1 | //===-- tsan_interceptors_posix.cpp ---------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file is a part of ThreadSanitizer (TSan), a race detector. |
10 | // |
11 | // FIXME: move as many interceptors as possible into |
12 | // sanitizer_common/sanitizer_common_interceptors.inc |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "sanitizer_common/sanitizer_atomic.h" |
16 | #include "sanitizer_common/sanitizer_errno.h" |
17 | #include "sanitizer_common/sanitizer_glibc_version.h" |
18 | #include "sanitizer_common/sanitizer_libc.h" |
19 | #include "sanitizer_common/sanitizer_linux.h" |
20 | #include "sanitizer_common/sanitizer_platform_limits_netbsd.h" |
21 | #include "sanitizer_common/sanitizer_platform_limits_posix.h" |
22 | #include "sanitizer_common/sanitizer_placement_new.h" |
23 | #include "sanitizer_common/sanitizer_posix.h" |
24 | #include "sanitizer_common/sanitizer_stacktrace.h" |
25 | #include "sanitizer_common/sanitizer_tls_get_addr.h" |
26 | #include "interception/interception.h" |
27 | #include "tsan_interceptors.h" |
28 | #include "tsan_interface.h" |
29 | #include "tsan_platform.h" |
30 | #include "tsan_suppressions.h" |
31 | #include "tsan_rtl.h" |
32 | #include "tsan_mman.h" |
33 | #include "tsan_fd.h" |
34 | |
35 | #include <stdarg.h> |
36 | |
37 | using namespace __tsan; |
38 | |
39 | DECLARE_REAL(void *, memcpy, void *to, const void *from, SIZE_T size) |
40 | DECLARE_REAL(void *, memset, void *block, int c, SIZE_T size) |
41 | |
42 | #if SANITIZER_FREEBSD || SANITIZER_APPLE |
43 | #define stdout __stdoutp |
44 | #define stderr __stderrp |
45 | #endif |
46 | |
47 | #if SANITIZER_NETBSD |
48 | #define dirfd(dirp) (*(int *)(dirp)) |
49 | #define fileno_unlocked(fp) \ |
50 | (((__sanitizer_FILE *)fp)->_file == -1 \ |
51 | ? -1 \ |
52 | : (int)(unsigned short)(((__sanitizer_FILE *)fp)->_file)) |
53 | |
54 | #define stdout ((__sanitizer_FILE*)&__sF[1]) |
55 | #define stderr ((__sanitizer_FILE*)&__sF[2]) |
56 | |
57 | #define nanosleep __nanosleep50 |
58 | #define vfork __vfork14 |
59 | #endif |
60 | |
61 | #ifdef __mips__ |
62 | const int kSigCount = 129; |
63 | #else |
64 | const int kSigCount = 65; |
65 | #endif |
66 | |
67 | #ifdef __mips__ |
68 | struct ucontext_t { |
69 | u64 opaque[768 / sizeof(u64) + 1]; |
70 | }; |
71 | #else |
72 | struct ucontext_t { |
73 | // The size is determined by looking at sizeof of real ucontext_t on linux. |
74 | u64 opaque[936 / sizeof(u64) + 1]; |
75 | }; |
76 | #endif |
77 | |
78 | #if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1 || \ |
79 | defined(__s390x__) |
80 | #define PTHREAD_ABI_BASE "GLIBC_2.3.2" |
81 | #elif defined(__aarch64__) || SANITIZER_PPC64V2 |
82 | #define PTHREAD_ABI_BASE "GLIBC_2.17" |
83 | #elif SANITIZER_LOONGARCH64 |
84 | #define PTHREAD_ABI_BASE "GLIBC_2.36" |
85 | #elif SANITIZER_RISCV64 |
86 | # define PTHREAD_ABI_BASE "GLIBC_2.27" |
87 | #endif |
88 | |
89 | extern "C" int pthread_attr_init(void *attr); |
90 | extern "C" int pthread_attr_destroy(void *attr); |
91 | DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *) |
92 | extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize); |
93 | extern "C" int pthread_atfork(void (*prepare)(void), void (*parent)(void), |
94 | void (*child)(void)); |
95 | extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v)); |
96 | extern "C" int pthread_setspecific(unsigned key, const void *v); |
97 | DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *) |
98 | DECLARE_REAL(int, fflush, __sanitizer_FILE *fp) |
99 | DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size) |
100 | DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr) |
101 | extern "C" int pthread_equal(void *t1, void *t2); |
102 | extern "C" void *pthread_self(); |
103 | extern "C" void _exit(int status); |
104 | #if !SANITIZER_NETBSD |
105 | extern "C" int fileno_unlocked(void *stream); |
106 | extern "C" int dirfd(void *dirp); |
107 | #endif |
108 | #if SANITIZER_NETBSD |
109 | extern __sanitizer_FILE __sF[]; |
110 | #else |
111 | extern __sanitizer_FILE *stdout, *stderr; |
112 | #endif |
113 | #if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD |
114 | const int PTHREAD_MUTEX_RECURSIVE = 1; |
115 | const int PTHREAD_MUTEX_RECURSIVE_NP = 1; |
116 | #else |
117 | const int PTHREAD_MUTEX_RECURSIVE = 2; |
118 | const int PTHREAD_MUTEX_RECURSIVE_NP = 2; |
119 | #endif |
120 | #if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD |
121 | const int EPOLL_CTL_ADD = 1; |
122 | #endif |
123 | const int SIGILL = 4; |
124 | const int SIGTRAP = 5; |
125 | const int SIGABRT = 6; |
126 | const int SIGFPE = 8; |
127 | const int SIGSEGV = 11; |
128 | const int SIGPIPE = 13; |
129 | const int SIGTERM = 15; |
130 | #if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_APPLE || SANITIZER_NETBSD |
131 | const int SIGBUS = 10; |
132 | const int SIGSYS = 12; |
133 | #else |
134 | const int SIGBUS = 7; |
135 | const int SIGSYS = 31; |
136 | #endif |
137 | #if SANITIZER_HAS_SIGINFO |
138 | const int SI_TIMER = -2; |
139 | #endif |
140 | void *const MAP_FAILED = (void*)-1; |
141 | #if SANITIZER_NETBSD |
142 | const int PTHREAD_BARRIER_SERIAL_THREAD = 1234567; |
143 | #elif !SANITIZER_APPLE |
144 | const int PTHREAD_BARRIER_SERIAL_THREAD = -1; |
145 | #endif |
146 | const int MAP_FIXED = 0x10; |
147 | typedef long long_t; |
148 | typedef __sanitizer::u16 mode_t; |
149 | |
150 | // From /usr/include/unistd.h |
151 | # define F_ULOCK 0 /* Unlock a previously locked region. */ |
152 | # define F_LOCK 1 /* Lock a region for exclusive use. */ |
153 | # define F_TLOCK 2 /* Test and lock a region for exclusive use. */ |
154 | # define F_TEST 3 /* Test a region for other processes locks. */ |
155 | |
156 | #if SANITIZER_FREEBSD || SANITIZER_APPLE || SANITIZER_NETBSD |
157 | const int SA_SIGINFO = 0x40; |
158 | const int SIG_SETMASK = 3; |
159 | #elif defined(__mips__) |
160 | const int SA_SIGINFO = 8; |
161 | const int SIG_SETMASK = 3; |
162 | #else |
163 | const int SA_SIGINFO = 4; |
164 | const int SIG_SETMASK = 2; |
165 | #endif |
166 | |
167 | namespace __tsan { |
168 | struct SignalDesc { |
169 | bool armed; |
170 | __sanitizer_siginfo siginfo; |
171 | ucontext_t ctx; |
172 | }; |
173 | |
174 | struct ThreadSignalContext { |
175 | int int_signal_send; |
176 | SignalDesc pending_signals[kSigCount]; |
177 | // emptyset and oldset are too big for stack. |
178 | __sanitizer_sigset_t emptyset; |
179 | __sanitizer_sigset_t oldset; |
180 | }; |
181 | |
182 | void EnterBlockingFunc(ThreadState *thr) { |
183 | for (;;) { |
184 | // The order is important to not delay a signal infinitely if it's |
185 | // delivered right before we set in_blocking_func. Note: we can't call |
186 | // ProcessPendingSignals when in_blocking_func is set, or we can handle |
187 | // a signal synchronously when we are already handling a signal. |
188 | atomic_store(a: &thr->in_blocking_func, v: 1, mo: memory_order_relaxed); |
189 | if (atomic_load(a: &thr->pending_signals, mo: memory_order_relaxed) == 0) |
190 | break; |
191 | atomic_store(a: &thr->in_blocking_func, v: 0, mo: memory_order_relaxed); |
192 | ProcessPendingSignals(thr); |
193 | } |
194 | } |
195 | |
196 | // The sole reason tsan wraps atexit callbacks is to establish synchronization |
197 | // between callback setup and callback execution. |
198 | struct AtExitCtx { |
199 | void (*f)(); |
200 | void *arg; |
201 | uptr pc; |
202 | }; |
203 | |
204 | // InterceptorContext holds all global data required for interceptors. |
205 | // It's explicitly constructed in InitializeInterceptors with placement new |
206 | // and is never destroyed. This allows usage of members with non-trivial |
207 | // constructors and destructors. |
208 | struct InterceptorContext { |
209 | // The object is 64-byte aligned, because we want hot data to be located |
210 | // in a single cache line if possible (it's accessed in every interceptor). |
211 | alignas(64) LibIgnore libignore; |
212 | __sanitizer_sigaction sigactions[kSigCount]; |
213 | #if !SANITIZER_APPLE && !SANITIZER_NETBSD |
214 | unsigned finalize_key; |
215 | #endif |
216 | |
217 | Mutex atexit_mu; |
218 | Vector<struct AtExitCtx *> AtExitStack; |
219 | |
220 | InterceptorContext() : libignore(LINKER_INITIALIZED), atexit_mu(MutexTypeAtExit), AtExitStack() {} |
221 | }; |
222 | |
223 | alignas(64) static char interceptor_placeholder[sizeof(InterceptorContext)]; |
224 | InterceptorContext *interceptor_ctx() { |
225 | return reinterpret_cast<InterceptorContext*>(&interceptor_placeholder[0]); |
226 | } |
227 | |
228 | LibIgnore *libignore() { |
229 | return &interceptor_ctx()->libignore; |
230 | } |
231 | |
232 | void InitializeLibIgnore() { |
233 | const SuppressionContext &supp = *Suppressions(); |
234 | const uptr n = supp.SuppressionCount(); |
235 | for (uptr i = 0; i < n; i++) { |
236 | const Suppression *s = supp.SuppressionAt(i); |
237 | if (0 == internal_strcmp(s1: s->type, s2: kSuppressionLib)) |
238 | libignore()->AddIgnoredLibrary(name_templ: s->templ); |
239 | } |
240 | if (flags()->ignore_noninstrumented_modules) |
241 | libignore()->IgnoreNoninstrumentedModules(enable: true); |
242 | libignore()->OnLibraryLoaded(name: 0); |
243 | } |
244 | |
245 | // The following two hooks can be used by for cooperative scheduling when |
246 | // locking. |
247 | #ifdef TSAN_EXTERNAL_HOOKS |
248 | void OnPotentiallyBlockingRegionBegin(); |
249 | void OnPotentiallyBlockingRegionEnd(); |
250 | #else |
251 | SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionBegin() {} |
252 | SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionEnd() {} |
253 | #endif |
254 | |
255 | } // namespace __tsan |
256 | |
257 | static ThreadSignalContext *SigCtx(ThreadState *thr) { |
258 | // This function may be called reentrantly if it is interrupted by a signal |
259 | // handler. Use CAS to handle the race. |
260 | uptr ctx = atomic_load(a: &thr->signal_ctx, mo: memory_order_relaxed); |
261 | if (ctx == 0 && !thr->is_dead) { |
262 | uptr pctx = |
263 | (uptr)MmapOrDie(size: sizeof(ThreadSignalContext), mem_type: "ThreadSignalContext" ); |
264 | MemoryResetRange(thr, pc: (uptr)&SigCtx, addr: pctx, size: sizeof(ThreadSignalContext)); |
265 | if (atomic_compare_exchange_strong(a: &thr->signal_ctx, cmp: &ctx, xchg: pctx, |
266 | mo: memory_order_relaxed)) { |
267 | ctx = pctx; |
268 | } else { |
269 | UnmapOrDie(addr: (ThreadSignalContext *)pctx, size: sizeof(ThreadSignalContext)); |
270 | } |
271 | } |
272 | return (ThreadSignalContext *)ctx; |
273 | } |
274 | |
275 | ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname, |
276 | uptr pc) |
277 | : thr_(thr) { |
278 | LazyInitialize(thr); |
279 | if (UNLIKELY(atomic_load(&thr->in_blocking_func, memory_order_relaxed))) { |
280 | // pthread_join is marked as blocking, but it's also known to call other |
281 | // intercepted functions (mmap, free). If we don't reset in_blocking_func |
282 | // we can get deadlocks and memory corruptions if we deliver a synchronous |
283 | // signal inside of an mmap/free interceptor. |
284 | // So reset it and restore it back in the destructor. |
285 | // See https://github.com/google/sanitizers/issues/1540 |
286 | atomic_store(a: &thr->in_blocking_func, v: 0, mo: memory_order_relaxed); |
287 | in_blocking_func_ = true; |
288 | } |
289 | if (!thr_->is_inited) return; |
290 | if (!thr_->ignore_interceptors) FuncEntry(thr, pc); |
291 | DPrintf("#%d: intercept %s()\n" , thr_->tid, fname); |
292 | ignoring_ = |
293 | !thr_->in_ignored_lib && (flags()->ignore_interceptors_accesses || |
294 | libignore()->IsIgnored(pc, pc_in_ignored_lib: &in_ignored_lib_)); |
295 | EnableIgnores(); |
296 | } |
297 | |
298 | ScopedInterceptor::~ScopedInterceptor() { |
299 | if (!thr_->is_inited) return; |
300 | DisableIgnores(); |
301 | if (UNLIKELY(in_blocking_func_)) |
302 | EnterBlockingFunc(thr: thr_); |
303 | if (!thr_->ignore_interceptors) { |
304 | ProcessPendingSignals(thr: thr_); |
305 | FuncExit(thr: thr_); |
306 | CheckedMutex::CheckNoLocks(); |
307 | } |
308 | } |
309 | |
310 | NOINLINE |
311 | void ScopedInterceptor::EnableIgnoresImpl() { |
312 | ThreadIgnoreBegin(thr: thr_, pc: 0); |
313 | if (flags()->ignore_noninstrumented_modules) |
314 | thr_->suppress_reports++; |
315 | if (in_ignored_lib_) { |
316 | DCHECK(!thr_->in_ignored_lib); |
317 | thr_->in_ignored_lib = true; |
318 | } |
319 | } |
320 | |
321 | NOINLINE |
322 | void ScopedInterceptor::DisableIgnoresImpl() { |
323 | ThreadIgnoreEnd(thr: thr_); |
324 | if (flags()->ignore_noninstrumented_modules) |
325 | thr_->suppress_reports--; |
326 | if (in_ignored_lib_) { |
327 | DCHECK(thr_->in_ignored_lib); |
328 | thr_->in_ignored_lib = false; |
329 | } |
330 | } |
331 | |
332 | #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func) |
333 | #if SANITIZER_FREEBSD || SANITIZER_NETBSD |
334 | # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func) |
335 | #else |
336 | # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver) |
337 | #endif |
338 | #if SANITIZER_FREEBSD |
339 | # define TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(func) \ |
340 | INTERCEPT_FUNCTION(_pthread_##func) |
341 | #else |
342 | # define TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(func) |
343 | #endif |
344 | #if SANITIZER_NETBSD |
345 | # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) \ |
346 | INTERCEPT_FUNCTION(__libc_##func) |
347 | # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) \ |
348 | INTERCEPT_FUNCTION(__libc_thr_##func) |
349 | #else |
350 | # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) |
351 | # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) |
352 | #endif |
353 | |
354 | #define READ_STRING_OF_LEN(thr, pc, s, len, n) \ |
355 | MemoryAccessRange((thr), (pc), (uptr)(s), \ |
356 | common_flags()->strict_string_checks ? (len) + 1 : (n), false) |
357 | |
358 | #define READ_STRING(thr, pc, s, n) \ |
359 | READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n)) |
360 | |
361 | #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name)) |
362 | |
363 | struct BlockingCall { |
364 | explicit BlockingCall(ThreadState *thr) |
365 | : thr(thr) { |
366 | EnterBlockingFunc(thr); |
367 | // When we are in a "blocking call", we process signals asynchronously |
368 | // (right when they arrive). In this context we do not expect to be |
369 | // executing any user/runtime code. The known interceptor sequence when |
370 | // this is not true is: pthread_join -> munmap(stack). It's fine |
371 | // to ignore munmap in this case -- we handle stack shadow separately. |
372 | thr->ignore_interceptors++; |
373 | } |
374 | |
375 | ~BlockingCall() { |
376 | thr->ignore_interceptors--; |
377 | atomic_store(a: &thr->in_blocking_func, v: 0, mo: memory_order_relaxed); |
378 | } |
379 | |
380 | ThreadState *thr; |
381 | }; |
382 | |
383 | TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) { |
384 | SCOPED_TSAN_INTERCEPTOR(sleep, sec); |
385 | unsigned res = BLOCK_REAL(sleep)(sec); |
386 | AfterSleep(thr, pc); |
387 | return res; |
388 | } |
389 | |
390 | TSAN_INTERCEPTOR(int, usleep, long_t usec) { |
391 | SCOPED_TSAN_INTERCEPTOR(usleep, usec); |
392 | int res = BLOCK_REAL(usleep)(usec); |
393 | AfterSleep(thr, pc); |
394 | return res; |
395 | } |
396 | |
397 | TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) { |
398 | SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem); |
399 | int res = BLOCK_REAL(nanosleep)(req, rem); |
400 | AfterSleep(thr, pc); |
401 | return res; |
402 | } |
403 | |
404 | TSAN_INTERCEPTOR(int, pause, int fake) { |
405 | SCOPED_TSAN_INTERCEPTOR(pause, fake); |
406 | return BLOCK_REAL(pause)(fake); |
407 | } |
408 | |
409 | // Note: we specifically call the function in such strange way |
410 | // with "installed_at" because in reports it will appear between |
411 | // callback frames and the frame that installed the callback. |
412 | static void at_exit_callback_installed_at() { |
413 | AtExitCtx *ctx; |
414 | { |
415 | // Ensure thread-safety. |
416 | Lock l(&interceptor_ctx()->atexit_mu); |
417 | |
418 | // Pop AtExitCtx from the top of the stack of callback functions |
419 | uptr element = interceptor_ctx()->AtExitStack.Size() - 1; |
420 | ctx = interceptor_ctx()->AtExitStack[element]; |
421 | interceptor_ctx()->AtExitStack.PopBack(); |
422 | } |
423 | |
424 | ThreadState *thr = cur_thread(); |
425 | Acquire(thr, pc: ctx->pc, addr: (uptr)ctx); |
426 | FuncEntry(thr, pc: ctx->pc); |
427 | ((void(*)())ctx->f)(); |
428 | FuncExit(thr); |
429 | Free(p&: ctx); |
430 | } |
431 | |
432 | static void cxa_at_exit_callback_installed_at(void *arg) { |
433 | ThreadState *thr = cur_thread(); |
434 | AtExitCtx *ctx = (AtExitCtx*)arg; |
435 | Acquire(thr, pc: ctx->pc, addr: (uptr)arg); |
436 | FuncEntry(thr, pc: ctx->pc); |
437 | ((void(*)(void *arg))ctx->f)(ctx->arg); |
438 | FuncExit(thr); |
439 | Free(p&: ctx); |
440 | } |
441 | |
442 | static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(), |
443 | void *arg, void *dso); |
444 | |
445 | #if !SANITIZER_ANDROID |
446 | TSAN_INTERCEPTOR(int, atexit, void (*f)()) { |
447 | if (in_symbolizer()) |
448 | return 0; |
449 | // We want to setup the atexit callback even if we are in ignored lib |
450 | // or after fork. |
451 | SCOPED_INTERCEPTOR_RAW(atexit, f); |
452 | return setup_at_exit_wrapper(thr, GET_CALLER_PC(), f: (void (*)())f, arg: 0, dso: 0); |
453 | } |
454 | #endif |
455 | |
456 | TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) { |
457 | if (in_symbolizer()) |
458 | return 0; |
459 | SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso); |
460 | return setup_at_exit_wrapper(thr, GET_CALLER_PC(), f: (void (*)())f, arg, dso); |
461 | } |
462 | |
463 | static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(), |
464 | void *arg, void *dso) { |
465 | auto *ctx = New<AtExitCtx>(); |
466 | ctx->f = f; |
467 | ctx->arg = arg; |
468 | ctx->pc = pc; |
469 | Release(thr, pc, addr: (uptr)ctx); |
470 | // Memory allocation in __cxa_atexit will race with free during exit, |
471 | // because we do not see synchronization around atexit callback list. |
472 | ThreadIgnoreBegin(thr, pc); |
473 | int res; |
474 | if (!dso) { |
475 | // NetBSD does not preserve the 2nd argument if dso is equal to 0 |
476 | // Store ctx in a local stack-like structure |
477 | |
478 | // Ensure thread-safety. |
479 | Lock l(&interceptor_ctx()->atexit_mu); |
480 | // __cxa_atexit calls calloc. If we don't ignore interceptors, we will fail |
481 | // due to atexit_mu held on exit from the calloc interceptor. |
482 | ScopedIgnoreInterceptors ignore; |
483 | |
484 | res = REAL(__cxa_atexit)((void (*)(void *a))at_exit_callback_installed_at, |
485 | 0, 0); |
486 | // Push AtExitCtx on the top of the stack of callback functions |
487 | if (!res) { |
488 | interceptor_ctx()->AtExitStack.PushBack(v: ctx); |
489 | } |
490 | } else { |
491 | res = REAL(__cxa_atexit)(cxa_at_exit_callback_installed_at, ctx, dso); |
492 | } |
493 | ThreadIgnoreEnd(thr); |
494 | return res; |
495 | } |
496 | |
497 | #if !SANITIZER_APPLE && !SANITIZER_NETBSD |
498 | static void on_exit_callback_installed_at(int status, void *arg) { |
499 | ThreadState *thr = cur_thread(); |
500 | AtExitCtx *ctx = (AtExitCtx*)arg; |
501 | Acquire(thr, pc: ctx->pc, addr: (uptr)arg); |
502 | FuncEntry(thr, pc: ctx->pc); |
503 | ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg); |
504 | FuncExit(thr); |
505 | Free(p&: ctx); |
506 | } |
507 | |
508 | TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) { |
509 | if (in_symbolizer()) |
510 | return 0; |
511 | SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg); |
512 | auto *ctx = New<AtExitCtx>(); |
513 | ctx->f = (void(*)())f; |
514 | ctx->arg = arg; |
515 | ctx->pc = GET_CALLER_PC(); |
516 | Release(thr, pc, addr: (uptr)ctx); |
517 | // Memory allocation in __cxa_atexit will race with free during exit, |
518 | // because we do not see synchronization around atexit callback list. |
519 | ThreadIgnoreBegin(thr, pc); |
520 | int res = REAL(on_exit)(on_exit_callback_installed_at, ctx); |
521 | ThreadIgnoreEnd(thr); |
522 | return res; |
523 | } |
524 | #define TSAN_MAYBE_INTERCEPT_ON_EXIT TSAN_INTERCEPT(on_exit) |
525 | #else |
526 | #define TSAN_MAYBE_INTERCEPT_ON_EXIT |
527 | #endif |
528 | |
529 | // Cleanup old bufs. |
530 | static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) { |
531 | for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) { |
532 | JmpBuf *buf = &thr->jmp_bufs[i]; |
533 | if (buf->sp <= sp) { |
534 | uptr sz = thr->jmp_bufs.Size(); |
535 | internal_memcpy(dest: buf, src: &thr->jmp_bufs[sz - 1], n: sizeof(*buf)); |
536 | thr->jmp_bufs.PopBack(); |
537 | i--; |
538 | } |
539 | } |
540 | } |
541 | |
542 | static void SetJmp(ThreadState *thr, uptr sp) { |
543 | if (!thr->is_inited) // called from libc guts during bootstrap |
544 | return; |
545 | // Cleanup old bufs. |
546 | JmpBufGarbageCollect(thr, sp); |
547 | // Remember the buf. |
548 | JmpBuf *buf = thr->jmp_bufs.PushBack(); |
549 | buf->sp = sp; |
550 | buf->shadow_stack_pos = thr->shadow_stack_pos; |
551 | ThreadSignalContext *sctx = SigCtx(thr); |
552 | buf->int_signal_send = sctx ? sctx->int_signal_send : 0; |
553 | buf->in_blocking_func = atomic_load(a: &thr->in_blocking_func, mo: memory_order_relaxed); |
554 | buf->in_signal_handler = atomic_load(a: &thr->in_signal_handler, |
555 | mo: memory_order_relaxed); |
556 | } |
557 | |
558 | static void LongJmp(ThreadState *thr, uptr *env) { |
559 | uptr sp = ExtractLongJmpSp(env); |
560 | // Find the saved buf with matching sp. |
561 | for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) { |
562 | JmpBuf *buf = &thr->jmp_bufs[i]; |
563 | if (buf->sp == sp) { |
564 | CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos); |
565 | // Unwind the stack. |
566 | while (thr->shadow_stack_pos > buf->shadow_stack_pos) |
567 | FuncExit(thr); |
568 | ThreadSignalContext *sctx = SigCtx(thr); |
569 | if (sctx) |
570 | sctx->int_signal_send = buf->int_signal_send; |
571 | atomic_store(a: &thr->in_blocking_func, v: buf->in_blocking_func, |
572 | mo: memory_order_relaxed); |
573 | atomic_store(a: &thr->in_signal_handler, v: buf->in_signal_handler, |
574 | mo: memory_order_relaxed); |
575 | JmpBufGarbageCollect(thr, sp: buf->sp - 1); // do not collect buf->sp |
576 | return; |
577 | } |
578 | } |
579 | Printf(format: "ThreadSanitizer: can't find longjmp buf\n" ); |
580 | CHECK(0); |
581 | } |
582 | |
583 | // FIXME: put everything below into a common extern "C" block? |
584 | extern "C" void __tsan_setjmp(uptr sp) { SetJmp(thr: cur_thread_init(), sp); } |
585 | |
586 | #if SANITIZER_APPLE |
587 | TSAN_INTERCEPTOR(int, setjmp, void *env); |
588 | TSAN_INTERCEPTOR(int, _setjmp, void *env); |
589 | TSAN_INTERCEPTOR(int, sigsetjmp, void *env); |
590 | #else // SANITIZER_APPLE |
591 | |
592 | #if SANITIZER_NETBSD |
593 | #define setjmp_symname __setjmp14 |
594 | #define sigsetjmp_symname __sigsetjmp14 |
595 | #else |
596 | #define setjmp_symname setjmp |
597 | #define sigsetjmp_symname sigsetjmp |
598 | #endif |
599 | |
600 | DEFINE_REAL(int, setjmp_symname, void *env) |
601 | DEFINE_REAL(int, _setjmp, void *env) |
602 | DEFINE_REAL(int, sigsetjmp_symname, void *env) |
603 | #if !SANITIZER_NETBSD |
604 | DEFINE_REAL(int, __sigsetjmp, void *env) |
605 | #endif |
606 | |
607 | // The real interceptor for setjmp is special, and implemented in pure asm. We |
608 | // just need to initialize the REAL functions so that they can be used in asm. |
609 | static void InitializeSetjmpInterceptors() { |
610 | // We can not use TSAN_INTERCEPT to get setjmp addr, because it does &setjmp and |
611 | // setjmp is not present in some versions of libc. |
612 | using __interception::InterceptFunction; |
613 | InterceptFunction(SANITIZER_STRINGIFY(setjmp_symname), ptr_to_real: (uptr*)&REAL(setjmp_symname), func: 0, trampoline: 0); |
614 | InterceptFunction(name: "_setjmp" , ptr_to_real: (uptr*)&REAL(_setjmp), func: 0, trampoline: 0); |
615 | InterceptFunction(SANITIZER_STRINGIFY(sigsetjmp_symname), ptr_to_real: (uptr*)&REAL(sigsetjmp_symname), func: 0, |
616 | trampoline: 0); |
617 | #if !SANITIZER_NETBSD |
618 | InterceptFunction(name: "__sigsetjmp" , ptr_to_real: (uptr*)&REAL(__sigsetjmp), func: 0, trampoline: 0); |
619 | #endif |
620 | } |
621 | #endif // SANITIZER_APPLE |
622 | |
623 | #if SANITIZER_NETBSD |
624 | #define longjmp_symname __longjmp14 |
625 | #define siglongjmp_symname __siglongjmp14 |
626 | #else |
627 | #define longjmp_symname longjmp |
628 | #define siglongjmp_symname siglongjmp |
629 | #endif |
630 | |
631 | TSAN_INTERCEPTOR(void, longjmp_symname, uptr *env, int val) { |
632 | // Note: if we call REAL(longjmp) in the context of ScopedInterceptor, |
633 | // bad things will happen. We will jump over ScopedInterceptor dtor and can |
634 | // leave thr->in_ignored_lib set. |
635 | { |
636 | SCOPED_INTERCEPTOR_RAW(longjmp_symname, env, val); |
637 | } |
638 | LongJmp(thr: cur_thread(), env); |
639 | REAL(longjmp_symname)(env, val); |
640 | } |
641 | |
642 | TSAN_INTERCEPTOR(void, siglongjmp_symname, uptr *env, int val) { |
643 | { |
644 | SCOPED_INTERCEPTOR_RAW(siglongjmp_symname, env, val); |
645 | } |
646 | LongJmp(thr: cur_thread(), env); |
647 | REAL(siglongjmp_symname)(env, val); |
648 | } |
649 | |
650 | #if SANITIZER_NETBSD |
651 | TSAN_INTERCEPTOR(void, _longjmp, uptr *env, int val) { |
652 | { |
653 | SCOPED_INTERCEPTOR_RAW(_longjmp, env, val); |
654 | } |
655 | LongJmp(cur_thread(), env); |
656 | REAL(_longjmp)(env, val); |
657 | } |
658 | #endif |
659 | |
660 | #if !SANITIZER_APPLE |
661 | TSAN_INTERCEPTOR(void*, malloc, uptr size) { |
662 | if (in_symbolizer()) |
663 | return InternalAlloc(size); |
664 | void *p = 0; |
665 | { |
666 | SCOPED_INTERCEPTOR_RAW(malloc, size); |
667 | p = user_alloc(thr, pc, sz: size); |
668 | } |
669 | invoke_malloc_hook(ptr: p, size); |
670 | return p; |
671 | } |
672 | |
673 | // In glibc<2.25, dynamic TLS blocks are allocated by __libc_memalign. Intercept |
674 | // __libc_memalign so that (1) we can detect races (2) free will not be called |
675 | // on libc internally allocated blocks. |
676 | TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) { |
677 | SCOPED_INTERCEPTOR_RAW(__libc_memalign, align, sz); |
678 | return user_memalign(thr, pc, align, sz); |
679 | } |
680 | |
681 | TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) { |
682 | if (in_symbolizer()) |
683 | return InternalCalloc(count: size, size: n); |
684 | void *p = 0; |
685 | { |
686 | SCOPED_INTERCEPTOR_RAW(calloc, size, n); |
687 | p = user_calloc(thr, pc, sz: size, n); |
688 | } |
689 | invoke_malloc_hook(ptr: p, size: n * size); |
690 | return p; |
691 | } |
692 | |
693 | TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) { |
694 | if (in_symbolizer()) |
695 | return InternalRealloc(p, size); |
696 | if (p) |
697 | invoke_free_hook(ptr: p); |
698 | { |
699 | SCOPED_INTERCEPTOR_RAW(realloc, p, size); |
700 | p = user_realloc(thr, pc, p, sz: size); |
701 | } |
702 | invoke_malloc_hook(ptr: p, size); |
703 | return p; |
704 | } |
705 | |
706 | TSAN_INTERCEPTOR(void*, reallocarray, void *p, uptr size, uptr n) { |
707 | if (in_symbolizer()) |
708 | return InternalReallocArray(p, count: size, size: n); |
709 | if (p) |
710 | invoke_free_hook(ptr: p); |
711 | { |
712 | SCOPED_INTERCEPTOR_RAW(reallocarray, p, size, n); |
713 | p = user_reallocarray(thr, pc, p, sz: size, n); |
714 | } |
715 | invoke_malloc_hook(ptr: p, size); |
716 | return p; |
717 | } |
718 | |
719 | TSAN_INTERCEPTOR(void, free, void *p) { |
720 | if (p == 0) |
721 | return; |
722 | if (in_symbolizer()) |
723 | return InternalFree(p); |
724 | invoke_free_hook(ptr: p); |
725 | SCOPED_INTERCEPTOR_RAW(free, p); |
726 | user_free(thr, pc, p); |
727 | } |
728 | |
729 | TSAN_INTERCEPTOR(void, cfree, void *p) { |
730 | if (p == 0) |
731 | return; |
732 | if (in_symbolizer()) |
733 | return InternalFree(p); |
734 | invoke_free_hook(ptr: p); |
735 | SCOPED_INTERCEPTOR_RAW(cfree, p); |
736 | user_free(thr, pc, p); |
737 | } |
738 | |
739 | TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) { |
740 | SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p); |
741 | return user_alloc_usable_size(p); |
742 | } |
743 | #endif |
744 | |
745 | TSAN_INTERCEPTOR(char *, strcpy, char *dst, const char *src) { |
746 | SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src); |
747 | uptr srclen = internal_strlen(s: src); |
748 | MemoryAccessRange(thr, pc, addr: (uptr)dst, size: srclen + 1, is_write: true); |
749 | MemoryAccessRange(thr, pc, addr: (uptr)src, size: srclen + 1, is_write: false); |
750 | return REAL(strcpy)(dst, src); |
751 | } |
752 | |
753 | TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) { |
754 | SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n); |
755 | uptr srclen = internal_strnlen(s: src, maxlen: n); |
756 | MemoryAccessRange(thr, pc, addr: (uptr)dst, size: n, is_write: true); |
757 | MemoryAccessRange(thr, pc, addr: (uptr)src, size: min(a: srclen + 1, b: n), is_write: false); |
758 | return REAL(strncpy)(dst, src, n); |
759 | } |
760 | |
761 | TSAN_INTERCEPTOR(char*, strdup, const char *str) { |
762 | SCOPED_TSAN_INTERCEPTOR(strdup, str); |
763 | // strdup will call malloc, so no instrumentation is required here. |
764 | return REAL(strdup)(str); |
765 | } |
766 | |
767 | // Zero out addr if it points into shadow memory and was provided as a hint |
768 | // only, i.e., MAP_FIXED is not set. |
769 | static bool fix_mmap_addr(void **addr, long_t sz, int flags) { |
770 | if (*addr) { |
771 | if (!IsAppMem(mem: (uptr)*addr) || !IsAppMem(mem: (uptr)*addr + sz - 1)) { |
772 | if (flags & MAP_FIXED) { |
773 | errno = errno_EINVAL; |
774 | return false; |
775 | } else { |
776 | *addr = 0; |
777 | } |
778 | } |
779 | } |
780 | return true; |
781 | } |
782 | |
783 | template <class Mmap> |
784 | static void *mmap_interceptor(ThreadState *thr, uptr pc, Mmap real_mmap, |
785 | void *addr, SIZE_T sz, int prot, int flags, |
786 | int fd, OFF64_T off) { |
787 | if (!fix_mmap_addr(addr: &addr, sz, flags)) return MAP_FAILED; |
788 | void *res = real_mmap(addr, sz, prot, flags, fd, off); |
789 | if (res != MAP_FAILED) { |
790 | if (!IsAppMem(mem: (uptr)res) || !IsAppMem(mem: (uptr)res + sz - 1)) { |
791 | Report(format: "ThreadSanitizer: mmap at bad address: addr=%p size=%p res=%p\n" , |
792 | addr, (void*)sz, res); |
793 | Die(); |
794 | } |
795 | if (fd > 0) FdAccess(thr, pc, fd); |
796 | MemoryRangeImitateWriteOrResetRange(thr, pc, addr: (uptr)res, size: sz); |
797 | } |
798 | return res; |
799 | } |
800 | |
801 | template <class Munmap> |
802 | static int munmap_interceptor(ThreadState *thr, uptr pc, Munmap real_munmap, |
803 | void *addr, SIZE_T sz) { |
804 | UnmapShadow(thr, addr: (uptr)addr, size: sz); |
805 | int res = real_munmap(addr, sz); |
806 | return res; |
807 | } |
808 | |
809 | #if SANITIZER_LINUX |
810 | TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) { |
811 | SCOPED_INTERCEPTOR_RAW(memalign, align, sz); |
812 | return user_memalign(thr, pc, align, sz); |
813 | } |
814 | #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign) |
815 | #else |
816 | #define TSAN_MAYBE_INTERCEPT_MEMALIGN |
817 | #endif |
818 | |
819 | #if !SANITIZER_APPLE |
820 | TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) { |
821 | if (in_symbolizer()) |
822 | return InternalAlloc(size: sz, cache: nullptr, alignment: align); |
823 | SCOPED_INTERCEPTOR_RAW(aligned_alloc, align, sz); |
824 | return user_aligned_alloc(thr, pc, align, sz); |
825 | } |
826 | |
827 | TSAN_INTERCEPTOR(void*, valloc, uptr sz) { |
828 | if (in_symbolizer()) |
829 | return InternalAlloc(size: sz, cache: nullptr, alignment: GetPageSizeCached()); |
830 | SCOPED_INTERCEPTOR_RAW(valloc, sz); |
831 | return user_valloc(thr, pc, sz); |
832 | } |
833 | #endif |
834 | |
835 | #if SANITIZER_LINUX |
836 | TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) { |
837 | if (in_symbolizer()) { |
838 | uptr PageSize = GetPageSizeCached(); |
839 | sz = sz ? RoundUpTo(size: sz, boundary: PageSize) : PageSize; |
840 | return InternalAlloc(size: sz, cache: nullptr, alignment: PageSize); |
841 | } |
842 | SCOPED_INTERCEPTOR_RAW(pvalloc, sz); |
843 | return user_pvalloc(thr, pc, sz); |
844 | } |
845 | #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc) |
846 | #else |
847 | #define TSAN_MAYBE_INTERCEPT_PVALLOC |
848 | #endif |
849 | |
850 | #if !SANITIZER_APPLE |
851 | TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) { |
852 | if (in_symbolizer()) { |
853 | void *p = InternalAlloc(size: sz, cache: nullptr, alignment: align); |
854 | if (!p) |
855 | return errno_ENOMEM; |
856 | *memptr = p; |
857 | return 0; |
858 | } |
859 | SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz); |
860 | return user_posix_memalign(thr, pc, memptr, align, sz); |
861 | } |
862 | #endif |
863 | |
864 | // Both __cxa_guard_acquire and pthread_once 0-initialize |
865 | // the object initially. pthread_once does not have any |
866 | // other ABI requirements. __cxa_guard_acquire assumes |
867 | // that any non-0 value in the first byte means that |
868 | // initialization is completed. Contents of the remaining |
869 | // bytes are up to us. |
870 | constexpr u32 kGuardInit = 0; |
871 | constexpr u32 kGuardDone = 1; |
872 | constexpr u32 kGuardRunning = 1 << 16; |
873 | constexpr u32 kGuardWaiter = 1 << 17; |
874 | |
875 | static int guard_acquire(ThreadState *thr, uptr pc, atomic_uint32_t *g, |
876 | bool blocking_hooks = true) { |
877 | if (blocking_hooks) |
878 | OnPotentiallyBlockingRegionBegin(); |
879 | auto on_exit = at_scope_exit(fn: [blocking_hooks] { |
880 | if (blocking_hooks) |
881 | OnPotentiallyBlockingRegionEnd(); |
882 | }); |
883 | |
884 | for (;;) { |
885 | u32 cmp = atomic_load(a: g, mo: memory_order_acquire); |
886 | if (cmp == kGuardInit) { |
887 | if (atomic_compare_exchange_strong(a: g, cmp: &cmp, xchg: kGuardRunning, |
888 | mo: memory_order_relaxed)) |
889 | return 1; |
890 | } else if (cmp == kGuardDone) { |
891 | if (!thr->in_ignored_lib) |
892 | Acquire(thr, pc, addr: (uptr)g); |
893 | return 0; |
894 | } else { |
895 | if ((cmp & kGuardWaiter) || |
896 | atomic_compare_exchange_strong(a: g, cmp: &cmp, xchg: cmp | kGuardWaiter, |
897 | mo: memory_order_relaxed)) |
898 | FutexWait(p: g, cmp: cmp | kGuardWaiter); |
899 | } |
900 | } |
901 | } |
902 | |
903 | static void guard_release(ThreadState *thr, uptr pc, atomic_uint32_t *g, |
904 | u32 v) { |
905 | if (!thr->in_ignored_lib) |
906 | Release(thr, pc, addr: (uptr)g); |
907 | u32 old = atomic_exchange(a: g, v, mo: memory_order_release); |
908 | if (old & kGuardWaiter) |
909 | FutexWake(p: g, count: 1 << 30); |
910 | } |
911 | |
912 | // __cxa_guard_acquire and friends need to be intercepted in a special way - |
913 | // regular interceptors will break statically-linked libstdc++. Linux |
914 | // interceptors are especially defined as weak functions (so that they don't |
915 | // cause link errors when user defines them as well). So they silently |
916 | // auto-disable themselves when such symbol is already present in the binary. If |
917 | // we link libstdc++ statically, it will bring own __cxa_guard_acquire which |
918 | // will silently replace our interceptor. That's why on Linux we simply export |
919 | // these interceptors with INTERFACE_ATTRIBUTE. |
920 | // On OS X, we don't support statically linking, so we just use a regular |
921 | // interceptor. |
922 | #if SANITIZER_APPLE |
923 | #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR |
924 | #else |
925 | #define STDCXX_INTERCEPTOR(rettype, name, ...) \ |
926 | extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__) |
927 | #endif |
928 | |
929 | // Used in thread-safe function static initialization. |
930 | STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) { |
931 | SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g); |
932 | return guard_acquire(thr, pc, g); |
933 | } |
934 | |
935 | STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) { |
936 | SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g); |
937 | guard_release(thr, pc, g, v: kGuardDone); |
938 | } |
939 | |
940 | STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) { |
941 | SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g); |
942 | guard_release(thr, pc, g, v: kGuardInit); |
943 | } |
944 | |
945 | namespace __tsan { |
946 | void DestroyThreadState() { |
947 | ThreadState *thr = cur_thread(); |
948 | Processor *proc = thr->proc(); |
949 | ThreadFinish(thr); |
950 | ProcUnwire(proc, thr); |
951 | ProcDestroy(proc); |
952 | DTLS_Destroy(); |
953 | cur_thread_finalize(); |
954 | } |
955 | |
956 | void PlatformCleanUpThreadState(ThreadState *thr) { |
957 | ThreadSignalContext *sctx = (ThreadSignalContext *)atomic_load( |
958 | a: &thr->signal_ctx, mo: memory_order_relaxed); |
959 | if (sctx) { |
960 | atomic_store(a: &thr->signal_ctx, v: 0, mo: memory_order_relaxed); |
961 | UnmapOrDie(addr: sctx, size: sizeof(*sctx)); |
962 | } |
963 | } |
964 | } // namespace __tsan |
965 | |
966 | #if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD |
967 | static void thread_finalize(void *v) { |
968 | uptr iter = (uptr)v; |
969 | if (iter > 1) { |
970 | if (pthread_setspecific(key: interceptor_ctx()->finalize_key, |
971 | v: (void*)(iter - 1))) { |
972 | Printf(format: "ThreadSanitizer: failed to set thread key\n" ); |
973 | Die(); |
974 | } |
975 | return; |
976 | } |
977 | DestroyThreadState(); |
978 | } |
979 | #endif |
980 | |
981 | |
982 | struct ThreadParam { |
983 | void* (*callback)(void *arg); |
984 | void *param; |
985 | Tid tid; |
986 | Semaphore created; |
987 | Semaphore started; |
988 | }; |
989 | |
990 | extern "C" void *__tsan_thread_start_func(void *arg) { |
991 | ThreadParam *p = (ThreadParam*)arg; |
992 | void* (*callback)(void *arg) = p->callback; |
993 | void *param = p->param; |
994 | { |
995 | ThreadState *thr = cur_thread_init(); |
996 | // Thread-local state is not initialized yet. |
997 | ScopedIgnoreInterceptors ignore; |
998 | #if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD |
999 | ThreadIgnoreBegin(thr, pc: 0); |
1000 | if (pthread_setspecific(key: interceptor_ctx()->finalize_key, |
1001 | v: (void *)GetPthreadDestructorIterations())) { |
1002 | Printf(format: "ThreadSanitizer: failed to set thread key\n" ); |
1003 | Die(); |
1004 | } |
1005 | ThreadIgnoreEnd(thr); |
1006 | #endif |
1007 | p->created.Wait(); |
1008 | Processor *proc = ProcCreate(); |
1009 | ProcWire(proc, thr); |
1010 | ThreadStart(thr, tid: p->tid, os_id: GetTid(), thread_type: ThreadType::Regular); |
1011 | p->started.Post(); |
1012 | } |
1013 | void *res = callback(param); |
1014 | // Prevent the callback from being tail called, |
1015 | // it mixes up stack traces. |
1016 | volatile int foo = 42; |
1017 | foo++; |
1018 | return res; |
1019 | } |
1020 | |
1021 | TSAN_INTERCEPTOR(int, pthread_create, |
1022 | void *th, void *attr, void *(*callback)(void*), void * param) { |
1023 | SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param); |
1024 | |
1025 | MaybeSpawnBackgroundThread(); |
1026 | |
1027 | if (ctx->after_multithreaded_fork) { |
1028 | if (flags()->die_after_fork) { |
1029 | Report(format: "ThreadSanitizer: starting new threads after multi-threaded " |
1030 | "fork is not supported. Dying (set die_after_fork=0 to override)\n" ); |
1031 | Die(); |
1032 | } else { |
1033 | VPrintf(1, |
1034 | "ThreadSanitizer: starting new threads after multi-threaded " |
1035 | "fork is not supported (pid %lu). Continuing because of " |
1036 | "die_after_fork=0, but you are on your own\n" , |
1037 | internal_getpid()); |
1038 | } |
1039 | } |
1040 | __sanitizer_pthread_attr_t myattr; |
1041 | if (attr == 0) { |
1042 | pthread_attr_init(attr: &myattr); |
1043 | attr = &myattr; |
1044 | } |
1045 | int detached = 0; |
1046 | REAL(pthread_attr_getdetachstate)(attr, &detached); |
1047 | AdjustStackSize(attr); |
1048 | |
1049 | ThreadParam p; |
1050 | p.callback = callback; |
1051 | p.param = param; |
1052 | p.tid = kMainTid; |
1053 | int res = -1; |
1054 | { |
1055 | // Otherwise we see false positives in pthread stack manipulation. |
1056 | ScopedIgnoreInterceptors ignore; |
1057 | ThreadIgnoreBegin(thr, pc); |
1058 | res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p); |
1059 | ThreadIgnoreEnd(thr); |
1060 | } |
1061 | if (res == 0) { |
1062 | p.tid = ThreadCreate(thr, pc, uid: *(uptr *)th, detached: IsStateDetached(state: detached)); |
1063 | CHECK_NE(p.tid, kMainTid); |
1064 | // Synchronization on p.tid serves two purposes: |
1065 | // 1. ThreadCreate must finish before the new thread starts. |
1066 | // Otherwise the new thread can call pthread_detach, but the pthread_t |
1067 | // identifier is not yet registered in ThreadRegistry by ThreadCreate. |
1068 | // 2. ThreadStart must finish before this thread continues. |
1069 | // Otherwise, this thread can call pthread_detach and reset thr->sync |
1070 | // before the new thread got a chance to acquire from it in ThreadStart. |
1071 | p.created.Post(); |
1072 | p.started.Wait(); |
1073 | } |
1074 | if (attr == &myattr) |
1075 | pthread_attr_destroy(attr: &myattr); |
1076 | return res; |
1077 | } |
1078 | |
1079 | TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) { |
1080 | SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret); |
1081 | Tid tid = ThreadConsumeTid(thr, pc, uid: (uptr)th); |
1082 | ThreadIgnoreBegin(thr, pc); |
1083 | int res = BLOCK_REAL(pthread_join)(th, ret); |
1084 | ThreadIgnoreEnd(thr); |
1085 | if (res == 0) { |
1086 | ThreadJoin(thr, pc, tid); |
1087 | } |
1088 | return res; |
1089 | } |
1090 | |
1091 | // DEFINE_INTERNAL_PTHREAD_FUNCTIONS |
1092 | namespace __sanitizer { |
1093 | int internal_pthread_create(void *th, void *attr, void *(*callback)(void *), |
1094 | void *param) { |
1095 | ScopedIgnoreInterceptors ignore; |
1096 | return REAL(pthread_create)(th, attr, callback, param); |
1097 | } |
1098 | int internal_pthread_join(void *th, void **ret) { |
1099 | ScopedIgnoreInterceptors ignore; |
1100 | return REAL(pthread_join(th, ret)); |
1101 | } |
1102 | } // namespace __sanitizer |
1103 | |
1104 | TSAN_INTERCEPTOR(int, pthread_detach, void *th) { |
1105 | SCOPED_INTERCEPTOR_RAW(pthread_detach, th); |
1106 | Tid tid = ThreadConsumeTid(thr, pc, uid: (uptr)th); |
1107 | int res = REAL(pthread_detach)(th); |
1108 | if (res == 0) { |
1109 | ThreadDetach(thr, pc, tid); |
1110 | } |
1111 | return res; |
1112 | } |
1113 | |
1114 | TSAN_INTERCEPTOR(void, pthread_exit, void *retval) { |
1115 | { |
1116 | SCOPED_INTERCEPTOR_RAW(pthread_exit, retval); |
1117 | #if !SANITIZER_APPLE && !SANITIZER_ANDROID |
1118 | CHECK_EQ(thr, &cur_thread_placeholder); |
1119 | #endif |
1120 | } |
1121 | REAL(pthread_exit)(retval); |
1122 | } |
1123 | |
1124 | #if SANITIZER_LINUX |
1125 | TSAN_INTERCEPTOR(int, pthread_tryjoin_np, void *th, void **ret) { |
1126 | SCOPED_INTERCEPTOR_RAW(pthread_tryjoin_np, th, ret); |
1127 | Tid tid = ThreadConsumeTid(thr, pc, uid: (uptr)th); |
1128 | ThreadIgnoreBegin(thr, pc); |
1129 | int res = REAL(pthread_tryjoin_np)(th, ret); |
1130 | ThreadIgnoreEnd(thr); |
1131 | if (res == 0) |
1132 | ThreadJoin(thr, pc, tid); |
1133 | else |
1134 | ThreadNotJoined(thr, pc, tid, uid: (uptr)th); |
1135 | return res; |
1136 | } |
1137 | |
1138 | TSAN_INTERCEPTOR(int, pthread_timedjoin_np, void *th, void **ret, |
1139 | const struct timespec *abstime) { |
1140 | SCOPED_INTERCEPTOR_RAW(pthread_timedjoin_np, th, ret, abstime); |
1141 | Tid tid = ThreadConsumeTid(thr, pc, uid: (uptr)th); |
1142 | ThreadIgnoreBegin(thr, pc); |
1143 | int res = BLOCK_REAL(pthread_timedjoin_np)(th, ret, abstime); |
1144 | ThreadIgnoreEnd(thr); |
1145 | if (res == 0) |
1146 | ThreadJoin(thr, pc, tid); |
1147 | else |
1148 | ThreadNotJoined(thr, pc, tid, uid: (uptr)th); |
1149 | return res; |
1150 | } |
1151 | #endif |
1152 | |
1153 | // Problem: |
1154 | // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2). |
1155 | // pthread_cond_t has different size in the different versions. |
1156 | // If call new REAL functions for old pthread_cond_t, they will corrupt memory |
1157 | // after pthread_cond_t (old cond is smaller). |
1158 | // If we call old REAL functions for new pthread_cond_t, we will lose some |
1159 | // functionality (e.g. old functions do not support waiting against |
1160 | // CLOCK_REALTIME). |
1161 | // Proper handling would require to have 2 versions of interceptors as well. |
1162 | // But this is messy, in particular requires linker scripts when sanitizer |
1163 | // runtime is linked into a shared library. |
1164 | // Instead we assume we don't have dynamic libraries built against old |
1165 | // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag |
1166 | // that allows to work with old libraries (but this mode does not support |
1167 | // some features, e.g. pthread_condattr_getpshared). |
1168 | static void *init_cond(void *c, bool force = false) { |
1169 | // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions. |
1170 | // So we allocate additional memory on the side large enough to hold |
1171 | // any pthread_cond_t object. Always call new REAL functions, but pass |
1172 | // the aux object to them. |
1173 | // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes |
1174 | // first word of pthread_cond_t to zero. |
1175 | // It's all relevant only for linux. |
1176 | if (!common_flags()->legacy_pthread_cond) |
1177 | return c; |
1178 | atomic_uintptr_t *p = (atomic_uintptr_t*)c; |
1179 | uptr cond = atomic_load(a: p, mo: memory_order_acquire); |
1180 | if (!force && cond != 0) |
1181 | return (void*)cond; |
1182 | void *newcond = WRAP(malloc)(size: pthread_cond_t_sz); |
1183 | internal_memset(s: newcond, c: 0, n: pthread_cond_t_sz); |
1184 | if (atomic_compare_exchange_strong(a: p, cmp: &cond, xchg: (uptr)newcond, |
1185 | mo: memory_order_acq_rel)) |
1186 | return newcond; |
1187 | WRAP(free)(p: newcond); |
1188 | return (void*)cond; |
1189 | } |
1190 | |
1191 | namespace { |
1192 | |
1193 | template <class Fn> |
1194 | struct CondMutexUnlockCtx { |
1195 | ScopedInterceptor *si; |
1196 | ThreadState *thr; |
1197 | uptr pc; |
1198 | void *m; |
1199 | void *c; |
1200 | const Fn &fn; |
1201 | |
1202 | int Cancel() const { return fn(); } |
1203 | void Unlock() const; |
1204 | }; |
1205 | |
1206 | template <class Fn> |
1207 | void CondMutexUnlockCtx<Fn>::Unlock() const { |
1208 | // pthread_cond_wait interceptor has enabled async signal delivery |
1209 | // (see BlockingCall below). Disable async signals since we are running |
1210 | // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run |
1211 | // since the thread is cancelled, so we have to manually execute them |
1212 | // (the thread still can run some user code due to pthread_cleanup_push). |
1213 | CHECK_EQ(atomic_load(&thr->in_blocking_func, memory_order_relaxed), 1); |
1214 | atomic_store(a: &thr->in_blocking_func, v: 0, mo: memory_order_relaxed); |
1215 | MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagDoPreLockOnPostLock); |
1216 | // Undo BlockingCall ctor effects. |
1217 | thr->ignore_interceptors--; |
1218 | si->~ScopedInterceptor(); |
1219 | } |
1220 | } // namespace |
1221 | |
1222 | INTERCEPTOR(int, pthread_cond_init, void *c, void *a) { |
1223 | void *cond = init_cond(c, force: true); |
1224 | SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a); |
1225 | MemoryAccessRange(thr, pc, addr: (uptr)c, size: sizeof(uptr), is_write: true); |
1226 | return REAL(pthread_cond_init)(cond, a); |
1227 | } |
1228 | |
1229 | template <class Fn> |
1230 | int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si, const Fn &fn, |
1231 | void *c, void *m) { |
1232 | MemoryAccessRange(thr, pc, addr: (uptr)c, size: sizeof(uptr), is_write: false); |
1233 | MutexUnlock(thr, pc, addr: (uptr)m); |
1234 | int res = 0; |
1235 | // This ensures that we handle mutex lock even in case of pthread_cancel. |
1236 | // See test/tsan/cond_cancel.cpp. |
1237 | { |
1238 | // Enable signal delivery while the thread is blocked. |
1239 | BlockingCall bc(thr); |
1240 | CondMutexUnlockCtx<Fn> arg = {si, thr, pc, m, c, fn}; |
1241 | res = call_pthread_cancel_with_cleanup( |
1242 | [](void *arg) -> int { |
1243 | return ((const CondMutexUnlockCtx<Fn> *)arg)->Cancel(); |
1244 | }, |
1245 | [](void *arg) { ((const CondMutexUnlockCtx<Fn> *)arg)->Unlock(); }, |
1246 | &arg); |
1247 | } |
1248 | if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, addr: (uptr)m); |
1249 | MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagDoPreLockOnPostLock); |
1250 | return res; |
1251 | } |
1252 | |
1253 | INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) { |
1254 | void *cond = init_cond(c); |
1255 | SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m); |
1256 | return cond_wait( |
1257 | thr, pc, si: &si, fn: [=]() { return REAL(pthread_cond_wait)(cond, m); }, c: cond, |
1258 | m); |
1259 | } |
1260 | |
1261 | INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) { |
1262 | void *cond = init_cond(c); |
1263 | SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime); |
1264 | return cond_wait( |
1265 | thr, pc, si: &si, |
1266 | fn: [=]() { return REAL(pthread_cond_timedwait)(cond, m, abstime); }, c: cond, |
1267 | m); |
1268 | } |
1269 | |
1270 | #if SANITIZER_LINUX |
1271 | INTERCEPTOR(int, pthread_cond_clockwait, void *c, void *m, |
1272 | __sanitizer_clockid_t clock, void *abstime) { |
1273 | void *cond = init_cond(c); |
1274 | SCOPED_TSAN_INTERCEPTOR(pthread_cond_clockwait, cond, m, clock, abstime); |
1275 | return cond_wait( |
1276 | thr, pc, si: &si, |
1277 | fn: [=]() { return REAL(pthread_cond_clockwait)(cond, m, clock, abstime); }, |
1278 | c: cond, m); |
1279 | } |
1280 | #define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT TSAN_INTERCEPT(pthread_cond_clockwait) |
1281 | #else |
1282 | #define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT |
1283 | #endif |
1284 | |
1285 | #if SANITIZER_APPLE |
1286 | INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m, |
1287 | void *reltime) { |
1288 | void *cond = init_cond(c); |
1289 | SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime); |
1290 | return cond_wait( |
1291 | thr, pc, &si, |
1292 | [=]() { |
1293 | return REAL(pthread_cond_timedwait_relative_np)(cond, m, reltime); |
1294 | }, |
1295 | cond, m); |
1296 | } |
1297 | #endif |
1298 | |
1299 | INTERCEPTOR(int, pthread_cond_signal, void *c) { |
1300 | void *cond = init_cond(c); |
1301 | SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond); |
1302 | MemoryAccessRange(thr, pc, addr: (uptr)c, size: sizeof(uptr), is_write: false); |
1303 | return REAL(pthread_cond_signal)(cond); |
1304 | } |
1305 | |
1306 | INTERCEPTOR(int, pthread_cond_broadcast, void *c) { |
1307 | void *cond = init_cond(c); |
1308 | SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond); |
1309 | MemoryAccessRange(thr, pc, addr: (uptr)c, size: sizeof(uptr), is_write: false); |
1310 | return REAL(pthread_cond_broadcast)(cond); |
1311 | } |
1312 | |
1313 | INTERCEPTOR(int, pthread_cond_destroy, void *c) { |
1314 | void *cond = init_cond(c); |
1315 | SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond); |
1316 | MemoryAccessRange(thr, pc, addr: (uptr)c, size: sizeof(uptr), is_write: true); |
1317 | int res = REAL(pthread_cond_destroy)(cond); |
1318 | if (common_flags()->legacy_pthread_cond) { |
1319 | // Free our aux cond and zero the pointer to not leave dangling pointers. |
1320 | WRAP(free)(p: cond); |
1321 | atomic_store(a: (atomic_uintptr_t*)c, v: 0, mo: memory_order_relaxed); |
1322 | } |
1323 | return res; |
1324 | } |
1325 | |
1326 | TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) { |
1327 | SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a); |
1328 | int res = REAL(pthread_mutex_init)(m, a); |
1329 | if (res == 0) { |
1330 | u32 flagz = 0; |
1331 | if (a) { |
1332 | int type = 0; |
1333 | if (REAL(pthread_mutexattr_gettype)(a, &type) == 0) |
1334 | if (type == PTHREAD_MUTEX_RECURSIVE || |
1335 | type == PTHREAD_MUTEX_RECURSIVE_NP) |
1336 | flagz |= MutexFlagWriteReentrant; |
1337 | } |
1338 | MutexCreate(thr, pc, addr: (uptr)m, flagz); |
1339 | } |
1340 | return res; |
1341 | } |
1342 | |
1343 | TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) { |
1344 | SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m); |
1345 | int res = REAL(pthread_mutex_destroy)(m); |
1346 | if (res == 0 || res == errno_EBUSY) { |
1347 | MutexDestroy(thr, pc, addr: (uptr)m); |
1348 | } |
1349 | return res; |
1350 | } |
1351 | |
1352 | TSAN_INTERCEPTOR(int, pthread_mutex_lock, void *m) { |
1353 | SCOPED_TSAN_INTERCEPTOR(pthread_mutex_lock, m); |
1354 | MutexPreLock(thr, pc, addr: (uptr)m); |
1355 | int res = BLOCK_REAL(pthread_mutex_lock)(m); |
1356 | if (res == errno_EOWNERDEAD) |
1357 | MutexRepair(thr, pc, addr: (uptr)m); |
1358 | if (res == 0 || res == errno_EOWNERDEAD) |
1359 | MutexPostLock(thr, pc, addr: (uptr)m); |
1360 | if (res == errno_EINVAL) |
1361 | MutexInvalidAccess(thr, pc, addr: (uptr)m); |
1362 | return res; |
1363 | } |
1364 | |
1365 | TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) { |
1366 | SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m); |
1367 | int res = REAL(pthread_mutex_trylock)(m); |
1368 | if (res == errno_EOWNERDEAD) |
1369 | MutexRepair(thr, pc, addr: (uptr)m); |
1370 | if (res == 0 || res == errno_EOWNERDEAD) |
1371 | MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagTryLock); |
1372 | return res; |
1373 | } |
1374 | |
1375 | #if !SANITIZER_APPLE |
1376 | TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) { |
1377 | SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime); |
1378 | int res = REAL(pthread_mutex_timedlock)(m, abstime); |
1379 | if (res == 0) { |
1380 | MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagTryLock); |
1381 | } |
1382 | return res; |
1383 | } |
1384 | #endif |
1385 | |
1386 | TSAN_INTERCEPTOR(int, pthread_mutex_unlock, void *m) { |
1387 | SCOPED_TSAN_INTERCEPTOR(pthread_mutex_unlock, m); |
1388 | MutexUnlock(thr, pc, addr: (uptr)m); |
1389 | int res = REAL(pthread_mutex_unlock)(m); |
1390 | if (res == errno_EINVAL) |
1391 | MutexInvalidAccess(thr, pc, addr: (uptr)m); |
1392 | return res; |
1393 | } |
1394 | |
1395 | #if SANITIZER_LINUX |
1396 | TSAN_INTERCEPTOR(int, pthread_mutex_clocklock, void *m, |
1397 | __sanitizer_clockid_t clock, void *abstime) { |
1398 | SCOPED_TSAN_INTERCEPTOR(pthread_mutex_clocklock, m, clock, abstime); |
1399 | MutexPreLock(thr, pc, addr: (uptr)m); |
1400 | int res = BLOCK_REAL(pthread_mutex_clocklock)(m, clock, abstime); |
1401 | if (res == errno_EOWNERDEAD) |
1402 | MutexRepair(thr, pc, addr: (uptr)m); |
1403 | if (res == 0 || res == errno_EOWNERDEAD) |
1404 | MutexPostLock(thr, pc, addr: (uptr)m); |
1405 | if (res == errno_EINVAL) |
1406 | MutexInvalidAccess(thr, pc, addr: (uptr)m); |
1407 | return res; |
1408 | } |
1409 | #endif |
1410 | |
1411 | #if SANITIZER_GLIBC |
1412 | # if !__GLIBC_PREREQ(2, 34) |
1413 | // glibc 2.34 applies a non-default version for the two functions. They are no |
1414 | // longer expected to be intercepted by programs. |
1415 | TSAN_INTERCEPTOR(int, __pthread_mutex_lock, void *m) { |
1416 | SCOPED_TSAN_INTERCEPTOR(__pthread_mutex_lock, m); |
1417 | MutexPreLock(thr, pc, (uptr)m); |
1418 | int res = BLOCK_REAL(__pthread_mutex_lock)(m); |
1419 | if (res == errno_EOWNERDEAD) |
1420 | MutexRepair(thr, pc, (uptr)m); |
1421 | if (res == 0 || res == errno_EOWNERDEAD) |
1422 | MutexPostLock(thr, pc, (uptr)m); |
1423 | if (res == errno_EINVAL) |
1424 | MutexInvalidAccess(thr, pc, (uptr)m); |
1425 | return res; |
1426 | } |
1427 | |
1428 | TSAN_INTERCEPTOR(int, __pthread_mutex_unlock, void *m) { |
1429 | SCOPED_TSAN_INTERCEPTOR(__pthread_mutex_unlock, m); |
1430 | MutexUnlock(thr, pc, (uptr)m); |
1431 | int res = REAL(__pthread_mutex_unlock)(m); |
1432 | if (res == errno_EINVAL) |
1433 | MutexInvalidAccess(thr, pc, (uptr)m); |
1434 | return res; |
1435 | } |
1436 | # endif |
1437 | #endif |
1438 | |
1439 | #if !SANITIZER_APPLE |
1440 | TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) { |
1441 | SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared); |
1442 | int res = REAL(pthread_spin_init)(m, pshared); |
1443 | if (res == 0) { |
1444 | MutexCreate(thr, pc, addr: (uptr)m); |
1445 | } |
1446 | return res; |
1447 | } |
1448 | |
1449 | TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) { |
1450 | SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m); |
1451 | int res = REAL(pthread_spin_destroy)(m); |
1452 | if (res == 0) { |
1453 | MutexDestroy(thr, pc, addr: (uptr)m); |
1454 | } |
1455 | return res; |
1456 | } |
1457 | |
1458 | TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) { |
1459 | SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m); |
1460 | MutexPreLock(thr, pc, addr: (uptr)m); |
1461 | int res = BLOCK_REAL(pthread_spin_lock)(m); |
1462 | if (res == 0) { |
1463 | MutexPostLock(thr, pc, addr: (uptr)m); |
1464 | } |
1465 | return res; |
1466 | } |
1467 | |
1468 | TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) { |
1469 | SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m); |
1470 | int res = REAL(pthread_spin_trylock)(m); |
1471 | if (res == 0) { |
1472 | MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagTryLock); |
1473 | } |
1474 | return res; |
1475 | } |
1476 | |
1477 | TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) { |
1478 | SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m); |
1479 | MutexUnlock(thr, pc, addr: (uptr)m); |
1480 | int res = REAL(pthread_spin_unlock)(m); |
1481 | return res; |
1482 | } |
1483 | #endif |
1484 | |
1485 | TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) { |
1486 | SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a); |
1487 | int res = REAL(pthread_rwlock_init)(m, a); |
1488 | if (res == 0) { |
1489 | MutexCreate(thr, pc, addr: (uptr)m); |
1490 | } |
1491 | return res; |
1492 | } |
1493 | |
1494 | TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) { |
1495 | SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m); |
1496 | int res = REAL(pthread_rwlock_destroy)(m); |
1497 | if (res == 0) { |
1498 | MutexDestroy(thr, pc, addr: (uptr)m); |
1499 | } |
1500 | return res; |
1501 | } |
1502 | |
1503 | TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) { |
1504 | SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m); |
1505 | MutexPreReadLock(thr, pc, addr: (uptr)m); |
1506 | int res = REAL(pthread_rwlock_rdlock)(m); |
1507 | if (res == 0) { |
1508 | MutexPostReadLock(thr, pc, addr: (uptr)m); |
1509 | } |
1510 | return res; |
1511 | } |
1512 | |
1513 | TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) { |
1514 | SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m); |
1515 | int res = REAL(pthread_rwlock_tryrdlock)(m); |
1516 | if (res == 0) { |
1517 | MutexPostReadLock(thr, pc, addr: (uptr)m, flagz: MutexFlagTryLock); |
1518 | } |
1519 | return res; |
1520 | } |
1521 | |
1522 | #if !SANITIZER_APPLE |
1523 | TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) { |
1524 | SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime); |
1525 | int res = REAL(pthread_rwlock_timedrdlock)(m, abstime); |
1526 | if (res == 0) { |
1527 | MutexPostReadLock(thr, pc, addr: (uptr)m); |
1528 | } |
1529 | return res; |
1530 | } |
1531 | #endif |
1532 | |
1533 | TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) { |
1534 | SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m); |
1535 | MutexPreLock(thr, pc, addr: (uptr)m); |
1536 | int res = BLOCK_REAL(pthread_rwlock_wrlock)(m); |
1537 | if (res == 0) { |
1538 | MutexPostLock(thr, pc, addr: (uptr)m); |
1539 | } |
1540 | return res; |
1541 | } |
1542 | |
1543 | TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) { |
1544 | SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m); |
1545 | int res = REAL(pthread_rwlock_trywrlock)(m); |
1546 | if (res == 0) { |
1547 | MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagTryLock); |
1548 | } |
1549 | return res; |
1550 | } |
1551 | |
1552 | #if !SANITIZER_APPLE |
1553 | TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) { |
1554 | SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime); |
1555 | int res = REAL(pthread_rwlock_timedwrlock)(m, abstime); |
1556 | if (res == 0) { |
1557 | MutexPostLock(thr, pc, addr: (uptr)m, flagz: MutexFlagTryLock); |
1558 | } |
1559 | return res; |
1560 | } |
1561 | #endif |
1562 | |
1563 | TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) { |
1564 | SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m); |
1565 | MutexReadOrWriteUnlock(thr, pc, addr: (uptr)m); |
1566 | int res = REAL(pthread_rwlock_unlock)(m); |
1567 | return res; |
1568 | } |
1569 | |
1570 | #if !SANITIZER_APPLE |
1571 | TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) { |
1572 | SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count); |
1573 | MemoryAccess(thr, pc, addr: (uptr)b, size: 1, typ: kAccessWrite); |
1574 | int res = REAL(pthread_barrier_init)(b, a, count); |
1575 | return res; |
1576 | } |
1577 | |
1578 | TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) { |
1579 | SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b); |
1580 | MemoryAccess(thr, pc, addr: (uptr)b, size: 1, typ: kAccessWrite); |
1581 | int res = REAL(pthread_barrier_destroy)(b); |
1582 | return res; |
1583 | } |
1584 | |
1585 | TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) { |
1586 | SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b); |
1587 | Release(thr, pc, addr: (uptr)b); |
1588 | MemoryAccess(thr, pc, addr: (uptr)b, size: 1, typ: kAccessRead); |
1589 | int res = REAL(pthread_barrier_wait)(b); |
1590 | MemoryAccess(thr, pc, addr: (uptr)b, size: 1, typ: kAccessRead); |
1591 | if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) { |
1592 | Acquire(thr, pc, addr: (uptr)b); |
1593 | } |
1594 | return res; |
1595 | } |
1596 | #endif |
1597 | |
1598 | TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) { |
1599 | SCOPED_INTERCEPTOR_RAW(pthread_once, o, f); |
1600 | if (o == 0 || f == 0) |
1601 | return errno_EINVAL; |
1602 | atomic_uint32_t *a; |
1603 | |
1604 | if (SANITIZER_APPLE) |
1605 | a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t))); |
1606 | else if (SANITIZER_NETBSD) |
1607 | a = static_cast<atomic_uint32_t*> |
1608 | ((void *)((char *)o + __sanitizer::pthread_mutex_t_sz)); |
1609 | else |
1610 | a = static_cast<atomic_uint32_t*>(o); |
1611 | |
1612 | // Mac OS X appears to use pthread_once() where calling BlockingRegion hooks |
1613 | // result in crashes due to too little stack space. |
1614 | if (guard_acquire(thr, pc, g: a, blocking_hooks: !SANITIZER_APPLE)) { |
1615 | (*f)(); |
1616 | guard_release(thr, pc, g: a, v: kGuardDone); |
1617 | } |
1618 | return 0; |
1619 | } |
1620 | |
1621 | #if SANITIZER_GLIBC |
1622 | TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) { |
1623 | SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf); |
1624 | if (fd > 0) |
1625 | FdAccess(thr, pc, fd); |
1626 | return REAL(__fxstat)(version, fd, buf); |
1627 | } |
1628 | |
1629 | TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) { |
1630 | SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf); |
1631 | if (fd > 0) |
1632 | FdAccess(thr, pc, fd); |
1633 | return REAL(__fxstat64)(version, fd, buf); |
1634 | } |
1635 | #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat); TSAN_INTERCEPT(__fxstat64) |
1636 | #else |
1637 | #define TSAN_MAYBE_INTERCEPT___FXSTAT |
1638 | #endif |
1639 | |
1640 | #if !SANITIZER_GLIBC || __GLIBC_PREREQ(2, 33) |
1641 | TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) { |
1642 | SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf); |
1643 | if (fd > 0) |
1644 | FdAccess(thr, pc, fd); |
1645 | return REAL(fstat)(fd, buf); |
1646 | } |
1647 | # define TSAN_MAYBE_INTERCEPT_FSTAT TSAN_INTERCEPT(fstat) |
1648 | #else |
1649 | # define TSAN_MAYBE_INTERCEPT_FSTAT |
1650 | #endif |
1651 | |
1652 | #if __GLIBC_PREREQ(2, 33) |
1653 | TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) { |
1654 | SCOPED_TSAN_INTERCEPTOR(fstat64, fd, buf); |
1655 | if (fd > 0) |
1656 | FdAccess(thr, pc, fd); |
1657 | return REAL(fstat64)(fd, buf); |
1658 | } |
1659 | # define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64) |
1660 | #else |
1661 | # define TSAN_MAYBE_INTERCEPT_FSTAT64 |
1662 | #endif |
1663 | |
1664 | TSAN_INTERCEPTOR(int, open, const char *name, int oflag, ...) { |
1665 | va_list ap; |
1666 | va_start(ap, oflag); |
1667 | mode_t mode = va_arg(ap, int); |
1668 | va_end(ap); |
1669 | SCOPED_TSAN_INTERCEPTOR(open, name, oflag, mode); |
1670 | READ_STRING(thr, pc, name, 0); |
1671 | int fd = REAL(open)(name, oflag, mode); |
1672 | if (fd >= 0) |
1673 | FdFileCreate(thr, pc, fd); |
1674 | return fd; |
1675 | } |
1676 | |
1677 | #if SANITIZER_LINUX |
1678 | TSAN_INTERCEPTOR(int, open64, const char *name, int oflag, ...) { |
1679 | va_list ap; |
1680 | va_start(ap, oflag); |
1681 | mode_t mode = va_arg(ap, int); |
1682 | va_end(ap); |
1683 | SCOPED_TSAN_INTERCEPTOR(open64, name, oflag, mode); |
1684 | READ_STRING(thr, pc, name, 0); |
1685 | int fd = REAL(open64)(name, oflag, mode); |
1686 | if (fd >= 0) |
1687 | FdFileCreate(thr, pc, fd); |
1688 | return fd; |
1689 | } |
1690 | #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64) |
1691 | #else |
1692 | #define TSAN_MAYBE_INTERCEPT_OPEN64 |
1693 | #endif |
1694 | |
1695 | TSAN_INTERCEPTOR(int, creat, const char *name, int mode) { |
1696 | SCOPED_TSAN_INTERCEPTOR(creat, name, mode); |
1697 | READ_STRING(thr, pc, name, 0); |
1698 | int fd = REAL(creat)(name, mode); |
1699 | if (fd >= 0) |
1700 | FdFileCreate(thr, pc, fd); |
1701 | return fd; |
1702 | } |
1703 | |
1704 | #if SANITIZER_LINUX |
1705 | TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) { |
1706 | SCOPED_TSAN_INTERCEPTOR(creat64, name, mode); |
1707 | READ_STRING(thr, pc, name, 0); |
1708 | int fd = REAL(creat64)(name, mode); |
1709 | if (fd >= 0) |
1710 | FdFileCreate(thr, pc, fd); |
1711 | return fd; |
1712 | } |
1713 | #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64) |
1714 | #else |
1715 | #define TSAN_MAYBE_INTERCEPT_CREAT64 |
1716 | #endif |
1717 | |
1718 | TSAN_INTERCEPTOR(int, dup, int oldfd) { |
1719 | SCOPED_TSAN_INTERCEPTOR(dup, oldfd); |
1720 | int newfd = REAL(dup)(oldfd); |
1721 | if (oldfd >= 0 && newfd >= 0 && newfd != oldfd) |
1722 | FdDup(thr, pc, oldfd, newfd, write: true); |
1723 | return newfd; |
1724 | } |
1725 | |
1726 | TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) { |
1727 | SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd); |
1728 | int newfd2 = REAL(dup2)(oldfd, newfd); |
1729 | if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd) |
1730 | FdDup(thr, pc, oldfd, newfd: newfd2, write: false); |
1731 | return newfd2; |
1732 | } |
1733 | |
1734 | #if !SANITIZER_APPLE |
1735 | TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) { |
1736 | SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags); |
1737 | int newfd2 = REAL(dup3)(oldfd, newfd, flags); |
1738 | if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd) |
1739 | FdDup(thr, pc, oldfd, newfd: newfd2, write: false); |
1740 | return newfd2; |
1741 | } |
1742 | #endif |
1743 | |
1744 | #if SANITIZER_LINUX |
1745 | TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) { |
1746 | SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags); |
1747 | int fd = REAL(eventfd)(initval, flags); |
1748 | if (fd >= 0) |
1749 | FdEventCreate(thr, pc, fd); |
1750 | return fd; |
1751 | } |
1752 | #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd) |
1753 | #else |
1754 | #define TSAN_MAYBE_INTERCEPT_EVENTFD |
1755 | #endif |
1756 | |
1757 | #if SANITIZER_LINUX |
1758 | TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) { |
1759 | SCOPED_INTERCEPTOR_RAW(signalfd, fd, mask, flags); |
1760 | FdClose(thr, pc, fd); |
1761 | fd = REAL(signalfd)(fd, mask, flags); |
1762 | if (!MustIgnoreInterceptor(thr)) |
1763 | FdSignalCreate(thr, pc, fd); |
1764 | return fd; |
1765 | } |
1766 | #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd) |
1767 | #else |
1768 | #define TSAN_MAYBE_INTERCEPT_SIGNALFD |
1769 | #endif |
1770 | |
1771 | #if SANITIZER_LINUX |
1772 | TSAN_INTERCEPTOR(int, inotify_init, int fake) { |
1773 | SCOPED_TSAN_INTERCEPTOR(inotify_init, fake); |
1774 | int fd = REAL(inotify_init)(fake); |
1775 | if (fd >= 0) |
1776 | FdInotifyCreate(thr, pc, fd); |
1777 | return fd; |
1778 | } |
1779 | #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init) |
1780 | #else |
1781 | #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT |
1782 | #endif |
1783 | |
1784 | #if SANITIZER_LINUX |
1785 | TSAN_INTERCEPTOR(int, inotify_init1, int flags) { |
1786 | SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags); |
1787 | int fd = REAL(inotify_init1)(flags); |
1788 | if (fd >= 0) |
1789 | FdInotifyCreate(thr, pc, fd); |
1790 | return fd; |
1791 | } |
1792 | #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1) |
1793 | #else |
1794 | #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 |
1795 | #endif |
1796 | |
1797 | TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) { |
1798 | SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol); |
1799 | int fd = REAL(socket)(domain, type, protocol); |
1800 | if (fd >= 0) |
1801 | FdSocketCreate(thr, pc, fd); |
1802 | return fd; |
1803 | } |
1804 | |
1805 | TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) { |
1806 | SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd); |
1807 | int res = REAL(socketpair)(domain, type, protocol, fd); |
1808 | if (res == 0 && fd[0] >= 0 && fd[1] >= 0) |
1809 | FdPipeCreate(thr, pc, rfd: fd[0], wfd: fd[1]); |
1810 | return res; |
1811 | } |
1812 | |
1813 | TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) { |
1814 | SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen); |
1815 | FdSocketConnecting(thr, pc, fd); |
1816 | int res = REAL(connect)(fd, addr, addrlen); |
1817 | if (res == 0 && fd >= 0) |
1818 | FdSocketConnect(thr, pc, fd); |
1819 | return res; |
1820 | } |
1821 | |
1822 | TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) { |
1823 | SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen); |
1824 | int res = REAL(bind)(fd, addr, addrlen); |
1825 | if (fd > 0 && res == 0) |
1826 | FdAccess(thr, pc, fd); |
1827 | return res; |
1828 | } |
1829 | |
1830 | TSAN_INTERCEPTOR(int, listen, int fd, int backlog) { |
1831 | SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog); |
1832 | int res = REAL(listen)(fd, backlog); |
1833 | if (fd > 0 && res == 0) |
1834 | FdAccess(thr, pc, fd); |
1835 | return res; |
1836 | } |
1837 | |
1838 | TSAN_INTERCEPTOR(int, close, int fd) { |
1839 | SCOPED_INTERCEPTOR_RAW(close, fd); |
1840 | if (!in_symbolizer()) |
1841 | FdClose(thr, pc, fd); |
1842 | return REAL(close)(fd); |
1843 | } |
1844 | |
1845 | #if SANITIZER_LINUX |
1846 | TSAN_INTERCEPTOR(int, __close, int fd) { |
1847 | SCOPED_INTERCEPTOR_RAW(__close, fd); |
1848 | FdClose(thr, pc, fd); |
1849 | return REAL(__close)(fd); |
1850 | } |
1851 | #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close) |
1852 | #else |
1853 | #define TSAN_MAYBE_INTERCEPT___CLOSE |
1854 | #endif |
1855 | |
1856 | // glibc guts |
1857 | #if SANITIZER_LINUX && !SANITIZER_ANDROID |
1858 | TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) { |
1859 | SCOPED_INTERCEPTOR_RAW(__res_iclose, state, free_addr); |
1860 | int fds[64]; |
1861 | int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds)); |
1862 | for (int i = 0; i < cnt; i++) FdClose(thr, pc, fd: fds[i]); |
1863 | REAL(__res_iclose)(state, free_addr); |
1864 | } |
1865 | #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose) |
1866 | #else |
1867 | #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE |
1868 | #endif |
1869 | |
1870 | TSAN_INTERCEPTOR(int, pipe, int *pipefd) { |
1871 | SCOPED_TSAN_INTERCEPTOR(pipe, pipefd); |
1872 | int res = REAL(pipe)(pipefd); |
1873 | if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0) |
1874 | FdPipeCreate(thr, pc, rfd: pipefd[0], wfd: pipefd[1]); |
1875 | return res; |
1876 | } |
1877 | |
1878 | #if !SANITIZER_APPLE |
1879 | TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) { |
1880 | SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags); |
1881 | int res = REAL(pipe2)(pipefd, flags); |
1882 | if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0) |
1883 | FdPipeCreate(thr, pc, rfd: pipefd[0], wfd: pipefd[1]); |
1884 | return res; |
1885 | } |
1886 | #endif |
1887 | |
1888 | TSAN_INTERCEPTOR(int, unlink, char *path) { |
1889 | SCOPED_TSAN_INTERCEPTOR(unlink, path); |
1890 | Release(thr, pc, addr: File2addr(path)); |
1891 | int res = REAL(unlink)(path); |
1892 | return res; |
1893 | } |
1894 | |
1895 | TSAN_INTERCEPTOR(void*, tmpfile, int fake) { |
1896 | SCOPED_TSAN_INTERCEPTOR(tmpfile, fake); |
1897 | void *res = REAL(tmpfile)(fake); |
1898 | if (res) { |
1899 | int fd = fileno_unlocked(stream: res); |
1900 | if (fd >= 0) |
1901 | FdFileCreate(thr, pc, fd); |
1902 | } |
1903 | return res; |
1904 | } |
1905 | |
1906 | #if SANITIZER_LINUX |
1907 | TSAN_INTERCEPTOR(void*, tmpfile64, int fake) { |
1908 | SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake); |
1909 | void *res = REAL(tmpfile64)(fake); |
1910 | if (res) { |
1911 | int fd = fileno_unlocked(stream: res); |
1912 | if (fd >= 0) |
1913 | FdFileCreate(thr, pc, fd); |
1914 | } |
1915 | return res; |
1916 | } |
1917 | #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64) |
1918 | #else |
1919 | #define TSAN_MAYBE_INTERCEPT_TMPFILE64 |
1920 | #endif |
1921 | |
1922 | static void FlushStreams() { |
1923 | // Flushing all the streams here may freeze the process if a child thread is |
1924 | // performing file stream operations at the same time. |
1925 | REAL(fflush)(stdout); |
1926 | REAL(fflush)(stderr); |
1927 | } |
1928 | |
1929 | TSAN_INTERCEPTOR(void, abort, int fake) { |
1930 | SCOPED_TSAN_INTERCEPTOR(abort, fake); |
1931 | FlushStreams(); |
1932 | REAL(abort)(fake); |
1933 | } |
1934 | |
1935 | TSAN_INTERCEPTOR(int, rmdir, char *path) { |
1936 | SCOPED_TSAN_INTERCEPTOR(rmdir, path); |
1937 | Release(thr, pc, addr: Dir2addr(path)); |
1938 | int res = REAL(rmdir)(path); |
1939 | return res; |
1940 | } |
1941 | |
1942 | TSAN_INTERCEPTOR(int, closedir, void *dirp) { |
1943 | SCOPED_INTERCEPTOR_RAW(closedir, dirp); |
1944 | if (dirp) { |
1945 | int fd = dirfd(dirp); |
1946 | FdClose(thr, pc, fd); |
1947 | } |
1948 | return REAL(closedir)(dirp); |
1949 | } |
1950 | |
1951 | #if SANITIZER_LINUX |
1952 | TSAN_INTERCEPTOR(int, epoll_create, int size) { |
1953 | SCOPED_TSAN_INTERCEPTOR(epoll_create, size); |
1954 | int fd = REAL(epoll_create)(size); |
1955 | if (fd >= 0) |
1956 | FdPollCreate(thr, pc, fd); |
1957 | return fd; |
1958 | } |
1959 | |
1960 | TSAN_INTERCEPTOR(int, epoll_create1, int flags) { |
1961 | SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags); |
1962 | int fd = REAL(epoll_create1)(flags); |
1963 | if (fd >= 0) |
1964 | FdPollCreate(thr, pc, fd); |
1965 | return fd; |
1966 | } |
1967 | |
1968 | TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) { |
1969 | SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev); |
1970 | if (epfd >= 0) |
1971 | FdAccess(thr, pc, fd: epfd); |
1972 | if (epfd >= 0 && fd >= 0) |
1973 | FdAccess(thr, pc, fd); |
1974 | if (op == EPOLL_CTL_ADD && epfd >= 0) { |
1975 | FdPollAdd(thr, pc, epfd, fd); |
1976 | FdRelease(thr, pc, fd: epfd); |
1977 | } |
1978 | int res = REAL(epoll_ctl)(epfd, op, fd, ev); |
1979 | return res; |
1980 | } |
1981 | |
1982 | TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) { |
1983 | SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout); |
1984 | if (epfd >= 0) |
1985 | FdAccess(thr, pc, fd: epfd); |
1986 | int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout); |
1987 | if (res > 0 && epfd >= 0) |
1988 | FdAcquire(thr, pc, fd: epfd); |
1989 | return res; |
1990 | } |
1991 | |
1992 | TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout, |
1993 | void *sigmask) { |
1994 | SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask); |
1995 | if (epfd >= 0) |
1996 | FdAccess(thr, pc, fd: epfd); |
1997 | int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask); |
1998 | if (res > 0 && epfd >= 0) |
1999 | FdAcquire(thr, pc, fd: epfd); |
2000 | return res; |
2001 | } |
2002 | |
2003 | TSAN_INTERCEPTOR(int, epoll_pwait2, int epfd, void *ev, int cnt, void *timeout, |
2004 | void *sigmask) { |
2005 | SCOPED_INTERCEPTOR_RAW(epoll_pwait2, epfd, ev, cnt, timeout, sigmask); |
2006 | // This function is new and may not be present in libc and/or kernel. |
2007 | // Since we effectively add it to libc (as will be probed by the program |
2008 | // using dlsym or a weak function pointer) we need to handle the case |
2009 | // when it's not present in the actual libc. |
2010 | if (!REAL(epoll_pwait2)) { |
2011 | errno = errno_ENOSYS; |
2012 | return -1; |
2013 | } |
2014 | if (MustIgnoreInterceptor(thr)) |
2015 | REAL(epoll_pwait2)(epfd, ev, cnt, timeout, sigmask); |
2016 | if (epfd >= 0) |
2017 | FdAccess(thr, pc, fd: epfd); |
2018 | int res = BLOCK_REAL(epoll_pwait2)(epfd, ev, cnt, timeout, sigmask); |
2019 | if (res > 0 && epfd >= 0) |
2020 | FdAcquire(thr, pc, fd: epfd); |
2021 | return res; |
2022 | } |
2023 | |
2024 | # define TSAN_MAYBE_INTERCEPT_EPOLL \ |
2025 | TSAN_INTERCEPT(epoll_create); \ |
2026 | TSAN_INTERCEPT(epoll_create1); \ |
2027 | TSAN_INTERCEPT(epoll_ctl); \ |
2028 | TSAN_INTERCEPT(epoll_wait); \ |
2029 | TSAN_INTERCEPT(epoll_pwait); \ |
2030 | TSAN_INTERCEPT(epoll_pwait2) |
2031 | #else |
2032 | #define TSAN_MAYBE_INTERCEPT_EPOLL |
2033 | #endif |
2034 | |
2035 | // The following functions are intercepted merely to process pending signals. |
2036 | // If program blocks signal X, we must deliver the signal before the function |
2037 | // returns. Similarly, if program unblocks a signal (or returns from sigsuspend) |
2038 | // it's better to deliver the signal straight away. |
2039 | TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) { |
2040 | SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask); |
2041 | return REAL(sigsuspend)(mask); |
2042 | } |
2043 | |
2044 | TSAN_INTERCEPTOR(int, sigblock, int mask) { |
2045 | SCOPED_TSAN_INTERCEPTOR(sigblock, mask); |
2046 | return REAL(sigblock)(mask); |
2047 | } |
2048 | |
2049 | TSAN_INTERCEPTOR(int, sigsetmask, int mask) { |
2050 | SCOPED_TSAN_INTERCEPTOR(sigsetmask, mask); |
2051 | return REAL(sigsetmask)(mask); |
2052 | } |
2053 | |
2054 | TSAN_INTERCEPTOR(int, pthread_sigmask, int how, const __sanitizer_sigset_t *set, |
2055 | __sanitizer_sigset_t *oldset) { |
2056 | SCOPED_TSAN_INTERCEPTOR(pthread_sigmask, how, set, oldset); |
2057 | return REAL(pthread_sigmask)(how, set, oldset); |
2058 | } |
2059 | |
2060 | namespace __tsan { |
2061 | |
2062 | static void ReportErrnoSpoiling(ThreadState *thr, uptr pc, int sig) { |
2063 | VarSizeStackTrace stack; |
2064 | // StackTrace::GetNestInstructionPc(pc) is used because return address is |
2065 | // expected, OutputReport() will undo this. |
2066 | ObtainCurrentStack(thr, toppc: StackTrace::GetNextInstructionPc(pc), stack: &stack); |
2067 | ThreadRegistryLock l(&ctx->thread_registry); |
2068 | ScopedReport rep(ReportTypeErrnoInSignal); |
2069 | rep.SetSigNum(sig); |
2070 | if (!IsFiredSuppression(ctx, type: ReportTypeErrnoInSignal, trace: stack)) { |
2071 | rep.AddStack(stack, suppressable: true); |
2072 | OutputReport(thr, srep: rep); |
2073 | } |
2074 | } |
2075 | |
2076 | static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire, |
2077 | int sig, __sanitizer_siginfo *info, |
2078 | void *uctx) { |
2079 | CHECK(thr->slot); |
2080 | __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions; |
2081 | if (acquire) |
2082 | Acquire(thr, pc: 0, addr: (uptr)&sigactions[sig]); |
2083 | // Signals are generally asynchronous, so if we receive a signals when |
2084 | // ignores are enabled we should disable ignores. This is critical for sync |
2085 | // and interceptors, because otherwise we can miss synchronization and report |
2086 | // false races. |
2087 | int ignore_reads_and_writes = thr->ignore_reads_and_writes; |
2088 | int ignore_interceptors = thr->ignore_interceptors; |
2089 | int ignore_sync = thr->ignore_sync; |
2090 | // For symbolizer we only process SIGSEGVs synchronously |
2091 | // (bug in symbolizer or in tsan). But we want to reset |
2092 | // in_symbolizer to fail gracefully. Symbolizer and user code |
2093 | // use different memory allocators, so if we don't reset |
2094 | // in_symbolizer we can get memory allocated with one being |
2095 | // feed with another, which can cause more crashes. |
2096 | int in_symbolizer = thr->in_symbolizer; |
2097 | if (!ctx->after_multithreaded_fork) { |
2098 | thr->ignore_reads_and_writes = 0; |
2099 | thr->fast_state.ClearIgnoreBit(); |
2100 | thr->ignore_interceptors = 0; |
2101 | thr->ignore_sync = 0; |
2102 | thr->in_symbolizer = 0; |
2103 | } |
2104 | // Ensure that the handler does not spoil errno. |
2105 | const int saved_errno = errno; |
2106 | errno = 99; |
2107 | // This code races with sigaction. Be careful to not read sa_sigaction twice. |
2108 | // Also need to remember pc for reporting before the call, |
2109 | // because the handler can reset it. |
2110 | volatile uptr pc = (sigactions[sig].sa_flags & SA_SIGINFO) |
2111 | ? (uptr)sigactions[sig].sigaction |
2112 | : (uptr)sigactions[sig].handler; |
2113 | if (pc != sig_dfl && pc != sig_ign) { |
2114 | // The callback can be either sa_handler or sa_sigaction. |
2115 | // They have different signatures, but we assume that passing |
2116 | // additional arguments to sa_handler works and is harmless. |
2117 | ((__sanitizer_sigactionhandler_ptr)pc)(sig, info, uctx); |
2118 | } |
2119 | if (!ctx->after_multithreaded_fork) { |
2120 | thr->ignore_reads_and_writes = ignore_reads_and_writes; |
2121 | if (ignore_reads_and_writes) |
2122 | thr->fast_state.SetIgnoreBit(); |
2123 | thr->ignore_interceptors = ignore_interceptors; |
2124 | thr->ignore_sync = ignore_sync; |
2125 | thr->in_symbolizer = in_symbolizer; |
2126 | } |
2127 | // We do not detect errno spoiling for SIGTERM, |
2128 | // because some SIGTERM handlers do spoil errno but reraise SIGTERM, |
2129 | // tsan reports false positive in such case. |
2130 | // It's difficult to properly detect this situation (reraise), |
2131 | // because in async signal processing case (when handler is called directly |
2132 | // from rtl_generic_sighandler) we have not yet received the reraised |
2133 | // signal; and it looks too fragile to intercept all ways to reraise a signal. |
2134 | if (ShouldReport(thr, typ: ReportTypeErrnoInSignal) && !sync && sig != SIGTERM && |
2135 | errno != 99) |
2136 | ReportErrnoSpoiling(thr, pc, sig); |
2137 | errno = saved_errno; |
2138 | } |
2139 | |
2140 | void ProcessPendingSignalsImpl(ThreadState *thr) { |
2141 | atomic_store(a: &thr->pending_signals, v: 0, mo: memory_order_relaxed); |
2142 | ThreadSignalContext *sctx = SigCtx(thr); |
2143 | if (sctx == 0) |
2144 | return; |
2145 | atomic_fetch_add(a: &thr->in_signal_handler, v: 1, mo: memory_order_relaxed); |
2146 | internal_sigfillset(set: &sctx->emptyset); |
2147 | int res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->emptyset, &sctx->oldset); |
2148 | CHECK_EQ(res, 0); |
2149 | for (int sig = 0; sig < kSigCount; sig++) { |
2150 | SignalDesc *signal = &sctx->pending_signals[sig]; |
2151 | if (signal->armed) { |
2152 | signal->armed = false; |
2153 | CallUserSignalHandler(thr, sync: false, acquire: true, sig, info: &signal->siginfo, |
2154 | uctx: &signal->ctx); |
2155 | } |
2156 | } |
2157 | res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->oldset, 0); |
2158 | CHECK_EQ(res, 0); |
2159 | atomic_fetch_add(a: &thr->in_signal_handler, v: -1, mo: memory_order_relaxed); |
2160 | } |
2161 | |
2162 | } // namespace __tsan |
2163 | |
2164 | static bool is_sync_signal(ThreadSignalContext *sctx, int sig, |
2165 | __sanitizer_siginfo *info) { |
2166 | // If we are sending signal to ourselves, we must process it now. |
2167 | if (sctx && sig == sctx->int_signal_send) |
2168 | return true; |
2169 | #if SANITIZER_HAS_SIGINFO |
2170 | // POSIX timers can be configured to send any kind of signal; however, it |
2171 | // doesn't make any sense to consider a timer signal as synchronous! |
2172 | if (info->si_code == SI_TIMER) |
2173 | return false; |
2174 | #endif |
2175 | return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL || sig == SIGTRAP || |
2176 | sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS; |
2177 | } |
2178 | |
2179 | void sighandler(int sig, __sanitizer_siginfo *info, void *ctx) { |
2180 | ThreadState *thr = cur_thread_init(); |
2181 | ThreadSignalContext *sctx = SigCtx(thr); |
2182 | if (sig < 0 || sig >= kSigCount) { |
2183 | VPrintf(1, "ThreadSanitizer: ignoring signal %d\n" , sig); |
2184 | return; |
2185 | } |
2186 | // Don't mess with synchronous signals. |
2187 | const bool sync = is_sync_signal(sctx, sig, info); |
2188 | if (sync || |
2189 | // If we are in blocking function, we can safely process it now |
2190 | // (but check if we are in a recursive interceptor, |
2191 | // i.e. pthread_join()->munmap()). |
2192 | atomic_load(a: &thr->in_blocking_func, mo: memory_order_relaxed)) { |
2193 | atomic_fetch_add(a: &thr->in_signal_handler, v: 1, mo: memory_order_relaxed); |
2194 | if (atomic_load(a: &thr->in_blocking_func, mo: memory_order_relaxed)) { |
2195 | atomic_store(a: &thr->in_blocking_func, v: 0, mo: memory_order_relaxed); |
2196 | CallUserSignalHandler(thr, sync, acquire: true, sig, info, uctx: ctx); |
2197 | atomic_store(a: &thr->in_blocking_func, v: 1, mo: memory_order_relaxed); |
2198 | } else { |
2199 | // Be very conservative with when we do acquire in this case. |
2200 | // It's unsafe to do acquire in async handlers, because ThreadState |
2201 | // can be in inconsistent state. |
2202 | // SIGSYS looks relatively safe -- it's synchronous and can actually |
2203 | // need some global state. |
2204 | bool acq = (sig == SIGSYS); |
2205 | CallUserSignalHandler(thr, sync, acquire: acq, sig, info, uctx: ctx); |
2206 | } |
2207 | atomic_fetch_add(a: &thr->in_signal_handler, v: -1, mo: memory_order_relaxed); |
2208 | return; |
2209 | } |
2210 | |
2211 | if (sctx == 0) |
2212 | return; |
2213 | SignalDesc *signal = &sctx->pending_signals[sig]; |
2214 | if (signal->armed == false) { |
2215 | signal->armed = true; |
2216 | internal_memcpy(dest: &signal->siginfo, src: info, n: sizeof(*info)); |
2217 | internal_memcpy(dest: &signal->ctx, src: ctx, n: sizeof(signal->ctx)); |
2218 | atomic_store(a: &thr->pending_signals, v: 1, mo: memory_order_relaxed); |
2219 | } |
2220 | } |
2221 | |
2222 | TSAN_INTERCEPTOR(int, raise, int sig) { |
2223 | SCOPED_TSAN_INTERCEPTOR(raise, sig); |
2224 | ThreadSignalContext *sctx = SigCtx(thr); |
2225 | CHECK_NE(sctx, 0); |
2226 | int prev = sctx->int_signal_send; |
2227 | sctx->int_signal_send = sig; |
2228 | int res = REAL(raise)(sig); |
2229 | CHECK_EQ(sctx->int_signal_send, sig); |
2230 | sctx->int_signal_send = prev; |
2231 | return res; |
2232 | } |
2233 | |
2234 | TSAN_INTERCEPTOR(int, kill, int pid, int sig) { |
2235 | SCOPED_TSAN_INTERCEPTOR(kill, pid, sig); |
2236 | ThreadSignalContext *sctx = SigCtx(thr); |
2237 | CHECK_NE(sctx, 0); |
2238 | int prev = sctx->int_signal_send; |
2239 | if (pid == (int)internal_getpid()) { |
2240 | sctx->int_signal_send = sig; |
2241 | } |
2242 | int res = REAL(kill)(pid, sig); |
2243 | if (pid == (int)internal_getpid()) { |
2244 | CHECK_EQ(sctx->int_signal_send, sig); |
2245 | sctx->int_signal_send = prev; |
2246 | } |
2247 | return res; |
2248 | } |
2249 | |
2250 | TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) { |
2251 | SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig); |
2252 | ThreadSignalContext *sctx = SigCtx(thr); |
2253 | CHECK_NE(sctx, 0); |
2254 | int prev = sctx->int_signal_send; |
2255 | bool self = pthread_equal(t1: tid, t2: pthread_self()); |
2256 | if (self) |
2257 | sctx->int_signal_send = sig; |
2258 | int res = REAL(pthread_kill)(tid, sig); |
2259 | if (self) { |
2260 | CHECK_EQ(sctx->int_signal_send, sig); |
2261 | sctx->int_signal_send = prev; |
2262 | } |
2263 | return res; |
2264 | } |
2265 | |
2266 | TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) { |
2267 | SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz); |
2268 | // It's intercepted merely to process pending signals. |
2269 | return REAL(gettimeofday)(tv, tz); |
2270 | } |
2271 | |
2272 | TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service, |
2273 | void *hints, void *rv) { |
2274 | SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv); |
2275 | // We miss atomic synchronization in getaddrinfo, |
2276 | // and can report false race between malloc and free |
2277 | // inside of getaddrinfo. So ignore memory accesses. |
2278 | ThreadIgnoreBegin(thr, pc); |
2279 | int res = REAL(getaddrinfo)(node, service, hints, rv); |
2280 | ThreadIgnoreEnd(thr); |
2281 | return res; |
2282 | } |
2283 | |
2284 | TSAN_INTERCEPTOR(int, fork, int fake) { |
2285 | if (in_symbolizer()) |
2286 | return REAL(fork)(fake); |
2287 | SCOPED_INTERCEPTOR_RAW(fork, fake); |
2288 | return REAL(fork)(fake); |
2289 | } |
2290 | |
2291 | void atfork_prepare() { |
2292 | if (in_symbolizer()) |
2293 | return; |
2294 | ThreadState *thr = cur_thread(); |
2295 | const uptr pc = StackTrace::GetCurrentPc(); |
2296 | ForkBefore(thr, pc); |
2297 | } |
2298 | |
2299 | void atfork_parent() { |
2300 | if (in_symbolizer()) |
2301 | return; |
2302 | ThreadState *thr = cur_thread(); |
2303 | const uptr pc = StackTrace::GetCurrentPc(); |
2304 | ForkParentAfter(thr, pc); |
2305 | } |
2306 | |
2307 | void atfork_child() { |
2308 | if (in_symbolizer()) |
2309 | return; |
2310 | ThreadState *thr = cur_thread(); |
2311 | const uptr pc = StackTrace::GetCurrentPc(); |
2312 | ForkChildAfter(thr, pc, start_thread: true); |
2313 | FdOnFork(thr, pc); |
2314 | } |
2315 | |
2316 | #if !SANITIZER_IOS |
2317 | TSAN_INTERCEPTOR(int, vfork, int fake) { |
2318 | // Some programs (e.g. openjdk) call close for all file descriptors |
2319 | // in the child process. Under tsan it leads to false positives, because |
2320 | // address space is shared, so the parent process also thinks that |
2321 | // the descriptors are closed (while they are actually not). |
2322 | // This leads to false positives due to missed synchronization. |
2323 | // Strictly saying this is undefined behavior, because vfork child is not |
2324 | // allowed to call any functions other than exec/exit. But this is what |
2325 | // openjdk does, so we want to handle it. |
2326 | // We could disable interceptors in the child process. But it's not possible |
2327 | // to simply intercept and wrap vfork, because vfork child is not allowed |
2328 | // to return from the function that calls vfork, and that's exactly what |
2329 | // we would do. So this would require some assembly trickery as well. |
2330 | // Instead we simply turn vfork into fork. |
2331 | return WRAP(fork)(fake); |
2332 | } |
2333 | #endif |
2334 | |
2335 | #if SANITIZER_LINUX |
2336 | TSAN_INTERCEPTOR(int, clone, int (*fn)(void *), void *stack, int flags, |
2337 | void *arg, int *parent_tid, void *tls, pid_t *child_tid) { |
2338 | SCOPED_INTERCEPTOR_RAW(clone, fn, stack, flags, arg, parent_tid, tls, |
2339 | child_tid); |
2340 | struct Arg { |
2341 | int (*fn)(void *); |
2342 | void *arg; |
2343 | }; |
2344 | auto wrapper = +[](void *p) -> int { |
2345 | auto *thr = cur_thread(); |
2346 | uptr pc = GET_CURRENT_PC(); |
2347 | // Start the background thread for fork, but not for clone. |
2348 | // For fork we did this always and it's known to work (or user code has |
2349 | // adopted). But if we do this for the new clone interceptor some code |
2350 | // (sandbox2) fails. So model we used to do for years and don't start the |
2351 | // background thread after clone. |
2352 | ForkChildAfter(thr, pc, start_thread: false); |
2353 | FdOnFork(thr, pc); |
2354 | auto *arg = static_cast<Arg *>(p); |
2355 | return arg->fn(arg->arg); |
2356 | }; |
2357 | ForkBefore(thr, pc); |
2358 | Arg arg_wrapper = {.fn: fn, .arg: arg}; |
2359 | int pid = REAL(clone)(wrapper, stack, flags, &arg_wrapper, parent_tid, tls, |
2360 | child_tid); |
2361 | ForkParentAfter(thr, pc); |
2362 | return pid; |
2363 | } |
2364 | #endif |
2365 | |
2366 | #if !SANITIZER_APPLE && !SANITIZER_ANDROID |
2367 | typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size, |
2368 | void *data); |
2369 | struct dl_iterate_phdr_data { |
2370 | ThreadState *thr; |
2371 | uptr pc; |
2372 | dl_iterate_phdr_cb_t cb; |
2373 | void *data; |
2374 | }; |
2375 | |
2376 | static bool IsAppNotRodata(uptr addr) { |
2377 | return IsAppMem(mem: addr) && *MemToShadow(x: addr) != Shadow::kRodata; |
2378 | } |
2379 | |
2380 | static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size, |
2381 | void *data) { |
2382 | dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data; |
2383 | // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later |
2384 | // accessible in dl_iterate_phdr callback. But we don't see synchronization |
2385 | // inside of dynamic linker, so we "unpoison" it here in order to not |
2386 | // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough |
2387 | // because some libc functions call __libc_dlopen. |
2388 | if (info && IsAppNotRodata(addr: (uptr)info->dlpi_name)) |
2389 | MemoryResetRange(thr: cbdata->thr, pc: cbdata->pc, addr: (uptr)info->dlpi_name, |
2390 | size: internal_strlen(s: info->dlpi_name)); |
2391 | int res = cbdata->cb(info, size, cbdata->data); |
2392 | // Perform the check one more time in case info->dlpi_name was overwritten |
2393 | // by user callback. |
2394 | if (info && IsAppNotRodata(addr: (uptr)info->dlpi_name)) |
2395 | MemoryResetRange(thr: cbdata->thr, pc: cbdata->pc, addr: (uptr)info->dlpi_name, |
2396 | size: internal_strlen(s: info->dlpi_name)); |
2397 | return res; |
2398 | } |
2399 | |
2400 | TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) { |
2401 | SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data); |
2402 | dl_iterate_phdr_data cbdata; |
2403 | cbdata.thr = thr; |
2404 | cbdata.pc = pc; |
2405 | cbdata.cb = cb; |
2406 | cbdata.data = data; |
2407 | int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata); |
2408 | return res; |
2409 | } |
2410 | #endif |
2411 | |
2412 | static int OnExit(ThreadState *thr) { |
2413 | int status = Finalize(thr); |
2414 | FlushStreams(); |
2415 | return status; |
2416 | } |
2417 | |
2418 | #if !SANITIZER_APPLE |
2419 | static void HandleRecvmsg(ThreadState *thr, uptr pc, |
2420 | __sanitizer_msghdr *msg) { |
2421 | int fds[64]; |
2422 | int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds)); |
2423 | for (int i = 0; i < cnt; i++) |
2424 | FdEventCreate(thr, pc, fd: fds[i]); |
2425 | } |
2426 | #endif |
2427 | |
2428 | #include "sanitizer_common/sanitizer_platform_interceptors.h" |
2429 | // Causes interceptor recursion (getaddrinfo() and fopen()) |
2430 | #undef SANITIZER_INTERCEPT_GETADDRINFO |
2431 | // We define our own. |
2432 | #if SANITIZER_INTERCEPT_TLS_GET_ADDR |
2433 | #define NEED_TLS_GET_ADDR |
2434 | #endif |
2435 | #undef SANITIZER_INTERCEPT_TLS_GET_ADDR |
2436 | #define SANITIZER_INTERCEPT_TLS_GET_OFFSET 1 |
2437 | #undef SANITIZER_INTERCEPT_PTHREAD_SIGMASK |
2438 | |
2439 | #define COMMON_INTERCEPT_FUNCTION_VER(name, ver) \ |
2440 | INTERCEPT_FUNCTION_VER(name, ver) |
2441 | #define COMMON_INTERCEPT_FUNCTION_VER_UNVERSIONED_FALLBACK(name, ver) \ |
2442 | (INTERCEPT_FUNCTION_VER(name, ver) || INTERCEPT_FUNCTION(name)) |
2443 | |
2444 | #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \ |
2445 | SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \ |
2446 | TsanInterceptorContext _ctx = {thr, pc}; \ |
2447 | ctx = (void *)&_ctx; \ |
2448 | (void)ctx; |
2449 | |
2450 | #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \ |
2451 | if (path) \ |
2452 | Acquire(thr, pc, File2addr(path)); \ |
2453 | if (file) { \ |
2454 | int fd = fileno_unlocked(file); \ |
2455 | if (fd >= 0) FdFileCreate(thr, pc, fd); \ |
2456 | } |
2457 | |
2458 | #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \ |
2459 | if (file) { \ |
2460 | int fd = fileno_unlocked(file); \ |
2461 | FdClose(thr, pc, fd); \ |
2462 | } |
2463 | |
2464 | #define COMMON_INTERCEPTOR_DLOPEN(filename, flag) \ |
2465 | ({ \ |
2466 | CheckNoDeepBind(filename, flag); \ |
2467 | ThreadIgnoreBegin(thr, 0); \ |
2468 | void *res = REAL(dlopen)(filename, flag); \ |
2469 | ThreadIgnoreEnd(thr); \ |
2470 | res; \ |
2471 | }) |
2472 | |
2473 | // Ignore interceptors in OnLibraryLoaded()/Unloaded(). These hooks use code |
2474 | // (ListOfModules::init, MemoryMappingLayout::DumpListOfModules) that make |
2475 | // intercepted calls, which can cause deadlockes with ReportRace() which also |
2476 | // uses this code. |
2477 | #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \ |
2478 | ({ \ |
2479 | ScopedIgnoreInterceptors ignore_interceptors; \ |
2480 | libignore()->OnLibraryLoaded(filename); \ |
2481 | }) |
2482 | |
2483 | #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \ |
2484 | ({ \ |
2485 | ScopedIgnoreInterceptors ignore_interceptors; \ |
2486 | libignore()->OnLibraryUnloaded(); \ |
2487 | }) |
2488 | |
2489 | #define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \ |
2490 | Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u) |
2491 | |
2492 | #define COMMON_INTERCEPTOR_RELEASE(ctx, u) \ |
2493 | Release(((TsanInterceptorContext *) ctx)->thr, pc, u) |
2494 | |
2495 | #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \ |
2496 | Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path)) |
2497 | |
2498 | #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \ |
2499 | FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd) |
2500 | |
2501 | #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \ |
2502 | FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd) |
2503 | |
2504 | #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \ |
2505 | FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd) |
2506 | |
2507 | #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \ |
2508 | FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd) |
2509 | |
2510 | #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \ |
2511 | ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name) |
2512 | |
2513 | #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \ |
2514 | if (pthread_equal(pthread_self(), reinterpret_cast<void *>(thread))) \ |
2515 | COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name); \ |
2516 | else \ |
2517 | __tsan::ctx->thread_registry.SetThreadNameByUserId(thread, name) |
2518 | |
2519 | #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name) |
2520 | |
2521 | #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \ |
2522 | OnExit(((TsanInterceptorContext *) ctx)->thr) |
2523 | |
2524 | #define COMMON_INTERCEPTOR_MMAP_IMPL(ctx, mmap, addr, sz, prot, flags, fd, \ |
2525 | off) \ |
2526 | do { \ |
2527 | return mmap_interceptor(thr, pc, REAL(mmap), addr, sz, prot, flags, fd, \ |
2528 | off); \ |
2529 | } while (false) |
2530 | |
2531 | #define COMMON_INTERCEPTOR_MUNMAP_IMPL(ctx, addr, sz) \ |
2532 | do { \ |
2533 | return munmap_interceptor(thr, pc, REAL(munmap), addr, sz); \ |
2534 | } while (false) |
2535 | |
2536 | #if !SANITIZER_APPLE |
2537 | #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \ |
2538 | HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \ |
2539 | ((TsanInterceptorContext *)ctx)->pc, msg) |
2540 | #endif |
2541 | |
2542 | #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end) \ |
2543 | if (TsanThread *t = GetCurrentThread()) { \ |
2544 | *begin = t->tls_begin(); \ |
2545 | *end = t->tls_end(); \ |
2546 | } else { \ |
2547 | *begin = *end = 0; \ |
2548 | } |
2549 | |
2550 | #define COMMON_INTERCEPTOR_USER_CALLBACK_START() \ |
2551 | SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START() |
2552 | |
2553 | #define COMMON_INTERCEPTOR_USER_CALLBACK_END() \ |
2554 | SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END() |
2555 | |
2556 | #include "sanitizer_common/sanitizer_common_interceptors.inc" |
2557 | |
2558 | static int sigaction_impl(int sig, const __sanitizer_sigaction *act, |
2559 | __sanitizer_sigaction *old); |
2560 | static __sanitizer_sighandler_ptr signal_impl(int sig, |
2561 | __sanitizer_sighandler_ptr h); |
2562 | |
2563 | #define SIGNAL_INTERCEPTOR_SIGACTION_IMPL(signo, act, oldact) \ |
2564 | { return sigaction_impl(signo, act, oldact); } |
2565 | |
2566 | #define SIGNAL_INTERCEPTOR_SIGNAL_IMPL(func, signo, handler) \ |
2567 | { return (uptr)signal_impl(signo, (__sanitizer_sighandler_ptr)handler); } |
2568 | |
2569 | #define SIGNAL_INTERCEPTOR_ENTER() LazyInitialize(cur_thread_init()) |
2570 | |
2571 | #include "sanitizer_common/sanitizer_signal_interceptors.inc" |
2572 | |
2573 | int sigaction_impl(int sig, const __sanitizer_sigaction *act, |
2574 | __sanitizer_sigaction *old) { |
2575 | // Note: if we call REAL(sigaction) directly for any reason without proxying |
2576 | // the signal handler through sighandler, very bad things will happen. |
2577 | // The handler will run synchronously and corrupt tsan per-thread state. |
2578 | SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old); |
2579 | if (sig <= 0 || sig >= kSigCount) { |
2580 | errno = errno_EINVAL; |
2581 | return -1; |
2582 | } |
2583 | __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions; |
2584 | __sanitizer_sigaction old_stored; |
2585 | if (old) internal_memcpy(dest: &old_stored, src: &sigactions[sig], n: sizeof(old_stored)); |
2586 | __sanitizer_sigaction newact; |
2587 | if (act) { |
2588 | // Copy act into sigactions[sig]. |
2589 | // Can't use struct copy, because compiler can emit call to memcpy. |
2590 | // Can't use internal_memcpy, because it copies byte-by-byte, |
2591 | // and signal handler reads the handler concurrently. It can read |
2592 | // some bytes from old value and some bytes from new value. |
2593 | // Use volatile to prevent insertion of memcpy. |
2594 | sigactions[sig].handler = |
2595 | *(volatile __sanitizer_sighandler_ptr const *)&act->handler; |
2596 | sigactions[sig].sa_flags = *(volatile int const *)&act->sa_flags; |
2597 | internal_memcpy(dest: &sigactions[sig].sa_mask, src: &act->sa_mask, |
2598 | n: sizeof(sigactions[sig].sa_mask)); |
2599 | #if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD |
2600 | sigactions[sig].sa_restorer = act->sa_restorer; |
2601 | #endif |
2602 | internal_memcpy(dest: &newact, src: act, n: sizeof(newact)); |
2603 | internal_sigfillset(set: &newact.sa_mask); |
2604 | if ((act->sa_flags & SA_SIGINFO) || |
2605 | ((uptr)act->handler != sig_ign && (uptr)act->handler != sig_dfl)) { |
2606 | newact.sa_flags |= SA_SIGINFO; |
2607 | newact.sigaction = sighandler; |
2608 | } |
2609 | ReleaseStore(thr, pc, addr: (uptr)&sigactions[sig]); |
2610 | act = &newact; |
2611 | } |
2612 | int res = REAL(sigaction)(sig, act, old); |
2613 | if (res == 0 && old && old->sigaction == sighandler) |
2614 | internal_memcpy(dest: old, src: &old_stored, n: sizeof(*old)); |
2615 | return res; |
2616 | } |
2617 | |
2618 | static __sanitizer_sighandler_ptr signal_impl(int sig, |
2619 | __sanitizer_sighandler_ptr h) { |
2620 | __sanitizer_sigaction act; |
2621 | act.handler = h; |
2622 | internal_memset(s: &act.sa_mask, c: -1, n: sizeof(act.sa_mask)); |
2623 | act.sa_flags = 0; |
2624 | __sanitizer_sigaction old; |
2625 | int res = sigaction_symname(signum: sig, act: &act, oldact: &old); |
2626 | if (res) return (__sanitizer_sighandler_ptr)sig_err; |
2627 | return old.handler; |
2628 | } |
2629 | |
2630 | #define TSAN_SYSCALL() \ |
2631 | ThreadState *thr = cur_thread(); \ |
2632 | if (thr->ignore_interceptors) \ |
2633 | return; \ |
2634 | ScopedSyscall scoped_syscall(thr) |
2635 | |
2636 | struct ScopedSyscall { |
2637 | ThreadState *thr; |
2638 | |
2639 | explicit ScopedSyscall(ThreadState *thr) : thr(thr) { LazyInitialize(thr); } |
2640 | |
2641 | ~ScopedSyscall() { |
2642 | ProcessPendingSignals(thr); |
2643 | } |
2644 | }; |
2645 | |
2646 | #if !SANITIZER_FREEBSD && !SANITIZER_APPLE |
2647 | static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) { |
2648 | TSAN_SYSCALL(); |
2649 | MemoryAccessRange(thr, pc, addr: p, size: s, is_write: write); |
2650 | } |
2651 | |
2652 | static USED void syscall_acquire(uptr pc, uptr addr) { |
2653 | TSAN_SYSCALL(); |
2654 | Acquire(thr, pc, addr); |
2655 | DPrintf("syscall_acquire(0x%zx))\n" , addr); |
2656 | } |
2657 | |
2658 | static USED void syscall_release(uptr pc, uptr addr) { |
2659 | TSAN_SYSCALL(); |
2660 | DPrintf("syscall_release(0x%zx)\n" , addr); |
2661 | Release(thr, pc, addr); |
2662 | } |
2663 | |
2664 | static void syscall_fd_close(uptr pc, int fd) { |
2665 | auto *thr = cur_thread(); |
2666 | FdClose(thr, pc, fd); |
2667 | } |
2668 | |
2669 | static USED void syscall_fd_acquire(uptr pc, int fd) { |
2670 | TSAN_SYSCALL(); |
2671 | FdAcquire(thr, pc, fd); |
2672 | DPrintf("syscall_fd_acquire(%d)\n" , fd); |
2673 | } |
2674 | |
2675 | static USED void syscall_fd_release(uptr pc, int fd) { |
2676 | TSAN_SYSCALL(); |
2677 | DPrintf("syscall_fd_release(%d)\n" , fd); |
2678 | FdRelease(thr, pc, fd); |
2679 | } |
2680 | |
2681 | static USED void sycall_blocking_start() { |
2682 | DPrintf("sycall_blocking_start()\n" ); |
2683 | ThreadState *thr = cur_thread(); |
2684 | EnterBlockingFunc(thr); |
2685 | // When we are in a "blocking call", we process signals asynchronously |
2686 | // (right when they arrive). In this context we do not expect to be |
2687 | // executing any user/runtime code. The known interceptor sequence when |
2688 | // this is not true is: pthread_join -> munmap(stack). It's fine |
2689 | // to ignore munmap in this case -- we handle stack shadow separately. |
2690 | thr->ignore_interceptors++; |
2691 | } |
2692 | |
2693 | static USED void sycall_blocking_end() { |
2694 | DPrintf("sycall_blocking_end()\n" ); |
2695 | ThreadState *thr = cur_thread(); |
2696 | thr->ignore_interceptors--; |
2697 | atomic_store(a: &thr->in_blocking_func, v: 0, mo: memory_order_relaxed); |
2698 | } |
2699 | |
2700 | static void syscall_pre_fork(uptr pc) { ForkBefore(thr: cur_thread(), pc); } |
2701 | |
2702 | static void syscall_post_fork(uptr pc, int pid) { |
2703 | ThreadState *thr = cur_thread(); |
2704 | if (pid == 0) { |
2705 | // child |
2706 | ForkChildAfter(thr, pc, start_thread: true); |
2707 | FdOnFork(thr, pc); |
2708 | } else if (pid > 0) { |
2709 | // parent |
2710 | ForkParentAfter(thr, pc); |
2711 | } else { |
2712 | // error |
2713 | ForkParentAfter(thr, pc); |
2714 | } |
2715 | } |
2716 | #endif |
2717 | |
2718 | #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \ |
2719 | syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false) |
2720 | |
2721 | #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \ |
2722 | syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true) |
2723 | |
2724 | #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \ |
2725 | do { \ |
2726 | (void)(p); \ |
2727 | (void)(s); \ |
2728 | } while (false) |
2729 | |
2730 | #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \ |
2731 | do { \ |
2732 | (void)(p); \ |
2733 | (void)(s); \ |
2734 | } while (false) |
2735 | |
2736 | #define COMMON_SYSCALL_ACQUIRE(addr) \ |
2737 | syscall_acquire(GET_CALLER_PC(), (uptr)(addr)) |
2738 | |
2739 | #define COMMON_SYSCALL_RELEASE(addr) \ |
2740 | syscall_release(GET_CALLER_PC(), (uptr)(addr)) |
2741 | |
2742 | #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd) |
2743 | |
2744 | #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd) |
2745 | |
2746 | #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd) |
2747 | |
2748 | #define COMMON_SYSCALL_PRE_FORK() \ |
2749 | syscall_pre_fork(GET_CALLER_PC()) |
2750 | |
2751 | #define COMMON_SYSCALL_POST_FORK(res) \ |
2752 | syscall_post_fork(GET_CALLER_PC(), res) |
2753 | |
2754 | #define COMMON_SYSCALL_BLOCKING_START() sycall_blocking_start() |
2755 | #define COMMON_SYSCALL_BLOCKING_END() sycall_blocking_end() |
2756 | |
2757 | #include "sanitizer_common/sanitizer_common_syscalls.inc" |
2758 | #include "sanitizer_common/sanitizer_syscalls_netbsd.inc" |
2759 | |
2760 | #ifdef NEED_TLS_GET_ADDR |
2761 | |
2762 | static void handle_tls_addr(void *arg, void *res) { |
2763 | ThreadState *thr = cur_thread(); |
2764 | if (!thr) |
2765 | return; |
2766 | DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, static_tls_begin: thr->tls_addr, |
2767 | static_tls_end: thr->tls_addr + thr->tls_size); |
2768 | if (!dtv) |
2769 | return; |
2770 | // New DTLS block has been allocated. |
2771 | MemoryResetRange(thr, pc: 0, addr: dtv->beg, size: dtv->size); |
2772 | } |
2773 | |
2774 | #if !SANITIZER_S390 |
2775 | // Define own interceptor instead of sanitizer_common's for three reasons: |
2776 | // 1. It must not process pending signals. |
2777 | // Signal handlers may contain MOVDQA instruction (see below). |
2778 | // 2. It must be as simple as possible to not contain MOVDQA. |
2779 | // 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which |
2780 | // is empty for tsan (meant only for msan). |
2781 | // Note: __tls_get_addr can be called with mis-aligned stack due to: |
2782 | // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066 |
2783 | // So the interceptor must work with mis-aligned stack, in particular, does not |
2784 | // execute MOVDQA with stack addresses. |
2785 | TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) { |
2786 | void *res = REAL(__tls_get_addr)(arg); |
2787 | handle_tls_addr(arg, res); |
2788 | return res; |
2789 | } |
2790 | #else // SANITIZER_S390 |
2791 | TSAN_INTERCEPTOR(uptr, __tls_get_addr_internal, void *arg) { |
2792 | uptr res = __tls_get_offset_wrapper(arg, REAL(__tls_get_offset)); |
2793 | char *tp = static_cast<char *>(__builtin_thread_pointer()); |
2794 | handle_tls_addr(arg, res + tp); |
2795 | return res; |
2796 | } |
2797 | #endif |
2798 | #endif |
2799 | |
2800 | #if SANITIZER_NETBSD |
2801 | TSAN_INTERCEPTOR(void, _lwp_exit) { |
2802 | SCOPED_TSAN_INTERCEPTOR(_lwp_exit); |
2803 | DestroyThreadState(); |
2804 | REAL(_lwp_exit)(); |
2805 | } |
2806 | #define TSAN_MAYBE_INTERCEPT__LWP_EXIT TSAN_INTERCEPT(_lwp_exit) |
2807 | #else |
2808 | #define TSAN_MAYBE_INTERCEPT__LWP_EXIT |
2809 | #endif |
2810 | |
2811 | #if SANITIZER_FREEBSD |
2812 | TSAN_INTERCEPTOR(void, thr_exit, tid_t *state) { |
2813 | SCOPED_TSAN_INTERCEPTOR(thr_exit, state); |
2814 | DestroyThreadState(); |
2815 | REAL(thr_exit(state)); |
2816 | } |
2817 | #define TSAN_MAYBE_INTERCEPT_THR_EXIT TSAN_INTERCEPT(thr_exit) |
2818 | #else |
2819 | #define TSAN_MAYBE_INTERCEPT_THR_EXIT |
2820 | #endif |
2821 | |
2822 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_init, void *c, void *a) |
2823 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_destroy, void *c) |
2824 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_signal, void *c) |
2825 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_broadcast, void *c) |
2826 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_wait, void *c, void *m) |
2827 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_init, void *m, void *a) |
2828 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_destroy, void *m) |
2829 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_lock, void *m) |
2830 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_trylock, void *m) |
2831 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_unlock, void *m) |
2832 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_init, void *l, void *a) |
2833 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_destroy, void *l) |
2834 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_rdlock, void *l) |
2835 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_tryrdlock, void *l) |
2836 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_wrlock, void *l) |
2837 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_trywrlock, void *l) |
2838 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_unlock, void *l) |
2839 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, once, void *o, void (*i)()) |
2840 | TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, sigmask, int f, void *n, void *o) |
2841 | |
2842 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_init, void *c, void *a) |
2843 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_signal, void *c) |
2844 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_broadcast, void *c) |
2845 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_wait, void *c, void *m) |
2846 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_destroy, void *c) |
2847 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_init, void *m, void *a) |
2848 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_destroy, void *m) |
2849 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_lock, void *m) |
2850 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_trylock, void *m) |
2851 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_unlock, void *m) |
2852 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_init, void *m, void *a) |
2853 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_destroy, void *m) |
2854 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_rdlock, void *m) |
2855 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_tryrdlock, void *m) |
2856 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_wrlock, void *m) |
2857 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_trywrlock, void *m) |
2858 | TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_unlock, void *m) |
2859 | TSAN_INTERCEPTOR_NETBSD_ALIAS_THR(int, once, void *o, void (*f)()) |
2860 | TSAN_INTERCEPTOR_NETBSD_ALIAS_THR2(int, sigsetmask, sigmask, int a, void *b, |
2861 | void *c) |
2862 | |
2863 | namespace __tsan { |
2864 | |
2865 | static void finalize(void *arg) { |
2866 | ThreadState *thr = cur_thread(); |
2867 | int status = Finalize(thr); |
2868 | // Make sure the output is not lost. |
2869 | FlushStreams(); |
2870 | if (status) |
2871 | Die(); |
2872 | } |
2873 | |
2874 | #if !SANITIZER_APPLE && !SANITIZER_ANDROID |
2875 | static void unreachable() { |
2876 | Report(format: "FATAL: ThreadSanitizer: unreachable called\n" ); |
2877 | Die(); |
2878 | } |
2879 | #endif |
2880 | |
2881 | // Define default implementation since interception of libdispatch is optional. |
2882 | SANITIZER_WEAK_ATTRIBUTE void InitializeLibdispatchInterceptors() {} |
2883 | |
2884 | void InitializeInterceptors() { |
2885 | #if !SANITIZER_APPLE |
2886 | // We need to setup it early, because functions like dlsym() can call it. |
2887 | REAL(memset) = internal_memset; |
2888 | REAL(memcpy) = internal_memcpy; |
2889 | #endif |
2890 | |
2891 | __interception::DoesNotSupportStaticLinking(); |
2892 | |
2893 | new(interceptor_ctx()) InterceptorContext(); |
2894 | |
2895 | // Interpose __tls_get_addr before the common interposers. This is needed |
2896 | // because dlsym() may call malloc on failure which could result in other |
2897 | // interposed functions being called that could eventually make use of TLS. |
2898 | #ifdef NEED_TLS_GET_ADDR |
2899 | # if !SANITIZER_S390 |
2900 | TSAN_INTERCEPT(__tls_get_addr); |
2901 | # else |
2902 | TSAN_INTERCEPT(__tls_get_addr_internal); |
2903 | TSAN_INTERCEPT(__tls_get_offset); |
2904 | # endif |
2905 | #endif |
2906 | InitializeCommonInterceptors(); |
2907 | InitializeSignalInterceptors(); |
2908 | InitializeLibdispatchInterceptors(); |
2909 | |
2910 | #if !SANITIZER_APPLE |
2911 | InitializeSetjmpInterceptors(); |
2912 | #endif |
2913 | |
2914 | TSAN_INTERCEPT(longjmp_symname); |
2915 | TSAN_INTERCEPT(siglongjmp_symname); |
2916 | #if SANITIZER_NETBSD |
2917 | TSAN_INTERCEPT(_longjmp); |
2918 | #endif |
2919 | |
2920 | TSAN_INTERCEPT(malloc); |
2921 | TSAN_INTERCEPT(__libc_memalign); |
2922 | TSAN_INTERCEPT(calloc); |
2923 | TSAN_INTERCEPT(realloc); |
2924 | TSAN_INTERCEPT(reallocarray); |
2925 | TSAN_INTERCEPT(free); |
2926 | TSAN_INTERCEPT(cfree); |
2927 | TSAN_INTERCEPT(munmap); |
2928 | TSAN_MAYBE_INTERCEPT_MEMALIGN; |
2929 | TSAN_INTERCEPT(valloc); |
2930 | TSAN_MAYBE_INTERCEPT_PVALLOC; |
2931 | TSAN_INTERCEPT(posix_memalign); |
2932 | |
2933 | TSAN_INTERCEPT(strcpy); |
2934 | TSAN_INTERCEPT(strncpy); |
2935 | TSAN_INTERCEPT(strdup); |
2936 | |
2937 | TSAN_INTERCEPT(pthread_create); |
2938 | TSAN_INTERCEPT(pthread_join); |
2939 | TSAN_INTERCEPT(pthread_detach); |
2940 | TSAN_INTERCEPT(pthread_exit); |
2941 | #if SANITIZER_LINUX |
2942 | TSAN_INTERCEPT(pthread_tryjoin_np); |
2943 | TSAN_INTERCEPT(pthread_timedjoin_np); |
2944 | #endif |
2945 | |
2946 | TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE); |
2947 | TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE); |
2948 | TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE); |
2949 | TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE); |
2950 | TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE); |
2951 | TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE); |
2952 | |
2953 | TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT; |
2954 | |
2955 | TSAN_INTERCEPT(pthread_mutex_init); |
2956 | TSAN_INTERCEPT(pthread_mutex_destroy); |
2957 | TSAN_INTERCEPT(pthread_mutex_lock); |
2958 | TSAN_INTERCEPT(pthread_mutex_trylock); |
2959 | TSAN_INTERCEPT(pthread_mutex_timedlock); |
2960 | TSAN_INTERCEPT(pthread_mutex_unlock); |
2961 | #if SANITIZER_LINUX |
2962 | TSAN_INTERCEPT(pthread_mutex_clocklock); |
2963 | #endif |
2964 | #if SANITIZER_GLIBC |
2965 | # if !__GLIBC_PREREQ(2, 34) |
2966 | TSAN_INTERCEPT(__pthread_mutex_lock); |
2967 | TSAN_INTERCEPT(__pthread_mutex_unlock); |
2968 | # endif |
2969 | #endif |
2970 | |
2971 | TSAN_INTERCEPT(pthread_spin_init); |
2972 | TSAN_INTERCEPT(pthread_spin_destroy); |
2973 | TSAN_INTERCEPT(pthread_spin_lock); |
2974 | TSAN_INTERCEPT(pthread_spin_trylock); |
2975 | TSAN_INTERCEPT(pthread_spin_unlock); |
2976 | |
2977 | TSAN_INTERCEPT(pthread_rwlock_init); |
2978 | TSAN_INTERCEPT(pthread_rwlock_destroy); |
2979 | TSAN_INTERCEPT(pthread_rwlock_rdlock); |
2980 | TSAN_INTERCEPT(pthread_rwlock_tryrdlock); |
2981 | TSAN_INTERCEPT(pthread_rwlock_timedrdlock); |
2982 | TSAN_INTERCEPT(pthread_rwlock_wrlock); |
2983 | TSAN_INTERCEPT(pthread_rwlock_trywrlock); |
2984 | TSAN_INTERCEPT(pthread_rwlock_timedwrlock); |
2985 | TSAN_INTERCEPT(pthread_rwlock_unlock); |
2986 | |
2987 | TSAN_INTERCEPT(pthread_barrier_init); |
2988 | TSAN_INTERCEPT(pthread_barrier_destroy); |
2989 | TSAN_INTERCEPT(pthread_barrier_wait); |
2990 | |
2991 | TSAN_INTERCEPT(pthread_once); |
2992 | |
2993 | TSAN_MAYBE_INTERCEPT___FXSTAT; |
2994 | TSAN_MAYBE_INTERCEPT_FSTAT; |
2995 | TSAN_MAYBE_INTERCEPT_FSTAT64; |
2996 | TSAN_INTERCEPT(open); |
2997 | TSAN_MAYBE_INTERCEPT_OPEN64; |
2998 | TSAN_INTERCEPT(creat); |
2999 | TSAN_MAYBE_INTERCEPT_CREAT64; |
3000 | TSAN_INTERCEPT(dup); |
3001 | TSAN_INTERCEPT(dup2); |
3002 | TSAN_INTERCEPT(dup3); |
3003 | TSAN_MAYBE_INTERCEPT_EVENTFD; |
3004 | TSAN_MAYBE_INTERCEPT_SIGNALFD; |
3005 | TSAN_MAYBE_INTERCEPT_INOTIFY_INIT; |
3006 | TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1; |
3007 | TSAN_INTERCEPT(socket); |
3008 | TSAN_INTERCEPT(socketpair); |
3009 | TSAN_INTERCEPT(connect); |
3010 | TSAN_INTERCEPT(bind); |
3011 | TSAN_INTERCEPT(listen); |
3012 | TSAN_MAYBE_INTERCEPT_EPOLL; |
3013 | TSAN_INTERCEPT(close); |
3014 | TSAN_MAYBE_INTERCEPT___CLOSE; |
3015 | TSAN_MAYBE_INTERCEPT___RES_ICLOSE; |
3016 | TSAN_INTERCEPT(pipe); |
3017 | TSAN_INTERCEPT(pipe2); |
3018 | |
3019 | TSAN_INTERCEPT(unlink); |
3020 | TSAN_INTERCEPT(tmpfile); |
3021 | TSAN_MAYBE_INTERCEPT_TMPFILE64; |
3022 | TSAN_INTERCEPT(abort); |
3023 | TSAN_INTERCEPT(rmdir); |
3024 | TSAN_INTERCEPT(closedir); |
3025 | |
3026 | TSAN_INTERCEPT(sigsuspend); |
3027 | TSAN_INTERCEPT(sigblock); |
3028 | TSAN_INTERCEPT(sigsetmask); |
3029 | TSAN_INTERCEPT(pthread_sigmask); |
3030 | TSAN_INTERCEPT(raise); |
3031 | TSAN_INTERCEPT(kill); |
3032 | TSAN_INTERCEPT(pthread_kill); |
3033 | TSAN_INTERCEPT(sleep); |
3034 | TSAN_INTERCEPT(usleep); |
3035 | TSAN_INTERCEPT(nanosleep); |
3036 | TSAN_INTERCEPT(pause); |
3037 | TSAN_INTERCEPT(gettimeofday); |
3038 | TSAN_INTERCEPT(getaddrinfo); |
3039 | |
3040 | TSAN_INTERCEPT(fork); |
3041 | TSAN_INTERCEPT(vfork); |
3042 | #if SANITIZER_LINUX |
3043 | TSAN_INTERCEPT(clone); |
3044 | #endif |
3045 | #if !SANITIZER_ANDROID |
3046 | TSAN_INTERCEPT(dl_iterate_phdr); |
3047 | #endif |
3048 | TSAN_MAYBE_INTERCEPT_ON_EXIT; |
3049 | TSAN_INTERCEPT(__cxa_atexit); |
3050 | TSAN_INTERCEPT(_exit); |
3051 | |
3052 | TSAN_MAYBE_INTERCEPT__LWP_EXIT; |
3053 | TSAN_MAYBE_INTERCEPT_THR_EXIT; |
3054 | |
3055 | #if !SANITIZER_APPLE && !SANITIZER_ANDROID |
3056 | // Need to setup it, because interceptors check that the function is resolved. |
3057 | // But atexit is emitted directly into the module, so can't be resolved. |
3058 | REAL(atexit) = (int(*)(void(*)()))unreachable; |
3059 | #endif |
3060 | |
3061 | if (REAL(__cxa_atexit)(&finalize, 0, 0)) { |
3062 | Printf(format: "ThreadSanitizer: failed to setup atexit callback\n" ); |
3063 | Die(); |
3064 | } |
3065 | if (pthread_atfork(prepare: atfork_prepare, parent: atfork_parent, child: atfork_child)) { |
3066 | Printf(format: "ThreadSanitizer: failed to setup atfork callbacks\n" ); |
3067 | Die(); |
3068 | } |
3069 | |
3070 | #if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD |
3071 | if (pthread_key_create(key: &interceptor_ctx()->finalize_key, destructor: &thread_finalize)) { |
3072 | Printf(format: "ThreadSanitizer: failed to create thread key\n" ); |
3073 | Die(); |
3074 | } |
3075 | #endif |
3076 | |
3077 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_init); |
3078 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_destroy); |
3079 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_signal); |
3080 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_broadcast); |
3081 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_wait); |
3082 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_init); |
3083 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_destroy); |
3084 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_lock); |
3085 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_trylock); |
3086 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_unlock); |
3087 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_init); |
3088 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_destroy); |
3089 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_rdlock); |
3090 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_tryrdlock); |
3091 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_wrlock); |
3092 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_trywrlock); |
3093 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_unlock); |
3094 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(once); |
3095 | TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(sigmask); |
3096 | |
3097 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_init); |
3098 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_signal); |
3099 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_broadcast); |
3100 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_wait); |
3101 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_destroy); |
3102 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_init); |
3103 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_destroy); |
3104 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_lock); |
3105 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_trylock); |
3106 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_unlock); |
3107 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_init); |
3108 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_destroy); |
3109 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_rdlock); |
3110 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_tryrdlock); |
3111 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_wrlock); |
3112 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_trywrlock); |
3113 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_unlock); |
3114 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(once); |
3115 | TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(sigsetmask); |
3116 | |
3117 | FdInit(); |
3118 | } |
3119 | |
3120 | } // namespace __tsan |
3121 | |
3122 | // Invisible barrier for tests. |
3123 | // There were several unsuccessful iterations for this functionality: |
3124 | // 1. Initially it was implemented in user code using |
3125 | // REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on |
3126 | // MacOS. Futexes are linux-specific for this matter. |
3127 | // 2. Then we switched to atomics+usleep(10). But usleep produced parasitic |
3128 | // "as-if synchronized via sleep" messages in reports which failed some |
3129 | // output tests. |
3130 | // 3. Then we switched to atomics+sched_yield. But this produced tons of tsan- |
3131 | // visible events, which lead to "failed to restore stack trace" failures. |
3132 | // Note that no_sanitize_thread attribute does not turn off atomic interception |
3133 | // so attaching it to the function defined in user code does not help. |
3134 | // That's why we now have what we have. |
3135 | constexpr u32 kBarrierThreadBits = 10; |
3136 | constexpr u32 kBarrierThreads = 1 << kBarrierThreadBits; |
3137 | |
3138 | extern "C" { |
3139 | |
3140 | SANITIZER_INTERFACE_ATTRIBUTE void __tsan_testonly_barrier_init( |
3141 | atomic_uint32_t *barrier, u32 num_threads) { |
3142 | if (num_threads >= kBarrierThreads) { |
3143 | Printf(format: "barrier_init: count is too large (%d)\n" , num_threads); |
3144 | Die(); |
3145 | } |
3146 | // kBarrierThreadBits lsb is thread count, |
3147 | // the remaining are count of entered threads. |
3148 | atomic_store(a: barrier, v: num_threads, mo: memory_order_relaxed); |
3149 | } |
3150 | |
3151 | static u32 barrier_epoch(u32 value) { |
3152 | return (value >> kBarrierThreadBits) / (value & (kBarrierThreads - 1)); |
3153 | } |
3154 | |
3155 | SANITIZER_INTERFACE_ATTRIBUTE void __tsan_testonly_barrier_wait( |
3156 | atomic_uint32_t *barrier) { |
3157 | u32 old = atomic_fetch_add(a: barrier, v: kBarrierThreads, mo: memory_order_relaxed); |
3158 | u32 old_epoch = barrier_epoch(value: old); |
3159 | if (barrier_epoch(value: old + kBarrierThreads) != old_epoch) { |
3160 | FutexWake(p: barrier, count: (1 << 30)); |
3161 | return; |
3162 | } |
3163 | for (;;) { |
3164 | u32 cur = atomic_load(a: barrier, mo: memory_order_relaxed); |
3165 | if (barrier_epoch(value: cur) != old_epoch) |
3166 | return; |
3167 | FutexWait(p: barrier, cmp: cur); |
3168 | } |
3169 | } |
3170 | |
3171 | } // extern "C" |
3172 | |