1 | //=- WebAssemblyFixIrreducibleControlFlow.cpp - Fix irreducible control flow -// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// This file implements a pass that removes irreducible control flow. |
11 | /// Irreducible control flow means multiple-entry loops, which this pass |
12 | /// transforms to have a single entry. |
13 | /// |
14 | /// Note that LLVM has a generic pass that lowers irreducible control flow, but |
15 | /// it linearizes control flow, turning diamonds into two triangles, which is |
16 | /// both unnecessary and undesirable for WebAssembly. |
17 | /// |
18 | /// The big picture: We recursively process each "region", defined as a group |
19 | /// of blocks with a single entry and no branches back to that entry. A region |
20 | /// may be the entire function body, or the inner part of a loop, i.e., the |
21 | /// loop's body without branches back to the loop entry. In each region we fix |
22 | /// up multi-entry loops by adding a new block that can dispatch to each of the |
23 | /// loop entries, based on the value of a label "helper" variable, and we |
24 | /// replace direct branches to the entries with assignments to the label |
25 | /// variable and a branch to the dispatch block. Then the dispatch block is the |
26 | /// single entry in the loop containing the previous multiple entries. After |
27 | /// ensuring all the loops in a region are reducible, we recurse into them. The |
28 | /// total time complexity of this pass is: |
29 | /// |
30 | /// O(NumBlocks * NumNestedLoops * NumIrreducibleLoops + |
31 | /// NumLoops * NumLoops) |
32 | /// |
33 | /// This pass is similar to what the Relooper [1] does. Both identify looping |
34 | /// code that requires multiple entries, and resolve it in a similar way (in |
35 | /// Relooper terminology, we implement a Multiple shape in a Loop shape). Note |
36 | /// also that like the Relooper, we implement a "minimal" intervention: we only |
37 | /// use the "label" helper for the blocks we absolutely must and no others. We |
38 | /// also prioritize code size and do not duplicate code in order to resolve |
39 | /// irreducibility. The graph algorithms for finding loops and entries and so |
40 | /// forth are also similar to the Relooper. The main differences between this |
41 | /// pass and the Relooper are: |
42 | /// |
43 | /// * We just care about irreducibility, so we just look at loops. |
44 | /// * The Relooper emits structured control flow (with ifs etc.), while we |
45 | /// emit a CFG. |
46 | /// |
47 | /// [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In |
48 | /// Proceedings of the ACM international conference companion on Object oriented |
49 | /// programming systems languages and applications companion (SPLASH '11). ACM, |
50 | /// New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224 |
51 | /// http://doi.acm.org/10.1145/2048147.2048224 |
52 | /// |
53 | //===----------------------------------------------------------------------===// |
54 | |
55 | #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" |
56 | #include "WebAssembly.h" |
57 | #include "WebAssemblySubtarget.h" |
58 | #include "llvm/CodeGen/MachineFunctionPass.h" |
59 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
60 | #include "llvm/Support/Debug.h" |
61 | using namespace llvm; |
62 | |
63 | #define DEBUG_TYPE "wasm-fix-irreducible-control-flow" |
64 | |
65 | namespace { |
66 | |
67 | using BlockVector = SmallVector<MachineBasicBlock *, 4>; |
68 | using BlockSet = SmallPtrSet<MachineBasicBlock *, 4>; |
69 | |
70 | static BlockVector getSortedEntries(const BlockSet &Entries) { |
71 | BlockVector SortedEntries(Entries.begin(), Entries.end()); |
72 | llvm::sort(C&: SortedEntries, |
73 | Comp: [](const MachineBasicBlock *A, const MachineBasicBlock *B) { |
74 | auto ANum = A->getNumber(); |
75 | auto BNum = B->getNumber(); |
76 | return ANum < BNum; |
77 | }); |
78 | return SortedEntries; |
79 | } |
80 | |
81 | // Calculates reachability in a region. Ignores branches to blocks outside of |
82 | // the region, and ignores branches to the region entry (for the case where |
83 | // the region is the inner part of a loop). |
84 | class ReachabilityGraph { |
85 | public: |
86 | ReachabilityGraph(MachineBasicBlock *Entry, const BlockSet &Blocks) |
87 | : Entry(Entry), Blocks(Blocks) { |
88 | #ifndef NDEBUG |
89 | // The region must have a single entry. |
90 | for (auto *MBB : Blocks) { |
91 | if (MBB != Entry) { |
92 | for (auto *Pred : MBB->predecessors()) { |
93 | assert(inRegion(Pred)); |
94 | } |
95 | } |
96 | } |
97 | #endif |
98 | calculate(); |
99 | } |
100 | |
101 | bool canReach(MachineBasicBlock *From, MachineBasicBlock *To) const { |
102 | assert(inRegion(From) && inRegion(To)); |
103 | auto I = Reachable.find(Val: From); |
104 | if (I == Reachable.end()) |
105 | return false; |
106 | return I->second.count(Ptr: To); |
107 | } |
108 | |
109 | // "Loopers" are blocks that are in a loop. We detect these by finding blocks |
110 | // that can reach themselves. |
111 | const BlockSet &getLoopers() const { return Loopers; } |
112 | |
113 | // Get all blocks that are loop entries. |
114 | const BlockSet &getLoopEntries() const { return LoopEntries; } |
115 | |
116 | // Get all blocks that enter a particular loop from outside. |
117 | const BlockSet &getLoopEnterers(MachineBasicBlock *LoopEntry) const { |
118 | assert(inRegion(LoopEntry)); |
119 | auto I = LoopEnterers.find(Val: LoopEntry); |
120 | assert(I != LoopEnterers.end()); |
121 | return I->second; |
122 | } |
123 | |
124 | private: |
125 | MachineBasicBlock *Entry; |
126 | const BlockSet &Blocks; |
127 | |
128 | BlockSet Loopers, LoopEntries; |
129 | DenseMap<MachineBasicBlock *, BlockSet> LoopEnterers; |
130 | |
131 | bool inRegion(MachineBasicBlock *MBB) const { return Blocks.count(Ptr: MBB); } |
132 | |
133 | // Maps a block to all the other blocks it can reach. |
134 | DenseMap<MachineBasicBlock *, BlockSet> Reachable; |
135 | |
136 | void calculate() { |
137 | // Reachability computation work list. Contains pairs of recent additions |
138 | // (A, B) where we just added a link A => B. |
139 | using BlockPair = std::pair<MachineBasicBlock *, MachineBasicBlock *>; |
140 | SmallVector<BlockPair, 4> WorkList; |
141 | |
142 | // Add all relevant direct branches. |
143 | for (auto *MBB : Blocks) { |
144 | for (auto *Succ : MBB->successors()) { |
145 | if (Succ != Entry && inRegion(MBB: Succ)) { |
146 | Reachable[MBB].insert(Ptr: Succ); |
147 | WorkList.emplace_back(Args&: MBB, Args&: Succ); |
148 | } |
149 | } |
150 | } |
151 | |
152 | while (!WorkList.empty()) { |
153 | MachineBasicBlock *MBB, *Succ; |
154 | std::tie(args&: MBB, args&: Succ) = WorkList.pop_back_val(); |
155 | assert(inRegion(MBB) && Succ != Entry && inRegion(Succ)); |
156 | if (MBB != Entry) { |
157 | // We recently added MBB => Succ, and that means we may have enabled |
158 | // Pred => MBB => Succ. |
159 | for (auto *Pred : MBB->predecessors()) { |
160 | if (Reachable[Pred].insert(Ptr: Succ).second) { |
161 | WorkList.emplace_back(Args&: Pred, Args&: Succ); |
162 | } |
163 | } |
164 | } |
165 | } |
166 | |
167 | // Blocks that can return to themselves are in a loop. |
168 | for (auto *MBB : Blocks) { |
169 | if (canReach(From: MBB, To: MBB)) { |
170 | Loopers.insert(Ptr: MBB); |
171 | } |
172 | } |
173 | assert(!Loopers.count(Entry)); |
174 | |
175 | // Find the loop entries - loopers reachable from blocks not in that loop - |
176 | // and those outside blocks that reach them, the "loop enterers". |
177 | for (auto *Looper : Loopers) { |
178 | for (auto *Pred : Looper->predecessors()) { |
179 | // Pred can reach Looper. If Looper can reach Pred, it is in the loop; |
180 | // otherwise, it is a block that enters into the loop. |
181 | if (!canReach(From: Looper, To: Pred)) { |
182 | LoopEntries.insert(Ptr: Looper); |
183 | LoopEnterers[Looper].insert(Ptr: Pred); |
184 | } |
185 | } |
186 | } |
187 | } |
188 | }; |
189 | |
190 | // Finds the blocks in a single-entry loop, given the loop entry and the |
191 | // list of blocks that enter the loop. |
192 | class LoopBlocks { |
193 | public: |
194 | LoopBlocks(MachineBasicBlock *Entry, const BlockSet &Enterers) |
195 | : Entry(Entry), Enterers(Enterers) { |
196 | calculate(); |
197 | } |
198 | |
199 | BlockSet &getBlocks() { return Blocks; } |
200 | |
201 | private: |
202 | MachineBasicBlock *Entry; |
203 | const BlockSet &Enterers; |
204 | |
205 | BlockSet Blocks; |
206 | |
207 | void calculate() { |
208 | // Going backwards from the loop entry, if we ignore the blocks entering |
209 | // from outside, we will traverse all the blocks in the loop. |
210 | BlockVector WorkList; |
211 | BlockSet AddedToWorkList; |
212 | Blocks.insert(Ptr: Entry); |
213 | for (auto *Pred : Entry->predecessors()) { |
214 | if (!Enterers.count(Ptr: Pred)) { |
215 | WorkList.push_back(Elt: Pred); |
216 | AddedToWorkList.insert(Ptr: Pred); |
217 | } |
218 | } |
219 | |
220 | while (!WorkList.empty()) { |
221 | auto *MBB = WorkList.pop_back_val(); |
222 | assert(!Enterers.count(MBB)); |
223 | if (Blocks.insert(Ptr: MBB).second) { |
224 | for (auto *Pred : MBB->predecessors()) { |
225 | if (AddedToWorkList.insert(Ptr: Pred).second) |
226 | WorkList.push_back(Elt: Pred); |
227 | } |
228 | } |
229 | } |
230 | } |
231 | }; |
232 | |
233 | class WebAssemblyFixIrreducibleControlFlow final : public MachineFunctionPass { |
234 | StringRef getPassName() const override { |
235 | return "WebAssembly Fix Irreducible Control Flow" ; |
236 | } |
237 | |
238 | bool runOnMachineFunction(MachineFunction &MF) override; |
239 | |
240 | bool processRegion(MachineBasicBlock *Entry, BlockSet &Blocks, |
241 | MachineFunction &MF); |
242 | |
243 | void makeSingleEntryLoop(BlockSet &Entries, BlockSet &Blocks, |
244 | MachineFunction &MF, const ReachabilityGraph &Graph); |
245 | |
246 | public: |
247 | static char ID; // Pass identification, replacement for typeid |
248 | WebAssemblyFixIrreducibleControlFlow() : MachineFunctionPass(ID) {} |
249 | }; |
250 | |
251 | bool WebAssemblyFixIrreducibleControlFlow::processRegion( |
252 | MachineBasicBlock *Entry, BlockSet &Blocks, MachineFunction &MF) { |
253 | bool Changed = false; |
254 | // Remove irreducibility before processing child loops, which may take |
255 | // multiple iterations. |
256 | while (true) { |
257 | ReachabilityGraph Graph(Entry, Blocks); |
258 | |
259 | bool FoundIrreducibility = false; |
260 | |
261 | for (auto *LoopEntry : getSortedEntries(Entries: Graph.getLoopEntries())) { |
262 | // Find mutual entries - all entries which can reach this one, and |
263 | // are reached by it (that always includes LoopEntry itself). All mutual |
264 | // entries must be in the same loop, so if we have more than one, then we |
265 | // have irreducible control flow. |
266 | // |
267 | // (Note that we need to sort the entries here, as otherwise the order can |
268 | // matter: being mutual is a symmetric relationship, and each set of |
269 | // mutuals will be handled properly no matter which we see first. However, |
270 | // there can be multiple disjoint sets of mutuals, and which we process |
271 | // first changes the output.) |
272 | // |
273 | // Note that irreducibility may involve inner loops, e.g. imagine A |
274 | // starts one loop, and it has B inside it which starts an inner loop. |
275 | // If we add a branch from all the way on the outside to B, then in a |
276 | // sense B is no longer an "inner" loop, semantically speaking. We will |
277 | // fix that irreducibility by adding a block that dispatches to either |
278 | // either A or B, so B will no longer be an inner loop in our output. |
279 | // (A fancier approach might try to keep it as such.) |
280 | // |
281 | // Note that we still need to recurse into inner loops later, to handle |
282 | // the case where the irreducibility is entirely nested - we would not |
283 | // be able to identify that at this point, since the enclosing loop is |
284 | // a group of blocks all of whom can reach each other. (We'll see the |
285 | // irreducibility after removing branches to the top of that enclosing |
286 | // loop.) |
287 | BlockSet MutualLoopEntries; |
288 | MutualLoopEntries.insert(Ptr: LoopEntry); |
289 | for (auto *OtherLoopEntry : Graph.getLoopEntries()) { |
290 | if (OtherLoopEntry != LoopEntry && |
291 | Graph.canReach(From: LoopEntry, To: OtherLoopEntry) && |
292 | Graph.canReach(From: OtherLoopEntry, To: LoopEntry)) { |
293 | MutualLoopEntries.insert(Ptr: OtherLoopEntry); |
294 | } |
295 | } |
296 | |
297 | if (MutualLoopEntries.size() > 1) { |
298 | makeSingleEntryLoop(Entries&: MutualLoopEntries, Blocks, MF, Graph); |
299 | FoundIrreducibility = true; |
300 | Changed = true; |
301 | break; |
302 | } |
303 | } |
304 | // Only go on to actually process the inner loops when we are done |
305 | // removing irreducible control flow and changing the graph. Modifying |
306 | // the graph as we go is possible, and that might let us avoid looking at |
307 | // the already-fixed loops again if we are careful, but all that is |
308 | // complex and bug-prone. Since irreducible loops are rare, just starting |
309 | // another iteration is best. |
310 | if (FoundIrreducibility) { |
311 | continue; |
312 | } |
313 | |
314 | for (auto *LoopEntry : Graph.getLoopEntries()) { |
315 | LoopBlocks InnerBlocks(LoopEntry, Graph.getLoopEnterers(LoopEntry)); |
316 | // Each of these calls to processRegion may change the graph, but are |
317 | // guaranteed not to interfere with each other. The only changes we make |
318 | // to the graph are to add blocks on the way to a loop entry. As the |
319 | // loops are disjoint, that means we may only alter branches that exit |
320 | // another loop, which are ignored when recursing into that other loop |
321 | // anyhow. |
322 | if (processRegion(Entry: LoopEntry, Blocks&: InnerBlocks.getBlocks(), MF)) { |
323 | Changed = true; |
324 | } |
325 | } |
326 | |
327 | return Changed; |
328 | } |
329 | } |
330 | |
331 | // Given a set of entries to a single loop, create a single entry for that |
332 | // loop by creating a dispatch block for them, routing control flow using |
333 | // a helper variable. Also updates Blocks with any new blocks created, so |
334 | // that we properly track all the blocks in the region. But this does not update |
335 | // ReachabilityGraph; this will be updated in the caller of this function as |
336 | // needed. |
337 | void WebAssemblyFixIrreducibleControlFlow::makeSingleEntryLoop( |
338 | BlockSet &Entries, BlockSet &Blocks, MachineFunction &MF, |
339 | const ReachabilityGraph &Graph) { |
340 | assert(Entries.size() >= 2); |
341 | |
342 | // Sort the entries to ensure a deterministic build. |
343 | BlockVector SortedEntries = getSortedEntries(Entries); |
344 | |
345 | #ifndef NDEBUG |
346 | for (auto *Block : SortedEntries) |
347 | assert(Block->getNumber() != -1); |
348 | if (SortedEntries.size() > 1) { |
349 | for (auto I = SortedEntries.begin(), E = SortedEntries.end() - 1; I != E; |
350 | ++I) { |
351 | auto ANum = (*I)->getNumber(); |
352 | auto BNum = (*(std::next(I)))->getNumber(); |
353 | assert(ANum != BNum); |
354 | } |
355 | } |
356 | #endif |
357 | |
358 | // Create a dispatch block which will contain a jump table to the entries. |
359 | MachineBasicBlock *Dispatch = MF.CreateMachineBasicBlock(); |
360 | MF.insert(MBBI: MF.end(), MBB: Dispatch); |
361 | Blocks.insert(Ptr: Dispatch); |
362 | |
363 | // Add the jump table. |
364 | const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); |
365 | MachineInstrBuilder MIB = |
366 | BuildMI(BB: Dispatch, MIMD: DebugLoc(), MCID: TII.get(Opcode: WebAssembly::BR_TABLE_I32)); |
367 | |
368 | // Add the register which will be used to tell the jump table which block to |
369 | // jump to. |
370 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
371 | Register Reg = MRI.createVirtualRegister(RegClass: &WebAssembly::I32RegClass); |
372 | MIB.addReg(RegNo: Reg); |
373 | |
374 | // Compute the indices in the superheader, one for each bad block, and |
375 | // add them as successors. |
376 | DenseMap<MachineBasicBlock *, unsigned> Indices; |
377 | for (auto *Entry : SortedEntries) { |
378 | auto Pair = Indices.insert(KV: std::make_pair(x&: Entry, y: 0)); |
379 | assert(Pair.second); |
380 | |
381 | unsigned Index = MIB.getInstr()->getNumExplicitOperands() - 1; |
382 | Pair.first->second = Index; |
383 | |
384 | MIB.addMBB(MBB: Entry); |
385 | Dispatch->addSuccessor(Succ: Entry); |
386 | } |
387 | |
388 | // Rewrite the problematic successors for every block that wants to reach |
389 | // the bad blocks. For simplicity, we just introduce a new block for every |
390 | // edge we need to rewrite. (Fancier things are possible.) |
391 | |
392 | BlockVector AllPreds; |
393 | for (auto *Entry : SortedEntries) { |
394 | for (auto *Pred : Entry->predecessors()) { |
395 | if (Pred != Dispatch) { |
396 | AllPreds.push_back(Elt: Pred); |
397 | } |
398 | } |
399 | } |
400 | |
401 | // This set stores predecessors within this loop. |
402 | DenseSet<MachineBasicBlock *> InLoop; |
403 | for (auto *Pred : AllPreds) { |
404 | for (auto *Entry : Pred->successors()) { |
405 | if (!Entries.count(Ptr: Entry)) |
406 | continue; |
407 | if (Graph.canReach(From: Entry, To: Pred)) { |
408 | InLoop.insert(V: Pred); |
409 | break; |
410 | } |
411 | } |
412 | } |
413 | |
414 | // Record if each entry has a layout predecessor. This map stores |
415 | // <<loop entry, Predecessor is within the loop?>, layout predecessor> |
416 | DenseMap<PointerIntPair<MachineBasicBlock *, 1, bool>, MachineBasicBlock *> |
417 | EntryToLayoutPred; |
418 | for (auto *Pred : AllPreds) { |
419 | bool PredInLoop = InLoop.count(V: Pred); |
420 | for (auto *Entry : Pred->successors()) |
421 | if (Entries.count(Ptr: Entry) && Pred->isLayoutSuccessor(MBB: Entry)) |
422 | EntryToLayoutPred[{Entry, PredInLoop}] = Pred; |
423 | } |
424 | |
425 | // We need to create at most two routing blocks per entry: one for |
426 | // predecessors outside the loop and one for predecessors inside the loop. |
427 | // This map stores |
428 | // <<loop entry, Predecessor is within the loop?>, routing block> |
429 | DenseMap<PointerIntPair<MachineBasicBlock *, 1, bool>, MachineBasicBlock *> |
430 | Map; |
431 | for (auto *Pred : AllPreds) { |
432 | bool PredInLoop = InLoop.count(V: Pred); |
433 | for (auto *Entry : Pred->successors()) { |
434 | if (!Entries.count(Ptr: Entry) || Map.count(Val: {Entry, PredInLoop})) |
435 | continue; |
436 | // If there exists a layout predecessor of this entry and this predecessor |
437 | // is not that, we rather create a routing block after that layout |
438 | // predecessor to save a branch. |
439 | if (auto *OtherPred = EntryToLayoutPred.lookup(Val: {Entry, PredInLoop})) |
440 | if (OtherPred != Pred) |
441 | continue; |
442 | |
443 | // This is a successor we need to rewrite. |
444 | MachineBasicBlock *Routing = MF.CreateMachineBasicBlock(); |
445 | MF.insert(MBBI: Pred->isLayoutSuccessor(MBB: Entry) |
446 | ? MachineFunction::iterator(Entry) |
447 | : MF.end(), |
448 | MBB: Routing); |
449 | Blocks.insert(Ptr: Routing); |
450 | |
451 | // Set the jump table's register of the index of the block we wish to |
452 | // jump to, and jump to the jump table. |
453 | BuildMI(BB: Routing, MIMD: DebugLoc(), MCID: TII.get(Opcode: WebAssembly::CONST_I32), DestReg: Reg) |
454 | .addImm(Val: Indices[Entry]); |
455 | BuildMI(BB: Routing, MIMD: DebugLoc(), MCID: TII.get(Opcode: WebAssembly::BR)).addMBB(MBB: Dispatch); |
456 | Routing->addSuccessor(Succ: Dispatch); |
457 | Map[{Entry, PredInLoop}] = Routing; |
458 | } |
459 | } |
460 | |
461 | for (auto *Pred : AllPreds) { |
462 | bool PredInLoop = InLoop.count(V: Pred); |
463 | // Remap the terminator operands and the successor list. |
464 | for (MachineInstr &Term : Pred->terminators()) |
465 | for (auto &Op : Term.explicit_uses()) |
466 | if (Op.isMBB() && Indices.count(Val: Op.getMBB())) |
467 | Op.setMBB(Map[{Op.getMBB(), PredInLoop}]); |
468 | |
469 | for (auto *Succ : Pred->successors()) { |
470 | if (!Entries.count(Ptr: Succ)) |
471 | continue; |
472 | auto *Routing = Map[{Succ, PredInLoop}]; |
473 | Pred->replaceSuccessor(Old: Succ, New: Routing); |
474 | } |
475 | } |
476 | |
477 | // Create a fake default label, because br_table requires one. |
478 | MIB.addMBB(MBB: MIB.getInstr() |
479 | ->getOperand(i: MIB.getInstr()->getNumExplicitOperands() - 1) |
480 | .getMBB()); |
481 | } |
482 | |
483 | } // end anonymous namespace |
484 | |
485 | char WebAssemblyFixIrreducibleControlFlow::ID = 0; |
486 | INITIALIZE_PASS(WebAssemblyFixIrreducibleControlFlow, DEBUG_TYPE, |
487 | "Removes irreducible control flow" , false, false) |
488 | |
489 | FunctionPass *llvm::createWebAssemblyFixIrreducibleControlFlow() { |
490 | return new WebAssemblyFixIrreducibleControlFlow(); |
491 | } |
492 | |
493 | // Test whether the given register has an ARGUMENT def. |
494 | static bool hasArgumentDef(unsigned Reg, const MachineRegisterInfo &MRI) { |
495 | for (const auto &Def : MRI.def_instructions(Reg)) |
496 | if (WebAssembly::isArgument(Opc: Def.getOpcode())) |
497 | return true; |
498 | return false; |
499 | } |
500 | |
501 | // Add a register definition with IMPLICIT_DEFs for every register to cover for |
502 | // register uses that don't have defs in every possible path. |
503 | // TODO: This is fairly heavy-handed; find a better approach. |
504 | static void addImplicitDefs(MachineFunction &MF) { |
505 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
506 | const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); |
507 | MachineBasicBlock &Entry = *MF.begin(); |
508 | for (unsigned I = 0, E = MRI.getNumVirtRegs(); I < E; ++I) { |
509 | Register Reg = Register::index2VirtReg(Index: I); |
510 | |
511 | // Skip unused registers. |
512 | if (MRI.use_nodbg_empty(RegNo: Reg)) |
513 | continue; |
514 | |
515 | // Skip registers that have an ARGUMENT definition. |
516 | if (hasArgumentDef(Reg, MRI)) |
517 | continue; |
518 | |
519 | BuildMI(BB&: Entry, I: Entry.begin(), MIMD: DebugLoc(), |
520 | MCID: TII.get(Opcode: WebAssembly::IMPLICIT_DEF), DestReg: Reg); |
521 | } |
522 | |
523 | // Move ARGUMENT_* instructions to the top of the entry block, so that their |
524 | // liveness reflects the fact that these really are live-in values. |
525 | for (MachineInstr &MI : llvm::make_early_inc_range(Range&: Entry)) { |
526 | if (WebAssembly::isArgument(Opc: MI.getOpcode())) { |
527 | MI.removeFromParent(); |
528 | Entry.insert(I: Entry.begin(), MI: &MI); |
529 | } |
530 | } |
531 | } |
532 | |
533 | bool WebAssemblyFixIrreducibleControlFlow::runOnMachineFunction( |
534 | MachineFunction &MF) { |
535 | LLVM_DEBUG(dbgs() << "********** Fixing Irreducible Control Flow **********\n" |
536 | "********** Function: " |
537 | << MF.getName() << '\n'); |
538 | |
539 | // Start the recursive process on the entire function body. |
540 | BlockSet AllBlocks; |
541 | for (auto &MBB : MF) { |
542 | AllBlocks.insert(Ptr: &MBB); |
543 | } |
544 | |
545 | if (LLVM_UNLIKELY(processRegion(&*MF.begin(), AllBlocks, MF))) { |
546 | // We rewrote part of the function; recompute relevant things. |
547 | MF.RenumberBlocks(); |
548 | // Now we've inserted dispatch blocks, some register uses can have incoming |
549 | // paths without a def. For example, before this pass register %a was |
550 | // defined in BB1 and used in BB2, and there was only one path from BB1 and |
551 | // BB2. But if this pass inserts a dispatch block having multiple |
552 | // predecessors between the two BBs, now there are paths to BB2 without |
553 | // visiting BB1, and %a's use in BB2 is not dominated by its def. Adding |
554 | // IMPLICIT_DEFs to all regs is one simple way to fix it. |
555 | addImplicitDefs(MF); |
556 | return true; |
557 | } |
558 | |
559 | return false; |
560 | } |
561 | |