1//===- Preprocessor.cpp - C Language Family Preprocessor Implementation ---===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Preprocessor interface.
10//
11//===----------------------------------------------------------------------===//
12//
13// Options to support:
14// -H - Print the name of each header file used.
15// -d[DNI] - Dump various things.
16// -fworking-directory - #line's with preprocessor's working dir.
17// -fpreprocessed
18// -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD
19// -W*
20// -w
21//
22// Messages to emit:
23// "Multiple include guards may be useful for:\n"
24//
25//===----------------------------------------------------------------------===//
26
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/FileManager.h"
30#include "clang/Basic/FileSystemStatCache.h"
31#include "clang/Basic/IdentifierTable.h"
32#include "clang/Basic/LLVM.h"
33#include "clang/Basic/LangOptions.h"
34#include "clang/Basic/Module.h"
35#include "clang/Basic/SourceLocation.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38#include "clang/Lex/CodeCompletionHandler.h"
39#include "clang/Lex/ExternalPreprocessorSource.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/LexDiagnostic.h"
42#include "clang/Lex/Lexer.h"
43#include "clang/Lex/LiteralSupport.h"
44#include "clang/Lex/MacroArgs.h"
45#include "clang/Lex/MacroInfo.h"
46#include "clang/Lex/ModuleLoader.h"
47#include "clang/Lex/Pragma.h"
48#include "clang/Lex/PreprocessingRecord.h"
49#include "clang/Lex/PreprocessorLexer.h"
50#include "clang/Lex/PreprocessorOptions.h"
51#include "clang/Lex/ScratchBuffer.h"
52#include "clang/Lex/Token.h"
53#include "clang/Lex/TokenLexer.h"
54#include "llvm/ADT/APInt.h"
55#include "llvm/ADT/ArrayRef.h"
56#include "llvm/ADT/DenseMap.h"
57#include "llvm/ADT/STLExtras.h"
58#include "llvm/ADT/SmallString.h"
59#include "llvm/ADT/SmallVector.h"
60#include "llvm/ADT/StringRef.h"
61#include "llvm/ADT/iterator_range.h"
62#include "llvm/Support/Capacity.h"
63#include "llvm/Support/ErrorHandling.h"
64#include "llvm/Support/MemoryBuffer.h"
65#include "llvm/Support/raw_ostream.h"
66#include <algorithm>
67#include <cassert>
68#include <memory>
69#include <optional>
70#include <string>
71#include <utility>
72#include <vector>
73
74using namespace clang;
75
76/// Minimum distance between two check points, in tokens.
77static constexpr unsigned CheckPointStepSize = 1024;
78
79LLVM_INSTANTIATE_REGISTRY(PragmaHandlerRegistry)
80
81ExternalPreprocessorSource::~ExternalPreprocessorSource() = default;
82
83Preprocessor::Preprocessor(std::shared_ptr<PreprocessorOptions> PPOpts,
84 DiagnosticsEngine &diags, const LangOptions &opts,
85 SourceManager &SM, HeaderSearch &Headers,
86 ModuleLoader &TheModuleLoader,
87 IdentifierInfoLookup *IILookup, bool OwnsHeaders,
88 TranslationUnitKind TUKind)
89 : PPOpts(std::move(PPOpts)), Diags(&diags), LangOpts(opts),
90 FileMgr(Headers.getFileMgr()), SourceMgr(SM),
91 ScratchBuf(new ScratchBuffer(SourceMgr)), HeaderInfo(Headers),
92 TheModuleLoader(TheModuleLoader), ExternalSource(nullptr),
93 // As the language options may have not been loaded yet (when
94 // deserializing an ASTUnit), adding keywords to the identifier table is
95 // deferred to Preprocessor::Initialize().
96 Identifiers(IILookup), PragmaHandlers(new PragmaNamespace(StringRef())),
97 TUKind(TUKind), SkipMainFilePreamble(0, true),
98 CurSubmoduleState(&NullSubmoduleState) {
99 OwnsHeaderSearch = OwnsHeaders;
100
101 // Default to discarding comments.
102 KeepComments = false;
103 KeepMacroComments = false;
104 SuppressIncludeNotFoundError = false;
105
106 // Macro expansion is enabled.
107 DisableMacroExpansion = false;
108 MacroExpansionInDirectivesOverride = false;
109 InMacroArgs = false;
110 ArgMacro = nullptr;
111 InMacroArgPreExpansion = false;
112 NumCachedTokenLexers = 0;
113 PragmasEnabled = true;
114 ParsingIfOrElifDirective = false;
115 PreprocessedOutput = false;
116
117 // We haven't read anything from the external source.
118 ReadMacrosFromExternalSource = false;
119
120 BuiltinInfo = std::make_unique<Builtin::Context>();
121
122 // "Poison" __VA_ARGS__, __VA_OPT__ which can only appear in the expansion of
123 // a macro. They get unpoisoned where it is allowed.
124 (Ident__VA_ARGS__ = getIdentifierInfo(Name: "__VA_ARGS__"))->setIsPoisoned();
125 SetPoisonReason(II: Ident__VA_ARGS__,DiagID: diag::ext_pp_bad_vaargs_use);
126 (Ident__VA_OPT__ = getIdentifierInfo(Name: "__VA_OPT__"))->setIsPoisoned();
127 SetPoisonReason(II: Ident__VA_OPT__,DiagID: diag::ext_pp_bad_vaopt_use);
128
129 // Initialize the pragma handlers.
130 RegisterBuiltinPragmas();
131
132 // Initialize builtin macros like __LINE__ and friends.
133 RegisterBuiltinMacros();
134
135 if(LangOpts.Borland) {
136 Ident__exception_info = getIdentifierInfo(Name: "_exception_info");
137 Ident___exception_info = getIdentifierInfo(Name: "__exception_info");
138 Ident_GetExceptionInfo = getIdentifierInfo(Name: "GetExceptionInformation");
139 Ident__exception_code = getIdentifierInfo(Name: "_exception_code");
140 Ident___exception_code = getIdentifierInfo(Name: "__exception_code");
141 Ident_GetExceptionCode = getIdentifierInfo(Name: "GetExceptionCode");
142 Ident__abnormal_termination = getIdentifierInfo(Name: "_abnormal_termination");
143 Ident___abnormal_termination = getIdentifierInfo(Name: "__abnormal_termination");
144 Ident_AbnormalTermination = getIdentifierInfo(Name: "AbnormalTermination");
145 } else {
146 Ident__exception_info = Ident__exception_code = nullptr;
147 Ident__abnormal_termination = Ident___exception_info = nullptr;
148 Ident___exception_code = Ident___abnormal_termination = nullptr;
149 Ident_GetExceptionInfo = Ident_GetExceptionCode = nullptr;
150 Ident_AbnormalTermination = nullptr;
151 }
152
153 // Default incremental processing to -fincremental-extensions, clients can
154 // override with `enableIncrementalProcessing` if desired.
155 IncrementalProcessing = LangOpts.IncrementalExtensions;
156
157 // If using a PCH where a #pragma hdrstop is expected, start skipping tokens.
158 if (usingPCHWithPragmaHdrStop())
159 SkippingUntilPragmaHdrStop = true;
160
161 // If using a PCH with a through header, start skipping tokens.
162 if (!this->PPOpts->PCHThroughHeader.empty() &&
163 !this->PPOpts->ImplicitPCHInclude.empty())
164 SkippingUntilPCHThroughHeader = true;
165
166 if (this->PPOpts->GeneratePreamble)
167 PreambleConditionalStack.startRecording();
168
169 MaxTokens = LangOpts.MaxTokens;
170}
171
172Preprocessor::~Preprocessor() {
173 assert(BacktrackPositions.empty() && "EnableBacktrack/Backtrack imbalance!");
174
175 IncludeMacroStack.clear();
176
177 // Free any cached macro expanders.
178 // This populates MacroArgCache, so all TokenLexers need to be destroyed
179 // before the code below that frees up the MacroArgCache list.
180 std::fill(first: TokenLexerCache, last: TokenLexerCache + NumCachedTokenLexers, value: nullptr);
181 CurTokenLexer.reset();
182
183 // Free any cached MacroArgs.
184 for (MacroArgs *ArgList = MacroArgCache; ArgList;)
185 ArgList = ArgList->deallocate();
186
187 // Delete the header search info, if we own it.
188 if (OwnsHeaderSearch)
189 delete &HeaderInfo;
190}
191
192void Preprocessor::Initialize(const TargetInfo &Target,
193 const TargetInfo *AuxTarget) {
194 assert((!this->Target || this->Target == &Target) &&
195 "Invalid override of target information");
196 this->Target = &Target;
197
198 assert((!this->AuxTarget || this->AuxTarget == AuxTarget) &&
199 "Invalid override of aux target information.");
200 this->AuxTarget = AuxTarget;
201
202 // Initialize information about built-ins.
203 BuiltinInfo->InitializeTarget(Target, AuxTarget);
204 HeaderInfo.setTarget(Target);
205
206 // Populate the identifier table with info about keywords for the current language.
207 Identifiers.AddKeywords(LangOpts);
208
209 // Initialize the __FTL_EVAL_METHOD__ macro to the TargetInfo.
210 setTUFPEvalMethod(getTargetInfo().getFPEvalMethod());
211
212 if (getLangOpts().getFPEvalMethod() == LangOptions::FEM_UnsetOnCommandLine)
213 // Use setting from TargetInfo.
214 setCurrentFPEvalMethod(PragmaLoc: SourceLocation(), Val: Target.getFPEvalMethod());
215 else
216 // Set initial value of __FLT_EVAL_METHOD__ from the command line.
217 setCurrentFPEvalMethod(PragmaLoc: SourceLocation(), Val: getLangOpts().getFPEvalMethod());
218}
219
220void Preprocessor::InitializeForModelFile() {
221 NumEnteredSourceFiles = 0;
222
223 // Reset pragmas
224 PragmaHandlersBackup = std::move(PragmaHandlers);
225 PragmaHandlers = std::make_unique<PragmaNamespace>(args: StringRef());
226 RegisterBuiltinPragmas();
227
228 // Reset PredefinesFileID
229 PredefinesFileID = FileID();
230}
231
232void Preprocessor::FinalizeForModelFile() {
233 NumEnteredSourceFiles = 1;
234
235 PragmaHandlers = std::move(PragmaHandlersBackup);
236}
237
238void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const {
239 llvm::errs() << tok::getTokenName(Kind: Tok.getKind());
240
241 if (!Tok.isAnnotation())
242 llvm::errs() << " '" << getSpelling(Tok) << "'";
243
244 if (!DumpFlags) return;
245
246 llvm::errs() << "\t";
247 if (Tok.isAtStartOfLine())
248 llvm::errs() << " [StartOfLine]";
249 if (Tok.hasLeadingSpace())
250 llvm::errs() << " [LeadingSpace]";
251 if (Tok.isExpandDisabled())
252 llvm::errs() << " [ExpandDisabled]";
253 if (Tok.needsCleaning()) {
254 const char *Start = SourceMgr.getCharacterData(SL: Tok.getLocation());
255 llvm::errs() << " [UnClean='" << StringRef(Start, Tok.getLength())
256 << "']";
257 }
258
259 llvm::errs() << "\tLoc=<";
260 DumpLocation(Loc: Tok.getLocation());
261 llvm::errs() << ">";
262}
263
264void Preprocessor::DumpLocation(SourceLocation Loc) const {
265 Loc.print(OS&: llvm::errs(), SM: SourceMgr);
266}
267
268void Preprocessor::DumpMacro(const MacroInfo &MI) const {
269 llvm::errs() << "MACRO: ";
270 for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) {
271 DumpToken(Tok: MI.getReplacementToken(Tok: i));
272 llvm::errs() << " ";
273 }
274 llvm::errs() << "\n";
275}
276
277void Preprocessor::PrintStats() {
278 llvm::errs() << "\n*** Preprocessor Stats:\n";
279 llvm::errs() << NumDirectives << " directives found:\n";
280 llvm::errs() << " " << NumDefined << " #define.\n";
281 llvm::errs() << " " << NumUndefined << " #undef.\n";
282 llvm::errs() << " #include/#include_next/#import:\n";
283 llvm::errs() << " " << NumEnteredSourceFiles << " source files entered.\n";
284 llvm::errs() << " " << MaxIncludeStackDepth << " max include stack depth\n";
285 llvm::errs() << " " << NumIf << " #if/#ifndef/#ifdef.\n";
286 llvm::errs() << " " << NumElse << " #else/#elif/#elifdef/#elifndef.\n";
287 llvm::errs() << " " << NumEndif << " #endif.\n";
288 llvm::errs() << " " << NumPragma << " #pragma.\n";
289 llvm::errs() << NumSkipped << " #if/#ifndef#ifdef regions skipped\n";
290
291 llvm::errs() << NumMacroExpanded << "/" << NumFnMacroExpanded << "/"
292 << NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, "
293 << NumFastMacroExpanded << " on the fast path.\n";
294 llvm::errs() << (NumFastTokenPaste+NumTokenPaste)
295 << " token paste (##) operations performed, "
296 << NumFastTokenPaste << " on the fast path.\n";
297
298 llvm::errs() << "\nPreprocessor Memory: " << getTotalMemory() << "B total";
299
300 llvm::errs() << "\n BumpPtr: " << BP.getTotalMemory();
301 llvm::errs() << "\n Macro Expanded Tokens: "
302 << llvm::capacity_in_bytes(X: MacroExpandedTokens);
303 llvm::errs() << "\n Predefines Buffer: " << Predefines.capacity();
304 // FIXME: List information for all submodules.
305 llvm::errs() << "\n Macros: "
306 << llvm::capacity_in_bytes(X: CurSubmoduleState->Macros);
307 llvm::errs() << "\n #pragma push_macro Info: "
308 << llvm::capacity_in_bytes(X: PragmaPushMacroInfo);
309 llvm::errs() << "\n Poison Reasons: "
310 << llvm::capacity_in_bytes(X: PoisonReasons);
311 llvm::errs() << "\n Comment Handlers: "
312 << llvm::capacity_in_bytes(x: CommentHandlers) << "\n";
313}
314
315Preprocessor::macro_iterator
316Preprocessor::macro_begin(bool IncludeExternalMacros) const {
317 if (IncludeExternalMacros && ExternalSource &&
318 !ReadMacrosFromExternalSource) {
319 ReadMacrosFromExternalSource = true;
320 ExternalSource->ReadDefinedMacros();
321 }
322
323 // Make sure we cover all macros in visible modules.
324 for (const ModuleMacro &Macro : ModuleMacros)
325 CurSubmoduleState->Macros.insert(KV: std::make_pair(x: Macro.II, y: MacroState()));
326
327 return CurSubmoduleState->Macros.begin();
328}
329
330size_t Preprocessor::getTotalMemory() const {
331 return BP.getTotalMemory()
332 + llvm::capacity_in_bytes(X: MacroExpandedTokens)
333 + Predefines.capacity() /* Predefines buffer. */
334 // FIXME: Include sizes from all submodules, and include MacroInfo sizes,
335 // and ModuleMacros.
336 + llvm::capacity_in_bytes(X: CurSubmoduleState->Macros)
337 + llvm::capacity_in_bytes(X: PragmaPushMacroInfo)
338 + llvm::capacity_in_bytes(X: PoisonReasons)
339 + llvm::capacity_in_bytes(x: CommentHandlers);
340}
341
342Preprocessor::macro_iterator
343Preprocessor::macro_end(bool IncludeExternalMacros) const {
344 if (IncludeExternalMacros && ExternalSource &&
345 !ReadMacrosFromExternalSource) {
346 ReadMacrosFromExternalSource = true;
347 ExternalSource->ReadDefinedMacros();
348 }
349
350 return CurSubmoduleState->Macros.end();
351}
352
353/// Compares macro tokens with a specified token value sequence.
354static bool MacroDefinitionEquals(const MacroInfo *MI,
355 ArrayRef<TokenValue> Tokens) {
356 return Tokens.size() == MI->getNumTokens() &&
357 std::equal(first1: Tokens.begin(), last1: Tokens.end(), first2: MI->tokens_begin());
358}
359
360StringRef Preprocessor::getLastMacroWithSpelling(
361 SourceLocation Loc,
362 ArrayRef<TokenValue> Tokens) const {
363 SourceLocation BestLocation;
364 StringRef BestSpelling;
365 for (Preprocessor::macro_iterator I = macro_begin(), E = macro_end();
366 I != E; ++I) {
367 const MacroDirective::DefInfo
368 Def = I->second.findDirectiveAtLoc(Loc, SourceMgr);
369 if (!Def || !Def.getMacroInfo())
370 continue;
371 if (!Def.getMacroInfo()->isObjectLike())
372 continue;
373 if (!MacroDefinitionEquals(MI: Def.getMacroInfo(), Tokens))
374 continue;
375 SourceLocation Location = Def.getLocation();
376 // Choose the macro defined latest.
377 if (BestLocation.isInvalid() ||
378 (Location.isValid() &&
379 SourceMgr.isBeforeInTranslationUnit(LHS: BestLocation, RHS: Location))) {
380 BestLocation = Location;
381 BestSpelling = I->first->getName();
382 }
383 }
384 return BestSpelling;
385}
386
387void Preprocessor::recomputeCurLexerKind() {
388 if (CurLexer)
389 CurLexerCallback = CurLexer->isDependencyDirectivesLexer()
390 ? CLK_DependencyDirectivesLexer
391 : CLK_Lexer;
392 else if (CurTokenLexer)
393 CurLexerCallback = CLK_TokenLexer;
394 else
395 CurLexerCallback = CLK_CachingLexer;
396}
397
398bool Preprocessor::SetCodeCompletionPoint(FileEntryRef File,
399 unsigned CompleteLine,
400 unsigned CompleteColumn) {
401 assert(CompleteLine && CompleteColumn && "Starts from 1:1");
402 assert(!CodeCompletionFile && "Already set");
403
404 // Load the actual file's contents.
405 std::optional<llvm::MemoryBufferRef> Buffer =
406 SourceMgr.getMemoryBufferForFileOrNone(File);
407 if (!Buffer)
408 return true;
409
410 // Find the byte position of the truncation point.
411 const char *Position = Buffer->getBufferStart();
412 for (unsigned Line = 1; Line < CompleteLine; ++Line) {
413 for (; *Position; ++Position) {
414 if (*Position != '\r' && *Position != '\n')
415 continue;
416
417 // Eat \r\n or \n\r as a single line.
418 if ((Position[1] == '\r' || Position[1] == '\n') &&
419 Position[0] != Position[1])
420 ++Position;
421 ++Position;
422 break;
423 }
424 }
425
426 Position += CompleteColumn - 1;
427
428 // If pointing inside the preamble, adjust the position at the beginning of
429 // the file after the preamble.
430 if (SkipMainFilePreamble.first &&
431 SourceMgr.getFileEntryForID(FID: SourceMgr.getMainFileID()) == File) {
432 if (Position - Buffer->getBufferStart() < SkipMainFilePreamble.first)
433 Position = Buffer->getBufferStart() + SkipMainFilePreamble.first;
434 }
435
436 if (Position > Buffer->getBufferEnd())
437 Position = Buffer->getBufferEnd();
438
439 CodeCompletionFile = File;
440 CodeCompletionOffset = Position - Buffer->getBufferStart();
441
442 auto NewBuffer = llvm::WritableMemoryBuffer::getNewUninitMemBuffer(
443 Size: Buffer->getBufferSize() + 1, BufferName: Buffer->getBufferIdentifier());
444 char *NewBuf = NewBuffer->getBufferStart();
445 char *NewPos = std::copy(first: Buffer->getBufferStart(), last: Position, result: NewBuf);
446 *NewPos = '\0';
447 std::copy(first: Position, last: Buffer->getBufferEnd(), result: NewPos+1);
448 SourceMgr.overrideFileContents(SourceFile: File, Buffer: std::move(NewBuffer));
449
450 return false;
451}
452
453void Preprocessor::CodeCompleteIncludedFile(llvm::StringRef Dir,
454 bool IsAngled) {
455 setCodeCompletionReached();
456 if (CodeComplete)
457 CodeComplete->CodeCompleteIncludedFile(Dir, IsAngled);
458}
459
460void Preprocessor::CodeCompleteNaturalLanguage() {
461 setCodeCompletionReached();
462 if (CodeComplete)
463 CodeComplete->CodeCompleteNaturalLanguage();
464}
465
466/// getSpelling - This method is used to get the spelling of a token into a
467/// SmallVector. Note that the returned StringRef may not point to the
468/// supplied buffer if a copy can be avoided.
469StringRef Preprocessor::getSpelling(const Token &Tok,
470 SmallVectorImpl<char> &Buffer,
471 bool *Invalid) const {
472 // NOTE: this has to be checked *before* testing for an IdentifierInfo.
473 if (Tok.isNot(K: tok::raw_identifier) && !Tok.hasUCN()) {
474 // Try the fast path.
475 if (const IdentifierInfo *II = Tok.getIdentifierInfo())
476 return II->getName();
477 }
478
479 // Resize the buffer if we need to copy into it.
480 if (Tok.needsCleaning())
481 Buffer.resize(N: Tok.getLength());
482
483 const char *Ptr = Buffer.data();
484 unsigned Len = getSpelling(Tok, Buffer&: Ptr, Invalid);
485 return StringRef(Ptr, Len);
486}
487
488/// CreateString - Plop the specified string into a scratch buffer and return a
489/// location for it. If specified, the source location provides a source
490/// location for the token.
491void Preprocessor::CreateString(StringRef Str, Token &Tok,
492 SourceLocation ExpansionLocStart,
493 SourceLocation ExpansionLocEnd) {
494 Tok.setLength(Str.size());
495
496 const char *DestPtr;
497 SourceLocation Loc = ScratchBuf->getToken(Buf: Str.data(), Len: Str.size(), DestPtr);
498
499 if (ExpansionLocStart.isValid())
500 Loc = SourceMgr.createExpansionLoc(SpellingLoc: Loc, ExpansionLocStart,
501 ExpansionLocEnd, Length: Str.size());
502 Tok.setLocation(Loc);
503
504 // If this is a raw identifier or a literal token, set the pointer data.
505 if (Tok.is(K: tok::raw_identifier))
506 Tok.setRawIdentifierData(DestPtr);
507 else if (Tok.isLiteral())
508 Tok.setLiteralData(DestPtr);
509}
510
511SourceLocation Preprocessor::SplitToken(SourceLocation Loc, unsigned Length) {
512 auto &SM = getSourceManager();
513 SourceLocation SpellingLoc = SM.getSpellingLoc(Loc);
514 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc: SpellingLoc);
515 bool Invalid = false;
516 StringRef Buffer = SM.getBufferData(FID: LocInfo.first, Invalid: &Invalid);
517 if (Invalid)
518 return SourceLocation();
519
520 // FIXME: We could consider re-using spelling for tokens we see repeatedly.
521 const char *DestPtr;
522 SourceLocation Spelling =
523 ScratchBuf->getToken(Buf: Buffer.data() + LocInfo.second, Len: Length, DestPtr);
524 return SM.createTokenSplitLoc(SpellingLoc: Spelling, TokenStart: Loc, TokenEnd: Loc.getLocWithOffset(Offset: Length));
525}
526
527Module *Preprocessor::getCurrentModule() {
528 if (!getLangOpts().isCompilingModule())
529 return nullptr;
530
531 return getHeaderSearchInfo().lookupModule(ModuleName: getLangOpts().CurrentModule);
532}
533
534Module *Preprocessor::getCurrentModuleImplementation() {
535 if (!getLangOpts().isCompilingModuleImplementation())
536 return nullptr;
537
538 return getHeaderSearchInfo().lookupModule(ModuleName: getLangOpts().ModuleName);
539}
540
541//===----------------------------------------------------------------------===//
542// Preprocessor Initialization Methods
543//===----------------------------------------------------------------------===//
544
545/// EnterMainSourceFile - Enter the specified FileID as the main source file,
546/// which implicitly adds the builtin defines etc.
547void Preprocessor::EnterMainSourceFile() {
548 // We do not allow the preprocessor to reenter the main file. Doing so will
549 // cause FileID's to accumulate information from both runs (e.g. #line
550 // information) and predefined macros aren't guaranteed to be set properly.
551 assert(NumEnteredSourceFiles == 0 && "Cannot reenter the main file!");
552 FileID MainFileID = SourceMgr.getMainFileID();
553
554 // If MainFileID is loaded it means we loaded an AST file, no need to enter
555 // a main file.
556 if (!SourceMgr.isLoadedFileID(FID: MainFileID)) {
557 // Enter the main file source buffer.
558 EnterSourceFile(FID: MainFileID, Dir: nullptr, Loc: SourceLocation());
559
560 // If we've been asked to skip bytes in the main file (e.g., as part of a
561 // precompiled preamble), do so now.
562 if (SkipMainFilePreamble.first > 0)
563 CurLexer->SetByteOffset(Offset: SkipMainFilePreamble.first,
564 StartOfLine: SkipMainFilePreamble.second);
565
566 // Tell the header info that the main file was entered. If the file is later
567 // #imported, it won't be re-entered.
568 if (OptionalFileEntryRef FE = SourceMgr.getFileEntryRefForID(FID: MainFileID))
569 markIncluded(File: *FE);
570 }
571
572 // Preprocess Predefines to populate the initial preprocessor state.
573 std::unique_ptr<llvm::MemoryBuffer> SB =
574 llvm::MemoryBuffer::getMemBufferCopy(InputData: Predefines, BufferName: "<built-in>");
575 assert(SB && "Cannot create predefined source buffer");
576 FileID FID = SourceMgr.createFileID(Buffer: std::move(SB));
577 assert(FID.isValid() && "Could not create FileID for predefines?");
578 setPredefinesFileID(FID);
579
580 // Start parsing the predefines.
581 EnterSourceFile(FID, Dir: nullptr, Loc: SourceLocation());
582
583 if (!PPOpts->PCHThroughHeader.empty()) {
584 // Lookup and save the FileID for the through header. If it isn't found
585 // in the search path, it's a fatal error.
586 OptionalFileEntryRef File = LookupFile(
587 FilenameLoc: SourceLocation(), Filename: PPOpts->PCHThroughHeader,
588 /*isAngled=*/false, /*FromDir=*/nullptr, /*FromFile=*/nullptr,
589 /*CurDir=*/nullptr, /*SearchPath=*/nullptr, /*RelativePath=*/nullptr,
590 /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr,
591 /*IsFrameworkFound=*/nullptr);
592 if (!File) {
593 Diag(Loc: SourceLocation(), DiagID: diag::err_pp_through_header_not_found)
594 << PPOpts->PCHThroughHeader;
595 return;
596 }
597 setPCHThroughHeaderFileID(
598 SourceMgr.createFileID(SourceFile: *File, IncludePos: SourceLocation(), FileCharacter: SrcMgr::C_User));
599 }
600
601 // Skip tokens from the Predefines and if needed the main file.
602 if ((usingPCHWithThroughHeader() && SkippingUntilPCHThroughHeader) ||
603 (usingPCHWithPragmaHdrStop() && SkippingUntilPragmaHdrStop))
604 SkipTokensWhileUsingPCH();
605}
606
607void Preprocessor::setPCHThroughHeaderFileID(FileID FID) {
608 assert(PCHThroughHeaderFileID.isInvalid() &&
609 "PCHThroughHeaderFileID already set!");
610 PCHThroughHeaderFileID = FID;
611}
612
613bool Preprocessor::isPCHThroughHeader(const FileEntry *FE) {
614 assert(PCHThroughHeaderFileID.isValid() &&
615 "Invalid PCH through header FileID");
616 return FE == SourceMgr.getFileEntryForID(FID: PCHThroughHeaderFileID);
617}
618
619bool Preprocessor::creatingPCHWithThroughHeader() {
620 return TUKind == TU_Prefix && !PPOpts->PCHThroughHeader.empty() &&
621 PCHThroughHeaderFileID.isValid();
622}
623
624bool Preprocessor::usingPCHWithThroughHeader() {
625 return TUKind != TU_Prefix && !PPOpts->PCHThroughHeader.empty() &&
626 PCHThroughHeaderFileID.isValid();
627}
628
629bool Preprocessor::creatingPCHWithPragmaHdrStop() {
630 return TUKind == TU_Prefix && PPOpts->PCHWithHdrStop;
631}
632
633bool Preprocessor::usingPCHWithPragmaHdrStop() {
634 return TUKind != TU_Prefix && PPOpts->PCHWithHdrStop;
635}
636
637/// Skip tokens until after the #include of the through header or
638/// until after a #pragma hdrstop is seen. Tokens in the predefines file
639/// and the main file may be skipped. If the end of the predefines file
640/// is reached, skipping continues into the main file. If the end of the
641/// main file is reached, it's a fatal error.
642void Preprocessor::SkipTokensWhileUsingPCH() {
643 bool ReachedMainFileEOF = false;
644 bool UsingPCHThroughHeader = SkippingUntilPCHThroughHeader;
645 bool UsingPragmaHdrStop = SkippingUntilPragmaHdrStop;
646 Token Tok;
647 while (true) {
648 bool InPredefines =
649 (CurLexer && CurLexer->getFileID() == getPredefinesFileID());
650 CurLexerCallback(*this, Tok);
651 if (Tok.is(K: tok::eof) && !InPredefines) {
652 ReachedMainFileEOF = true;
653 break;
654 }
655 if (UsingPCHThroughHeader && !SkippingUntilPCHThroughHeader)
656 break;
657 if (UsingPragmaHdrStop && !SkippingUntilPragmaHdrStop)
658 break;
659 }
660 if (ReachedMainFileEOF) {
661 if (UsingPCHThroughHeader)
662 Diag(Loc: SourceLocation(), DiagID: diag::err_pp_through_header_not_seen)
663 << PPOpts->PCHThroughHeader << 1;
664 else if (!PPOpts->PCHWithHdrStopCreate)
665 Diag(Loc: SourceLocation(), DiagID: diag::err_pp_pragma_hdrstop_not_seen);
666 }
667}
668
669void Preprocessor::replayPreambleConditionalStack() {
670 // Restore the conditional stack from the preamble, if there is one.
671 if (PreambleConditionalStack.isReplaying()) {
672 assert(CurPPLexer &&
673 "CurPPLexer is null when calling replayPreambleConditionalStack.");
674 CurPPLexer->setConditionalLevels(PreambleConditionalStack.getStack());
675 PreambleConditionalStack.doneReplaying();
676 if (PreambleConditionalStack.reachedEOFWhileSkipping())
677 SkipExcludedConditionalBlock(
678 HashTokenLoc: PreambleConditionalStack.SkipInfo->HashTokenLoc,
679 IfTokenLoc: PreambleConditionalStack.SkipInfo->IfTokenLoc,
680 FoundNonSkipPortion: PreambleConditionalStack.SkipInfo->FoundNonSkipPortion,
681 FoundElse: PreambleConditionalStack.SkipInfo->FoundElse,
682 ElseLoc: PreambleConditionalStack.SkipInfo->ElseLoc);
683 }
684}
685
686void Preprocessor::EndSourceFile() {
687 // Notify the client that we reached the end of the source file.
688 if (Callbacks)
689 Callbacks->EndOfMainFile();
690}
691
692//===----------------------------------------------------------------------===//
693// Lexer Event Handling.
694//===----------------------------------------------------------------------===//
695
696/// LookUpIdentifierInfo - Given a tok::raw_identifier token, look up the
697/// identifier information for the token and install it into the token,
698/// updating the token kind accordingly.
699IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier) const {
700 assert(!Identifier.getRawIdentifier().empty() && "No raw identifier data!");
701
702 // Look up this token, see if it is a macro, or if it is a language keyword.
703 IdentifierInfo *II;
704 if (!Identifier.needsCleaning() && !Identifier.hasUCN()) {
705 // No cleaning needed, just use the characters from the lexed buffer.
706 II = getIdentifierInfo(Name: Identifier.getRawIdentifier());
707 } else {
708 // Cleaning needed, alloca a buffer, clean into it, then use the buffer.
709 SmallString<64> IdentifierBuffer;
710 StringRef CleanedStr = getSpelling(Tok: Identifier, Buffer&: IdentifierBuffer);
711
712 if (Identifier.hasUCN()) {
713 SmallString<64> UCNIdentifierBuffer;
714 expandUCNs(Buf&: UCNIdentifierBuffer, Input: CleanedStr);
715 II = getIdentifierInfo(Name: UCNIdentifierBuffer);
716 } else {
717 II = getIdentifierInfo(Name: CleanedStr);
718 }
719 }
720
721 // Update the token info (identifier info and appropriate token kind).
722 // FIXME: the raw_identifier may contain leading whitespace which is removed
723 // from the cleaned identifier token. The SourceLocation should be updated to
724 // refer to the non-whitespace character. For instance, the text "\\\nB" (a
725 // line continuation before 'B') is parsed as a single tok::raw_identifier and
726 // is cleaned to tok::identifier "B". After cleaning the token's length is
727 // still 3 and the SourceLocation refers to the location of the backslash.
728 Identifier.setIdentifierInfo(II);
729 Identifier.setKind(II->getTokenID());
730
731 return II;
732}
733
734void Preprocessor::SetPoisonReason(IdentifierInfo *II, unsigned DiagID) {
735 PoisonReasons[II] = DiagID;
736}
737
738void Preprocessor::PoisonSEHIdentifiers(bool Poison) {
739 assert(Ident__exception_code && Ident__exception_info);
740 assert(Ident___exception_code && Ident___exception_info);
741 Ident__exception_code->setIsPoisoned(Poison);
742 Ident___exception_code->setIsPoisoned(Poison);
743 Ident_GetExceptionCode->setIsPoisoned(Poison);
744 Ident__exception_info->setIsPoisoned(Poison);
745 Ident___exception_info->setIsPoisoned(Poison);
746 Ident_GetExceptionInfo->setIsPoisoned(Poison);
747 Ident__abnormal_termination->setIsPoisoned(Poison);
748 Ident___abnormal_termination->setIsPoisoned(Poison);
749 Ident_AbnormalTermination->setIsPoisoned(Poison);
750}
751
752void Preprocessor::HandlePoisonedIdentifier(Token & Identifier) {
753 assert(Identifier.getIdentifierInfo() &&
754 "Can't handle identifiers without identifier info!");
755 llvm::DenseMap<IdentifierInfo*,unsigned>::const_iterator it =
756 PoisonReasons.find(Val: Identifier.getIdentifierInfo());
757 if(it == PoisonReasons.end())
758 Diag(Tok: Identifier, DiagID: diag::err_pp_used_poisoned_id);
759 else
760 Diag(Tok: Identifier,DiagID: it->second) << Identifier.getIdentifierInfo();
761}
762
763void Preprocessor::updateOutOfDateIdentifier(const IdentifierInfo &II) const {
764 assert(II.isOutOfDate() && "not out of date");
765 getExternalSource()->updateOutOfDateIdentifier(II);
766}
767
768/// HandleIdentifier - This callback is invoked when the lexer reads an
769/// identifier. This callback looks up the identifier in the map and/or
770/// potentially macro expands it or turns it into a named token (like 'for').
771///
772/// Note that callers of this method are guarded by checking the
773/// IdentifierInfo's 'isHandleIdentifierCase' bit. If this method changes, the
774/// IdentifierInfo methods that compute these properties will need to change to
775/// match.
776bool Preprocessor::HandleIdentifier(Token &Identifier) {
777 assert(Identifier.getIdentifierInfo() &&
778 "Can't handle identifiers without identifier info!");
779
780 IdentifierInfo &II = *Identifier.getIdentifierInfo();
781
782 // If the information about this identifier is out of date, update it from
783 // the external source.
784 // We have to treat __VA_ARGS__ in a special way, since it gets
785 // serialized with isPoisoned = true, but our preprocessor may have
786 // unpoisoned it if we're defining a C99 macro.
787 if (II.isOutOfDate()) {
788 bool CurrentIsPoisoned = false;
789 const bool IsSpecialVariadicMacro =
790 &II == Ident__VA_ARGS__ || &II == Ident__VA_OPT__;
791 if (IsSpecialVariadicMacro)
792 CurrentIsPoisoned = II.isPoisoned();
793
794 updateOutOfDateIdentifier(II);
795 Identifier.setKind(II.getTokenID());
796
797 if (IsSpecialVariadicMacro)
798 II.setIsPoisoned(CurrentIsPoisoned);
799 }
800
801 // If this identifier was poisoned, and if it was not produced from a macro
802 // expansion, emit an error.
803 if (II.isPoisoned() && CurPPLexer) {
804 HandlePoisonedIdentifier(Identifier);
805 }
806
807 // If this is a macro to be expanded, do it.
808 if (const MacroDefinition MD = getMacroDefinition(II: &II)) {
809 const auto *MI = MD.getMacroInfo();
810 assert(MI && "macro definition with no macro info?");
811 if (!DisableMacroExpansion) {
812 if (!Identifier.isExpandDisabled() && MI->isEnabled()) {
813 // C99 6.10.3p10: If the preprocessing token immediately after the
814 // macro name isn't a '(', this macro should not be expanded.
815 if (!MI->isFunctionLike() || isNextPPTokenLParen())
816 return HandleMacroExpandedIdentifier(Identifier, MD);
817 } else {
818 // C99 6.10.3.4p2 says that a disabled macro may never again be
819 // expanded, even if it's in a context where it could be expanded in the
820 // future.
821 Identifier.setFlag(Token::DisableExpand);
822 if (MI->isObjectLike() || isNextPPTokenLParen())
823 Diag(Tok: Identifier, DiagID: diag::pp_disabled_macro_expansion);
824 }
825 }
826 }
827
828 // If this identifier is a keyword in a newer Standard or proposed Standard,
829 // produce a warning. Don't warn if we're not considering macro expansion,
830 // since this identifier might be the name of a macro.
831 // FIXME: This warning is disabled in cases where it shouldn't be, like
832 // "#define constexpr constexpr", "int constexpr;"
833 if (II.isFutureCompatKeyword() && !DisableMacroExpansion) {
834 Diag(Tok: Identifier, DiagID: getIdentifierTable().getFutureCompatDiagKind(II, LangOpts: getLangOpts()))
835 << II.getName();
836 // Don't diagnose this keyword again in this translation unit.
837 II.setIsFutureCompatKeyword(false);
838 }
839
840 // If this is an extension token, diagnose its use.
841 // We avoid diagnosing tokens that originate from macro definitions.
842 // FIXME: This warning is disabled in cases where it shouldn't be,
843 // like "#define TY typeof", "TY(1) x".
844 if (II.isExtensionToken() && !DisableMacroExpansion)
845 Diag(Tok: Identifier, DiagID: diag::ext_token_used);
846
847 // If this is the 'import' contextual keyword following an '@', note
848 // that the next token indicates a module name.
849 //
850 // Note that we do not treat 'import' as a contextual
851 // keyword when we're in a caching lexer, because caching lexers only get
852 // used in contexts where import declarations are disallowed.
853 //
854 // Likewise if this is the standard C++ import keyword.
855 if (((LastTokenWasAt && II.isModulesImport()) ||
856 Identifier.is(K: tok::kw_import)) &&
857 !InMacroArgs && !DisableMacroExpansion &&
858 (getLangOpts().Modules || getLangOpts().DebuggerSupport) &&
859 CurLexerCallback != CLK_CachingLexer) {
860 ModuleImportLoc = Identifier.getLocation();
861 NamedModuleImportPath.clear();
862 IsAtImport = true;
863 ModuleImportExpectsIdentifier = true;
864 CurLexerCallback = CLK_LexAfterModuleImport;
865 }
866 return true;
867}
868
869void Preprocessor::Lex(Token &Result) {
870 ++LexLevel;
871
872 // We loop here until a lex function returns a token; this avoids recursion.
873 while (!CurLexerCallback(*this, Result))
874 ;
875
876 if (Result.is(K: tok::unknown) && TheModuleLoader.HadFatalFailure)
877 return;
878
879 if (Result.is(K: tok::code_completion) && Result.getIdentifierInfo()) {
880 // Remember the identifier before code completion token.
881 setCodeCompletionIdentifierInfo(Result.getIdentifierInfo());
882 setCodeCompletionTokenRange(Start: Result.getLocation(), End: Result.getEndLoc());
883 // Set IdenfitierInfo to null to avoid confusing code that handles both
884 // identifiers and completion tokens.
885 Result.setIdentifierInfo(nullptr);
886 }
887
888 // Update StdCXXImportSeqState to track our position within a C++20 import-seq
889 // if this token is being produced as a result of phase 4 of translation.
890 // Update TrackGMFState to decide if we are currently in a Global Module
891 // Fragment. GMF state updates should precede StdCXXImportSeq ones, since GMF state
892 // depends on the prevailing StdCXXImportSeq state in two cases.
893 if (getLangOpts().CPlusPlusModules && LexLevel == 1 &&
894 !Result.getFlag(Flag: Token::IsReinjected)) {
895 switch (Result.getKind()) {
896 case tok::l_paren: case tok::l_square: case tok::l_brace:
897 StdCXXImportSeqState.handleOpenBracket();
898 break;
899 case tok::r_paren: case tok::r_square:
900 StdCXXImportSeqState.handleCloseBracket();
901 break;
902 case tok::r_brace:
903 StdCXXImportSeqState.handleCloseBrace();
904 break;
905 // This token is injected to represent the translation of '#include "a.h"'
906 // into "import a.h;". Mimic the notional ';'.
907 case tok::annot_module_include:
908 case tok::semi:
909 TrackGMFState.handleSemi();
910 StdCXXImportSeqState.handleSemi();
911 ModuleDeclState.handleSemi();
912 break;
913 case tok::header_name:
914 case tok::annot_header_unit:
915 StdCXXImportSeqState.handleHeaderName();
916 break;
917 case tok::kw_export:
918 TrackGMFState.handleExport();
919 StdCXXImportSeqState.handleExport();
920 ModuleDeclState.handleExport();
921 break;
922 case tok::colon:
923 ModuleDeclState.handleColon();
924 break;
925 case tok::period:
926 ModuleDeclState.handlePeriod();
927 break;
928 case tok::identifier:
929 // Check "import" and "module" when there is no open bracket. The two
930 // identifiers are not meaningful with open brackets.
931 if (StdCXXImportSeqState.atTopLevel()) {
932 if (Result.getIdentifierInfo()->isModulesImport()) {
933 TrackGMFState.handleImport(AfterTopLevelTokenSeq: StdCXXImportSeqState.afterTopLevelSeq());
934 StdCXXImportSeqState.handleImport();
935 if (StdCXXImportSeqState.afterImportSeq()) {
936 ModuleImportLoc = Result.getLocation();
937 NamedModuleImportPath.clear();
938 IsAtImport = false;
939 ModuleImportExpectsIdentifier = true;
940 CurLexerCallback = CLK_LexAfterModuleImport;
941 }
942 break;
943 } else if (Result.getIdentifierInfo() == getIdentifierInfo(Name: "module")) {
944 TrackGMFState.handleModule(AfterTopLevelTokenSeq: StdCXXImportSeqState.afterTopLevelSeq());
945 ModuleDeclState.handleModule();
946 break;
947 }
948 }
949 ModuleDeclState.handleIdentifier(Identifier: Result.getIdentifierInfo());
950 if (ModuleDeclState.isModuleCandidate())
951 break;
952 [[fallthrough]];
953 default:
954 TrackGMFState.handleMisc();
955 StdCXXImportSeqState.handleMisc();
956 ModuleDeclState.handleMisc();
957 break;
958 }
959 }
960
961 if (CurLexer && ++CheckPointCounter == CheckPointStepSize) {
962 CheckPoints[CurLexer->getFileID()].push_back(Elt: CurLexer->BufferPtr);
963 CheckPointCounter = 0;
964 }
965
966 LastTokenWasAt = Result.is(K: tok::at);
967 --LexLevel;
968
969 if ((LexLevel == 0 || PreprocessToken) &&
970 !Result.getFlag(Flag: Token::IsReinjected)) {
971 if (LexLevel == 0)
972 ++TokenCount;
973 if (OnToken)
974 OnToken(Result);
975 }
976}
977
978void Preprocessor::LexTokensUntilEOF(std::vector<Token> *Tokens) {
979 while (1) {
980 Token Tok;
981 Lex(Result&: Tok);
982 if (Tok.isOneOf(K1: tok::unknown, Ks: tok::eof, Ks: tok::eod,
983 Ks: tok::annot_repl_input_end))
984 break;
985 if (Tokens != nullptr)
986 Tokens->push_back(x: Tok);
987 }
988}
989
990/// Lex a header-name token (including one formed from header-name-tokens if
991/// \p AllowMacroExpansion is \c true).
992///
993/// \param FilenameTok Filled in with the next token. On success, this will
994/// be either a header_name token. On failure, it will be whatever other
995/// token was found instead.
996/// \param AllowMacroExpansion If \c true, allow the header name to be formed
997/// by macro expansion (concatenating tokens as necessary if the first
998/// token is a '<').
999/// \return \c true if we reached EOD or EOF while looking for a > token in
1000/// a concatenated header name and diagnosed it. \c false otherwise.
1001bool Preprocessor::LexHeaderName(Token &FilenameTok, bool AllowMacroExpansion) {
1002 // Lex using header-name tokenization rules if tokens are being lexed from
1003 // a file. Just grab a token normally if we're in a macro expansion.
1004 if (CurPPLexer)
1005 CurPPLexer->LexIncludeFilename(FilenameTok);
1006 else
1007 Lex(Result&: FilenameTok);
1008
1009 // This could be a <foo/bar.h> file coming from a macro expansion. In this
1010 // case, glue the tokens together into an angle_string_literal token.
1011 SmallString<128> FilenameBuffer;
1012 if (FilenameTok.is(K: tok::less) && AllowMacroExpansion) {
1013 bool StartOfLine = FilenameTok.isAtStartOfLine();
1014 bool LeadingSpace = FilenameTok.hasLeadingSpace();
1015 bool LeadingEmptyMacro = FilenameTok.hasLeadingEmptyMacro();
1016
1017 SourceLocation Start = FilenameTok.getLocation();
1018 SourceLocation End;
1019 FilenameBuffer.push_back(Elt: '<');
1020
1021 // Consume tokens until we find a '>'.
1022 // FIXME: A header-name could be formed starting or ending with an
1023 // alternative token. It's not clear whether that's ill-formed in all
1024 // cases.
1025 while (FilenameTok.isNot(K: tok::greater)) {
1026 Lex(Result&: FilenameTok);
1027 if (FilenameTok.isOneOf(K1: tok::eod, K2: tok::eof)) {
1028 Diag(Loc: FilenameTok.getLocation(), DiagID: diag::err_expected) << tok::greater;
1029 Diag(Loc: Start, DiagID: diag::note_matching) << tok::less;
1030 return true;
1031 }
1032
1033 End = FilenameTok.getLocation();
1034
1035 // FIXME: Provide code completion for #includes.
1036 if (FilenameTok.is(K: tok::code_completion)) {
1037 setCodeCompletionReached();
1038 Lex(Result&: FilenameTok);
1039 continue;
1040 }
1041
1042 // Append the spelling of this token to the buffer. If there was a space
1043 // before it, add it now.
1044 if (FilenameTok.hasLeadingSpace())
1045 FilenameBuffer.push_back(Elt: ' ');
1046
1047 // Get the spelling of the token, directly into FilenameBuffer if
1048 // possible.
1049 size_t PreAppendSize = FilenameBuffer.size();
1050 FilenameBuffer.resize(N: PreAppendSize + FilenameTok.getLength());
1051
1052 const char *BufPtr = &FilenameBuffer[PreAppendSize];
1053 unsigned ActualLen = getSpelling(Tok: FilenameTok, Buffer&: BufPtr);
1054
1055 // If the token was spelled somewhere else, copy it into FilenameBuffer.
1056 if (BufPtr != &FilenameBuffer[PreAppendSize])
1057 memcpy(dest: &FilenameBuffer[PreAppendSize], src: BufPtr, n: ActualLen);
1058
1059 // Resize FilenameBuffer to the correct size.
1060 if (FilenameTok.getLength() != ActualLen)
1061 FilenameBuffer.resize(N: PreAppendSize + ActualLen);
1062 }
1063
1064 FilenameTok.startToken();
1065 FilenameTok.setKind(tok::header_name);
1066 FilenameTok.setFlagValue(Flag: Token::StartOfLine, Val: StartOfLine);
1067 FilenameTok.setFlagValue(Flag: Token::LeadingSpace, Val: LeadingSpace);
1068 FilenameTok.setFlagValue(Flag: Token::LeadingEmptyMacro, Val: LeadingEmptyMacro);
1069 CreateString(Str: FilenameBuffer, Tok&: FilenameTok, ExpansionLocStart: Start, ExpansionLocEnd: End);
1070 } else if (FilenameTok.is(K: tok::string_literal) && AllowMacroExpansion) {
1071 // Convert a string-literal token of the form " h-char-sequence "
1072 // (produced by macro expansion) into a header-name token.
1073 //
1074 // The rules for header-names don't quite match the rules for
1075 // string-literals, but all the places where they differ result in
1076 // undefined behavior, so we can and do treat them the same.
1077 //
1078 // A string-literal with a prefix or suffix is not translated into a
1079 // header-name. This could theoretically be observable via the C++20
1080 // context-sensitive header-name formation rules.
1081 StringRef Str = getSpelling(Tok: FilenameTok, Buffer&: FilenameBuffer);
1082 if (Str.size() >= 2 && Str.front() == '"' && Str.back() == '"')
1083 FilenameTok.setKind(tok::header_name);
1084 }
1085
1086 return false;
1087}
1088
1089/// Collect the tokens of a C++20 pp-import-suffix.
1090void Preprocessor::CollectPpImportSuffix(SmallVectorImpl<Token> &Toks) {
1091 // FIXME: For error recovery, consider recognizing attribute syntax here
1092 // and terminating / diagnosing a missing semicolon if we find anything
1093 // else? (Can we leave that to the parser?)
1094 unsigned BracketDepth = 0;
1095 while (true) {
1096 Toks.emplace_back();
1097 Lex(Result&: Toks.back());
1098
1099 switch (Toks.back().getKind()) {
1100 case tok::l_paren: case tok::l_square: case tok::l_brace:
1101 ++BracketDepth;
1102 break;
1103
1104 case tok::r_paren: case tok::r_square: case tok::r_brace:
1105 if (BracketDepth == 0)
1106 return;
1107 --BracketDepth;
1108 break;
1109
1110 case tok::semi:
1111 if (BracketDepth == 0)
1112 return;
1113 break;
1114
1115 case tok::eof:
1116 return;
1117
1118 default:
1119 break;
1120 }
1121 }
1122}
1123
1124
1125/// Lex a token following the 'import' contextual keyword.
1126///
1127/// pp-import: [C++20]
1128/// import header-name pp-import-suffix[opt] ;
1129/// import header-name-tokens pp-import-suffix[opt] ;
1130/// [ObjC] @ import module-name ;
1131/// [Clang] import module-name ;
1132///
1133/// header-name-tokens:
1134/// string-literal
1135/// < [any sequence of preprocessing-tokens other than >] >
1136///
1137/// module-name:
1138/// module-name-qualifier[opt] identifier
1139///
1140/// module-name-qualifier
1141/// module-name-qualifier[opt] identifier .
1142///
1143/// We respond to a pp-import by importing macros from the named module.
1144bool Preprocessor::LexAfterModuleImport(Token &Result) {
1145 // Figure out what kind of lexer we actually have.
1146 recomputeCurLexerKind();
1147
1148 // Lex the next token. The header-name lexing rules are used at the start of
1149 // a pp-import.
1150 //
1151 // For now, we only support header-name imports in C++20 mode.
1152 // FIXME: Should we allow this in all language modes that support an import
1153 // declaration as an extension?
1154 if (NamedModuleImportPath.empty() && getLangOpts().CPlusPlusModules) {
1155 if (LexHeaderName(FilenameTok&: Result))
1156 return true;
1157
1158 if (Result.is(K: tok::colon) && ModuleDeclState.isNamedModule()) {
1159 std::string Name = ModuleDeclState.getPrimaryName().str();
1160 Name += ":";
1161 NamedModuleImportPath.push_back(
1162 Elt: {getIdentifierInfo(Name), Result.getLocation()});
1163 CurLexerCallback = CLK_LexAfterModuleImport;
1164 return true;
1165 }
1166 } else {
1167 Lex(Result);
1168 }
1169
1170 // Allocate a holding buffer for a sequence of tokens and introduce it into
1171 // the token stream.
1172 auto EnterTokens = [this](ArrayRef<Token> Toks) {
1173 auto ToksCopy = std::make_unique<Token[]>(num: Toks.size());
1174 std::copy(first: Toks.begin(), last: Toks.end(), result: ToksCopy.get());
1175 EnterTokenStream(Toks: std::move(ToksCopy), NumToks: Toks.size(),
1176 /*DisableMacroExpansion*/ true, /*IsReinject*/ false);
1177 };
1178
1179 bool ImportingHeader = Result.is(K: tok::header_name);
1180 // Check for a header-name.
1181 SmallVector<Token, 32> Suffix;
1182 if (ImportingHeader) {
1183 // Enter the header-name token into the token stream; a Lex action cannot
1184 // both return a token and cache tokens (doing so would corrupt the token
1185 // cache if the call to Lex comes from CachingLex / PeekAhead).
1186 Suffix.push_back(Elt: Result);
1187
1188 // Consume the pp-import-suffix and expand any macros in it now. We'll add
1189 // it back into the token stream later.
1190 CollectPpImportSuffix(Toks&: Suffix);
1191 if (Suffix.back().isNot(K: tok::semi)) {
1192 // This is not a pp-import after all.
1193 EnterTokens(Suffix);
1194 return false;
1195 }
1196
1197 // C++2a [cpp.module]p1:
1198 // The ';' preprocessing-token terminating a pp-import shall not have
1199 // been produced by macro replacement.
1200 SourceLocation SemiLoc = Suffix.back().getLocation();
1201 if (SemiLoc.isMacroID())
1202 Diag(Loc: SemiLoc, DiagID: diag::err_header_import_semi_in_macro);
1203
1204 // Reconstitute the import token.
1205 Token ImportTok;
1206 ImportTok.startToken();
1207 ImportTok.setKind(tok::kw_import);
1208 ImportTok.setLocation(ModuleImportLoc);
1209 ImportTok.setIdentifierInfo(getIdentifierInfo(Name: "import"));
1210 ImportTok.setLength(6);
1211
1212 auto Action = HandleHeaderIncludeOrImport(
1213 /*HashLoc*/ SourceLocation(), IncludeTok&: ImportTok, FilenameTok&: Suffix.front(), EndLoc: SemiLoc);
1214 switch (Action.Kind) {
1215 case ImportAction::None:
1216 break;
1217
1218 case ImportAction::ModuleBegin:
1219 // Let the parser know we're textually entering the module.
1220 Suffix.emplace_back();
1221 Suffix.back().startToken();
1222 Suffix.back().setKind(tok::annot_module_begin);
1223 Suffix.back().setLocation(SemiLoc);
1224 Suffix.back().setAnnotationEndLoc(SemiLoc);
1225 Suffix.back().setAnnotationValue(Action.ModuleForHeader);
1226 [[fallthrough]];
1227
1228 case ImportAction::ModuleImport:
1229 case ImportAction::HeaderUnitImport:
1230 case ImportAction::SkippedModuleImport:
1231 // We chose to import (or textually enter) the file. Convert the
1232 // header-name token into a header unit annotation token.
1233 Suffix[0].setKind(tok::annot_header_unit);
1234 Suffix[0].setAnnotationEndLoc(Suffix[0].getLocation());
1235 Suffix[0].setAnnotationValue(Action.ModuleForHeader);
1236 // FIXME: Call the moduleImport callback?
1237 break;
1238 case ImportAction::Failure:
1239 assert(TheModuleLoader.HadFatalFailure &&
1240 "This should be an early exit only to a fatal error");
1241 Result.setKind(tok::eof);
1242 CurLexer->cutOffLexing();
1243 EnterTokens(Suffix);
1244 return true;
1245 }
1246
1247 EnterTokens(Suffix);
1248 return false;
1249 }
1250
1251 // The token sequence
1252 //
1253 // import identifier (. identifier)*
1254 //
1255 // indicates a module import directive. We already saw the 'import'
1256 // contextual keyword, so now we're looking for the identifiers.
1257 if (ModuleImportExpectsIdentifier && Result.getKind() == tok::identifier) {
1258 // We expected to see an identifier here, and we did; continue handling
1259 // identifiers.
1260 NamedModuleImportPath.push_back(
1261 Elt: std::make_pair(x: Result.getIdentifierInfo(), y: Result.getLocation()));
1262 ModuleImportExpectsIdentifier = false;
1263 CurLexerCallback = CLK_LexAfterModuleImport;
1264 return true;
1265 }
1266
1267 // If we're expecting a '.' or a ';', and we got a '.', then wait until we
1268 // see the next identifier. (We can also see a '[[' that begins an
1269 // attribute-specifier-seq here under the Standard C++ Modules.)
1270 if (!ModuleImportExpectsIdentifier && Result.getKind() == tok::period) {
1271 ModuleImportExpectsIdentifier = true;
1272 CurLexerCallback = CLK_LexAfterModuleImport;
1273 return true;
1274 }
1275
1276 // If we didn't recognize a module name at all, this is not a (valid) import.
1277 if (NamedModuleImportPath.empty() || Result.is(K: tok::eof))
1278 return true;
1279
1280 // Consume the pp-import-suffix and expand any macros in it now, if we're not
1281 // at the semicolon already.
1282 SourceLocation SemiLoc = Result.getLocation();
1283 if (Result.isNot(K: tok::semi)) {
1284 Suffix.push_back(Elt: Result);
1285 CollectPpImportSuffix(Toks&: Suffix);
1286 if (Suffix.back().isNot(K: tok::semi)) {
1287 // This is not an import after all.
1288 EnterTokens(Suffix);
1289 return false;
1290 }
1291 SemiLoc = Suffix.back().getLocation();
1292 }
1293
1294 // Under the standard C++ Modules, the dot is just part of the module name,
1295 // and not a real hierarchy separator. Flatten such module names now.
1296 //
1297 // FIXME: Is this the right level to be performing this transformation?
1298 std::string FlatModuleName;
1299 if (getLangOpts().CPlusPlusModules) {
1300 for (auto &Piece : NamedModuleImportPath) {
1301 // If the FlatModuleName ends with colon, it implies it is a partition.
1302 if (!FlatModuleName.empty() && FlatModuleName.back() != ':')
1303 FlatModuleName += ".";
1304 FlatModuleName += Piece.first->getName();
1305 }
1306 SourceLocation FirstPathLoc = NamedModuleImportPath[0].second;
1307 NamedModuleImportPath.clear();
1308 NamedModuleImportPath.push_back(
1309 Elt: std::make_pair(x: getIdentifierInfo(Name: FlatModuleName), y&: FirstPathLoc));
1310 }
1311
1312 Module *Imported = nullptr;
1313 // We don't/shouldn't load the standard c++20 modules when preprocessing.
1314 if (getLangOpts().Modules && !isInImportingCXXNamedModules()) {
1315 Imported = TheModuleLoader.loadModule(ImportLoc: ModuleImportLoc,
1316 Path: NamedModuleImportPath,
1317 Visibility: Module::Hidden,
1318 /*IsInclusionDirective=*/false);
1319 if (Imported)
1320 makeModuleVisible(M: Imported, Loc: SemiLoc);
1321 }
1322
1323 if (Callbacks)
1324 Callbacks->moduleImport(ImportLoc: ModuleImportLoc, Path: NamedModuleImportPath, Imported);
1325
1326 if (!Suffix.empty()) {
1327 EnterTokens(Suffix);
1328 return false;
1329 }
1330 return true;
1331}
1332
1333void Preprocessor::makeModuleVisible(Module *M, SourceLocation Loc) {
1334 CurSubmoduleState->VisibleModules.setVisible(
1335 M, Loc, Vis: [](Module *) {},
1336 Cb: [&](ArrayRef<Module *> Path, Module *Conflict, StringRef Message) {
1337 // FIXME: Include the path in the diagnostic.
1338 // FIXME: Include the import location for the conflicting module.
1339 Diag(Loc: ModuleImportLoc, DiagID: diag::warn_module_conflict)
1340 << Path[0]->getFullModuleName()
1341 << Conflict->getFullModuleName()
1342 << Message;
1343 });
1344
1345 // Add this module to the imports list of the currently-built submodule.
1346 if (!BuildingSubmoduleStack.empty() && M != BuildingSubmoduleStack.back().M)
1347 BuildingSubmoduleStack.back().M->Imports.insert(X: M);
1348}
1349
1350bool Preprocessor::FinishLexStringLiteral(Token &Result, std::string &String,
1351 const char *DiagnosticTag,
1352 bool AllowMacroExpansion) {
1353 // We need at least one string literal.
1354 if (Result.isNot(K: tok::string_literal)) {
1355 Diag(Tok: Result, DiagID: diag::err_expected_string_literal)
1356 << /*Source='in...'*/0 << DiagnosticTag;
1357 return false;
1358 }
1359
1360 // Lex string literal tokens, optionally with macro expansion.
1361 SmallVector<Token, 4> StrToks;
1362 do {
1363 StrToks.push_back(Elt: Result);
1364
1365 if (Result.hasUDSuffix())
1366 Diag(Tok: Result, DiagID: diag::err_invalid_string_udl);
1367
1368 if (AllowMacroExpansion)
1369 Lex(Result);
1370 else
1371 LexUnexpandedToken(Result);
1372 } while (Result.is(K: tok::string_literal));
1373
1374 // Concatenate and parse the strings.
1375 StringLiteralParser Literal(StrToks, *this);
1376 assert(Literal.isOrdinary() && "Didn't allow wide strings in");
1377
1378 if (Literal.hadError)
1379 return false;
1380
1381 if (Literal.Pascal) {
1382 Diag(Loc: StrToks[0].getLocation(), DiagID: diag::err_expected_string_literal)
1383 << /*Source='in...'*/0 << DiagnosticTag;
1384 return false;
1385 }
1386
1387 String = std::string(Literal.GetString());
1388 return true;
1389}
1390
1391bool Preprocessor::parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value) {
1392 assert(Tok.is(tok::numeric_constant));
1393 SmallString<8> IntegerBuffer;
1394 bool NumberInvalid = false;
1395 StringRef Spelling = getSpelling(Tok, Buffer&: IntegerBuffer, Invalid: &NumberInvalid);
1396 if (NumberInvalid)
1397 return false;
1398 NumericLiteralParser Literal(Spelling, Tok.getLocation(), getSourceManager(),
1399 getLangOpts(), getTargetInfo(),
1400 getDiagnostics());
1401 if (Literal.hadError || !Literal.isIntegerLiteral() || Literal.hasUDSuffix())
1402 return false;
1403 llvm::APInt APVal(64, 0);
1404 if (Literal.GetIntegerValue(Val&: APVal))
1405 return false;
1406 Lex(Result&: Tok);
1407 Value = APVal.getLimitedValue();
1408 return true;
1409}
1410
1411void Preprocessor::addCommentHandler(CommentHandler *Handler) {
1412 assert(Handler && "NULL comment handler");
1413 assert(!llvm::is_contained(CommentHandlers, Handler) &&
1414 "Comment handler already registered");
1415 CommentHandlers.push_back(x: Handler);
1416}
1417
1418void Preprocessor::removeCommentHandler(CommentHandler *Handler) {
1419 std::vector<CommentHandler *>::iterator Pos =
1420 llvm::find(Range&: CommentHandlers, Val: Handler);
1421 assert(Pos != CommentHandlers.end() && "Comment handler not registered");
1422 CommentHandlers.erase(position: Pos);
1423}
1424
1425bool Preprocessor::HandleComment(Token &result, SourceRange Comment) {
1426 bool AnyPendingTokens = false;
1427 for (std::vector<CommentHandler *>::iterator H = CommentHandlers.begin(),
1428 HEnd = CommentHandlers.end();
1429 H != HEnd; ++H) {
1430 if ((*H)->HandleComment(PP&: *this, Comment))
1431 AnyPendingTokens = true;
1432 }
1433 if (!AnyPendingTokens || getCommentRetentionState())
1434 return false;
1435 Lex(Result&: result);
1436 return true;
1437}
1438
1439void Preprocessor::emitMacroDeprecationWarning(const Token &Identifier) const {
1440 const MacroAnnotations &A =
1441 getMacroAnnotations(II: Identifier.getIdentifierInfo());
1442 assert(A.DeprecationInfo &&
1443 "Macro deprecation warning without recorded annotation!");
1444 const MacroAnnotationInfo &Info = *A.DeprecationInfo;
1445 if (Info.Message.empty())
1446 Diag(Tok: Identifier, DiagID: diag::warn_pragma_deprecated_macro_use)
1447 << Identifier.getIdentifierInfo() << 0;
1448 else
1449 Diag(Tok: Identifier, DiagID: diag::warn_pragma_deprecated_macro_use)
1450 << Identifier.getIdentifierInfo() << 1 << Info.Message;
1451 Diag(Loc: Info.Location, DiagID: diag::note_pp_macro_annotation) << 0;
1452}
1453
1454void Preprocessor::emitRestrictExpansionWarning(const Token &Identifier) const {
1455 const MacroAnnotations &A =
1456 getMacroAnnotations(II: Identifier.getIdentifierInfo());
1457 assert(A.RestrictExpansionInfo &&
1458 "Macro restricted expansion warning without recorded annotation!");
1459 const MacroAnnotationInfo &Info = *A.RestrictExpansionInfo;
1460 if (Info.Message.empty())
1461 Diag(Tok: Identifier, DiagID: diag::warn_pragma_restrict_expansion_macro_use)
1462 << Identifier.getIdentifierInfo() << 0;
1463 else
1464 Diag(Tok: Identifier, DiagID: diag::warn_pragma_restrict_expansion_macro_use)
1465 << Identifier.getIdentifierInfo() << 1 << Info.Message;
1466 Diag(Loc: Info.Location, DiagID: diag::note_pp_macro_annotation) << 1;
1467}
1468
1469void Preprocessor::emitRestrictInfNaNWarning(const Token &Identifier,
1470 unsigned DiagSelection) const {
1471 Diag(Tok: Identifier, DiagID: diag::warn_fp_nan_inf_when_disabled) << DiagSelection << 1;
1472}
1473
1474void Preprocessor::emitFinalMacroWarning(const Token &Identifier,
1475 bool IsUndef) const {
1476 const MacroAnnotations &A =
1477 getMacroAnnotations(II: Identifier.getIdentifierInfo());
1478 assert(A.FinalAnnotationLoc &&
1479 "Final macro warning without recorded annotation!");
1480
1481 Diag(Tok: Identifier, DiagID: diag::warn_pragma_final_macro)
1482 << Identifier.getIdentifierInfo() << (IsUndef ? 0 : 1);
1483 Diag(Loc: *A.FinalAnnotationLoc, DiagID: diag::note_pp_macro_annotation) << 2;
1484}
1485
1486bool Preprocessor::isSafeBufferOptOut(const SourceManager &SourceMgr,
1487 const SourceLocation &Loc) const {
1488 // The lambda that tests if a `Loc` is in an opt-out region given one opt-out
1489 // region map:
1490 auto TestInMap = [&SourceMgr](const SafeBufferOptOutRegionsTy &Map,
1491 const SourceLocation &Loc) -> bool {
1492 // Try to find a region in `SafeBufferOptOutMap` where `Loc` is in:
1493 auto FirstRegionEndingAfterLoc = llvm::partition_point(
1494 Range: Map, P: [&SourceMgr,
1495 &Loc](const std::pair<SourceLocation, SourceLocation> &Region) {
1496 return SourceMgr.isBeforeInTranslationUnit(LHS: Region.second, RHS: Loc);
1497 });
1498
1499 if (FirstRegionEndingAfterLoc != Map.end()) {
1500 // To test if the start location of the found region precedes `Loc`:
1501 return SourceMgr.isBeforeInTranslationUnit(
1502 LHS: FirstRegionEndingAfterLoc->first, RHS: Loc);
1503 }
1504 // If we do not find a region whose end location passes `Loc`, we want to
1505 // check if the current region is still open:
1506 if (!Map.empty() && Map.back().first == Map.back().second)
1507 return SourceMgr.isBeforeInTranslationUnit(LHS: Map.back().first, RHS: Loc);
1508 return false;
1509 };
1510
1511 // What the following does:
1512 //
1513 // If `Loc` belongs to the local TU, we just look up `SafeBufferOptOutMap`.
1514 // Otherwise, `Loc` is from a loaded AST. We look up the
1515 // `LoadedSafeBufferOptOutMap` first to get the opt-out region map of the
1516 // loaded AST where `Loc` is at. Then we find if `Loc` is in an opt-out
1517 // region w.r.t. the region map. If the region map is absent, it means there
1518 // is no opt-out pragma in that loaded AST.
1519 //
1520 // Opt-out pragmas in the local TU or a loaded AST is not visible to another
1521 // one of them. That means if you put the pragmas around a `#include
1522 // "module.h"`, where module.h is a module, it is not actually suppressing
1523 // warnings in module.h. This is fine because warnings in module.h will be
1524 // reported when module.h is compiled in isolation and nothing in module.h
1525 // will be analyzed ever again. So you will not see warnings from the file
1526 // that imports module.h anyway. And you can't even do the same thing for PCHs
1527 // because they can only be included from the command line.
1528
1529 if (SourceMgr.isLocalSourceLocation(Loc))
1530 return TestInMap(SafeBufferOptOutMap, Loc);
1531
1532 const SafeBufferOptOutRegionsTy *LoadedRegions =
1533 LoadedSafeBufferOptOutMap.lookupLoadedOptOutMap(Loc, SrcMgr: SourceMgr);
1534
1535 if (LoadedRegions)
1536 return TestInMap(*LoadedRegions, Loc);
1537 return false;
1538}
1539
1540bool Preprocessor::enterOrExitSafeBufferOptOutRegion(
1541 bool isEnter, const SourceLocation &Loc) {
1542 if (isEnter) {
1543 if (isPPInSafeBufferOptOutRegion())
1544 return true; // invalid enter action
1545 InSafeBufferOptOutRegion = true;
1546 CurrentSafeBufferOptOutStart = Loc;
1547
1548 // To set the start location of a new region:
1549
1550 if (!SafeBufferOptOutMap.empty()) {
1551 [[maybe_unused]] auto *PrevRegion = &SafeBufferOptOutMap.back();
1552 assert(PrevRegion->first != PrevRegion->second &&
1553 "Shall not begin a safe buffer opt-out region before closing the "
1554 "previous one.");
1555 }
1556 // If the start location equals to the end location, we call the region a
1557 // open region or a unclosed region (i.e., end location has not been set
1558 // yet).
1559 SafeBufferOptOutMap.emplace_back(Args: Loc, Args: Loc);
1560 } else {
1561 if (!isPPInSafeBufferOptOutRegion())
1562 return true; // invalid enter action
1563 InSafeBufferOptOutRegion = false;
1564
1565 // To set the end location of the current open region:
1566
1567 assert(!SafeBufferOptOutMap.empty() &&
1568 "Misordered safe buffer opt-out regions");
1569 auto *CurrRegion = &SafeBufferOptOutMap.back();
1570 assert(CurrRegion->first == CurrRegion->second &&
1571 "Set end location to a closed safe buffer opt-out region");
1572 CurrRegion->second = Loc;
1573 }
1574 return false;
1575}
1576
1577bool Preprocessor::isPPInSafeBufferOptOutRegion() {
1578 return InSafeBufferOptOutRegion;
1579}
1580bool Preprocessor::isPPInSafeBufferOptOutRegion(SourceLocation &StartLoc) {
1581 StartLoc = CurrentSafeBufferOptOutStart;
1582 return InSafeBufferOptOutRegion;
1583}
1584
1585SmallVector<SourceLocation, 64>
1586Preprocessor::serializeSafeBufferOptOutMap() const {
1587 assert(!InSafeBufferOptOutRegion &&
1588 "Attempt to serialize safe buffer opt-out regions before file being "
1589 "completely preprocessed");
1590
1591 SmallVector<SourceLocation, 64> SrcSeq;
1592
1593 for (const auto &[begin, end] : SafeBufferOptOutMap) {
1594 SrcSeq.push_back(Elt: begin);
1595 SrcSeq.push_back(Elt: end);
1596 }
1597 // Only `SafeBufferOptOutMap` gets serialized. No need to serialize
1598 // `LoadedSafeBufferOptOutMap` because if this TU loads a pch/module, every
1599 // pch/module in the pch-chain/module-DAG will be loaded one by one in order.
1600 // It means that for each loading pch/module m, it just needs to load m's own
1601 // `SafeBufferOptOutMap`.
1602 return SrcSeq;
1603}
1604
1605bool Preprocessor::setDeserializedSafeBufferOptOutMap(
1606 const SmallVectorImpl<SourceLocation> &SourceLocations) {
1607 if (SourceLocations.size() == 0)
1608 return false;
1609
1610 assert(SourceLocations.size() % 2 == 0 &&
1611 "ill-formed SourceLocation sequence");
1612
1613 auto It = SourceLocations.begin();
1614 SafeBufferOptOutRegionsTy &Regions =
1615 LoadedSafeBufferOptOutMap.findAndConsLoadedOptOutMap(Loc: *It, SrcMgr&: SourceMgr);
1616
1617 do {
1618 SourceLocation Begin = *It++;
1619 SourceLocation End = *It++;
1620
1621 Regions.emplace_back(Args&: Begin, Args&: End);
1622 } while (It != SourceLocations.end());
1623 return true;
1624}
1625
1626ModuleLoader::~ModuleLoader() = default;
1627
1628CommentHandler::~CommentHandler() = default;
1629
1630EmptylineHandler::~EmptylineHandler() = default;
1631
1632CodeCompletionHandler::~CodeCompletionHandler() = default;
1633
1634void Preprocessor::createPreprocessingRecord() {
1635 if (Record)
1636 return;
1637
1638 Record = new PreprocessingRecord(getSourceManager());
1639 addPPCallbacks(C: std::unique_ptr<PPCallbacks>(Record));
1640}
1641
1642const char *Preprocessor::getCheckPoint(FileID FID, const char *Start) const {
1643 if (auto It = CheckPoints.find(Val: FID); It != CheckPoints.end()) {
1644 const SmallVector<const char *> &FileCheckPoints = It->second;
1645 const char *Last = nullptr;
1646 // FIXME: Do better than a linear search.
1647 for (const char *P : FileCheckPoints) {
1648 if (P > Start)
1649 break;
1650 Last = P;
1651 }
1652 return Last;
1653 }
1654
1655 return nullptr;
1656}
1657