1//===-- msan_allocator.cpp -------------------------- ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of MemorySanitizer.
10//
11// MemorySanitizer allocator.
12//===----------------------------------------------------------------------===//
13
14#include "msan_allocator.h"
15
16#include "msan.h"
17#include "msan_interface_internal.h"
18#include "msan_origin.h"
19#include "msan_poisoning.h"
20#include "msan_thread.h"
21#include "sanitizer_common/sanitizer_allocator.h"
22#include "sanitizer_common/sanitizer_allocator_checks.h"
23#include "sanitizer_common/sanitizer_allocator_interface.h"
24#include "sanitizer_common/sanitizer_allocator_report.h"
25#include "sanitizer_common/sanitizer_errno.h"
26
27namespace __msan {
28
29struct Metadata {
30 uptr requested_size;
31};
32
33struct MsanMapUnmapCallback {
34 void OnMap(uptr p, uptr size) const {}
35 void OnMapSecondary(uptr p, uptr size, uptr user_begin,
36 uptr user_size) const {}
37 void OnUnmap(uptr p, uptr size) const {
38 __msan_unpoison(a: (void *)p, size);
39
40 // We are about to unmap a chunk of user memory.
41 // Mark the corresponding shadow memory as not needed.
42 uptr shadow_p = MEM_TO_SHADOW(p);
43 ReleaseMemoryPagesToOS(beg: shadow_p, end: shadow_p + size);
44 if (__msan_get_track_origins()) {
45 uptr origin_p = MEM_TO_ORIGIN(p);
46 ReleaseMemoryPagesToOS(beg: origin_p, end: origin_p + size);
47 }
48 }
49};
50
51// Note: to ensure that the allocator is compatible with the application memory
52// layout (especially with high-entropy ASLR), kSpaceBeg and kSpaceSize must be
53// duplicated as MappingDesc::ALLOCATOR in msan.h.
54#if defined(__mips64)
55static const uptr kMaxAllowedMallocSize = 2UL << 30;
56
57struct AP32 {
58 static const uptr kSpaceBeg = 0;
59 static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
60 static const uptr kMetadataSize = sizeof(Metadata);
61 typedef __sanitizer::CompactSizeClassMap SizeClassMap;
62 static const uptr kRegionSizeLog = 20;
63 using AddressSpaceView = LocalAddressSpaceView;
64 typedef MsanMapUnmapCallback MapUnmapCallback;
65 static const uptr kFlags = 0;
66};
67typedef SizeClassAllocator32<AP32> PrimaryAllocator;
68#elif defined(__x86_64__)
69#if SANITIZER_NETBSD || SANITIZER_LINUX
70static const uptr kAllocatorSpace = 0x700000000000ULL;
71#else
72static const uptr kAllocatorSpace = 0x600000000000ULL;
73#endif
74static const uptr kMaxAllowedMallocSize = 1ULL << 40;
75
76struct AP64 { // Allocator64 parameters. Deliberately using a short name.
77 static const uptr kSpaceBeg = kAllocatorSpace;
78 static const uptr kSpaceSize = 0x40000000000; // 4T.
79 static const uptr kMetadataSize = sizeof(Metadata);
80 typedef DefaultSizeClassMap SizeClassMap;
81 typedef MsanMapUnmapCallback MapUnmapCallback;
82 static const uptr kFlags = 0;
83 using AddressSpaceView = LocalAddressSpaceView;
84};
85
86typedef SizeClassAllocator64<AP64> PrimaryAllocator;
87
88#elif defined(__loongarch_lp64)
89const uptr kAllocatorSpace = 0x700000000000ULL;
90const uptr kMaxAllowedMallocSize = 8UL << 30;
91
92struct AP64 { // Allocator64 parameters. Deliberately using a short name.
93 static const uptr kSpaceBeg = kAllocatorSpace;
94 static const uptr kSpaceSize = 0x40000000000; // 4T.
95 static const uptr kMetadataSize = sizeof(Metadata);
96 typedef DefaultSizeClassMap SizeClassMap;
97 typedef MsanMapUnmapCallback MapUnmapCallback;
98 static const uptr kFlags = 0;
99 using AddressSpaceView = LocalAddressSpaceView;
100};
101
102typedef SizeClassAllocator64<AP64> PrimaryAllocator;
103
104#elif defined(__powerpc64__)
105static const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G
106
107struct AP64 { // Allocator64 parameters. Deliberately using a short name.
108 static const uptr kSpaceBeg = 0x300000000000;
109 static const uptr kSpaceSize = 0x020000000000; // 2T.
110 static const uptr kMetadataSize = sizeof(Metadata);
111 typedef DefaultSizeClassMap SizeClassMap;
112 typedef MsanMapUnmapCallback MapUnmapCallback;
113 static const uptr kFlags = 0;
114 using AddressSpaceView = LocalAddressSpaceView;
115};
116
117typedef SizeClassAllocator64<AP64> PrimaryAllocator;
118#elif defined(__s390x__)
119static const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G
120
121struct AP64 { // Allocator64 parameters. Deliberately using a short name.
122 static const uptr kSpaceBeg = 0x440000000000;
123 static const uptr kSpaceSize = 0x020000000000; // 2T.
124 static const uptr kMetadataSize = sizeof(Metadata);
125 typedef DefaultSizeClassMap SizeClassMap;
126 typedef MsanMapUnmapCallback MapUnmapCallback;
127 static const uptr kFlags = 0;
128 using AddressSpaceView = LocalAddressSpaceView;
129};
130
131typedef SizeClassAllocator64<AP64> PrimaryAllocator;
132#elif defined(__aarch64__)
133static const uptr kMaxAllowedMallocSize = 8UL << 30;
134
135struct AP64 {
136 static const uptr kSpaceBeg = 0xE00000000000ULL;
137 static const uptr kSpaceSize = 0x40000000000; // 4T.
138 static const uptr kMetadataSize = sizeof(Metadata);
139 typedef DefaultSizeClassMap SizeClassMap;
140 typedef MsanMapUnmapCallback MapUnmapCallback;
141 static const uptr kFlags = 0;
142 using AddressSpaceView = LocalAddressSpaceView;
143};
144typedef SizeClassAllocator64<AP64> PrimaryAllocator;
145#endif
146typedef CombinedAllocator<PrimaryAllocator> Allocator;
147typedef Allocator::AllocatorCache AllocatorCache;
148
149static Allocator allocator;
150static AllocatorCache fallback_allocator_cache;
151static StaticSpinMutex fallback_mutex;
152
153static uptr max_malloc_size;
154
155void MsanAllocatorInit() {
156 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
157 allocator.Init(release_to_os_interval_ms: common_flags()->allocator_release_to_os_interval_ms);
158 if (common_flags()->max_allocation_size_mb)
159 max_malloc_size = Min(a: common_flags()->max_allocation_size_mb << 20,
160 b: kMaxAllowedMallocSize);
161 else
162 max_malloc_size = kMaxAllowedMallocSize;
163}
164
165void LockAllocator() { allocator.ForceLock(); }
166
167void UnlockAllocator() { allocator.ForceUnlock(); }
168
169AllocatorCache *GetAllocatorCache(MsanThreadLocalMallocStorage *ms) {
170 CHECK(ms);
171 CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache));
172 return reinterpret_cast<AllocatorCache *>(ms->allocator_cache);
173}
174
175void MsanThreadLocalMallocStorage::Init() {
176 allocator.InitCache(cache: GetAllocatorCache(ms: this));
177}
178
179void MsanThreadLocalMallocStorage::CommitBack() {
180 allocator.SwallowCache(cache: GetAllocatorCache(ms: this));
181 allocator.DestroyCache(cache: GetAllocatorCache(ms: this));
182}
183
184static void *MsanAllocate(BufferedStackTrace *stack, uptr size, uptr alignment,
185 bool zeroise) {
186 if (UNLIKELY(size > max_malloc_size)) {
187 if (AllocatorMayReturnNull()) {
188 Report(format: "WARNING: MemorySanitizer failed to allocate 0x%zx bytes\n", size);
189 return nullptr;
190 }
191 GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
192 ReportAllocationSizeTooBig(user_size: size, max_size: max_malloc_size, stack);
193 }
194 if (UNLIKELY(IsRssLimitExceeded())) {
195 if (AllocatorMayReturnNull())
196 return nullptr;
197 GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
198 ReportRssLimitExceeded(stack);
199 }
200 MsanThread *t = GetCurrentThread();
201 void *allocated;
202 if (t) {
203 AllocatorCache *cache = GetAllocatorCache(ms: &t->malloc_storage());
204 allocated = allocator.Allocate(cache, size, alignment);
205 } else {
206 SpinMutexLock l(&fallback_mutex);
207 AllocatorCache *cache = &fallback_allocator_cache;
208 allocated = allocator.Allocate(cache, size, alignment);
209 }
210 if (UNLIKELY(!allocated)) {
211 SetAllocatorOutOfMemory();
212 if (AllocatorMayReturnNull())
213 return nullptr;
214 GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
215 ReportOutOfMemory(requested_size: size, stack);
216 }
217 Metadata *meta =
218 reinterpret_cast<Metadata *>(allocator.GetMetaData(p: allocated));
219 meta->requested_size = size;
220 if (zeroise) {
221 if (allocator.FromPrimary(p: allocated))
222 __msan_clear_and_unpoison(a: allocated, size);
223 else
224 __msan_unpoison(a: allocated, size); // Mem is already zeroed.
225 } else if (flags()->poison_in_malloc) {
226 __msan_poison(a: allocated, size);
227 if (__msan_get_track_origins()) {
228 stack->tag = StackTrace::TAG_ALLOC;
229 Origin o = Origin::CreateHeapOrigin(stack);
230 __msan_set_origin(a: allocated, size, origin: o.raw_id());
231 }
232 }
233 UnpoisonParam(n: 2);
234 RunMallocHooks(ptr: allocated, size);
235 return allocated;
236}
237
238void MsanDeallocate(BufferedStackTrace *stack, void *p) {
239 CHECK(p);
240 UnpoisonParam(n: 1);
241 RunFreeHooks(ptr: p);
242
243 Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p));
244 uptr size = meta->requested_size;
245 meta->requested_size = 0;
246 // This memory will not be reused by anyone else, so we are free to keep it
247 // poisoned. The secondary allocator will unmap and unpoison by
248 // MsanMapUnmapCallback, no need to poison it here.
249 if (flags()->poison_in_free && allocator.FromPrimary(p)) {
250 __msan_poison(a: p, size);
251 if (__msan_get_track_origins()) {
252 stack->tag = StackTrace::TAG_DEALLOC;
253 Origin o = Origin::CreateHeapOrigin(stack);
254 __msan_set_origin(a: p, size, origin: o.raw_id());
255 }
256 }
257 MsanThread *t = GetCurrentThread();
258 if (t) {
259 AllocatorCache *cache = GetAllocatorCache(ms: &t->malloc_storage());
260 allocator.Deallocate(cache, p);
261 } else {
262 SpinMutexLock l(&fallback_mutex);
263 AllocatorCache *cache = &fallback_allocator_cache;
264 allocator.Deallocate(cache, p);
265 }
266}
267
268static void *MsanReallocate(BufferedStackTrace *stack, void *old_p,
269 uptr new_size, uptr alignment) {
270 Metadata *meta = reinterpret_cast<Metadata*>(allocator.GetMetaData(p: old_p));
271 uptr old_size = meta->requested_size;
272 uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(p: old_p);
273 if (new_size <= actually_allocated_size) {
274 // We are not reallocating here.
275 meta->requested_size = new_size;
276 if (new_size > old_size) {
277 if (flags()->poison_in_malloc) {
278 stack->tag = StackTrace::TAG_ALLOC;
279 PoisonMemory(dst: (char *)old_p + old_size, size: new_size - old_size, stack);
280 }
281 }
282 return old_p;
283 }
284 uptr memcpy_size = Min(a: new_size, b: old_size);
285 void *new_p = MsanAllocate(stack, size: new_size, alignment, zeroise: false /*zeroise*/);
286 if (new_p) {
287 CopyMemory(dst: new_p, src: old_p, size: memcpy_size, stack);
288 MsanDeallocate(stack, p: old_p);
289 }
290 return new_p;
291}
292
293static void *MsanCalloc(BufferedStackTrace *stack, uptr nmemb, uptr size) {
294 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
295 if (AllocatorMayReturnNull())
296 return nullptr;
297 GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
298 ReportCallocOverflow(count: nmemb, size, stack);
299 }
300 return MsanAllocate(stack, size: nmemb * size, alignment: sizeof(u64), zeroise: true);
301}
302
303static const void *AllocationBegin(const void *p) {
304 if (!p)
305 return nullptr;
306 void *beg = allocator.GetBlockBegin(p);
307 if (!beg)
308 return nullptr;
309 Metadata *b = (Metadata *)allocator.GetMetaData(p: beg);
310 if (!b)
311 return nullptr;
312 if (b->requested_size == 0)
313 return nullptr;
314
315 return (const void *)beg;
316}
317
318static uptr AllocationSize(const void *p) {
319 if (!p) return 0;
320 const void *beg = allocator.GetBlockBegin(p);
321 if (beg != p) return 0;
322 Metadata *b = (Metadata *)allocator.GetMetaData(p);
323 return b->requested_size;
324}
325
326static uptr AllocationSizeFast(const void *p) {
327 return reinterpret_cast<Metadata *>(allocator.GetMetaData(p))->requested_size;
328}
329
330void *msan_malloc(uptr size, BufferedStackTrace *stack) {
331 return SetErrnoOnNull(MsanAllocate(stack, size, alignment: sizeof(u64), zeroise: false));
332}
333
334void *msan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
335 return SetErrnoOnNull(MsanCalloc(stack, nmemb, size));
336}
337
338void *msan_realloc(void *ptr, uptr size, BufferedStackTrace *stack) {
339 if (!ptr)
340 return SetErrnoOnNull(MsanAllocate(stack, size, alignment: sizeof(u64), zeroise: false));
341 if (size == 0) {
342 MsanDeallocate(stack, p: ptr);
343 return nullptr;
344 }
345 return SetErrnoOnNull(MsanReallocate(stack, old_p: ptr, new_size: size, alignment: sizeof(u64)));
346}
347
348void *msan_reallocarray(void *ptr, uptr nmemb, uptr size,
349 BufferedStackTrace *stack) {
350 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
351 errno = errno_ENOMEM;
352 if (AllocatorMayReturnNull())
353 return nullptr;
354 GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
355 ReportReallocArrayOverflow(count: nmemb, size, stack);
356 }
357 return msan_realloc(ptr, size: nmemb * size, stack);
358}
359
360void *msan_valloc(uptr size, BufferedStackTrace *stack) {
361 return SetErrnoOnNull(MsanAllocate(stack, size, alignment: GetPageSizeCached(), zeroise: false));
362}
363
364void *msan_pvalloc(uptr size, BufferedStackTrace *stack) {
365 uptr PageSize = GetPageSizeCached();
366 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
367 errno = errno_ENOMEM;
368 if (AllocatorMayReturnNull())
369 return nullptr;
370 GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
371 ReportPvallocOverflow(size, stack);
372 }
373 // pvalloc(0) should allocate one page.
374 size = size ? RoundUpTo(size, boundary: PageSize) : PageSize;
375 return SetErrnoOnNull(MsanAllocate(stack, size, alignment: PageSize, zeroise: false));
376}
377
378void *msan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) {
379 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
380 errno = errno_EINVAL;
381 if (AllocatorMayReturnNull())
382 return nullptr;
383 GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
384 ReportInvalidAlignedAllocAlignment(size, alignment, stack);
385 }
386 return SetErrnoOnNull(MsanAllocate(stack, size, alignment, zeroise: false));
387}
388
389void *msan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack) {
390 if (UNLIKELY(!IsPowerOfTwo(alignment))) {
391 errno = errno_EINVAL;
392 if (AllocatorMayReturnNull())
393 return nullptr;
394 GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
395 ReportInvalidAllocationAlignment(alignment, stack);
396 }
397 return SetErrnoOnNull(MsanAllocate(stack, size, alignment, zeroise: false));
398}
399
400int msan_posix_memalign(void **memptr, uptr alignment, uptr size,
401 BufferedStackTrace *stack) {
402 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
403 if (AllocatorMayReturnNull())
404 return errno_EINVAL;
405 GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
406 ReportInvalidPosixMemalignAlignment(alignment, stack);
407 }
408 void *ptr = MsanAllocate(stack, size, alignment, zeroise: false);
409 if (UNLIKELY(!ptr))
410 // OOM error is already taken care of by MsanAllocate.
411 return errno_ENOMEM;
412 CHECK(IsAligned((uptr)ptr, alignment));
413 *memptr = ptr;
414 return 0;
415}
416
417} // namespace __msan
418
419using namespace __msan;
420
421uptr __sanitizer_get_current_allocated_bytes() {
422 uptr stats[AllocatorStatCount];
423 allocator.GetStats(s: stats);
424 return stats[AllocatorStatAllocated];
425}
426
427uptr __sanitizer_get_heap_size() {
428 uptr stats[AllocatorStatCount];
429 allocator.GetStats(s: stats);
430 return stats[AllocatorStatMapped];
431}
432
433uptr __sanitizer_get_free_bytes() { return 1; }
434
435uptr __sanitizer_get_unmapped_bytes() { return 1; }
436
437uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
438
439int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
440
441const void *__sanitizer_get_allocated_begin(const void *p) {
442 return AllocationBegin(p);
443}
444
445uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }
446
447uptr __sanitizer_get_allocated_size_fast(const void *p) {
448 DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
449 uptr ret = AllocationSizeFast(p);
450 DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
451 return ret;
452}
453
454void __sanitizer_purge_allocator() { allocator.ForceReleaseToOS(); }
455