1 | //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the pass which converts floating point instructions from |
10 | // pseudo registers into register stack instructions. This pass uses live |
11 | // variable information to indicate where the FPn registers are used and their |
12 | // lifetimes. |
13 | // |
14 | // The x87 hardware tracks liveness of the stack registers, so it is necessary |
15 | // to implement exact liveness tracking between basic blocks. The CFG edges are |
16 | // partitioned into bundles where the same FP registers must be live in |
17 | // identical stack positions. Instructions are inserted at the end of each basic |
18 | // block to rearrange the live registers to match the outgoing bundle. |
19 | // |
20 | // This approach avoids splitting critical edges at the potential cost of more |
21 | // live register shuffling instructions when critical edges are present. |
22 | // |
23 | //===----------------------------------------------------------------------===// |
24 | |
25 | #include "X86.h" |
26 | #include "X86InstrInfo.h" |
27 | #include "llvm/ADT/DepthFirstIterator.h" |
28 | #include "llvm/ADT/STLExtras.h" |
29 | #include "llvm/ADT/SmallSet.h" |
30 | #include "llvm/ADT/SmallVector.h" |
31 | #include "llvm/ADT/Statistic.h" |
32 | #include "llvm/CodeGen/EdgeBundles.h" |
33 | #include "llvm/CodeGen/LiveRegUnits.h" |
34 | #include "llvm/CodeGen/MachineFunctionPass.h" |
35 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
36 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
37 | #include "llvm/CodeGen/Passes.h" |
38 | #include "llvm/CodeGen/TargetInstrInfo.h" |
39 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
40 | #include "llvm/Config/llvm-config.h" |
41 | #include "llvm/IR/InlineAsm.h" |
42 | #include "llvm/InitializePasses.h" |
43 | #include "llvm/Support/Debug.h" |
44 | #include "llvm/Support/ErrorHandling.h" |
45 | #include "llvm/Support/raw_ostream.h" |
46 | #include "llvm/Target/TargetMachine.h" |
47 | #include <algorithm> |
48 | #include <bitset> |
49 | using namespace llvm; |
50 | |
51 | #define DEBUG_TYPE "x86-codegen" |
52 | |
53 | STATISTIC(NumFXCH, "Number of fxch instructions inserted" ); |
54 | STATISTIC(NumFP , "Number of floating point instructions" ); |
55 | |
56 | namespace { |
57 | const unsigned ScratchFPReg = 7; |
58 | |
59 | struct FPS : public MachineFunctionPass { |
60 | static char ID; |
61 | FPS() : MachineFunctionPass(ID) { |
62 | // This is really only to keep valgrind quiet. |
63 | // The logic in isLive() is too much for it. |
64 | memset(s: Stack, c: 0, n: sizeof(Stack)); |
65 | memset(s: RegMap, c: 0, n: sizeof(RegMap)); |
66 | } |
67 | |
68 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
69 | AU.setPreservesCFG(); |
70 | AU.addRequired<EdgeBundles>(); |
71 | AU.addPreservedID(ID&: MachineLoopInfoID); |
72 | AU.addPreservedID(ID&: MachineDominatorsID); |
73 | MachineFunctionPass::getAnalysisUsage(AU); |
74 | } |
75 | |
76 | bool runOnMachineFunction(MachineFunction &MF) override; |
77 | |
78 | MachineFunctionProperties getRequiredProperties() const override { |
79 | return MachineFunctionProperties().set( |
80 | MachineFunctionProperties::Property::NoVRegs); |
81 | } |
82 | |
83 | StringRef getPassName() const override { return "X86 FP Stackifier" ; } |
84 | |
85 | private: |
86 | const TargetInstrInfo *TII = nullptr; // Machine instruction info. |
87 | |
88 | // Two CFG edges are related if they leave the same block, or enter the same |
89 | // block. The transitive closure of an edge under this relation is a |
90 | // LiveBundle. It represents a set of CFG edges where the live FP stack |
91 | // registers must be allocated identically in the x87 stack. |
92 | // |
93 | // A LiveBundle is usually all the edges leaving a block, or all the edges |
94 | // entering a block, but it can contain more edges if critical edges are |
95 | // present. |
96 | // |
97 | // The set of live FP registers in a LiveBundle is calculated by bundleCFG, |
98 | // but the exact mapping of FP registers to stack slots is fixed later. |
99 | struct LiveBundle { |
100 | // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c. |
101 | unsigned Mask = 0; |
102 | |
103 | // Number of pre-assigned live registers in FixStack. This is 0 when the |
104 | // stack order has not yet been fixed. |
105 | unsigned FixCount = 0; |
106 | |
107 | // Assigned stack order for live-in registers. |
108 | // FixStack[i] == getStackEntry(i) for all i < FixCount. |
109 | unsigned char FixStack[8]; |
110 | |
111 | LiveBundle() = default; |
112 | |
113 | // Have the live registers been assigned a stack order yet? |
114 | bool isFixed() const { return !Mask || FixCount; } |
115 | }; |
116 | |
117 | // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges |
118 | // with no live FP registers. |
119 | SmallVector<LiveBundle, 8> LiveBundles; |
120 | |
121 | // The edge bundle analysis provides indices into the LiveBundles vector. |
122 | EdgeBundles *Bundles = nullptr; |
123 | |
124 | // Return a bitmask of FP registers in block's live-in list. |
125 | static unsigned calcLiveInMask(MachineBasicBlock *MBB, bool RemoveFPs) { |
126 | unsigned Mask = 0; |
127 | for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(); |
128 | I != MBB->livein_end(); ) { |
129 | MCPhysReg Reg = I->PhysReg; |
130 | static_assert(X86::FP6 - X86::FP0 == 6, "sequential regnums" ); |
131 | if (Reg >= X86::FP0 && Reg <= X86::FP6) { |
132 | Mask |= 1 << (Reg - X86::FP0); |
133 | if (RemoveFPs) { |
134 | I = MBB->removeLiveIn(I); |
135 | continue; |
136 | } |
137 | } |
138 | ++I; |
139 | } |
140 | return Mask; |
141 | } |
142 | |
143 | // Partition all the CFG edges into LiveBundles. |
144 | void bundleCFGRecomputeKillFlags(MachineFunction &MF); |
145 | |
146 | MachineBasicBlock *MBB = nullptr; // Current basic block |
147 | |
148 | // The hardware keeps track of how many FP registers are live, so we have |
149 | // to model that exactly. Usually, each live register corresponds to an |
150 | // FP<n> register, but when dealing with calls, returns, and inline |
151 | // assembly, it is sometimes necessary to have live scratch registers. |
152 | unsigned Stack[8]; // FP<n> Registers in each stack slot... |
153 | unsigned StackTop = 0; // The current top of the FP stack. |
154 | |
155 | enum { |
156 | NumFPRegs = 8 // Including scratch pseudo-registers. |
157 | }; |
158 | |
159 | // For each live FP<n> register, point to its Stack[] entry. |
160 | // The first entries correspond to FP0-FP6, the rest are scratch registers |
161 | // used when we need slightly different live registers than what the |
162 | // register allocator thinks. |
163 | unsigned RegMap[NumFPRegs]; |
164 | |
165 | // Set up our stack model to match the incoming registers to MBB. |
166 | void setupBlockStack(); |
167 | |
168 | // Shuffle live registers to match the expectations of successor blocks. |
169 | void finishBlockStack(); |
170 | |
171 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
172 | void dumpStack() const { |
173 | dbgs() << "Stack contents:" ; |
174 | for (unsigned i = 0; i != StackTop; ++i) { |
175 | dbgs() << " FP" << Stack[i]; |
176 | assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!" ); |
177 | } |
178 | } |
179 | #endif |
180 | |
181 | /// getSlot - Return the stack slot number a particular register number is |
182 | /// in. |
183 | unsigned getSlot(unsigned RegNo) const { |
184 | assert(RegNo < NumFPRegs && "Regno out of range!" ); |
185 | return RegMap[RegNo]; |
186 | } |
187 | |
188 | /// isLive - Is RegNo currently live in the stack? |
189 | bool isLive(unsigned RegNo) const { |
190 | unsigned Slot = getSlot(RegNo); |
191 | return Slot < StackTop && Stack[Slot] == RegNo; |
192 | } |
193 | |
194 | /// getStackEntry - Return the X86::FP<n> register in register ST(i). |
195 | unsigned getStackEntry(unsigned STi) const { |
196 | if (STi >= StackTop) |
197 | report_fatal_error(reason: "Access past stack top!" ); |
198 | return Stack[StackTop-1-STi]; |
199 | } |
200 | |
201 | /// getSTReg - Return the X86::ST(i) register which contains the specified |
202 | /// FP<RegNo> register. |
203 | unsigned getSTReg(unsigned RegNo) const { |
204 | return StackTop - 1 - getSlot(RegNo) + X86::ST0; |
205 | } |
206 | |
207 | // pushReg - Push the specified FP<n> register onto the stack. |
208 | void pushReg(unsigned Reg) { |
209 | assert(Reg < NumFPRegs && "Register number out of range!" ); |
210 | if (StackTop >= 8) |
211 | report_fatal_error(reason: "Stack overflow!" ); |
212 | Stack[StackTop] = Reg; |
213 | RegMap[Reg] = StackTop++; |
214 | } |
215 | |
216 | // popReg - Pop a register from the stack. |
217 | void popReg() { |
218 | if (StackTop == 0) |
219 | report_fatal_error(reason: "Cannot pop empty stack!" ); |
220 | RegMap[Stack[--StackTop]] = ~0; // Update state |
221 | } |
222 | |
223 | bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; } |
224 | void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) { |
225 | DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); |
226 | if (isAtTop(RegNo)) return; |
227 | |
228 | unsigned STReg = getSTReg(RegNo); |
229 | unsigned RegOnTop = getStackEntry(STi: 0); |
230 | |
231 | // Swap the slots the regs are in. |
232 | std::swap(a&: RegMap[RegNo], b&: RegMap[RegOnTop]); |
233 | |
234 | // Swap stack slot contents. |
235 | if (RegMap[RegOnTop] >= StackTop) |
236 | report_fatal_error(reason: "Access past stack top!" ); |
237 | std::swap(a&: Stack[RegMap[RegOnTop]], b&: Stack[StackTop-1]); |
238 | |
239 | // Emit an fxch to update the runtime processors version of the state. |
240 | BuildMI(BB&: *MBB, I, MIMD: dl, MCID: TII->get(Opcode: X86::XCH_F)).addReg(RegNo: STReg); |
241 | ++NumFXCH; |
242 | } |
243 | |
244 | void duplicateToTop(unsigned RegNo, unsigned AsReg, |
245 | MachineBasicBlock::iterator I) { |
246 | DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); |
247 | unsigned STReg = getSTReg(RegNo); |
248 | pushReg(Reg: AsReg); // New register on top of stack |
249 | |
250 | BuildMI(BB&: *MBB, I, MIMD: dl, MCID: TII->get(Opcode: X86::LD_Frr)).addReg(RegNo: STReg); |
251 | } |
252 | |
253 | /// popStackAfter - Pop the current value off of the top of the FP stack |
254 | /// after the specified instruction. |
255 | void popStackAfter(MachineBasicBlock::iterator &I); |
256 | |
257 | /// freeStackSlotAfter - Free the specified register from the register |
258 | /// stack, so that it is no longer in a register. If the register is |
259 | /// currently at the top of the stack, we just pop the current instruction, |
260 | /// otherwise we store the current top-of-stack into the specified slot, |
261 | /// then pop the top of stack. |
262 | void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg); |
263 | |
264 | /// freeStackSlotBefore - Just the pop, no folding. Return the inserted |
265 | /// instruction. |
266 | MachineBasicBlock::iterator |
267 | freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo); |
268 | |
269 | /// Adjust the live registers to be the set in Mask. |
270 | void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I); |
271 | |
272 | /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is |
273 | /// st(0), FP reg FixStack[1] is st(1) etc. |
274 | void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount, |
275 | MachineBasicBlock::iterator I); |
276 | |
277 | bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); |
278 | |
279 | void handleCall(MachineBasicBlock::iterator &I); |
280 | void handleReturn(MachineBasicBlock::iterator &I); |
281 | void handleZeroArgFP(MachineBasicBlock::iterator &I); |
282 | void handleOneArgFP(MachineBasicBlock::iterator &I); |
283 | void handleOneArgFPRW(MachineBasicBlock::iterator &I); |
284 | void handleTwoArgFP(MachineBasicBlock::iterator &I); |
285 | void handleCompareFP(MachineBasicBlock::iterator &I); |
286 | void handleCondMovFP(MachineBasicBlock::iterator &I); |
287 | void handleSpecialFP(MachineBasicBlock::iterator &I); |
288 | |
289 | // Check if a COPY instruction is using FP registers. |
290 | static bool isFPCopy(MachineInstr &MI) { |
291 | Register DstReg = MI.getOperand(i: 0).getReg(); |
292 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
293 | |
294 | return X86::RFP80RegClass.contains(Reg: DstReg) || |
295 | X86::RFP80RegClass.contains(Reg: SrcReg); |
296 | } |
297 | |
298 | void setKillFlags(MachineBasicBlock &MBB) const; |
299 | }; |
300 | } |
301 | |
302 | char FPS::ID = 0; |
303 | |
304 | INITIALIZE_PASS_BEGIN(FPS, DEBUG_TYPE, "X86 FP Stackifier" , |
305 | false, false) |
306 | INITIALIZE_PASS_DEPENDENCY(EdgeBundles) |
307 | INITIALIZE_PASS_END(FPS, DEBUG_TYPE, "X86 FP Stackifier" , |
308 | false, false) |
309 | |
310 | FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); } |
311 | |
312 | /// getFPReg - Return the X86::FPx register number for the specified operand. |
313 | /// For example, this returns 3 for X86::FP3. |
314 | static unsigned getFPReg(const MachineOperand &MO) { |
315 | assert(MO.isReg() && "Expected an FP register!" ); |
316 | Register Reg = MO.getReg(); |
317 | assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!" ); |
318 | return Reg - X86::FP0; |
319 | } |
320 | |
321 | /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP |
322 | /// register references into FP stack references. |
323 | /// |
324 | bool FPS::runOnMachineFunction(MachineFunction &MF) { |
325 | // We only need to run this pass if there are any FP registers used in this |
326 | // function. If it is all integer, there is nothing for us to do! |
327 | bool FPIsUsed = false; |
328 | |
329 | static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!" ); |
330 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
331 | for (unsigned i = 0; i <= 6; ++i) |
332 | if (!MRI.reg_nodbg_empty(RegNo: X86::FP0 + i)) { |
333 | FPIsUsed = true; |
334 | break; |
335 | } |
336 | |
337 | // Early exit. |
338 | if (!FPIsUsed) return false; |
339 | |
340 | Bundles = &getAnalysis<EdgeBundles>(); |
341 | TII = MF.getSubtarget().getInstrInfo(); |
342 | |
343 | // Prepare cross-MBB liveness. |
344 | bundleCFGRecomputeKillFlags(MF); |
345 | |
346 | StackTop = 0; |
347 | |
348 | // Process the function in depth first order so that we process at least one |
349 | // of the predecessors for every reachable block in the function. |
350 | df_iterator_default_set<MachineBasicBlock*> Processed; |
351 | MachineBasicBlock *Entry = &MF.front(); |
352 | |
353 | LiveBundle &Bundle = |
354 | LiveBundles[Bundles->getBundle(N: Entry->getNumber(), Out: false)]; |
355 | |
356 | // In regcall convention, some FP registers may not be passed through |
357 | // the stack, so they will need to be assigned to the stack first |
358 | if ((Entry->getParent()->getFunction().getCallingConv() == |
359 | CallingConv::X86_RegCall) && (Bundle.Mask && !Bundle.FixCount)) { |
360 | // In the register calling convention, up to one FP argument could be |
361 | // saved in the first FP register. |
362 | // If bundle.mask is non-zero and Bundle.FixCount is zero, it means |
363 | // that the FP registers contain arguments. |
364 | // The actual value is passed in FP0. |
365 | // Here we fix the stack and mark FP0 as pre-assigned register. |
366 | assert((Bundle.Mask & 0xFE) == 0 && |
367 | "Only FP0 could be passed as an argument" ); |
368 | Bundle.FixCount = 1; |
369 | Bundle.FixStack[0] = 0; |
370 | } |
371 | |
372 | bool Changed = false; |
373 | for (MachineBasicBlock *BB : depth_first_ext(G: Entry, S&: Processed)) |
374 | Changed |= processBasicBlock(MF, MBB&: *BB); |
375 | |
376 | // Process any unreachable blocks in arbitrary order now. |
377 | if (MF.size() != Processed.size()) |
378 | for (MachineBasicBlock &BB : MF) |
379 | if (Processed.insert(N: &BB).second) |
380 | Changed |= processBasicBlock(MF, MBB&: BB); |
381 | |
382 | LiveBundles.clear(); |
383 | |
384 | return Changed; |
385 | } |
386 | |
387 | /// bundleCFG - Scan all the basic blocks to determine consistent live-in and |
388 | /// live-out sets for the FP registers. Consistent means that the set of |
389 | /// registers live-out from a block is identical to the live-in set of all |
390 | /// successors. This is not enforced by the normal live-in lists since |
391 | /// registers may be implicitly defined, or not used by all successors. |
392 | void FPS::bundleCFGRecomputeKillFlags(MachineFunction &MF) { |
393 | assert(LiveBundles.empty() && "Stale data in LiveBundles" ); |
394 | LiveBundles.resize(N: Bundles->getNumBundles()); |
395 | |
396 | // Gather the actual live-in masks for all MBBs. |
397 | for (MachineBasicBlock &MBB : MF) { |
398 | setKillFlags(MBB); |
399 | |
400 | const unsigned Mask = calcLiveInMask(MBB: &MBB, RemoveFPs: false); |
401 | if (!Mask) |
402 | continue; |
403 | // Update MBB ingoing bundle mask. |
404 | LiveBundles[Bundles->getBundle(N: MBB.getNumber(), Out: false)].Mask |= Mask; |
405 | } |
406 | } |
407 | |
408 | /// processBasicBlock - Loop over all of the instructions in the basic block, |
409 | /// transforming FP instructions into their stack form. |
410 | /// |
411 | bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) { |
412 | bool Changed = false; |
413 | MBB = &BB; |
414 | |
415 | setupBlockStack(); |
416 | |
417 | for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { |
418 | MachineInstr &MI = *I; |
419 | uint64_t Flags = MI.getDesc().TSFlags; |
420 | |
421 | unsigned FPInstClass = Flags & X86II::FPTypeMask; |
422 | if (MI.isInlineAsm()) |
423 | FPInstClass = X86II::SpecialFP; |
424 | |
425 | if (MI.isCopy() && isFPCopy(MI)) |
426 | FPInstClass = X86II::SpecialFP; |
427 | |
428 | if (MI.isImplicitDef() && |
429 | X86::RFP80RegClass.contains(Reg: MI.getOperand(i: 0).getReg())) |
430 | FPInstClass = X86II::SpecialFP; |
431 | |
432 | if (MI.isCall()) |
433 | FPInstClass = X86II::SpecialFP; |
434 | |
435 | if (FPInstClass == X86II::NotFP) |
436 | continue; // Efficiently ignore non-fp insts! |
437 | |
438 | MachineInstr *PrevMI = nullptr; |
439 | if (I != BB.begin()) |
440 | PrevMI = &*std::prev(x: I); |
441 | |
442 | ++NumFP; // Keep track of # of pseudo instrs |
443 | LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI); |
444 | |
445 | // Get dead variables list now because the MI pointer may be deleted as part |
446 | // of processing! |
447 | SmallVector<unsigned, 8> DeadRegs; |
448 | for (const MachineOperand &MO : MI.operands()) |
449 | if (MO.isReg() && MO.isDead()) |
450 | DeadRegs.push_back(Elt: MO.getReg()); |
451 | |
452 | switch (FPInstClass) { |
453 | case X86II::ZeroArgFP: handleZeroArgFP(I); break; |
454 | case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0) |
455 | case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0)) |
456 | case X86II::TwoArgFP: handleTwoArgFP(I); break; |
457 | case X86II::CompareFP: handleCompareFP(I); break; |
458 | case X86II::CondMovFP: handleCondMovFP(I); break; |
459 | case X86II::SpecialFP: handleSpecialFP(I); break; |
460 | default: llvm_unreachable("Unknown FP Type!" ); |
461 | } |
462 | |
463 | // Check to see if any of the values defined by this instruction are dead |
464 | // after definition. If so, pop them. |
465 | for (unsigned Reg : DeadRegs) { |
466 | // Check if Reg is live on the stack. An inline-asm register operand that |
467 | // is in the clobber list and marked dead might not be live on the stack. |
468 | static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers" ); |
469 | if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(RegNo: Reg-X86::FP0)) { |
470 | LLVM_DEBUG(dbgs() << "Register FP#" << Reg - X86::FP0 << " is dead!\n" ); |
471 | freeStackSlotAfter(I, Reg: Reg-X86::FP0); |
472 | } |
473 | } |
474 | |
475 | // Print out all of the instructions expanded to if -debug |
476 | LLVM_DEBUG({ |
477 | MachineBasicBlock::iterator PrevI = PrevMI; |
478 | if (I == PrevI) { |
479 | dbgs() << "Just deleted pseudo instruction\n" ; |
480 | } else { |
481 | MachineBasicBlock::iterator Start = I; |
482 | // Rewind to first instruction newly inserted. |
483 | while (Start != BB.begin() && std::prev(Start) != PrevI) |
484 | --Start; |
485 | dbgs() << "Inserted instructions:\n\t" ; |
486 | Start->print(dbgs()); |
487 | while (++Start != std::next(I)) { |
488 | } |
489 | } |
490 | dumpStack(); |
491 | }); |
492 | (void)PrevMI; |
493 | |
494 | Changed = true; |
495 | } |
496 | |
497 | finishBlockStack(); |
498 | |
499 | return Changed; |
500 | } |
501 | |
502 | /// setupBlockStack - Use the live bundles to set up our model of the stack |
503 | /// to match predecessors' live out stack. |
504 | void FPS::setupBlockStack() { |
505 | LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB) |
506 | << " derived from " << MBB->getName() << ".\n" ); |
507 | StackTop = 0; |
508 | // Get the live-in bundle for MBB. |
509 | const LiveBundle &Bundle = |
510 | LiveBundles[Bundles->getBundle(N: MBB->getNumber(), Out: false)]; |
511 | |
512 | if (!Bundle.Mask) { |
513 | LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n" ); |
514 | return; |
515 | } |
516 | |
517 | // Depth-first iteration should ensure that we always have an assigned stack. |
518 | assert(Bundle.isFixed() && "Reached block before any predecessors" ); |
519 | |
520 | // Push the fixed live-in registers. |
521 | for (unsigned i = Bundle.FixCount; i > 0; --i) { |
522 | LLVM_DEBUG(dbgs() << "Live-in st(" << (i - 1) << "): %fp" |
523 | << unsigned(Bundle.FixStack[i - 1]) << '\n'); |
524 | pushReg(Reg: Bundle.FixStack[i-1]); |
525 | } |
526 | |
527 | // Kill off unwanted live-ins. This can happen with a critical edge. |
528 | // FIXME: We could keep these live registers around as zombies. They may need |
529 | // to be revived at the end of a short block. It might save a few instrs. |
530 | unsigned Mask = calcLiveInMask(MBB, /*RemoveFPs=*/true); |
531 | adjustLiveRegs(Mask, I: MBB->begin()); |
532 | LLVM_DEBUG(MBB->dump()); |
533 | } |
534 | |
535 | /// finishBlockStack - Revive live-outs that are implicitly defined out of |
536 | /// MBB. Shuffle live registers to match the expected fixed stack of any |
537 | /// predecessors, and ensure that all predecessors are expecting the same |
538 | /// stack. |
539 | void FPS::finishBlockStack() { |
540 | // The RET handling below takes care of return blocks for us. |
541 | if (MBB->succ_empty()) |
542 | return; |
543 | |
544 | LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB) |
545 | << " derived from " << MBB->getName() << ".\n" ); |
546 | |
547 | // Get MBB's live-out bundle. |
548 | unsigned BundleIdx = Bundles->getBundle(N: MBB->getNumber(), Out: true); |
549 | LiveBundle &Bundle = LiveBundles[BundleIdx]; |
550 | |
551 | // We may need to kill and define some registers to match successors. |
552 | // FIXME: This can probably be combined with the shuffle below. |
553 | MachineBasicBlock::iterator Term = MBB->getFirstTerminator(); |
554 | adjustLiveRegs(Mask: Bundle.Mask, I: Term); |
555 | |
556 | if (!Bundle.Mask) { |
557 | LLVM_DEBUG(dbgs() << "No live-outs.\n" ); |
558 | return; |
559 | } |
560 | |
561 | // Has the stack order been fixed yet? |
562 | LLVM_DEBUG(dbgs() << "LB#" << BundleIdx << ": " ); |
563 | if (Bundle.isFixed()) { |
564 | LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n" ); |
565 | shuffleStackTop(FixStack: Bundle.FixStack, FixCount: Bundle.FixCount, I: Term); |
566 | } else { |
567 | // Not fixed yet, we get to choose. |
568 | LLVM_DEBUG(dbgs() << "Fixing stack order now.\n" ); |
569 | Bundle.FixCount = StackTop; |
570 | for (unsigned i = 0; i < StackTop; ++i) |
571 | Bundle.FixStack[i] = getStackEntry(STi: i); |
572 | } |
573 | } |
574 | |
575 | |
576 | //===----------------------------------------------------------------------===// |
577 | // Efficient Lookup Table Support |
578 | //===----------------------------------------------------------------------===// |
579 | |
580 | namespace { |
581 | struct TableEntry { |
582 | uint16_t from; |
583 | uint16_t to; |
584 | bool operator<(const TableEntry &TE) const { return from < TE.from; } |
585 | friend bool operator<(const TableEntry &TE, unsigned V) { |
586 | return TE.from < V; |
587 | } |
588 | friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V, |
589 | const TableEntry &TE) { |
590 | return V < TE.from; |
591 | } |
592 | }; |
593 | } |
594 | |
595 | static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) { |
596 | const TableEntry *I = llvm::lower_bound(Range&: Table, Value&: Opcode); |
597 | if (I != Table.end() && I->from == Opcode) |
598 | return I->to; |
599 | return -1; |
600 | } |
601 | |
602 | #ifdef NDEBUG |
603 | #define ASSERT_SORTED(TABLE) |
604 | #else |
605 | #define ASSERT_SORTED(TABLE) \ |
606 | { \ |
607 | static std::atomic<bool> TABLE##Checked(false); \ |
608 | if (!TABLE##Checked.load(std::memory_order_relaxed)) { \ |
609 | assert(is_sorted(TABLE) && \ |
610 | "All lookup tables must be sorted for efficient access!"); \ |
611 | TABLE##Checked.store(true, std::memory_order_relaxed); \ |
612 | } \ |
613 | } |
614 | #endif |
615 | |
616 | //===----------------------------------------------------------------------===// |
617 | // Register File -> Register Stack Mapping Methods |
618 | //===----------------------------------------------------------------------===// |
619 | |
620 | // OpcodeTable - Sorted map of register instructions to their stack version. |
621 | // The first element is an register file pseudo instruction, the second is the |
622 | // concrete X86 instruction which uses the register stack. |
623 | // |
624 | static const TableEntry OpcodeTable[] = { |
625 | { .from: X86::ABS_Fp32 , .to: X86::ABS_F }, |
626 | { .from: X86::ABS_Fp64 , .to: X86::ABS_F }, |
627 | { .from: X86::ABS_Fp80 , .to: X86::ABS_F }, |
628 | { .from: X86::ADD_Fp32m , .to: X86::ADD_F32m }, |
629 | { .from: X86::ADD_Fp64m , .to: X86::ADD_F64m }, |
630 | { .from: X86::ADD_Fp64m32 , .to: X86::ADD_F32m }, |
631 | { .from: X86::ADD_Fp80m32 , .to: X86::ADD_F32m }, |
632 | { .from: X86::ADD_Fp80m64 , .to: X86::ADD_F64m }, |
633 | { .from: X86::ADD_FpI16m32 , .to: X86::ADD_FI16m }, |
634 | { .from: X86::ADD_FpI16m64 , .to: X86::ADD_FI16m }, |
635 | { .from: X86::ADD_FpI16m80 , .to: X86::ADD_FI16m }, |
636 | { .from: X86::ADD_FpI32m32 , .to: X86::ADD_FI32m }, |
637 | { .from: X86::ADD_FpI32m64 , .to: X86::ADD_FI32m }, |
638 | { .from: X86::ADD_FpI32m80 , .to: X86::ADD_FI32m }, |
639 | { .from: X86::CHS_Fp32 , .to: X86::CHS_F }, |
640 | { .from: X86::CHS_Fp64 , .to: X86::CHS_F }, |
641 | { .from: X86::CHS_Fp80 , .to: X86::CHS_F }, |
642 | { .from: X86::CMOVBE_Fp32 , .to: X86::CMOVBE_F }, |
643 | { .from: X86::CMOVBE_Fp64 , .to: X86::CMOVBE_F }, |
644 | { .from: X86::CMOVBE_Fp80 , .to: X86::CMOVBE_F }, |
645 | { .from: X86::CMOVB_Fp32 , .to: X86::CMOVB_F }, |
646 | { .from: X86::CMOVB_Fp64 , .to: X86::CMOVB_F }, |
647 | { .from: X86::CMOVB_Fp80 , .to: X86::CMOVB_F }, |
648 | { .from: X86::CMOVE_Fp32 , .to: X86::CMOVE_F }, |
649 | { .from: X86::CMOVE_Fp64 , .to: X86::CMOVE_F }, |
650 | { .from: X86::CMOVE_Fp80 , .to: X86::CMOVE_F }, |
651 | { .from: X86::CMOVNBE_Fp32 , .to: X86::CMOVNBE_F }, |
652 | { .from: X86::CMOVNBE_Fp64 , .to: X86::CMOVNBE_F }, |
653 | { .from: X86::CMOVNBE_Fp80 , .to: X86::CMOVNBE_F }, |
654 | { .from: X86::CMOVNB_Fp32 , .to: X86::CMOVNB_F }, |
655 | { .from: X86::CMOVNB_Fp64 , .to: X86::CMOVNB_F }, |
656 | { .from: X86::CMOVNB_Fp80 , .to: X86::CMOVNB_F }, |
657 | { .from: X86::CMOVNE_Fp32 , .to: X86::CMOVNE_F }, |
658 | { .from: X86::CMOVNE_Fp64 , .to: X86::CMOVNE_F }, |
659 | { .from: X86::CMOVNE_Fp80 , .to: X86::CMOVNE_F }, |
660 | { .from: X86::CMOVNP_Fp32 , .to: X86::CMOVNP_F }, |
661 | { .from: X86::CMOVNP_Fp64 , .to: X86::CMOVNP_F }, |
662 | { .from: X86::CMOVNP_Fp80 , .to: X86::CMOVNP_F }, |
663 | { .from: X86::CMOVP_Fp32 , .to: X86::CMOVP_F }, |
664 | { .from: X86::CMOVP_Fp64 , .to: X86::CMOVP_F }, |
665 | { .from: X86::CMOVP_Fp80 , .to: X86::CMOVP_F }, |
666 | { .from: X86::COM_FpIr32 , .to: X86::COM_FIr }, |
667 | { .from: X86::COM_FpIr64 , .to: X86::COM_FIr }, |
668 | { .from: X86::COM_FpIr80 , .to: X86::COM_FIr }, |
669 | { .from: X86::COM_Fpr32 , .to: X86::COM_FST0r }, |
670 | { .from: X86::COM_Fpr64 , .to: X86::COM_FST0r }, |
671 | { .from: X86::COM_Fpr80 , .to: X86::COM_FST0r }, |
672 | { .from: X86::DIVR_Fp32m , .to: X86::DIVR_F32m }, |
673 | { .from: X86::DIVR_Fp64m , .to: X86::DIVR_F64m }, |
674 | { .from: X86::DIVR_Fp64m32 , .to: X86::DIVR_F32m }, |
675 | { .from: X86::DIVR_Fp80m32 , .to: X86::DIVR_F32m }, |
676 | { .from: X86::DIVR_Fp80m64 , .to: X86::DIVR_F64m }, |
677 | { .from: X86::DIVR_FpI16m32, .to: X86::DIVR_FI16m}, |
678 | { .from: X86::DIVR_FpI16m64, .to: X86::DIVR_FI16m}, |
679 | { .from: X86::DIVR_FpI16m80, .to: X86::DIVR_FI16m}, |
680 | { .from: X86::DIVR_FpI32m32, .to: X86::DIVR_FI32m}, |
681 | { .from: X86::DIVR_FpI32m64, .to: X86::DIVR_FI32m}, |
682 | { .from: X86::DIVR_FpI32m80, .to: X86::DIVR_FI32m}, |
683 | { .from: X86::DIV_Fp32m , .to: X86::DIV_F32m }, |
684 | { .from: X86::DIV_Fp64m , .to: X86::DIV_F64m }, |
685 | { .from: X86::DIV_Fp64m32 , .to: X86::DIV_F32m }, |
686 | { .from: X86::DIV_Fp80m32 , .to: X86::DIV_F32m }, |
687 | { .from: X86::DIV_Fp80m64 , .to: X86::DIV_F64m }, |
688 | { .from: X86::DIV_FpI16m32 , .to: X86::DIV_FI16m }, |
689 | { .from: X86::DIV_FpI16m64 , .to: X86::DIV_FI16m }, |
690 | { .from: X86::DIV_FpI16m80 , .to: X86::DIV_FI16m }, |
691 | { .from: X86::DIV_FpI32m32 , .to: X86::DIV_FI32m }, |
692 | { .from: X86::DIV_FpI32m64 , .to: X86::DIV_FI32m }, |
693 | { .from: X86::DIV_FpI32m80 , .to: X86::DIV_FI32m }, |
694 | { .from: X86::ILD_Fp16m32 , .to: X86::ILD_F16m }, |
695 | { .from: X86::ILD_Fp16m64 , .to: X86::ILD_F16m }, |
696 | { .from: X86::ILD_Fp16m80 , .to: X86::ILD_F16m }, |
697 | { .from: X86::ILD_Fp32m32 , .to: X86::ILD_F32m }, |
698 | { .from: X86::ILD_Fp32m64 , .to: X86::ILD_F32m }, |
699 | { .from: X86::ILD_Fp32m80 , .to: X86::ILD_F32m }, |
700 | { .from: X86::ILD_Fp64m32 , .to: X86::ILD_F64m }, |
701 | { .from: X86::ILD_Fp64m64 , .to: X86::ILD_F64m }, |
702 | { .from: X86::ILD_Fp64m80 , .to: X86::ILD_F64m }, |
703 | { .from: X86::ISTT_Fp16m32 , .to: X86::ISTT_FP16m}, |
704 | { .from: X86::ISTT_Fp16m64 , .to: X86::ISTT_FP16m}, |
705 | { .from: X86::ISTT_Fp16m80 , .to: X86::ISTT_FP16m}, |
706 | { .from: X86::ISTT_Fp32m32 , .to: X86::ISTT_FP32m}, |
707 | { .from: X86::ISTT_Fp32m64 , .to: X86::ISTT_FP32m}, |
708 | { .from: X86::ISTT_Fp32m80 , .to: X86::ISTT_FP32m}, |
709 | { .from: X86::ISTT_Fp64m32 , .to: X86::ISTT_FP64m}, |
710 | { .from: X86::ISTT_Fp64m64 , .to: X86::ISTT_FP64m}, |
711 | { .from: X86::ISTT_Fp64m80 , .to: X86::ISTT_FP64m}, |
712 | { .from: X86::IST_Fp16m32 , .to: X86::IST_F16m }, |
713 | { .from: X86::IST_Fp16m64 , .to: X86::IST_F16m }, |
714 | { .from: X86::IST_Fp16m80 , .to: X86::IST_F16m }, |
715 | { .from: X86::IST_Fp32m32 , .to: X86::IST_F32m }, |
716 | { .from: X86::IST_Fp32m64 , .to: X86::IST_F32m }, |
717 | { .from: X86::IST_Fp32m80 , .to: X86::IST_F32m }, |
718 | { .from: X86::IST_Fp64m32 , .to: X86::IST_FP64m }, |
719 | { .from: X86::IST_Fp64m64 , .to: X86::IST_FP64m }, |
720 | { .from: X86::IST_Fp64m80 , .to: X86::IST_FP64m }, |
721 | { .from: X86::LD_Fp032 , .to: X86::LD_F0 }, |
722 | { .from: X86::LD_Fp064 , .to: X86::LD_F0 }, |
723 | { .from: X86::LD_Fp080 , .to: X86::LD_F0 }, |
724 | { .from: X86::LD_Fp132 , .to: X86::LD_F1 }, |
725 | { .from: X86::LD_Fp164 , .to: X86::LD_F1 }, |
726 | { .from: X86::LD_Fp180 , .to: X86::LD_F1 }, |
727 | { .from: X86::LD_Fp32m , .to: X86::LD_F32m }, |
728 | { .from: X86::LD_Fp32m64 , .to: X86::LD_F32m }, |
729 | { .from: X86::LD_Fp32m80 , .to: X86::LD_F32m }, |
730 | { .from: X86::LD_Fp64m , .to: X86::LD_F64m }, |
731 | { .from: X86::LD_Fp64m80 , .to: X86::LD_F64m }, |
732 | { .from: X86::LD_Fp80m , .to: X86::LD_F80m }, |
733 | { .from: X86::MUL_Fp32m , .to: X86::MUL_F32m }, |
734 | { .from: X86::MUL_Fp64m , .to: X86::MUL_F64m }, |
735 | { .from: X86::MUL_Fp64m32 , .to: X86::MUL_F32m }, |
736 | { .from: X86::MUL_Fp80m32 , .to: X86::MUL_F32m }, |
737 | { .from: X86::MUL_Fp80m64 , .to: X86::MUL_F64m }, |
738 | { .from: X86::MUL_FpI16m32 , .to: X86::MUL_FI16m }, |
739 | { .from: X86::MUL_FpI16m64 , .to: X86::MUL_FI16m }, |
740 | { .from: X86::MUL_FpI16m80 , .to: X86::MUL_FI16m }, |
741 | { .from: X86::MUL_FpI32m32 , .to: X86::MUL_FI32m }, |
742 | { .from: X86::MUL_FpI32m64 , .to: X86::MUL_FI32m }, |
743 | { .from: X86::MUL_FpI32m80 , .to: X86::MUL_FI32m }, |
744 | { .from: X86::SQRT_Fp32 , .to: X86::SQRT_F }, |
745 | { .from: X86::SQRT_Fp64 , .to: X86::SQRT_F }, |
746 | { .from: X86::SQRT_Fp80 , .to: X86::SQRT_F }, |
747 | { .from: X86::ST_Fp32m , .to: X86::ST_F32m }, |
748 | { .from: X86::ST_Fp64m , .to: X86::ST_F64m }, |
749 | { .from: X86::ST_Fp64m32 , .to: X86::ST_F32m }, |
750 | { .from: X86::ST_Fp80m32 , .to: X86::ST_F32m }, |
751 | { .from: X86::ST_Fp80m64 , .to: X86::ST_F64m }, |
752 | { .from: X86::ST_FpP80m , .to: X86::ST_FP80m }, |
753 | { .from: X86::SUBR_Fp32m , .to: X86::SUBR_F32m }, |
754 | { .from: X86::SUBR_Fp64m , .to: X86::SUBR_F64m }, |
755 | { .from: X86::SUBR_Fp64m32 , .to: X86::SUBR_F32m }, |
756 | { .from: X86::SUBR_Fp80m32 , .to: X86::SUBR_F32m }, |
757 | { .from: X86::SUBR_Fp80m64 , .to: X86::SUBR_F64m }, |
758 | { .from: X86::SUBR_FpI16m32, .to: X86::SUBR_FI16m}, |
759 | { .from: X86::SUBR_FpI16m64, .to: X86::SUBR_FI16m}, |
760 | { .from: X86::SUBR_FpI16m80, .to: X86::SUBR_FI16m}, |
761 | { .from: X86::SUBR_FpI32m32, .to: X86::SUBR_FI32m}, |
762 | { .from: X86::SUBR_FpI32m64, .to: X86::SUBR_FI32m}, |
763 | { .from: X86::SUBR_FpI32m80, .to: X86::SUBR_FI32m}, |
764 | { .from: X86::SUB_Fp32m , .to: X86::SUB_F32m }, |
765 | { .from: X86::SUB_Fp64m , .to: X86::SUB_F64m }, |
766 | { .from: X86::SUB_Fp64m32 , .to: X86::SUB_F32m }, |
767 | { .from: X86::SUB_Fp80m32 , .to: X86::SUB_F32m }, |
768 | { .from: X86::SUB_Fp80m64 , .to: X86::SUB_F64m }, |
769 | { .from: X86::SUB_FpI16m32 , .to: X86::SUB_FI16m }, |
770 | { .from: X86::SUB_FpI16m64 , .to: X86::SUB_FI16m }, |
771 | { .from: X86::SUB_FpI16m80 , .to: X86::SUB_FI16m }, |
772 | { .from: X86::SUB_FpI32m32 , .to: X86::SUB_FI32m }, |
773 | { .from: X86::SUB_FpI32m64 , .to: X86::SUB_FI32m }, |
774 | { .from: X86::SUB_FpI32m80 , .to: X86::SUB_FI32m }, |
775 | { .from: X86::TST_Fp32 , .to: X86::TST_F }, |
776 | { .from: X86::TST_Fp64 , .to: X86::TST_F }, |
777 | { .from: X86::TST_Fp80 , .to: X86::TST_F }, |
778 | { .from: X86::UCOM_FpIr32 , .to: X86::UCOM_FIr }, |
779 | { .from: X86::UCOM_FpIr64 , .to: X86::UCOM_FIr }, |
780 | { .from: X86::UCOM_FpIr80 , .to: X86::UCOM_FIr }, |
781 | { .from: X86::UCOM_Fpr32 , .to: X86::UCOM_Fr }, |
782 | { .from: X86::UCOM_Fpr64 , .to: X86::UCOM_Fr }, |
783 | { .from: X86::UCOM_Fpr80 , .to: X86::UCOM_Fr }, |
784 | { .from: X86::XAM_Fp32 , .to: X86::XAM_F }, |
785 | { .from: X86::XAM_Fp64 , .to: X86::XAM_F }, |
786 | { .from: X86::XAM_Fp80 , .to: X86::XAM_F }, |
787 | }; |
788 | |
789 | static unsigned getConcreteOpcode(unsigned Opcode) { |
790 | ASSERT_SORTED(OpcodeTable); |
791 | int Opc = Lookup(Table: OpcodeTable, Opcode); |
792 | assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!" ); |
793 | return Opc; |
794 | } |
795 | |
796 | //===----------------------------------------------------------------------===// |
797 | // Helper Methods |
798 | //===----------------------------------------------------------------------===// |
799 | |
800 | // PopTable - Sorted map of instructions to their popping version. The first |
801 | // element is an instruction, the second is the version which pops. |
802 | // |
803 | static const TableEntry PopTable[] = { |
804 | { .from: X86::ADD_FrST0 , .to: X86::ADD_FPrST0 }, |
805 | |
806 | { .from: X86::COMP_FST0r, .to: X86::FCOMPP }, |
807 | { .from: X86::COM_FIr , .to: X86::COM_FIPr }, |
808 | { .from: X86::COM_FST0r , .to: X86::COMP_FST0r }, |
809 | |
810 | { .from: X86::DIVR_FrST0, .to: X86::DIVR_FPrST0 }, |
811 | { .from: X86::DIV_FrST0 , .to: X86::DIV_FPrST0 }, |
812 | |
813 | { .from: X86::IST_F16m , .to: X86::IST_FP16m }, |
814 | { .from: X86::IST_F32m , .to: X86::IST_FP32m }, |
815 | |
816 | { .from: X86::MUL_FrST0 , .to: X86::MUL_FPrST0 }, |
817 | |
818 | { .from: X86::ST_F32m , .to: X86::ST_FP32m }, |
819 | { .from: X86::ST_F64m , .to: X86::ST_FP64m }, |
820 | { .from: X86::ST_Frr , .to: X86::ST_FPrr }, |
821 | |
822 | { .from: X86::SUBR_FrST0, .to: X86::SUBR_FPrST0 }, |
823 | { .from: X86::SUB_FrST0 , .to: X86::SUB_FPrST0 }, |
824 | |
825 | { .from: X86::UCOM_FIr , .to: X86::UCOM_FIPr }, |
826 | |
827 | { .from: X86::UCOM_FPr , .to: X86::UCOM_FPPr }, |
828 | { .from: X86::UCOM_Fr , .to: X86::UCOM_FPr }, |
829 | }; |
830 | |
831 | static bool doesInstructionSetFPSW(MachineInstr &MI) { |
832 | if (const MachineOperand *MO = |
833 | MI.findRegisterDefOperand(Reg: X86::FPSW, /*TRI=*/nullptr)) |
834 | if (!MO->isDead()) |
835 | return true; |
836 | return false; |
837 | } |
838 | |
839 | static MachineBasicBlock::iterator |
840 | getNextFPInstruction(MachineBasicBlock::iterator I) { |
841 | MachineBasicBlock &MBB = *I->getParent(); |
842 | while (++I != MBB.end()) { |
843 | MachineInstr &MI = *I; |
844 | if (X86::isX87Instruction(MI)) |
845 | return I; |
846 | } |
847 | return MBB.end(); |
848 | } |
849 | |
850 | /// popStackAfter - Pop the current value off of the top of the FP stack after |
851 | /// the specified instruction. This attempts to be sneaky and combine the pop |
852 | /// into the instruction itself if possible. The iterator is left pointing to |
853 | /// the last instruction, be it a new pop instruction inserted, or the old |
854 | /// instruction if it was modified in place. |
855 | /// |
856 | void FPS::popStackAfter(MachineBasicBlock::iterator &I) { |
857 | MachineInstr &MI = *I; |
858 | const DebugLoc &dl = MI.getDebugLoc(); |
859 | ASSERT_SORTED(PopTable); |
860 | |
861 | popReg(); |
862 | |
863 | // Check to see if there is a popping version of this instruction... |
864 | int Opcode = Lookup(Table: PopTable, Opcode: I->getOpcode()); |
865 | if (Opcode != -1) { |
866 | I->setDesc(TII->get(Opcode)); |
867 | if (Opcode == X86::FCOMPP || Opcode == X86::UCOM_FPPr) |
868 | I->removeOperand(OpNo: 0); |
869 | MI.dropDebugNumber(); |
870 | } else { // Insert an explicit pop |
871 | // If this instruction sets FPSW, which is read in following instruction, |
872 | // insert pop after that reader. |
873 | if (doesInstructionSetFPSW(MI)) { |
874 | MachineBasicBlock &MBB = *MI.getParent(); |
875 | MachineBasicBlock::iterator Next = getNextFPInstruction(I); |
876 | if (Next != MBB.end() && Next->readsRegister(Reg: X86::FPSW, /*TRI=*/nullptr)) |
877 | I = Next; |
878 | } |
879 | I = BuildMI(BB&: *MBB, I: ++I, MIMD: dl, MCID: TII->get(Opcode: X86::ST_FPrr)).addReg(RegNo: X86::ST0); |
880 | } |
881 | } |
882 | |
883 | /// freeStackSlotAfter - Free the specified register from the register stack, so |
884 | /// that it is no longer in a register. If the register is currently at the top |
885 | /// of the stack, we just pop the current instruction, otherwise we store the |
886 | /// current top-of-stack into the specified slot, then pop the top of stack. |
887 | void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) { |
888 | if (getStackEntry(STi: 0) == FPRegNo) { // already at the top of stack? easy. |
889 | popStackAfter(I); |
890 | return; |
891 | } |
892 | |
893 | // Otherwise, store the top of stack into the dead slot, killing the operand |
894 | // without having to add in an explicit xchg then pop. |
895 | // |
896 | I = freeStackSlotBefore(I: ++I, FPRegNo); |
897 | } |
898 | |
899 | /// freeStackSlotBefore - Free the specified register without trying any |
900 | /// folding. |
901 | MachineBasicBlock::iterator |
902 | FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) { |
903 | unsigned STReg = getSTReg(RegNo: FPRegNo); |
904 | unsigned OldSlot = getSlot(RegNo: FPRegNo); |
905 | unsigned TopReg = Stack[StackTop-1]; |
906 | Stack[OldSlot] = TopReg; |
907 | RegMap[TopReg] = OldSlot; |
908 | RegMap[FPRegNo] = ~0; |
909 | Stack[--StackTop] = ~0; |
910 | return BuildMI(BB&: *MBB, I, MIMD: DebugLoc(), MCID: TII->get(Opcode: X86::ST_FPrr)) |
911 | .addReg(RegNo: STReg) |
912 | .getInstr(); |
913 | } |
914 | |
915 | /// adjustLiveRegs - Kill and revive registers such that exactly the FP |
916 | /// registers with a bit in Mask are live. |
917 | void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) { |
918 | unsigned Defs = Mask; |
919 | unsigned Kills = 0; |
920 | for (unsigned i = 0; i < StackTop; ++i) { |
921 | unsigned RegNo = Stack[i]; |
922 | if (!(Defs & (1 << RegNo))) |
923 | // This register is live, but we don't want it. |
924 | Kills |= (1 << RegNo); |
925 | else |
926 | // We don't need to imp-def this live register. |
927 | Defs &= ~(1 << RegNo); |
928 | } |
929 | assert((Kills & Defs) == 0 && "Register needs killing and def'ing?" ); |
930 | |
931 | // Produce implicit-defs for free by using killed registers. |
932 | while (Kills && Defs) { |
933 | unsigned KReg = llvm::countr_zero(Val: Kills); |
934 | unsigned DReg = llvm::countr_zero(Val: Defs); |
935 | LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg << " as imp %fp" << DReg |
936 | << "\n" ); |
937 | std::swap(a&: Stack[getSlot(RegNo: KReg)], b&: Stack[getSlot(RegNo: DReg)]); |
938 | std::swap(a&: RegMap[KReg], b&: RegMap[DReg]); |
939 | Kills &= ~(1 << KReg); |
940 | Defs &= ~(1 << DReg); |
941 | } |
942 | |
943 | // Kill registers by popping. |
944 | if (Kills && I != MBB->begin()) { |
945 | MachineBasicBlock::iterator I2 = std::prev(x: I); |
946 | while (StackTop) { |
947 | unsigned KReg = getStackEntry(STi: 0); |
948 | if (!(Kills & (1 << KReg))) |
949 | break; |
950 | LLVM_DEBUG(dbgs() << "Popping %fp" << KReg << "\n" ); |
951 | popStackAfter(I&: I2); |
952 | Kills &= ~(1 << KReg); |
953 | } |
954 | } |
955 | |
956 | // Manually kill the rest. |
957 | while (Kills) { |
958 | unsigned KReg = llvm::countr_zero(Val: Kills); |
959 | LLVM_DEBUG(dbgs() << "Killing %fp" << KReg << "\n" ); |
960 | freeStackSlotBefore(I, FPRegNo: KReg); |
961 | Kills &= ~(1 << KReg); |
962 | } |
963 | |
964 | // Load zeros for all the imp-defs. |
965 | while(Defs) { |
966 | unsigned DReg = llvm::countr_zero(Val: Defs); |
967 | LLVM_DEBUG(dbgs() << "Defining %fp" << DReg << " as 0\n" ); |
968 | BuildMI(BB&: *MBB, I, MIMD: DebugLoc(), MCID: TII->get(Opcode: X86::LD_F0)); |
969 | pushReg(Reg: DReg); |
970 | Defs &= ~(1 << DReg); |
971 | } |
972 | |
973 | // Now we should have the correct registers live. |
974 | LLVM_DEBUG(dumpStack()); |
975 | assert(StackTop == (unsigned)llvm::popcount(Mask) && "Live count mismatch" ); |
976 | } |
977 | |
978 | /// shuffleStackTop - emit fxch instructions before I to shuffle the top |
979 | /// FixCount entries into the order given by FixStack. |
980 | /// FIXME: Is there a better algorithm than insertion sort? |
981 | void FPS::shuffleStackTop(const unsigned char *FixStack, |
982 | unsigned FixCount, |
983 | MachineBasicBlock::iterator I) { |
984 | // Move items into place, starting from the desired stack bottom. |
985 | while (FixCount--) { |
986 | // Old register at position FixCount. |
987 | unsigned OldReg = getStackEntry(STi: FixCount); |
988 | // Desired register at position FixCount. |
989 | unsigned Reg = FixStack[FixCount]; |
990 | if (Reg == OldReg) |
991 | continue; |
992 | // (Reg st0) (OldReg st0) = (Reg OldReg st0) |
993 | moveToTop(RegNo: Reg, I); |
994 | if (FixCount > 0) |
995 | moveToTop(RegNo: OldReg, I); |
996 | } |
997 | LLVM_DEBUG(dumpStack()); |
998 | } |
999 | |
1000 | |
1001 | //===----------------------------------------------------------------------===// |
1002 | // Instruction transformation implementation |
1003 | //===----------------------------------------------------------------------===// |
1004 | |
1005 | void FPS::handleCall(MachineBasicBlock::iterator &I) { |
1006 | MachineInstr &MI = *I; |
1007 | unsigned STReturns = 0; |
1008 | |
1009 | bool ClobbersFPStack = false; |
1010 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
1011 | MachineOperand &Op = MI.getOperand(i); |
1012 | // Check if this call clobbers the FP stack. |
1013 | // is sufficient. |
1014 | if (Op.isRegMask()) { |
1015 | bool ClobbersFP0 = Op.clobbersPhysReg(PhysReg: X86::FP0); |
1016 | #ifndef NDEBUG |
1017 | static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers" ); |
1018 | for (unsigned i = 1; i != 8; ++i) |
1019 | assert(Op.clobbersPhysReg(X86::FP0 + i) == ClobbersFP0 && |
1020 | "Inconsistent FP register clobber" ); |
1021 | #endif |
1022 | |
1023 | if (ClobbersFP0) |
1024 | ClobbersFPStack = true; |
1025 | } |
1026 | |
1027 | if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) |
1028 | continue; |
1029 | |
1030 | assert(Op.isImplicit() && "Expected implicit def/use" ); |
1031 | |
1032 | if (Op.isDef()) |
1033 | STReturns |= 1 << getFPReg(MO: Op); |
1034 | |
1035 | // Remove the operand so that later passes don't see it. |
1036 | MI.removeOperand(OpNo: i); |
1037 | --i; |
1038 | --e; |
1039 | } |
1040 | |
1041 | // Most calls should have a regmask that clobbers the FP registers. If it |
1042 | // isn't present then the register allocator didn't spill the FP registers |
1043 | // so they are still on the stack. |
1044 | assert((ClobbersFPStack || STReturns == 0) && |
1045 | "ST returns without FP stack clobber" ); |
1046 | if (!ClobbersFPStack) |
1047 | return; |
1048 | |
1049 | unsigned N = llvm::countr_one(Value: STReturns); |
1050 | |
1051 | // FP registers used for function return must be consecutive starting at |
1052 | // FP0 |
1053 | assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2)); |
1054 | |
1055 | // Reset the FP Stack - It is required because of possible leftovers from |
1056 | // passed arguments. The caller should assume that the FP stack is |
1057 | // returned empty (unless the callee returns values on FP stack). |
1058 | while (StackTop > 0) |
1059 | popReg(); |
1060 | |
1061 | for (unsigned I = 0; I < N; ++I) |
1062 | pushReg(Reg: N - I - 1); |
1063 | |
1064 | // If this call has been modified, drop all variable values defined by it. |
1065 | // We can't track them once they've been stackified. |
1066 | if (STReturns) |
1067 | I->dropDebugNumber(); |
1068 | } |
1069 | |
1070 | /// If RET has an FP register use operand, pass the first one in ST(0) and |
1071 | /// the second one in ST(1). |
1072 | void FPS::handleReturn(MachineBasicBlock::iterator &I) { |
1073 | MachineInstr &MI = *I; |
1074 | |
1075 | // Find the register operands. |
1076 | unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U; |
1077 | unsigned LiveMask = 0; |
1078 | |
1079 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
1080 | MachineOperand &Op = MI.getOperand(i); |
1081 | if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) |
1082 | continue; |
1083 | // FP Register uses must be kills unless there are two uses of the same |
1084 | // register, in which case only one will be a kill. |
1085 | assert(Op.isUse() && |
1086 | (Op.isKill() || // Marked kill. |
1087 | getFPReg(Op) == FirstFPRegOp || // Second instance. |
1088 | MI.killsRegister(Op.getReg(), |
1089 | /*TRI=*/nullptr)) && // Later use is marked kill. |
1090 | "Ret only defs operands, and values aren't live beyond it" ); |
1091 | |
1092 | if (FirstFPRegOp == ~0U) |
1093 | FirstFPRegOp = getFPReg(MO: Op); |
1094 | else { |
1095 | assert(SecondFPRegOp == ~0U && "More than two fp operands!" ); |
1096 | SecondFPRegOp = getFPReg(MO: Op); |
1097 | } |
1098 | LiveMask |= (1 << getFPReg(MO: Op)); |
1099 | |
1100 | // Remove the operand so that later passes don't see it. |
1101 | MI.removeOperand(OpNo: i); |
1102 | --i; |
1103 | --e; |
1104 | } |
1105 | |
1106 | // We may have been carrying spurious live-ins, so make sure only the |
1107 | // returned registers are left live. |
1108 | adjustLiveRegs(Mask: LiveMask, I: MI); |
1109 | if (!LiveMask) return; // Quick check to see if any are possible. |
1110 | |
1111 | // There are only four possibilities here: |
1112 | // 1) we are returning a single FP value. In this case, it has to be in |
1113 | // ST(0) already, so just declare success by removing the value from the |
1114 | // FP Stack. |
1115 | if (SecondFPRegOp == ~0U) { |
1116 | // Assert that the top of stack contains the right FP register. |
1117 | assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) && |
1118 | "Top of stack not the right register for RET!" ); |
1119 | |
1120 | // Ok, everything is good, mark the value as not being on the stack |
1121 | // anymore so that our assertion about the stack being empty at end of |
1122 | // block doesn't fire. |
1123 | StackTop = 0; |
1124 | return; |
1125 | } |
1126 | |
1127 | // Otherwise, we are returning two values: |
1128 | // 2) If returning the same value for both, we only have one thing in the FP |
1129 | // stack. Consider: RET FP1, FP1 |
1130 | if (StackTop == 1) { |
1131 | assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&& |
1132 | "Stack misconfiguration for RET!" ); |
1133 | |
1134 | // Duplicate the TOS so that we return it twice. Just pick some other FPx |
1135 | // register to hold it. |
1136 | unsigned NewReg = ScratchFPReg; |
1137 | duplicateToTop(RegNo: FirstFPRegOp, AsReg: NewReg, I: MI); |
1138 | FirstFPRegOp = NewReg; |
1139 | } |
1140 | |
1141 | /// Okay we know we have two different FPx operands now: |
1142 | assert(StackTop == 2 && "Must have two values live!" ); |
1143 | |
1144 | /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently |
1145 | /// in ST(1). In this case, emit an fxch. |
1146 | if (getStackEntry(STi: 0) == SecondFPRegOp) { |
1147 | assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live" ); |
1148 | moveToTop(RegNo: FirstFPRegOp, I: MI); |
1149 | } |
1150 | |
1151 | /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in |
1152 | /// ST(1). Just remove both from our understanding of the stack and return. |
1153 | assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live" ); |
1154 | assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live" ); |
1155 | StackTop = 0; |
1156 | } |
1157 | |
1158 | /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem> |
1159 | /// |
1160 | void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) { |
1161 | MachineInstr &MI = *I; |
1162 | unsigned DestReg = getFPReg(MO: MI.getOperand(i: 0)); |
1163 | |
1164 | // Change from the pseudo instruction to the concrete instruction. |
1165 | MI.removeOperand(OpNo: 0); // Remove the explicit ST(0) operand |
1166 | MI.setDesc(TII->get(Opcode: getConcreteOpcode(Opcode: MI.getOpcode()))); |
1167 | MI.addOperand( |
1168 | Op: MachineOperand::CreateReg(Reg: X86::ST0, /*isDef*/ true, /*isImp*/ true)); |
1169 | |
1170 | // Result gets pushed on the stack. |
1171 | pushReg(Reg: DestReg); |
1172 | |
1173 | MI.dropDebugNumber(); |
1174 | } |
1175 | |
1176 | /// handleOneArgFP - fst <mem>, ST(0) |
1177 | /// |
1178 | void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) { |
1179 | MachineInstr &MI = *I; |
1180 | unsigned NumOps = MI.getDesc().getNumOperands(); |
1181 | assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) && |
1182 | "Can only handle fst* & ftst instructions!" ); |
1183 | |
1184 | // Is this the last use of the source register? |
1185 | unsigned Reg = getFPReg(MO: MI.getOperand(i: NumOps - 1)); |
1186 | bool KillsSrc = MI.killsRegister(Reg: X86::FP0 + Reg, /*TRI=*/nullptr); |
1187 | |
1188 | // FISTP64m is strange because there isn't a non-popping versions. |
1189 | // If we have one _and_ we don't want to pop the operand, duplicate the value |
1190 | // on the stack instead of moving it. This ensure that popping the value is |
1191 | // always ok. |
1192 | // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m. |
1193 | // |
1194 | if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 || |
1195 | MI.getOpcode() == X86::ISTT_Fp16m32 || |
1196 | MI.getOpcode() == X86::ISTT_Fp32m32 || |
1197 | MI.getOpcode() == X86::ISTT_Fp64m32 || |
1198 | MI.getOpcode() == X86::IST_Fp64m64 || |
1199 | MI.getOpcode() == X86::ISTT_Fp16m64 || |
1200 | MI.getOpcode() == X86::ISTT_Fp32m64 || |
1201 | MI.getOpcode() == X86::ISTT_Fp64m64 || |
1202 | MI.getOpcode() == X86::IST_Fp64m80 || |
1203 | MI.getOpcode() == X86::ISTT_Fp16m80 || |
1204 | MI.getOpcode() == X86::ISTT_Fp32m80 || |
1205 | MI.getOpcode() == X86::ISTT_Fp64m80 || |
1206 | MI.getOpcode() == X86::ST_FpP80m)) { |
1207 | duplicateToTop(RegNo: Reg, AsReg: ScratchFPReg, I); |
1208 | } else { |
1209 | moveToTop(RegNo: Reg, I); // Move to the top of the stack... |
1210 | } |
1211 | |
1212 | // Convert from the pseudo instruction to the concrete instruction. |
1213 | MI.removeOperand(OpNo: NumOps - 1); // Remove explicit ST(0) operand |
1214 | MI.setDesc(TII->get(Opcode: getConcreteOpcode(Opcode: MI.getOpcode()))); |
1215 | MI.addOperand( |
1216 | Op: MachineOperand::CreateReg(Reg: X86::ST0, /*isDef*/ false, /*isImp*/ true)); |
1217 | |
1218 | if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m || |
1219 | MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m || |
1220 | MI.getOpcode() == X86::ST_FP80m) { |
1221 | if (StackTop == 0) |
1222 | report_fatal_error(reason: "Stack empty??" ); |
1223 | --StackTop; |
1224 | } else if (KillsSrc) { // Last use of operand? |
1225 | popStackAfter(I); |
1226 | } |
1227 | |
1228 | MI.dropDebugNumber(); |
1229 | } |
1230 | |
1231 | |
1232 | /// handleOneArgFPRW: Handle instructions that read from the top of stack and |
1233 | /// replace the value with a newly computed value. These instructions may have |
1234 | /// non-fp operands after their FP operands. |
1235 | /// |
1236 | /// Examples: |
1237 | /// R1 = fchs R2 |
1238 | /// R1 = fadd R2, [mem] |
1239 | /// |
1240 | void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) { |
1241 | MachineInstr &MI = *I; |
1242 | #ifndef NDEBUG |
1243 | unsigned NumOps = MI.getDesc().getNumOperands(); |
1244 | assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!" ); |
1245 | #endif |
1246 | |
1247 | // Is this the last use of the source register? |
1248 | unsigned Reg = getFPReg(MO: MI.getOperand(i: 1)); |
1249 | bool KillsSrc = MI.killsRegister(Reg: X86::FP0 + Reg, /*TRI=*/nullptr); |
1250 | |
1251 | if (KillsSrc) { |
1252 | // If this is the last use of the source register, just make sure it's on |
1253 | // the top of the stack. |
1254 | moveToTop(RegNo: Reg, I); |
1255 | if (StackTop == 0) |
1256 | report_fatal_error(reason: "Stack cannot be empty!" ); |
1257 | --StackTop; |
1258 | pushReg(Reg: getFPReg(MO: MI.getOperand(i: 0))); |
1259 | } else { |
1260 | // If this is not the last use of the source register, _copy_ it to the top |
1261 | // of the stack. |
1262 | duplicateToTop(RegNo: Reg, AsReg: getFPReg(MO: MI.getOperand(i: 0)), I); |
1263 | } |
1264 | |
1265 | // Change from the pseudo instruction to the concrete instruction. |
1266 | MI.removeOperand(OpNo: 1); // Drop the source operand. |
1267 | MI.removeOperand(OpNo: 0); // Drop the destination operand. |
1268 | MI.setDesc(TII->get(Opcode: getConcreteOpcode(Opcode: MI.getOpcode()))); |
1269 | MI.dropDebugNumber(); |
1270 | } |
1271 | |
1272 | |
1273 | //===----------------------------------------------------------------------===// |
1274 | // Define tables of various ways to map pseudo instructions |
1275 | // |
1276 | |
1277 | // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i) |
1278 | static const TableEntry ForwardST0Table[] = { |
1279 | { .from: X86::ADD_Fp32 , .to: X86::ADD_FST0r }, |
1280 | { .from: X86::ADD_Fp64 , .to: X86::ADD_FST0r }, |
1281 | { .from: X86::ADD_Fp80 , .to: X86::ADD_FST0r }, |
1282 | { .from: X86::DIV_Fp32 , .to: X86::DIV_FST0r }, |
1283 | { .from: X86::DIV_Fp64 , .to: X86::DIV_FST0r }, |
1284 | { .from: X86::DIV_Fp80 , .to: X86::DIV_FST0r }, |
1285 | { .from: X86::MUL_Fp32 , .to: X86::MUL_FST0r }, |
1286 | { .from: X86::MUL_Fp64 , .to: X86::MUL_FST0r }, |
1287 | { .from: X86::MUL_Fp80 , .to: X86::MUL_FST0r }, |
1288 | { .from: X86::SUB_Fp32 , .to: X86::SUB_FST0r }, |
1289 | { .from: X86::SUB_Fp64 , .to: X86::SUB_FST0r }, |
1290 | { .from: X86::SUB_Fp80 , .to: X86::SUB_FST0r }, |
1291 | }; |
1292 | |
1293 | // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0) |
1294 | static const TableEntry ReverseST0Table[] = { |
1295 | { .from: X86::ADD_Fp32 , .to: X86::ADD_FST0r }, // commutative |
1296 | { .from: X86::ADD_Fp64 , .to: X86::ADD_FST0r }, // commutative |
1297 | { .from: X86::ADD_Fp80 , .to: X86::ADD_FST0r }, // commutative |
1298 | { .from: X86::DIV_Fp32 , .to: X86::DIVR_FST0r }, |
1299 | { .from: X86::DIV_Fp64 , .to: X86::DIVR_FST0r }, |
1300 | { .from: X86::DIV_Fp80 , .to: X86::DIVR_FST0r }, |
1301 | { .from: X86::MUL_Fp32 , .to: X86::MUL_FST0r }, // commutative |
1302 | { .from: X86::MUL_Fp64 , .to: X86::MUL_FST0r }, // commutative |
1303 | { .from: X86::MUL_Fp80 , .to: X86::MUL_FST0r }, // commutative |
1304 | { .from: X86::SUB_Fp32 , .to: X86::SUBR_FST0r }, |
1305 | { .from: X86::SUB_Fp64 , .to: X86::SUBR_FST0r }, |
1306 | { .from: X86::SUB_Fp80 , .to: X86::SUBR_FST0r }, |
1307 | }; |
1308 | |
1309 | // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i) |
1310 | static const TableEntry ForwardSTiTable[] = { |
1311 | { .from: X86::ADD_Fp32 , .to: X86::ADD_FrST0 }, // commutative |
1312 | { .from: X86::ADD_Fp64 , .to: X86::ADD_FrST0 }, // commutative |
1313 | { .from: X86::ADD_Fp80 , .to: X86::ADD_FrST0 }, // commutative |
1314 | { .from: X86::DIV_Fp32 , .to: X86::DIVR_FrST0 }, |
1315 | { .from: X86::DIV_Fp64 , .to: X86::DIVR_FrST0 }, |
1316 | { .from: X86::DIV_Fp80 , .to: X86::DIVR_FrST0 }, |
1317 | { .from: X86::MUL_Fp32 , .to: X86::MUL_FrST0 }, // commutative |
1318 | { .from: X86::MUL_Fp64 , .to: X86::MUL_FrST0 }, // commutative |
1319 | { .from: X86::MUL_Fp80 , .to: X86::MUL_FrST0 }, // commutative |
1320 | { .from: X86::SUB_Fp32 , .to: X86::SUBR_FrST0 }, |
1321 | { .from: X86::SUB_Fp64 , .to: X86::SUBR_FrST0 }, |
1322 | { .from: X86::SUB_Fp80 , .to: X86::SUBR_FrST0 }, |
1323 | }; |
1324 | |
1325 | // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0) |
1326 | static const TableEntry ReverseSTiTable[] = { |
1327 | { .from: X86::ADD_Fp32 , .to: X86::ADD_FrST0 }, |
1328 | { .from: X86::ADD_Fp64 , .to: X86::ADD_FrST0 }, |
1329 | { .from: X86::ADD_Fp80 , .to: X86::ADD_FrST0 }, |
1330 | { .from: X86::DIV_Fp32 , .to: X86::DIV_FrST0 }, |
1331 | { .from: X86::DIV_Fp64 , .to: X86::DIV_FrST0 }, |
1332 | { .from: X86::DIV_Fp80 , .to: X86::DIV_FrST0 }, |
1333 | { .from: X86::MUL_Fp32 , .to: X86::MUL_FrST0 }, |
1334 | { .from: X86::MUL_Fp64 , .to: X86::MUL_FrST0 }, |
1335 | { .from: X86::MUL_Fp80 , .to: X86::MUL_FrST0 }, |
1336 | { .from: X86::SUB_Fp32 , .to: X86::SUB_FrST0 }, |
1337 | { .from: X86::SUB_Fp64 , .to: X86::SUB_FrST0 }, |
1338 | { .from: X86::SUB_Fp80 , .to: X86::SUB_FrST0 }, |
1339 | }; |
1340 | |
1341 | |
1342 | /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual |
1343 | /// instructions which need to be simplified and possibly transformed. |
1344 | /// |
1345 | /// Result: ST(0) = fsub ST(0), ST(i) |
1346 | /// ST(i) = fsub ST(0), ST(i) |
1347 | /// ST(0) = fsubr ST(0), ST(i) |
1348 | /// ST(i) = fsubr ST(0), ST(i) |
1349 | /// |
1350 | void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) { |
1351 | ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); |
1352 | ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); |
1353 | MachineInstr &MI = *I; |
1354 | |
1355 | unsigned NumOperands = MI.getDesc().getNumOperands(); |
1356 | assert(NumOperands == 3 && "Illegal TwoArgFP instruction!" ); |
1357 | unsigned Dest = getFPReg(MO: MI.getOperand(i: 0)); |
1358 | unsigned Op0 = getFPReg(MO: MI.getOperand(i: NumOperands - 2)); |
1359 | unsigned Op1 = getFPReg(MO: MI.getOperand(i: NumOperands - 1)); |
1360 | bool KillsOp0 = MI.killsRegister(Reg: X86::FP0 + Op0, /*TRI=*/nullptr); |
1361 | bool KillsOp1 = MI.killsRegister(Reg: X86::FP0 + Op1, /*TRI=*/nullptr); |
1362 | const DebugLoc &dl = MI.getDebugLoc(); |
1363 | |
1364 | unsigned TOS = getStackEntry(STi: 0); |
1365 | |
1366 | // One of our operands must be on the top of the stack. If neither is yet, we |
1367 | // need to move one. |
1368 | if (Op0 != TOS && Op1 != TOS) { // No operand at TOS? |
1369 | // We can choose to move either operand to the top of the stack. If one of |
1370 | // the operands is killed by this instruction, we want that one so that we |
1371 | // can update right on top of the old version. |
1372 | if (KillsOp0) { |
1373 | moveToTop(RegNo: Op0, I); // Move dead operand to TOS. |
1374 | TOS = Op0; |
1375 | } else if (KillsOp1) { |
1376 | moveToTop(RegNo: Op1, I); |
1377 | TOS = Op1; |
1378 | } else { |
1379 | // All of the operands are live after this instruction executes, so we |
1380 | // cannot update on top of any operand. Because of this, we must |
1381 | // duplicate one of the stack elements to the top. It doesn't matter |
1382 | // which one we pick. |
1383 | // |
1384 | duplicateToTop(RegNo: Op0, AsReg: Dest, I); |
1385 | Op0 = TOS = Dest; |
1386 | KillsOp0 = true; |
1387 | } |
1388 | } else if (!KillsOp0 && !KillsOp1) { |
1389 | // If we DO have one of our operands at the top of the stack, but we don't |
1390 | // have a dead operand, we must duplicate one of the operands to a new slot |
1391 | // on the stack. |
1392 | duplicateToTop(RegNo: Op0, AsReg: Dest, I); |
1393 | Op0 = TOS = Dest; |
1394 | KillsOp0 = true; |
1395 | } |
1396 | |
1397 | // Now we know that one of our operands is on the top of the stack, and at |
1398 | // least one of our operands is killed by this instruction. |
1399 | assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) && |
1400 | "Stack conditions not set up right!" ); |
1401 | |
1402 | // We decide which form to use based on what is on the top of the stack, and |
1403 | // which operand is killed by this instruction. |
1404 | ArrayRef<TableEntry> InstTable; |
1405 | bool isForward = TOS == Op0; |
1406 | bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0); |
1407 | if (updateST0) { |
1408 | if (isForward) |
1409 | InstTable = ForwardST0Table; |
1410 | else |
1411 | InstTable = ReverseST0Table; |
1412 | } else { |
1413 | if (isForward) |
1414 | InstTable = ForwardSTiTable; |
1415 | else |
1416 | InstTable = ReverseSTiTable; |
1417 | } |
1418 | |
1419 | int Opcode = Lookup(Table: InstTable, Opcode: MI.getOpcode()); |
1420 | assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!" ); |
1421 | |
1422 | // NotTOS - The register which is not on the top of stack... |
1423 | unsigned NotTOS = (TOS == Op0) ? Op1 : Op0; |
1424 | |
1425 | // Replace the old instruction with a new instruction |
1426 | MBB->remove(I: &*I++); |
1427 | I = BuildMI(BB&: *MBB, I, MIMD: dl, MCID: TII->get(Opcode)).addReg(RegNo: getSTReg(RegNo: NotTOS)); |
1428 | |
1429 | if (!MI.mayRaiseFPException()) |
1430 | I->setFlag(MachineInstr::MIFlag::NoFPExcept); |
1431 | |
1432 | // If both operands are killed, pop one off of the stack in addition to |
1433 | // overwriting the other one. |
1434 | if (KillsOp0 && KillsOp1 && Op0 != Op1) { |
1435 | assert(!updateST0 && "Should have updated other operand!" ); |
1436 | popStackAfter(I); // Pop the top of stack |
1437 | } |
1438 | |
1439 | // Update stack information so that we know the destination register is now on |
1440 | // the stack. |
1441 | unsigned UpdatedSlot = getSlot(RegNo: updateST0 ? TOS : NotTOS); |
1442 | assert(UpdatedSlot < StackTop && Dest < 7); |
1443 | Stack[UpdatedSlot] = Dest; |
1444 | RegMap[Dest] = UpdatedSlot; |
1445 | MBB->getParent()->deleteMachineInstr(MI: &MI); // Remove the old instruction |
1446 | } |
1447 | |
1448 | /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP |
1449 | /// register arguments and no explicit destinations. |
1450 | /// |
1451 | void FPS::handleCompareFP(MachineBasicBlock::iterator &I) { |
1452 | MachineInstr &MI = *I; |
1453 | |
1454 | unsigned NumOperands = MI.getDesc().getNumOperands(); |
1455 | assert(NumOperands == 2 && "Illegal FUCOM* instruction!" ); |
1456 | unsigned Op0 = getFPReg(MO: MI.getOperand(i: NumOperands - 2)); |
1457 | unsigned Op1 = getFPReg(MO: MI.getOperand(i: NumOperands - 1)); |
1458 | bool KillsOp0 = MI.killsRegister(Reg: X86::FP0 + Op0, /*TRI=*/nullptr); |
1459 | bool KillsOp1 = MI.killsRegister(Reg: X86::FP0 + Op1, /*TRI=*/nullptr); |
1460 | |
1461 | // Make sure the first operand is on the top of stack, the other one can be |
1462 | // anywhere. |
1463 | moveToTop(RegNo: Op0, I); |
1464 | |
1465 | // Change from the pseudo instruction to the concrete instruction. |
1466 | MI.getOperand(i: 0).setReg(getSTReg(RegNo: Op1)); |
1467 | MI.removeOperand(OpNo: 1); |
1468 | MI.setDesc(TII->get(Opcode: getConcreteOpcode(Opcode: MI.getOpcode()))); |
1469 | MI.dropDebugNumber(); |
1470 | |
1471 | // If any of the operands are killed by this instruction, free them. |
1472 | if (KillsOp0) freeStackSlotAfter(I, FPRegNo: Op0); |
1473 | if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, FPRegNo: Op1); |
1474 | } |
1475 | |
1476 | /// handleCondMovFP - Handle two address conditional move instructions. These |
1477 | /// instructions move a st(i) register to st(0) iff a condition is true. These |
1478 | /// instructions require that the first operand is at the top of the stack, but |
1479 | /// otherwise don't modify the stack at all. |
1480 | void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) { |
1481 | MachineInstr &MI = *I; |
1482 | |
1483 | unsigned Op0 = getFPReg(MO: MI.getOperand(i: 0)); |
1484 | unsigned Op1 = getFPReg(MO: MI.getOperand(i: 2)); |
1485 | bool KillsOp1 = MI.killsRegister(Reg: X86::FP0 + Op1, /*TRI=*/nullptr); |
1486 | |
1487 | // The first operand *must* be on the top of the stack. |
1488 | moveToTop(RegNo: Op0, I); |
1489 | |
1490 | // Change the second operand to the stack register that the operand is in. |
1491 | // Change from the pseudo instruction to the concrete instruction. |
1492 | MI.removeOperand(OpNo: 0); |
1493 | MI.removeOperand(OpNo: 1); |
1494 | MI.getOperand(i: 0).setReg(getSTReg(RegNo: Op1)); |
1495 | MI.setDesc(TII->get(Opcode: getConcreteOpcode(Opcode: MI.getOpcode()))); |
1496 | MI.dropDebugNumber(); |
1497 | |
1498 | // If we kill the second operand, make sure to pop it from the stack. |
1499 | if (Op0 != Op1 && KillsOp1) { |
1500 | // Get this value off of the register stack. |
1501 | freeStackSlotAfter(I, FPRegNo: Op1); |
1502 | } |
1503 | } |
1504 | |
1505 | |
1506 | /// handleSpecialFP - Handle special instructions which behave unlike other |
1507 | /// floating point instructions. This is primarily intended for use by pseudo |
1508 | /// instructions. |
1509 | /// |
1510 | void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) { |
1511 | MachineInstr &MI = *Inst; |
1512 | |
1513 | if (MI.isCall()) { |
1514 | handleCall(I&: Inst); |
1515 | return; |
1516 | } |
1517 | |
1518 | if (MI.isReturn()) { |
1519 | handleReturn(I&: Inst); |
1520 | return; |
1521 | } |
1522 | |
1523 | switch (MI.getOpcode()) { |
1524 | default: llvm_unreachable("Unknown SpecialFP instruction!" ); |
1525 | case TargetOpcode::COPY: { |
1526 | // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP. |
1527 | const MachineOperand &MO1 = MI.getOperand(i: 1); |
1528 | const MachineOperand &MO0 = MI.getOperand(i: 0); |
1529 | bool KillsSrc = MI.killsRegister(Reg: MO1.getReg(), /*TRI=*/nullptr); |
1530 | |
1531 | // FP <- FP copy. |
1532 | unsigned DstFP = getFPReg(MO: MO0); |
1533 | unsigned SrcFP = getFPReg(MO: MO1); |
1534 | assert(isLive(SrcFP) && "Cannot copy dead register" ); |
1535 | if (KillsSrc) { |
1536 | // If the input operand is killed, we can just change the owner of the |
1537 | // incoming stack slot into the result. |
1538 | unsigned Slot = getSlot(RegNo: SrcFP); |
1539 | Stack[Slot] = DstFP; |
1540 | RegMap[DstFP] = Slot; |
1541 | } else { |
1542 | // For COPY we just duplicate the specified value to a new stack slot. |
1543 | // This could be made better, but would require substantial changes. |
1544 | duplicateToTop(RegNo: SrcFP, AsReg: DstFP, I: Inst); |
1545 | } |
1546 | break; |
1547 | } |
1548 | |
1549 | case TargetOpcode::IMPLICIT_DEF: { |
1550 | // All FP registers must be explicitly defined, so load a 0 instead. |
1551 | unsigned Reg = MI.getOperand(i: 0).getReg() - X86::FP0; |
1552 | LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n'); |
1553 | BuildMI(BB&: *MBB, I: Inst, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: X86::LD_F0)); |
1554 | pushReg(Reg); |
1555 | break; |
1556 | } |
1557 | |
1558 | case TargetOpcode::INLINEASM: |
1559 | case TargetOpcode::INLINEASM_BR: { |
1560 | // The inline asm MachineInstr currently only *uses* FP registers for the |
1561 | // 'f' constraint. These should be turned into the current ST(x) register |
1562 | // in the machine instr. |
1563 | // |
1564 | // There are special rules for x87 inline assembly. The compiler must know |
1565 | // exactly how many registers are popped and pushed implicitly by the asm. |
1566 | // Otherwise it is not possible to restore the stack state after the inline |
1567 | // asm. |
1568 | // |
1569 | // There are 3 kinds of input operands: |
1570 | // |
1571 | // 1. Popped inputs. These must appear at the stack top in ST0-STn. A |
1572 | // popped input operand must be in a fixed stack slot, and it is either |
1573 | // tied to an output operand, or in the clobber list. The MI has ST use |
1574 | // and def operands for these inputs. |
1575 | // |
1576 | // 2. Fixed inputs. These inputs appear in fixed stack slots, but are |
1577 | // preserved by the inline asm. The fixed stack slots must be STn-STm |
1578 | // following the popped inputs. A fixed input operand cannot be tied to |
1579 | // an output or appear in the clobber list. The MI has ST use operands |
1580 | // and no defs for these inputs. |
1581 | // |
1582 | // 3. Preserved inputs. These inputs use the "f" constraint which is |
1583 | // represented as an FP register. The inline asm won't change these |
1584 | // stack slots. |
1585 | // |
1586 | // Outputs must be in ST registers, FP outputs are not allowed. Clobbered |
1587 | // registers do not count as output operands. The inline asm changes the |
1588 | // stack as if it popped all the popped inputs and then pushed all the |
1589 | // output operands. |
1590 | |
1591 | // Scan the assembly for ST registers used, defined and clobbered. We can |
1592 | // only tell clobbers from defs by looking at the asm descriptor. |
1593 | unsigned STUses = 0, STDefs = 0, STClobbers = 0; |
1594 | unsigned NumOps = 0; |
1595 | SmallSet<unsigned, 1> FRegIdx; |
1596 | unsigned RCID; |
1597 | |
1598 | for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands(); |
1599 | i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) { |
1600 | unsigned Flags = MI.getOperand(i).getImm(); |
1601 | const InlineAsm::Flag F(Flags); |
1602 | |
1603 | NumOps = F.getNumOperandRegisters(); |
1604 | if (NumOps != 1) |
1605 | continue; |
1606 | const MachineOperand &MO = MI.getOperand(i: i + 1); |
1607 | if (!MO.isReg()) |
1608 | continue; |
1609 | unsigned STReg = MO.getReg() - X86::FP0; |
1610 | if (STReg >= 8) |
1611 | continue; |
1612 | |
1613 | // If the flag has a register class constraint, this must be an operand |
1614 | // with constraint "f". Record its index and continue. |
1615 | if (F.hasRegClassConstraint(RC&: RCID)) { |
1616 | FRegIdx.insert(V: i + 1); |
1617 | continue; |
1618 | } |
1619 | |
1620 | switch (F.getKind()) { |
1621 | case InlineAsm::Kind::RegUse: |
1622 | STUses |= (1u << STReg); |
1623 | break; |
1624 | case InlineAsm::Kind::RegDef: |
1625 | case InlineAsm::Kind::RegDefEarlyClobber: |
1626 | STDefs |= (1u << STReg); |
1627 | break; |
1628 | case InlineAsm::Kind::Clobber: |
1629 | STClobbers |= (1u << STReg); |
1630 | break; |
1631 | default: |
1632 | break; |
1633 | } |
1634 | } |
1635 | |
1636 | if (STUses && !isMask_32(Value: STUses)) |
1637 | MI.emitError(Msg: "fixed input regs must be last on the x87 stack" ); |
1638 | unsigned NumSTUses = llvm::countr_one(Value: STUses); |
1639 | |
1640 | // Defs must be contiguous from the stack top. ST0-STn. |
1641 | if (STDefs && !isMask_32(Value: STDefs)) { |
1642 | MI.emitError(Msg: "output regs must be last on the x87 stack" ); |
1643 | STDefs = NextPowerOf2(A: STDefs) - 1; |
1644 | } |
1645 | unsigned NumSTDefs = llvm::countr_one(Value: STDefs); |
1646 | |
1647 | // So must the clobbered stack slots. ST0-STm, m >= n. |
1648 | if (STClobbers && !isMask_32(Value: STDefs | STClobbers)) |
1649 | MI.emitError(Msg: "clobbers must be last on the x87 stack" ); |
1650 | |
1651 | // Popped inputs are the ones that are also clobbered or defined. |
1652 | unsigned STPopped = STUses & (STDefs | STClobbers); |
1653 | if (STPopped && !isMask_32(Value: STPopped)) |
1654 | MI.emitError(Msg: "implicitly popped regs must be last on the x87 stack" ); |
1655 | unsigned NumSTPopped = llvm::countr_one(Value: STPopped); |
1656 | |
1657 | LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops " |
1658 | << NumSTPopped << ", and defines " << NumSTDefs |
1659 | << " regs.\n" ); |
1660 | |
1661 | #ifndef NDEBUG |
1662 | // If any input operand uses constraint "f", all output register |
1663 | // constraints must be early-clobber defs. |
1664 | for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) |
1665 | if (FRegIdx.count(I)) { |
1666 | assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 && |
1667 | "Operands with constraint \"f\" cannot overlap with defs" ); |
1668 | } |
1669 | #endif |
1670 | |
1671 | // Collect all FP registers (register operands with constraints "t", "u", |
1672 | // and "f") to kill afer the instruction. |
1673 | unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff; |
1674 | for (const MachineOperand &Op : MI.operands()) { |
1675 | if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) |
1676 | continue; |
1677 | unsigned FPReg = getFPReg(MO: Op); |
1678 | |
1679 | // If we kill this operand, make sure to pop it from the stack after the |
1680 | // asm. We just remember it for now, and pop them all off at the end in |
1681 | // a batch. |
1682 | if (Op.isUse() && Op.isKill()) |
1683 | FPKills |= 1U << FPReg; |
1684 | } |
1685 | |
1686 | // Do not include registers that are implicitly popped by defs/clobbers. |
1687 | FPKills &= ~(STDefs | STClobbers); |
1688 | |
1689 | // Now we can rearrange the live registers to match what was requested. |
1690 | unsigned char STUsesArray[8]; |
1691 | |
1692 | for (unsigned I = 0; I < NumSTUses; ++I) |
1693 | STUsesArray[I] = I; |
1694 | |
1695 | shuffleStackTop(FixStack: STUsesArray, FixCount: NumSTUses, I: Inst); |
1696 | LLVM_DEBUG({ |
1697 | dbgs() << "Before asm: " ; |
1698 | dumpStack(); |
1699 | }); |
1700 | |
1701 | // With the stack layout fixed, rewrite the FP registers. |
1702 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
1703 | MachineOperand &Op = MI.getOperand(i); |
1704 | if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) |
1705 | continue; |
1706 | |
1707 | unsigned FPReg = getFPReg(MO: Op); |
1708 | |
1709 | if (FRegIdx.count(V: i)) |
1710 | // Operand with constraint "f". |
1711 | Op.setReg(getSTReg(RegNo: FPReg)); |
1712 | else |
1713 | // Operand with a single register class constraint ("t" or "u"). |
1714 | Op.setReg(X86::ST0 + FPReg); |
1715 | } |
1716 | |
1717 | // Simulate the inline asm popping its inputs and pushing its outputs. |
1718 | StackTop -= NumSTPopped; |
1719 | |
1720 | for (unsigned i = 0; i < NumSTDefs; ++i) |
1721 | pushReg(Reg: NumSTDefs - i - 1); |
1722 | |
1723 | // If this asm kills any FP registers (is the last use of them) we must |
1724 | // explicitly emit pop instructions for them. Do this now after the asm has |
1725 | // executed so that the ST(x) numbers are not off (which would happen if we |
1726 | // did this inline with operand rewriting). |
1727 | // |
1728 | // Note: this might be a non-optimal pop sequence. We might be able to do |
1729 | // better by trying to pop in stack order or something. |
1730 | while (FPKills) { |
1731 | unsigned FPReg = llvm::countr_zero(Val: FPKills); |
1732 | if (isLive(RegNo: FPReg)) |
1733 | freeStackSlotAfter(I&: Inst, FPRegNo: FPReg); |
1734 | FPKills &= ~(1U << FPReg); |
1735 | } |
1736 | |
1737 | // Don't delete the inline asm! |
1738 | return; |
1739 | } |
1740 | } |
1741 | |
1742 | Inst = MBB->erase(I: Inst); // Remove the pseudo instruction |
1743 | |
1744 | // We want to leave I pointing to the previous instruction, but what if we |
1745 | // just erased the first instruction? |
1746 | if (Inst == MBB->begin()) { |
1747 | LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n" ); |
1748 | Inst = BuildMI(BB&: *MBB, I: Inst, MIMD: DebugLoc(), MCID: TII->get(Opcode: TargetOpcode::KILL)); |
1749 | } else |
1750 | --Inst; |
1751 | } |
1752 | |
1753 | void FPS::setKillFlags(MachineBasicBlock &MBB) const { |
1754 | const TargetRegisterInfo &TRI = |
1755 | *MBB.getParent()->getSubtarget().getRegisterInfo(); |
1756 | LiveRegUnits LPR(TRI); |
1757 | |
1758 | LPR.addLiveOuts(MBB); |
1759 | |
1760 | for (MachineInstr &MI : llvm::reverse(C&: MBB)) { |
1761 | if (MI.isDebugInstr()) |
1762 | continue; |
1763 | |
1764 | std::bitset<8> Defs; |
1765 | SmallVector<MachineOperand *, 2> Uses; |
1766 | |
1767 | for (auto &MO : MI.operands()) { |
1768 | if (!MO.isReg()) |
1769 | continue; |
1770 | |
1771 | unsigned Reg = MO.getReg() - X86::FP0; |
1772 | |
1773 | if (Reg >= 8) |
1774 | continue; |
1775 | |
1776 | if (MO.isDef()) { |
1777 | Defs.set(position: Reg); |
1778 | if (LPR.available(Reg: MO.getReg())) |
1779 | MO.setIsDead(); |
1780 | } else |
1781 | Uses.push_back(Elt: &MO); |
1782 | } |
1783 | |
1784 | for (auto *MO : Uses) |
1785 | if (Defs.test(position: getFPReg(MO: *MO)) || LPR.available(Reg: MO->getReg())) |
1786 | MO->setIsKill(); |
1787 | |
1788 | LPR.stepBackward(MI); |
1789 | } |
1790 | } |
1791 | |