1 | //===-- X86SpeculativeExecutionSideEffectSuppression.cpp ------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// \file |
9 | /// |
10 | /// This file contains the X86 implementation of the speculative execution side |
11 | /// effect suppression mitigation. |
12 | /// |
13 | /// This must be used with the -mlvi-cfi flag in order to mitigate indirect |
14 | /// branches and returns. |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #include "X86.h" |
18 | #include "X86InstrInfo.h" |
19 | #include "X86Subtarget.h" |
20 | #include "llvm/ADT/Statistic.h" |
21 | #include "llvm/CodeGen/MachineFunction.h" |
22 | #include "llvm/CodeGen/MachineFunctionPass.h" |
23 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
24 | #include "llvm/Pass.h" |
25 | #include "llvm/Target/TargetMachine.h" |
26 | using namespace llvm; |
27 | |
28 | #define DEBUG_TYPE "x86-seses" |
29 | |
30 | STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted" ); |
31 | |
32 | static cl::opt<bool> EnableSpeculativeExecutionSideEffectSuppression( |
33 | "x86-seses-enable-without-lvi-cfi" , |
34 | cl::desc("Force enable speculative execution side effect suppression. " |
35 | "(Note: User must pass -mlvi-cfi in order to mitigate indirect " |
36 | "branches and returns.)" ), |
37 | cl::init(Val: false), cl::Hidden); |
38 | |
39 | static cl::opt<bool> OneLFENCEPerBasicBlock( |
40 | "x86-seses-one-lfence-per-bb" , |
41 | cl::desc( |
42 | "Omit all lfences other than the first to be placed in a basic block." ), |
43 | cl::init(Val: false), cl::Hidden); |
44 | |
45 | static cl::opt<bool> OnlyLFENCENonConst( |
46 | "x86-seses-only-lfence-non-const" , |
47 | cl::desc("Only lfence before groups of terminators where at least one " |
48 | "branch instruction has an input to the addressing mode that is a " |
49 | "register other than %rip." ), |
50 | cl::init(Val: false), cl::Hidden); |
51 | |
52 | static cl::opt<bool> |
53 | OmitBranchLFENCEs("x86-seses-omit-branch-lfences" , |
54 | cl::desc("Omit all lfences before branch instructions." ), |
55 | cl::init(Val: false), cl::Hidden); |
56 | |
57 | namespace { |
58 | |
59 | class X86SpeculativeExecutionSideEffectSuppression |
60 | : public MachineFunctionPass { |
61 | public: |
62 | X86SpeculativeExecutionSideEffectSuppression() : MachineFunctionPass(ID) {} |
63 | |
64 | static char ID; |
65 | StringRef getPassName() const override { |
66 | return "X86 Speculative Execution Side Effect Suppression" ; |
67 | } |
68 | |
69 | bool runOnMachineFunction(MachineFunction &MF) override; |
70 | }; |
71 | } // namespace |
72 | |
73 | char X86SpeculativeExecutionSideEffectSuppression::ID = 0; |
74 | |
75 | // This function returns whether the passed instruction uses a memory addressing |
76 | // mode that is constant. We treat all memory addressing modes that read |
77 | // from a register that is not %rip as non-constant. Note that the use |
78 | // of the EFLAGS register results in an addressing mode being considered |
79 | // non-constant, therefore all JCC instructions will return false from this |
80 | // function since one of their operands will always be the EFLAGS register. |
81 | static bool hasConstantAddressingMode(const MachineInstr &MI) { |
82 | for (const MachineOperand &MO : MI.uses()) |
83 | if (MO.isReg() && X86::RIP != MO.getReg()) |
84 | return false; |
85 | return true; |
86 | } |
87 | |
88 | bool X86SpeculativeExecutionSideEffectSuppression::runOnMachineFunction( |
89 | MachineFunction &MF) { |
90 | |
91 | const auto &OptLevel = MF.getTarget().getOptLevel(); |
92 | const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>(); |
93 | |
94 | // Check whether SESES needs to run as the fallback for LVI at O0, whether the |
95 | // user explicitly passed an SESES flag, or whether the SESES target feature |
96 | // was set. |
97 | if (!EnableSpeculativeExecutionSideEffectSuppression && |
98 | !(Subtarget.useLVILoadHardening() && OptLevel == CodeGenOptLevel::None) && |
99 | !Subtarget.useSpeculativeExecutionSideEffectSuppression()) |
100 | return false; |
101 | |
102 | LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() |
103 | << " **********\n" ); |
104 | bool Modified = false; |
105 | const X86InstrInfo *TII = Subtarget.getInstrInfo(); |
106 | for (MachineBasicBlock &MBB : MF) { |
107 | MachineInstr *FirstTerminator = nullptr; |
108 | // Keep track of whether the previous instruction was an LFENCE to avoid |
109 | // adding redundant LFENCEs. |
110 | bool PrevInstIsLFENCE = false; |
111 | for (auto &MI : MBB) { |
112 | |
113 | if (MI.getOpcode() == X86::LFENCE) { |
114 | PrevInstIsLFENCE = true; |
115 | continue; |
116 | } |
117 | // We want to put an LFENCE before any instruction that |
118 | // may load or store. This LFENCE is intended to avoid leaking any secret |
119 | // data due to a given load or store. This results in closing the cache |
120 | // and memory timing side channels. We will treat terminators that load |
121 | // or store separately. |
122 | if (MI.mayLoadOrStore() && !MI.isTerminator()) { |
123 | if (!PrevInstIsLFENCE) { |
124 | BuildMI(BB&: MBB, I&: MI, MIMD: DebugLoc(), MCID: TII->get(Opcode: X86::LFENCE)); |
125 | NumLFENCEsInserted++; |
126 | Modified = true; |
127 | } |
128 | if (OneLFENCEPerBasicBlock) |
129 | break; |
130 | } |
131 | // The following section will be LFENCEing before groups of terminators |
132 | // that include branches. This will close the branch prediction side |
133 | // channels since we will prevent code executing after misspeculation as |
134 | // a result of the LFENCEs placed with this logic. |
135 | |
136 | // Keep track of the first terminator in a basic block since if we need |
137 | // to LFENCE the terminators in this basic block we must add the |
138 | // instruction before the first terminator in the basic block (as |
139 | // opposed to before the terminator that indicates an LFENCE is |
140 | // required). An example of why this is necessary is that the |
141 | // X86InstrInfo::analyzeBranch method assumes all terminators are grouped |
142 | // together and terminates it's analysis once the first non-termintor |
143 | // instruction is found. |
144 | if (MI.isTerminator() && FirstTerminator == nullptr) |
145 | FirstTerminator = &MI; |
146 | |
147 | // Look for branch instructions that will require an LFENCE to be put |
148 | // before this basic block's terminators. |
149 | if (!MI.isBranch() || OmitBranchLFENCEs) { |
150 | // This isn't a branch or we're not putting LFENCEs before branches. |
151 | PrevInstIsLFENCE = false; |
152 | continue; |
153 | } |
154 | |
155 | if (OnlyLFENCENonConst && hasConstantAddressingMode(MI)) { |
156 | // This is a branch, but it only has constant addressing mode and we're |
157 | // not adding LFENCEs before such branches. |
158 | PrevInstIsLFENCE = false; |
159 | continue; |
160 | } |
161 | |
162 | // This branch requires adding an LFENCE. |
163 | if (!PrevInstIsLFENCE) { |
164 | assert(FirstTerminator && "Unknown terminator instruction" ); |
165 | BuildMI(BB&: MBB, I: FirstTerminator, MIMD: DebugLoc(), MCID: TII->get(Opcode: X86::LFENCE)); |
166 | NumLFENCEsInserted++; |
167 | Modified = true; |
168 | } |
169 | break; |
170 | } |
171 | } |
172 | |
173 | return Modified; |
174 | } |
175 | |
176 | FunctionPass *llvm::createX86SpeculativeExecutionSideEffectSuppression() { |
177 | return new X86SpeculativeExecutionSideEffectSuppression(); |
178 | } |
179 | |
180 | INITIALIZE_PASS(X86SpeculativeExecutionSideEffectSuppression, "x86-seses" , |
181 | "X86 Speculative Execution Side Effect Suppression" , false, |
182 | false) |
183 | |