1 | //===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the X86MCCodeEmitter class. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "MCTargetDesc/X86BaseInfo.h" |
14 | #include "MCTargetDesc/X86FixupKinds.h" |
15 | #include "MCTargetDesc/X86MCTargetDesc.h" |
16 | #include "llvm/ADT/SmallVector.h" |
17 | #include "llvm/MC/MCCodeEmitter.h" |
18 | #include "llvm/MC/MCContext.h" |
19 | #include "llvm/MC/MCExpr.h" |
20 | #include "llvm/MC/MCFixup.h" |
21 | #include "llvm/MC/MCInst.h" |
22 | #include "llvm/MC/MCInstrDesc.h" |
23 | #include "llvm/MC/MCInstrInfo.h" |
24 | #include "llvm/MC/MCRegisterInfo.h" |
25 | #include "llvm/MC/MCSubtargetInfo.h" |
26 | #include "llvm/MC/MCSymbol.h" |
27 | #include "llvm/Support/Casting.h" |
28 | #include "llvm/Support/ErrorHandling.h" |
29 | #include <cassert> |
30 | #include <cstdint> |
31 | #include <cstdlib> |
32 | |
33 | using namespace llvm; |
34 | |
35 | #define DEBUG_TYPE "mccodeemitter" |
36 | |
37 | namespace { |
38 | |
39 | enum PrefixKind { None, REX, REX2, XOP, VEX2, VEX3, EVEX }; |
40 | |
41 | static void emitByte(uint8_t C, SmallVectorImpl<char> &CB) { CB.push_back(Elt: C); } |
42 | |
43 | class X86OpcodePrefixHelper { |
44 | // REX (1 byte) |
45 | // +-----+ +------+ |
46 | // | 40H | | WRXB | |
47 | // +-----+ +------+ |
48 | |
49 | // REX2 (2 bytes) |
50 | // +-----+ +-------------------+ |
51 | // | D5H | | M | R'X'B' | WRXB | |
52 | // +-----+ +-------------------+ |
53 | |
54 | // XOP (3-byte) |
55 | // +-----+ +--------------+ +-------------------+ |
56 | // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp | |
57 | // +-----+ +--------------+ +-------------------+ |
58 | |
59 | // VEX2 (2 bytes) |
60 | // +-----+ +-------------------+ |
61 | // | C5h | | R | vvvv | L | pp | |
62 | // +-----+ +-------------------+ |
63 | |
64 | // VEX3 (3 bytes) |
65 | // +-----+ +--------------+ +-------------------+ |
66 | // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp | |
67 | // +-----+ +--------------+ +-------------------+ |
68 | |
69 | // VEX_R: opcode externsion equivalent to REX.R in |
70 | // 1's complement (inverted) form |
71 | // |
72 | // 1: Same as REX_R=0 (must be 1 in 32-bit mode) |
73 | // 0: Same as REX_R=1 (64 bit mode only) |
74 | |
75 | // VEX_X: equivalent to REX.X, only used when a |
76 | // register is used for index in SIB Byte. |
77 | // |
78 | // 1: Same as REX.X=0 (must be 1 in 32-bit mode) |
79 | // 0: Same as REX.X=1 (64-bit mode only) |
80 | |
81 | // VEX_B: |
82 | // 1: Same as REX_B=0 (ignored in 32-bit mode) |
83 | // 0: Same as REX_B=1 (64 bit mode only) |
84 | |
85 | // VEX_W: opcode specific (use like REX.W, or used for |
86 | // opcode extension, or ignored, depending on the opcode byte) |
87 | |
88 | // VEX_5M (VEX m-mmmmm field): |
89 | // |
90 | // 0b00000: Reserved for future use |
91 | // 0b00001: implied 0F leading opcode |
92 | // 0b00010: implied 0F 38 leading opcode bytes |
93 | // 0b00011: implied 0F 3A leading opcode bytes |
94 | // 0b00100: Reserved for future use |
95 | // 0b00101: VEX MAP5 |
96 | // 0b00110: VEX MAP6 |
97 | // 0b00111: VEX MAP7 |
98 | // 0b00111-0b11111: Reserved for future use |
99 | // 0b01000: XOP map select - 08h instructions with imm byte |
100 | // 0b01001: XOP map select - 09h instructions with no imm byte |
101 | // 0b01010: XOP map select - 0Ah instructions with imm dword |
102 | |
103 | // VEX_4V (VEX vvvv field): a register specifier |
104 | // (in 1's complement form) or 1111 if unused. |
105 | |
106 | // VEX_PP: opcode extension providing equivalent |
107 | // functionality of a SIMD prefix |
108 | // 0b00: None |
109 | // 0b01: 66 |
110 | // 0b10: F3 |
111 | // 0b11: F2 |
112 | |
113 | // EVEX (4 bytes) |
114 | // +-----+ +---------------+ +--------------------+ +------------------------+ |
115 | // | 62h | | RXBR' | B'mmm | | W | vvvv | X' | pp | | z | L'L | b | v' | aaa | |
116 | // +-----+ +---------------+ +--------------------+ +------------------------+ |
117 | |
118 | // EVEX_L2/VEX_L (Vector Length): |
119 | // L2 L |
120 | // 0 0: scalar or 128-bit vector |
121 | // 0 1: 256-bit vector |
122 | // 1 0: 512-bit vector |
123 | |
124 | // 32-Register Support in 64-bit Mode Using EVEX with Embedded REX/REX2 Bits: |
125 | // |
126 | // +----------+---------+--------+-----------+---------+--------------+ |
127 | // | | 4 | 3 | [2:0] | Type | Common Usage | |
128 | // +----------+---------+--------+-----------+---------+--------------+ |
129 | // | REG | EVEX_R' | EVEX_R | modrm.reg | GPR, VR | Dest or Src | |
130 | // | VVVV | EVEX_v' | EVEX.vvvv | GPR, VR | Dest or Src | |
131 | // | RM (VR) | EVEX_X | EVEX_B | modrm.r/m | VR | Dest or Src | |
132 | // | RM (GPR) | EVEX_B' | EVEX_B | modrm.r/m | GPR | Dest or Src | |
133 | // | BASE | EVEX_B' | EVEX_B | modrm.r/m | GPR | MA | |
134 | // | INDEX | EVEX_X' | EVEX_X | sib.index | GPR | MA | |
135 | // | VIDX | EVEX_v' | EVEX_X | sib.index | VR | VSIB MA | |
136 | // +----------+---------+--------+-----------+---------+--------------+ |
137 | // |
138 | // * GPR - General-purpose register |
139 | // * VR - Vector register |
140 | // * VIDX - Vector index |
141 | // * VSIB - Vector SIB |
142 | // * MA - Memory addressing |
143 | |
144 | private: |
145 | unsigned W : 1; |
146 | unsigned R : 1; |
147 | unsigned X : 1; |
148 | unsigned B : 1; |
149 | unsigned M : 1; |
150 | unsigned R2 : 1; |
151 | unsigned X2 : 1; |
152 | unsigned B2 : 1; |
153 | unsigned VEX_4V : 4; |
154 | unsigned VEX_L : 1; |
155 | unsigned VEX_PP : 2; |
156 | unsigned VEX_5M : 5; |
157 | unsigned EVEX_z : 1; |
158 | unsigned EVEX_L2 : 1; |
159 | unsigned EVEX_b : 1; |
160 | unsigned EVEX_V2 : 1; |
161 | unsigned EVEX_aaa : 3; |
162 | PrefixKind Kind = None; |
163 | const MCRegisterInfo &MRI; |
164 | |
165 | unsigned getRegEncoding(const MCInst &MI, unsigned OpNum) const { |
166 | return MRI.getEncodingValue(RegNo: MI.getOperand(i: OpNum).getReg()); |
167 | } |
168 | |
169 | void setR(unsigned Encoding) { R = Encoding >> 3 & 1; } |
170 | void setR2(unsigned Encoding) { |
171 | R2 = Encoding >> 4 & 1; |
172 | assert((!R2 || (Kind <= REX2 || Kind == EVEX)) && "invalid setting" ); |
173 | } |
174 | void setX(unsigned Encoding) { X = Encoding >> 3 & 1; } |
175 | void setX2(unsigned Encoding) { |
176 | assert((Kind <= REX2 || Kind == EVEX) && "invalid setting" ); |
177 | X2 = Encoding >> 4 & 1; |
178 | } |
179 | void setB(unsigned Encoding) { B = Encoding >> 3 & 1; } |
180 | void setB2(unsigned Encoding) { |
181 | assert((Kind <= REX2 || Kind == EVEX) && "invalid setting" ); |
182 | B2 = Encoding >> 4 & 1; |
183 | } |
184 | void set4V(unsigned Encoding) { VEX_4V = Encoding & 0xf; } |
185 | void setV2(unsigned Encoding) { EVEX_V2 = Encoding >> 4 & 1; } |
186 | |
187 | public: |
188 | void setW(bool V) { W = V; } |
189 | void setR(const MCInst &MI, unsigned OpNum) { |
190 | setR(getRegEncoding(MI, OpNum)); |
191 | } |
192 | void setX(const MCInst &MI, unsigned OpNum, unsigned Shift = 3) { |
193 | unsigned Reg = MI.getOperand(i: OpNum).getReg(); |
194 | // X is used to extend vector register only when shift is not 3. |
195 | if (Shift != 3 && X86II::isApxExtendedReg(RegNo: Reg)) |
196 | return; |
197 | unsigned Encoding = MRI.getEncodingValue(RegNo: Reg); |
198 | X = Encoding >> Shift & 1; |
199 | } |
200 | void setB(const MCInst &MI, unsigned OpNum) { |
201 | B = getRegEncoding(MI, OpNum) >> 3 & 1; |
202 | } |
203 | void set4V(const MCInst &MI, unsigned OpNum, bool IsImm = false) { |
204 | // OF, SF, ZF and CF reuse VEX_4V bits but are not reversed |
205 | if (IsImm) |
206 | set4V(~(MI.getOperand(i: OpNum).getImm())); |
207 | else |
208 | set4V(getRegEncoding(MI, OpNum)); |
209 | } |
210 | void setL(bool V) { VEX_L = V; } |
211 | void setPP(unsigned V) { VEX_PP = V; } |
212 | void set5M(unsigned V) { VEX_5M = V; } |
213 | void setR2(const MCInst &MI, unsigned OpNum) { |
214 | setR2(getRegEncoding(MI, OpNum)); |
215 | } |
216 | void setRR2(const MCInst &MI, unsigned OpNum) { |
217 | unsigned Encoding = getRegEncoding(MI, OpNum); |
218 | setR(Encoding); |
219 | setR2(Encoding); |
220 | } |
221 | void setM(bool V) { M = V; } |
222 | void setXX2(const MCInst &MI, unsigned OpNum) { |
223 | unsigned Reg = MI.getOperand(i: OpNum).getReg(); |
224 | unsigned Encoding = MRI.getEncodingValue(RegNo: Reg); |
225 | setX(Encoding); |
226 | // Index can be a vector register while X2 is used to extend GPR only. |
227 | if (Kind <= REX2 || X86II::isApxExtendedReg(RegNo: Reg)) |
228 | setX2(Encoding); |
229 | } |
230 | void setBB2(const MCInst &MI, unsigned OpNum) { |
231 | unsigned Reg = MI.getOperand(i: OpNum).getReg(); |
232 | unsigned Encoding = MRI.getEncodingValue(RegNo: Reg); |
233 | setB(Encoding); |
234 | // Base can be a vector register while B2 is used to extend GPR only |
235 | if (Kind <= REX2 || X86II::isApxExtendedReg(RegNo: Reg)) |
236 | setB2(Encoding); |
237 | } |
238 | void setZ(bool V) { EVEX_z = V; } |
239 | void setL2(bool V) { EVEX_L2 = V; } |
240 | void setEVEX_b(bool V) { EVEX_b = V; } |
241 | void setV2(const MCInst &MI, unsigned OpNum, bool HasVEX_4V) { |
242 | // Only needed with VSIB which don't use VVVV. |
243 | if (HasVEX_4V) |
244 | return; |
245 | unsigned Reg = MI.getOperand(i: OpNum).getReg(); |
246 | if (X86II::isApxExtendedReg(RegNo: Reg)) |
247 | return; |
248 | setV2(MRI.getEncodingValue(RegNo: Reg)); |
249 | } |
250 | void set4VV2(const MCInst &MI, unsigned OpNum) { |
251 | unsigned Encoding = getRegEncoding(MI, OpNum); |
252 | set4V(Encoding); |
253 | setV2(Encoding); |
254 | } |
255 | void setAAA(const MCInst &MI, unsigned OpNum) { |
256 | EVEX_aaa = getRegEncoding(MI, OpNum); |
257 | } |
258 | void setNF(bool V) { EVEX_aaa |= V << 2; } |
259 | void setSC(const MCInst &MI, unsigned OpNum) { |
260 | unsigned Encoding = MI.getOperand(i: OpNum).getImm(); |
261 | EVEX_V2 = ~(Encoding >> 3) & 0x1; |
262 | EVEX_aaa = Encoding & 0x7; |
263 | } |
264 | |
265 | X86OpcodePrefixHelper(const MCRegisterInfo &MRI) |
266 | : W(0), R(0), X(0), B(0), M(0), R2(0), X2(0), B2(0), VEX_4V(0), VEX_L(0), |
267 | VEX_PP(0), VEX_5M(0), EVEX_z(0), EVEX_L2(0), EVEX_b(0), EVEX_V2(0), |
268 | EVEX_aaa(0), MRI(MRI) {} |
269 | |
270 | void setLowerBound(PrefixKind K) { Kind = K; } |
271 | |
272 | PrefixKind determineOptimalKind() { |
273 | switch (Kind) { |
274 | case None: |
275 | // Not M bit here by intention b/c |
276 | // 1. No guarantee that REX2 is supported by arch w/o explict EGPR |
277 | // 2. REX2 is longer than 0FH |
278 | Kind = (R2 | X2 | B2) ? REX2 : (W | R | X | B) ? REX : None; |
279 | break; |
280 | case REX: |
281 | Kind = (R2 | X2 | B2) ? REX2 : REX; |
282 | break; |
283 | case REX2: |
284 | case XOP: |
285 | case VEX3: |
286 | case EVEX: |
287 | break; |
288 | case VEX2: |
289 | Kind = (W | X | B | (VEX_5M != 1)) ? VEX3 : VEX2; |
290 | break; |
291 | } |
292 | return Kind; |
293 | } |
294 | |
295 | void emit(SmallVectorImpl<char> &CB) const { |
296 | uint8_t FirstPayload = |
297 | ((~R) & 0x1) << 7 | ((~X) & 0x1) << 6 | ((~B) & 0x1) << 5; |
298 | uint8_t LastPayload = ((~VEX_4V) & 0xf) << 3 | VEX_L << 2 | VEX_PP; |
299 | switch (Kind) { |
300 | case None: |
301 | return; |
302 | case REX: |
303 | emitByte(C: 0x40 | W << 3 | R << 2 | X << 1 | B, CB); |
304 | return; |
305 | case REX2: |
306 | emitByte(C: 0xD5, CB); |
307 | emitByte(C: M << 7 | R2 << 6 | X2 << 5 | B2 << 4 | W << 3 | R << 2 | X << 1 | |
308 | B, |
309 | CB); |
310 | return; |
311 | case VEX2: |
312 | emitByte(C: 0xC5, CB); |
313 | emitByte(C: ((~R) & 1) << 7 | LastPayload, CB); |
314 | return; |
315 | case VEX3: |
316 | case XOP: |
317 | emitByte(C: Kind == VEX3 ? 0xC4 : 0x8F, CB); |
318 | emitByte(C: FirstPayload | VEX_5M, CB); |
319 | emitByte(C: W << 7 | LastPayload, CB); |
320 | return; |
321 | case EVEX: |
322 | assert(VEX_5M && !(VEX_5M & 0x8) && "invalid mmm fields for EVEX!" ); |
323 | emitByte(C: 0x62, CB); |
324 | emitByte(C: FirstPayload | ((~R2) & 0x1) << 4 | B2 << 3 | VEX_5M, CB); |
325 | emitByte(C: W << 7 | ((~VEX_4V) & 0xf) << 3 | ((~X2) & 0x1) << 2 | VEX_PP, |
326 | CB); |
327 | emitByte(C: EVEX_z << 7 | EVEX_L2 << 6 | VEX_L << 5 | EVEX_b << 4 | |
328 | ((~EVEX_V2) & 0x1) << 3 | EVEX_aaa, |
329 | CB); |
330 | return; |
331 | } |
332 | } |
333 | }; |
334 | |
335 | class X86MCCodeEmitter : public MCCodeEmitter { |
336 | const MCInstrInfo &MCII; |
337 | MCContext &Ctx; |
338 | |
339 | public: |
340 | X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx) |
341 | : MCII(mcii), Ctx(ctx) {} |
342 | X86MCCodeEmitter(const X86MCCodeEmitter &) = delete; |
343 | X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete; |
344 | ~X86MCCodeEmitter() override = default; |
345 | |
346 | void emitPrefix(const MCInst &MI, SmallVectorImpl<char> &CB, |
347 | const MCSubtargetInfo &STI) const; |
348 | |
349 | void encodeInstruction(const MCInst &MI, SmallVectorImpl<char> &CB, |
350 | SmallVectorImpl<MCFixup> &Fixups, |
351 | const MCSubtargetInfo &STI) const override; |
352 | |
353 | private: |
354 | unsigned getX86RegNum(const MCOperand &MO) const; |
355 | |
356 | unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const; |
357 | |
358 | void emitImmediate(const MCOperand &Disp, SMLoc Loc, unsigned ImmSize, |
359 | MCFixupKind FixupKind, uint64_t StartByte, |
360 | SmallVectorImpl<char> &CB, |
361 | SmallVectorImpl<MCFixup> &Fixups, int ImmOffset = 0) const; |
362 | |
363 | void emitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld, |
364 | SmallVectorImpl<char> &CB) const; |
365 | |
366 | void emitSIBByte(unsigned SS, unsigned Index, unsigned Base, |
367 | SmallVectorImpl<char> &CB) const; |
368 | |
369 | void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField, |
370 | uint64_t TSFlags, PrefixKind Kind, uint64_t StartByte, |
371 | SmallVectorImpl<char> &CB, |
372 | SmallVectorImpl<MCFixup> &Fixups, |
373 | const MCSubtargetInfo &STI, |
374 | bool ForceSIB = false) const; |
375 | |
376 | PrefixKind emitPrefixImpl(unsigned &CurOp, const MCInst &MI, |
377 | const MCSubtargetInfo &STI, |
378 | SmallVectorImpl<char> &CB) const; |
379 | |
380 | PrefixKind emitVEXOpcodePrefix(int MemOperand, const MCInst &MI, |
381 | const MCSubtargetInfo &STI, |
382 | SmallVectorImpl<char> &CB) const; |
383 | |
384 | void emitSegmentOverridePrefix(unsigned SegOperand, const MCInst &MI, |
385 | SmallVectorImpl<char> &CB) const; |
386 | |
387 | PrefixKind emitOpcodePrefix(int MemOperand, const MCInst &MI, |
388 | const MCSubtargetInfo &STI, |
389 | SmallVectorImpl<char> &CB) const; |
390 | |
391 | PrefixKind emitREXPrefix(int MemOperand, const MCInst &MI, |
392 | const MCSubtargetInfo &STI, |
393 | SmallVectorImpl<char> &CB) const; |
394 | }; |
395 | |
396 | } // end anonymous namespace |
397 | |
398 | static uint8_t modRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) { |
399 | assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!" ); |
400 | return RM | (RegOpcode << 3) | (Mod << 6); |
401 | } |
402 | |
403 | static void emitConstant(uint64_t Val, unsigned Size, |
404 | SmallVectorImpl<char> &CB) { |
405 | // Output the constant in little endian byte order. |
406 | for (unsigned i = 0; i != Size; ++i) { |
407 | emitByte(C: Val & 255, CB); |
408 | Val >>= 8; |
409 | } |
410 | } |
411 | |
412 | /// Determine if this immediate can fit in a disp8 or a compressed disp8 for |
413 | /// EVEX instructions. \p will be set to the value to pass to the ImmOffset |
414 | /// parameter of emitImmediate. |
415 | static bool isDispOrCDisp8(uint64_t TSFlags, int Value, int &ImmOffset) { |
416 | bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX; |
417 | |
418 | unsigned CD8_Scale = |
419 | (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift; |
420 | CD8_Scale = CD8_Scale ? 1U << (CD8_Scale - 1) : 0U; |
421 | if (!HasEVEX || !CD8_Scale) |
422 | return isInt<8>(x: Value); |
423 | |
424 | assert(isPowerOf2_32(CD8_Scale) && "Unexpected CD8 scale!" ); |
425 | if (Value & (CD8_Scale - 1)) // Unaligned offset |
426 | return false; |
427 | |
428 | int CDisp8 = Value / static_cast<int>(CD8_Scale); |
429 | if (!isInt<8>(x: CDisp8)) |
430 | return false; |
431 | |
432 | // ImmOffset will be added to Value in emitImmediate leaving just CDisp8. |
433 | ImmOffset = CDisp8 - Value; |
434 | return true; |
435 | } |
436 | |
437 | /// \returns the appropriate fixup kind to use for an immediate in an |
438 | /// instruction with the specified TSFlags. |
439 | static MCFixupKind getImmFixupKind(uint64_t TSFlags) { |
440 | unsigned Size = X86II::getSizeOfImm(TSFlags); |
441 | bool isPCRel = X86II::isImmPCRel(TSFlags); |
442 | |
443 | if (X86II::isImmSigned(TSFlags)) { |
444 | switch (Size) { |
445 | default: |
446 | llvm_unreachable("Unsupported signed fixup size!" ); |
447 | case 4: |
448 | return MCFixupKind(X86::reloc_signed_4byte); |
449 | } |
450 | } |
451 | return MCFixup::getKindForSize(Size, IsPCRel: isPCRel); |
452 | } |
453 | |
454 | enum GlobalOffsetTableExprKind { GOT_None, GOT_Normal, GOT_SymDiff }; |
455 | |
456 | /// Check if this expression starts with _GLOBAL_OFFSET_TABLE_ and if it is |
457 | /// of the form _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on |
458 | /// ELF i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that |
459 | /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start of a |
460 | /// binary expression. |
461 | static GlobalOffsetTableExprKind |
462 | startsWithGlobalOffsetTable(const MCExpr *Expr) { |
463 | const MCExpr *RHS = nullptr; |
464 | if (Expr->getKind() == MCExpr::Binary) { |
465 | const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr); |
466 | Expr = BE->getLHS(); |
467 | RHS = BE->getRHS(); |
468 | } |
469 | |
470 | if (Expr->getKind() != MCExpr::SymbolRef) |
471 | return GOT_None; |
472 | |
473 | const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr); |
474 | const MCSymbol &S = Ref->getSymbol(); |
475 | if (S.getName() != "_GLOBAL_OFFSET_TABLE_" ) |
476 | return GOT_None; |
477 | if (RHS && RHS->getKind() == MCExpr::SymbolRef) |
478 | return GOT_SymDiff; |
479 | return GOT_Normal; |
480 | } |
481 | |
482 | static bool hasSecRelSymbolRef(const MCExpr *Expr) { |
483 | if (Expr->getKind() == MCExpr::SymbolRef) { |
484 | const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr); |
485 | return Ref->getKind() == MCSymbolRefExpr::VK_SECREL; |
486 | } |
487 | return false; |
488 | } |
489 | |
490 | static bool isPCRel32Branch(const MCInst &MI, const MCInstrInfo &MCII) { |
491 | unsigned Opcode = MI.getOpcode(); |
492 | const MCInstrDesc &Desc = MCII.get(Opcode); |
493 | if ((Opcode != X86::CALL64pcrel32 && Opcode != X86::JMP_4 && |
494 | Opcode != X86::JCC_4) || |
495 | getImmFixupKind(TSFlags: Desc.TSFlags) != FK_PCRel_4) |
496 | return false; |
497 | |
498 | unsigned CurOp = X86II::getOperandBias(Desc); |
499 | const MCOperand &Op = MI.getOperand(i: CurOp); |
500 | if (!Op.isExpr()) |
501 | return false; |
502 | |
503 | const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Val: Op.getExpr()); |
504 | return Ref && Ref->getKind() == MCSymbolRefExpr::VK_None; |
505 | } |
506 | |
507 | unsigned X86MCCodeEmitter::getX86RegNum(const MCOperand &MO) const { |
508 | return Ctx.getRegisterInfo()->getEncodingValue(RegNo: MO.getReg()) & 0x7; |
509 | } |
510 | |
511 | unsigned X86MCCodeEmitter::getX86RegEncoding(const MCInst &MI, |
512 | unsigned OpNum) const { |
513 | return Ctx.getRegisterInfo()->getEncodingValue(RegNo: MI.getOperand(i: OpNum).getReg()); |
514 | } |
515 | |
516 | void X86MCCodeEmitter::emitImmediate(const MCOperand &DispOp, SMLoc Loc, |
517 | unsigned Size, MCFixupKind FixupKind, |
518 | uint64_t StartByte, |
519 | SmallVectorImpl<char> &CB, |
520 | SmallVectorImpl<MCFixup> &Fixups, |
521 | int ImmOffset) const { |
522 | const MCExpr *Expr = nullptr; |
523 | if (DispOp.isImm()) { |
524 | // If this is a simple integer displacement that doesn't require a |
525 | // relocation, emit it now. |
526 | if (FixupKind != FK_PCRel_1 && FixupKind != FK_PCRel_2 && |
527 | FixupKind != FK_PCRel_4) { |
528 | emitConstant(Val: DispOp.getImm() + ImmOffset, Size, CB); |
529 | return; |
530 | } |
531 | Expr = MCConstantExpr::create(Value: DispOp.getImm(), Ctx); |
532 | } else { |
533 | Expr = DispOp.getExpr(); |
534 | } |
535 | |
536 | // If we have an immoffset, add it to the expression. |
537 | if ((FixupKind == FK_Data_4 || FixupKind == FK_Data_8 || |
538 | FixupKind == MCFixupKind(X86::reloc_signed_4byte))) { |
539 | GlobalOffsetTableExprKind Kind = startsWithGlobalOffsetTable(Expr); |
540 | if (Kind != GOT_None) { |
541 | assert(ImmOffset == 0); |
542 | |
543 | if (Size == 8) { |
544 | FixupKind = MCFixupKind(X86::reloc_global_offset_table8); |
545 | } else { |
546 | assert(Size == 4); |
547 | FixupKind = MCFixupKind(X86::reloc_global_offset_table); |
548 | } |
549 | |
550 | if (Kind == GOT_Normal) |
551 | ImmOffset = static_cast<int>(CB.size() - StartByte); |
552 | } else if (Expr->getKind() == MCExpr::SymbolRef) { |
553 | if (hasSecRelSymbolRef(Expr)) { |
554 | FixupKind = MCFixupKind(FK_SecRel_4); |
555 | } |
556 | } else if (Expr->getKind() == MCExpr::Binary) { |
557 | const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr *>(Expr); |
558 | if (hasSecRelSymbolRef(Expr: Bin->getLHS()) || |
559 | hasSecRelSymbolRef(Expr: Bin->getRHS())) { |
560 | FixupKind = MCFixupKind(FK_SecRel_4); |
561 | } |
562 | } |
563 | } |
564 | |
565 | // If the fixup is pc-relative, we need to bias the value to be relative to |
566 | // the start of the field, not the end of the field. |
567 | if (FixupKind == FK_PCRel_4 || |
568 | FixupKind == MCFixupKind(X86::reloc_riprel_4byte) || |
569 | FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) || |
570 | FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) || |
571 | FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex) || |
572 | FixupKind == MCFixupKind(X86::reloc_branch_4byte_pcrel)) { |
573 | ImmOffset -= 4; |
574 | // If this is a pc-relative load off _GLOBAL_OFFSET_TABLE_: |
575 | // leaq _GLOBAL_OFFSET_TABLE_(%rip), %r15 |
576 | // this needs to be a GOTPC32 relocation. |
577 | if (startsWithGlobalOffsetTable(Expr) != GOT_None) |
578 | FixupKind = MCFixupKind(X86::reloc_global_offset_table); |
579 | } |
580 | if (FixupKind == FK_PCRel_2) |
581 | ImmOffset -= 2; |
582 | if (FixupKind == FK_PCRel_1) |
583 | ImmOffset -= 1; |
584 | |
585 | if (ImmOffset) |
586 | Expr = MCBinaryExpr::createAdd(LHS: Expr, RHS: MCConstantExpr::create(Value: ImmOffset, Ctx), |
587 | Ctx); |
588 | |
589 | // Emit a symbolic constant as a fixup and 4 zeros. |
590 | Fixups.push_back(Elt: MCFixup::create(Offset: static_cast<uint32_t>(CB.size() - StartByte), |
591 | Value: Expr, Kind: FixupKind, Loc)); |
592 | emitConstant(Val: 0, Size, CB); |
593 | } |
594 | |
595 | void X86MCCodeEmitter::emitRegModRMByte(const MCOperand &ModRMReg, |
596 | unsigned RegOpcodeFld, |
597 | SmallVectorImpl<char> &CB) const { |
598 | emitByte(C: modRMByte(Mod: 3, RegOpcode: RegOpcodeFld, RM: getX86RegNum(MO: ModRMReg)), CB); |
599 | } |
600 | |
601 | void X86MCCodeEmitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base, |
602 | SmallVectorImpl<char> &CB) const { |
603 | // SIB byte is in the same format as the modRMByte. |
604 | emitByte(C: modRMByte(Mod: SS, RegOpcode: Index, RM: Base), CB); |
605 | } |
606 | |
607 | void X86MCCodeEmitter::emitMemModRMByte( |
608 | const MCInst &MI, unsigned Op, unsigned RegOpcodeField, uint64_t TSFlags, |
609 | PrefixKind Kind, uint64_t StartByte, SmallVectorImpl<char> &CB, |
610 | SmallVectorImpl<MCFixup> &Fixups, const MCSubtargetInfo &STI, |
611 | bool ForceSIB) const { |
612 | const MCOperand &Disp = MI.getOperand(i: Op + X86::AddrDisp); |
613 | const MCOperand &Base = MI.getOperand(i: Op + X86::AddrBaseReg); |
614 | const MCOperand &Scale = MI.getOperand(i: Op + X86::AddrScaleAmt); |
615 | const MCOperand &IndexReg = MI.getOperand(i: Op + X86::AddrIndexReg); |
616 | unsigned BaseReg = Base.getReg(); |
617 | |
618 | // Handle %rip relative addressing. |
619 | if (BaseReg == X86::RIP || |
620 | BaseReg == X86::EIP) { // [disp32+rIP] in X86-64 mode |
621 | assert(STI.hasFeature(X86::Is64Bit) && |
622 | "Rip-relative addressing requires 64-bit mode" ); |
623 | assert(IndexReg.getReg() == 0 && !ForceSIB && |
624 | "Invalid rip-relative address" ); |
625 | emitByte(C: modRMByte(Mod: 0, RegOpcode: RegOpcodeField, RM: 5), CB); |
626 | |
627 | unsigned Opcode = MI.getOpcode(); |
628 | unsigned FixupKind = [&]() { |
629 | // Enable relaxed relocation only for a MCSymbolRefExpr. We cannot use a |
630 | // relaxed relocation if an offset is present (e.g. x@GOTPCREL+4). |
631 | if (!(Disp.isExpr() && isa<MCSymbolRefExpr>(Val: Disp.getExpr()))) |
632 | return X86::reloc_riprel_4byte; |
633 | |
634 | // Certain loads for GOT references can be relocated against the symbol |
635 | // directly if the symbol ends up in the same linkage unit. |
636 | switch (Opcode) { |
637 | default: |
638 | return X86::reloc_riprel_4byte; |
639 | case X86::MOV64rm: |
640 | // movq loads is a subset of reloc_riprel_4byte_relax_rex. It is a |
641 | // special case because COFF and Mach-O don't support ELF's more |
642 | // flexible R_X86_64_REX_GOTPCRELX relaxation. |
643 | // TODO: Support new relocation for REX2. |
644 | assert(Kind == REX || Kind == REX2); |
645 | return X86::reloc_riprel_4byte_movq_load; |
646 | case X86::ADC32rm: |
647 | case X86::ADD32rm: |
648 | case X86::AND32rm: |
649 | case X86::CMP32rm: |
650 | case X86::MOV32rm: |
651 | case X86::OR32rm: |
652 | case X86::SBB32rm: |
653 | case X86::SUB32rm: |
654 | case X86::TEST32mr: |
655 | case X86::XOR32rm: |
656 | case X86::CALL64m: |
657 | case X86::JMP64m: |
658 | case X86::TAILJMPm64: |
659 | case X86::TEST64mr: |
660 | case X86::ADC64rm: |
661 | case X86::ADD64rm: |
662 | case X86::AND64rm: |
663 | case X86::CMP64rm: |
664 | case X86::OR64rm: |
665 | case X86::SBB64rm: |
666 | case X86::SUB64rm: |
667 | case X86::XOR64rm: |
668 | // We haven't support relocation for REX2 prefix, so temporarily use REX |
669 | // relocation. |
670 | // TODO: Support new relocation for REX2. |
671 | return (Kind == REX || Kind == REX2) ? X86::reloc_riprel_4byte_relax_rex |
672 | : X86::reloc_riprel_4byte_relax; |
673 | } |
674 | }(); |
675 | |
676 | // rip-relative addressing is actually relative to the *next* instruction. |
677 | // Since an immediate can follow the mod/rm byte for an instruction, this |
678 | // means that we need to bias the displacement field of the instruction with |
679 | // the size of the immediate field. If we have this case, add it into the |
680 | // expression to emit. |
681 | // Note: rip-relative addressing using immediate displacement values should |
682 | // not be adjusted, assuming it was the user's intent. |
683 | int ImmSize = !Disp.isImm() && X86II::hasImm(TSFlags) |
684 | ? X86II::getSizeOfImm(TSFlags) |
685 | : 0; |
686 | |
687 | emitImmediate(DispOp: Disp, Loc: MI.getLoc(), Size: 4, FixupKind: MCFixupKind(FixupKind), StartByte, CB, |
688 | Fixups, ImmOffset: -ImmSize); |
689 | return; |
690 | } |
691 | |
692 | unsigned BaseRegNo = BaseReg ? getX86RegNum(MO: Base) : -1U; |
693 | |
694 | bool IsAdSize16 = STI.hasFeature(Feature: X86::Is32Bit) && |
695 | (TSFlags & X86II::AdSizeMask) == X86II::AdSize16; |
696 | |
697 | // 16-bit addressing forms of the ModR/M byte have a different encoding for |
698 | // the R/M field and are far more limited in which registers can be used. |
699 | if (IsAdSize16 || X86_MC::is16BitMemOperand(MI, Op, STI)) { |
700 | if (BaseReg) { |
701 | // For 32-bit addressing, the row and column values in Table 2-2 are |
702 | // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with |
703 | // some special cases. And getX86RegNum reflects that numbering. |
704 | // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A, |
705 | // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only |
706 | // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order, |
707 | // while values 0-3 indicate the allowed combinations (base+index) of |
708 | // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI. |
709 | // |
710 | // R16Table[] is a lookup from the normal RegNo, to the row values from |
711 | // Table 2-1 for 16-bit addressing modes. Where zero means disallowed. |
712 | static const unsigned R16Table[] = {0, 0, 0, 7, 0, 6, 4, 5}; |
713 | unsigned RMfield = R16Table[BaseRegNo]; |
714 | |
715 | assert(RMfield && "invalid 16-bit base register" ); |
716 | |
717 | if (IndexReg.getReg()) { |
718 | unsigned IndexReg16 = R16Table[getX86RegNum(MO: IndexReg)]; |
719 | |
720 | assert(IndexReg16 && "invalid 16-bit index register" ); |
721 | // We must have one of SI/DI (4,5), and one of BP/BX (6,7). |
722 | assert(((IndexReg16 ^ RMfield) & 2) && |
723 | "invalid 16-bit base/index register combination" ); |
724 | assert(Scale.getImm() == 1 && |
725 | "invalid scale for 16-bit memory reference" ); |
726 | |
727 | // Allow base/index to appear in either order (although GAS doesn't). |
728 | if (IndexReg16 & 2) |
729 | RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1); |
730 | else |
731 | RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1); |
732 | } |
733 | |
734 | if (Disp.isImm() && isInt<8>(x: Disp.getImm())) { |
735 | if (Disp.getImm() == 0 && RMfield != 6) { |
736 | // There is no displacement; just the register. |
737 | emitByte(C: modRMByte(Mod: 0, RegOpcode: RegOpcodeField, RM: RMfield), CB); |
738 | return; |
739 | } |
740 | // Use the [REG]+disp8 form, including for [BP] which cannot be encoded. |
741 | emitByte(C: modRMByte(Mod: 1, RegOpcode: RegOpcodeField, RM: RMfield), CB); |
742 | emitImmediate(DispOp: Disp, Loc: MI.getLoc(), Size: 1, FixupKind: FK_Data_1, StartByte, CB, Fixups); |
743 | return; |
744 | } |
745 | // This is the [REG]+disp16 case. |
746 | emitByte(C: modRMByte(Mod: 2, RegOpcode: RegOpcodeField, RM: RMfield), CB); |
747 | } else { |
748 | assert(IndexReg.getReg() == 0 && "Unexpected index register!" ); |
749 | // There is no BaseReg; this is the plain [disp16] case. |
750 | emitByte(C: modRMByte(Mod: 0, RegOpcode: RegOpcodeField, RM: 6), CB); |
751 | } |
752 | |
753 | // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases. |
754 | emitImmediate(DispOp: Disp, Loc: MI.getLoc(), Size: 2, FixupKind: FK_Data_2, StartByte, CB, Fixups); |
755 | return; |
756 | } |
757 | |
758 | // Check for presence of {disp8} or {disp32} pseudo prefixes. |
759 | bool UseDisp8 = MI.getFlags() & X86::IP_USE_DISP8; |
760 | bool UseDisp32 = MI.getFlags() & X86::IP_USE_DISP32; |
761 | |
762 | // We only allow no displacement if no pseudo prefix is present. |
763 | bool AllowNoDisp = !UseDisp8 && !UseDisp32; |
764 | // Disp8 is allowed unless the {disp32} prefix is present. |
765 | bool AllowDisp8 = !UseDisp32; |
766 | |
767 | // Determine whether a SIB byte is needed. |
768 | if (!ForceSIB && !X86II::needSIB(BaseReg, IndexReg: IndexReg.getReg(), |
769 | In64BitMode: STI.hasFeature(Feature: X86::Is64Bit))) { |
770 | if (BaseReg == 0) { // [disp32] in X86-32 mode |
771 | emitByte(C: modRMByte(Mod: 0, RegOpcode: RegOpcodeField, RM: 5), CB); |
772 | emitImmediate(DispOp: Disp, Loc: MI.getLoc(), Size: 4, FixupKind: FK_Data_4, StartByte, CB, Fixups); |
773 | return; |
774 | } |
775 | |
776 | // If the base is not EBP/ESP/R12/R13/R20/R21/R28/R29 and there is no |
777 | // displacement, use simple indirect register encoding, this handles |
778 | // addresses like [EAX]. The encoding for [EBP], [R13], [R20], [R21], [R28] |
779 | // or [R29] with no displacement means [disp32] so we handle it by emitting |
780 | // a displacement of 0 later. |
781 | if (BaseRegNo != N86::EBP) { |
782 | if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp) { |
783 | emitByte(C: modRMByte(Mod: 0, RegOpcode: RegOpcodeField, RM: BaseRegNo), CB); |
784 | return; |
785 | } |
786 | |
787 | // If the displacement is @tlscall, treat it as a zero. |
788 | if (Disp.isExpr()) { |
789 | auto *Sym = dyn_cast<MCSymbolRefExpr>(Val: Disp.getExpr()); |
790 | if (Sym && Sym->getKind() == MCSymbolRefExpr::VK_TLSCALL) { |
791 | // This is exclusively used by call *a@tlscall(base). The relocation |
792 | // (R_386_TLSCALL or R_X86_64_TLSCALL) applies to the beginning. |
793 | Fixups.push_back(Elt: MCFixup::create(Offset: 0, Value: Sym, Kind: FK_NONE, Loc: MI.getLoc())); |
794 | emitByte(C: modRMByte(Mod: 0, RegOpcode: RegOpcodeField, RM: BaseRegNo), CB); |
795 | return; |
796 | } |
797 | } |
798 | } |
799 | |
800 | // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. |
801 | // Including a compressed disp8 for EVEX instructions that support it. |
802 | // This also handles the 0 displacement for [EBP], [R13], [R21] or [R29]. We |
803 | // can't use disp8 if the {disp32} pseudo prefix is present. |
804 | if (Disp.isImm() && AllowDisp8) { |
805 | int ImmOffset = 0; |
806 | if (isDispOrCDisp8(TSFlags, Value: Disp.getImm(), ImmOffset)) { |
807 | emitByte(C: modRMByte(Mod: 1, RegOpcode: RegOpcodeField, RM: BaseRegNo), CB); |
808 | emitImmediate(DispOp: Disp, Loc: MI.getLoc(), Size: 1, FixupKind: FK_Data_1, StartByte, CB, Fixups, |
809 | ImmOffset); |
810 | return; |
811 | } |
812 | } |
813 | |
814 | // Otherwise, emit the most general non-SIB encoding: [REG+disp32]. |
815 | // Displacement may be 0 for [EBP], [R13], [R21], [R29] case if {disp32} |
816 | // pseudo prefix prevented using disp8 above. |
817 | emitByte(C: modRMByte(Mod: 2, RegOpcode: RegOpcodeField, RM: BaseRegNo), CB); |
818 | unsigned Opcode = MI.getOpcode(); |
819 | unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax |
820 | : X86::reloc_signed_4byte; |
821 | emitImmediate(DispOp: Disp, Loc: MI.getLoc(), Size: 4, FixupKind: MCFixupKind(FixupKind), StartByte, CB, |
822 | Fixups); |
823 | return; |
824 | } |
825 | |
826 | // We need a SIB byte, so start by outputting the ModR/M byte first |
827 | assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP && |
828 | "Cannot use ESP as index reg!" ); |
829 | |
830 | bool ForceDisp32 = false; |
831 | bool ForceDisp8 = false; |
832 | int ImmOffset = 0; |
833 | if (BaseReg == 0) { |
834 | // If there is no base register, we emit the special case SIB byte with |
835 | // MOD=0, BASE=5, to JUST get the index, scale, and displacement. |
836 | BaseRegNo = 5; |
837 | emitByte(C: modRMByte(Mod: 0, RegOpcode: RegOpcodeField, RM: 4), CB); |
838 | ForceDisp32 = true; |
839 | } else if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp && |
840 | // Base reg can't be EBP/RBP/R13/R21/R29 as that would end up with |
841 | // '5' as the base field, but that is the magic [*] nomenclature |
842 | // that indicates no base when mod=0. For these cases we'll emit a |
843 | // 0 displacement instead. |
844 | BaseRegNo != N86::EBP) { |
845 | // Emit no displacement ModR/M byte |
846 | emitByte(C: modRMByte(Mod: 0, RegOpcode: RegOpcodeField, RM: 4), CB); |
847 | } else if (Disp.isImm() && AllowDisp8 && |
848 | isDispOrCDisp8(TSFlags, Value: Disp.getImm(), ImmOffset)) { |
849 | // Displacement fits in a byte or matches an EVEX compressed disp8, use |
850 | // disp8 encoding. This also handles EBP/R13/R21/R29 base with 0 |
851 | // displacement unless {disp32} pseudo prefix was used. |
852 | emitByte(C: modRMByte(Mod: 1, RegOpcode: RegOpcodeField, RM: 4), CB); |
853 | ForceDisp8 = true; |
854 | } else { |
855 | // Otherwise, emit the normal disp32 encoding. |
856 | emitByte(C: modRMByte(Mod: 2, RegOpcode: RegOpcodeField, RM: 4), CB); |
857 | ForceDisp32 = true; |
858 | } |
859 | |
860 | // Calculate what the SS field value should be... |
861 | static const unsigned SSTable[] = {~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3}; |
862 | unsigned SS = SSTable[Scale.getImm()]; |
863 | |
864 | unsigned IndexRegNo = IndexReg.getReg() ? getX86RegNum(MO: IndexReg) : 4; |
865 | |
866 | emitSIBByte(SS, Index: IndexRegNo, Base: BaseRegNo, CB); |
867 | |
868 | // Do we need to output a displacement? |
869 | if (ForceDisp8) |
870 | emitImmediate(DispOp: Disp, Loc: MI.getLoc(), Size: 1, FixupKind: FK_Data_1, StartByte, CB, Fixups, |
871 | ImmOffset); |
872 | else if (ForceDisp32) |
873 | emitImmediate(DispOp: Disp, Loc: MI.getLoc(), Size: 4, FixupKind: MCFixupKind(X86::reloc_signed_4byte), |
874 | StartByte, CB, Fixups); |
875 | } |
876 | |
877 | /// Emit all instruction prefixes. |
878 | /// |
879 | /// \returns one of the REX, XOP, VEX2, VEX3, EVEX if any of them is used, |
880 | /// otherwise returns None. |
881 | PrefixKind X86MCCodeEmitter::emitPrefixImpl(unsigned &CurOp, const MCInst &MI, |
882 | const MCSubtargetInfo &STI, |
883 | SmallVectorImpl<char> &CB) const { |
884 | uint64_t TSFlags = MCII.get(Opcode: MI.getOpcode()).TSFlags; |
885 | // Determine where the memory operand starts, if present. |
886 | int MemoryOperand = X86II::getMemoryOperandNo(TSFlags); |
887 | // Emit segment override opcode prefix as needed. |
888 | if (MemoryOperand != -1) { |
889 | MemoryOperand += CurOp; |
890 | emitSegmentOverridePrefix(SegOperand: MemoryOperand + X86::AddrSegmentReg, MI, CB); |
891 | } |
892 | |
893 | // Emit the repeat opcode prefix as needed. |
894 | unsigned Flags = MI.getFlags(); |
895 | if (TSFlags & X86II::REP || Flags & X86::IP_HAS_REPEAT) |
896 | emitByte(C: 0xF3, CB); |
897 | if (Flags & X86::IP_HAS_REPEAT_NE) |
898 | emitByte(C: 0xF2, CB); |
899 | |
900 | // Emit the address size opcode prefix as needed. |
901 | if (X86_MC::needsAddressSizeOverride(MI, STI, MemoryOperand, TSFlags) || |
902 | Flags & X86::IP_HAS_AD_SIZE) |
903 | emitByte(C: 0x67, CB); |
904 | |
905 | uint64_t Form = TSFlags & X86II::FormMask; |
906 | switch (Form) { |
907 | default: |
908 | break; |
909 | case X86II::RawFrmDstSrc: { |
910 | // Emit segment override opcode prefix as needed (not for %ds). |
911 | if (MI.getOperand(i: 2).getReg() != X86::DS) |
912 | emitSegmentOverridePrefix(SegOperand: 2, MI, CB); |
913 | CurOp += 3; // Consume operands. |
914 | break; |
915 | } |
916 | case X86II::RawFrmSrc: { |
917 | // Emit segment override opcode prefix as needed (not for %ds). |
918 | if (MI.getOperand(i: 1).getReg() != X86::DS) |
919 | emitSegmentOverridePrefix(SegOperand: 1, MI, CB); |
920 | CurOp += 2; // Consume operands. |
921 | break; |
922 | } |
923 | case X86II::RawFrmDst: { |
924 | ++CurOp; // Consume operand. |
925 | break; |
926 | } |
927 | case X86II::RawFrmMemOffs: { |
928 | // Emit segment override opcode prefix as needed. |
929 | emitSegmentOverridePrefix(SegOperand: 1, MI, CB); |
930 | break; |
931 | } |
932 | } |
933 | |
934 | // REX prefix is optional, but if used must be immediately before the opcode |
935 | // Encoding type for this instruction. |
936 | return (TSFlags & X86II::EncodingMask) |
937 | ? emitVEXOpcodePrefix(MemOperand: MemoryOperand, MI, STI, CB) |
938 | : emitOpcodePrefix(MemOperand: MemoryOperand, MI, STI, CB); |
939 | } |
940 | |
941 | // AVX instructions are encoded using an encoding scheme that combines |
942 | // prefix bytes, opcode extension field, operand encoding fields, and vector |
943 | // length encoding capability into a new prefix, referred to as VEX. |
944 | |
945 | // The majority of the AVX-512 family of instructions (operating on |
946 | // 512/256/128-bit vector register operands) are encoded using a new prefix |
947 | // (called EVEX). |
948 | |
949 | // XOP is a revised subset of what was originally intended as SSE5. It was |
950 | // changed to be similar but not overlapping with AVX. |
951 | |
952 | /// Emit XOP, VEX2, VEX3 or EVEX prefix. |
953 | /// \returns the used prefix. |
954 | PrefixKind |
955 | X86MCCodeEmitter::emitVEXOpcodePrefix(int MemOperand, const MCInst &MI, |
956 | const MCSubtargetInfo &STI, |
957 | SmallVectorImpl<char> &CB) const { |
958 | const MCInstrDesc &Desc = MCII.get(Opcode: MI.getOpcode()); |
959 | uint64_t TSFlags = Desc.TSFlags; |
960 | |
961 | assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX." ); |
962 | |
963 | #ifndef NDEBUG |
964 | unsigned NumOps = MI.getNumOperands(); |
965 | for (unsigned I = NumOps ? X86II::getOperandBias(Desc) : 0; I != NumOps; |
966 | ++I) { |
967 | const MCOperand &MO = MI.getOperand(I); |
968 | if (!MO.isReg()) |
969 | continue; |
970 | unsigned Reg = MO.getReg(); |
971 | if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH) |
972 | report_fatal_error( |
973 | "Cannot encode high byte register in VEX/EVEX-prefixed instruction" ); |
974 | } |
975 | #endif |
976 | |
977 | X86OpcodePrefixHelper Prefix(*Ctx.getRegisterInfo()); |
978 | switch (TSFlags & X86II::EncodingMask) { |
979 | default: |
980 | break; |
981 | case X86II::XOP: |
982 | Prefix.setLowerBound(XOP); |
983 | break; |
984 | case X86II::VEX: |
985 | // VEX can be 2 byte or 3 byte, not determined yet if not explicit |
986 | Prefix.setLowerBound((MI.getFlags() & X86::IP_USE_VEX3) ? VEX3 : VEX2); |
987 | break; |
988 | case X86II::EVEX: |
989 | Prefix.setLowerBound(EVEX); |
990 | break; |
991 | } |
992 | |
993 | Prefix.setW(TSFlags & X86II::REX_W); |
994 | Prefix.setNF(TSFlags & X86II::EVEX_NF); |
995 | |
996 | bool HasEVEX_K = TSFlags & X86II::EVEX_K; |
997 | bool HasVEX_4V = TSFlags & X86II::VEX_4V; |
998 | bool IsND = X86II::hasNewDataDest(TSFlags); // IsND implies HasVEX_4V |
999 | bool HasEVEX_RC = TSFlags & X86II::EVEX_RC; |
1000 | |
1001 | switch (TSFlags & X86II::OpMapMask) { |
1002 | default: |
1003 | llvm_unreachable("Invalid prefix!" ); |
1004 | case X86II::TB: |
1005 | Prefix.set5M(0x1); // 0F |
1006 | break; |
1007 | case X86II::T8: |
1008 | Prefix.set5M(0x2); // 0F 38 |
1009 | break; |
1010 | case X86II::TA: |
1011 | Prefix.set5M(0x3); // 0F 3A |
1012 | break; |
1013 | case X86II::XOP8: |
1014 | Prefix.set5M(0x8); |
1015 | break; |
1016 | case X86II::XOP9: |
1017 | Prefix.set5M(0x9); |
1018 | break; |
1019 | case X86II::XOPA: |
1020 | Prefix.set5M(0xA); |
1021 | break; |
1022 | case X86II::T_MAP4: |
1023 | Prefix.set5M(0x4); |
1024 | break; |
1025 | case X86II::T_MAP5: |
1026 | Prefix.set5M(0x5); |
1027 | break; |
1028 | case X86II::T_MAP6: |
1029 | Prefix.set5M(0x6); |
1030 | break; |
1031 | case X86II::T_MAP7: |
1032 | Prefix.set5M(0x7); |
1033 | break; |
1034 | } |
1035 | |
1036 | Prefix.setL(TSFlags & X86II::VEX_L); |
1037 | Prefix.setL2(TSFlags & X86II::EVEX_L2); |
1038 | if ((TSFlags & X86II::EVEX_L2) && STI.hasFeature(Feature: X86::FeatureAVX512) && |
1039 | !STI.hasFeature(Feature: X86::FeatureEVEX512)) |
1040 | report_fatal_error(reason: "ZMM registers are not supported without EVEX512" ); |
1041 | switch (TSFlags & X86II::OpPrefixMask) { |
1042 | case X86II::PD: |
1043 | Prefix.setPP(0x1); // 66 |
1044 | break; |
1045 | case X86II::XS: |
1046 | Prefix.setPP(0x2); // F3 |
1047 | break; |
1048 | case X86II::XD: |
1049 | Prefix.setPP(0x3); // F2 |
1050 | break; |
1051 | } |
1052 | |
1053 | Prefix.setZ(HasEVEX_K && (TSFlags & X86II::EVEX_Z)); |
1054 | Prefix.setEVEX_b(TSFlags & X86II::EVEX_B); |
1055 | |
1056 | bool EncodeRC = false; |
1057 | uint8_t EVEX_rc = 0; |
1058 | |
1059 | unsigned CurOp = X86II::getOperandBias(Desc); |
1060 | bool HasTwoConditionalOps = TSFlags & X86II::TwoConditionalOps; |
1061 | |
1062 | switch (TSFlags & X86II::FormMask) { |
1063 | default: |
1064 | llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!" ); |
1065 | case X86II::MRMDestMem4VOp3CC: { |
1066 | // src1(ModR/M), MemAddr, src2(VEX_4V) |
1067 | Prefix.setRR2(MI, OpNum: CurOp++); |
1068 | Prefix.setBB2(MI, OpNum: MemOperand + X86::AddrBaseReg); |
1069 | Prefix.setXX2(MI, OpNum: MemOperand + X86::AddrIndexReg); |
1070 | CurOp += X86::AddrNumOperands; |
1071 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1072 | break; |
1073 | } |
1074 | case X86II::MRM_C0: |
1075 | case X86II::RawFrm: |
1076 | break; |
1077 | case X86II::MRMDestMemCC: |
1078 | case X86II::MRMDestMemFSIB: |
1079 | case X86II::MRMDestMem: { |
1080 | // MRMDestMem instructions forms: |
1081 | // MemAddr, src1(ModR/M) |
1082 | // MemAddr, src1(VEX_4V), src2(ModR/M) |
1083 | // MemAddr, src1(ModR/M), imm8 |
1084 | // |
1085 | // NDD: |
1086 | // dst(VEX_4V), MemAddr, src1(ModR/M) |
1087 | Prefix.setBB2(MI, OpNum: MemOperand + X86::AddrBaseReg); |
1088 | Prefix.setXX2(MI, OpNum: MemOperand + X86::AddrIndexReg); |
1089 | Prefix.setV2(MI, OpNum: MemOperand + X86::AddrIndexReg, HasVEX_4V); |
1090 | |
1091 | if (IsND) |
1092 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1093 | |
1094 | CurOp += X86::AddrNumOperands; |
1095 | |
1096 | if (HasEVEX_K) |
1097 | Prefix.setAAA(MI, OpNum: CurOp++); |
1098 | |
1099 | if (!IsND && HasVEX_4V) |
1100 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1101 | |
1102 | Prefix.setRR2(MI, OpNum: CurOp++); |
1103 | if (HasTwoConditionalOps) { |
1104 | Prefix.set4V(MI, OpNum: CurOp++, /*IsImm=*/true); |
1105 | Prefix.setSC(MI, OpNum: CurOp++); |
1106 | } |
1107 | break; |
1108 | } |
1109 | case X86II::MRMSrcMemCC: |
1110 | case X86II::MRMSrcMemFSIB: |
1111 | case X86II::MRMSrcMem: { |
1112 | // MRMSrcMem instructions forms: |
1113 | // src1(ModR/M), MemAddr |
1114 | // src1(ModR/M), src2(VEX_4V), MemAddr |
1115 | // src1(ModR/M), MemAddr, imm8 |
1116 | // src1(ModR/M), MemAddr, src2(Imm[7:4]) |
1117 | // |
1118 | // FMA4: |
1119 | // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4]) |
1120 | // |
1121 | // NDD: |
1122 | // dst(VEX_4V), src1(ModR/M), MemAddr |
1123 | if (IsND) |
1124 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1125 | |
1126 | Prefix.setRR2(MI, OpNum: CurOp++); |
1127 | |
1128 | if (HasEVEX_K) |
1129 | Prefix.setAAA(MI, OpNum: CurOp++); |
1130 | |
1131 | if (!IsND && HasVEX_4V) |
1132 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1133 | |
1134 | Prefix.setBB2(MI, OpNum: MemOperand + X86::AddrBaseReg); |
1135 | Prefix.setXX2(MI, OpNum: MemOperand + X86::AddrIndexReg); |
1136 | Prefix.setV2(MI, OpNum: MemOperand + X86::AddrIndexReg, HasVEX_4V); |
1137 | CurOp += X86::AddrNumOperands; |
1138 | if (HasTwoConditionalOps) { |
1139 | Prefix.set4V(MI, OpNum: CurOp++, /*IsImm=*/true); |
1140 | Prefix.setSC(MI, OpNum: CurOp++); |
1141 | } |
1142 | break; |
1143 | } |
1144 | case X86II::MRMSrcMem4VOp3: { |
1145 | // Instruction format for 4VOp3: |
1146 | // src1(ModR/M), MemAddr, src3(VEX_4V) |
1147 | Prefix.setRR2(MI, OpNum: CurOp++); |
1148 | Prefix.setBB2(MI, OpNum: MemOperand + X86::AddrBaseReg); |
1149 | Prefix.setXX2(MI, OpNum: MemOperand + X86::AddrIndexReg); |
1150 | Prefix.set4VV2(MI, OpNum: CurOp + X86::AddrNumOperands); |
1151 | break; |
1152 | } |
1153 | case X86II::MRMSrcMemOp4: { |
1154 | // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M), |
1155 | Prefix.setR(MI, OpNum: CurOp++); |
1156 | Prefix.set4V(MI, OpNum: CurOp++); |
1157 | Prefix.setBB2(MI, OpNum: MemOperand + X86::AddrBaseReg); |
1158 | Prefix.setXX2(MI, OpNum: MemOperand + X86::AddrIndexReg); |
1159 | break; |
1160 | } |
1161 | case X86II::MRMXmCC: |
1162 | case X86II::MRM0m: |
1163 | case X86II::MRM1m: |
1164 | case X86II::MRM2m: |
1165 | case X86II::MRM3m: |
1166 | case X86II::MRM4m: |
1167 | case X86II::MRM5m: |
1168 | case X86II::MRM6m: |
1169 | case X86II::MRM7m: { |
1170 | // MRM[0-9]m instructions forms: |
1171 | // MemAddr |
1172 | // src1(VEX_4V), MemAddr |
1173 | if (HasVEX_4V) |
1174 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1175 | |
1176 | if (HasEVEX_K) |
1177 | Prefix.setAAA(MI, OpNum: CurOp++); |
1178 | |
1179 | Prefix.setBB2(MI, OpNum: MemOperand + X86::AddrBaseReg); |
1180 | Prefix.setXX2(MI, OpNum: MemOperand + X86::AddrIndexReg); |
1181 | Prefix.setV2(MI, OpNum: MemOperand + X86::AddrIndexReg, HasVEX_4V); |
1182 | CurOp += X86::AddrNumOperands + 1; // Skip first imm. |
1183 | if (HasTwoConditionalOps) { |
1184 | Prefix.set4V(MI, OpNum: CurOp++, /*IsImm=*/true); |
1185 | Prefix.setSC(MI, OpNum: CurOp++); |
1186 | } |
1187 | break; |
1188 | } |
1189 | case X86II::MRMSrcRegCC: |
1190 | case X86II::MRMSrcReg: { |
1191 | // MRMSrcReg instructions forms: |
1192 | // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4]) |
1193 | // dst(ModR/M), src1(ModR/M) |
1194 | // dst(ModR/M), src1(ModR/M), imm8 |
1195 | // |
1196 | // FMA4: |
1197 | // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M), |
1198 | // |
1199 | // NDD: |
1200 | // dst(VEX_4V), src1(ModR/M.reg), src2(ModR/M) |
1201 | if (IsND) |
1202 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1203 | Prefix.setRR2(MI, OpNum: CurOp++); |
1204 | |
1205 | if (HasEVEX_K) |
1206 | Prefix.setAAA(MI, OpNum: CurOp++); |
1207 | |
1208 | if (!IsND && HasVEX_4V) |
1209 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1210 | |
1211 | Prefix.setBB2(MI, OpNum: CurOp); |
1212 | Prefix.setX(MI, OpNum: CurOp, Shift: 4); |
1213 | ++CurOp; |
1214 | |
1215 | if (HasTwoConditionalOps) { |
1216 | Prefix.set4V(MI, OpNum: CurOp++, /*IsImm=*/true); |
1217 | Prefix.setSC(MI, OpNum: CurOp++); |
1218 | } |
1219 | |
1220 | if (TSFlags & X86II::EVEX_B) { |
1221 | if (HasEVEX_RC) { |
1222 | unsigned NumOps = Desc.getNumOperands(); |
1223 | unsigned RcOperand = NumOps - 1; |
1224 | assert(RcOperand >= CurOp); |
1225 | EVEX_rc = MI.getOperand(i: RcOperand).getImm(); |
1226 | assert(EVEX_rc <= 3 && "Invalid rounding control!" ); |
1227 | } |
1228 | EncodeRC = true; |
1229 | } |
1230 | break; |
1231 | } |
1232 | case X86II::MRMSrcReg4VOp3: { |
1233 | // Instruction format for 4VOp3: |
1234 | // src1(ModR/M), src2(ModR/M), src3(VEX_4V) |
1235 | Prefix.setRR2(MI, OpNum: CurOp++); |
1236 | Prefix.setBB2(MI, OpNum: CurOp++); |
1237 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1238 | break; |
1239 | } |
1240 | case X86II::MRMSrcRegOp4: { |
1241 | // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M), |
1242 | Prefix.setR(MI, OpNum: CurOp++); |
1243 | Prefix.set4V(MI, OpNum: CurOp++); |
1244 | // Skip second register source (encoded in Imm[7:4]) |
1245 | ++CurOp; |
1246 | |
1247 | Prefix.setB(MI, OpNum: CurOp); |
1248 | Prefix.setX(MI, OpNum: CurOp, Shift: 4); |
1249 | ++CurOp; |
1250 | break; |
1251 | } |
1252 | case X86II::MRMDestRegCC: |
1253 | case X86II::MRMDestReg: { |
1254 | // MRMDestReg instructions forms: |
1255 | // dst(ModR/M), src(ModR/M) |
1256 | // dst(ModR/M), src(ModR/M), imm8 |
1257 | // dst(ModR/M), src1(VEX_4V), src2(ModR/M) |
1258 | // |
1259 | // NDD: |
1260 | // dst(VEX_4V), src1(ModR/M), src2(ModR/M) |
1261 | if (IsND) |
1262 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1263 | Prefix.setBB2(MI, OpNum: CurOp); |
1264 | Prefix.setX(MI, OpNum: CurOp, Shift: 4); |
1265 | ++CurOp; |
1266 | |
1267 | if (HasEVEX_K) |
1268 | Prefix.setAAA(MI, OpNum: CurOp++); |
1269 | |
1270 | if (!IsND && HasVEX_4V) |
1271 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1272 | |
1273 | Prefix.setRR2(MI, OpNum: CurOp++); |
1274 | if (HasTwoConditionalOps) { |
1275 | Prefix.set4V(MI, OpNum: CurOp++, /*IsImm=*/true); |
1276 | Prefix.setSC(MI, OpNum: CurOp++); |
1277 | } |
1278 | if (TSFlags & X86II::EVEX_B) |
1279 | EncodeRC = true; |
1280 | break; |
1281 | } |
1282 | case X86II::MRMr0: { |
1283 | // MRMr0 instructions forms: |
1284 | // 11:rrr:000 |
1285 | // dst(ModR/M) |
1286 | Prefix.setRR2(MI, OpNum: CurOp++); |
1287 | break; |
1288 | } |
1289 | case X86II::MRMXrCC: |
1290 | case X86II::MRM0r: |
1291 | case X86II::MRM1r: |
1292 | case X86II::MRM2r: |
1293 | case X86II::MRM3r: |
1294 | case X86II::MRM4r: |
1295 | case X86II::MRM5r: |
1296 | case X86II::MRM6r: |
1297 | case X86II::MRM7r: { |
1298 | // MRM0r-MRM7r instructions forms: |
1299 | // dst(VEX_4V), src(ModR/M), imm8 |
1300 | if (HasVEX_4V) |
1301 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1302 | |
1303 | if (HasEVEX_K) |
1304 | Prefix.setAAA(MI, OpNum: CurOp++); |
1305 | |
1306 | Prefix.setBB2(MI, OpNum: CurOp); |
1307 | Prefix.setX(MI, OpNum: CurOp, Shift: 4); |
1308 | ++CurOp; |
1309 | if (HasTwoConditionalOps) { |
1310 | Prefix.set4V(MI, OpNum: ++CurOp, /*IsImm=*/true); |
1311 | Prefix.setSC(MI, OpNum: ++CurOp); |
1312 | } |
1313 | break; |
1314 | } |
1315 | } |
1316 | if (EncodeRC) { |
1317 | Prefix.setL(EVEX_rc & 0x1); |
1318 | Prefix.setL2(EVEX_rc & 0x2); |
1319 | } |
1320 | PrefixKind Kind = Prefix.determineOptimalKind(); |
1321 | Prefix.emit(CB); |
1322 | return Kind; |
1323 | } |
1324 | |
1325 | /// Emit REX prefix which specifies |
1326 | /// 1) 64-bit instructions, |
1327 | /// 2) non-default operand size, and |
1328 | /// 3) use of X86-64 extended registers. |
1329 | /// |
1330 | /// \returns the used prefix (REX or None). |
1331 | PrefixKind X86MCCodeEmitter::emitREXPrefix(int MemOperand, const MCInst &MI, |
1332 | const MCSubtargetInfo &STI, |
1333 | SmallVectorImpl<char> &CB) const { |
1334 | if (!STI.hasFeature(Feature: X86::Is64Bit)) |
1335 | return None; |
1336 | X86OpcodePrefixHelper Prefix(*Ctx.getRegisterInfo()); |
1337 | const MCInstrDesc &Desc = MCII.get(Opcode: MI.getOpcode()); |
1338 | uint64_t TSFlags = Desc.TSFlags; |
1339 | Prefix.setW(TSFlags & X86II::REX_W); |
1340 | unsigned NumOps = MI.getNumOperands(); |
1341 | bool UsesHighByteReg = false; |
1342 | #ifndef NDEBUG |
1343 | bool HasRegOp = false; |
1344 | #endif |
1345 | unsigned CurOp = NumOps ? X86II::getOperandBias(Desc) : 0; |
1346 | for (unsigned i = CurOp; i != NumOps; ++i) { |
1347 | const MCOperand &MO = MI.getOperand(i); |
1348 | if (MO.isReg()) { |
1349 | #ifndef NDEBUG |
1350 | HasRegOp = true; |
1351 | #endif |
1352 | unsigned Reg = MO.getReg(); |
1353 | if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH) |
1354 | UsesHighByteReg = true; |
1355 | // If it accesses SPL, BPL, SIL, or DIL, then it requires a REX prefix. |
1356 | if (X86II::isX86_64NonExtLowByteReg(reg: Reg)) |
1357 | Prefix.setLowerBound(REX); |
1358 | } else if (MO.isExpr() && STI.getTargetTriple().isX32()) { |
1359 | // GOTTPOFF and TLSDESC relocations require a REX prefix to allow |
1360 | // linker optimizations: even if the instructions we see may not require |
1361 | // any prefix, they may be replaced by instructions that do. This is |
1362 | // handled as a special case here so that it also works for hand-written |
1363 | // assembly without the user needing to write REX, as with GNU as. |
1364 | const auto *Ref = dyn_cast<MCSymbolRefExpr>(Val: MO.getExpr()); |
1365 | if (Ref && (Ref->getKind() == MCSymbolRefExpr::VK_GOTTPOFF || |
1366 | Ref->getKind() == MCSymbolRefExpr::VK_TLSDESC)) { |
1367 | Prefix.setLowerBound(REX); |
1368 | } |
1369 | } |
1370 | } |
1371 | if (MI.getFlags() & X86::IP_USE_REX) |
1372 | Prefix.setLowerBound(REX); |
1373 | if ((TSFlags & X86II::ExplicitOpPrefixMask) == X86II::ExplicitREX2Prefix || |
1374 | MI.getFlags() & X86::IP_USE_REX2) |
1375 | Prefix.setLowerBound(REX2); |
1376 | switch (TSFlags & X86II::FormMask) { |
1377 | default: |
1378 | assert(!HasRegOp && "Unexpected form in emitREXPrefix!" ); |
1379 | break; |
1380 | case X86II::RawFrm: |
1381 | case X86II::RawFrmMemOffs: |
1382 | case X86II::RawFrmSrc: |
1383 | case X86II::RawFrmDst: |
1384 | case X86II::RawFrmDstSrc: |
1385 | break; |
1386 | case X86II::AddRegFrm: |
1387 | Prefix.setBB2(MI, OpNum: CurOp++); |
1388 | break; |
1389 | case X86II::MRMSrcReg: |
1390 | case X86II::MRMSrcRegCC: |
1391 | Prefix.setRR2(MI, OpNum: CurOp++); |
1392 | Prefix.setBB2(MI, OpNum: CurOp++); |
1393 | break; |
1394 | case X86II::MRMSrcMem: |
1395 | case X86II::MRMSrcMemCC: |
1396 | Prefix.setRR2(MI, OpNum: CurOp++); |
1397 | Prefix.setBB2(MI, OpNum: MemOperand + X86::AddrBaseReg); |
1398 | Prefix.setXX2(MI, OpNum: MemOperand + X86::AddrIndexReg); |
1399 | CurOp += X86::AddrNumOperands; |
1400 | break; |
1401 | case X86II::MRMDestReg: |
1402 | Prefix.setBB2(MI, OpNum: CurOp++); |
1403 | Prefix.setRR2(MI, OpNum: CurOp++); |
1404 | break; |
1405 | case X86II::MRMDestMem: |
1406 | Prefix.setBB2(MI, OpNum: MemOperand + X86::AddrBaseReg); |
1407 | Prefix.setXX2(MI, OpNum: MemOperand + X86::AddrIndexReg); |
1408 | CurOp += X86::AddrNumOperands; |
1409 | Prefix.setRR2(MI, OpNum: CurOp++); |
1410 | break; |
1411 | case X86II::MRMXmCC: |
1412 | case X86II::MRMXm: |
1413 | case X86II::MRM0m: |
1414 | case X86II::MRM1m: |
1415 | case X86II::MRM2m: |
1416 | case X86II::MRM3m: |
1417 | case X86II::MRM4m: |
1418 | case X86II::MRM5m: |
1419 | case X86II::MRM6m: |
1420 | case X86II::MRM7m: |
1421 | Prefix.setBB2(MI, OpNum: MemOperand + X86::AddrBaseReg); |
1422 | Prefix.setXX2(MI, OpNum: MemOperand + X86::AddrIndexReg); |
1423 | break; |
1424 | case X86II::MRMXrCC: |
1425 | case X86II::MRMXr: |
1426 | case X86II::MRM0r: |
1427 | case X86II::MRM1r: |
1428 | case X86II::MRM2r: |
1429 | case X86II::MRM3r: |
1430 | case X86II::MRM4r: |
1431 | case X86II::MRM5r: |
1432 | case X86II::MRM6r: |
1433 | case X86II::MRM7r: |
1434 | Prefix.setBB2(MI, OpNum: CurOp++); |
1435 | break; |
1436 | } |
1437 | Prefix.setM((TSFlags & X86II::OpMapMask) == X86II::TB); |
1438 | PrefixKind Kind = Prefix.determineOptimalKind(); |
1439 | if (Kind && UsesHighByteReg) |
1440 | report_fatal_error( |
1441 | reason: "Cannot encode high byte register in REX-prefixed instruction" ); |
1442 | Prefix.emit(CB); |
1443 | return Kind; |
1444 | } |
1445 | |
1446 | /// Emit segment override opcode prefix as needed. |
1447 | void X86MCCodeEmitter::emitSegmentOverridePrefix( |
1448 | unsigned SegOperand, const MCInst &MI, SmallVectorImpl<char> &CB) const { |
1449 | // Check for explicit segment override on memory operand. |
1450 | if (unsigned Reg = MI.getOperand(i: SegOperand).getReg()) |
1451 | emitByte(C: X86::getSegmentOverridePrefixForReg(Reg), CB); |
1452 | } |
1453 | |
1454 | /// Emit all instruction prefixes prior to the opcode. |
1455 | /// |
1456 | /// \param MemOperand the operand # of the start of a memory operand if present. |
1457 | /// If not present, it is -1. |
1458 | /// |
1459 | /// \returns the used prefix (REX or None). |
1460 | PrefixKind X86MCCodeEmitter::emitOpcodePrefix(int MemOperand, const MCInst &MI, |
1461 | const MCSubtargetInfo &STI, |
1462 | SmallVectorImpl<char> &CB) const { |
1463 | const MCInstrDesc &Desc = MCII.get(Opcode: MI.getOpcode()); |
1464 | uint64_t TSFlags = Desc.TSFlags; |
1465 | |
1466 | // Emit the operand size opcode prefix as needed. |
1467 | if ((TSFlags & X86II::OpSizeMask) == |
1468 | (STI.hasFeature(Feature: X86::Is16Bit) ? X86II::OpSize32 : X86II::OpSize16)) |
1469 | emitByte(C: 0x66, CB); |
1470 | |
1471 | // Emit the LOCK opcode prefix. |
1472 | if (TSFlags & X86II::LOCK || MI.getFlags() & X86::IP_HAS_LOCK) |
1473 | emitByte(C: 0xF0, CB); |
1474 | |
1475 | // Emit the NOTRACK opcode prefix. |
1476 | if (TSFlags & X86II::NOTRACK || MI.getFlags() & X86::IP_HAS_NOTRACK) |
1477 | emitByte(C: 0x3E, CB); |
1478 | |
1479 | switch (TSFlags & X86II::OpPrefixMask) { |
1480 | case X86II::PD: // 66 |
1481 | emitByte(C: 0x66, CB); |
1482 | break; |
1483 | case X86II::XS: // F3 |
1484 | emitByte(C: 0xF3, CB); |
1485 | break; |
1486 | case X86II::XD: // F2 |
1487 | emitByte(C: 0xF2, CB); |
1488 | break; |
1489 | } |
1490 | |
1491 | // Handle REX prefix. |
1492 | assert((STI.hasFeature(X86::Is64Bit) || !(TSFlags & X86II::REX_W)) && |
1493 | "REX.W requires 64bit mode." ); |
1494 | PrefixKind Kind = emitREXPrefix(MemOperand, MI, STI, CB); |
1495 | |
1496 | // 0x0F escape code must be emitted just before the opcode. |
1497 | switch (TSFlags & X86II::OpMapMask) { |
1498 | case X86II::TB: // Two-byte opcode map |
1499 | // Encoded by M bit in REX2 |
1500 | if (Kind == REX2) |
1501 | break; |
1502 | [[fallthrough]]; |
1503 | case X86II::T8: // 0F 38 |
1504 | case X86II::TA: // 0F 3A |
1505 | case X86II::ThreeDNow: // 0F 0F, second 0F emitted by caller. |
1506 | emitByte(C: 0x0F, CB); |
1507 | break; |
1508 | } |
1509 | |
1510 | switch (TSFlags & X86II::OpMapMask) { |
1511 | case X86II::T8: // 0F 38 |
1512 | emitByte(C: 0x38, CB); |
1513 | break; |
1514 | case X86II::TA: // 0F 3A |
1515 | emitByte(C: 0x3A, CB); |
1516 | break; |
1517 | } |
1518 | |
1519 | return Kind; |
1520 | } |
1521 | |
1522 | void X86MCCodeEmitter::emitPrefix(const MCInst &MI, SmallVectorImpl<char> &CB, |
1523 | const MCSubtargetInfo &STI) const { |
1524 | unsigned Opcode = MI.getOpcode(); |
1525 | const MCInstrDesc &Desc = MCII.get(Opcode); |
1526 | uint64_t TSFlags = Desc.TSFlags; |
1527 | |
1528 | // Pseudo instructions don't get encoded. |
1529 | if (X86II::isPseudo(TSFlags)) |
1530 | return; |
1531 | |
1532 | unsigned CurOp = X86II::getOperandBias(Desc); |
1533 | |
1534 | emitPrefixImpl(CurOp, MI, STI, CB); |
1535 | } |
1536 | |
1537 | void X86_MC::emitPrefix(MCCodeEmitter &MCE, const MCInst &MI, |
1538 | SmallVectorImpl<char> &CB, const MCSubtargetInfo &STI) { |
1539 | static_cast<X86MCCodeEmitter &>(MCE).emitPrefix(MI, CB, STI); |
1540 | } |
1541 | |
1542 | void X86MCCodeEmitter::encodeInstruction(const MCInst &MI, |
1543 | SmallVectorImpl<char> &CB, |
1544 | SmallVectorImpl<MCFixup> &Fixups, |
1545 | const MCSubtargetInfo &STI) const { |
1546 | unsigned Opcode = MI.getOpcode(); |
1547 | const MCInstrDesc &Desc = MCII.get(Opcode); |
1548 | uint64_t TSFlags = Desc.TSFlags; |
1549 | |
1550 | // Pseudo instructions don't get encoded. |
1551 | if (X86II::isPseudo(TSFlags)) |
1552 | return; |
1553 | |
1554 | unsigned NumOps = Desc.getNumOperands(); |
1555 | unsigned CurOp = X86II::getOperandBias(Desc); |
1556 | |
1557 | uint64_t StartByte = CB.size(); |
1558 | |
1559 | PrefixKind Kind = emitPrefixImpl(CurOp, MI, STI, CB); |
1560 | |
1561 | // It uses the VEX.VVVV field? |
1562 | bool HasVEX_4V = TSFlags & X86II::VEX_4V; |
1563 | bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg; |
1564 | |
1565 | // It uses the EVEX.aaa field? |
1566 | bool HasEVEX_K = TSFlags & X86II::EVEX_K; |
1567 | bool HasEVEX_RC = TSFlags & X86II::EVEX_RC; |
1568 | |
1569 | // Used if a register is encoded in 7:4 of immediate. |
1570 | unsigned I8RegNum = 0; |
1571 | |
1572 | uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags); |
1573 | |
1574 | if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow) |
1575 | BaseOpcode = 0x0F; // Weird 3DNow! encoding. |
1576 | |
1577 | unsigned OpcodeOffset = 0; |
1578 | |
1579 | bool IsND = X86II::hasNewDataDest(TSFlags); |
1580 | bool HasTwoConditionalOps = TSFlags & X86II::TwoConditionalOps; |
1581 | |
1582 | uint64_t Form = TSFlags & X86II::FormMask; |
1583 | switch (Form) { |
1584 | default: |
1585 | errs() << "FORM: " << Form << "\n" ; |
1586 | llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!" ); |
1587 | case X86II::Pseudo: |
1588 | llvm_unreachable("Pseudo instruction shouldn't be emitted" ); |
1589 | case X86II::RawFrmDstSrc: |
1590 | case X86II::RawFrmSrc: |
1591 | case X86II::RawFrmDst: |
1592 | case X86II::PrefixByte: |
1593 | emitByte(C: BaseOpcode, CB); |
1594 | break; |
1595 | case X86II::AddCCFrm: { |
1596 | // This will be added to the opcode in the fallthrough. |
1597 | OpcodeOffset = MI.getOperand(i: NumOps - 1).getImm(); |
1598 | assert(OpcodeOffset < 16 && "Unexpected opcode offset!" ); |
1599 | --NumOps; // Drop the operand from the end. |
1600 | [[fallthrough]]; |
1601 | case X86II::RawFrm: |
1602 | emitByte(C: BaseOpcode + OpcodeOffset, CB); |
1603 | |
1604 | if (!STI.hasFeature(Feature: X86::Is64Bit) || !isPCRel32Branch(MI, MCII)) |
1605 | break; |
1606 | |
1607 | const MCOperand &Op = MI.getOperand(i: CurOp++); |
1608 | emitImmediate(DispOp: Op, Loc: MI.getLoc(), Size: X86II::getSizeOfImm(TSFlags), |
1609 | FixupKind: MCFixupKind(X86::reloc_branch_4byte_pcrel), StartByte, CB, |
1610 | Fixups); |
1611 | break; |
1612 | } |
1613 | case X86II::RawFrmMemOffs: |
1614 | emitByte(C: BaseOpcode, CB); |
1615 | emitImmediate(DispOp: MI.getOperand(i: CurOp++), Loc: MI.getLoc(), |
1616 | Size: X86II::getSizeOfImm(TSFlags), FixupKind: getImmFixupKind(TSFlags), |
1617 | StartByte, CB, Fixups); |
1618 | ++CurOp; // skip segment operand |
1619 | break; |
1620 | case X86II::RawFrmImm8: |
1621 | emitByte(C: BaseOpcode, CB); |
1622 | emitImmediate(DispOp: MI.getOperand(i: CurOp++), Loc: MI.getLoc(), |
1623 | Size: X86II::getSizeOfImm(TSFlags), FixupKind: getImmFixupKind(TSFlags), |
1624 | StartByte, CB, Fixups); |
1625 | emitImmediate(DispOp: MI.getOperand(i: CurOp++), Loc: MI.getLoc(), Size: 1, FixupKind: FK_Data_1, StartByte, |
1626 | CB, Fixups); |
1627 | break; |
1628 | case X86II::RawFrmImm16: |
1629 | emitByte(C: BaseOpcode, CB); |
1630 | emitImmediate(DispOp: MI.getOperand(i: CurOp++), Loc: MI.getLoc(), |
1631 | Size: X86II::getSizeOfImm(TSFlags), FixupKind: getImmFixupKind(TSFlags), |
1632 | StartByte, CB, Fixups); |
1633 | emitImmediate(DispOp: MI.getOperand(i: CurOp++), Loc: MI.getLoc(), Size: 2, FixupKind: FK_Data_2, StartByte, |
1634 | CB, Fixups); |
1635 | break; |
1636 | |
1637 | case X86II::AddRegFrm: |
1638 | emitByte(C: BaseOpcode + getX86RegNum(MO: MI.getOperand(i: CurOp++)), CB); |
1639 | break; |
1640 | |
1641 | case X86II::MRMDestReg: { |
1642 | emitByte(C: BaseOpcode, CB); |
1643 | unsigned SrcRegNum = CurOp + 1; |
1644 | |
1645 | if (HasEVEX_K) // Skip writemask |
1646 | ++SrcRegNum; |
1647 | |
1648 | if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) |
1649 | ++SrcRegNum; |
1650 | if (IsND) // Skip the NDD operand encoded in EVEX_VVVV |
1651 | ++CurOp; |
1652 | |
1653 | emitRegModRMByte(ModRMReg: MI.getOperand(i: CurOp), |
1654 | RegOpcodeFld: getX86RegNum(MO: MI.getOperand(i: SrcRegNum)), CB); |
1655 | CurOp = SrcRegNum + 1; |
1656 | break; |
1657 | } |
1658 | case X86II::MRMDestRegCC: { |
1659 | unsigned FirstOp = CurOp++; |
1660 | unsigned SecondOp = CurOp++; |
1661 | unsigned CC = MI.getOperand(i: CurOp++).getImm(); |
1662 | emitByte(C: BaseOpcode + CC, CB); |
1663 | emitRegModRMByte(ModRMReg: MI.getOperand(i: FirstOp), |
1664 | RegOpcodeFld: getX86RegNum(MO: MI.getOperand(i: SecondOp)), CB); |
1665 | break; |
1666 | } |
1667 | case X86II::MRMDestMem4VOp3CC: { |
1668 | unsigned CC = MI.getOperand(i: 8).getImm(); |
1669 | emitByte(C: BaseOpcode + CC, CB); |
1670 | unsigned SrcRegNum = CurOp + X86::AddrNumOperands; |
1671 | emitMemModRMByte(MI, Op: CurOp + 1, RegOpcodeField: getX86RegNum(MO: MI.getOperand(i: 0)), TSFlags, |
1672 | Kind, StartByte, CB, Fixups, STI, ForceSIB: false); |
1673 | CurOp = SrcRegNum + 3; // skip reg, VEX_V4 and CC |
1674 | break; |
1675 | } |
1676 | case X86II::MRMDestMemFSIB: |
1677 | case X86II::MRMDestMem: { |
1678 | emitByte(C: BaseOpcode, CB); |
1679 | unsigned SrcRegNum = CurOp + X86::AddrNumOperands; |
1680 | |
1681 | if (HasEVEX_K) // Skip writemask |
1682 | ++SrcRegNum; |
1683 | |
1684 | if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) |
1685 | ++SrcRegNum; |
1686 | |
1687 | if (IsND) // Skip new data destination |
1688 | ++CurOp; |
1689 | |
1690 | bool ForceSIB = (Form == X86II::MRMDestMemFSIB); |
1691 | emitMemModRMByte(MI, Op: CurOp, RegOpcodeField: getX86RegNum(MO: MI.getOperand(i: SrcRegNum)), TSFlags, |
1692 | Kind, StartByte, CB, Fixups, STI, ForceSIB); |
1693 | CurOp = SrcRegNum + 1; |
1694 | break; |
1695 | } |
1696 | case X86II::MRMDestMemCC: { |
1697 | unsigned MemOp = CurOp; |
1698 | CurOp = MemOp + X86::AddrNumOperands; |
1699 | unsigned RegOp = CurOp++; |
1700 | unsigned CC = MI.getOperand(i: CurOp++).getImm(); |
1701 | emitByte(C: BaseOpcode + CC, CB); |
1702 | emitMemModRMByte(MI, Op: MemOp, RegOpcodeField: getX86RegNum(MO: MI.getOperand(i: RegOp)), TSFlags, |
1703 | Kind, StartByte, CB, Fixups, STI); |
1704 | break; |
1705 | } |
1706 | case X86II::MRMSrcReg: { |
1707 | emitByte(C: BaseOpcode, CB); |
1708 | unsigned SrcRegNum = CurOp + 1; |
1709 | |
1710 | if (HasEVEX_K) // Skip writemask |
1711 | ++SrcRegNum; |
1712 | |
1713 | if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) |
1714 | ++SrcRegNum; |
1715 | |
1716 | if (IsND) // Skip new data destination |
1717 | ++CurOp; |
1718 | |
1719 | emitRegModRMByte(ModRMReg: MI.getOperand(i: SrcRegNum), |
1720 | RegOpcodeFld: getX86RegNum(MO: MI.getOperand(i: CurOp)), CB); |
1721 | CurOp = SrcRegNum + 1; |
1722 | if (HasVEX_I8Reg) |
1723 | I8RegNum = getX86RegEncoding(MI, OpNum: CurOp++); |
1724 | // do not count the rounding control operand |
1725 | if (HasEVEX_RC) |
1726 | --NumOps; |
1727 | break; |
1728 | } |
1729 | case X86II::MRMSrcReg4VOp3: { |
1730 | emitByte(C: BaseOpcode, CB); |
1731 | unsigned SrcRegNum = CurOp + 1; |
1732 | |
1733 | emitRegModRMByte(ModRMReg: MI.getOperand(i: SrcRegNum), |
1734 | RegOpcodeFld: getX86RegNum(MO: MI.getOperand(i: CurOp)), CB); |
1735 | CurOp = SrcRegNum + 1; |
1736 | ++CurOp; // Encoded in VEX.VVVV |
1737 | break; |
1738 | } |
1739 | case X86II::MRMSrcRegOp4: { |
1740 | emitByte(C: BaseOpcode, CB); |
1741 | unsigned SrcRegNum = CurOp + 1; |
1742 | |
1743 | // Skip 1st src (which is encoded in VEX_VVVV) |
1744 | ++SrcRegNum; |
1745 | |
1746 | // Capture 2nd src (which is encoded in Imm[7:4]) |
1747 | assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg" ); |
1748 | I8RegNum = getX86RegEncoding(MI, OpNum: SrcRegNum++); |
1749 | |
1750 | emitRegModRMByte(ModRMReg: MI.getOperand(i: SrcRegNum), |
1751 | RegOpcodeFld: getX86RegNum(MO: MI.getOperand(i: CurOp)), CB); |
1752 | CurOp = SrcRegNum + 1; |
1753 | break; |
1754 | } |
1755 | case X86II::MRMSrcRegCC: { |
1756 | if (IsND) // Skip new data destination |
1757 | ++CurOp; |
1758 | unsigned FirstOp = CurOp++; |
1759 | unsigned SecondOp = CurOp++; |
1760 | |
1761 | unsigned CC = MI.getOperand(i: CurOp++).getImm(); |
1762 | emitByte(C: BaseOpcode + CC, CB); |
1763 | |
1764 | emitRegModRMByte(ModRMReg: MI.getOperand(i: SecondOp), |
1765 | RegOpcodeFld: getX86RegNum(MO: MI.getOperand(i: FirstOp)), CB); |
1766 | break; |
1767 | } |
1768 | case X86II::MRMSrcMemFSIB: |
1769 | case X86II::MRMSrcMem: { |
1770 | unsigned FirstMemOp = CurOp + 1; |
1771 | |
1772 | if (IsND) // Skip new data destination |
1773 | CurOp++; |
1774 | |
1775 | if (HasEVEX_K) // Skip writemask |
1776 | ++FirstMemOp; |
1777 | |
1778 | if (HasVEX_4V) |
1779 | ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV). |
1780 | |
1781 | emitByte(C: BaseOpcode, CB); |
1782 | |
1783 | bool ForceSIB = (Form == X86II::MRMSrcMemFSIB); |
1784 | emitMemModRMByte(MI, Op: FirstMemOp, RegOpcodeField: getX86RegNum(MO: MI.getOperand(i: CurOp)), |
1785 | TSFlags, Kind, StartByte, CB, Fixups, STI, ForceSIB); |
1786 | CurOp = FirstMemOp + X86::AddrNumOperands; |
1787 | if (HasVEX_I8Reg) |
1788 | I8RegNum = getX86RegEncoding(MI, OpNum: CurOp++); |
1789 | break; |
1790 | } |
1791 | case X86II::MRMSrcMem4VOp3: { |
1792 | unsigned FirstMemOp = CurOp + 1; |
1793 | |
1794 | emitByte(C: BaseOpcode, CB); |
1795 | |
1796 | emitMemModRMByte(MI, Op: FirstMemOp, RegOpcodeField: getX86RegNum(MO: MI.getOperand(i: CurOp)), |
1797 | TSFlags, Kind, StartByte, CB, Fixups, STI); |
1798 | CurOp = FirstMemOp + X86::AddrNumOperands; |
1799 | ++CurOp; // Encoded in VEX.VVVV. |
1800 | break; |
1801 | } |
1802 | case X86II::MRMSrcMemOp4: { |
1803 | unsigned FirstMemOp = CurOp + 1; |
1804 | |
1805 | ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV). |
1806 | |
1807 | // Capture second register source (encoded in Imm[7:4]) |
1808 | assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg" ); |
1809 | I8RegNum = getX86RegEncoding(MI, OpNum: FirstMemOp++); |
1810 | |
1811 | emitByte(C: BaseOpcode, CB); |
1812 | |
1813 | emitMemModRMByte(MI, Op: FirstMemOp, RegOpcodeField: getX86RegNum(MO: MI.getOperand(i: CurOp)), |
1814 | TSFlags, Kind, StartByte, CB, Fixups, STI); |
1815 | CurOp = FirstMemOp + X86::AddrNumOperands; |
1816 | break; |
1817 | } |
1818 | case X86II::MRMSrcMemCC: { |
1819 | if (IsND) // Skip new data destination |
1820 | ++CurOp; |
1821 | unsigned RegOp = CurOp++; |
1822 | unsigned FirstMemOp = CurOp; |
1823 | CurOp = FirstMemOp + X86::AddrNumOperands; |
1824 | |
1825 | unsigned CC = MI.getOperand(i: CurOp++).getImm(); |
1826 | emitByte(C: BaseOpcode + CC, CB); |
1827 | |
1828 | emitMemModRMByte(MI, Op: FirstMemOp, RegOpcodeField: getX86RegNum(MO: MI.getOperand(i: RegOp)), |
1829 | TSFlags, Kind, StartByte, CB, Fixups, STI); |
1830 | break; |
1831 | } |
1832 | |
1833 | case X86II::MRMXrCC: { |
1834 | unsigned RegOp = CurOp++; |
1835 | |
1836 | unsigned CC = MI.getOperand(i: CurOp++).getImm(); |
1837 | emitByte(C: BaseOpcode + CC, CB); |
1838 | emitRegModRMByte(ModRMReg: MI.getOperand(i: RegOp), RegOpcodeFld: 0, CB); |
1839 | break; |
1840 | } |
1841 | |
1842 | case X86II::MRMXr: |
1843 | case X86II::MRM0r: |
1844 | case X86II::MRM1r: |
1845 | case X86II::MRM2r: |
1846 | case X86II::MRM3r: |
1847 | case X86II::MRM4r: |
1848 | case X86II::MRM5r: |
1849 | case X86II::MRM6r: |
1850 | case X86II::MRM7r: |
1851 | if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). |
1852 | ++CurOp; |
1853 | if (HasEVEX_K) // Skip writemask |
1854 | ++CurOp; |
1855 | emitByte(C: BaseOpcode, CB); |
1856 | emitRegModRMByte(ModRMReg: MI.getOperand(i: CurOp++), |
1857 | RegOpcodeFld: (Form == X86II::MRMXr) ? 0 : Form - X86II::MRM0r, CB); |
1858 | break; |
1859 | case X86II::MRMr0: |
1860 | emitByte(C: BaseOpcode, CB); |
1861 | emitByte(C: modRMByte(Mod: 3, RegOpcode: getX86RegNum(MO: MI.getOperand(i: CurOp++)), RM: 0), CB); |
1862 | break; |
1863 | |
1864 | case X86II::MRMXmCC: { |
1865 | unsigned FirstMemOp = CurOp; |
1866 | CurOp = FirstMemOp + X86::AddrNumOperands; |
1867 | |
1868 | unsigned CC = MI.getOperand(i: CurOp++).getImm(); |
1869 | emitByte(C: BaseOpcode + CC, CB); |
1870 | |
1871 | emitMemModRMByte(MI, Op: FirstMemOp, RegOpcodeField: 0, TSFlags, Kind, StartByte, CB, Fixups, |
1872 | STI); |
1873 | break; |
1874 | } |
1875 | |
1876 | case X86II::MRMXm: |
1877 | case X86II::MRM0m: |
1878 | case X86II::MRM1m: |
1879 | case X86II::MRM2m: |
1880 | case X86II::MRM3m: |
1881 | case X86II::MRM4m: |
1882 | case X86II::MRM5m: |
1883 | case X86II::MRM6m: |
1884 | case X86II::MRM7m: |
1885 | if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). |
1886 | ++CurOp; |
1887 | if (HasEVEX_K) // Skip writemask |
1888 | ++CurOp; |
1889 | emitByte(C: BaseOpcode, CB); |
1890 | emitMemModRMByte(MI, Op: CurOp, |
1891 | RegOpcodeField: (Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags, |
1892 | Kind, StartByte, CB, Fixups, STI); |
1893 | CurOp += X86::AddrNumOperands; |
1894 | break; |
1895 | |
1896 | case X86II::MRM0X: |
1897 | case X86II::MRM1X: |
1898 | case X86II::MRM2X: |
1899 | case X86II::MRM3X: |
1900 | case X86II::MRM4X: |
1901 | case X86II::MRM5X: |
1902 | case X86II::MRM6X: |
1903 | case X86II::MRM7X: |
1904 | emitByte(C: BaseOpcode, CB); |
1905 | emitByte(C: 0xC0 + ((Form - X86II::MRM0X) << 3), CB); |
1906 | break; |
1907 | |
1908 | case X86II::MRM_C0: |
1909 | case X86II::MRM_C1: |
1910 | case X86II::MRM_C2: |
1911 | case X86II::MRM_C3: |
1912 | case X86II::MRM_C4: |
1913 | case X86II::MRM_C5: |
1914 | case X86II::MRM_C6: |
1915 | case X86II::MRM_C7: |
1916 | case X86II::MRM_C8: |
1917 | case X86II::MRM_C9: |
1918 | case X86II::MRM_CA: |
1919 | case X86II::MRM_CB: |
1920 | case X86II::MRM_CC: |
1921 | case X86II::MRM_CD: |
1922 | case X86II::MRM_CE: |
1923 | case X86II::MRM_CF: |
1924 | case X86II::MRM_D0: |
1925 | case X86II::MRM_D1: |
1926 | case X86II::MRM_D2: |
1927 | case X86II::MRM_D3: |
1928 | case X86II::MRM_D4: |
1929 | case X86II::MRM_D5: |
1930 | case X86II::MRM_D6: |
1931 | case X86II::MRM_D7: |
1932 | case X86II::MRM_D8: |
1933 | case X86II::MRM_D9: |
1934 | case X86II::MRM_DA: |
1935 | case X86II::MRM_DB: |
1936 | case X86II::MRM_DC: |
1937 | case X86II::MRM_DD: |
1938 | case X86II::MRM_DE: |
1939 | case X86II::MRM_DF: |
1940 | case X86II::MRM_E0: |
1941 | case X86II::MRM_E1: |
1942 | case X86II::MRM_E2: |
1943 | case X86II::MRM_E3: |
1944 | case X86II::MRM_E4: |
1945 | case X86II::MRM_E5: |
1946 | case X86II::MRM_E6: |
1947 | case X86II::MRM_E7: |
1948 | case X86II::MRM_E8: |
1949 | case X86II::MRM_E9: |
1950 | case X86II::MRM_EA: |
1951 | case X86II::MRM_EB: |
1952 | case X86II::MRM_EC: |
1953 | case X86II::MRM_ED: |
1954 | case X86II::MRM_EE: |
1955 | case X86II::MRM_EF: |
1956 | case X86II::MRM_F0: |
1957 | case X86II::MRM_F1: |
1958 | case X86II::MRM_F2: |
1959 | case X86II::MRM_F3: |
1960 | case X86II::MRM_F4: |
1961 | case X86II::MRM_F5: |
1962 | case X86II::MRM_F6: |
1963 | case X86II::MRM_F7: |
1964 | case X86II::MRM_F8: |
1965 | case X86II::MRM_F9: |
1966 | case X86II::MRM_FA: |
1967 | case X86II::MRM_FB: |
1968 | case X86II::MRM_FC: |
1969 | case X86II::MRM_FD: |
1970 | case X86II::MRM_FE: |
1971 | case X86II::MRM_FF: |
1972 | emitByte(C: BaseOpcode, CB); |
1973 | emitByte(C: 0xC0 + Form - X86II::MRM_C0, CB); |
1974 | break; |
1975 | } |
1976 | |
1977 | if (HasVEX_I8Reg) { |
1978 | // The last source register of a 4 operand instruction in AVX is encoded |
1979 | // in bits[7:4] of a immediate byte. |
1980 | assert(I8RegNum < 16 && "Register encoding out of range" ); |
1981 | I8RegNum <<= 4; |
1982 | if (CurOp != NumOps) { |
1983 | unsigned Val = MI.getOperand(i: CurOp++).getImm(); |
1984 | assert(Val < 16 && "Immediate operand value out of range" ); |
1985 | I8RegNum |= Val; |
1986 | } |
1987 | emitImmediate(DispOp: MCOperand::createImm(Val: I8RegNum), Loc: MI.getLoc(), Size: 1, FixupKind: FK_Data_1, |
1988 | StartByte, CB, Fixups); |
1989 | } else { |
1990 | // If there is a remaining operand, it must be a trailing immediate. Emit it |
1991 | // according to the right size for the instruction. Some instructions |
1992 | // (SSE4a extrq and insertq) have two trailing immediates. |
1993 | |
1994 | // Skip two trainling conditional operands encoded in EVEX prefix |
1995 | unsigned RemaningOps = NumOps - CurOp - 2 * HasTwoConditionalOps; |
1996 | while (RemaningOps) { |
1997 | emitImmediate(DispOp: MI.getOperand(i: CurOp++), Loc: MI.getLoc(), |
1998 | Size: X86II::getSizeOfImm(TSFlags), FixupKind: getImmFixupKind(TSFlags), |
1999 | StartByte, CB, Fixups); |
2000 | --RemaningOps; |
2001 | } |
2002 | CurOp += 2 * HasTwoConditionalOps; |
2003 | } |
2004 | |
2005 | if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow) |
2006 | emitByte(C: X86II::getBaseOpcodeFor(TSFlags), CB); |
2007 | |
2008 | if (CB.size() - StartByte > 15) |
2009 | Ctx.reportError(L: MI.getLoc(), Msg: "instruction length exceeds the limit of 15" ); |
2010 | #ifndef NDEBUG |
2011 | // FIXME: Verify. |
2012 | if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) { |
2013 | errs() << "Cannot encode all operands of: " ; |
2014 | MI.dump(); |
2015 | errs() << '\n'; |
2016 | abort(); |
2017 | } |
2018 | #endif |
2019 | } |
2020 | |
2021 | MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII, |
2022 | MCContext &Ctx) { |
2023 | return new X86MCCodeEmitter(MCII, Ctx); |
2024 | } |
2025 | |