1//===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of ThreadSanitizer (TSan), a race detector.
10//
11// Main internal TSan header file.
12//
13// Ground rules:
14// - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
15// function-scope locals)
16// - All functions/classes/etc reside in namespace __tsan, except for those
17// declared in tsan_interface.h.
18// - Platform-specific files should be used instead of ifdefs (*).
19// - No system headers included in header files (*).
20// - Platform specific headres included only into platform-specific files (*).
21//
22// (*) Except when inlining is critical for performance.
23//===----------------------------------------------------------------------===//
24
25#ifndef TSAN_RTL_H
26#define TSAN_RTL_H
27
28#include "sanitizer_common/sanitizer_allocator.h"
29#include "sanitizer_common/sanitizer_allocator_internal.h"
30#include "sanitizer_common/sanitizer_asm.h"
31#include "sanitizer_common/sanitizer_common.h"
32#include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
33#include "sanitizer_common/sanitizer_libignore.h"
34#include "sanitizer_common/sanitizer_suppressions.h"
35#include "sanitizer_common/sanitizer_thread_registry.h"
36#include "sanitizer_common/sanitizer_vector.h"
37#include "tsan_defs.h"
38#include "tsan_flags.h"
39#include "tsan_ignoreset.h"
40#include "tsan_ilist.h"
41#include "tsan_mman.h"
42#include "tsan_mutexset.h"
43#include "tsan_platform.h"
44#include "tsan_report.h"
45#include "tsan_shadow.h"
46#include "tsan_stack_trace.h"
47#include "tsan_sync.h"
48#include "tsan_trace.h"
49#include "tsan_vector_clock.h"
50
51#if SANITIZER_WORDSIZE != 64
52# error "ThreadSanitizer is supported only on 64-bit platforms"
53#endif
54
55namespace __tsan {
56
57#if !SANITIZER_GO
58struct MapUnmapCallback;
59# if defined(__mips64) || defined(__aarch64__) || defined(__loongarch__) || \
60 defined(__powerpc__) || SANITIZER_RISCV64
61
62struct AP32 {
63 static const uptr kSpaceBeg = 0;
64 static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
65 static const uptr kMetadataSize = 0;
66 typedef __sanitizer::CompactSizeClassMap SizeClassMap;
67 static const uptr kRegionSizeLog = 20;
68 using AddressSpaceView = LocalAddressSpaceView;
69 typedef __tsan::MapUnmapCallback MapUnmapCallback;
70 static const uptr kFlags = 0;
71};
72typedef SizeClassAllocator32<AP32> PrimaryAllocator;
73#else
74struct AP64 { // Allocator64 parameters. Deliberately using a short name.
75# if defined(__s390x__)
76 typedef MappingS390x Mapping;
77# else
78 typedef Mapping48AddressSpace Mapping;
79# endif
80 static const uptr kSpaceBeg = Mapping::kHeapMemBeg;
81 static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg;
82 static const uptr kMetadataSize = 0;
83 typedef DefaultSizeClassMap SizeClassMap;
84 typedef __tsan::MapUnmapCallback MapUnmapCallback;
85 static const uptr kFlags = 0;
86 using AddressSpaceView = LocalAddressSpaceView;
87};
88typedef SizeClassAllocator64<AP64> PrimaryAllocator;
89#endif
90typedef CombinedAllocator<PrimaryAllocator> Allocator;
91typedef Allocator::AllocatorCache AllocatorCache;
92Allocator *allocator();
93#endif
94
95struct ThreadSignalContext;
96
97struct JmpBuf {
98 uptr sp;
99 int int_signal_send;
100 bool in_blocking_func;
101 uptr in_signal_handler;
102 uptr *shadow_stack_pos;
103};
104
105// A Processor represents a physical thread, or a P for Go.
106// It is used to store internal resources like allocate cache, and does not
107// participate in race-detection logic (invisible to end user).
108// In C++ it is tied to an OS thread just like ThreadState, however ideally
109// it should be tied to a CPU (this way we will have fewer allocator caches).
110// In Go it is tied to a P, so there are significantly fewer Processor's than
111// ThreadState's (which are tied to Gs).
112// A ThreadState must be wired with a Processor to handle events.
113struct Processor {
114 ThreadState *thr; // currently wired thread, or nullptr
115#if !SANITIZER_GO
116 AllocatorCache alloc_cache;
117 InternalAllocatorCache internal_alloc_cache;
118#endif
119 DenseSlabAllocCache block_cache;
120 DenseSlabAllocCache sync_cache;
121 DDPhysicalThread *dd_pt;
122};
123
124#if !SANITIZER_GO
125// ScopedGlobalProcessor temporary setups a global processor for the current
126// thread, if it does not have one. Intended for interceptors that can run
127// at the very thread end, when we already destroyed the thread processor.
128struct ScopedGlobalProcessor {
129 ScopedGlobalProcessor();
130 ~ScopedGlobalProcessor();
131};
132#endif
133
134struct TidEpoch {
135 Tid tid;
136 Epoch epoch;
137};
138
139struct alignas(SANITIZER_CACHE_LINE_SIZE) TidSlot {
140 Mutex mtx;
141 Sid sid;
142 atomic_uint32_t raw_epoch;
143 ThreadState *thr;
144 Vector<TidEpoch> journal;
145 INode node;
146
147 Epoch epoch() const {
148 return static_cast<Epoch>(atomic_load(a: &raw_epoch, mo: memory_order_relaxed));
149 }
150
151 void SetEpoch(Epoch v) {
152 atomic_store(a: &raw_epoch, v: static_cast<u32>(v), mo: memory_order_relaxed);
153 }
154
155 TidSlot();
156};
157
158// This struct is stored in TLS.
159struct alignas(SANITIZER_CACHE_LINE_SIZE) ThreadState {
160 FastState fast_state;
161 int ignore_sync;
162#if !SANITIZER_GO
163 int ignore_interceptors;
164#endif
165 uptr *shadow_stack_pos;
166
167 // Current position in tctx->trace.Back()->events (Event*).
168 atomic_uintptr_t trace_pos;
169 // PC of the last memory access, used to compute PC deltas in the trace.
170 uptr trace_prev_pc;
171
172 // Technically `current` should be a separate THREADLOCAL variable;
173 // but it is placed here in order to share cache line with previous fields.
174 ThreadState* current;
175
176 atomic_sint32_t pending_signals;
177
178 VectorClock clock;
179
180 // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
181 // We do not distinguish beteween ignoring reads and writes
182 // for better performance.
183 int ignore_reads_and_writes;
184 int suppress_reports;
185 // Go does not support ignores.
186#if !SANITIZER_GO
187 IgnoreSet mop_ignore_set;
188 IgnoreSet sync_ignore_set;
189#endif
190 uptr *shadow_stack;
191 uptr *shadow_stack_end;
192#if !SANITIZER_GO
193 Vector<JmpBuf> jmp_bufs;
194 int in_symbolizer;
195 atomic_uintptr_t in_blocking_func;
196 bool in_ignored_lib;
197 bool is_inited;
198#endif
199 MutexSet mset;
200 bool is_dead;
201 const Tid tid;
202 uptr stk_addr;
203 uptr stk_size;
204 uptr tls_addr;
205 uptr tls_size;
206 ThreadContext *tctx;
207
208 DDLogicalThread *dd_lt;
209
210 TidSlot *slot;
211 uptr slot_epoch;
212 bool slot_locked;
213
214 // Current wired Processor, or nullptr. Required to handle any events.
215 Processor *proc1;
216#if !SANITIZER_GO
217 Processor *proc() { return proc1; }
218#else
219 Processor *proc();
220#endif
221
222 atomic_uintptr_t in_signal_handler;
223 atomic_uintptr_t signal_ctx;
224
225#if !SANITIZER_GO
226 StackID last_sleep_stack_id;
227 VectorClock last_sleep_clock;
228#endif
229
230 // Set in regions of runtime that must be signal-safe and fork-safe.
231 // If set, malloc must not be called.
232 int nomalloc;
233
234 const ReportDesc *current_report;
235
236 explicit ThreadState(Tid tid);
237};
238
239#if !SANITIZER_GO
240#if SANITIZER_APPLE || SANITIZER_ANDROID
241ThreadState *cur_thread();
242void set_cur_thread(ThreadState *thr);
243void cur_thread_finalize();
244inline ThreadState *cur_thread_init() { return cur_thread(); }
245# else
246__attribute__((tls_model("initial-exec")))
247extern THREADLOCAL char cur_thread_placeholder[];
248inline ThreadState *cur_thread() {
249 return reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current;
250}
251inline ThreadState *cur_thread_init() {
252 ThreadState *thr = reinterpret_cast<ThreadState *>(cur_thread_placeholder);
253 if (UNLIKELY(!thr->current))
254 thr->current = thr;
255 return thr->current;
256}
257inline void set_cur_thread(ThreadState *thr) {
258 reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current = thr;
259}
260inline void cur_thread_finalize() { }
261# endif // SANITIZER_APPLE || SANITIZER_ANDROID
262#endif // SANITIZER_GO
263
264class ThreadContext final : public ThreadContextBase {
265 public:
266 explicit ThreadContext(Tid tid);
267 ~ThreadContext();
268 ThreadState *thr;
269 StackID creation_stack_id;
270 VectorClock *sync;
271 uptr sync_epoch;
272 Trace trace;
273
274 // Override superclass callbacks.
275 void OnDead() override;
276 void OnJoined(void *arg) override;
277 void OnFinished() override;
278 void OnStarted(void *arg) override;
279 void OnCreated(void *arg) override;
280 void OnReset() override;
281 void OnDetached(void *arg) override;
282};
283
284struct RacyStacks {
285 MD5Hash hash[2];
286 bool operator==(const RacyStacks &other) const;
287};
288
289struct RacyAddress {
290 uptr addr_min;
291 uptr addr_max;
292};
293
294struct FiredSuppression {
295 ReportType type;
296 uptr pc_or_addr;
297 Suppression *supp;
298};
299
300struct Context {
301 Context();
302
303 bool initialized;
304#if !SANITIZER_GO
305 bool after_multithreaded_fork;
306#endif
307
308 MetaMap metamap;
309
310 Mutex report_mtx;
311 int nreported;
312 atomic_uint64_t last_symbolize_time_ns;
313
314 void *background_thread;
315 atomic_uint32_t stop_background_thread;
316
317 ThreadRegistry thread_registry;
318
319 // This is used to prevent a very unlikely but very pathological behavior.
320 // Since memory access handling is not synchronized with DoReset,
321 // a thread running concurrently with DoReset can leave a bogus shadow value
322 // that will be later falsely detected as a race. For such false races
323 // RestoreStack will return false and we will not report it.
324 // However, consider that a thread leaves a whole lot of such bogus values
325 // and these values are later read by a whole lot of threads.
326 // This will cause massive amounts of ReportRace calls and lots of
327 // serialization. In very pathological cases the resulting slowdown
328 // can be >100x. This is very unlikely, but it was presumably observed
329 // in practice: https://github.com/google/sanitizers/issues/1552
330 // If this happens, previous access sid+epoch will be the same for all of
331 // these false races b/c if the thread will try to increment epoch, it will
332 // notice that DoReset has happened and will stop producing bogus shadow
333 // values. So, last_spurious_race is used to remember the last sid+epoch
334 // for which RestoreStack returned false. Then it is used to filter out
335 // races with the same sid+epoch very early and quickly.
336 // It is of course possible that multiple threads left multiple bogus shadow
337 // values and all of them are read by lots of threads at the same time.
338 // In such case last_spurious_race will only be able to deduplicate a few
339 // races from one thread, then few from another and so on. An alternative
340 // would be to hold an array of such sid+epoch, but we consider such scenario
341 // as even less likely.
342 // Note: this can lead to some rare false negatives as well:
343 // 1. When a legit access with the same sid+epoch participates in a race
344 // as the "previous" memory access, it will be wrongly filtered out.
345 // 2. When RestoreStack returns false for a legit memory access because it
346 // was already evicted from the thread trace, we will still remember it in
347 // last_spurious_race. Then if there is another racing memory access from
348 // the same thread that happened in the same epoch, but was stored in the
349 // next thread trace part (which is still preserved in the thread trace),
350 // we will also wrongly filter it out while RestoreStack would actually
351 // succeed for that second memory access.
352 RawShadow last_spurious_race;
353
354 Mutex racy_mtx;
355 Vector<RacyStacks> racy_stacks;
356 // Number of fired suppressions may be large enough.
357 Mutex fired_suppressions_mtx;
358 InternalMmapVector<FiredSuppression> fired_suppressions;
359 DDetector *dd;
360
361 Flags flags;
362 fd_t memprof_fd;
363
364 // The last slot index (kFreeSid) is used to denote freed memory.
365 TidSlot slots[kThreadSlotCount - 1];
366
367 // Protects global_epoch, slot_queue, trace_part_recycle.
368 Mutex slot_mtx;
369 uptr global_epoch; // guarded by slot_mtx and by all slot mutexes
370 bool resetting; // global reset is in progress
371 IList<TidSlot, &TidSlot::node> slot_queue SANITIZER_GUARDED_BY(slot_mtx);
372 IList<TraceHeader, &TraceHeader::global, TracePart> trace_part_recycle
373 SANITIZER_GUARDED_BY(slot_mtx);
374 uptr trace_part_total_allocated SANITIZER_GUARDED_BY(slot_mtx);
375 uptr trace_part_recycle_finished SANITIZER_GUARDED_BY(slot_mtx);
376 uptr trace_part_finished_excess SANITIZER_GUARDED_BY(slot_mtx);
377#if SANITIZER_GO
378 uptr mapped_shadow_begin;
379 uptr mapped_shadow_end;
380#endif
381};
382
383extern Context *ctx; // The one and the only global runtime context.
384
385ALWAYS_INLINE Flags *flags() {
386 return &ctx->flags;
387}
388
389struct ScopedIgnoreInterceptors {
390 ScopedIgnoreInterceptors() {
391#if !SANITIZER_GO
392 cur_thread()->ignore_interceptors++;
393#endif
394 }
395
396 ~ScopedIgnoreInterceptors() {
397#if !SANITIZER_GO
398 cur_thread()->ignore_interceptors--;
399#endif
400 }
401};
402
403const char *GetObjectTypeFromTag(uptr tag);
404const char *GetReportHeaderFromTag(uptr tag);
405uptr TagFromShadowStackFrame(uptr pc);
406
407class ScopedReportBase {
408 public:
409 void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, Tid tid,
410 StackTrace stack, const MutexSet *mset);
411 void AddStack(StackTrace stack, bool suppressable = false);
412 void AddThread(const ThreadContext *tctx, bool suppressable = false);
413 void AddThread(Tid tid, bool suppressable = false);
414 void AddUniqueTid(Tid unique_tid);
415 int AddMutex(uptr addr, StackID creation_stack_id);
416 void AddLocation(uptr addr, uptr size);
417 void AddSleep(StackID stack_id);
418 void SetCount(int count);
419 void SetSigNum(int sig);
420
421 const ReportDesc *GetReport() const;
422
423 protected:
424 ScopedReportBase(ReportType typ, uptr tag);
425 ~ScopedReportBase();
426
427 private:
428 ReportDesc *rep_;
429 // Symbolizer makes lots of intercepted calls. If we try to process them,
430 // at best it will cause deadlocks on internal mutexes.
431 ScopedIgnoreInterceptors ignore_interceptors_;
432
433 ScopedReportBase(const ScopedReportBase &) = delete;
434 void operator=(const ScopedReportBase &) = delete;
435};
436
437class ScopedReport : public ScopedReportBase {
438 public:
439 explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone);
440 ~ScopedReport();
441
442 private:
443 ScopedErrorReportLock lock_;
444};
445
446bool ShouldReport(ThreadState *thr, ReportType typ);
447ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack);
448
449// The stack could look like:
450// <start> | <main> | <foo> | tag | <bar>
451// This will extract the tag and keep:
452// <start> | <main> | <foo> | <bar>
453template<typename StackTraceTy>
454void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) {
455 if (stack->size < 2) return;
456 uptr possible_tag_pc = stack->trace[stack->size - 2];
457 uptr possible_tag = TagFromShadowStackFrame(pc: possible_tag_pc);
458 if (possible_tag == kExternalTagNone) return;
459 stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1];
460 stack->size -= 1;
461 if (tag) *tag = possible_tag;
462}
463
464template<typename StackTraceTy>
465void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack,
466 uptr *tag = nullptr) {
467 uptr size = thr->shadow_stack_pos - thr->shadow_stack;
468 uptr start = 0;
469 if (size + !!toppc > kStackTraceMax) {
470 start = size + !!toppc - kStackTraceMax;
471 size = kStackTraceMax - !!toppc;
472 }
473 stack->Init(&thr->shadow_stack[start], size, toppc);
474 ExtractTagFromStack(stack, tag);
475}
476
477#define GET_STACK_TRACE_FATAL(thr, pc) \
478 VarSizeStackTrace stack; \
479 ObtainCurrentStack(thr, pc, &stack); \
480 stack.ReverseOrder();
481
482void MapShadow(uptr addr, uptr size);
483void MapThreadTrace(uptr addr, uptr size, const char *name);
484void DontNeedShadowFor(uptr addr, uptr size);
485void UnmapShadow(ThreadState *thr, uptr addr, uptr size);
486void InitializeShadowMemory();
487void DontDumpShadow(uptr addr, uptr size);
488void InitializeInterceptors();
489void InitializeLibIgnore();
490void InitializeDynamicAnnotations();
491
492void ForkBefore(ThreadState *thr, uptr pc);
493void ForkParentAfter(ThreadState *thr, uptr pc);
494void ForkChildAfter(ThreadState *thr, uptr pc, bool start_thread);
495
496void ReportRace(ThreadState *thr, RawShadow *shadow_mem, Shadow cur, Shadow old,
497 AccessType typ);
498bool OutputReport(ThreadState *thr, const ScopedReport &srep);
499bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
500bool IsExpectedReport(uptr addr, uptr size);
501
502#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
503# define DPrintf Printf
504#else
505# define DPrintf(...)
506#endif
507
508#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
509# define DPrintf2 Printf
510#else
511# define DPrintf2(...)
512#endif
513
514StackID CurrentStackId(ThreadState *thr, uptr pc);
515ReportStack *SymbolizeStackId(StackID stack_id);
516void PrintCurrentStack(ThreadState *thr, uptr pc);
517void PrintCurrentStackSlow(uptr pc); // uses libunwind
518MBlock *JavaHeapBlock(uptr addr, uptr *start);
519
520void Initialize(ThreadState *thr);
521void MaybeSpawnBackgroundThread();
522int Finalize(ThreadState *thr);
523
524void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
525void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
526
527void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
528 AccessType typ);
529void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
530 AccessType typ);
531// This creates 2 non-inlined specialized versions of MemoryAccessRange.
532template <bool is_read>
533void MemoryAccessRangeT(ThreadState *thr, uptr pc, uptr addr, uptr size);
534
535ALWAYS_INLINE
536void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
537 bool is_write) {
538 if (size == 0)
539 return;
540 if (is_write)
541 MemoryAccessRangeT<false>(thr, pc, addr, size);
542 else
543 MemoryAccessRangeT<true>(thr, pc, addr, size);
544}
545
546void ShadowSet(RawShadow *p, RawShadow *end, RawShadow v);
547void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
548void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
549void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
550void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
551 uptr size);
552
553void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
554void ThreadIgnoreEnd(ThreadState *thr);
555void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
556void ThreadIgnoreSyncEnd(ThreadState *thr);
557
558Tid ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
559void ThreadStart(ThreadState *thr, Tid tid, tid_t os_id,
560 ThreadType thread_type);
561void ThreadFinish(ThreadState *thr);
562Tid ThreadConsumeTid(ThreadState *thr, uptr pc, uptr uid);
563void ThreadJoin(ThreadState *thr, uptr pc, Tid tid);
564void ThreadDetach(ThreadState *thr, uptr pc, Tid tid);
565void ThreadFinalize(ThreadState *thr);
566void ThreadSetName(ThreadState *thr, const char *name);
567int ThreadCount(ThreadState *thr);
568void ProcessPendingSignalsImpl(ThreadState *thr);
569void ThreadNotJoined(ThreadState *thr, uptr pc, Tid tid, uptr uid);
570
571Processor *ProcCreate();
572void ProcDestroy(Processor *proc);
573void ProcWire(Processor *proc, ThreadState *thr);
574void ProcUnwire(Processor *proc, ThreadState *thr);
575
576// Note: the parameter is called flagz, because flags is already taken
577// by the global function that returns flags.
578void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
579void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
580void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
581void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0,
582 int rec = 1);
583int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
584void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
585void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
586void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
587void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
588void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD
589void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr);
590
591void Acquire(ThreadState *thr, uptr pc, uptr addr);
592// AcquireGlobal synchronizes the current thread with all other threads.
593// In terms of happens-before relation, it draws a HB edge from all threads
594// (where they happen to execute right now) to the current thread. We use it to
595// handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
596// right before executing finalizers. This provides a coarse, but simple
597// approximation of the actual required synchronization.
598void AcquireGlobal(ThreadState *thr);
599void Release(ThreadState *thr, uptr pc, uptr addr);
600void ReleaseStoreAcquire(ThreadState *thr, uptr pc, uptr addr);
601void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
602void AfterSleep(ThreadState *thr, uptr pc);
603void IncrementEpoch(ThreadState *thr);
604
605#if !SANITIZER_GO
606uptr ALWAYS_INLINE HeapEnd() {
607 return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
608}
609#endif
610
611void SlotAttachAndLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx);
612void SlotDetach(ThreadState *thr);
613void SlotLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx);
614void SlotUnlock(ThreadState *thr) SANITIZER_RELEASE(thr->slot->mtx);
615void DoReset(ThreadState *thr, uptr epoch);
616void FlushShadowMemory();
617
618ThreadState *FiberCreate(ThreadState *thr, uptr pc, unsigned flags);
619void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber);
620void FiberSwitch(ThreadState *thr, uptr pc, ThreadState *fiber, unsigned flags);
621
622// These need to match __tsan_switch_to_fiber_* flags defined in
623// tsan_interface.h. See documentation there as well.
624enum FiberSwitchFlags {
625 FiberSwitchFlagNoSync = 1 << 0, // __tsan_switch_to_fiber_no_sync
626};
627
628class SlotLocker {
629 public:
630 ALWAYS_INLINE
631 SlotLocker(ThreadState *thr, bool recursive = false)
632 : thr_(thr), locked_(recursive ? thr->slot_locked : false) {
633#if !SANITIZER_GO
634 // We are in trouble if we are here with in_blocking_func set.
635 // If in_blocking_func is set, all signals will be delivered synchronously,
636 // which means we can't lock slots since the signal handler will try
637 // to lock it recursively and deadlock.
638 DCHECK(!atomic_load(&thr->in_blocking_func, memory_order_relaxed));
639#endif
640 if (!locked_)
641 SlotLock(thr: thr_);
642 }
643
644 ALWAYS_INLINE
645 ~SlotLocker() {
646 if (!locked_)
647 SlotUnlock(thr: thr_);
648 }
649
650 private:
651 ThreadState *thr_;
652 bool locked_;
653};
654
655class SlotUnlocker {
656 public:
657 SlotUnlocker(ThreadState *thr) : thr_(thr), locked_(thr->slot_locked) {
658 if (locked_)
659 SlotUnlock(thr: thr_);
660 }
661
662 ~SlotUnlocker() {
663 if (locked_)
664 SlotLock(thr: thr_);
665 }
666
667 private:
668 ThreadState *thr_;
669 bool locked_;
670};
671
672ALWAYS_INLINE void ProcessPendingSignals(ThreadState *thr) {
673 if (UNLIKELY(atomic_load_relaxed(&thr->pending_signals)))
674 ProcessPendingSignalsImpl(thr);
675}
676
677extern bool is_initialized;
678
679ALWAYS_INLINE
680void LazyInitialize(ThreadState *thr) {
681 // If we can use .preinit_array, assume that __tsan_init
682 // called from .preinit_array initializes runtime before
683 // any instrumented code except when tsan is used as a
684 // shared library.
685#if (!SANITIZER_CAN_USE_PREINIT_ARRAY || defined(SANITIZER_SHARED))
686 if (UNLIKELY(!is_initialized))
687 Initialize(thr);
688#endif
689}
690
691void TraceResetForTesting();
692void TraceSwitchPart(ThreadState *thr);
693void TraceSwitchPartImpl(ThreadState *thr);
694bool RestoreStack(EventType type, Sid sid, Epoch epoch, uptr addr, uptr size,
695 AccessType typ, Tid *ptid, VarSizeStackTrace *pstk,
696 MutexSet *pmset, uptr *ptag);
697
698template <typename EventT>
699ALWAYS_INLINE WARN_UNUSED_RESULT bool TraceAcquire(ThreadState *thr,
700 EventT **ev) {
701 // TraceSwitchPart accesses shadow_stack, but it's called infrequently,
702 // so we check it here proactively.
703 DCHECK(thr->shadow_stack);
704 Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(a: &thr->trace_pos));
705#if SANITIZER_DEBUG
706 // TraceSwitch acquires these mutexes,
707 // so we lock them here to detect deadlocks more reliably.
708 { Lock lock(&ctx->slot_mtx); }
709 { Lock lock(&thr->tctx->trace.mtx); }
710 TracePart *current = thr->tctx->trace.parts.Back();
711 if (current) {
712 DCHECK_GE(pos, &current->events[0]);
713 DCHECK_LE(pos, &current->events[TracePart::kSize]);
714 } else {
715 DCHECK_EQ(pos, nullptr);
716 }
717#endif
718 // TracePart is allocated with mmap and is at least 4K aligned.
719 // So the following check is a faster way to check for part end.
720 // It may have false positives in the middle of the trace,
721 // they are filtered out in TraceSwitch.
722 if (UNLIKELY(((uptr)(pos + 1) & TracePart::kAlignment) == 0))
723 return false;
724 *ev = reinterpret_cast<EventT *>(pos);
725 return true;
726}
727
728template <typename EventT>
729ALWAYS_INLINE void TraceRelease(ThreadState *thr, EventT *evp) {
730 DCHECK_LE(evp + 1, &thr->tctx->trace.parts.Back()->events[TracePart::kSize]);
731 atomic_store_relaxed(a: &thr->trace_pos, v: (uptr)(evp + 1));
732}
733
734template <typename EventT>
735void TraceEvent(ThreadState *thr, EventT ev) {
736 EventT *evp;
737 if (!TraceAcquire(thr, &evp)) {
738 TraceSwitchPart(thr);
739 UNUSED bool res = TraceAcquire(thr, &evp);
740 DCHECK(res);
741 }
742 *evp = ev;
743 TraceRelease(thr, evp);
744}
745
746ALWAYS_INLINE WARN_UNUSED_RESULT bool TryTraceFunc(ThreadState *thr,
747 uptr pc = 0) {
748 if (!kCollectHistory)
749 return true;
750 EventFunc *ev;
751 if (UNLIKELY(!TraceAcquire(thr, &ev)))
752 return false;
753 ev->is_access = 0;
754 ev->is_func = 1;
755 ev->pc = pc;
756 TraceRelease(thr, evp: ev);
757 return true;
758}
759
760WARN_UNUSED_RESULT
761bool TryTraceMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
762 AccessType typ);
763WARN_UNUSED_RESULT
764bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
765 AccessType typ);
766void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
767 AccessType typ);
768void TraceFunc(ThreadState *thr, uptr pc = 0);
769void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr,
770 StackID stk);
771void TraceMutexUnlock(ThreadState *thr, uptr addr);
772void TraceTime(ThreadState *thr);
773
774void TraceRestartFuncExit(ThreadState *thr);
775void TraceRestartFuncEntry(ThreadState *thr, uptr pc);
776
777void GrowShadowStack(ThreadState *thr);
778
779ALWAYS_INLINE
780void FuncEntry(ThreadState *thr, uptr pc) {
781 DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.sid(), (void *)pc);
782 if (UNLIKELY(!TryTraceFunc(thr, pc)))
783 return TraceRestartFuncEntry(thr, pc);
784 DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
785#if !SANITIZER_GO
786 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
787#else
788 if (thr->shadow_stack_pos == thr->shadow_stack_end)
789 GrowShadowStack(thr);
790#endif
791 thr->shadow_stack_pos[0] = pc;
792 thr->shadow_stack_pos++;
793}
794
795ALWAYS_INLINE
796void FuncExit(ThreadState *thr) {
797 DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.sid());
798 if (UNLIKELY(!TryTraceFunc(thr, 0)))
799 return TraceRestartFuncExit(thr);
800 DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
801#if !SANITIZER_GO
802 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
803#endif
804 thr->shadow_stack_pos--;
805}
806
807#if !SANITIZER_GO
808extern void (*on_initialize)(void);
809extern int (*on_finalize)(int);
810#endif
811} // namespace __tsan
812
813#endif // TSAN_RTL_H
814