case RISCVMachineCombinerPattern::FNMSUB: |
2161 | return CombinerObjective::MustReduceDepth; |
2162 | default: |
2163 | return TargetInstrInfo::getCombinerObjective(Pattern); |
2164 | } |
2165 | } |
2166 | |
2167 | bool RISCVInstrInfo::getMachineCombinerPatterns( |
2168 | MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns, |
2169 | bool DoRegPressureReduce) const { |
2170 | |
2171 | if (getFPPatterns(Root, Patterns, DoRegPressureReduce)) |
2172 | return true; |
2173 | |
2174 | if (getSHXADDPatterns(Root, Patterns)) |
2175 | return true; |
2176 | |
2177 | return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, |
2178 | DoRegPressureReduce); |
2179 | } |
2180 | |
2181 | static unsigned getFPFusedMultiplyOpcode(unsigned RootOpc, unsigned Pattern) { |
2182 | switch (RootOpc) { |
2183 | default: |
2184 | llvm_unreachable("Unexpected opcode" ); |
2185 | case RISCV::FADD_H: |
2186 | return RISCV::FMADD_H; |
2187 | case RISCV::FADD_S: |
2188 | return RISCV::FMADD_S; |
2189 | case RISCV::FADD_D: |
2190 | return RISCV::FMADD_D; |
2191 | case RISCV::FSUB_H: |
2192 | return Pattern == RISCVMachineCombinerPattern::FMSUB ? RISCV::FMSUB_H |
2193 | : RISCV::FNMSUB_H; |
2194 | case RISCV::FSUB_S: |
2195 | return Pattern == RISCVMachineCombinerPattern::FMSUB ? RISCV::FMSUB_S |
2196 | : RISCV::FNMSUB_S; |
2197 | case RISCV::FSUB_D: |
2198 | return Pattern == RISCVMachineCombinerPattern::FMSUB ? RISCV::FMSUB_D |
2199 | : RISCV::FNMSUB_D; |
2200 | } |
2201 | } |
2202 | |
2203 | static unsigned getAddendOperandIdx(unsigned Pattern) { |
2204 | switch (Pattern) { |
2205 | default: |
2206 | llvm_unreachable("Unexpected pattern" ); |
2207 | case RISCVMachineCombinerPattern::FMADD_AX: |
2208 | case RISCVMachineCombinerPattern::FMSUB: |
2209 | return 2; |
2210 | case RISCVMachineCombinerPattern::FMADD_XA: |
2211 | case RISCVMachineCombinerPattern::FNMSUB: |
2212 | return 1; |
2213 | } |
2214 | } |
2215 | |
2216 | static void combineFPFusedMultiply(MachineInstr &Root, MachineInstr &Prev, |
2217 | unsigned Pattern, |
2218 | SmallVectorImpl<MachineInstr *> &InsInstrs, |
2219 | SmallVectorImpl<MachineInstr *> &DelInstrs) { |
2220 | MachineFunction *MF = Root.getMF(); |
2221 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
2222 | const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
2223 | |
2224 | MachineOperand &Mul1 = Prev.getOperand(i: 1); |
2225 | MachineOperand &Mul2 = Prev.getOperand(i: 2); |
2226 | MachineOperand &Dst = Root.getOperand(i: 0); |
2227 | MachineOperand &Addend = Root.getOperand(i: getAddendOperandIdx(Pattern)); |
2228 | |
2229 | Register DstReg = Dst.getReg(); |
2230 | unsigned FusedOpc = getFPFusedMultiplyOpcode(RootOpc: Root.getOpcode(), Pattern); |
2231 | uint32_t IntersectedFlags = Root.getFlags() & Prev.getFlags(); |
2232 | DebugLoc MergedLoc = |
2233 | DILocation::getMergedLocation(LocA: Root.getDebugLoc(), LocB: Prev.getDebugLoc()); |
2234 | |
2235 | bool Mul1IsKill = Mul1.isKill(); |
2236 | bool Mul2IsKill = Mul2.isKill(); |
2237 | bool AddendIsKill = Addend.isKill(); |
2238 | |
2239 | // We need to clear kill flags since we may be extending the live range past |
2240 | // a kill. If the mul had kill flags, we can preserve those since we know |
2241 | // where the previous range stopped. |
2242 | MRI.clearKillFlags(Reg: Mul1.getReg()); |
2243 | MRI.clearKillFlags(Reg: Mul2.getReg()); |
2244 | |
2245 | MachineInstrBuilder MIB = |
2246 | BuildMI(MF&: *MF, MIMD: MergedLoc, MCID: TII->get(Opcode: FusedOpc), DestReg: DstReg) |
2247 | .addReg(RegNo: Mul1.getReg(), flags: getKillRegState(B: Mul1IsKill)) |
2248 | .addReg(RegNo: Mul2.getReg(), flags: getKillRegState(B: Mul2IsKill)) |
2249 | .addReg(RegNo: Addend.getReg(), flags: getKillRegState(B: AddendIsKill)) |
2250 | .setMIFlags(IntersectedFlags); |
2251 | |
2252 | InsInstrs.push_back(Elt: MIB); |
2253 | if (MRI.hasOneNonDBGUse(RegNo: Prev.getOperand(i: 0).getReg())) |
2254 | DelInstrs.push_back(Elt: &Prev); |
2255 | DelInstrs.push_back(Elt: &Root); |
2256 | } |
2257 | |
2258 | // Combine patterns like (sh3add Z, (add X, (slli Y, 5))) to |
2259 | // (sh3add (sh2add Y, Z), X) if the shift amount can be split across two |
2260 | // shXadd instructions. The outer shXadd keeps its original opcode. |
2261 | static void |
2262 | genShXAddAddShift(MachineInstr &Root, unsigned AddOpIdx, |
2263 | SmallVectorImpl<MachineInstr *> &InsInstrs, |
2264 | SmallVectorImpl<MachineInstr *> &DelInstrs, |
2265 | DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) { |
2266 | MachineFunction *MF = Root.getMF(); |
2267 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
2268 | const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
2269 | |
2270 | unsigned OuterShiftAmt = getSHXADDShiftAmount(Opc: Root.getOpcode()); |
2271 | assert(OuterShiftAmt != 0 && "Unexpected opcode" ); |
2272 | |
2273 | MachineInstr *AddMI = MRI.getUniqueVRegDef(Reg: Root.getOperand(i: 2).getReg()); |
2274 | MachineInstr *ShiftMI = |
2275 | MRI.getUniqueVRegDef(Reg: AddMI->getOperand(i: AddOpIdx).getReg()); |
2276 | |
2277 | unsigned InnerShiftAmt = ShiftMI->getOperand(i: 2).getImm(); |
2278 | assert(InnerShiftAmt >= OuterShiftAmt && "Unexpected shift amount" ); |
2279 | |
2280 | unsigned InnerOpc; |
2281 | switch (InnerShiftAmt - OuterShiftAmt) { |
2282 | default: |
2283 | llvm_unreachable("Unexpected shift amount" ); |
2284 | case 0: |
2285 | InnerOpc = RISCV::ADD; |
2286 | break; |
2287 | case 1: |
2288 | InnerOpc = RISCV::SH1ADD; |
2289 | break; |
2290 | case 2: |
2291 | InnerOpc = RISCV::SH2ADD; |
2292 | break; |
2293 | case 3: |
2294 | InnerOpc = RISCV::SH3ADD; |
2295 | break; |
2296 | } |
2297 | |
2298 | const MachineOperand &X = AddMI->getOperand(i: 3 - AddOpIdx); |
2299 | const MachineOperand &Y = ShiftMI->getOperand(i: 1); |
2300 | const MachineOperand &Z = Root.getOperand(i: 1); |
2301 | |
2302 | Register NewVR = MRI.createVirtualRegister(RegClass: &RISCV::GPRRegClass); |
2303 | |
2304 | auto MIB1 = BuildMI(MF&: *MF, MIMD: MIMetadata(Root), MCID: TII->get(Opcode: InnerOpc), DestReg: NewVR) |
2305 | .addReg(RegNo: Y.getReg(), flags: getKillRegState(B: Y.isKill())) |
2306 | .addReg(RegNo: Z.getReg(), flags: getKillRegState(B: Z.isKill())); |
2307 | auto MIB2 = BuildMI(MF&: *MF, MIMD: MIMetadata(Root), MCID: TII->get(Opcode: Root.getOpcode()), |
2308 | DestReg: Root.getOperand(i: 0).getReg()) |
2309 | .addReg(RegNo: NewVR, flags: RegState::Kill) |
2310 | .addReg(RegNo: X.getReg(), flags: getKillRegState(B: X.isKill())); |
2311 | |
2312 | InstrIdxForVirtReg.insert(KV: std::make_pair(x&: NewVR, y: 0)); |
2313 | InsInstrs.push_back(Elt: MIB1); |
2314 | InsInstrs.push_back(Elt: MIB2); |
2315 | DelInstrs.push_back(Elt: ShiftMI); |
2316 | DelInstrs.push_back(Elt: AddMI); |
2317 | DelInstrs.push_back(Elt: &Root); |
2318 | } |
2319 | |
2320 | void RISCVInstrInfo::genAlternativeCodeSequence( |
2321 | MachineInstr &Root, unsigned Pattern, |
2322 | SmallVectorImpl<MachineInstr *> &InsInstrs, |
2323 | SmallVectorImpl<MachineInstr *> &DelInstrs, |
2324 | DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { |
2325 | MachineRegisterInfo &MRI = Root.getMF()->getRegInfo(); |
2326 | switch (Pattern) { |
2327 | default: |
2328 | TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, |
2329 | DelInstrs, InstIdxForVirtReg&: InstrIdxForVirtReg); |
2330 | return; |
2331 | case RISCVMachineCombinerPattern::FMADD_AX: |
2332 | case RISCVMachineCombinerPattern::FMSUB: { |
2333 | MachineInstr &Prev = *MRI.getVRegDef(Reg: Root.getOperand(i: 1).getReg()); |
2334 | combineFPFusedMultiply(Root, Prev, Pattern, InsInstrs, DelInstrs); |
2335 | return; |
2336 | } |
2337 | case RISCVMachineCombinerPattern::FMADD_XA: |
2338 | case RISCVMachineCombinerPattern::FNMSUB: { |
2339 | MachineInstr &Prev = *MRI.getVRegDef(Reg: Root.getOperand(i: 2).getReg()); |
2340 | combineFPFusedMultiply(Root, Prev, Pattern, InsInstrs, DelInstrs); |
2341 | return; |
2342 | } |
2343 | case RISCVMachineCombinerPattern::SHXADD_ADD_SLLI_OP1: |
2344 | genShXAddAddShift(Root, AddOpIdx: 1, InsInstrs, DelInstrs, InstrIdxForVirtReg); |
2345 | return; |
2346 | case RISCVMachineCombinerPattern::SHXADD_ADD_SLLI_OP2: |
2347 | genShXAddAddShift(Root, AddOpIdx: 2, InsInstrs, DelInstrs, InstrIdxForVirtReg); |
2348 | return; |
2349 | } |
2350 | } |
2351 | |
2352 | bool RISCVInstrInfo::verifyInstruction(const MachineInstr &MI, |
2353 | StringRef &ErrInfo) const { |
2354 | MCInstrDesc const &Desc = MI.getDesc(); |
2355 | |
2356 | for (const auto &[Index, Operand] : enumerate(First: Desc.operands())) { |
2357 | unsigned OpType = Operand.OperandType; |
2358 | if (OpType >= RISCVOp::OPERAND_FIRST_RISCV_IMM && |
2359 | OpType <= RISCVOp::OPERAND_LAST_RISCV_IMM) { |
2360 | const MachineOperand &MO = MI.getOperand(i: Index); |
2361 | if (MO.isImm()) { |
2362 | int64_t Imm = MO.getImm(); |
2363 | bool Ok; |
2364 | switch (OpType) { |
2365 | default: |
2366 | llvm_unreachable("Unexpected operand type" ); |
2367 | |
2368 | // clang-format off |
2369 | #define CASE_OPERAND_UIMM(NUM) \ |
2370 | case RISCVOp::OPERAND_UIMM##NUM: \ |
2371 | Ok = isUInt<NUM>(Imm); \ |
2372 | break; |
2373 | CASE_OPERAND_UIMM(1) |
2374 | CASE_OPERAND_UIMM(2) |
2375 | CASE_OPERAND_UIMM(3) |
2376 | CASE_OPERAND_UIMM(4) |
2377 | CASE_OPERAND_UIMM(5) |
2378 | CASE_OPERAND_UIMM(6) |
2379 | CASE_OPERAND_UIMM(7) |
2380 | CASE_OPERAND_UIMM(8) |
2381 | CASE_OPERAND_UIMM(12) |
2382 | CASE_OPERAND_UIMM(20) |
2383 | // clang-format on |
2384 | case RISCVOp::OPERAND_UIMM2_LSB0: |
2385 | Ok = isShiftedUInt<1, 1>(x: Imm); |
2386 | break; |
2387 | case RISCVOp::OPERAND_UIMM5_LSB0: |
2388 | Ok = isShiftedUInt<4, 1>(x: Imm); |
2389 | break; |
2390 | case RISCVOp::OPERAND_UIMM6_LSB0: |
2391 | Ok = isShiftedUInt<5, 1>(x: Imm); |
2392 | break; |
2393 | case RISCVOp::OPERAND_UIMM7_LSB00: |
2394 | Ok = isShiftedUInt<5, 2>(x: Imm); |
2395 | break; |
2396 | case RISCVOp::OPERAND_UIMM8_LSB00: |
2397 | Ok = isShiftedUInt<6, 2>(x: Imm); |
2398 | break; |
2399 | case RISCVOp::OPERAND_UIMM8_LSB000: |
2400 | Ok = isShiftedUInt<5, 3>(x: Imm); |
2401 | break; |
2402 | case RISCVOp::OPERAND_UIMM8_GE32: |
2403 | Ok = isUInt<8>(x: Imm) && Imm >= 32; |
2404 | break; |
2405 | case RISCVOp::OPERAND_UIMM9_LSB000: |
2406 | Ok = isShiftedUInt<6, 3>(x: Imm); |
2407 | break; |
2408 | case RISCVOp::OPERAND_SIMM10_LSB0000_NONZERO: |
2409 | Ok = isShiftedInt<6, 4>(x: Imm) && (Imm != 0); |
2410 | break; |
2411 | case RISCVOp::OPERAND_UIMM10_LSB00_NONZERO: |
2412 | Ok = isShiftedUInt<8, 2>(x: Imm) && (Imm != 0); |
2413 | break; |
2414 | case RISCVOp::OPERAND_ZERO: |
2415 | Ok = Imm == 0; |
2416 | break; |
2417 | case RISCVOp::OPERAND_SIMM5: |
2418 | Ok = isInt<5>(x: Imm); |
2419 | break; |
2420 | case RISCVOp::OPERAND_SIMM5_PLUS1: |
2421 | Ok = (isInt<5>(x: Imm) && Imm != -16) || Imm == 16; |
2422 | break; |
2423 | case RISCVOp::OPERAND_SIMM6: |
2424 | Ok = isInt<6>(x: Imm); |
2425 | break; |
2426 | case RISCVOp::OPERAND_SIMM6_NONZERO: |
2427 | Ok = Imm != 0 && isInt<6>(x: Imm); |
2428 | break; |
2429 | case RISCVOp::OPERAND_VTYPEI10: |
2430 | Ok = isUInt<10>(x: Imm); |
2431 | break; |
2432 | case RISCVOp::OPERAND_VTYPEI11: |
2433 | Ok = isUInt<11>(x: Imm); |
2434 | break; |
2435 | case RISCVOp::OPERAND_SIMM12: |
2436 | Ok = isInt<12>(x: Imm); |
2437 | break; |
2438 | case RISCVOp::OPERAND_SIMM12_LSB00000: |
2439 | Ok = isShiftedInt<7, 5>(x: Imm); |
2440 | break; |
2441 | case RISCVOp::OPERAND_UIMMLOG2XLEN: |
2442 | Ok = STI.is64Bit() ? isUInt<6>(x: Imm) : isUInt<5>(x: Imm); |
2443 | break; |
2444 | case RISCVOp::OPERAND_UIMMLOG2XLEN_NONZERO: |
2445 | Ok = STI.is64Bit() ? isUInt<6>(x: Imm) : isUInt<5>(x: Imm); |
2446 | Ok = Ok && Imm != 0; |
2447 | break; |
2448 | case RISCVOp::OPERAND_CLUI_IMM: |
2449 | Ok = (isUInt<5>(x: Imm) && Imm != 0) || |
2450 | (Imm >= 0xfffe0 && Imm <= 0xfffff); |
2451 | break; |
2452 | case RISCVOp::OPERAND_RVKRNUM: |
2453 | Ok = Imm >= 0 && Imm <= 10; |
2454 | break; |
2455 | case RISCVOp::OPERAND_RVKRNUM_0_7: |
2456 | Ok = Imm >= 0 && Imm <= 7; |
2457 | break; |
2458 | case RISCVOp::OPERAND_RVKRNUM_1_10: |
2459 | Ok = Imm >= 1 && Imm <= 10; |
2460 | break; |
2461 | case RISCVOp::OPERAND_RVKRNUM_2_14: |
2462 | Ok = Imm >= 2 && Imm <= 14; |
2463 | break; |
2464 | case RISCVOp::OPERAND_SPIMM: |
2465 | Ok = (Imm & 0xf) == 0; |
2466 | break; |
2467 | } |
2468 | if (!Ok) { |
2469 | ErrInfo = "Invalid immediate" ; |
2470 | return false; |
2471 | } |
2472 | } |
2473 | } |
2474 | } |
2475 | |
2476 | const uint64_t TSFlags = Desc.TSFlags; |
2477 | if (RISCVII::hasVLOp(TSFlags)) { |
2478 | const MachineOperand &Op = MI.getOperand(i: RISCVII::getVLOpNum(Desc)); |
2479 | if (!Op.isImm() && !Op.isReg()) { |
2480 | ErrInfo = "Invalid operand type for VL operand" ; |
2481 | return false; |
2482 | } |
2483 | if (Op.isReg() && Op.getReg() != RISCV::NoRegister) { |
2484 | const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
2485 | auto *RC = MRI.getRegClass(Reg: Op.getReg()); |
2486 | if (!RISCV::GPRRegClass.hasSubClassEq(RC)) { |
2487 | ErrInfo = "Invalid register class for VL operand" ; |
2488 | return false; |
2489 | } |
2490 | } |
2491 | if (!RISCVII::hasSEWOp(TSFlags)) { |
2492 | ErrInfo = "VL operand w/o SEW operand?" ; |
2493 | return false; |
2494 | } |
2495 | } |
2496 | if (RISCVII::hasSEWOp(TSFlags)) { |
2497 | unsigned OpIdx = RISCVII::getSEWOpNum(Desc); |
2498 | if (!MI.getOperand(i: OpIdx).isImm()) { |
2499 | ErrInfo = "SEW value expected to be an immediate" ; |
2500 | return false; |
2501 | } |
2502 | uint64_t Log2SEW = MI.getOperand(i: OpIdx).getImm(); |
2503 | if (Log2SEW > 31) { |
2504 | ErrInfo = "Unexpected SEW value" ; |
2505 | return false; |
2506 | } |
2507 | unsigned SEW = Log2SEW ? 1 << Log2SEW : 8; |
2508 | if (!RISCVVType::isValidSEW(SEW)) { |
2509 | ErrInfo = "Unexpected SEW value" ; |
2510 | return false; |
2511 | } |
2512 | } |
2513 | if (RISCVII::hasVecPolicyOp(TSFlags)) { |
2514 | unsigned OpIdx = RISCVII::getVecPolicyOpNum(Desc); |
2515 | if (!MI.getOperand(i: OpIdx).isImm()) { |
2516 | ErrInfo = "Policy operand expected to be an immediate" ; |
2517 | return false; |
2518 | } |
2519 | uint64_t Policy = MI.getOperand(i: OpIdx).getImm(); |
2520 | if (Policy > (RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC)) { |
2521 | ErrInfo = "Invalid Policy Value" ; |
2522 | return false; |
2523 | } |
2524 | if (!RISCVII::hasVLOp(TSFlags)) { |
2525 | ErrInfo = "policy operand w/o VL operand?" ; |
2526 | return false; |
2527 | } |
2528 | |
2529 | // VecPolicy operands can only exist on instructions with passthru/merge |
2530 | // arguments. Note that not all arguments with passthru have vec policy |
2531 | // operands- some instructions have implicit policies. |
2532 | unsigned UseOpIdx; |
2533 | if (!MI.isRegTiedToUseOperand(DefOpIdx: 0, UseOpIdx: &UseOpIdx)) { |
2534 | ErrInfo = "policy operand w/o tied operand?" ; |
2535 | return false; |
2536 | } |
2537 | } |
2538 | |
2539 | return true; |
2540 | } |
2541 | |
2542 | bool RISCVInstrInfo::canFoldIntoAddrMode(const MachineInstr &MemI, Register Reg, |
2543 | const MachineInstr &AddrI, |
2544 | ExtAddrMode &AM) const { |
2545 | switch (MemI.getOpcode()) { |
2546 | default: |
2547 | return false; |
2548 | case RISCV::LB: |
2549 | case RISCV::LBU: |
2550 | case RISCV::LH: |
2551 | case RISCV::LHU: |
2552 | case RISCV::LW: |
2553 | case RISCV::LWU: |
2554 | case RISCV::LD: |
2555 | case RISCV::FLH: |
2556 | case RISCV::FLW: |
2557 | case RISCV::FLD: |
2558 | case RISCV::SB: |
2559 | case RISCV::SH: |
2560 | case RISCV::SW: |
2561 | case RISCV::SD: |
2562 | case RISCV::FSH: |
2563 | case RISCV::FSW: |
2564 | case RISCV::FSD: |
2565 | break; |
2566 | } |
2567 | |
2568 | if (MemI.getOperand(i: 0).getReg() == Reg) |
2569 | return false; |
2570 | |
2571 | if (AddrI.getOpcode() != RISCV::ADDI || !AddrI.getOperand(i: 1).isReg() || |
2572 | !AddrI.getOperand(i: 2).isImm()) |
2573 | return false; |
2574 | |
2575 | int64_t OldOffset = MemI.getOperand(i: 2).getImm(); |
2576 | int64_t Disp = AddrI.getOperand(i: 2).getImm(); |
2577 | int64_t NewOffset = OldOffset + Disp; |
2578 | if (!STI.is64Bit()) |
2579 | NewOffset = SignExtend64<32>(x: NewOffset); |
2580 | |
2581 | if (!isInt<12>(x: NewOffset)) |
2582 | return false; |
2583 | |
2584 | AM.BaseReg = AddrI.getOperand(i: 1).getReg(); |
2585 | AM.ScaledReg = 0; |
2586 | AM.Scale = 0; |
2587 | AM.Displacement = NewOffset; |
2588 | AM.Form = ExtAddrMode::Formula::Basic; |
2589 | return true; |
2590 | } |
2591 | |
2592 | MachineInstr *RISCVInstrInfo::emitLdStWithAddr(MachineInstr &MemI, |
2593 | const ExtAddrMode &AM) const { |
2594 | |
2595 | const DebugLoc &DL = MemI.getDebugLoc(); |
2596 | MachineBasicBlock &MBB = *MemI.getParent(); |
2597 | |
2598 | assert(AM.ScaledReg == 0 && AM.Scale == 0 && |
2599 | "Addressing mode not supported for folding" ); |
2600 | |
2601 | return BuildMI(BB&: MBB, I&: MemI, MIMD: DL, MCID: get(Opcode: MemI.getOpcode())) |
2602 | .addReg(RegNo: MemI.getOperand(i: 0).getReg(), |
2603 | flags: MemI.mayLoad() ? RegState::Define : 0) |
2604 | .addReg(RegNo: AM.BaseReg) |
2605 | .addImm(Val: AM.Displacement) |
2606 | .setMemRefs(MemI.memoperands()) |
2607 | .setMIFlags(MemI.getFlags()); |
2608 | } |
2609 | |
2610 | bool RISCVInstrInfo::getMemOperandsWithOffsetWidth( |
2611 | const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, |
2612 | int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, |
2613 | const TargetRegisterInfo *TRI) const { |
2614 | if (!LdSt.mayLoadOrStore()) |
2615 | return false; |
2616 | |
2617 | // Conservatively, only handle scalar loads/stores for now. |
2618 | switch (LdSt.getOpcode()) { |
2619 | case RISCV::LB: |
2620 | case RISCV::LBU: |
2621 | case RISCV::SB: |
2622 | case RISCV::LH: |
2623 | case RISCV::LHU: |
2624 | case RISCV::FLH: |
2625 | case RISCV::SH: |
2626 | case RISCV::FSH: |
2627 | case RISCV::LW: |
2628 | case RISCV::LWU: |
2629 | case RISCV::FLW: |
2630 | case RISCV::SW: |
2631 | case RISCV::FSW: |
2632 | case RISCV::LD: |
2633 | case RISCV::FLD: |
2634 | case RISCV::SD: |
2635 | case RISCV::FSD: |
2636 | break; |
2637 | default: |
2638 | return false; |
2639 | } |
2640 | const MachineOperand *BaseOp; |
2641 | OffsetIsScalable = false; |
2642 | if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI)) |
2643 | return false; |
2644 | BaseOps.push_back(Elt: BaseOp); |
2645 | return true; |
2646 | } |
2647 | |
2648 | // TODO: This was copied from SIInstrInfo. Could it be lifted to a common |
2649 | // helper? |
2650 | static bool memOpsHaveSameBasePtr(const MachineInstr &MI1, |
2651 | ArrayRef<const MachineOperand *> BaseOps1, |
2652 | const MachineInstr &MI2, |
2653 | ArrayRef<const MachineOperand *> BaseOps2) { |
2654 | // Only examine the first "base" operand of each instruction, on the |
2655 | // assumption that it represents the real base address of the memory access. |
2656 | // Other operands are typically offsets or indices from this base address. |
2657 | if (BaseOps1.front()->isIdenticalTo(Other: *BaseOps2.front())) |
2658 | return true; |
2659 | |
2660 | if (!MI1.hasOneMemOperand() || !MI2.hasOneMemOperand()) |
2661 | return false; |
2662 | |
2663 | auto MO1 = *MI1.memoperands_begin(); |
2664 | auto MO2 = *MI2.memoperands_begin(); |
2665 | if (MO1->getAddrSpace() != MO2->getAddrSpace()) |
2666 | return false; |
2667 | |
2668 | auto Base1 = MO1->getValue(); |
2669 | auto Base2 = MO2->getValue(); |
2670 | if (!Base1 || !Base2) |
2671 | return false; |
2672 | Base1 = getUnderlyingObject(V: Base1); |
2673 | Base2 = getUnderlyingObject(V: Base2); |
2674 | |
2675 | if (isa<UndefValue>(Val: Base1) || isa<UndefValue>(Val: Base2)) |
2676 | return false; |
2677 | |
2678 | return Base1 == Base2; |
2679 | } |
2680 | |
2681 | bool RISCVInstrInfo::shouldClusterMemOps( |
2682 | ArrayRef<const MachineOperand *> BaseOps1, int64_t Offset1, |
2683 | bool OffsetIsScalable1, ArrayRef<const MachineOperand *> BaseOps2, |
2684 | int64_t Offset2, bool OffsetIsScalable2, unsigned ClusterSize, |
2685 | unsigned NumBytes) const { |
2686 | // If the mem ops (to be clustered) do not have the same base ptr, then they |
2687 | // should not be clustered |
2688 | if (!BaseOps1.empty() && !BaseOps2.empty()) { |
2689 | const MachineInstr &FirstLdSt = *BaseOps1.front()->getParent(); |
2690 | const MachineInstr &SecondLdSt = *BaseOps2.front()->getParent(); |
2691 | if (!memOpsHaveSameBasePtr(MI1: FirstLdSt, BaseOps1, MI2: SecondLdSt, BaseOps2)) |
2692 | return false; |
2693 | } else if (!BaseOps1.empty() || !BaseOps2.empty()) { |
2694 | // If only one base op is empty, they do not have the same base ptr |
2695 | return false; |
2696 | } |
2697 | |
2698 | unsigned CacheLineSize = |
2699 | BaseOps1.front()->getParent()->getMF()->getSubtarget().getCacheLineSize(); |
2700 | // Assume a cache line size of 64 bytes if no size is set in RISCVSubtarget. |
2701 | CacheLineSize = CacheLineSize ? CacheLineSize : 64; |
2702 | // Cluster if the memory operations are on the same or a neighbouring cache |
2703 | // line, but limit the maximum ClusterSize to avoid creating too much |
2704 | // additional register pressure. |
2705 | return ClusterSize <= 4 && std::abs(i: Offset1 - Offset2) < CacheLineSize; |
2706 | } |
2707 | |
2708 | // Set BaseReg (the base register operand), Offset (the byte offset being |
2709 | // accessed) and the access Width of the passed instruction that reads/writes |
2710 | // memory. Returns false if the instruction does not read/write memory or the |
2711 | // BaseReg/Offset/Width can't be determined. Is not guaranteed to always |
2712 | // recognise base operands and offsets in all cases. |
2713 | // TODO: Add an IsScalable bool ref argument (like the equivalent AArch64 |
2714 | // function) and set it as appropriate. |
2715 | bool RISCVInstrInfo::getMemOperandWithOffsetWidth( |
2716 | const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, |
2717 | LocationSize &Width, const TargetRegisterInfo *TRI) const { |
2718 | if (!LdSt.mayLoadOrStore()) |
2719 | return false; |
2720 | |
2721 | // Here we assume the standard RISC-V ISA, which uses a base+offset |
2722 | // addressing mode. You'll need to relax these conditions to support custom |
2723 | // load/store instructions. |
2724 | if (LdSt.getNumExplicitOperands() != 3) |
2725 | return false; |
2726 | if ((!LdSt.getOperand(i: 1).isReg() && !LdSt.getOperand(i: 1).isFI()) || |
2727 | !LdSt.getOperand(i: 2).isImm()) |
2728 | return false; |
2729 | |
2730 | if (!LdSt.hasOneMemOperand()) |
2731 | return false; |
2732 | |
2733 | Width = (*LdSt.memoperands_begin())->getSize(); |
2734 | BaseReg = &LdSt.getOperand(i: 1); |
2735 | Offset = LdSt.getOperand(i: 2).getImm(); |
2736 | return true; |
2737 | } |
2738 | |
2739 | bool RISCVInstrInfo::areMemAccessesTriviallyDisjoint( |
2740 | const MachineInstr &MIa, const MachineInstr &MIb) const { |
2741 | assert(MIa.mayLoadOrStore() && "MIa must be a load or store." ); |
2742 | assert(MIb.mayLoadOrStore() && "MIb must be a load or store." ); |
2743 | |
2744 | if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || |
2745 | MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) |
2746 | return false; |
2747 | |
2748 | // Retrieve the base register, offset from the base register and width. Width |
2749 | // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If |
2750 | // base registers are identical, and the offset of a lower memory access + |
2751 | // the width doesn't overlap the offset of a higher memory access, |
2752 | // then the memory accesses are different. |
2753 | const TargetRegisterInfo *TRI = STI.getRegisterInfo(); |
2754 | const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; |
2755 | int64_t OffsetA = 0, OffsetB = 0; |
2756 | LocationSize WidthA = 0, WidthB = 0; |
2757 | if (getMemOperandWithOffsetWidth(LdSt: MIa, BaseReg&: BaseOpA, Offset&: OffsetA, Width&: WidthA, TRI) && |
2758 | getMemOperandWithOffsetWidth(LdSt: MIb, BaseReg&: BaseOpB, Offset&: OffsetB, Width&: WidthB, TRI)) { |
2759 | if (BaseOpA->isIdenticalTo(Other: *BaseOpB)) { |
2760 | int LowOffset = std::min(a: OffsetA, b: OffsetB); |
2761 | int HighOffset = std::max(a: OffsetA, b: OffsetB); |
2762 | LocationSize LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; |
2763 | if (LowWidth.hasValue() && |
2764 | LowOffset + (int)LowWidth.getValue() <= HighOffset) |
2765 | return true; |
2766 | } |
2767 | } |
2768 | return false; |
2769 | } |
2770 | |
2771 | std::pair<unsigned, unsigned> |
2772 | RISCVInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { |
2773 | const unsigned Mask = RISCVII::MO_DIRECT_FLAG_MASK; |
2774 | return std::make_pair(x: TF & Mask, y: TF & ~Mask); |
2775 | } |
2776 | |
2777 | ArrayRef<std::pair<unsigned, const char *>> |
2778 | RISCVInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { |
2779 | using namespace RISCVII; |
2780 | static const std::pair<unsigned, const char *> TargetFlags[] = { |
2781 | {MO_CALL, "riscv-call" }, |
2782 | {MO_LO, "riscv-lo" }, |
2783 | {MO_HI, "riscv-hi" }, |
2784 | {MO_PCREL_LO, "riscv-pcrel-lo" }, |
2785 | {MO_PCREL_HI, "riscv-pcrel-hi" }, |
2786 | {MO_GOT_HI, "riscv-got-hi" }, |
2787 | {MO_TPREL_LO, "riscv-tprel-lo" }, |
2788 | {MO_TPREL_HI, "riscv-tprel-hi" }, |
2789 | {MO_TPREL_ADD, "riscv-tprel-add" }, |
2790 | {MO_TLS_GOT_HI, "riscv-tls-got-hi" }, |
2791 | {MO_TLS_GD_HI, "riscv-tls-gd-hi" }, |
2792 | {MO_TLSDESC_HI, "riscv-tlsdesc-hi" }, |
2793 | {MO_TLSDESC_LOAD_LO, "riscv-tlsdesc-load-lo" }, |
2794 | {MO_TLSDESC_ADD_LO, "riscv-tlsdesc-add-lo" }, |
2795 | {MO_TLSDESC_CALL, "riscv-tlsdesc-call" }}; |
2796 | return ArrayRef(TargetFlags); |
2797 | } |
2798 | bool RISCVInstrInfo::isFunctionSafeToOutlineFrom( |
2799 | MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { |
2800 | const Function &F = MF.getFunction(); |
2801 | |
2802 | // Can F be deduplicated by the linker? If it can, don't outline from it. |
2803 | if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) |
2804 | return false; |
2805 | |
2806 | // Don't outline from functions with section markings; the program could |
2807 | // expect that all the code is in the named section. |
2808 | if (F.hasSection()) |
2809 | return false; |
2810 | |
2811 | // It's safe to outline from MF. |
2812 | return true; |
2813 | } |
2814 | |
2815 | bool RISCVInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, |
2816 | unsigned &Flags) const { |
2817 | // More accurate safety checking is done in getOutliningCandidateInfo. |
2818 | return TargetInstrInfo::isMBBSafeToOutlineFrom(MBB, Flags); |
2819 | } |
2820 | |
2821 | // Enum values indicating how an outlined call should be constructed. |
2822 | enum MachineOutlinerConstructionID { |
2823 | MachineOutlinerDefault |
2824 | }; |
2825 | |
2826 | bool RISCVInstrInfo::shouldOutlineFromFunctionByDefault( |
2827 | MachineFunction &MF) const { |
2828 | return MF.getFunction().hasMinSize(); |
2829 | } |
2830 | |
2831 | std::optional<outliner::OutlinedFunction> |
2832 | RISCVInstrInfo::getOutliningCandidateInfo( |
2833 | std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { |
2834 | |
2835 | // First we need to filter out candidates where the X5 register (IE t0) can't |
2836 | // be used to setup the function call. |
2837 | auto CannotInsertCall = [](outliner::Candidate &C) { |
2838 | const TargetRegisterInfo *TRI = C.getMF()->getSubtarget().getRegisterInfo(); |
2839 | return !C.isAvailableAcrossAndOutOfSeq(Reg: RISCV::X5, TRI: *TRI); |
2840 | }; |
2841 | |
2842 | llvm::erase_if(C&: RepeatedSequenceLocs, P: CannotInsertCall); |
2843 | |
2844 | // If the sequence doesn't have enough candidates left, then we're done. |
2845 | if (RepeatedSequenceLocs.size() < 2) |
2846 | return std::nullopt; |
2847 | |
2848 | unsigned SequenceSize = 0; |
2849 | |
2850 | for (auto &MI : RepeatedSequenceLocs[0]) |
2851 | SequenceSize += getInstSizeInBytes(MI); |
2852 | |
2853 | // call t0, function = 8 bytes. |
2854 | unsigned CallOverhead = 8; |
2855 | for (auto &C : RepeatedSequenceLocs) |
2856 | C.setCallInfo(CID: MachineOutlinerDefault, CO: CallOverhead); |
2857 | |
2858 | // jr t0 = 4 bytes, 2 bytes if compressed instructions are enabled. |
2859 | unsigned FrameOverhead = 4; |
2860 | if (RepeatedSequenceLocs[0] |
2861 | .getMF() |
2862 | ->getSubtarget<RISCVSubtarget>() |
2863 | .hasStdExtCOrZca()) |
2864 | FrameOverhead = 2; |
2865 | |
2866 | return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, |
2867 | FrameOverhead, MachineOutlinerDefault); |
2868 | } |
2869 | |
2870 | outliner::InstrType |
2871 | RISCVInstrInfo::getOutliningTypeImpl(MachineBasicBlock::iterator &MBBI, |
2872 | unsigned Flags) const { |
2873 | MachineInstr &MI = *MBBI; |
2874 | MachineBasicBlock *MBB = MI.getParent(); |
2875 | const TargetRegisterInfo *TRI = |
2876 | MBB->getParent()->getSubtarget().getRegisterInfo(); |
2877 | const auto &F = MI.getMF()->getFunction(); |
2878 | |
2879 | // We can manually strip out CFI instructions later. |
2880 | if (MI.isCFIInstruction()) |
2881 | // If current function has exception handling code, we can't outline & |
2882 | // strip these CFI instructions since it may break .eh_frame section |
2883 | // needed in unwinding. |
2884 | return F.needsUnwindTableEntry() ? outliner::InstrType::Illegal |
2885 | : outliner::InstrType::Invisible; |
2886 | |
2887 | // We need support for tail calls to outlined functions before return |
2888 | // statements can be allowed. |
2889 | if (MI.isReturn()) |
2890 | return outliner::InstrType::Illegal; |
2891 | |
2892 | // Don't allow modifying the X5 register which we use for return addresses for |
2893 | // these outlined functions. |
2894 | if (MI.modifiesRegister(Reg: RISCV::X5, TRI) || |
2895 | MI.getDesc().hasImplicitDefOfPhysReg(Reg: RISCV::X5)) |
2896 | return outliner::InstrType::Illegal; |
2897 | |
2898 | // Make sure the operands don't reference something unsafe. |
2899 | for (const auto &MO : MI.operands()) { |
2900 | |
2901 | // pcrel-hi and pcrel-lo can't put in separate sections, filter that out |
2902 | // if any possible. |
2903 | if (MO.getTargetFlags() == RISCVII::MO_PCREL_LO && |
2904 | (MI.getMF()->getTarget().getFunctionSections() || F.hasComdat() || |
2905 | F.hasSection() || F.getSectionPrefix())) |
2906 | return outliner::InstrType::Illegal; |
2907 | } |
2908 | |
2909 | return outliner::InstrType::Legal; |
2910 | } |
2911 | |
2912 | void RISCVInstrInfo::buildOutlinedFrame( |
2913 | MachineBasicBlock &MBB, MachineFunction &MF, |
2914 | const outliner::OutlinedFunction &OF) const { |
2915 | |
2916 | // Strip out any CFI instructions |
2917 | bool Changed = true; |
2918 | while (Changed) { |
2919 | Changed = false; |
2920 | auto I = MBB.begin(); |
2921 | auto E = MBB.end(); |
2922 | for (; I != E; ++I) { |
2923 | if (I->isCFIInstruction()) { |
2924 | I->removeFromParent(); |
2925 | Changed = true; |
2926 | break; |
2927 | } |
2928 | } |
2929 | } |
2930 | |
2931 | MBB.addLiveIn(PhysReg: RISCV::X5); |
2932 | |
2933 | // Add in a return instruction to the end of the outlined frame. |
2934 | MBB.insert(I: MBB.end(), MI: BuildMI(MF, MIMD: DebugLoc(), MCID: get(Opcode: RISCV::JALR)) |
2935 | .addReg(RegNo: RISCV::X0, flags: RegState::Define) |
2936 | .addReg(RegNo: RISCV::X5) |
2937 | .addImm(Val: 0)); |
2938 | } |
2939 | |
2940 | MachineBasicBlock::iterator RISCVInstrInfo::insertOutlinedCall( |
2941 | Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, |
2942 | MachineFunction &MF, outliner::Candidate &C) const { |
2943 | |
2944 | // Add in a call instruction to the outlined function at the given location. |
2945 | It = MBB.insert(I: It, |
2946 | MI: BuildMI(MF, MIMD: DebugLoc(), MCID: get(Opcode: RISCV::PseudoCALLReg), DestReg: RISCV::X5) |
2947 | .addGlobalAddress(GV: M.getNamedValue(Name: MF.getName()), Offset: 0, |
2948 | TargetFlags: RISCVII::MO_CALL)); |
2949 | return It; |
2950 | } |
2951 | |
2952 | std::optional<RegImmPair> RISCVInstrInfo::isAddImmediate(const MachineInstr &MI, |
2953 | Register Reg) const { |
2954 | // TODO: Handle cases where Reg is a super- or sub-register of the |
2955 | // destination register. |
2956 | const MachineOperand &Op0 = MI.getOperand(i: 0); |
2957 | if (!Op0.isReg() || Reg != Op0.getReg()) |
2958 | return std::nullopt; |
2959 | |
2960 | // Don't consider ADDIW as a candidate because the caller may not be aware |
2961 | // of its sign extension behaviour. |
2962 | if (MI.getOpcode() == RISCV::ADDI && MI.getOperand(i: 1).isReg() && |
2963 | MI.getOperand(i: 2).isImm()) |
2964 | return RegImmPair{MI.getOperand(i: 1).getReg(), MI.getOperand(i: 2).getImm()}; |
2965 | |
2966 | return std::nullopt; |
2967 | } |
2968 | |
2969 | // MIR printer helper function to annotate Operands with a comment. |
2970 | std::string RISCVInstrInfo::createMIROperandComment( |
2971 | const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, |
2972 | const TargetRegisterInfo *TRI) const { |
2973 | // Print a generic comment for this operand if there is one. |
2974 | std::string = |
2975 | TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI); |
2976 | if (!GenericComment.empty()) |
2977 | return GenericComment; |
2978 | |
2979 | // If not, we must have an immediate operand. |
2980 | if (!Op.isImm()) |
2981 | return std::string(); |
2982 | |
2983 | std::string ; |
2984 | raw_string_ostream OS(Comment); |
2985 | |
2986 | uint64_t TSFlags = MI.getDesc().TSFlags; |
2987 | |
2988 | // Print the full VType operand of vsetvli/vsetivli instructions, and the SEW |
2989 | // operand of vector codegen pseudos. |
2990 | if ((MI.getOpcode() == RISCV::VSETVLI || MI.getOpcode() == RISCV::VSETIVLI || |
2991 | MI.getOpcode() == RISCV::PseudoVSETVLI || |
2992 | MI.getOpcode() == RISCV::PseudoVSETIVLI || |
2993 | MI.getOpcode() == RISCV::PseudoVSETVLIX0) && |
2994 | OpIdx == 2) { |
2995 | unsigned Imm = MI.getOperand(i: OpIdx).getImm(); |
2996 | RISCVVType::printVType(VType: Imm, OS); |
2997 | } else if (RISCVII::hasSEWOp(TSFlags) && |
2998 | OpIdx == RISCVII::getSEWOpNum(Desc: MI.getDesc())) { |
2999 | unsigned Log2SEW = MI.getOperand(i: OpIdx).getImm(); |
3000 | unsigned SEW = Log2SEW ? 1 << Log2SEW : 8; |
3001 | assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW" ); |
3002 | OS << "e" << SEW; |
3003 | } else if (RISCVII::hasVecPolicyOp(TSFlags) && |
3004 | OpIdx == RISCVII::getVecPolicyOpNum(Desc: MI.getDesc())) { |
3005 | unsigned Policy = MI.getOperand(i: OpIdx).getImm(); |
3006 | assert(Policy <= (RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC) && |
3007 | "Invalid Policy Value" ); |
3008 | OS << (Policy & RISCVII::TAIL_AGNOSTIC ? "ta" : "tu" ) << ", " |
3009 | << (Policy & RISCVII::MASK_AGNOSTIC ? "ma" : "mu" ); |
3010 | } |
3011 | |
3012 | OS.flush(); |
3013 | return Comment; |
3014 | } |
3015 | |
3016 | // clang-format off |
3017 | #define CASE_RVV_OPCODE_UNMASK_LMUL(OP, LMUL) \ |
3018 | RISCV::Pseudo##OP##_##LMUL |
3019 | |
3020 | #define CASE_RVV_OPCODE_MASK_LMUL(OP, LMUL) \ |
3021 | RISCV::Pseudo##OP##_##LMUL##_MASK |
3022 | |
3023 | #define CASE_RVV_OPCODE_LMUL(OP, LMUL) \ |
3024 | CASE_RVV_OPCODE_UNMASK_LMUL(OP, LMUL): \ |
3025 | case CASE_RVV_OPCODE_MASK_LMUL(OP, LMUL) |
3026 | |
3027 | #define CASE_RVV_OPCODE_UNMASK_WIDEN(OP) \ |
3028 | CASE_RVV_OPCODE_UNMASK_LMUL(OP, MF8): \ |
3029 | case CASE_RVV_OPCODE_UNMASK_LMUL(OP, MF4): \ |
3030 | case CASE_RVV_OPCODE_UNMASK_LMUL(OP, MF2): \ |
3031 | case CASE_RVV_OPCODE_UNMASK_LMUL(OP, M1): \ |
3032 | case CASE_RVV_OPCODE_UNMASK_LMUL(OP, M2): \ |
3033 | case CASE_RVV_OPCODE_UNMASK_LMUL(OP, M4) |
3034 | |
3035 | #define CASE_RVV_OPCODE_UNMASK(OP) \ |
3036 | CASE_RVV_OPCODE_UNMASK_WIDEN(OP): \ |
3037 | case CASE_RVV_OPCODE_UNMASK_LMUL(OP, M8) |
3038 | |
3039 | #define CASE_RVV_OPCODE_MASK_WIDEN(OP) \ |
3040 | CASE_RVV_OPCODE_MASK_LMUL(OP, MF8): \ |
3041 | case CASE_RVV_OPCODE_MASK_LMUL(OP, MF4): \ |
3042 | case CASE_RVV_OPCODE_MASK_LMUL(OP, MF2): \ |
3043 | case CASE_RVV_OPCODE_MASK_LMUL(OP, M1): \ |
3044 | case CASE_RVV_OPCODE_MASK_LMUL(OP, M2): \ |
3045 | case CASE_RVV_OPCODE_MASK_LMUL(OP, M4) |
3046 | |
3047 | #define CASE_RVV_OPCODE_MASK(OP) \ |
3048 | CASE_RVV_OPCODE_MASK_WIDEN(OP): \ |
3049 | case CASE_RVV_OPCODE_MASK_LMUL(OP, M8) |
3050 | |
3051 | #define CASE_RVV_OPCODE_WIDEN(OP) \ |
3052 | CASE_RVV_OPCODE_UNMASK_WIDEN(OP): \ |
3053 | case CASE_RVV_OPCODE_MASK_WIDEN(OP) |
3054 | |
3055 | #define CASE_RVV_OPCODE(OP) \ |
3056 | CASE_RVV_OPCODE_UNMASK(OP): \ |
3057 | case CASE_RVV_OPCODE_MASK(OP) |
3058 | // clang-format on |
3059 | |
3060 | // clang-format off |
3061 | #define CASE_VMA_OPCODE_COMMON(OP, TYPE, LMUL) \ |
3062 | RISCV::PseudoV##OP##_##TYPE##_##LMUL |
3063 | |
3064 | #define CASE_VMA_OPCODE_LMULS_M1(OP, TYPE) \ |
3065 | CASE_VMA_OPCODE_COMMON(OP, TYPE, M1): \ |
3066 | case CASE_VMA_OPCODE_COMMON(OP, TYPE, M2): \ |
3067 | case CASE_VMA_OPCODE_COMMON(OP, TYPE, M4): \ |
3068 | case CASE_VMA_OPCODE_COMMON(OP, TYPE, M8) |
3069 | |
3070 | #define CASE_VMA_OPCODE_LMULS_MF2(OP, TYPE) \ |
3071 | CASE_VMA_OPCODE_COMMON(OP, TYPE, MF2): \ |
3072 | case CASE_VMA_OPCODE_LMULS_M1(OP, TYPE) |
3073 | |
3074 | #define CASE_VMA_OPCODE_LMULS_MF4(OP, TYPE) \ |
3075 | CASE_VMA_OPCODE_COMMON(OP, TYPE, MF4): \ |
3076 | case CASE_VMA_OPCODE_LMULS_MF2(OP, TYPE) |
3077 | |
3078 | #define CASE_VMA_OPCODE_LMULS(OP, TYPE) \ |
3079 | CASE_VMA_OPCODE_COMMON(OP, TYPE, MF8): \ |
3080 | case CASE_VMA_OPCODE_LMULS_MF4(OP, TYPE) |
3081 | |
3082 | // VFMA instructions are SEW specific. |
3083 | #define CASE_VFMA_OPCODE_COMMON(OP, TYPE, LMUL, SEW) \ |
3084 | RISCV::PseudoV##OP##_##TYPE##_##LMUL##_##SEW |
3085 | |
3086 | #define CASE_VFMA_OPCODE_LMULS_M1(OP, TYPE, SEW) \ |
3087 | CASE_VFMA_OPCODE_COMMON(OP, TYPE, M1, SEW): \ |
3088 | case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M2, SEW): \ |
3089 | case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M4, SEW): \ |
3090 | case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M8, SEW) |
3091 | |
3092 | #define CASE_VFMA_OPCODE_LMULS_MF2(OP, TYPE, SEW) \ |
3093 | CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF2, SEW): \ |
3094 | case CASE_VFMA_OPCODE_LMULS_M1(OP, TYPE, SEW) |
3095 | |
3096 | #define CASE_VFMA_OPCODE_LMULS_MF4(OP, TYPE, SEW) \ |
3097 | CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF4, SEW): \ |
3098 | case CASE_VFMA_OPCODE_LMULS_MF2(OP, TYPE, SEW) |
3099 | |
3100 | #define CASE_VFMA_OPCODE_VV(OP) \ |
3101 | CASE_VFMA_OPCODE_LMULS_MF4(OP, VV, E16): \ |
3102 | case CASE_VFMA_OPCODE_LMULS_MF2(OP, VV, E32): \ |
3103 | case CASE_VFMA_OPCODE_LMULS_M1(OP, VV, E64) |
3104 | |
3105 | #define CASE_VFMA_SPLATS(OP) \ |
3106 | CASE_VFMA_OPCODE_LMULS_MF4(OP, VFPR16, E16): \ |
3107 | case CASE_VFMA_OPCODE_LMULS_MF2(OP, VFPR32, E32): \ |
3108 | case CASE_VFMA_OPCODE_LMULS_M1(OP, VFPR64, E64) |
3109 | // clang-format on |
3110 | |
3111 | bool RISCVInstrInfo::findCommutedOpIndices(const MachineInstr &MI, |
3112 | unsigned &SrcOpIdx1, |
3113 | unsigned &SrcOpIdx2) const { |
3114 | const MCInstrDesc &Desc = MI.getDesc(); |
3115 | if (!Desc.isCommutable()) |
3116 | return false; |
3117 | |
3118 | switch (MI.getOpcode()) { |
3119 | case RISCV::TH_MVEQZ: |
3120 | case RISCV::TH_MVNEZ: |
3121 | // We can't commute operands if operand 2 (i.e., rs1 in |
3122 | // mveqz/mvnez rd,rs1,rs2) is the zero-register (as it is |
3123 | // not valid as the in/out-operand 1). |
3124 | if (MI.getOperand(i: 2).getReg() == RISCV::X0) |
3125 | return false; |
3126 | // Operands 1 and 2 are commutable, if we switch the opcode. |
3127 | return fixCommutedOpIndices(ResultIdx1&: SrcOpIdx1, ResultIdx2&: SrcOpIdx2, CommutableOpIdx1: 1, CommutableOpIdx2: 2); |
3128 | case RISCV::TH_MULA: |
3129 | case RISCV::TH_MULAW: |
3130 | case RISCV::TH_MULAH: |
3131 | case RISCV::TH_MULS: |
3132 | case RISCV::TH_MULSW: |
3133 | case RISCV::TH_MULSH: |
3134 | // Operands 2 and 3 are commutable. |
3135 | return fixCommutedOpIndices(ResultIdx1&: SrcOpIdx1, ResultIdx2&: SrcOpIdx2, CommutableOpIdx1: 2, CommutableOpIdx2: 3); |
3136 | case RISCV::PseudoCCMOVGPRNoX0: |
3137 | case RISCV::PseudoCCMOVGPR: |
3138 | // Operands 4 and 5 are commutable. |
3139 | return fixCommutedOpIndices(ResultIdx1&: SrcOpIdx1, ResultIdx2&: SrcOpIdx2, CommutableOpIdx1: 4, CommutableOpIdx2: 5); |
3140 | case CASE_RVV_OPCODE(VADD_VV): |
3141 | case CASE_RVV_OPCODE(VAND_VV): |
3142 | case CASE_RVV_OPCODE(VOR_VV): |
3143 | case CASE_RVV_OPCODE(VXOR_VV): |
3144 | case CASE_RVV_OPCODE_MASK(VMSEQ_VV): |
3145 | case CASE_RVV_OPCODE_MASK(VMSNE_VV): |
3146 | case CASE_RVV_OPCODE(VMIN_VV): |
3147 | case CASE_RVV_OPCODE(VMINU_VV): |
3148 | case CASE_RVV_OPCODE(VMAX_VV): |
3149 | case CASE_RVV_OPCODE(VMAXU_VV): |
3150 | case CASE_RVV_OPCODE(VMUL_VV): |
3151 | case CASE_RVV_OPCODE(VMULH_VV): |
3152 | case CASE_RVV_OPCODE(VMULHU_VV): |
3153 | case CASE_RVV_OPCODE_WIDEN(VWADD_VV): |
3154 | case CASE_RVV_OPCODE_WIDEN(VWADDU_VV): |
3155 | case CASE_RVV_OPCODE_WIDEN(VWMUL_VV): |
3156 | case CASE_RVV_OPCODE_WIDEN(VWMULU_VV): |
3157 | case CASE_RVV_OPCODE_WIDEN(VWMACC_VV): |
3158 | case CASE_RVV_OPCODE_WIDEN(VWMACCU_VV): |
3159 | case CASE_RVV_OPCODE_UNMASK(VADC_VVM): |
3160 | case CASE_RVV_OPCODE(VSADD_VV): |
3161 | case CASE_RVV_OPCODE(VSADDU_VV): |
3162 | case CASE_RVV_OPCODE(VAADD_VV): |
3163 | case CASE_RVV_OPCODE(VAADDU_VV): |
3164 | case CASE_RVV_OPCODE(VSMUL_VV): |
3165 | // Operands 2 and 3 are commutable. |
3166 | return fixCommutedOpIndices(ResultIdx1&: SrcOpIdx1, ResultIdx2&: SrcOpIdx2, CommutableOpIdx1: 2, CommutableOpIdx2: 3); |
3167 | case CASE_VFMA_SPLATS(FMADD): |
3168 | case CASE_VFMA_SPLATS(FMSUB): |
3169 | case CASE_VFMA_SPLATS(FMACC): |
3170 | case CASE_VFMA_SPLATS(FMSAC): |
3171 | case CASE_VFMA_SPLATS(FNMADD): |
3172 | case CASE_VFMA_SPLATS(FNMSUB): |
3173 | case CASE_VFMA_SPLATS(FNMACC): |
3174 | case CASE_VFMA_SPLATS(FNMSAC): |
3175 | case CASE_VFMA_OPCODE_VV(FMACC): |
3176 | case CASE_VFMA_OPCODE_VV(FMSAC): |
3177 | case CASE_VFMA_OPCODE_VV(FNMACC): |
3178 | case CASE_VFMA_OPCODE_VV(FNMSAC): |
3179 | case CASE_VMA_OPCODE_LMULS(MADD, VX): |
3180 | case CASE_VMA_OPCODE_LMULS(NMSUB, VX): |
3181 | case CASE_VMA_OPCODE_LMULS(MACC, VX): |
3182 | case CASE_VMA_OPCODE_LMULS(NMSAC, VX): |
3183 | case CASE_VMA_OPCODE_LMULS(MACC, VV): |
3184 | case CASE_VMA_OPCODE_LMULS(NMSAC, VV): { |
3185 | // If the tail policy is undisturbed we can't commute. |
3186 | assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags)); |
3187 | if ((MI.getOperand(i: MI.getNumExplicitOperands() - 1).getImm() & 1) == 0) |
3188 | return false; |
3189 | |
3190 | // For these instructions we can only swap operand 1 and operand 3 by |
3191 | // changing the opcode. |
3192 | unsigned CommutableOpIdx1 = 1; |
3193 | unsigned CommutableOpIdx2 = 3; |
3194 | if (!fixCommutedOpIndices(ResultIdx1&: SrcOpIdx1, ResultIdx2&: SrcOpIdx2, CommutableOpIdx1, |
3195 | CommutableOpIdx2)) |
3196 | return false; |
3197 | return true; |
3198 | } |
3199 | case CASE_VFMA_OPCODE_VV(FMADD): |
3200 | case CASE_VFMA_OPCODE_VV(FMSUB): |
3201 | case CASE_VFMA_OPCODE_VV(FNMADD): |
3202 | case CASE_VFMA_OPCODE_VV(FNMSUB): |
3203 | case CASE_VMA_OPCODE_LMULS(MADD, VV): |
3204 | case CASE_VMA_OPCODE_LMULS(NMSUB, VV): { |
3205 | // If the tail policy is undisturbed we can't commute. |
3206 | assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags)); |
3207 | if ((MI.getOperand(i: MI.getNumExplicitOperands() - 1).getImm() & 1) == 0) |
3208 | return false; |
3209 | |
3210 | // For these instructions we have more freedom. We can commute with the |
3211 | // other multiplicand or with the addend/subtrahend/minuend. |
3212 | |
3213 | // Any fixed operand must be from source 1, 2 or 3. |
3214 | if (SrcOpIdx1 != CommuteAnyOperandIndex && SrcOpIdx1 > 3) |
3215 | return false; |
3216 | if (SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx2 > 3) |
3217 | return false; |
3218 | |
3219 | // It both ops are fixed one must be the tied source. |
3220 | if (SrcOpIdx1 != CommuteAnyOperandIndex && |
3221 | SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx1 != 1 && SrcOpIdx2 != 1) |
3222 | return false; |
3223 | |
3224 | // Look for two different register operands assumed to be commutable |
3225 | // regardless of the FMA opcode. The FMA opcode is adjusted later if |
3226 | // needed. |
3227 | if (SrcOpIdx1 == CommuteAnyOperandIndex || |
3228 | SrcOpIdx2 == CommuteAnyOperandIndex) { |
3229 | // At least one of operands to be commuted is not specified and |
3230 | // this method is free to choose appropriate commutable operands. |
3231 | unsigned CommutableOpIdx1 = SrcOpIdx1; |
3232 | if (SrcOpIdx1 == SrcOpIdx2) { |
3233 | // Both of operands are not fixed. Set one of commutable |
3234 | // operands to the tied source. |
3235 | CommutableOpIdx1 = 1; |
3236 | } else if (SrcOpIdx1 == CommuteAnyOperandIndex) { |
3237 | // Only one of the operands is not fixed. |
3238 | CommutableOpIdx1 = SrcOpIdx2; |
3239 | } |
3240 | |
3241 | // CommutableOpIdx1 is well defined now. Let's choose another commutable |
3242 | // operand and assign its index to CommutableOpIdx2. |
3243 | unsigned CommutableOpIdx2; |
3244 | if (CommutableOpIdx1 != 1) { |
3245 | // If we haven't already used the tied source, we must use it now. |
3246 | CommutableOpIdx2 = 1; |
3247 | } else { |
3248 | Register Op1Reg = MI.getOperand(i: CommutableOpIdx1).getReg(); |
3249 | |
3250 | // The commuted operands should have different registers. |
3251 | // Otherwise, the commute transformation does not change anything and |
3252 | // is useless. We use this as a hint to make our decision. |
3253 | if (Op1Reg != MI.getOperand(i: 2).getReg()) |
3254 | CommutableOpIdx2 = 2; |
3255 | else |
3256 | CommutableOpIdx2 = 3; |
3257 | } |
3258 | |
3259 | // Assign the found pair of commutable indices to SrcOpIdx1 and |
3260 | // SrcOpIdx2 to return those values. |
3261 | if (!fixCommutedOpIndices(ResultIdx1&: SrcOpIdx1, ResultIdx2&: SrcOpIdx2, CommutableOpIdx1, |
3262 | CommutableOpIdx2)) |
3263 | return false; |
3264 | } |
3265 | |
3266 | return true; |
3267 | } |
3268 | } |
3269 | |
3270 | return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); |
3271 | } |
3272 | |
3273 | // clang-format off |
3274 | #define CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, LMUL) \ |
3275 | case RISCV::PseudoV##OLDOP##_##TYPE##_##LMUL: \ |
3276 | Opc = RISCV::PseudoV##NEWOP##_##TYPE##_##LMUL; \ |
3277 | break; |
3278 | |
3279 | #define CASE_VMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE) \ |
3280 | CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M1) \ |
3281 | CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M2) \ |
3282 | CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M4) \ |
3283 | CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M8) |
3284 | |
3285 | #define CASE_VMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE) \ |
3286 | CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF2) \ |
3287 | CASE_VMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE) |
3288 | |
3289 | #define CASE_VMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, TYPE) \ |
3290 | CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF4) \ |
3291 | CASE_VMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE) |
3292 | |
3293 | #define CASE_VMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, TYPE) \ |
3294 | CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF8) \ |
3295 | CASE_VMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, TYPE) |
3296 | |
3297 | #define CASE_VMA_CHANGE_OPCODE_SPLATS(OLDOP, NEWOP) \ |
3298 | CASE_VMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, VFPR16) \ |
3299 | CASE_VMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, VFPR32) \ |
3300 | CASE_VMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, VFPR64) |
3301 | |
3302 | // VFMA depends on SEW. |
3303 | #define CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, LMUL, SEW) \ |
3304 | case RISCV::PseudoV##OLDOP##_##TYPE##_##LMUL##_##SEW: \ |
3305 | Opc = RISCV::PseudoV##NEWOP##_##TYPE##_##LMUL##_##SEW; \ |
3306 | break; |
3307 | |
3308 | #define CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE, SEW) \ |
3309 | CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M1, SEW) \ |
3310 | CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M2, SEW) \ |
3311 | CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M4, SEW) \ |
3312 | CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M8, SEW) |
3313 | |
3314 | #define CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE, SEW) \ |
3315 | CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF2, SEW) \ |
3316 | CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE, SEW) |
3317 | |
3318 | #define CASE_VFMA_CHANGE_OPCODE_VV(OLDOP, NEWOP) \ |
3319 | CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, VV, E16) \ |
3320 | CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, VV, E32) \ |
3321 | CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, VV, E64) |
3322 | |
3323 | #define CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, TYPE, SEW) \ |
3324 | CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF4, SEW) \ |
3325 | CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE, SEW) |
3326 | |
3327 | #define CASE_VFMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, TYPE, SEW) \ |
3328 | CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF8, SEW) \ |
3329 | CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, TYPE, SEW) |
3330 | |
3331 | #define CASE_VFMA_CHANGE_OPCODE_SPLATS(OLDOP, NEWOP) \ |
3332 | CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, VFPR16, E16) \ |
3333 | CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, VFPR32, E32) \ |
3334 | CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, VFPR64, E64) |
3335 | |
3336 | MachineInstr *RISCVInstrInfo::commuteInstructionImpl(MachineInstr &MI, |
3337 | bool NewMI, |
3338 | unsigned OpIdx1, |
3339 | unsigned OpIdx2) const { |
3340 | auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { |
3341 | if (NewMI) |
3342 | return *MI.getParent()->getParent()->CloneMachineInstr(Orig: &MI); |
3343 | return MI; |
3344 | }; |
3345 | |
3346 | switch (MI.getOpcode()) { |
3347 | case RISCV::TH_MVEQZ: |
3348 | case RISCV::TH_MVNEZ: { |
3349 | auto &WorkingMI = cloneIfNew(MI); |
3350 | WorkingMI.setDesc(get(Opcode: MI.getOpcode() == RISCV::TH_MVEQZ ? RISCV::TH_MVNEZ |
3351 | : RISCV::TH_MVEQZ)); |
3352 | return TargetInstrInfo::commuteInstructionImpl(MI&: WorkingMI, NewMI: false, OpIdx1, |
3353 | OpIdx2); |
3354 | } |
3355 | case RISCV::PseudoCCMOVGPRNoX0: |
3356 | case RISCV::PseudoCCMOVGPR: { |
3357 | // CCMOV can be commuted by inverting the condition. |
3358 | auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(i: 3).getImm()); |
3359 | CC = RISCVCC::getOppositeBranchCondition(CC); |
3360 | auto &WorkingMI = cloneIfNew(MI); |
3361 | WorkingMI.getOperand(i: 3).setImm(CC); |
3362 | return TargetInstrInfo::commuteInstructionImpl(MI&: WorkingMI, /*NewMI*/ false, |
3363 | OpIdx1, OpIdx2); |
3364 | } |
3365 | case CASE_VFMA_SPLATS(FMACC): |
3366 | case CASE_VFMA_SPLATS(FMADD): |
3367 | case CASE_VFMA_SPLATS(FMSAC): |
3368 | case CASE_VFMA_SPLATS(FMSUB): |
3369 | case CASE_VFMA_SPLATS(FNMACC): |
3370 | case CASE_VFMA_SPLATS(FNMADD): |
3371 | case CASE_VFMA_SPLATS(FNMSAC): |
3372 | case CASE_VFMA_SPLATS(FNMSUB): |
3373 | case CASE_VFMA_OPCODE_VV(FMACC): |
3374 | case CASE_VFMA_OPCODE_VV(FMSAC): |
3375 | case CASE_VFMA_OPCODE_VV(FNMACC): |
3376 | case CASE_VFMA_OPCODE_VV(FNMSAC): |
3377 | case CASE_VMA_OPCODE_LMULS(MADD, VX): |
3378 | case CASE_VMA_OPCODE_LMULS(NMSUB, VX): |
3379 | case CASE_VMA_OPCODE_LMULS(MACC, VX): |
3380 | case CASE_VMA_OPCODE_LMULS(NMSAC, VX): |
3381 | case CASE_VMA_OPCODE_LMULS(MACC, VV): |
3382 | case CASE_VMA_OPCODE_LMULS(NMSAC, VV): { |
3383 | // It only make sense to toggle these between clobbering the |
3384 | // addend/subtrahend/minuend one of the multiplicands. |
3385 | assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index" ); |
3386 | assert((OpIdx1 == 3 || OpIdx2 == 3) && "Unexpected opcode index" ); |
3387 | unsigned Opc; |
3388 | switch (MI.getOpcode()) { |
3389 | default: |
3390 | llvm_unreachable("Unexpected opcode" ); |
3391 | CASE_VFMA_CHANGE_OPCODE_SPLATS(FMACC, FMADD) |
3392 | CASE_VFMA_CHANGE_OPCODE_SPLATS(FMADD, FMACC) |
3393 | CASE_VFMA_CHANGE_OPCODE_SPLATS(FMSAC, FMSUB) |
3394 | CASE_VFMA_CHANGE_OPCODE_SPLATS(FMSUB, FMSAC) |
3395 | CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMACC, FNMADD) |
3396 | CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMADD, FNMACC) |
3397 | CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMSAC, FNMSUB) |
3398 | CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMSUB, FNMSAC) |
3399 | CASE_VFMA_CHANGE_OPCODE_VV(FMACC, FMADD) |
3400 | CASE_VFMA_CHANGE_OPCODE_VV(FMSAC, FMSUB) |
3401 | CASE_VFMA_CHANGE_OPCODE_VV(FNMACC, FNMADD) |
3402 | CASE_VFMA_CHANGE_OPCODE_VV(FNMSAC, FNMSUB) |
3403 | CASE_VMA_CHANGE_OPCODE_LMULS(MACC, MADD, VX) |
3404 | CASE_VMA_CHANGE_OPCODE_LMULS(MADD, MACC, VX) |
3405 | CASE_VMA_CHANGE_OPCODE_LMULS(NMSAC, NMSUB, VX) |
3406 | CASE_VMA_CHANGE_OPCODE_LMULS(NMSUB, NMSAC, VX) |
3407 | CASE_VMA_CHANGE_OPCODE_LMULS(MACC, MADD, VV) |
3408 | CASE_VMA_CHANGE_OPCODE_LMULS(NMSAC, NMSUB, VV) |
3409 | } |
3410 | |
3411 | auto &WorkingMI = cloneIfNew(MI); |
3412 | WorkingMI.setDesc(get(Opcode: Opc)); |
3413 | return TargetInstrInfo::commuteInstructionImpl(MI&: WorkingMI, /*NewMI=*/false, |
3414 | OpIdx1, OpIdx2); |
3415 | } |
3416 | case CASE_VFMA_OPCODE_VV(FMADD): |
3417 | case CASE_VFMA_OPCODE_VV(FMSUB): |
3418 | case CASE_VFMA_OPCODE_VV(FNMADD): |
3419 | case CASE_VFMA_OPCODE_VV(FNMSUB): |
3420 | case CASE_VMA_OPCODE_LMULS(MADD, VV): |
3421 | case CASE_VMA_OPCODE_LMULS(NMSUB, VV): { |
3422 | assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index" ); |
3423 | // If one of the operands, is the addend we need to change opcode. |
3424 | // Otherwise we're just swapping 2 of the multiplicands. |
3425 | if (OpIdx1 == 3 || OpIdx2 == 3) { |
3426 | unsigned Opc; |
3427 | switch (MI.getOpcode()) { |
3428 | default: |
3429 | llvm_unreachable("Unexpected opcode" ); |
3430 | CASE_VFMA_CHANGE_OPCODE_VV(FMADD, FMACC) |
3431 | CASE_VFMA_CHANGE_OPCODE_VV(FMSUB, FMSAC) |
3432 | CASE_VFMA_CHANGE_OPCODE_VV(FNMADD, FNMACC) |
3433 | CASE_VFMA_CHANGE_OPCODE_VV(FNMSUB, FNMSAC) |
3434 | CASE_VMA_CHANGE_OPCODE_LMULS(MADD, MACC, VV) |
3435 | CASE_VMA_CHANGE_OPCODE_LMULS(NMSUB, NMSAC, VV) |
3436 | } |
3437 | |
3438 | auto &WorkingMI = cloneIfNew(MI); |
3439 | WorkingMI.setDesc(get(Opcode: Opc)); |
3440 | return TargetInstrInfo::commuteInstructionImpl(MI&: WorkingMI, /*NewMI=*/false, |
3441 | OpIdx1, OpIdx2); |
3442 | } |
3443 | // Let the default code handle it. |
3444 | break; |
3445 | } |
3446 | } |
3447 | |
3448 | return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); |
3449 | } |
3450 | |
3451 | #undef CASE_RVV_OPCODE_UNMASK_LMUL |
3452 | #undef CASE_RVV_OPCODE_MASK_LMUL |
3453 | #undef CASE_RVV_OPCODE_LMUL |
3454 | #undef CASE_RVV_OPCODE_UNMASK_WIDEN |
3455 | #undef CASE_RVV_OPCODE_UNMASK |
3456 | #undef CASE_RVV_OPCODE_MASK_WIDEN |
3457 | #undef CASE_RVV_OPCODE_MASK |
3458 | #undef CASE_RVV_OPCODE_WIDEN |
3459 | #undef CASE_RVV_OPCODE |
3460 | |
3461 | #undef CASE_VMA_OPCODE_COMMON |
3462 | #undef CASE_VMA_OPCODE_LMULS_M1 |
3463 | #undef CASE_VMA_OPCODE_LMULS_MF2 |
3464 | #undef CASE_VMA_OPCODE_LMULS_MF4 |
3465 | #undef CASE_VMA_OPCODE_LMULS |
3466 | #undef CASE_VFMA_OPCODE_COMMON |
3467 | #undef CASE_VFMA_OPCODE_LMULS_M1 |
3468 | #undef CASE_VFMA_OPCODE_LMULS_MF2 |
3469 | #undef CASE_VFMA_OPCODE_LMULS_MF4 |
3470 | #undef CASE_VFMA_OPCODE_VV |
3471 | #undef CASE_VFMA_SPLATS |
3472 | |
3473 | // clang-format off |
3474 | #define CASE_WIDEOP_OPCODE_COMMON(OP, LMUL) \ |
3475 | RISCV::PseudoV##OP##_##LMUL##_TIED |
3476 | |
3477 | #define CASE_WIDEOP_OPCODE_LMULS_MF4(OP) \ |
3478 | CASE_WIDEOP_OPCODE_COMMON(OP, MF4): \ |
3479 | case CASE_WIDEOP_OPCODE_COMMON(OP, MF2): \ |
3480 | case CASE_WIDEOP_OPCODE_COMMON(OP, M1): \ |
3481 | case CASE_WIDEOP_OPCODE_COMMON(OP, M2): \ |
3482 | case CASE_WIDEOP_OPCODE_COMMON(OP, M4) |
3483 | |
3484 | #define CASE_WIDEOP_OPCODE_LMULS(OP) \ |
3485 | CASE_WIDEOP_OPCODE_COMMON(OP, MF8): \ |
3486 | case CASE_WIDEOP_OPCODE_LMULS_MF4(OP) |
3487 | |
3488 | #define CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, LMUL) \ |
3489 | case RISCV::PseudoV##OP##_##LMUL##_TIED: \ |
3490 | NewOpc = RISCV::PseudoV##OP##_##LMUL; \ |
3491 | break; |
3492 | |
3493 | #define CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP) \ |
3494 | CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF4) \ |
3495 | CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF2) \ |
3496 | CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M1) \ |
3497 | CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M2) \ |
3498 | CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M4) |
3499 | |
3500 | #define CASE_WIDEOP_CHANGE_OPCODE_LMULS(OP) \ |
3501 | CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF8) \ |
3502 | CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP) |
3503 | |
3504 | // FP Widening Ops may by SEW aware. Create SEW aware cases for these cases. |
3505 | #define CASE_FP_WIDEOP_OPCODE_COMMON(OP, LMUL, SEW) \ |
3506 | RISCV::PseudoV##OP##_##LMUL##_##SEW##_TIED |
3507 | |
3508 | #define CASE_FP_WIDEOP_OPCODE_LMULS_MF4(OP) \ |
3509 | CASE_FP_WIDEOP_OPCODE_COMMON(OP, MF4, E16): \ |
3510 | case CASE_FP_WIDEOP_OPCODE_COMMON(OP, MF2, E16): \ |
3511 | case CASE_FP_WIDEOP_OPCODE_COMMON(OP, MF2, E32): \ |
3512 | case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M1, E16): \ |
3513 | case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M1, E32): \ |
3514 | case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M2, E16): \ |
3515 | case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M2, E32): \ |
3516 | case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M4, E16): \ |
3517 | case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M4, E32) \ |
3518 | |
3519 | #define CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, LMUL, SEW) \ |
3520 | case RISCV::PseudoV##OP##_##LMUL##_##SEW##_TIED: \ |
3521 | NewOpc = RISCV::PseudoV##OP##_##LMUL##_##SEW; \ |
3522 | break; |
3523 | |
3524 | #define CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP) \ |
3525 | CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF4, E16) \ |
3526 | CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF2, E16) \ |
3527 | CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF2, E32) \ |
3528 | CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M1, E16) \ |
3529 | CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M1, E32) \ |
3530 | CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M2, E16) \ |
3531 | CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M2, E32) \ |
3532 | CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M4, E16) \ |
3533 | CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M4, E32) \ |
3534 | |
3535 | #define CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS(OP) \ |
3536 | CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP) |
3537 | // clang-format on |
3538 | |
3539 | MachineInstr *RISCVInstrInfo::convertToThreeAddress(MachineInstr &MI, |
3540 | LiveVariables *LV, |
3541 | LiveIntervals *LIS) const { |
3542 | MachineInstrBuilder MIB; |
3543 | switch (MI.getOpcode()) { |
3544 | default: |
3545 | return nullptr; |
3546 | case CASE_FP_WIDEOP_OPCODE_LMULS_MF4(FWADD_WV): |
3547 | case CASE_FP_WIDEOP_OPCODE_LMULS_MF4(FWSUB_WV): { |
3548 | assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags) && |
3549 | MI.getNumExplicitOperands() == 7 && |
3550 | "Expect 7 explicit operands rd, rs2, rs1, rm, vl, sew, policy" ); |
3551 | // If the tail policy is undisturbed we can't convert. |
3552 | if ((MI.getOperand(i: RISCVII::getVecPolicyOpNum(Desc: MI.getDesc())).getImm() & |
3553 | 1) == 0) |
3554 | return nullptr; |
3555 | // clang-format off |
3556 | unsigned NewOpc; |
3557 | switch (MI.getOpcode()) { |
3558 | default: |
3559 | llvm_unreachable("Unexpected opcode" ); |
3560 | CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS_MF4(FWADD_WV) |
3561 | CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS_MF4(FWSUB_WV) |
3562 | } |
3563 | // clang-format on |
3564 | |
3565 | MachineBasicBlock &MBB = *MI.getParent(); |
3566 | MIB = BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: NewOpc)) |
3567 | .add(MO: MI.getOperand(i: 0)) |
3568 | .addReg(RegNo: MI.getOperand(i: 0).getReg(), flags: RegState::Undef) |
3569 | .add(MO: MI.getOperand(i: 1)) |
3570 | .add(MO: MI.getOperand(i: 2)) |
3571 | .add(MO: MI.getOperand(i: 3)) |
3572 | .add(MO: MI.getOperand(i: 4)) |
3573 | .add(MO: MI.getOperand(i: 5)) |
3574 | .add(MO: MI.getOperand(i: 6)); |
3575 | break; |
3576 | } |
3577 | case CASE_WIDEOP_OPCODE_LMULS(WADD_WV): |
3578 | case CASE_WIDEOP_OPCODE_LMULS(WADDU_WV): |
3579 | case CASE_WIDEOP_OPCODE_LMULS(WSUB_WV): |
3580 | case CASE_WIDEOP_OPCODE_LMULS(WSUBU_WV): { |
3581 | // If the tail policy is undisturbed we can't convert. |
3582 | assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags) && |
3583 | MI.getNumExplicitOperands() == 6); |
3584 | if ((MI.getOperand(i: 5).getImm() & 1) == 0) |
3585 | return nullptr; |
3586 | |
3587 | // clang-format off |
3588 | unsigned NewOpc; |
3589 | switch (MI.getOpcode()) { |
3590 | default: |
3591 | llvm_unreachable("Unexpected opcode" ); |
3592 | CASE_WIDEOP_CHANGE_OPCODE_LMULS(WADD_WV) |
3593 | CASE_WIDEOP_CHANGE_OPCODE_LMULS(WADDU_WV) |
3594 | CASE_WIDEOP_CHANGE_OPCODE_LMULS(WSUB_WV) |
3595 | CASE_WIDEOP_CHANGE_OPCODE_LMULS(WSUBU_WV) |
3596 | } |
3597 | // clang-format on |
3598 | |
3599 | MachineBasicBlock &MBB = *MI.getParent(); |
3600 | MIB = BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: NewOpc)) |
3601 | .add(MO: MI.getOperand(i: 0)) |
3602 | .addReg(RegNo: MI.getOperand(i: 0).getReg(), flags: RegState::Undef) |
3603 | .add(MO: MI.getOperand(i: 1)) |
3604 | .add(MO: MI.getOperand(i: 2)) |
3605 | .add(MO: MI.getOperand(i: 3)) |
3606 | .add(MO: MI.getOperand(i: 4)) |
3607 | .add(MO: MI.getOperand(i: 5)); |
3608 | break; |
3609 | } |
3610 | } |
3611 | MIB.copyImplicitOps(OtherMI: MI); |
3612 | |
3613 | if (LV) { |
3614 | unsigned NumOps = MI.getNumOperands(); |
3615 | for (unsigned I = 1; I < NumOps; ++I) { |
3616 | MachineOperand &Op = MI.getOperand(i: I); |
3617 | if (Op.isReg() && Op.isKill()) |
3618 | LV->replaceKillInstruction(Reg: Op.getReg(), OldMI&: MI, NewMI&: *MIB); |
3619 | } |
3620 | } |
3621 | |
3622 | if (LIS) { |
3623 | SlotIndex Idx = LIS->ReplaceMachineInstrInMaps(MI, NewMI&: *MIB); |
3624 | |
3625 | if (MI.getOperand(i: 0).isEarlyClobber()) { |
3626 | // Use operand 1 was tied to early-clobber def operand 0, so its live |
3627 | // interval could have ended at an early-clobber slot. Now they are not |
3628 | // tied we need to update it to the normal register slot. |
3629 | LiveInterval &LI = LIS->getInterval(Reg: MI.getOperand(i: 1).getReg()); |
3630 | LiveRange::Segment *S = LI.getSegmentContaining(Idx); |
3631 | if (S->end == Idx.getRegSlot(EC: true)) |
3632 | S->end = Idx.getRegSlot(); |
3633 | } |
3634 | } |
3635 | |
3636 | return MIB; |
3637 | } |
3638 | |
3639 | #undef CASE_WIDEOP_OPCODE_COMMON |
3640 | #undef CASE_WIDEOP_OPCODE_LMULS_MF4 |
3641 | #undef CASE_WIDEOP_OPCODE_LMULS |
3642 | #undef CASE_WIDEOP_CHANGE_OPCODE_COMMON |
3643 | #undef CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4 |
3644 | #undef CASE_WIDEOP_CHANGE_OPCODE_LMULS |
3645 | #undef CASE_FP_WIDEOP_OPCODE_COMMON |
3646 | #undef CASE_FP_WIDEOP_OPCODE_LMULS_MF4 |
3647 | #undef CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON |
3648 | #undef CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS_MF4 |
3649 | #undef CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS |
3650 | |
3651 | void RISCVInstrInfo::mulImm(MachineFunction &MF, MachineBasicBlock &MBB, |
3652 | MachineBasicBlock::iterator II, const DebugLoc &DL, |
3653 | Register DestReg, uint32_t Amount, |
3654 | MachineInstr::MIFlag Flag) const { |
3655 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
3656 | if (llvm::has_single_bit<uint32_t>(Value: Amount)) { |
3657 | uint32_t ShiftAmount = Log2_32(Value: Amount); |
3658 | if (ShiftAmount == 0) |
3659 | return; |
3660 | BuildMI(BB&: MBB, I: II, MIMD: DL, MCID: get(Opcode: RISCV::SLLI), DestReg) |
3661 | .addReg(RegNo: DestReg, flags: RegState::Kill) |
3662 | .addImm(Val: ShiftAmount) |
3663 | .setMIFlag(Flag); |
3664 | } else if (STI.hasStdExtZba() && |
3665 | ((Amount % 3 == 0 && isPowerOf2_64(Value: Amount / 3)) || |
3666 | (Amount % 5 == 0 && isPowerOf2_64(Value: Amount / 5)) || |
3667 | (Amount % 9 == 0 && isPowerOf2_64(Value: Amount / 9)))) { |
3668 | // We can use Zba SHXADD+SLLI instructions for multiply in some cases. |
3669 | unsigned Opc; |
3670 | uint32_t ShiftAmount; |
3671 | if (Amount % 9 == 0) { |
3672 | Opc = RISCV::SH3ADD; |
3673 | ShiftAmount = Log2_64(Value: Amount / 9); |
3674 | } else if (Amount % 5 == 0) { |
3675 | Opc = RISCV::SH2ADD; |
3676 | ShiftAmount = Log2_64(Value: Amount / 5); |
3677 | } else if (Amount % 3 == 0) { |
3678 | Opc = RISCV::SH1ADD; |
3679 | ShiftAmount = Log2_64(Value: Amount / 3); |
3680 | } else { |
3681 | llvm_unreachable("implied by if-clause" ); |
3682 | } |
3683 | if (ShiftAmount) |
3684 | BuildMI(BB&: MBB, I: II, MIMD: DL, MCID: get(Opcode: RISCV::SLLI), DestReg) |
3685 | .addReg(RegNo: DestReg, flags: RegState::Kill) |
3686 | .addImm(Val: ShiftAmount) |
3687 | .setMIFlag(Flag); |
3688 | BuildMI(BB&: MBB, I: II, MIMD: DL, MCID: get(Opcode: Opc), DestReg) |
3689 | .addReg(RegNo: DestReg, flags: RegState::Kill) |
3690 | .addReg(RegNo: DestReg) |
3691 | .setMIFlag(Flag); |
3692 | } else if (llvm::has_single_bit<uint32_t>(Value: Amount - 1)) { |
3693 | Register ScaledRegister = MRI.createVirtualRegister(RegClass: &RISCV::GPRRegClass); |
3694 | uint32_t ShiftAmount = Log2_32(Value: Amount - 1); |
3695 | BuildMI(BB&: MBB, I: II, MIMD: DL, MCID: get(Opcode: RISCV::SLLI), DestReg: ScaledRegister) |
3696 | .addReg(RegNo: DestReg) |
3697 | .addImm(Val: ShiftAmount) |
3698 | .setMIFlag(Flag); |
3699 | BuildMI(BB&: MBB, I: II, MIMD: DL, MCID: get(Opcode: RISCV::ADD), DestReg) |
3700 | .addReg(RegNo: ScaledRegister, flags: RegState::Kill) |
3701 | .addReg(RegNo: DestReg, flags: RegState::Kill) |
3702 | .setMIFlag(Flag); |
3703 | } else if (llvm::has_single_bit<uint32_t>(Value: Amount + 1)) { |
3704 | Register ScaledRegister = MRI.createVirtualRegister(RegClass: &RISCV::GPRRegClass); |
3705 | uint32_t ShiftAmount = Log2_32(Value: Amount + 1); |
3706 | BuildMI(BB&: MBB, I: II, MIMD: DL, MCID: get(Opcode: RISCV::SLLI), DestReg: ScaledRegister) |
3707 | .addReg(RegNo: DestReg) |
3708 | .addImm(Val: ShiftAmount) |
3709 | .setMIFlag(Flag); |
3710 | BuildMI(BB&: MBB, I: II, MIMD: DL, MCID: get(Opcode: RISCV::SUB), DestReg) |
3711 | .addReg(RegNo: ScaledRegister, flags: RegState::Kill) |
3712 | .addReg(RegNo: DestReg, flags: RegState::Kill) |
3713 | .setMIFlag(Flag); |
3714 | } else if (STI.hasStdExtZmmul()) { |
3715 | Register N = MRI.createVirtualRegister(RegClass: &RISCV::GPRRegClass); |
3716 | movImm(MBB, MBBI: II, DL, DstReg: N, Val: Amount, Flag); |
3717 | BuildMI(BB&: MBB, I: II, MIMD: DL, MCID: get(Opcode: RISCV::MUL), DestReg) |
3718 | .addReg(RegNo: DestReg, flags: RegState::Kill) |
3719 | .addReg(RegNo: N, flags: RegState::Kill) |
3720 | .setMIFlag(Flag); |
3721 | } else { |
3722 | Register Acc; |
3723 | uint32_t PrevShiftAmount = 0; |
3724 | for (uint32_t ShiftAmount = 0; Amount >> ShiftAmount; ShiftAmount++) { |
3725 | if (Amount & (1U << ShiftAmount)) { |
3726 | if (ShiftAmount) |
3727 | BuildMI(BB&: MBB, I: II, MIMD: DL, MCID: get(Opcode: RISCV::SLLI), DestReg) |
3728 | .addReg(RegNo: DestReg, flags: RegState::Kill) |
3729 | .addImm(Val: ShiftAmount - PrevShiftAmount) |
3730 | .setMIFlag(Flag); |
3731 | if (Amount >> (ShiftAmount + 1)) { |
3732 | // If we don't have an accmulator yet, create it and copy DestReg. |
3733 | if (!Acc) { |
3734 | Acc = MRI.createVirtualRegister(RegClass: &RISCV::GPRRegClass); |
3735 | BuildMI(BB&: MBB, I: II, MIMD: DL, MCID: get(Opcode: TargetOpcode::COPY), DestReg: Acc) |
3736 | .addReg(RegNo: DestReg) |
3737 | .setMIFlag(Flag); |
3738 | } else { |
3739 | BuildMI(BB&: MBB, I: II, MIMD: DL, MCID: get(Opcode: RISCV::ADD), DestReg: Acc) |
3740 | .addReg(RegNo: Acc, flags: RegState::Kill) |
3741 | .addReg(RegNo: DestReg) |
3742 | .setMIFlag(Flag); |
3743 | } |
3744 | } |
3745 | PrevShiftAmount = ShiftAmount; |
3746 | } |
3747 | } |
3748 | assert(Acc && "Expected valid accumulator" ); |
3749 | BuildMI(BB&: MBB, I: II, MIMD: DL, MCID: get(Opcode: RISCV::ADD), DestReg) |
3750 | .addReg(RegNo: DestReg, flags: RegState::Kill) |
3751 | .addReg(RegNo: Acc, flags: RegState::Kill) |
3752 | .setMIFlag(Flag); |
3753 | } |
3754 | } |
3755 | |
3756 | ArrayRef<std::pair<MachineMemOperand::Flags, const char *>> |
3757 | RISCVInstrInfo::getSerializableMachineMemOperandTargetFlags() const { |
3758 | static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] = |
3759 | {{MONontemporalBit0, "riscv-nontemporal-domain-bit-0" }, |
3760 | {MONontemporalBit1, "riscv-nontemporal-domain-bit-1" }}; |
3761 | return ArrayRef(TargetFlags); |
3762 | } |
3763 | |
3764 | // Returns true if this is the sext.w pattern, addiw rd, rs1, 0. |
3765 | bool RISCV::isSEXT_W(const MachineInstr &MI) { |
3766 | return MI.getOpcode() == RISCV::ADDIW && MI.getOperand(i: 1).isReg() && |
3767 | MI.getOperand(i: 2).isImm() && MI.getOperand(i: 2).getImm() == 0; |
3768 | } |
3769 | |
3770 | // Returns true if this is the zext.w pattern, adduw rd, rs1, x0. |
3771 | bool RISCV::isZEXT_W(const MachineInstr &MI) { |
3772 | return MI.getOpcode() == RISCV::ADD_UW && MI.getOperand(i: 1).isReg() && |
3773 | MI.getOperand(i: 2).isReg() && MI.getOperand(i: 2).getReg() == RISCV::X0; |
3774 | } |
3775 | |
3776 | // Returns true if this is the zext.b pattern, andi rd, rs1, 255. |
3777 | bool RISCV::isZEXT_B(const MachineInstr &MI) { |
3778 | return MI.getOpcode() == RISCV::ANDI && MI.getOperand(i: 1).isReg() && |
3779 | MI.getOperand(i: 2).isImm() && MI.getOperand(i: 2).getImm() == 255; |
3780 | } |
3781 | |
3782 | static bool isRVVWholeLoadStore(unsigned Opcode) { |
3783 | switch (Opcode) { |
3784 | default: |
3785 | return false; |
3786 | case RISCV::VS1R_V: |
3787 | case RISCV::VS2R_V: |
3788 | case RISCV::VS4R_V: |
3789 | case RISCV::VS8R_V: |
3790 | case RISCV::VL1RE8_V: |
3791 | case RISCV::VL2RE8_V: |
3792 | case RISCV::VL4RE8_V: |
3793 | case RISCV::VL8RE8_V: |
3794 | case RISCV::VL1RE16_V: |
3795 | case RISCV::VL2RE16_V: |
3796 | case RISCV::VL4RE16_V: |
3797 | case RISCV::VL8RE16_V: |
3798 | case RISCV::VL1RE32_V: |
3799 | case RISCV::VL2RE32_V: |
3800 | case RISCV::VL4RE32_V: |
3801 | case RISCV::VL8RE32_V: |
3802 | case RISCV::VL1RE64_V: |
3803 | case RISCV::VL2RE64_V: |
3804 | case RISCV::VL4RE64_V: |
3805 | case RISCV::VL8RE64_V: |
3806 | return true; |
3807 | } |
3808 | } |
3809 | |
3810 | bool RISCV::isRVVSpill(const MachineInstr &MI) { |
3811 | // RVV lacks any support for immediate addressing for stack addresses, so be |
3812 | // conservative. |
3813 | unsigned Opcode = MI.getOpcode(); |
3814 | if (!RISCVVPseudosTable::getPseudoInfo(Pseudo: Opcode) && |
3815 | !isRVVWholeLoadStore(Opcode) && !isRVVSpillForZvlsseg(Opcode)) |
3816 | return false; |
3817 | return true; |
3818 | } |
3819 | |
3820 | std::optional<std::pair<unsigned, unsigned>> |
3821 | RISCV::isRVVSpillForZvlsseg(unsigned Opcode) { |
3822 | switch (Opcode) { |
3823 | default: |
3824 | return std::nullopt; |
3825 | case RISCV::PseudoVSPILL2_M1: |
3826 | case RISCV::PseudoVRELOAD2_M1: |
3827 | return std::make_pair(x: 2u, y: 1u); |
3828 | case RISCV::PseudoVSPILL2_M2: |
3829 | case RISCV::PseudoVRELOAD2_M2: |
3830 | return std::make_pair(x: 2u, y: 2u); |
3831 | case RISCV::PseudoVSPILL2_M4: |
3832 | case RISCV::PseudoVRELOAD2_M4: |
3833 | return std::make_pair(x: 2u, y: 4u); |
3834 | case RISCV::PseudoVSPILL3_M1: |
3835 | case RISCV::PseudoVRELOAD3_M1: |
3836 | return std::make_pair(x: 3u, y: 1u); |
3837 | case RISCV::PseudoVSPILL3_M2: |
3838 | case RISCV::PseudoVRELOAD3_M2: |
3839 | return std::make_pair(x: 3u, y: 2u); |
3840 | case RISCV::PseudoVSPILL4_M1: |
3841 | case RISCV::PseudoVRELOAD4_M1: |
3842 | return std::make_pair(x: 4u, y: 1u); |
3843 | case RISCV::PseudoVSPILL4_M2: |
3844 | case RISCV::PseudoVRELOAD4_M2: |
3845 | return std::make_pair(x: 4u, y: 2u); |
3846 | case RISCV::PseudoVSPILL5_M1: |
3847 | case RISCV::PseudoVRELOAD5_M1: |
3848 | return std::make_pair(x: 5u, y: 1u); |
3849 | case RISCV::PseudoVSPILL6_M1: |
3850 | case RISCV::PseudoVRELOAD6_M1: |
3851 | return std::make_pair(x: 6u, y: 1u); |
3852 | case RISCV::PseudoVSPILL7_M1: |
3853 | case RISCV::PseudoVRELOAD7_M1: |
3854 | return std::make_pair(x: 7u, y: 1u); |
3855 | case RISCV::PseudoVSPILL8_M1: |
3856 | case RISCV::PseudoVRELOAD8_M1: |
3857 | return std::make_pair(x: 8u, y: 1u); |
3858 | } |
3859 | } |
3860 | |
3861 | bool RISCV::isFaultFirstLoad(const MachineInstr &MI) { |
3862 | return MI.getNumExplicitDefs() == 2 && |
3863 | MI.modifiesRegister(Reg: RISCV::VL, /*TRI=*/nullptr) && !MI.isInlineAsm(); |
3864 | } |
3865 | |
3866 | bool RISCV::hasEqualFRM(const MachineInstr &MI1, const MachineInstr &MI2) { |
3867 | int16_t MI1FrmOpIdx = |
3868 | RISCV::getNamedOperandIdx(Opcode: MI1.getOpcode(), NamedIdx: RISCV::OpName::frm); |
3869 | int16_t MI2FrmOpIdx = |
3870 | RISCV::getNamedOperandIdx(Opcode: MI2.getOpcode(), NamedIdx: RISCV::OpName::frm); |
3871 | if (MI1FrmOpIdx < 0 || MI2FrmOpIdx < 0) |
3872 | return false; |
3873 | MachineOperand FrmOp1 = MI1.getOperand(i: MI1FrmOpIdx); |
3874 | MachineOperand FrmOp2 = MI2.getOperand(i: MI2FrmOpIdx); |
3875 | return FrmOp1.getImm() == FrmOp2.getImm(); |
3876 | } |
3877 | |
3878 | std::optional<unsigned> |
3879 | RISCV::getVectorLowDemandedScalarBits(uint16_t Opcode, unsigned Log2SEW) { |
3880 | // TODO: Handle Zvbb instructions |
3881 | switch (Opcode) { |
3882 | default: |
3883 | return std::nullopt; |
3884 | |
3885 | // 11.6. Vector Single-Width Shift Instructions |
3886 | case RISCV::VSLL_VX: |
3887 | case RISCV::VSRL_VX: |
3888 | case RISCV::VSRA_VX: |
3889 | // 12.4. Vector Single-Width Scaling Shift Instructions |
3890 | case RISCV::VSSRL_VX: |
3891 | case RISCV::VSSRA_VX: |
3892 | // Only the low lg2(SEW) bits of the shift-amount value are used. |
3893 | return Log2SEW; |
3894 | |
3895 | // 11.7 Vector Narrowing Integer Right Shift Instructions |
3896 | case RISCV::VNSRL_WX: |
3897 | case RISCV::VNSRA_WX: |
3898 | // 12.5. Vector Narrowing Fixed-Point Clip Instructions |
3899 | case RISCV::VNCLIPU_WX: |
3900 | case RISCV::VNCLIP_WX: |
3901 | // Only the low lg2(2*SEW) bits of the shift-amount value are used. |
3902 | return Log2SEW + 1; |
3903 | |
3904 | // 11.1. Vector Single-Width Integer Add and Subtract |
3905 | case RISCV::VADD_VX: |
3906 | case RISCV::VSUB_VX: |
3907 | case RISCV::VRSUB_VX: |
3908 | // 11.2. Vector Widening Integer Add/Subtract |
3909 | case RISCV::VWADDU_VX: |
3910 | case RISCV::VWSUBU_VX: |
3911 | case RISCV::VWADD_VX: |
3912 | case RISCV::VWSUB_VX: |
3913 | case RISCV::VWADDU_WX: |
3914 | case RISCV::VWSUBU_WX: |
3915 | case RISCV::VWADD_WX: |
3916 | case RISCV::VWSUB_WX: |
3917 | // 11.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions |
3918 | case RISCV::VADC_VXM: |
3919 | case RISCV::VADC_VIM: |
3920 | case RISCV::VMADC_VXM: |
3921 | case RISCV::VMADC_VIM: |
3922 | case RISCV::VMADC_VX: |
3923 | case RISCV::VSBC_VXM: |
3924 | case RISCV::VMSBC_VXM: |
3925 | case RISCV::VMSBC_VX: |
3926 | // 11.5 Vector Bitwise Logical Instructions |
3927 | case RISCV::VAND_VX: |
3928 | case RISCV::VOR_VX: |
3929 | case RISCV::VXOR_VX: |
3930 | // 11.8. Vector Integer Compare Instructions |
3931 | case RISCV::VMSEQ_VX: |
3932 | case RISCV::VMSNE_VX: |
3933 | case RISCV::VMSLTU_VX: |
3934 | case RISCV::VMSLT_VX: |
3935 | case RISCV::VMSLEU_VX: |
3936 | case RISCV::VMSLE_VX: |
3937 | case RISCV::VMSGTU_VX: |
3938 | case RISCV::VMSGT_VX: |
3939 | // 11.9. Vector Integer Min/Max Instructions |
3940 | case RISCV::VMINU_VX: |
3941 | case RISCV::VMIN_VX: |
3942 | case RISCV::VMAXU_VX: |
3943 | case RISCV::VMAX_VX: |
3944 | // 11.10. Vector Single-Width Integer Multiply Instructions |
3945 | case RISCV::VMUL_VX: |
3946 | case RISCV::VMULH_VX: |
3947 | case RISCV::VMULHU_VX: |
3948 | case RISCV::VMULHSU_VX: |
3949 | // 11.11. Vector Integer Divide Instructions |
3950 | case RISCV::VDIVU_VX: |
3951 | case RISCV::VDIV_VX: |
3952 | case RISCV::VREMU_VX: |
3953 | case RISCV::VREM_VX: |
3954 | // 11.12. Vector Widening Integer Multiply Instructions |
3955 | case RISCV::VWMUL_VX: |
3956 | case RISCV::VWMULU_VX: |
3957 | case RISCV::VWMULSU_VX: |
3958 | // 11.13. Vector Single-Width Integer Multiply-Add Instructions |
3959 | case RISCV::VMACC_VX: |
3960 | case RISCV::VNMSAC_VX: |
3961 | case RISCV::VMADD_VX: |
3962 | case RISCV::VNMSUB_VX: |
3963 | // 11.14. Vector Widening Integer Multiply-Add Instructions |
3964 | case RISCV::VWMACCU_VX: |
3965 | case RISCV::VWMACC_VX: |
3966 | case RISCV::VWMACCSU_VX: |
3967 | case RISCV::VWMACCUS_VX: |
3968 | // 11.15. Vector Integer Merge Instructions |
3969 | case RISCV::VMERGE_VXM: |
3970 | // 11.16. Vector Integer Move Instructions |
3971 | case RISCV::VMV_V_X: |
3972 | // 12.1. Vector Single-Width Saturating Add and Subtract |
3973 | case RISCV::VSADDU_VX: |
3974 | case RISCV::VSADD_VX: |
3975 | case RISCV::VSSUBU_VX: |
3976 | case RISCV::VSSUB_VX: |
3977 | // 12.2. Vector Single-Width Averaging Add and Subtract |
3978 | case RISCV::VAADDU_VX: |
3979 | case RISCV::VAADD_VX: |
3980 | case RISCV::VASUBU_VX: |
3981 | case RISCV::VASUB_VX: |
3982 | // 12.3. Vector Single-Width Fractional Multiply with Rounding and Saturation |
3983 | case RISCV::VSMUL_VX: |
3984 | // 16.1. Integer Scalar Move Instructions |
3985 | case RISCV::VMV_S_X: |
3986 | return 1U << Log2SEW; |
3987 | } |
3988 | } |
3989 | |
3990 | unsigned RISCV::getRVVMCOpcode(unsigned RVVPseudoOpcode) { |
3991 | const RISCVVPseudosTable::PseudoInfo *RVV = |
3992 | RISCVVPseudosTable::getPseudoInfo(Pseudo: RVVPseudoOpcode); |
3993 | if (!RVV) |
3994 | return 0; |
3995 | return RVV->BaseInstr; |
3996 | } |
3997 | |