1 | //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file is part of the X86 Disassembler. |
10 | // It contains code to translate the data produced by the decoder into |
11 | // MCInsts. |
12 | // |
13 | // |
14 | // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and |
15 | // 64-bit X86 instruction sets. The main decode sequence for an assembly |
16 | // instruction in this disassembler is: |
17 | // |
18 | // 1. Read the prefix bytes and determine the attributes of the instruction. |
19 | // These attributes, recorded in enum attributeBits |
20 | // (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM |
21 | // provides a mapping from bitmasks to contexts, which are represented by |
22 | // enum InstructionContext (ibid.). |
23 | // |
24 | // 2. Read the opcode, and determine what kind of opcode it is. The |
25 | // disassembler distinguishes four kinds of opcodes, which are enumerated in |
26 | // OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte |
27 | // (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a |
28 | // (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context. |
29 | // |
30 | // 3. Depending on the opcode type, look in one of four ClassDecision structures |
31 | // (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which |
32 | // OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get |
33 | // a ModRMDecision (ibid.). |
34 | // |
35 | // 4. Some instructions, such as escape opcodes or extended opcodes, or even |
36 | // instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the |
37 | // ModR/M byte to complete decode. The ModRMDecision's type is an entry from |
38 | // ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the |
39 | // ModR/M byte is required and how to interpret it. |
40 | // |
41 | // 5. After resolving the ModRMDecision, the disassembler has a unique ID |
42 | // of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in |
43 | // INSTRUCTIONS_SYM yields the name of the instruction and the encodings and |
44 | // meanings of its operands. |
45 | // |
46 | // 6. For each operand, its encoding is an entry from OperandEncoding |
47 | // (X86DisassemblerDecoderCommon.h) and its type is an entry from |
48 | // OperandType (ibid.). The encoding indicates how to read it from the |
49 | // instruction; the type indicates how to interpret the value once it has |
50 | // been read. For example, a register operand could be stored in the R/M |
51 | // field of the ModR/M byte, the REG field of the ModR/M byte, or added to |
52 | // the main opcode. This is orthogonal from its meaning (an GPR or an XMM |
53 | // register, for instance). Given this information, the operands can be |
54 | // extracted and interpreted. |
55 | // |
56 | // 7. As the last step, the disassembler translates the instruction information |
57 | // and operands into a format understandable by the client - in this case, an |
58 | // MCInst for use by the MC infrastructure. |
59 | // |
60 | // The disassembler is broken broadly into two parts: the table emitter that |
61 | // emits the instruction decode tables discussed above during compilation, and |
62 | // the disassembler itself. The table emitter is documented in more detail in |
63 | // utils/TableGen/X86DisassemblerEmitter.h. |
64 | // |
65 | // X86Disassembler.cpp contains the code responsible for step 7, and for |
66 | // invoking the decoder to execute steps 1-6. |
67 | // X86DisassemblerDecoderCommon.h contains the definitions needed by both the |
68 | // table emitter and the disassembler. |
69 | // X86DisassemblerDecoder.h contains the public interface of the decoder, |
70 | // factored out into C for possible use by other projects. |
71 | // X86DisassemblerDecoder.c contains the source code of the decoder, which is |
72 | // responsible for steps 1-6. |
73 | // |
74 | //===----------------------------------------------------------------------===// |
75 | |
76 | #include "MCTargetDesc/X86BaseInfo.h" |
77 | #include "MCTargetDesc/X86MCTargetDesc.h" |
78 | #include "TargetInfo/X86TargetInfo.h" |
79 | #include "X86DisassemblerDecoder.h" |
80 | #include "llvm/MC/MCContext.h" |
81 | #include "llvm/MC/MCDisassembler/MCDisassembler.h" |
82 | #include "llvm/MC/MCExpr.h" |
83 | #include "llvm/MC/MCInst.h" |
84 | #include "llvm/MC/MCInstrInfo.h" |
85 | #include "llvm/MC/MCSubtargetInfo.h" |
86 | #include "llvm/MC/TargetRegistry.h" |
87 | #include "llvm/Support/Debug.h" |
88 | #include "llvm/Support/Format.h" |
89 | #include "llvm/Support/raw_ostream.h" |
90 | |
91 | using namespace llvm; |
92 | using namespace llvm::X86Disassembler; |
93 | |
94 | #define DEBUG_TYPE "x86-disassembler" |
95 | |
96 | #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s); |
97 | |
98 | // Specifies whether a ModR/M byte is needed and (if so) which |
99 | // instruction each possible value of the ModR/M byte corresponds to. Once |
100 | // this information is known, we have narrowed down to a single instruction. |
101 | struct ModRMDecision { |
102 | uint8_t modrm_type; |
103 | uint16_t instructionIDs; |
104 | }; |
105 | |
106 | // Specifies which set of ModR/M->instruction tables to look at |
107 | // given a particular opcode. |
108 | struct OpcodeDecision { |
109 | ModRMDecision modRMDecisions[256]; |
110 | }; |
111 | |
112 | // Specifies which opcode->instruction tables to look at given |
113 | // a particular context (set of attributes). Since there are many possible |
114 | // contexts, the decoder first uses CONTEXTS_SYM to determine which context |
115 | // applies given a specific set of attributes. Hence there are only IC_max |
116 | // entries in this table, rather than 2^(ATTR_max). |
117 | struct ContextDecision { |
118 | OpcodeDecision opcodeDecisions[IC_max]; |
119 | }; |
120 | |
121 | #include "X86GenDisassemblerTables.inc" |
122 | |
123 | static InstrUID decode(OpcodeType type, InstructionContext insnContext, |
124 | uint8_t opcode, uint8_t modRM) { |
125 | const struct ModRMDecision *dec; |
126 | |
127 | switch (type) { |
128 | case ONEBYTE: |
129 | dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
130 | break; |
131 | case TWOBYTE: |
132 | dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
133 | break; |
134 | case THREEBYTE_38: |
135 | dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
136 | break; |
137 | case THREEBYTE_3A: |
138 | dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
139 | break; |
140 | case XOP8_MAP: |
141 | dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
142 | break; |
143 | case XOP9_MAP: |
144 | dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
145 | break; |
146 | case XOPA_MAP: |
147 | dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
148 | break; |
149 | case THREEDNOW_MAP: |
150 | dec = |
151 | &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
152 | break; |
153 | case MAP4: |
154 | dec = &MAP4_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
155 | break; |
156 | case MAP5: |
157 | dec = &MAP5_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
158 | break; |
159 | case MAP6: |
160 | dec = &MAP6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
161 | break; |
162 | case MAP7: |
163 | dec = &MAP7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
164 | break; |
165 | } |
166 | |
167 | switch (dec->modrm_type) { |
168 | default: |
169 | llvm_unreachable("Corrupt table! Unknown modrm_type" ); |
170 | return 0; |
171 | case MODRM_ONEENTRY: |
172 | return modRMTable[dec->instructionIDs]; |
173 | case MODRM_SPLITRM: |
174 | if (modFromModRM(modRM) == 0x3) |
175 | return modRMTable[dec->instructionIDs + 1]; |
176 | return modRMTable[dec->instructionIDs]; |
177 | case MODRM_SPLITREG: |
178 | if (modFromModRM(modRM) == 0x3) |
179 | return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8]; |
180 | return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; |
181 | case MODRM_SPLITMISC: |
182 | if (modFromModRM(modRM) == 0x3) |
183 | return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8]; |
184 | return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; |
185 | case MODRM_FULL: |
186 | return modRMTable[dec->instructionIDs + modRM]; |
187 | } |
188 | } |
189 | |
190 | static bool peek(struct InternalInstruction *insn, uint8_t &byte) { |
191 | uint64_t offset = insn->readerCursor - insn->startLocation; |
192 | if (offset >= insn->bytes.size()) |
193 | return true; |
194 | byte = insn->bytes[offset]; |
195 | return false; |
196 | } |
197 | |
198 | template <typename T> static bool consume(InternalInstruction *insn, T &ptr) { |
199 | auto r = insn->bytes; |
200 | uint64_t offset = insn->readerCursor - insn->startLocation; |
201 | if (offset + sizeof(T) > r.size()) |
202 | return true; |
203 | ptr = support::endian::read<T>(&r[offset], llvm::endianness::little); |
204 | insn->readerCursor += sizeof(T); |
205 | return false; |
206 | } |
207 | |
208 | static bool isREX(struct InternalInstruction *insn, uint8_t prefix) { |
209 | return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f; |
210 | } |
211 | |
212 | static bool isREX2(struct InternalInstruction *insn, uint8_t prefix) { |
213 | return insn->mode == MODE_64BIT && prefix == 0xd5; |
214 | } |
215 | |
216 | // Consumes all of an instruction's prefix bytes, and marks the |
217 | // instruction as having them. Also sets the instruction's default operand, |
218 | // address, and other relevant data sizes to report operands correctly. |
219 | // |
220 | // insn must not be empty. |
221 | static int readPrefixes(struct InternalInstruction *insn) { |
222 | bool isPrefix = true; |
223 | uint8_t byte = 0; |
224 | uint8_t nextByte; |
225 | |
226 | LLVM_DEBUG(dbgs() << "readPrefixes()" ); |
227 | |
228 | while (isPrefix) { |
229 | // If we fail reading prefixes, just stop here and let the opcode reader |
230 | // deal with it. |
231 | if (consume(insn, ptr&: byte)) |
232 | break; |
233 | |
234 | // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then |
235 | // break and let it be disassembled as a normal "instruction". |
236 | if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK |
237 | break; |
238 | |
239 | if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, byte&: nextByte)) { |
240 | // If the byte is 0xf2 or 0xf3, and any of the following conditions are |
241 | // met: |
242 | // - it is followed by a LOCK (0xf0) prefix |
243 | // - it is followed by an xchg instruction |
244 | // then it should be disassembled as a xacquire/xrelease not repne/rep. |
245 | if (((nextByte == 0xf0) || |
246 | ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) { |
247 | insn->xAcquireRelease = true; |
248 | if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support |
249 | break; |
250 | } |
251 | // Also if the byte is 0xf3, and the following condition is met: |
252 | // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or |
253 | // "mov mem, imm" (opcode 0xc6/0xc7) instructions. |
254 | // then it should be disassembled as an xrelease not rep. |
255 | if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 || |
256 | nextByte == 0xc6 || nextByte == 0xc7)) { |
257 | insn->xAcquireRelease = true; |
258 | break; |
259 | } |
260 | if (isREX(insn, prefix: nextByte)) { |
261 | uint8_t nnextByte; |
262 | // Go to REX prefix after the current one |
263 | if (consume(insn, ptr&: nnextByte)) |
264 | return -1; |
265 | // We should be able to read next byte after REX prefix |
266 | if (peek(insn, byte&: nnextByte)) |
267 | return -1; |
268 | --insn->readerCursor; |
269 | } |
270 | } |
271 | |
272 | switch (byte) { |
273 | case 0xf0: // LOCK |
274 | insn->hasLockPrefix = true; |
275 | break; |
276 | case 0xf2: // REPNE/REPNZ |
277 | case 0xf3: { // REP or REPE/REPZ |
278 | uint8_t nextByte; |
279 | if (peek(insn, byte&: nextByte)) |
280 | break; |
281 | // TODO: |
282 | // 1. There could be several 0x66 |
283 | // 2. if (nextByte == 0x66) and nextNextByte != 0x0f then |
284 | // it's not mandatory prefix |
285 | // 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need |
286 | // 0x0f exactly after it to be mandatory prefix |
287 | // 4. if (nextByte == 0xd5) it's REX2 and we need |
288 | // 0x0f exactly after it to be mandatory prefix |
289 | if (isREX(insn, prefix: nextByte) || isREX2(insn, prefix: nextByte) || nextByte == 0x0f || |
290 | nextByte == 0x66) |
291 | // The last of 0xf2 /0xf3 is mandatory prefix |
292 | insn->mandatoryPrefix = byte; |
293 | insn->repeatPrefix = byte; |
294 | break; |
295 | } |
296 | case 0x2e: // CS segment override -OR- Branch not taken |
297 | insn->segmentOverride = SEG_OVERRIDE_CS; |
298 | break; |
299 | case 0x36: // SS segment override -OR- Branch taken |
300 | insn->segmentOverride = SEG_OVERRIDE_SS; |
301 | break; |
302 | case 0x3e: // DS segment override |
303 | insn->segmentOverride = SEG_OVERRIDE_DS; |
304 | break; |
305 | case 0x26: // ES segment override |
306 | insn->segmentOverride = SEG_OVERRIDE_ES; |
307 | break; |
308 | case 0x64: // FS segment override |
309 | insn->segmentOverride = SEG_OVERRIDE_FS; |
310 | break; |
311 | case 0x65: // GS segment override |
312 | insn->segmentOverride = SEG_OVERRIDE_GS; |
313 | break; |
314 | case 0x66: { // Operand-size override { |
315 | uint8_t nextByte; |
316 | insn->hasOpSize = true; |
317 | if (peek(insn, byte&: nextByte)) |
318 | break; |
319 | // 0x66 can't overwrite existing mandatory prefix and should be ignored |
320 | if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, prefix: nextByte))) |
321 | insn->mandatoryPrefix = byte; |
322 | break; |
323 | } |
324 | case 0x67: // Address-size override |
325 | insn->hasAdSize = true; |
326 | break; |
327 | default: // Not a prefix byte |
328 | isPrefix = false; |
329 | break; |
330 | } |
331 | |
332 | if (isPrefix) |
333 | LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx" , byte)); |
334 | } |
335 | |
336 | insn->vectorExtensionType = TYPE_NO_VEX_XOP; |
337 | |
338 | if (byte == 0x62) { |
339 | uint8_t byte1, byte2; |
340 | if (consume(insn, ptr&: byte1)) { |
341 | LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix" ); |
342 | return -1; |
343 | } |
344 | |
345 | if (peek(insn, byte&: byte2)) { |
346 | LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix" ); |
347 | return -1; |
348 | } |
349 | |
350 | if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)) { |
351 | insn->vectorExtensionType = TYPE_EVEX; |
352 | } else { |
353 | --insn->readerCursor; // unconsume byte1 |
354 | --insn->readerCursor; // unconsume byte |
355 | } |
356 | |
357 | if (insn->vectorExtensionType == TYPE_EVEX) { |
358 | insn->vectorExtensionPrefix[0] = byte; |
359 | insn->vectorExtensionPrefix[1] = byte1; |
360 | if (consume(insn, ptr&: insn->vectorExtensionPrefix[2])) { |
361 | LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix" ); |
362 | return -1; |
363 | } |
364 | if (consume(insn, ptr&: insn->vectorExtensionPrefix[3])) { |
365 | LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix" ); |
366 | return -1; |
367 | } |
368 | |
369 | if (insn->mode == MODE_64BIT) { |
370 | // We simulate the REX prefix for simplicity's sake |
371 | insn->rexPrefix = 0x40 | |
372 | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) | |
373 | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) | |
374 | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) | |
375 | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0); |
376 | |
377 | // We simulate the REX2 prefix for simplicity's sake |
378 | insn->rex2ExtensionPrefix[1] = |
379 | (r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 6) | |
380 | (x2FromEVEX3of4(insn->vectorExtensionPrefix[2]) << 5) | |
381 | (b2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4); |
382 | } |
383 | |
384 | LLVM_DEBUG( |
385 | dbgs() << format( |
386 | "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx" , |
387 | insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1], |
388 | insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3])); |
389 | } |
390 | } else if (byte == 0xc4) { |
391 | uint8_t byte1; |
392 | if (peek(insn, byte&: byte1)) { |
393 | LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX" ); |
394 | return -1; |
395 | } |
396 | |
397 | if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) |
398 | insn->vectorExtensionType = TYPE_VEX_3B; |
399 | else |
400 | --insn->readerCursor; |
401 | |
402 | if (insn->vectorExtensionType == TYPE_VEX_3B) { |
403 | insn->vectorExtensionPrefix[0] = byte; |
404 | consume(insn, ptr&: insn->vectorExtensionPrefix[1]); |
405 | consume(insn, ptr&: insn->vectorExtensionPrefix[2]); |
406 | |
407 | // We simulate the REX prefix for simplicity's sake |
408 | |
409 | if (insn->mode == MODE_64BIT) |
410 | insn->rexPrefix = 0x40 | |
411 | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) | |
412 | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) | |
413 | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) | |
414 | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0); |
415 | |
416 | LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx" , |
417 | insn->vectorExtensionPrefix[0], |
418 | insn->vectorExtensionPrefix[1], |
419 | insn->vectorExtensionPrefix[2])); |
420 | } |
421 | } else if (byte == 0xc5) { |
422 | uint8_t byte1; |
423 | if (peek(insn, byte&: byte1)) { |
424 | LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX" ); |
425 | return -1; |
426 | } |
427 | |
428 | if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) |
429 | insn->vectorExtensionType = TYPE_VEX_2B; |
430 | else |
431 | --insn->readerCursor; |
432 | |
433 | if (insn->vectorExtensionType == TYPE_VEX_2B) { |
434 | insn->vectorExtensionPrefix[0] = byte; |
435 | consume(insn, ptr&: insn->vectorExtensionPrefix[1]); |
436 | |
437 | if (insn->mode == MODE_64BIT) |
438 | insn->rexPrefix = |
439 | 0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2); |
440 | |
441 | switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { |
442 | default: |
443 | break; |
444 | case VEX_PREFIX_66: |
445 | insn->hasOpSize = true; |
446 | break; |
447 | } |
448 | |
449 | LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx" , |
450 | insn->vectorExtensionPrefix[0], |
451 | insn->vectorExtensionPrefix[1])); |
452 | } |
453 | } else if (byte == 0x8f) { |
454 | uint8_t byte1; |
455 | if (peek(insn, byte&: byte1)) { |
456 | LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP" ); |
457 | return -1; |
458 | } |
459 | |
460 | if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction. |
461 | insn->vectorExtensionType = TYPE_XOP; |
462 | else |
463 | --insn->readerCursor; |
464 | |
465 | if (insn->vectorExtensionType == TYPE_XOP) { |
466 | insn->vectorExtensionPrefix[0] = byte; |
467 | consume(insn, ptr&: insn->vectorExtensionPrefix[1]); |
468 | consume(insn, ptr&: insn->vectorExtensionPrefix[2]); |
469 | |
470 | // We simulate the REX prefix for simplicity's sake |
471 | |
472 | if (insn->mode == MODE_64BIT) |
473 | insn->rexPrefix = 0x40 | |
474 | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) | |
475 | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) | |
476 | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) | |
477 | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0); |
478 | |
479 | switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { |
480 | default: |
481 | break; |
482 | case VEX_PREFIX_66: |
483 | insn->hasOpSize = true; |
484 | break; |
485 | } |
486 | |
487 | LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx" , |
488 | insn->vectorExtensionPrefix[0], |
489 | insn->vectorExtensionPrefix[1], |
490 | insn->vectorExtensionPrefix[2])); |
491 | } |
492 | } else if (isREX2(insn, prefix: byte)) { |
493 | uint8_t byte1; |
494 | if (peek(insn, byte&: byte1)) { |
495 | LLVM_DEBUG(dbgs() << "Couldn't read second byte of REX2" ); |
496 | return -1; |
497 | } |
498 | insn->rex2ExtensionPrefix[0] = byte; |
499 | consume(insn, ptr&: insn->rex2ExtensionPrefix[1]); |
500 | |
501 | // We simulate the REX prefix for simplicity's sake |
502 | insn->rexPrefix = 0x40 | (wFromREX2(insn->rex2ExtensionPrefix[1]) << 3) | |
503 | (rFromREX2(insn->rex2ExtensionPrefix[1]) << 2) | |
504 | (xFromREX2(insn->rex2ExtensionPrefix[1]) << 1) | |
505 | (bFromREX2(insn->rex2ExtensionPrefix[1]) << 0); |
506 | LLVM_DEBUG(dbgs() << format("Found REX2 prefix 0x%hhx 0x%hhx" , |
507 | insn->rex2ExtensionPrefix[0], |
508 | insn->rex2ExtensionPrefix[1])); |
509 | } else if (isREX(insn, prefix: byte)) { |
510 | if (peek(insn, byte&: nextByte)) |
511 | return -1; |
512 | insn->rexPrefix = byte; |
513 | LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx" , byte)); |
514 | } else |
515 | --insn->readerCursor; |
516 | |
517 | if (insn->mode == MODE_16BIT) { |
518 | insn->registerSize = (insn->hasOpSize ? 4 : 2); |
519 | insn->addressSize = (insn->hasAdSize ? 4 : 2); |
520 | insn->displacementSize = (insn->hasAdSize ? 4 : 2); |
521 | insn->immediateSize = (insn->hasOpSize ? 4 : 2); |
522 | } else if (insn->mode == MODE_32BIT) { |
523 | insn->registerSize = (insn->hasOpSize ? 2 : 4); |
524 | insn->addressSize = (insn->hasAdSize ? 2 : 4); |
525 | insn->displacementSize = (insn->hasAdSize ? 2 : 4); |
526 | insn->immediateSize = (insn->hasOpSize ? 2 : 4); |
527 | } else if (insn->mode == MODE_64BIT) { |
528 | insn->displacementSize = 4; |
529 | if (insn->rexPrefix && wFromREX(insn->rexPrefix)) { |
530 | insn->registerSize = 8; |
531 | insn->addressSize = (insn->hasAdSize ? 4 : 8); |
532 | insn->immediateSize = 4; |
533 | insn->hasOpSize = false; |
534 | } else { |
535 | insn->registerSize = (insn->hasOpSize ? 2 : 4); |
536 | insn->addressSize = (insn->hasAdSize ? 4 : 8); |
537 | insn->immediateSize = (insn->hasOpSize ? 2 : 4); |
538 | } |
539 | } |
540 | |
541 | return 0; |
542 | } |
543 | |
544 | // Consumes the SIB byte to determine addressing information. |
545 | static int readSIB(struct InternalInstruction *insn) { |
546 | SIBBase sibBaseBase = SIB_BASE_NONE; |
547 | uint8_t index, base; |
548 | |
549 | LLVM_DEBUG(dbgs() << "readSIB()" ); |
550 | switch (insn->addressSize) { |
551 | case 2: |
552 | default: |
553 | llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode" ); |
554 | case 4: |
555 | insn->sibIndexBase = SIB_INDEX_EAX; |
556 | sibBaseBase = SIB_BASE_EAX; |
557 | break; |
558 | case 8: |
559 | insn->sibIndexBase = SIB_INDEX_RAX; |
560 | sibBaseBase = SIB_BASE_RAX; |
561 | break; |
562 | } |
563 | |
564 | if (consume(insn, ptr&: insn->sib)) |
565 | return -1; |
566 | |
567 | index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3) | |
568 | (x2FromREX2(insn->rex2ExtensionPrefix[1]) << 4); |
569 | |
570 | if (index == 0x4) { |
571 | insn->sibIndex = SIB_INDEX_NONE; |
572 | } else { |
573 | insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index); |
574 | } |
575 | |
576 | insn->sibScale = 1 << scaleFromSIB(insn->sib); |
577 | |
578 | base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3) | |
579 | (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4); |
580 | |
581 | switch (base) { |
582 | case 0x5: |
583 | case 0xd: |
584 | switch (modFromModRM(insn->modRM)) { |
585 | case 0x0: |
586 | insn->eaDisplacement = EA_DISP_32; |
587 | insn->sibBase = SIB_BASE_NONE; |
588 | break; |
589 | case 0x1: |
590 | insn->eaDisplacement = EA_DISP_8; |
591 | insn->sibBase = (SIBBase)(sibBaseBase + base); |
592 | break; |
593 | case 0x2: |
594 | insn->eaDisplacement = EA_DISP_32; |
595 | insn->sibBase = (SIBBase)(sibBaseBase + base); |
596 | break; |
597 | default: |
598 | llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte" ); |
599 | } |
600 | break; |
601 | default: |
602 | insn->sibBase = (SIBBase)(sibBaseBase + base); |
603 | break; |
604 | } |
605 | |
606 | return 0; |
607 | } |
608 | |
609 | static int readDisplacement(struct InternalInstruction *insn) { |
610 | int8_t d8; |
611 | int16_t d16; |
612 | int32_t d32; |
613 | LLVM_DEBUG(dbgs() << "readDisplacement()" ); |
614 | |
615 | insn->displacementOffset = insn->readerCursor - insn->startLocation; |
616 | switch (insn->eaDisplacement) { |
617 | case EA_DISP_NONE: |
618 | break; |
619 | case EA_DISP_8: |
620 | if (consume(insn, ptr&: d8)) |
621 | return -1; |
622 | insn->displacement = d8; |
623 | break; |
624 | case EA_DISP_16: |
625 | if (consume(insn, ptr&: d16)) |
626 | return -1; |
627 | insn->displacement = d16; |
628 | break; |
629 | case EA_DISP_32: |
630 | if (consume(insn, ptr&: d32)) |
631 | return -1; |
632 | insn->displacement = d32; |
633 | break; |
634 | } |
635 | |
636 | return 0; |
637 | } |
638 | |
639 | // Consumes all addressing information (ModR/M byte, SIB byte, and displacement. |
640 | static int readModRM(struct InternalInstruction *insn) { |
641 | uint8_t mod, rm, reg; |
642 | LLVM_DEBUG(dbgs() << "readModRM()" ); |
643 | |
644 | if (insn->consumedModRM) |
645 | return 0; |
646 | |
647 | if (consume(insn, ptr&: insn->modRM)) |
648 | return -1; |
649 | insn->consumedModRM = true; |
650 | |
651 | mod = modFromModRM(insn->modRM); |
652 | rm = rmFromModRM(insn->modRM); |
653 | reg = regFromModRM(insn->modRM); |
654 | |
655 | // This goes by insn->registerSize to pick the correct register, which messes |
656 | // up if we're using (say) XMM or 8-bit register operands. That gets fixed in |
657 | // fixupReg(). |
658 | switch (insn->registerSize) { |
659 | case 2: |
660 | insn->regBase = MODRM_REG_AX; |
661 | insn->eaRegBase = EA_REG_AX; |
662 | break; |
663 | case 4: |
664 | insn->regBase = MODRM_REG_EAX; |
665 | insn->eaRegBase = EA_REG_EAX; |
666 | break; |
667 | case 8: |
668 | insn->regBase = MODRM_REG_RAX; |
669 | insn->eaRegBase = EA_REG_RAX; |
670 | break; |
671 | } |
672 | |
673 | reg |= (rFromREX(insn->rexPrefix) << 3) | |
674 | (r2FromREX2(insn->rex2ExtensionPrefix[1]) << 4); |
675 | rm |= (bFromREX(insn->rexPrefix) << 3) | |
676 | (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4); |
677 | |
678 | if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) |
679 | reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; |
680 | |
681 | insn->reg = (Reg)(insn->regBase + reg); |
682 | |
683 | switch (insn->addressSize) { |
684 | case 2: { |
685 | EABase eaBaseBase = EA_BASE_BX_SI; |
686 | |
687 | switch (mod) { |
688 | case 0x0: |
689 | if (rm == 0x6) { |
690 | insn->eaBase = EA_BASE_NONE; |
691 | insn->eaDisplacement = EA_DISP_16; |
692 | if (readDisplacement(insn)) |
693 | return -1; |
694 | } else { |
695 | insn->eaBase = (EABase)(eaBaseBase + rm); |
696 | insn->eaDisplacement = EA_DISP_NONE; |
697 | } |
698 | break; |
699 | case 0x1: |
700 | insn->eaBase = (EABase)(eaBaseBase + rm); |
701 | insn->eaDisplacement = EA_DISP_8; |
702 | insn->displacementSize = 1; |
703 | if (readDisplacement(insn)) |
704 | return -1; |
705 | break; |
706 | case 0x2: |
707 | insn->eaBase = (EABase)(eaBaseBase + rm); |
708 | insn->eaDisplacement = EA_DISP_16; |
709 | if (readDisplacement(insn)) |
710 | return -1; |
711 | break; |
712 | case 0x3: |
713 | insn->eaBase = (EABase)(insn->eaRegBase + rm); |
714 | if (readDisplacement(insn)) |
715 | return -1; |
716 | break; |
717 | } |
718 | break; |
719 | } |
720 | case 4: |
721 | case 8: { |
722 | EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX); |
723 | |
724 | switch (mod) { |
725 | case 0x0: |
726 | insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this |
727 | // In determining whether RIP-relative mode is used (rm=5), |
728 | // or whether a SIB byte is present (rm=4), |
729 | // the extension bits (REX.b and EVEX.x) are ignored. |
730 | switch (rm & 7) { |
731 | case 0x4: // SIB byte is present |
732 | insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64); |
733 | if (readSIB(insn) || readDisplacement(insn)) |
734 | return -1; |
735 | break; |
736 | case 0x5: // RIP-relative |
737 | insn->eaBase = EA_BASE_NONE; |
738 | insn->eaDisplacement = EA_DISP_32; |
739 | if (readDisplacement(insn)) |
740 | return -1; |
741 | break; |
742 | default: |
743 | insn->eaBase = (EABase)(eaBaseBase + rm); |
744 | break; |
745 | } |
746 | break; |
747 | case 0x1: |
748 | insn->displacementSize = 1; |
749 | [[fallthrough]]; |
750 | case 0x2: |
751 | insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32); |
752 | switch (rm & 7) { |
753 | case 0x4: // SIB byte is present |
754 | insn->eaBase = EA_BASE_sib; |
755 | if (readSIB(insn) || readDisplacement(insn)) |
756 | return -1; |
757 | break; |
758 | default: |
759 | insn->eaBase = (EABase)(eaBaseBase + rm); |
760 | if (readDisplacement(insn)) |
761 | return -1; |
762 | break; |
763 | } |
764 | break; |
765 | case 0x3: |
766 | insn->eaDisplacement = EA_DISP_NONE; |
767 | insn->eaBase = (EABase)(insn->eaRegBase + rm); |
768 | break; |
769 | } |
770 | break; |
771 | } |
772 | } // switch (insn->addressSize) |
773 | |
774 | return 0; |
775 | } |
776 | |
777 | #define GENERIC_FIXUP_FUNC(name, base, prefix) \ |
778 | static uint16_t name(struct InternalInstruction *insn, OperandType type, \ |
779 | uint8_t index, uint8_t *valid) { \ |
780 | *valid = 1; \ |
781 | switch (type) { \ |
782 | default: \ |
783 | debug("Unhandled register type"); \ |
784 | *valid = 0; \ |
785 | return 0; \ |
786 | case TYPE_Rv: \ |
787 | return base + index; \ |
788 | case TYPE_R8: \ |
789 | if (insn->rexPrefix && index >= 4 && index <= 7) \ |
790 | return prefix##_SPL + (index - 4); \ |
791 | else \ |
792 | return prefix##_AL + index; \ |
793 | case TYPE_R16: \ |
794 | return prefix##_AX + index; \ |
795 | case TYPE_R32: \ |
796 | return prefix##_EAX + index; \ |
797 | case TYPE_R64: \ |
798 | return prefix##_RAX + index; \ |
799 | case TYPE_ZMM: \ |
800 | return prefix##_ZMM0 + index; \ |
801 | case TYPE_YMM: \ |
802 | return prefix##_YMM0 + index; \ |
803 | case TYPE_XMM: \ |
804 | return prefix##_XMM0 + index; \ |
805 | case TYPE_TMM: \ |
806 | if (index > 7) \ |
807 | *valid = 0; \ |
808 | return prefix##_TMM0 + index; \ |
809 | case TYPE_VK: \ |
810 | index &= 0xf; \ |
811 | if (index > 7) \ |
812 | *valid = 0; \ |
813 | return prefix##_K0 + index; \ |
814 | case TYPE_VK_PAIR: \ |
815 | if (index > 7) \ |
816 | *valid = 0; \ |
817 | return prefix##_K0_K1 + (index / 2); \ |
818 | case TYPE_MM64: \ |
819 | return prefix##_MM0 + (index & 0x7); \ |
820 | case TYPE_SEGMENTREG: \ |
821 | if ((index & 7) > 5) \ |
822 | *valid = 0; \ |
823 | return prefix##_ES + (index & 7); \ |
824 | case TYPE_DEBUGREG: \ |
825 | if (index > 15) \ |
826 | *valid = 0; \ |
827 | return prefix##_DR0 + index; \ |
828 | case TYPE_CONTROLREG: \ |
829 | if (index > 15) \ |
830 | *valid = 0; \ |
831 | return prefix##_CR0 + index; \ |
832 | case TYPE_MVSIBX: \ |
833 | return prefix##_XMM0 + index; \ |
834 | case TYPE_MVSIBY: \ |
835 | return prefix##_YMM0 + index; \ |
836 | case TYPE_MVSIBZ: \ |
837 | return prefix##_ZMM0 + index; \ |
838 | } \ |
839 | } |
840 | |
841 | // Consult an operand type to determine the meaning of the reg or R/M field. If |
842 | // the operand is an XMM operand, for example, an operand would be XMM0 instead |
843 | // of AX, which readModRM() would otherwise misinterpret it as. |
844 | // |
845 | // @param insn - The instruction containing the operand. |
846 | // @param type - The operand type. |
847 | // @param index - The existing value of the field as reported by readModRM(). |
848 | // @param valid - The address of a uint8_t. The target is set to 1 if the |
849 | // field is valid for the register class; 0 if not. |
850 | // @return - The proper value. |
851 | GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG) |
852 | GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG) |
853 | |
854 | // Consult an operand specifier to determine which of the fixup*Value functions |
855 | // to use in correcting readModRM()'ss interpretation. |
856 | // |
857 | // @param insn - See fixup*Value(). |
858 | // @param op - The operand specifier. |
859 | // @return - 0 if fixup was successful; -1 if the register returned was |
860 | // invalid for its class. |
861 | static int fixupReg(struct InternalInstruction *insn, |
862 | const struct OperandSpecifier *op) { |
863 | uint8_t valid; |
864 | LLVM_DEBUG(dbgs() << "fixupReg()" ); |
865 | |
866 | switch ((OperandEncoding)op->encoding) { |
867 | default: |
868 | debug("Expected a REG or R/M encoding in fixupReg" ); |
869 | return -1; |
870 | case ENCODING_VVVV: |
871 | insn->vvvv = |
872 | (Reg)fixupRegValue(insn, type: (OperandType)op->type, index: insn->vvvv, valid: &valid); |
873 | if (!valid) |
874 | return -1; |
875 | break; |
876 | case ENCODING_REG: |
877 | insn->reg = (Reg)fixupRegValue(insn, type: (OperandType)op->type, |
878 | index: insn->reg - insn->regBase, valid: &valid); |
879 | if (!valid) |
880 | return -1; |
881 | break; |
882 | CASE_ENCODING_RM: |
883 | if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT && |
884 | modFromModRM(insn->modRM) == 3) { |
885 | // EVEX_X can extend the register id to 32 for a non-GPR register that is |
886 | // encoded in RM. |
887 | // mode : MODE_64_BIT |
888 | // Only 8 vector registers are available in 32 bit mode |
889 | // mod : 3 |
890 | // RM encodes a register |
891 | switch (op->type) { |
892 | case TYPE_Rv: |
893 | case TYPE_R8: |
894 | case TYPE_R16: |
895 | case TYPE_R32: |
896 | case TYPE_R64: |
897 | break; |
898 | default: |
899 | insn->eaBase = |
900 | (EABase)(insn->eaBase + |
901 | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4)); |
902 | break; |
903 | } |
904 | } |
905 | [[fallthrough]]; |
906 | case ENCODING_SIB: |
907 | if (insn->eaBase >= insn->eaRegBase) { |
908 | insn->eaBase = (EABase)fixupRMValue( |
909 | insn, type: (OperandType)op->type, index: insn->eaBase - insn->eaRegBase, valid: &valid); |
910 | if (!valid) |
911 | return -1; |
912 | } |
913 | break; |
914 | } |
915 | |
916 | return 0; |
917 | } |
918 | |
919 | // Read the opcode (except the ModR/M byte in the case of extended or escape |
920 | // opcodes). |
921 | static bool readOpcode(struct InternalInstruction *insn) { |
922 | uint8_t current; |
923 | LLVM_DEBUG(dbgs() << "readOpcode()" ); |
924 | |
925 | insn->opcodeType = ONEBYTE; |
926 | if (insn->vectorExtensionType == TYPE_EVEX) { |
927 | switch (mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])) { |
928 | default: |
929 | LLVM_DEBUG( |
930 | dbgs() << format("Unhandled mmm field for instruction (0x%hhx)" , |
931 | mmmFromEVEX2of4(insn->vectorExtensionPrefix[1]))); |
932 | return true; |
933 | case VEX_LOB_0F: |
934 | insn->opcodeType = TWOBYTE; |
935 | return consume(insn, ptr&: insn->opcode); |
936 | case VEX_LOB_0F38: |
937 | insn->opcodeType = THREEBYTE_38; |
938 | return consume(insn, ptr&: insn->opcode); |
939 | case VEX_LOB_0F3A: |
940 | insn->opcodeType = THREEBYTE_3A; |
941 | return consume(insn, ptr&: insn->opcode); |
942 | case VEX_LOB_MAP4: |
943 | insn->opcodeType = MAP4; |
944 | return consume(insn, ptr&: insn->opcode); |
945 | case VEX_LOB_MAP5: |
946 | insn->opcodeType = MAP5; |
947 | return consume(insn, ptr&: insn->opcode); |
948 | case VEX_LOB_MAP6: |
949 | insn->opcodeType = MAP6; |
950 | return consume(insn, ptr&: insn->opcode); |
951 | case VEX_LOB_MAP7: |
952 | insn->opcodeType = MAP7; |
953 | return consume(insn, ptr&: insn->opcode); |
954 | } |
955 | } else if (insn->vectorExtensionType == TYPE_VEX_3B) { |
956 | switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) { |
957 | default: |
958 | LLVM_DEBUG( |
959 | dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)" , |
960 | mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]))); |
961 | return true; |
962 | case VEX_LOB_0F: |
963 | insn->opcodeType = TWOBYTE; |
964 | return consume(insn, ptr&: insn->opcode); |
965 | case VEX_LOB_0F38: |
966 | insn->opcodeType = THREEBYTE_38; |
967 | return consume(insn, ptr&: insn->opcode); |
968 | case VEX_LOB_0F3A: |
969 | insn->opcodeType = THREEBYTE_3A; |
970 | return consume(insn, ptr&: insn->opcode); |
971 | case VEX_LOB_MAP5: |
972 | insn->opcodeType = MAP5; |
973 | return consume(insn, ptr&: insn->opcode); |
974 | case VEX_LOB_MAP6: |
975 | insn->opcodeType = MAP6; |
976 | return consume(insn, ptr&: insn->opcode); |
977 | case VEX_LOB_MAP7: |
978 | insn->opcodeType = MAP7; |
979 | return consume(insn, ptr&: insn->opcode); |
980 | } |
981 | } else if (insn->vectorExtensionType == TYPE_VEX_2B) { |
982 | insn->opcodeType = TWOBYTE; |
983 | return consume(insn, ptr&: insn->opcode); |
984 | } else if (insn->vectorExtensionType == TYPE_XOP) { |
985 | switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) { |
986 | default: |
987 | LLVM_DEBUG( |
988 | dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)" , |
989 | mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]))); |
990 | return true; |
991 | case XOP_MAP_SELECT_8: |
992 | insn->opcodeType = XOP8_MAP; |
993 | return consume(insn, ptr&: insn->opcode); |
994 | case XOP_MAP_SELECT_9: |
995 | insn->opcodeType = XOP9_MAP; |
996 | return consume(insn, ptr&: insn->opcode); |
997 | case XOP_MAP_SELECT_A: |
998 | insn->opcodeType = XOPA_MAP; |
999 | return consume(insn, ptr&: insn->opcode); |
1000 | } |
1001 | } else if (mFromREX2(insn->rex2ExtensionPrefix[1])) { |
1002 | // m bit indicates opcode map 1 |
1003 | insn->opcodeType = TWOBYTE; |
1004 | return consume(insn, ptr&: insn->opcode); |
1005 | } |
1006 | |
1007 | if (consume(insn, ptr&: current)) |
1008 | return true; |
1009 | |
1010 | if (current == 0x0f) { |
1011 | LLVM_DEBUG( |
1012 | dbgs() << format("Found a two-byte escape prefix (0x%hhx)" , current)); |
1013 | if (consume(insn, ptr&: current)) |
1014 | return true; |
1015 | |
1016 | if (current == 0x38) { |
1017 | LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)" , |
1018 | current)); |
1019 | if (consume(insn, ptr&: current)) |
1020 | return true; |
1021 | |
1022 | insn->opcodeType = THREEBYTE_38; |
1023 | } else if (current == 0x3a) { |
1024 | LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)" , |
1025 | current)); |
1026 | if (consume(insn, ptr&: current)) |
1027 | return true; |
1028 | |
1029 | insn->opcodeType = THREEBYTE_3A; |
1030 | } else if (current == 0x0f) { |
1031 | LLVM_DEBUG( |
1032 | dbgs() << format("Found a 3dnow escape prefix (0x%hhx)" , current)); |
1033 | |
1034 | // Consume operands before the opcode to comply with the 3DNow encoding |
1035 | if (readModRM(insn)) |
1036 | return true; |
1037 | |
1038 | if (consume(insn, ptr&: current)) |
1039 | return true; |
1040 | |
1041 | insn->opcodeType = THREEDNOW_MAP; |
1042 | } else { |
1043 | LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix" ); |
1044 | insn->opcodeType = TWOBYTE; |
1045 | } |
1046 | } else if (insn->mandatoryPrefix) |
1047 | // The opcode with mandatory prefix must start with opcode escape. |
1048 | // If not it's legacy repeat prefix |
1049 | insn->mandatoryPrefix = 0; |
1050 | |
1051 | // At this point we have consumed the full opcode. |
1052 | // Anything we consume from here on must be unconsumed. |
1053 | insn->opcode = current; |
1054 | |
1055 | return false; |
1056 | } |
1057 | |
1058 | // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit). |
1059 | static bool is16BitEquivalent(const char *orig, const char *equiv) { |
1060 | for (int i = 0;; i++) { |
1061 | if (orig[i] == '\0' && equiv[i] == '\0') |
1062 | return true; |
1063 | if (orig[i] == '\0' || equiv[i] == '\0') |
1064 | return false; |
1065 | if (orig[i] != equiv[i]) { |
1066 | if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W') |
1067 | continue; |
1068 | if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1') |
1069 | continue; |
1070 | if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6') |
1071 | continue; |
1072 | return false; |
1073 | } |
1074 | } |
1075 | } |
1076 | |
1077 | // Determine whether this instruction is a 64-bit instruction. |
1078 | static bool is64Bit(const char *name) { |
1079 | for (int i = 0;; ++i) { |
1080 | if (name[i] == '\0') |
1081 | return false; |
1082 | if (name[i] == '6' && name[i + 1] == '4') |
1083 | return true; |
1084 | } |
1085 | } |
1086 | |
1087 | // Determine the ID of an instruction, consuming the ModR/M byte as appropriate |
1088 | // for extended and escape opcodes, and using a supplied attribute mask. |
1089 | static int getInstructionIDWithAttrMask(uint16_t *instructionID, |
1090 | struct InternalInstruction *insn, |
1091 | uint16_t attrMask) { |
1092 | auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]); |
1093 | const ContextDecision *decision; |
1094 | switch (insn->opcodeType) { |
1095 | case ONEBYTE: |
1096 | decision = &ONEBYTE_SYM; |
1097 | break; |
1098 | case TWOBYTE: |
1099 | decision = &TWOBYTE_SYM; |
1100 | break; |
1101 | case THREEBYTE_38: |
1102 | decision = &THREEBYTE38_SYM; |
1103 | break; |
1104 | case THREEBYTE_3A: |
1105 | decision = &THREEBYTE3A_SYM; |
1106 | break; |
1107 | case XOP8_MAP: |
1108 | decision = &XOP8_MAP_SYM; |
1109 | break; |
1110 | case XOP9_MAP: |
1111 | decision = &XOP9_MAP_SYM; |
1112 | break; |
1113 | case XOPA_MAP: |
1114 | decision = &XOPA_MAP_SYM; |
1115 | break; |
1116 | case THREEDNOW_MAP: |
1117 | decision = &THREEDNOW_MAP_SYM; |
1118 | break; |
1119 | case MAP4: |
1120 | decision = &MAP4_SYM; |
1121 | break; |
1122 | case MAP5: |
1123 | decision = &MAP5_SYM; |
1124 | break; |
1125 | case MAP6: |
1126 | decision = &MAP6_SYM; |
1127 | break; |
1128 | case MAP7: |
1129 | decision = &MAP7_SYM; |
1130 | break; |
1131 | } |
1132 | |
1133 | if (decision->opcodeDecisions[insnCtx] |
1134 | .modRMDecisions[insn->opcode] |
1135 | .modrm_type != MODRM_ONEENTRY) { |
1136 | if (readModRM(insn)) |
1137 | return -1; |
1138 | *instructionID = |
1139 | decode(type: insn->opcodeType, insnContext: insnCtx, opcode: insn->opcode, modRM: insn->modRM); |
1140 | } else { |
1141 | *instructionID = decode(type: insn->opcodeType, insnContext: insnCtx, opcode: insn->opcode, modRM: 0); |
1142 | } |
1143 | |
1144 | return 0; |
1145 | } |
1146 | |
1147 | static bool isCCMPOrCTEST(InternalInstruction *insn) { |
1148 | if (insn->opcodeType != MAP4) |
1149 | return false; |
1150 | if (insn->opcode == 0x83 && regFromModRM(insn->modRM) == 7) |
1151 | return true; |
1152 | switch (insn->opcode & 0xfe) { |
1153 | default: |
1154 | return false; |
1155 | case 0x38: |
1156 | case 0x3a: |
1157 | case 0x84: |
1158 | return true; |
1159 | case 0x80: |
1160 | return regFromModRM(insn->modRM) == 7; |
1161 | case 0xf6: |
1162 | return regFromModRM(insn->modRM) == 0; |
1163 | } |
1164 | } |
1165 | |
1166 | static bool isNF(InternalInstruction *insn) { |
1167 | if (!nfFromEVEX4of4(insn->vectorExtensionPrefix[3])) |
1168 | return false; |
1169 | if (insn->opcodeType == MAP4) |
1170 | return true; |
1171 | // Below NF instructions are not in map4. |
1172 | if (insn->opcodeType == THREEBYTE_38 && |
1173 | ppFromEVEX3of4(insn->vectorExtensionPrefix[2]) == VEX_PREFIX_NONE) { |
1174 | switch (insn->opcode) { |
1175 | case 0xf2: // ANDN |
1176 | case 0xf3: // BLSI, BLSR, BLSMSK |
1177 | case 0xf5: // BZHI |
1178 | case 0xf7: // BEXTR |
1179 | return true; |
1180 | default: |
1181 | break; |
1182 | } |
1183 | } |
1184 | return false; |
1185 | } |
1186 | |
1187 | // Determine the ID of an instruction, consuming the ModR/M byte as appropriate |
1188 | // for extended and escape opcodes. Determines the attributes and context for |
1189 | // the instruction before doing so. |
1190 | static int getInstructionID(struct InternalInstruction *insn, |
1191 | const MCInstrInfo *mii) { |
1192 | uint16_t attrMask; |
1193 | uint16_t instructionID; |
1194 | |
1195 | LLVM_DEBUG(dbgs() << "getID()" ); |
1196 | |
1197 | attrMask = ATTR_NONE; |
1198 | |
1199 | if (insn->mode == MODE_64BIT) |
1200 | attrMask |= ATTR_64BIT; |
1201 | |
1202 | if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) { |
1203 | attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX; |
1204 | |
1205 | if (insn->vectorExtensionType == TYPE_EVEX) { |
1206 | switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) { |
1207 | case VEX_PREFIX_66: |
1208 | attrMask |= ATTR_OPSIZE; |
1209 | break; |
1210 | case VEX_PREFIX_F3: |
1211 | attrMask |= ATTR_XS; |
1212 | break; |
1213 | case VEX_PREFIX_F2: |
1214 | attrMask |= ATTR_XD; |
1215 | break; |
1216 | } |
1217 | |
1218 | if (zFromEVEX4of4(insn->vectorExtensionPrefix[3])) |
1219 | attrMask |= ATTR_EVEXKZ; |
1220 | if (bFromEVEX4of4(insn->vectorExtensionPrefix[3])) |
1221 | attrMask |= ATTR_EVEXB; |
1222 | if (isNF(insn) && !readModRM(insn) && |
1223 | !isCCMPOrCTEST(insn)) // NF bit is the MSB of aaa. |
1224 | attrMask |= ATTR_EVEXNF; |
1225 | // aaa is not used a opmask in MAP4 |
1226 | else if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]) && |
1227 | (insn->opcodeType != MAP4)) |
1228 | attrMask |= ATTR_EVEXK; |
1229 | if (lFromEVEX4of4(insn->vectorExtensionPrefix[3])) |
1230 | attrMask |= ATTR_VEXL; |
1231 | if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3])) |
1232 | attrMask |= ATTR_EVEXL2; |
1233 | } else if (insn->vectorExtensionType == TYPE_VEX_3B) { |
1234 | switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) { |
1235 | case VEX_PREFIX_66: |
1236 | attrMask |= ATTR_OPSIZE; |
1237 | break; |
1238 | case VEX_PREFIX_F3: |
1239 | attrMask |= ATTR_XS; |
1240 | break; |
1241 | case VEX_PREFIX_F2: |
1242 | attrMask |= ATTR_XD; |
1243 | break; |
1244 | } |
1245 | |
1246 | if (lFromVEX3of3(insn->vectorExtensionPrefix[2])) |
1247 | attrMask |= ATTR_VEXL; |
1248 | } else if (insn->vectorExtensionType == TYPE_VEX_2B) { |
1249 | switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { |
1250 | case VEX_PREFIX_66: |
1251 | attrMask |= ATTR_OPSIZE; |
1252 | if (insn->hasAdSize) |
1253 | attrMask |= ATTR_ADSIZE; |
1254 | break; |
1255 | case VEX_PREFIX_F3: |
1256 | attrMask |= ATTR_XS; |
1257 | break; |
1258 | case VEX_PREFIX_F2: |
1259 | attrMask |= ATTR_XD; |
1260 | break; |
1261 | } |
1262 | |
1263 | if (lFromVEX2of2(insn->vectorExtensionPrefix[1])) |
1264 | attrMask |= ATTR_VEXL; |
1265 | } else if (insn->vectorExtensionType == TYPE_XOP) { |
1266 | switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { |
1267 | case VEX_PREFIX_66: |
1268 | attrMask |= ATTR_OPSIZE; |
1269 | break; |
1270 | case VEX_PREFIX_F3: |
1271 | attrMask |= ATTR_XS; |
1272 | break; |
1273 | case VEX_PREFIX_F2: |
1274 | attrMask |= ATTR_XD; |
1275 | break; |
1276 | } |
1277 | |
1278 | if (lFromXOP3of3(insn->vectorExtensionPrefix[2])) |
1279 | attrMask |= ATTR_VEXL; |
1280 | } else { |
1281 | return -1; |
1282 | } |
1283 | } else if (!insn->mandatoryPrefix) { |
1284 | // If we don't have mandatory prefix we should use legacy prefixes here |
1285 | if (insn->hasOpSize && (insn->mode != MODE_16BIT)) |
1286 | attrMask |= ATTR_OPSIZE; |
1287 | if (insn->hasAdSize) |
1288 | attrMask |= ATTR_ADSIZE; |
1289 | if (insn->opcodeType == ONEBYTE) { |
1290 | if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90)) |
1291 | // Special support for PAUSE |
1292 | attrMask |= ATTR_XS; |
1293 | } else { |
1294 | if (insn->repeatPrefix == 0xf2) |
1295 | attrMask |= ATTR_XD; |
1296 | else if (insn->repeatPrefix == 0xf3) |
1297 | attrMask |= ATTR_XS; |
1298 | } |
1299 | } else { |
1300 | switch (insn->mandatoryPrefix) { |
1301 | case 0xf2: |
1302 | attrMask |= ATTR_XD; |
1303 | break; |
1304 | case 0xf3: |
1305 | attrMask |= ATTR_XS; |
1306 | break; |
1307 | case 0x66: |
1308 | if (insn->mode != MODE_16BIT) |
1309 | attrMask |= ATTR_OPSIZE; |
1310 | if (insn->hasAdSize) |
1311 | attrMask |= ATTR_ADSIZE; |
1312 | break; |
1313 | case 0x67: |
1314 | attrMask |= ATTR_ADSIZE; |
1315 | break; |
1316 | } |
1317 | } |
1318 | |
1319 | if (insn->rexPrefix & 0x08) { |
1320 | attrMask |= ATTR_REXW; |
1321 | attrMask &= ~ATTR_ADSIZE; |
1322 | } |
1323 | |
1324 | // Absolute jump and pushp/popp need special handling |
1325 | if (insn->rex2ExtensionPrefix[0] == 0xd5 && insn->opcodeType == ONEBYTE && |
1326 | (insn->opcode == 0xA1 || (insn->opcode & 0xf0) == 0x50)) |
1327 | attrMask |= ATTR_REX2; |
1328 | |
1329 | if (insn->mode == MODE_16BIT) { |
1330 | // JCXZ/JECXZ need special handling for 16-bit mode because the meaning |
1331 | // of the AdSize prefix is inverted w.r.t. 32-bit mode. |
1332 | if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3) |
1333 | attrMask ^= ATTR_ADSIZE; |
1334 | // If we're in 16-bit mode and this is one of the relative jumps and opsize |
1335 | // prefix isn't present, we need to force the opsize attribute since the |
1336 | // prefix is inverted relative to 32-bit mode. |
1337 | if (!insn->hasOpSize && insn->opcodeType == ONEBYTE && |
1338 | (insn->opcode == 0xE8 || insn->opcode == 0xE9)) |
1339 | attrMask |= ATTR_OPSIZE; |
1340 | |
1341 | if (!insn->hasOpSize && insn->opcodeType == TWOBYTE && |
1342 | insn->opcode >= 0x80 && insn->opcode <= 0x8F) |
1343 | attrMask |= ATTR_OPSIZE; |
1344 | } |
1345 | |
1346 | |
1347 | if (getInstructionIDWithAttrMask(instructionID: &instructionID, insn, attrMask)) |
1348 | return -1; |
1349 | |
1350 | // The following clauses compensate for limitations of the tables. |
1351 | |
1352 | if (insn->mode != MODE_64BIT && |
1353 | insn->vectorExtensionType != TYPE_NO_VEX_XOP) { |
1354 | // The tables can't distinquish between cases where the W-bit is used to |
1355 | // select register size and cases where its a required part of the opcode. |
1356 | if ((insn->vectorExtensionType == TYPE_EVEX && |
1357 | wFromEVEX3of4(insn->vectorExtensionPrefix[2])) || |
1358 | (insn->vectorExtensionType == TYPE_VEX_3B && |
1359 | wFromVEX3of3(insn->vectorExtensionPrefix[2])) || |
1360 | (insn->vectorExtensionType == TYPE_XOP && |
1361 | wFromXOP3of3(insn->vectorExtensionPrefix[2]))) { |
1362 | |
1363 | uint16_t instructionIDWithREXW; |
1364 | if (getInstructionIDWithAttrMask(instructionID: &instructionIDWithREXW, insn, |
1365 | attrMask: attrMask | ATTR_REXW)) { |
1366 | insn->instructionID = instructionID; |
1367 | insn->spec = &INSTRUCTIONS_SYM[instructionID]; |
1368 | return 0; |
1369 | } |
1370 | |
1371 | auto SpecName = mii->getName(Opcode: instructionIDWithREXW); |
1372 | // If not a 64-bit instruction. Switch the opcode. |
1373 | if (!is64Bit(name: SpecName.data())) { |
1374 | insn->instructionID = instructionIDWithREXW; |
1375 | insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW]; |
1376 | return 0; |
1377 | } |
1378 | } |
1379 | } |
1380 | |
1381 | // Absolute moves, umonitor, and movdir64b need special handling. |
1382 | // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are |
1383 | // inverted w.r.t. |
1384 | // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in |
1385 | // any position. |
1386 | if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) || |
1387 | (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) || |
1388 | (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8) || |
1389 | (insn->opcodeType == MAP4 && insn->opcode == 0xF8)) { |
1390 | // Make sure we observed the prefixes in any position. |
1391 | if (insn->hasAdSize) |
1392 | attrMask |= ATTR_ADSIZE; |
1393 | if (insn->hasOpSize) |
1394 | attrMask |= ATTR_OPSIZE; |
1395 | |
1396 | // In 16-bit, invert the attributes. |
1397 | if (insn->mode == MODE_16BIT) { |
1398 | attrMask ^= ATTR_ADSIZE; |
1399 | |
1400 | // The OpSize attribute is only valid with the absolute moves. |
1401 | if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) |
1402 | attrMask ^= ATTR_OPSIZE; |
1403 | } |
1404 | |
1405 | if (getInstructionIDWithAttrMask(instructionID: &instructionID, insn, attrMask)) |
1406 | return -1; |
1407 | |
1408 | insn->instructionID = instructionID; |
1409 | insn->spec = &INSTRUCTIONS_SYM[instructionID]; |
1410 | return 0; |
1411 | } |
1412 | |
1413 | if ((insn->mode == MODE_16BIT || insn->hasOpSize) && |
1414 | !(attrMask & ATTR_OPSIZE)) { |
1415 | // The instruction tables make no distinction between instructions that |
1416 | // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a |
1417 | // particular spot (i.e., many MMX operations). In general we're |
1418 | // conservative, but in the specific case where OpSize is present but not in |
1419 | // the right place we check if there's a 16-bit operation. |
1420 | const struct InstructionSpecifier *spec; |
1421 | uint16_t instructionIDWithOpsize; |
1422 | llvm::StringRef specName, specWithOpSizeName; |
1423 | |
1424 | spec = &INSTRUCTIONS_SYM[instructionID]; |
1425 | |
1426 | if (getInstructionIDWithAttrMask(instructionID: &instructionIDWithOpsize, insn, |
1427 | attrMask: attrMask | ATTR_OPSIZE)) { |
1428 | // ModRM required with OpSize but not present. Give up and return the |
1429 | // version without OpSize set. |
1430 | insn->instructionID = instructionID; |
1431 | insn->spec = spec; |
1432 | return 0; |
1433 | } |
1434 | |
1435 | specName = mii->getName(Opcode: instructionID); |
1436 | specWithOpSizeName = mii->getName(Opcode: instructionIDWithOpsize); |
1437 | |
1438 | if (is16BitEquivalent(orig: specName.data(), equiv: specWithOpSizeName.data()) && |
1439 | (insn->mode == MODE_16BIT) ^ insn->hasOpSize) { |
1440 | insn->instructionID = instructionIDWithOpsize; |
1441 | insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize]; |
1442 | } else { |
1443 | insn->instructionID = instructionID; |
1444 | insn->spec = spec; |
1445 | } |
1446 | return 0; |
1447 | } |
1448 | |
1449 | if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 && |
1450 | insn->rexPrefix & 0x01) { |
1451 | // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode |
1452 | // as XCHG %r8, %eax. |
1453 | const struct InstructionSpecifier *spec; |
1454 | uint16_t instructionIDWithNewOpcode; |
1455 | const struct InstructionSpecifier *specWithNewOpcode; |
1456 | |
1457 | spec = &INSTRUCTIONS_SYM[instructionID]; |
1458 | |
1459 | // Borrow opcode from one of the other XCHGar opcodes |
1460 | insn->opcode = 0x91; |
1461 | |
1462 | if (getInstructionIDWithAttrMask(instructionID: &instructionIDWithNewOpcode, insn, |
1463 | attrMask)) { |
1464 | insn->opcode = 0x90; |
1465 | |
1466 | insn->instructionID = instructionID; |
1467 | insn->spec = spec; |
1468 | return 0; |
1469 | } |
1470 | |
1471 | specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode]; |
1472 | |
1473 | // Change back |
1474 | insn->opcode = 0x90; |
1475 | |
1476 | insn->instructionID = instructionIDWithNewOpcode; |
1477 | insn->spec = specWithNewOpcode; |
1478 | |
1479 | return 0; |
1480 | } |
1481 | |
1482 | insn->instructionID = instructionID; |
1483 | insn->spec = &INSTRUCTIONS_SYM[insn->instructionID]; |
1484 | |
1485 | return 0; |
1486 | } |
1487 | |
1488 | // Read an operand from the opcode field of an instruction and interprets it |
1489 | // appropriately given the operand width. Handles AddRegFrm instructions. |
1490 | // |
1491 | // @param insn - the instruction whose opcode field is to be read. |
1492 | // @param size - The width (in bytes) of the register being specified. |
1493 | // 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means |
1494 | // RAX. |
1495 | // @return - 0 on success; nonzero otherwise. |
1496 | static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) { |
1497 | LLVM_DEBUG(dbgs() << "readOpcodeRegister()" ); |
1498 | |
1499 | if (size == 0) |
1500 | size = insn->registerSize; |
1501 | |
1502 | auto setOpcodeRegister = [&](unsigned base) { |
1503 | insn->opcodeRegister = |
1504 | (Reg)(base + ((bFromREX(insn->rexPrefix) << 3) | |
1505 | (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4) | |
1506 | (insn->opcode & 7))); |
1507 | }; |
1508 | |
1509 | switch (size) { |
1510 | case 1: |
1511 | setOpcodeRegister(MODRM_REG_AL); |
1512 | if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 && |
1513 | insn->opcodeRegister < MODRM_REG_AL + 0x8) { |
1514 | insn->opcodeRegister = |
1515 | (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4)); |
1516 | } |
1517 | |
1518 | break; |
1519 | case 2: |
1520 | setOpcodeRegister(MODRM_REG_AX); |
1521 | break; |
1522 | case 4: |
1523 | setOpcodeRegister(MODRM_REG_EAX); |
1524 | break; |
1525 | case 8: |
1526 | setOpcodeRegister(MODRM_REG_RAX); |
1527 | break; |
1528 | } |
1529 | |
1530 | return 0; |
1531 | } |
1532 | |
1533 | // Consume an immediate operand from an instruction, given the desired operand |
1534 | // size. |
1535 | // |
1536 | // @param insn - The instruction whose operand is to be read. |
1537 | // @param size - The width (in bytes) of the operand. |
1538 | // @return - 0 if the immediate was successfully consumed; nonzero |
1539 | // otherwise. |
1540 | static int readImmediate(struct InternalInstruction *insn, uint8_t size) { |
1541 | uint8_t imm8; |
1542 | uint16_t imm16; |
1543 | uint32_t imm32; |
1544 | uint64_t imm64; |
1545 | |
1546 | LLVM_DEBUG(dbgs() << "readImmediate()" ); |
1547 | |
1548 | assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates" ); |
1549 | |
1550 | insn->immediateSize = size; |
1551 | insn->immediateOffset = insn->readerCursor - insn->startLocation; |
1552 | |
1553 | switch (size) { |
1554 | case 1: |
1555 | if (consume(insn, ptr&: imm8)) |
1556 | return -1; |
1557 | insn->immediates[insn->numImmediatesConsumed] = imm8; |
1558 | break; |
1559 | case 2: |
1560 | if (consume(insn, ptr&: imm16)) |
1561 | return -1; |
1562 | insn->immediates[insn->numImmediatesConsumed] = imm16; |
1563 | break; |
1564 | case 4: |
1565 | if (consume(insn, ptr&: imm32)) |
1566 | return -1; |
1567 | insn->immediates[insn->numImmediatesConsumed] = imm32; |
1568 | break; |
1569 | case 8: |
1570 | if (consume(insn, ptr&: imm64)) |
1571 | return -1; |
1572 | insn->immediates[insn->numImmediatesConsumed] = imm64; |
1573 | break; |
1574 | default: |
1575 | llvm_unreachable("invalid size" ); |
1576 | } |
1577 | |
1578 | insn->numImmediatesConsumed++; |
1579 | |
1580 | return 0; |
1581 | } |
1582 | |
1583 | // Consume vvvv from an instruction if it has a VEX prefix. |
1584 | static int readVVVV(struct InternalInstruction *insn) { |
1585 | LLVM_DEBUG(dbgs() << "readVVVV()" ); |
1586 | |
1587 | int vvvv; |
1588 | if (insn->vectorExtensionType == TYPE_EVEX) |
1589 | vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 | |
1590 | vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2])); |
1591 | else if (insn->vectorExtensionType == TYPE_VEX_3B) |
1592 | vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]); |
1593 | else if (insn->vectorExtensionType == TYPE_VEX_2B) |
1594 | vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]); |
1595 | else if (insn->vectorExtensionType == TYPE_XOP) |
1596 | vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]); |
1597 | else |
1598 | return -1; |
1599 | |
1600 | if (insn->mode != MODE_64BIT) |
1601 | vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later. |
1602 | |
1603 | insn->vvvv = static_cast<Reg>(vvvv); |
1604 | return 0; |
1605 | } |
1606 | |
1607 | // Read an mask register from the opcode field of an instruction. |
1608 | // |
1609 | // @param insn - The instruction whose opcode field is to be read. |
1610 | // @return - 0 on success; nonzero otherwise. |
1611 | static int readMaskRegister(struct InternalInstruction *insn) { |
1612 | LLVM_DEBUG(dbgs() << "readMaskRegister()" ); |
1613 | |
1614 | if (insn->vectorExtensionType != TYPE_EVEX) |
1615 | return -1; |
1616 | |
1617 | insn->writemask = |
1618 | static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])); |
1619 | return 0; |
1620 | } |
1621 | |
1622 | // Consults the specifier for an instruction and consumes all |
1623 | // operands for that instruction, interpreting them as it goes. |
1624 | static int readOperands(struct InternalInstruction *insn) { |
1625 | int hasVVVV, needVVVV; |
1626 | int sawRegImm = 0; |
1627 | |
1628 | LLVM_DEBUG(dbgs() << "readOperands()" ); |
1629 | |
1630 | // If non-zero vvvv specified, make sure one of the operands uses it. |
1631 | hasVVVV = !readVVVV(insn); |
1632 | needVVVV = hasVVVV && (insn->vvvv != 0); |
1633 | |
1634 | for (const auto &Op : x86OperandSets[insn->spec->operands]) { |
1635 | switch (Op.encoding) { |
1636 | case ENCODING_NONE: |
1637 | case ENCODING_SI: |
1638 | case ENCODING_DI: |
1639 | break; |
1640 | CASE_ENCODING_VSIB: |
1641 | // VSIB can use the V2 bit so check only the other bits. |
1642 | if (needVVVV) |
1643 | needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0); |
1644 | if (readModRM(insn)) |
1645 | return -1; |
1646 | |
1647 | // Reject if SIB wasn't used. |
1648 | if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64) |
1649 | return -1; |
1650 | |
1651 | // If sibIndex was set to SIB_INDEX_NONE, index offset is 4. |
1652 | if (insn->sibIndex == SIB_INDEX_NONE) |
1653 | insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4); |
1654 | |
1655 | // If EVEX.v2 is set this is one of the 16-31 registers. |
1656 | if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT && |
1657 | v2FromEVEX4of4(insn->vectorExtensionPrefix[3])) |
1658 | insn->sibIndex = (SIBIndex)(insn->sibIndex + 16); |
1659 | |
1660 | // Adjust the index register to the correct size. |
1661 | switch ((OperandType)Op.type) { |
1662 | default: |
1663 | debug("Unhandled VSIB index type" ); |
1664 | return -1; |
1665 | case TYPE_MVSIBX: |
1666 | insn->sibIndex = |
1667 | (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase)); |
1668 | break; |
1669 | case TYPE_MVSIBY: |
1670 | insn->sibIndex = |
1671 | (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase)); |
1672 | break; |
1673 | case TYPE_MVSIBZ: |
1674 | insn->sibIndex = |
1675 | (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase)); |
1676 | break; |
1677 | } |
1678 | |
1679 | // Apply the AVX512 compressed displacement scaling factor. |
1680 | if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) |
1681 | insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB); |
1682 | break; |
1683 | case ENCODING_SIB: |
1684 | // Reject if SIB wasn't used. |
1685 | if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64) |
1686 | return -1; |
1687 | if (readModRM(insn)) |
1688 | return -1; |
1689 | if (fixupReg(insn, op: &Op)) |
1690 | return -1; |
1691 | break; |
1692 | case ENCODING_REG: |
1693 | CASE_ENCODING_RM: |
1694 | if (readModRM(insn)) |
1695 | return -1; |
1696 | if (fixupReg(insn, op: &Op)) |
1697 | return -1; |
1698 | // Apply the AVX512 compressed displacement scaling factor. |
1699 | if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) |
1700 | insn->displacement *= 1 << (Op.encoding - ENCODING_RM); |
1701 | break; |
1702 | case ENCODING_IB: |
1703 | if (sawRegImm) { |
1704 | // Saw a register immediate so don't read again and instead split the |
1705 | // previous immediate. FIXME: This is a hack. |
1706 | insn->immediates[insn->numImmediatesConsumed] = |
1707 | insn->immediates[insn->numImmediatesConsumed - 1] & 0xf; |
1708 | ++insn->numImmediatesConsumed; |
1709 | break; |
1710 | } |
1711 | if (readImmediate(insn, size: 1)) |
1712 | return -1; |
1713 | if (Op.type == TYPE_XMM || Op.type == TYPE_YMM) |
1714 | sawRegImm = 1; |
1715 | break; |
1716 | case ENCODING_IW: |
1717 | if (readImmediate(insn, size: 2)) |
1718 | return -1; |
1719 | break; |
1720 | case ENCODING_ID: |
1721 | if (readImmediate(insn, size: 4)) |
1722 | return -1; |
1723 | break; |
1724 | case ENCODING_IO: |
1725 | if (readImmediate(insn, size: 8)) |
1726 | return -1; |
1727 | break; |
1728 | case ENCODING_Iv: |
1729 | if (readImmediate(insn, size: insn->immediateSize)) |
1730 | return -1; |
1731 | break; |
1732 | case ENCODING_Ia: |
1733 | if (readImmediate(insn, size: insn->addressSize)) |
1734 | return -1; |
1735 | break; |
1736 | case ENCODING_IRC: |
1737 | insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) | |
1738 | lFromEVEX4of4(insn->vectorExtensionPrefix[3]); |
1739 | break; |
1740 | case ENCODING_RB: |
1741 | if (readOpcodeRegister(insn, size: 1)) |
1742 | return -1; |
1743 | break; |
1744 | case ENCODING_RW: |
1745 | if (readOpcodeRegister(insn, size: 2)) |
1746 | return -1; |
1747 | break; |
1748 | case ENCODING_RD: |
1749 | if (readOpcodeRegister(insn, size: 4)) |
1750 | return -1; |
1751 | break; |
1752 | case ENCODING_RO: |
1753 | if (readOpcodeRegister(insn, size: 8)) |
1754 | return -1; |
1755 | break; |
1756 | case ENCODING_Rv: |
1757 | if (readOpcodeRegister(insn, size: 0)) |
1758 | return -1; |
1759 | break; |
1760 | case ENCODING_CF: |
1761 | insn->immediates[1] = oszcFromEVEX3of4(insn->vectorExtensionPrefix[2]); |
1762 | needVVVV = false; // oszc shares the same bits with VVVV |
1763 | break; |
1764 | case ENCODING_CC: |
1765 | if (isCCMPOrCTEST(insn)) |
1766 | insn->immediates[2] = scFromEVEX4of4(insn->vectorExtensionPrefix[3]); |
1767 | else |
1768 | insn->immediates[1] = insn->opcode & 0xf; |
1769 | break; |
1770 | case ENCODING_FP: |
1771 | break; |
1772 | case ENCODING_VVVV: |
1773 | needVVVV = 0; // Mark that we have found a VVVV operand. |
1774 | if (!hasVVVV) |
1775 | return -1; |
1776 | if (insn->mode != MODE_64BIT) |
1777 | insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7); |
1778 | if (fixupReg(insn, op: &Op)) |
1779 | return -1; |
1780 | break; |
1781 | case ENCODING_WRITEMASK: |
1782 | if (readMaskRegister(insn)) |
1783 | return -1; |
1784 | break; |
1785 | case ENCODING_DUP: |
1786 | break; |
1787 | default: |
1788 | LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding." ); |
1789 | return -1; |
1790 | } |
1791 | } |
1792 | |
1793 | // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail |
1794 | if (needVVVV) |
1795 | return -1; |
1796 | |
1797 | return 0; |
1798 | } |
1799 | |
1800 | namespace llvm { |
1801 | |
1802 | // Fill-ins to make the compiler happy. These constants are never actually |
1803 | // assigned; they are just filler to make an automatically-generated switch |
1804 | // statement work. |
1805 | namespace X86 { |
1806 | enum { |
1807 | BX_SI = 500, |
1808 | BX_DI = 501, |
1809 | BP_SI = 502, |
1810 | BP_DI = 503, |
1811 | sib = 504, |
1812 | sib64 = 505 |
1813 | }; |
1814 | } // namespace X86 |
1815 | |
1816 | } // namespace llvm |
1817 | |
1818 | static bool translateInstruction(MCInst &target, |
1819 | InternalInstruction &source, |
1820 | const MCDisassembler *Dis); |
1821 | |
1822 | namespace { |
1823 | |
1824 | /// Generic disassembler for all X86 platforms. All each platform class should |
1825 | /// have to do is subclass the constructor, and provide a different |
1826 | /// disassemblerMode value. |
1827 | class X86GenericDisassembler : public MCDisassembler { |
1828 | std::unique_ptr<const MCInstrInfo> MII; |
1829 | public: |
1830 | X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx, |
1831 | std::unique_ptr<const MCInstrInfo> MII); |
1832 | public: |
1833 | DecodeStatus getInstruction(MCInst &instr, uint64_t &size, |
1834 | ArrayRef<uint8_t> Bytes, uint64_t Address, |
1835 | raw_ostream &cStream) const override; |
1836 | |
1837 | private: |
1838 | DisassemblerMode fMode; |
1839 | }; |
1840 | |
1841 | } // namespace |
1842 | |
1843 | X86GenericDisassembler::X86GenericDisassembler( |
1844 | const MCSubtargetInfo &STI, |
1845 | MCContext &Ctx, |
1846 | std::unique_ptr<const MCInstrInfo> MII) |
1847 | : MCDisassembler(STI, Ctx), MII(std::move(MII)) { |
1848 | const FeatureBitset &FB = STI.getFeatureBits(); |
1849 | if (FB[X86::Is16Bit]) { |
1850 | fMode = MODE_16BIT; |
1851 | return; |
1852 | } else if (FB[X86::Is32Bit]) { |
1853 | fMode = MODE_32BIT; |
1854 | return; |
1855 | } else if (FB[X86::Is64Bit]) { |
1856 | fMode = MODE_64BIT; |
1857 | return; |
1858 | } |
1859 | |
1860 | llvm_unreachable("Invalid CPU mode" ); |
1861 | } |
1862 | |
1863 | MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction( |
1864 | MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address, |
1865 | raw_ostream &CStream) const { |
1866 | CommentStream = &CStream; |
1867 | |
1868 | InternalInstruction Insn; |
1869 | memset(s: &Insn, c: 0, n: sizeof(InternalInstruction)); |
1870 | Insn.bytes = Bytes; |
1871 | Insn.startLocation = Address; |
1872 | Insn.readerCursor = Address; |
1873 | Insn.mode = fMode; |
1874 | |
1875 | if (Bytes.empty() || readPrefixes(insn: &Insn) || readOpcode(insn: &Insn) || |
1876 | getInstructionID(insn: &Insn, mii: MII.get()) || Insn.instructionID == 0 || |
1877 | readOperands(insn: &Insn)) { |
1878 | Size = Insn.readerCursor - Address; |
1879 | return Fail; |
1880 | } |
1881 | |
1882 | Insn.operands = x86OperandSets[Insn.spec->operands]; |
1883 | Insn.length = Insn.readerCursor - Insn.startLocation; |
1884 | Size = Insn.length; |
1885 | if (Size > 15) |
1886 | LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit" ); |
1887 | |
1888 | bool Ret = translateInstruction(target&: Instr, source&: Insn, Dis: this); |
1889 | if (!Ret) { |
1890 | unsigned Flags = X86::IP_NO_PREFIX; |
1891 | if (Insn.hasAdSize) |
1892 | Flags |= X86::IP_HAS_AD_SIZE; |
1893 | if (!Insn.mandatoryPrefix) { |
1894 | if (Insn.hasOpSize) |
1895 | Flags |= X86::IP_HAS_OP_SIZE; |
1896 | if (Insn.repeatPrefix == 0xf2) |
1897 | Flags |= X86::IP_HAS_REPEAT_NE; |
1898 | else if (Insn.repeatPrefix == 0xf3 && |
1899 | // It should not be 'pause' f3 90 |
1900 | Insn.opcode != 0x90) |
1901 | Flags |= X86::IP_HAS_REPEAT; |
1902 | if (Insn.hasLockPrefix) |
1903 | Flags |= X86::IP_HAS_LOCK; |
1904 | } |
1905 | Instr.setFlags(Flags); |
1906 | } |
1907 | return (!Ret) ? Success : Fail; |
1908 | } |
1909 | |
1910 | // |
1911 | // Private code that translates from struct InternalInstructions to MCInsts. |
1912 | // |
1913 | |
1914 | /// translateRegister - Translates an internal register to the appropriate LLVM |
1915 | /// register, and appends it as an operand to an MCInst. |
1916 | /// |
1917 | /// @param mcInst - The MCInst to append to. |
1918 | /// @param reg - The Reg to append. |
1919 | static void translateRegister(MCInst &mcInst, Reg reg) { |
1920 | #define ENTRY(x) X86::x, |
1921 | static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS}; |
1922 | #undef ENTRY |
1923 | |
1924 | MCPhysReg llvmRegnum = llvmRegnums[reg]; |
1925 | mcInst.addOperand(Op: MCOperand::createReg(Reg: llvmRegnum)); |
1926 | } |
1927 | |
1928 | static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = { |
1929 | 0, // SEG_OVERRIDE_NONE |
1930 | X86::CS, |
1931 | X86::SS, |
1932 | X86::DS, |
1933 | X86::ES, |
1934 | X86::FS, |
1935 | X86::GS |
1936 | }; |
1937 | |
1938 | /// translateSrcIndex - Appends a source index operand to an MCInst. |
1939 | /// |
1940 | /// @param mcInst - The MCInst to append to. |
1941 | /// @param insn - The internal instruction. |
1942 | static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) { |
1943 | unsigned baseRegNo; |
1944 | |
1945 | if (insn.mode == MODE_64BIT) |
1946 | baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI; |
1947 | else if (insn.mode == MODE_32BIT) |
1948 | baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI; |
1949 | else { |
1950 | assert(insn.mode == MODE_16BIT); |
1951 | baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI; |
1952 | } |
1953 | MCOperand baseReg = MCOperand::createReg(Reg: baseRegNo); |
1954 | mcInst.addOperand(Op: baseReg); |
1955 | |
1956 | MCOperand segmentReg; |
1957 | segmentReg = MCOperand::createReg(Reg: segmentRegnums[insn.segmentOverride]); |
1958 | mcInst.addOperand(Op: segmentReg); |
1959 | return false; |
1960 | } |
1961 | |
1962 | /// translateDstIndex - Appends a destination index operand to an MCInst. |
1963 | /// |
1964 | /// @param mcInst - The MCInst to append to. |
1965 | /// @param insn - The internal instruction. |
1966 | |
1967 | static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) { |
1968 | unsigned baseRegNo; |
1969 | |
1970 | if (insn.mode == MODE_64BIT) |
1971 | baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI; |
1972 | else if (insn.mode == MODE_32BIT) |
1973 | baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI; |
1974 | else { |
1975 | assert(insn.mode == MODE_16BIT); |
1976 | baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI; |
1977 | } |
1978 | MCOperand baseReg = MCOperand::createReg(Reg: baseRegNo); |
1979 | mcInst.addOperand(Op: baseReg); |
1980 | return false; |
1981 | } |
1982 | |
1983 | /// translateImmediate - Appends an immediate operand to an MCInst. |
1984 | /// |
1985 | /// @param mcInst - The MCInst to append to. |
1986 | /// @param immediate - The immediate value to append. |
1987 | /// @param operand - The operand, as stored in the descriptor table. |
1988 | /// @param insn - The internal instruction. |
1989 | static void translateImmediate(MCInst &mcInst, uint64_t immediate, |
1990 | const OperandSpecifier &operand, |
1991 | InternalInstruction &insn, |
1992 | const MCDisassembler *Dis) { |
1993 | // Sign-extend the immediate if necessary. |
1994 | |
1995 | OperandType type = (OperandType)operand.type; |
1996 | |
1997 | bool isBranch = false; |
1998 | uint64_t pcrel = 0; |
1999 | if (type == TYPE_REL) { |
2000 | isBranch = true; |
2001 | pcrel = insn.startLocation + insn.length; |
2002 | switch (operand.encoding) { |
2003 | default: |
2004 | break; |
2005 | case ENCODING_Iv: |
2006 | switch (insn.displacementSize) { |
2007 | default: |
2008 | break; |
2009 | case 1: |
2010 | if(immediate & 0x80) |
2011 | immediate |= ~(0xffull); |
2012 | break; |
2013 | case 2: |
2014 | if(immediate & 0x8000) |
2015 | immediate |= ~(0xffffull); |
2016 | break; |
2017 | case 4: |
2018 | if(immediate & 0x80000000) |
2019 | immediate |= ~(0xffffffffull); |
2020 | break; |
2021 | case 8: |
2022 | break; |
2023 | } |
2024 | break; |
2025 | case ENCODING_IB: |
2026 | if(immediate & 0x80) |
2027 | immediate |= ~(0xffull); |
2028 | break; |
2029 | case ENCODING_IW: |
2030 | if(immediate & 0x8000) |
2031 | immediate |= ~(0xffffull); |
2032 | break; |
2033 | case ENCODING_ID: |
2034 | if(immediate & 0x80000000) |
2035 | immediate |= ~(0xffffffffull); |
2036 | break; |
2037 | } |
2038 | } |
2039 | // By default sign-extend all X86 immediates based on their encoding. |
2040 | else if (type == TYPE_IMM) { |
2041 | switch (operand.encoding) { |
2042 | default: |
2043 | break; |
2044 | case ENCODING_IB: |
2045 | if(immediate & 0x80) |
2046 | immediate |= ~(0xffull); |
2047 | break; |
2048 | case ENCODING_IW: |
2049 | if(immediate & 0x8000) |
2050 | immediate |= ~(0xffffull); |
2051 | break; |
2052 | case ENCODING_ID: |
2053 | if(immediate & 0x80000000) |
2054 | immediate |= ~(0xffffffffull); |
2055 | break; |
2056 | case ENCODING_IO: |
2057 | break; |
2058 | } |
2059 | } |
2060 | |
2061 | switch (type) { |
2062 | case TYPE_XMM: |
2063 | mcInst.addOperand(Op: MCOperand::createReg(Reg: X86::XMM0 + (immediate >> 4))); |
2064 | return; |
2065 | case TYPE_YMM: |
2066 | mcInst.addOperand(Op: MCOperand::createReg(Reg: X86::YMM0 + (immediate >> 4))); |
2067 | return; |
2068 | case TYPE_ZMM: |
2069 | mcInst.addOperand(Op: MCOperand::createReg(Reg: X86::ZMM0 + (immediate >> 4))); |
2070 | return; |
2071 | default: |
2072 | // operand is 64 bits wide. Do nothing. |
2073 | break; |
2074 | } |
2075 | |
2076 | if (!Dis->tryAddingSymbolicOperand( |
2077 | Inst&: mcInst, Value: immediate + pcrel, Address: insn.startLocation, IsBranch: isBranch, |
2078 | Offset: insn.immediateOffset, OpSize: insn.immediateSize, InstSize: insn.length)) |
2079 | mcInst.addOperand(Op: MCOperand::createImm(Val: immediate)); |
2080 | |
2081 | if (type == TYPE_MOFFS) { |
2082 | MCOperand segmentReg; |
2083 | segmentReg = MCOperand::createReg(Reg: segmentRegnums[insn.segmentOverride]); |
2084 | mcInst.addOperand(Op: segmentReg); |
2085 | } |
2086 | } |
2087 | |
2088 | /// translateRMRegister - Translates a register stored in the R/M field of the |
2089 | /// ModR/M byte to its LLVM equivalent and appends it to an MCInst. |
2090 | /// @param mcInst - The MCInst to append to. |
2091 | /// @param insn - The internal instruction to extract the R/M field |
2092 | /// from. |
2093 | /// @return - 0 on success; -1 otherwise |
2094 | static bool translateRMRegister(MCInst &mcInst, |
2095 | InternalInstruction &insn) { |
2096 | if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { |
2097 | debug("A R/M register operand may not have a SIB byte" ); |
2098 | return true; |
2099 | } |
2100 | |
2101 | switch (insn.eaBase) { |
2102 | default: |
2103 | debug("Unexpected EA base register" ); |
2104 | return true; |
2105 | case EA_BASE_NONE: |
2106 | debug("EA_BASE_NONE for ModR/M base" ); |
2107 | return true; |
2108 | #define ENTRY(x) case EA_BASE_##x: |
2109 | ALL_EA_BASES |
2110 | #undef ENTRY |
2111 | debug("A R/M register operand may not have a base; " |
2112 | "the operand must be a register." ); |
2113 | return true; |
2114 | #define ENTRY(x) \ |
2115 | case EA_REG_##x: \ |
2116 | mcInst.addOperand(MCOperand::createReg(X86::x)); break; |
2117 | ALL_REGS |
2118 | #undef ENTRY |
2119 | } |
2120 | |
2121 | return false; |
2122 | } |
2123 | |
2124 | /// translateRMMemory - Translates a memory operand stored in the Mod and R/M |
2125 | /// fields of an internal instruction (and possibly its SIB byte) to a memory |
2126 | /// operand in LLVM's format, and appends it to an MCInst. |
2127 | /// |
2128 | /// @param mcInst - The MCInst to append to. |
2129 | /// @param insn - The instruction to extract Mod, R/M, and SIB fields |
2130 | /// from. |
2131 | /// @param ForceSIB - The instruction must use SIB. |
2132 | /// @return - 0 on success; nonzero otherwise |
2133 | static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn, |
2134 | const MCDisassembler *Dis, |
2135 | bool ForceSIB = false) { |
2136 | // Addresses in an MCInst are represented as five operands: |
2137 | // 1. basereg (register) The R/M base, or (if there is a SIB) the |
2138 | // SIB base |
2139 | // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified |
2140 | // scale amount |
2141 | // 3. indexreg (register) x86_registerNONE, or (if there is a SIB) |
2142 | // the index (which is multiplied by the |
2143 | // scale amount) |
2144 | // 4. displacement (immediate) 0, or the displacement if there is one |
2145 | // 5. segmentreg (register) x86_registerNONE for now, but could be set |
2146 | // if we have segment overrides |
2147 | |
2148 | MCOperand baseReg; |
2149 | MCOperand scaleAmount; |
2150 | MCOperand indexReg; |
2151 | MCOperand displacement; |
2152 | MCOperand segmentReg; |
2153 | uint64_t pcrel = 0; |
2154 | |
2155 | if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { |
2156 | if (insn.sibBase != SIB_BASE_NONE) { |
2157 | switch (insn.sibBase) { |
2158 | default: |
2159 | debug("Unexpected sibBase" ); |
2160 | return true; |
2161 | #define ENTRY(x) \ |
2162 | case SIB_BASE_##x: \ |
2163 | baseReg = MCOperand::createReg(X86::x); break; |
2164 | ALL_SIB_BASES |
2165 | #undef ENTRY |
2166 | } |
2167 | } else { |
2168 | baseReg = MCOperand::createReg(Reg: X86::NoRegister); |
2169 | } |
2170 | |
2171 | if (insn.sibIndex != SIB_INDEX_NONE) { |
2172 | switch (insn.sibIndex) { |
2173 | default: |
2174 | debug("Unexpected sibIndex" ); |
2175 | return true; |
2176 | #define ENTRY(x) \ |
2177 | case SIB_INDEX_##x: \ |
2178 | indexReg = MCOperand::createReg(X86::x); break; |
2179 | EA_BASES_32BIT |
2180 | EA_BASES_64BIT |
2181 | REGS_XMM |
2182 | REGS_YMM |
2183 | REGS_ZMM |
2184 | #undef ENTRY |
2185 | } |
2186 | } else { |
2187 | // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present, |
2188 | // but no index is used and modrm alone should have been enough. |
2189 | // -No base register in 32-bit mode. In 64-bit mode this is used to |
2190 | // avoid rip-relative addressing. |
2191 | // -Any base register used other than ESP/RSP/R12D/R12. Using these as a |
2192 | // base always requires a SIB byte. |
2193 | // -A scale other than 1 is used. |
2194 | if (!ForceSIB && |
2195 | (insn.sibScale != 1 || |
2196 | (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) || |
2197 | (insn.sibBase != SIB_BASE_NONE && |
2198 | insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP && |
2199 | insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) { |
2200 | indexReg = MCOperand::createReg(Reg: insn.addressSize == 4 ? X86::EIZ : |
2201 | X86::RIZ); |
2202 | } else |
2203 | indexReg = MCOperand::createReg(Reg: X86::NoRegister); |
2204 | } |
2205 | |
2206 | scaleAmount = MCOperand::createImm(Val: insn.sibScale); |
2207 | } else { |
2208 | switch (insn.eaBase) { |
2209 | case EA_BASE_NONE: |
2210 | if (insn.eaDisplacement == EA_DISP_NONE) { |
2211 | debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base" ); |
2212 | return true; |
2213 | } |
2214 | if (insn.mode == MODE_64BIT){ |
2215 | pcrel = insn.startLocation + insn.length; |
2216 | Dis->tryAddingPcLoadReferenceComment(Value: insn.displacement + pcrel, |
2217 | Address: insn.startLocation + |
2218 | insn.displacementOffset); |
2219 | // Section 2.2.1.6 |
2220 | baseReg = MCOperand::createReg(Reg: insn.addressSize == 4 ? X86::EIP : |
2221 | X86::RIP); |
2222 | } |
2223 | else |
2224 | baseReg = MCOperand::createReg(Reg: X86::NoRegister); |
2225 | |
2226 | indexReg = MCOperand::createReg(Reg: X86::NoRegister); |
2227 | break; |
2228 | case EA_BASE_BX_SI: |
2229 | baseReg = MCOperand::createReg(Reg: X86::BX); |
2230 | indexReg = MCOperand::createReg(Reg: X86::SI); |
2231 | break; |
2232 | case EA_BASE_BX_DI: |
2233 | baseReg = MCOperand::createReg(Reg: X86::BX); |
2234 | indexReg = MCOperand::createReg(Reg: X86::DI); |
2235 | break; |
2236 | case EA_BASE_BP_SI: |
2237 | baseReg = MCOperand::createReg(Reg: X86::BP); |
2238 | indexReg = MCOperand::createReg(Reg: X86::SI); |
2239 | break; |
2240 | case EA_BASE_BP_DI: |
2241 | baseReg = MCOperand::createReg(Reg: X86::BP); |
2242 | indexReg = MCOperand::createReg(Reg: X86::DI); |
2243 | break; |
2244 | default: |
2245 | indexReg = MCOperand::createReg(Reg: X86::NoRegister); |
2246 | switch (insn.eaBase) { |
2247 | default: |
2248 | debug("Unexpected eaBase" ); |
2249 | return true; |
2250 | // Here, we will use the fill-ins defined above. However, |
2251 | // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and |
2252 | // sib and sib64 were handled in the top-level if, so they're only |
2253 | // placeholders to keep the compiler happy. |
2254 | #define ENTRY(x) \ |
2255 | case EA_BASE_##x: \ |
2256 | baseReg = MCOperand::createReg(X86::x); break; |
2257 | ALL_EA_BASES |
2258 | #undef ENTRY |
2259 | #define ENTRY(x) case EA_REG_##x: |
2260 | ALL_REGS |
2261 | #undef ENTRY |
2262 | debug("A R/M memory operand may not be a register; " |
2263 | "the base field must be a base." ); |
2264 | return true; |
2265 | } |
2266 | } |
2267 | |
2268 | scaleAmount = MCOperand::createImm(Val: 1); |
2269 | } |
2270 | |
2271 | displacement = MCOperand::createImm(Val: insn.displacement); |
2272 | |
2273 | segmentReg = MCOperand::createReg(Reg: segmentRegnums[insn.segmentOverride]); |
2274 | |
2275 | mcInst.addOperand(Op: baseReg); |
2276 | mcInst.addOperand(Op: scaleAmount); |
2277 | mcInst.addOperand(Op: indexReg); |
2278 | |
2279 | const uint8_t dispSize = |
2280 | (insn.eaDisplacement == EA_DISP_NONE) ? 0 : insn.displacementSize; |
2281 | |
2282 | if (!Dis->tryAddingSymbolicOperand( |
2283 | Inst&: mcInst, Value: insn.displacement + pcrel, Address: insn.startLocation, IsBranch: false, |
2284 | Offset: insn.displacementOffset, OpSize: dispSize, InstSize: insn.length)) |
2285 | mcInst.addOperand(Op: displacement); |
2286 | mcInst.addOperand(Op: segmentReg); |
2287 | return false; |
2288 | } |
2289 | |
2290 | /// translateRM - Translates an operand stored in the R/M (and possibly SIB) |
2291 | /// byte of an instruction to LLVM form, and appends it to an MCInst. |
2292 | /// |
2293 | /// @param mcInst - The MCInst to append to. |
2294 | /// @param operand - The operand, as stored in the descriptor table. |
2295 | /// @param insn - The instruction to extract Mod, R/M, and SIB fields |
2296 | /// from. |
2297 | /// @return - 0 on success; nonzero otherwise |
2298 | static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, |
2299 | InternalInstruction &insn, const MCDisassembler *Dis) { |
2300 | switch (operand.type) { |
2301 | default: |
2302 | debug("Unexpected type for a R/M operand" ); |
2303 | return true; |
2304 | case TYPE_R8: |
2305 | case TYPE_R16: |
2306 | case TYPE_R32: |
2307 | case TYPE_R64: |
2308 | case TYPE_Rv: |
2309 | case TYPE_MM64: |
2310 | case TYPE_XMM: |
2311 | case TYPE_YMM: |
2312 | case TYPE_ZMM: |
2313 | case TYPE_TMM: |
2314 | case TYPE_VK_PAIR: |
2315 | case TYPE_VK: |
2316 | case TYPE_DEBUGREG: |
2317 | case TYPE_CONTROLREG: |
2318 | case TYPE_BNDR: |
2319 | return translateRMRegister(mcInst, insn); |
2320 | case TYPE_M: |
2321 | case TYPE_MVSIBX: |
2322 | case TYPE_MVSIBY: |
2323 | case TYPE_MVSIBZ: |
2324 | return translateRMMemory(mcInst, insn, Dis); |
2325 | case TYPE_MSIB: |
2326 | return translateRMMemory(mcInst, insn, Dis, ForceSIB: true); |
2327 | } |
2328 | } |
2329 | |
2330 | /// translateFPRegister - Translates a stack position on the FPU stack to its |
2331 | /// LLVM form, and appends it to an MCInst. |
2332 | /// |
2333 | /// @param mcInst - The MCInst to append to. |
2334 | /// @param stackPos - The stack position to translate. |
2335 | static void translateFPRegister(MCInst &mcInst, |
2336 | uint8_t stackPos) { |
2337 | mcInst.addOperand(Op: MCOperand::createReg(Reg: X86::ST0 + stackPos)); |
2338 | } |
2339 | |
2340 | /// translateMaskRegister - Translates a 3-bit mask register number to |
2341 | /// LLVM form, and appends it to an MCInst. |
2342 | /// |
2343 | /// @param mcInst - The MCInst to append to. |
2344 | /// @param maskRegNum - Number of mask register from 0 to 7. |
2345 | /// @return - false on success; true otherwise. |
2346 | static bool translateMaskRegister(MCInst &mcInst, |
2347 | uint8_t maskRegNum) { |
2348 | if (maskRegNum >= 8) { |
2349 | debug("Invalid mask register number" ); |
2350 | return true; |
2351 | } |
2352 | |
2353 | mcInst.addOperand(Op: MCOperand::createReg(Reg: X86::K0 + maskRegNum)); |
2354 | return false; |
2355 | } |
2356 | |
2357 | /// translateOperand - Translates an operand stored in an internal instruction |
2358 | /// to LLVM's format and appends it to an MCInst. |
2359 | /// |
2360 | /// @param mcInst - The MCInst to append to. |
2361 | /// @param operand - The operand, as stored in the descriptor table. |
2362 | /// @param insn - The internal instruction. |
2363 | /// @return - false on success; true otherwise. |
2364 | static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, |
2365 | InternalInstruction &insn, |
2366 | const MCDisassembler *Dis) { |
2367 | switch (operand.encoding) { |
2368 | default: |
2369 | debug("Unhandled operand encoding during translation" ); |
2370 | return true; |
2371 | case ENCODING_REG: |
2372 | translateRegister(mcInst, reg: insn.reg); |
2373 | return false; |
2374 | case ENCODING_WRITEMASK: |
2375 | return translateMaskRegister(mcInst, maskRegNum: insn.writemask); |
2376 | case ENCODING_SIB: |
2377 | CASE_ENCODING_RM: |
2378 | CASE_ENCODING_VSIB: |
2379 | return translateRM(mcInst, operand, insn, Dis); |
2380 | case ENCODING_IB: |
2381 | case ENCODING_IW: |
2382 | case ENCODING_ID: |
2383 | case ENCODING_IO: |
2384 | case ENCODING_Iv: |
2385 | case ENCODING_Ia: |
2386 | translateImmediate(mcInst, |
2387 | immediate: insn.immediates[insn.numImmediatesTranslated++], |
2388 | operand, |
2389 | insn, |
2390 | Dis); |
2391 | return false; |
2392 | case ENCODING_IRC: |
2393 | mcInst.addOperand(Op: MCOperand::createImm(Val: insn.RC)); |
2394 | return false; |
2395 | case ENCODING_SI: |
2396 | return translateSrcIndex(mcInst, insn); |
2397 | case ENCODING_DI: |
2398 | return translateDstIndex(mcInst, insn); |
2399 | case ENCODING_RB: |
2400 | case ENCODING_RW: |
2401 | case ENCODING_RD: |
2402 | case ENCODING_RO: |
2403 | case ENCODING_Rv: |
2404 | translateRegister(mcInst, reg: insn.opcodeRegister); |
2405 | return false; |
2406 | case ENCODING_CF: |
2407 | mcInst.addOperand(Op: MCOperand::createImm(Val: insn.immediates[1])); |
2408 | return false; |
2409 | case ENCODING_CC: |
2410 | if (isCCMPOrCTEST(insn: &insn)) |
2411 | mcInst.addOperand(Op: MCOperand::createImm(Val: insn.immediates[2])); |
2412 | else |
2413 | mcInst.addOperand(Op: MCOperand::createImm(Val: insn.immediates[1])); |
2414 | return false; |
2415 | case ENCODING_FP: |
2416 | translateFPRegister(mcInst, stackPos: insn.modRM & 7); |
2417 | return false; |
2418 | case ENCODING_VVVV: |
2419 | translateRegister(mcInst, reg: insn.vvvv); |
2420 | return false; |
2421 | case ENCODING_DUP: |
2422 | return translateOperand(mcInst, operand: insn.operands[operand.type - TYPE_DUP0], |
2423 | insn, Dis); |
2424 | } |
2425 | } |
2426 | |
2427 | /// translateInstruction - Translates an internal instruction and all its |
2428 | /// operands to an MCInst. |
2429 | /// |
2430 | /// @param mcInst - The MCInst to populate with the instruction's data. |
2431 | /// @param insn - The internal instruction. |
2432 | /// @return - false on success; true otherwise. |
2433 | static bool translateInstruction(MCInst &mcInst, |
2434 | InternalInstruction &insn, |
2435 | const MCDisassembler *Dis) { |
2436 | if (!insn.spec) { |
2437 | debug("Instruction has no specification" ); |
2438 | return true; |
2439 | } |
2440 | |
2441 | mcInst.clear(); |
2442 | mcInst.setOpcode(insn.instructionID); |
2443 | // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3 |
2444 | // prefix bytes should be disassembled as xrelease and xacquire then set the |
2445 | // opcode to those instead of the rep and repne opcodes. |
2446 | if (insn.xAcquireRelease) { |
2447 | if(mcInst.getOpcode() == X86::REP_PREFIX) |
2448 | mcInst.setOpcode(X86::XRELEASE_PREFIX); |
2449 | else if(mcInst.getOpcode() == X86::REPNE_PREFIX) |
2450 | mcInst.setOpcode(X86::XACQUIRE_PREFIX); |
2451 | } |
2452 | |
2453 | insn.numImmediatesTranslated = 0; |
2454 | |
2455 | for (const auto &Op : insn.operands) { |
2456 | if (Op.encoding != ENCODING_NONE) { |
2457 | if (translateOperand(mcInst, operand: Op, insn, Dis)) { |
2458 | return true; |
2459 | } |
2460 | } |
2461 | } |
2462 | |
2463 | return false; |
2464 | } |
2465 | |
2466 | static MCDisassembler *createX86Disassembler(const Target &T, |
2467 | const MCSubtargetInfo &STI, |
2468 | MCContext &Ctx) { |
2469 | std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo()); |
2470 | return new X86GenericDisassembler(STI, Ctx, std::move(MII)); |
2471 | } |
2472 | |
2473 | extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() { |
2474 | // Register the disassembler. |
2475 | TargetRegistry::RegisterMCDisassembler(T&: getTheX86_32Target(), |
2476 | Fn: createX86Disassembler); |
2477 | TargetRegistry::RegisterMCDisassembler(T&: getTheX86_64Target(), |
2478 | Fn: createX86Disassembler); |
2479 | } |
2480 | |