1 | //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines several CodeGen-specific LLVM IR analysis utilities. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/CodeGen/Analysis.h" |
14 | #include "llvm/Analysis/ValueTracking.h" |
15 | #include "llvm/CodeGen/MachineFunction.h" |
16 | #include "llvm/CodeGen/TargetInstrInfo.h" |
17 | #include "llvm/CodeGen/TargetLowering.h" |
18 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
19 | #include "llvm/IR/DataLayout.h" |
20 | #include "llvm/IR/DerivedTypes.h" |
21 | #include "llvm/IR/Function.h" |
22 | #include "llvm/IR/Instructions.h" |
23 | #include "llvm/IR/IntrinsicInst.h" |
24 | #include "llvm/IR/Module.h" |
25 | #include "llvm/Support/ErrorHandling.h" |
26 | #include "llvm/Target/TargetMachine.h" |
27 | |
28 | using namespace llvm; |
29 | |
30 | /// Compute the linearized index of a member in a nested aggregate/struct/array |
31 | /// by recursing and accumulating CurIndex as long as there are indices in the |
32 | /// index list. |
33 | unsigned llvm::ComputeLinearIndex(Type *Ty, |
34 | const unsigned *Indices, |
35 | const unsigned *IndicesEnd, |
36 | unsigned CurIndex) { |
37 | // Base case: We're done. |
38 | if (Indices && Indices == IndicesEnd) |
39 | return CurIndex; |
40 | |
41 | // Given a struct type, recursively traverse the elements. |
42 | if (StructType *STy = dyn_cast<StructType>(Val: Ty)) { |
43 | for (auto I : llvm::enumerate(First: STy->elements())) { |
44 | Type *ET = I.value(); |
45 | if (Indices && *Indices == I.index()) |
46 | return ComputeLinearIndex(Ty: ET, Indices: Indices + 1, IndicesEnd, CurIndex); |
47 | CurIndex = ComputeLinearIndex(Ty: ET, Indices: nullptr, IndicesEnd: nullptr, CurIndex); |
48 | } |
49 | assert(!Indices && "Unexpected out of bound" ); |
50 | return CurIndex; |
51 | } |
52 | // Given an array type, recursively traverse the elements. |
53 | else if (ArrayType *ATy = dyn_cast<ArrayType>(Val: Ty)) { |
54 | Type *EltTy = ATy->getElementType(); |
55 | unsigned NumElts = ATy->getNumElements(); |
56 | // Compute the Linear offset when jumping one element of the array |
57 | unsigned EltLinearOffset = ComputeLinearIndex(Ty: EltTy, Indices: nullptr, IndicesEnd: nullptr, CurIndex: 0); |
58 | if (Indices) { |
59 | assert(*Indices < NumElts && "Unexpected out of bound" ); |
60 | // If the indice is inside the array, compute the index to the requested |
61 | // elt and recurse inside the element with the end of the indices list |
62 | CurIndex += EltLinearOffset* *Indices; |
63 | return ComputeLinearIndex(Ty: EltTy, Indices: Indices+1, IndicesEnd, CurIndex); |
64 | } |
65 | CurIndex += EltLinearOffset*NumElts; |
66 | return CurIndex; |
67 | } |
68 | // We haven't found the type we're looking for, so keep searching. |
69 | return CurIndex + 1; |
70 | } |
71 | |
72 | /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of |
73 | /// EVTs that represent all the individual underlying |
74 | /// non-aggregate types that comprise it. |
75 | /// |
76 | /// If Offsets is non-null, it points to a vector to be filled in |
77 | /// with the in-memory offsets of each of the individual values. |
78 | /// |
79 | void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, |
80 | Type *Ty, SmallVectorImpl<EVT> &ValueVTs, |
81 | SmallVectorImpl<EVT> *MemVTs, |
82 | SmallVectorImpl<TypeSize> *Offsets, |
83 | TypeSize StartingOffset) { |
84 | assert((Ty->isScalableTy() == StartingOffset.isScalable() || |
85 | StartingOffset.isZero()) && |
86 | "Offset/TypeSize mismatch!" ); |
87 | // Given a struct type, recursively traverse the elements. |
88 | if (StructType *STy = dyn_cast<StructType>(Val: Ty)) { |
89 | // If the Offsets aren't needed, don't query the struct layout. This allows |
90 | // us to support structs with scalable vectors for operations that don't |
91 | // need offsets. |
92 | const StructLayout *SL = Offsets ? DL.getStructLayout(Ty: STy) : nullptr; |
93 | for (StructType::element_iterator EB = STy->element_begin(), |
94 | EI = EB, |
95 | EE = STy->element_end(); |
96 | EI != EE; ++EI) { |
97 | // Don't compute the element offset if we didn't get a StructLayout above. |
98 | TypeSize EltOffset = |
99 | SL ? SL->getElementOffset(Idx: EI - EB) : TypeSize::getZero(); |
100 | ComputeValueVTs(TLI, DL, Ty: *EI, ValueVTs, MemVTs, Offsets, |
101 | StartingOffset: StartingOffset + EltOffset); |
102 | } |
103 | return; |
104 | } |
105 | // Given an array type, recursively traverse the elements. |
106 | if (ArrayType *ATy = dyn_cast<ArrayType>(Val: Ty)) { |
107 | Type *EltTy = ATy->getElementType(); |
108 | TypeSize EltSize = DL.getTypeAllocSize(Ty: EltTy); |
109 | for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) |
110 | ComputeValueVTs(TLI, DL, Ty: EltTy, ValueVTs, MemVTs, Offsets, |
111 | StartingOffset: StartingOffset + i * EltSize); |
112 | return; |
113 | } |
114 | // Interpret void as zero return values. |
115 | if (Ty->isVoidTy()) |
116 | return; |
117 | // Base case: we can get an EVT for this LLVM IR type. |
118 | ValueVTs.push_back(Elt: TLI.getValueType(DL, Ty)); |
119 | if (MemVTs) |
120 | MemVTs->push_back(Elt: TLI.getMemValueType(DL, Ty)); |
121 | if (Offsets) |
122 | Offsets->push_back(Elt: StartingOffset); |
123 | } |
124 | |
125 | void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, |
126 | Type *Ty, SmallVectorImpl<EVT> &ValueVTs, |
127 | SmallVectorImpl<EVT> *MemVTs, |
128 | SmallVectorImpl<uint64_t> *FixedOffsets, |
129 | uint64_t StartingOffset) { |
130 | TypeSize Offset = TypeSize::getFixed(ExactSize: StartingOffset); |
131 | if (FixedOffsets) { |
132 | SmallVector<TypeSize, 4> Offsets; |
133 | ComputeValueVTs(TLI, DL, Ty, ValueVTs, MemVTs, Offsets: &Offsets, StartingOffset: Offset); |
134 | for (TypeSize Offset : Offsets) |
135 | FixedOffsets->push_back(Elt: Offset.getFixedValue()); |
136 | } else { |
137 | ComputeValueVTs(TLI, DL, Ty, ValueVTs, MemVTs, Offsets: nullptr, StartingOffset: Offset); |
138 | } |
139 | } |
140 | |
141 | void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty, |
142 | SmallVectorImpl<LLT> &ValueTys, |
143 | SmallVectorImpl<uint64_t> *Offsets, |
144 | uint64_t StartingOffset) { |
145 | // Given a struct type, recursively traverse the elements. |
146 | if (StructType *STy = dyn_cast<StructType>(Val: &Ty)) { |
147 | // If the Offsets aren't needed, don't query the struct layout. This allows |
148 | // us to support structs with scalable vectors for operations that don't |
149 | // need offsets. |
150 | const StructLayout *SL = Offsets ? DL.getStructLayout(Ty: STy) : nullptr; |
151 | for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) { |
152 | uint64_t EltOffset = SL ? SL->getElementOffset(Idx: I) : 0; |
153 | computeValueLLTs(DL, Ty&: *STy->getElementType(N: I), ValueTys, Offsets, |
154 | StartingOffset: StartingOffset + EltOffset); |
155 | } |
156 | return; |
157 | } |
158 | // Given an array type, recursively traverse the elements. |
159 | if (ArrayType *ATy = dyn_cast<ArrayType>(Val: &Ty)) { |
160 | Type *EltTy = ATy->getElementType(); |
161 | uint64_t EltSize = DL.getTypeAllocSize(Ty: EltTy).getFixedValue(); |
162 | for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) |
163 | computeValueLLTs(DL, Ty&: *EltTy, ValueTys, Offsets, |
164 | StartingOffset: StartingOffset + i * EltSize); |
165 | return; |
166 | } |
167 | // Interpret void as zero return values. |
168 | if (Ty.isVoidTy()) |
169 | return; |
170 | // Base case: we can get an LLT for this LLVM IR type. |
171 | ValueTys.push_back(Elt: getLLTForType(Ty, DL)); |
172 | if (Offsets != nullptr) |
173 | Offsets->push_back(Elt: StartingOffset * 8); |
174 | } |
175 | |
176 | /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. |
177 | GlobalValue *llvm::(Value *V) { |
178 | V = V->stripPointerCasts(); |
179 | GlobalValue *GV = dyn_cast<GlobalValue>(Val: V); |
180 | GlobalVariable *Var = dyn_cast<GlobalVariable>(Val: V); |
181 | |
182 | if (Var && Var->getName() == "llvm.eh.catch.all.value" ) { |
183 | assert(Var->hasInitializer() && |
184 | "The EH catch-all value must have an initializer" ); |
185 | Value *Init = Var->getInitializer(); |
186 | GV = dyn_cast<GlobalValue>(Val: Init); |
187 | if (!GV) V = cast<ConstantPointerNull>(Val: Init); |
188 | } |
189 | |
190 | assert((GV || isa<ConstantPointerNull>(V)) && |
191 | "TypeInfo must be a global variable or NULL" ); |
192 | return GV; |
193 | } |
194 | |
195 | /// getFCmpCondCode - Return the ISD condition code corresponding to |
196 | /// the given LLVM IR floating-point condition code. This includes |
197 | /// consideration of global floating-point math flags. |
198 | /// |
199 | ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { |
200 | switch (Pred) { |
201 | case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; |
202 | case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; |
203 | case FCmpInst::FCMP_OGT: return ISD::SETOGT; |
204 | case FCmpInst::FCMP_OGE: return ISD::SETOGE; |
205 | case FCmpInst::FCMP_OLT: return ISD::SETOLT; |
206 | case FCmpInst::FCMP_OLE: return ISD::SETOLE; |
207 | case FCmpInst::FCMP_ONE: return ISD::SETONE; |
208 | case FCmpInst::FCMP_ORD: return ISD::SETO; |
209 | case FCmpInst::FCMP_UNO: return ISD::SETUO; |
210 | case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; |
211 | case FCmpInst::FCMP_UGT: return ISD::SETUGT; |
212 | case FCmpInst::FCMP_UGE: return ISD::SETUGE; |
213 | case FCmpInst::FCMP_ULT: return ISD::SETULT; |
214 | case FCmpInst::FCMP_ULE: return ISD::SETULE; |
215 | case FCmpInst::FCMP_UNE: return ISD::SETUNE; |
216 | case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; |
217 | default: llvm_unreachable("Invalid FCmp predicate opcode!" ); |
218 | } |
219 | } |
220 | |
221 | ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { |
222 | switch (CC) { |
223 | case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; |
224 | case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; |
225 | case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; |
226 | case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; |
227 | case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; |
228 | case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; |
229 | default: return CC; |
230 | } |
231 | } |
232 | |
233 | ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { |
234 | switch (Pred) { |
235 | case ICmpInst::ICMP_EQ: return ISD::SETEQ; |
236 | case ICmpInst::ICMP_NE: return ISD::SETNE; |
237 | case ICmpInst::ICMP_SLE: return ISD::SETLE; |
238 | case ICmpInst::ICMP_ULE: return ISD::SETULE; |
239 | case ICmpInst::ICMP_SGE: return ISD::SETGE; |
240 | case ICmpInst::ICMP_UGE: return ISD::SETUGE; |
241 | case ICmpInst::ICMP_SLT: return ISD::SETLT; |
242 | case ICmpInst::ICMP_ULT: return ISD::SETULT; |
243 | case ICmpInst::ICMP_SGT: return ISD::SETGT; |
244 | case ICmpInst::ICMP_UGT: return ISD::SETUGT; |
245 | default: |
246 | llvm_unreachable("Invalid ICmp predicate opcode!" ); |
247 | } |
248 | } |
249 | |
250 | ICmpInst::Predicate llvm::getICmpCondCode(ISD::CondCode Pred) { |
251 | switch (Pred) { |
252 | case ISD::SETEQ: |
253 | return ICmpInst::ICMP_EQ; |
254 | case ISD::SETNE: |
255 | return ICmpInst::ICMP_NE; |
256 | case ISD::SETLE: |
257 | return ICmpInst::ICMP_SLE; |
258 | case ISD::SETULE: |
259 | return ICmpInst::ICMP_ULE; |
260 | case ISD::SETGE: |
261 | return ICmpInst::ICMP_SGE; |
262 | case ISD::SETUGE: |
263 | return ICmpInst::ICMP_UGE; |
264 | case ISD::SETLT: |
265 | return ICmpInst::ICMP_SLT; |
266 | case ISD::SETULT: |
267 | return ICmpInst::ICMP_ULT; |
268 | case ISD::SETGT: |
269 | return ICmpInst::ICMP_SGT; |
270 | case ISD::SETUGT: |
271 | return ICmpInst::ICMP_UGT; |
272 | default: |
273 | llvm_unreachable("Invalid ISD integer condition code!" ); |
274 | } |
275 | } |
276 | |
277 | static bool isNoopBitcast(Type *T1, Type *T2, |
278 | const TargetLoweringBase& TLI) { |
279 | return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || |
280 | (isa<VectorType>(Val: T1) && isa<VectorType>(Val: T2) && |
281 | TLI.isTypeLegal(VT: EVT::getEVT(Ty: T1)) && TLI.isTypeLegal(VT: EVT::getEVT(Ty: T2))); |
282 | } |
283 | |
284 | /// Look through operations that will be free to find the earliest source of |
285 | /// this value. |
286 | /// |
287 | /// @param ValLoc If V has aggregate type, we will be interested in a particular |
288 | /// scalar component. This records its address; the reverse of this list gives a |
289 | /// sequence of indices appropriate for an extractvalue to locate the important |
290 | /// value. This value is updated during the function and on exit will indicate |
291 | /// similar information for the Value returned. |
292 | /// |
293 | /// @param DataBits If this function looks through truncate instructions, this |
294 | /// will record the smallest size attained. |
295 | static const Value *getNoopInput(const Value *V, |
296 | SmallVectorImpl<unsigned> &ValLoc, |
297 | unsigned &DataBits, |
298 | const TargetLoweringBase &TLI, |
299 | const DataLayout &DL) { |
300 | while (true) { |
301 | // Try to look through V1; if V1 is not an instruction, it can't be looked |
302 | // through. |
303 | const Instruction *I = dyn_cast<Instruction>(Val: V); |
304 | if (!I || I->getNumOperands() == 0) return V; |
305 | const Value *NoopInput = nullptr; |
306 | |
307 | Value *Op = I->getOperand(i: 0); |
308 | if (isa<BitCastInst>(Val: I)) { |
309 | // Look through truly no-op bitcasts. |
310 | if (isNoopBitcast(T1: Op->getType(), T2: I->getType(), TLI)) |
311 | NoopInput = Op; |
312 | } else if (isa<GetElementPtrInst>(Val: I)) { |
313 | // Look through getelementptr |
314 | if (cast<GetElementPtrInst>(Val: I)->hasAllZeroIndices()) |
315 | NoopInput = Op; |
316 | } else if (isa<IntToPtrInst>(Val: I)) { |
317 | // Look through inttoptr. |
318 | // Make sure this isn't a truncating or extending cast. We could |
319 | // support this eventually, but don't bother for now. |
320 | if (!isa<VectorType>(Val: I->getType()) && |
321 | DL.getPointerSizeInBits() == |
322 | cast<IntegerType>(Val: Op->getType())->getBitWidth()) |
323 | NoopInput = Op; |
324 | } else if (isa<PtrToIntInst>(Val: I)) { |
325 | // Look through ptrtoint. |
326 | // Make sure this isn't a truncating or extending cast. We could |
327 | // support this eventually, but don't bother for now. |
328 | if (!isa<VectorType>(Val: I->getType()) && |
329 | DL.getPointerSizeInBits() == |
330 | cast<IntegerType>(Val: I->getType())->getBitWidth()) |
331 | NoopInput = Op; |
332 | } else if (isa<TruncInst>(Val: I) && |
333 | TLI.allowTruncateForTailCall(FromTy: Op->getType(), ToTy: I->getType())) { |
334 | DataBits = |
335 | std::min(a: (uint64_t)DataBits, |
336 | b: I->getType()->getPrimitiveSizeInBits().getFixedValue()); |
337 | NoopInput = Op; |
338 | } else if (auto *CB = dyn_cast<CallBase>(Val: I)) { |
339 | const Value *ReturnedOp = CB->getReturnedArgOperand(); |
340 | if (ReturnedOp && isNoopBitcast(T1: ReturnedOp->getType(), T2: I->getType(), TLI)) |
341 | NoopInput = ReturnedOp; |
342 | } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Val: V)) { |
343 | // Value may come from either the aggregate or the scalar |
344 | ArrayRef<unsigned> InsertLoc = IVI->getIndices(); |
345 | if (ValLoc.size() >= InsertLoc.size() && |
346 | std::equal(first1: InsertLoc.begin(), last1: InsertLoc.end(), first2: ValLoc.rbegin())) { |
347 | // The type being inserted is a nested sub-type of the aggregate; we |
348 | // have to remove those initial indices to get the location we're |
349 | // interested in for the operand. |
350 | ValLoc.resize(N: ValLoc.size() - InsertLoc.size()); |
351 | NoopInput = IVI->getInsertedValueOperand(); |
352 | } else { |
353 | // The struct we're inserting into has the value we're interested in, no |
354 | // change of address. |
355 | NoopInput = Op; |
356 | } |
357 | } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Val: V)) { |
358 | // The part we're interested in will inevitably be some sub-section of the |
359 | // previous aggregate. Combine the two paths to obtain the true address of |
360 | // our element. |
361 | ArrayRef<unsigned> = EVI->getIndices(); |
362 | ValLoc.append(in_start: ExtractLoc.rbegin(), in_end: ExtractLoc.rend()); |
363 | NoopInput = Op; |
364 | } |
365 | // Terminate if we couldn't find anything to look through. |
366 | if (!NoopInput) |
367 | return V; |
368 | |
369 | V = NoopInput; |
370 | } |
371 | } |
372 | |
373 | /// Return true if this scalar return value only has bits discarded on its path |
374 | /// from the "tail call" to the "ret". This includes the obvious noop |
375 | /// instructions handled by getNoopInput above as well as free truncations (or |
376 | /// extensions prior to the call). |
377 | static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, |
378 | SmallVectorImpl<unsigned> &RetIndices, |
379 | SmallVectorImpl<unsigned> &CallIndices, |
380 | bool AllowDifferingSizes, |
381 | const TargetLoweringBase &TLI, |
382 | const DataLayout &DL) { |
383 | |
384 | // Trace the sub-value needed by the return value as far back up the graph as |
385 | // possible, in the hope that it will intersect with the value produced by the |
386 | // call. In the simple case with no "returned" attribute, the hope is actually |
387 | // that we end up back at the tail call instruction itself. |
388 | unsigned BitsRequired = UINT_MAX; |
389 | RetVal = getNoopInput(V: RetVal, ValLoc&: RetIndices, DataBits&: BitsRequired, TLI, DL); |
390 | |
391 | // If this slot in the value returned is undef, it doesn't matter what the |
392 | // call puts there, it'll be fine. |
393 | if (isa<UndefValue>(Val: RetVal)) |
394 | return true; |
395 | |
396 | // Now do a similar search up through the graph to find where the value |
397 | // actually returned by the "tail call" comes from. In the simple case without |
398 | // a "returned" attribute, the search will be blocked immediately and the loop |
399 | // a Noop. |
400 | unsigned BitsProvided = UINT_MAX; |
401 | CallVal = getNoopInput(V: CallVal, ValLoc&: CallIndices, DataBits&: BitsProvided, TLI, DL); |
402 | |
403 | // There's no hope if we can't actually trace them to (the same part of!) the |
404 | // same value. |
405 | if (CallVal != RetVal || CallIndices != RetIndices) |
406 | return false; |
407 | |
408 | // However, intervening truncates may have made the call non-tail. Make sure |
409 | // all the bits that are needed by the "ret" have been provided by the "tail |
410 | // call". FIXME: with sufficiently cunning bit-tracking, we could look through |
411 | // extensions too. |
412 | if (BitsProvided < BitsRequired || |
413 | (!AllowDifferingSizes && BitsProvided != BitsRequired)) |
414 | return false; |
415 | |
416 | return true; |
417 | } |
418 | |
419 | /// For an aggregate type, determine whether a given index is within bounds or |
420 | /// not. |
421 | static bool indexReallyValid(Type *T, unsigned Idx) { |
422 | if (ArrayType *AT = dyn_cast<ArrayType>(Val: T)) |
423 | return Idx < AT->getNumElements(); |
424 | |
425 | return Idx < cast<StructType>(Val: T)->getNumElements(); |
426 | } |
427 | |
428 | /// Move the given iterators to the next leaf type in depth first traversal. |
429 | /// |
430 | /// Performs a depth-first traversal of the type as specified by its arguments, |
431 | /// stopping at the next leaf node (which may be a legitimate scalar type or an |
432 | /// empty struct or array). |
433 | /// |
434 | /// @param SubTypes List of the partial components making up the type from |
435 | /// outermost to innermost non-empty aggregate. The element currently |
436 | /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). |
437 | /// |
438 | /// @param Path Set of extractvalue indices leading from the outermost type |
439 | /// (SubTypes[0]) to the leaf node currently represented. |
440 | /// |
441 | /// @returns true if a new type was found, false otherwise. Calling this |
442 | /// function again on a finished iterator will repeatedly return |
443 | /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty |
444 | /// aggregate or a non-aggregate |
445 | static bool advanceToNextLeafType(SmallVectorImpl<Type *> &SubTypes, |
446 | SmallVectorImpl<unsigned> &Path) { |
447 | // First march back up the tree until we can successfully increment one of the |
448 | // coordinates in Path. |
449 | while (!Path.empty() && !indexReallyValid(T: SubTypes.back(), Idx: Path.back() + 1)) { |
450 | Path.pop_back(); |
451 | SubTypes.pop_back(); |
452 | } |
453 | |
454 | // If we reached the top, then the iterator is done. |
455 | if (Path.empty()) |
456 | return false; |
457 | |
458 | // We know there's *some* valid leaf now, so march back down the tree picking |
459 | // out the left-most element at each node. |
460 | ++Path.back(); |
461 | Type *DeeperType = |
462 | ExtractValueInst::getIndexedType(Agg: SubTypes.back(), Idxs: Path.back()); |
463 | while (DeeperType->isAggregateType()) { |
464 | if (!indexReallyValid(T: DeeperType, Idx: 0)) |
465 | return true; |
466 | |
467 | SubTypes.push_back(Elt: DeeperType); |
468 | Path.push_back(Elt: 0); |
469 | |
470 | DeeperType = ExtractValueInst::getIndexedType(Agg: DeeperType, Idxs: 0); |
471 | } |
472 | |
473 | return true; |
474 | } |
475 | |
476 | /// Find the first non-empty, scalar-like type in Next and setup the iterator |
477 | /// components. |
478 | /// |
479 | /// Assuming Next is an aggregate of some kind, this function will traverse the |
480 | /// tree from left to right (i.e. depth-first) looking for the first |
481 | /// non-aggregate type which will play a role in function return. |
482 | /// |
483 | /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup |
484 | /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first |
485 | /// i32 in that type. |
486 | static bool firstRealType(Type *Next, SmallVectorImpl<Type *> &SubTypes, |
487 | SmallVectorImpl<unsigned> &Path) { |
488 | // First initialise the iterator components to the first "leaf" node |
489 | // (i.e. node with no valid sub-type at any index, so {} does count as a leaf |
490 | // despite nominally being an aggregate). |
491 | while (Type *FirstInner = ExtractValueInst::getIndexedType(Agg: Next, Idxs: 0)) { |
492 | SubTypes.push_back(Elt: Next); |
493 | Path.push_back(Elt: 0); |
494 | Next = FirstInner; |
495 | } |
496 | |
497 | // If there's no Path now, Next was originally scalar already (or empty |
498 | // leaf). We're done. |
499 | if (Path.empty()) |
500 | return true; |
501 | |
502 | // Otherwise, use normal iteration to keep looking through the tree until we |
503 | // find a non-aggregate type. |
504 | while (ExtractValueInst::getIndexedType(Agg: SubTypes.back(), Idxs: Path.back()) |
505 | ->isAggregateType()) { |
506 | if (!advanceToNextLeafType(SubTypes, Path)) |
507 | return false; |
508 | } |
509 | |
510 | return true; |
511 | } |
512 | |
513 | /// Set the iterator data-structures to the next non-empty, non-aggregate |
514 | /// subtype. |
515 | static bool nextRealType(SmallVectorImpl<Type *> &SubTypes, |
516 | SmallVectorImpl<unsigned> &Path) { |
517 | do { |
518 | if (!advanceToNextLeafType(SubTypes, Path)) |
519 | return false; |
520 | |
521 | assert(!Path.empty() && "found a leaf but didn't set the path?" ); |
522 | } while (ExtractValueInst::getIndexedType(Agg: SubTypes.back(), Idxs: Path.back()) |
523 | ->isAggregateType()); |
524 | |
525 | return true; |
526 | } |
527 | |
528 | |
529 | /// Test if the given instruction is in a position to be optimized |
530 | /// with a tail-call. This roughly means that it's in a block with |
531 | /// a return and there's nothing that needs to be scheduled |
532 | /// between it and the return. |
533 | /// |
534 | /// This function only tests target-independent requirements. |
535 | bool llvm::isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, |
536 | bool ReturnsFirstArg) { |
537 | const BasicBlock *ExitBB = Call.getParent(); |
538 | const Instruction *Term = ExitBB->getTerminator(); |
539 | const ReturnInst *Ret = dyn_cast<ReturnInst>(Val: Term); |
540 | |
541 | // The block must end in a return statement or unreachable. |
542 | // |
543 | // FIXME: Decline tailcall if it's not guaranteed and if the block ends in |
544 | // an unreachable, for now. The way tailcall optimization is currently |
545 | // implemented means it will add an epilogue followed by a jump. That is |
546 | // not profitable. Also, if the callee is a special function (e.g. |
547 | // longjmp on x86), it can end up causing miscompilation that has not |
548 | // been fully understood. |
549 | if (!Ret && ((!TM.Options.GuaranteedTailCallOpt && |
550 | Call.getCallingConv() != CallingConv::Tail && |
551 | Call.getCallingConv() != CallingConv::SwiftTail) || |
552 | !isa<UnreachableInst>(Val: Term))) |
553 | return false; |
554 | |
555 | // If I will have a chain, make sure no other instruction that will have a |
556 | // chain interposes between I and the return. |
557 | // Check for all calls including speculatable functions. |
558 | for (BasicBlock::const_iterator BBI = std::prev(x: ExitBB->end(), n: 2);; --BBI) { |
559 | if (&*BBI == &Call) |
560 | break; |
561 | // Debug info intrinsics do not get in the way of tail call optimization. |
562 | // Pseudo probe intrinsics do not block tail call optimization either. |
563 | if (BBI->isDebugOrPseudoInst()) |
564 | continue; |
565 | // A lifetime end, assume or noalias.decl intrinsic should not stop tail |
566 | // call optimization. |
567 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val&: BBI)) |
568 | if (II->getIntrinsicID() == Intrinsic::lifetime_end || |
569 | II->getIntrinsicID() == Intrinsic::assume || |
570 | II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl) |
571 | continue; |
572 | if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || |
573 | !isSafeToSpeculativelyExecute(I: &*BBI)) |
574 | return false; |
575 | } |
576 | |
577 | const Function *F = ExitBB->getParent(); |
578 | return returnTypeIsEligibleForTailCall( |
579 | F, I: &Call, Ret, TLI: *TM.getSubtargetImpl(*F)->getTargetLowering(), |
580 | ReturnsFirstArg); |
581 | } |
582 | |
583 | bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I, |
584 | const ReturnInst *Ret, |
585 | const TargetLoweringBase &TLI, |
586 | bool *AllowDifferingSizes) { |
587 | // ADS may be null, so don't write to it directly. |
588 | bool DummyADS; |
589 | bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS; |
590 | ADS = true; |
591 | |
592 | AttrBuilder CallerAttrs(F->getContext(), F->getAttributes().getRetAttrs()); |
593 | AttrBuilder CalleeAttrs(F->getContext(), |
594 | cast<CallInst>(Val: I)->getAttributes().getRetAttrs()); |
595 | |
596 | // Following attributes are completely benign as far as calling convention |
597 | // goes, they shouldn't affect whether the call is a tail call. |
598 | for (const auto &Attr : |
599 | {Attribute::Alignment, Attribute::Dereferenceable, |
600 | Attribute::DereferenceableOrNull, Attribute::NoAlias, |
601 | Attribute::NonNull, Attribute::NoUndef, Attribute::Range}) { |
602 | CallerAttrs.removeAttribute(Val: Attr); |
603 | CalleeAttrs.removeAttribute(Val: Attr); |
604 | } |
605 | |
606 | if (CallerAttrs.contains(A: Attribute::ZExt)) { |
607 | if (!CalleeAttrs.contains(A: Attribute::ZExt)) |
608 | return false; |
609 | |
610 | ADS = false; |
611 | CallerAttrs.removeAttribute(Val: Attribute::ZExt); |
612 | CalleeAttrs.removeAttribute(Val: Attribute::ZExt); |
613 | } else if (CallerAttrs.contains(A: Attribute::SExt)) { |
614 | if (!CalleeAttrs.contains(A: Attribute::SExt)) |
615 | return false; |
616 | |
617 | ADS = false; |
618 | CallerAttrs.removeAttribute(Val: Attribute::SExt); |
619 | CalleeAttrs.removeAttribute(Val: Attribute::SExt); |
620 | } |
621 | |
622 | // Drop sext and zext return attributes if the result is not used. |
623 | // This enables tail calls for code like: |
624 | // |
625 | // define void @caller() { |
626 | // entry: |
627 | // %unused_result = tail call zeroext i1 @callee() |
628 | // br label %retlabel |
629 | // retlabel: |
630 | // ret void |
631 | // } |
632 | if (I->use_empty()) { |
633 | CalleeAttrs.removeAttribute(Val: Attribute::SExt); |
634 | CalleeAttrs.removeAttribute(Val: Attribute::ZExt); |
635 | } |
636 | |
637 | // If they're still different, there's some facet we don't understand |
638 | // (currently only "inreg", but in future who knows). It may be OK but the |
639 | // only safe option is to reject the tail call. |
640 | return CallerAttrs == CalleeAttrs; |
641 | } |
642 | |
643 | bool llvm::returnTypeIsEligibleForTailCall(const Function *F, |
644 | const Instruction *I, |
645 | const ReturnInst *Ret, |
646 | const TargetLoweringBase &TLI, |
647 | bool ReturnsFirstArg) { |
648 | // If the block ends with a void return or unreachable, it doesn't matter |
649 | // what the call's return type is. |
650 | if (!Ret || Ret->getNumOperands() == 0) return true; |
651 | |
652 | // If the return value is undef, it doesn't matter what the call's |
653 | // return type is. |
654 | if (isa<UndefValue>(Val: Ret->getOperand(i_nocapture: 0))) return true; |
655 | |
656 | // Make sure the attributes attached to each return are compatible. |
657 | bool AllowDifferingSizes; |
658 | if (!attributesPermitTailCall(F, I, Ret, TLI, AllowDifferingSizes: &AllowDifferingSizes)) |
659 | return false; |
660 | |
661 | // If the return value is the first argument of the call. |
662 | if (ReturnsFirstArg) |
663 | return true; |
664 | |
665 | const Value *RetVal = Ret->getOperand(i_nocapture: 0), *CallVal = I; |
666 | SmallVector<unsigned, 4> RetPath, CallPath; |
667 | SmallVector<Type *, 4> RetSubTypes, CallSubTypes; |
668 | |
669 | bool RetEmpty = !firstRealType(Next: RetVal->getType(), SubTypes&: RetSubTypes, Path&: RetPath); |
670 | bool CallEmpty = !firstRealType(Next: CallVal->getType(), SubTypes&: CallSubTypes, Path&: CallPath); |
671 | |
672 | // Nothing's actually returned, it doesn't matter what the callee put there |
673 | // it's a valid tail call. |
674 | if (RetEmpty) |
675 | return true; |
676 | |
677 | // Iterate pairwise through each of the value types making up the tail call |
678 | // and the corresponding return. For each one we want to know whether it's |
679 | // essentially going directly from the tail call to the ret, via operations |
680 | // that end up not generating any code. |
681 | // |
682 | // We allow a certain amount of covariance here. For example it's permitted |
683 | // for the tail call to define more bits than the ret actually cares about |
684 | // (e.g. via a truncate). |
685 | do { |
686 | if (CallEmpty) { |
687 | // We've exhausted the values produced by the tail call instruction, the |
688 | // rest are essentially undef. The type doesn't really matter, but we need |
689 | // *something*. |
690 | Type *SlotType = |
691 | ExtractValueInst::getIndexedType(Agg: RetSubTypes.back(), Idxs: RetPath.back()); |
692 | CallVal = UndefValue::get(T: SlotType); |
693 | } |
694 | |
695 | // The manipulations performed when we're looking through an insertvalue or |
696 | // an extractvalue would happen at the front of the RetPath list, so since |
697 | // we have to copy it anyway it's more efficient to create a reversed copy. |
698 | SmallVector<unsigned, 4> TmpRetPath(llvm::reverse(C&: RetPath)); |
699 | SmallVector<unsigned, 4> TmpCallPath(llvm::reverse(C&: CallPath)); |
700 | |
701 | // Finally, we can check whether the value produced by the tail call at this |
702 | // index is compatible with the value we return. |
703 | if (!slotOnlyDiscardsData(RetVal, CallVal, RetIndices&: TmpRetPath, CallIndices&: TmpCallPath, |
704 | AllowDifferingSizes, TLI, |
705 | DL: F->getDataLayout())) |
706 | return false; |
707 | |
708 | CallEmpty = !nextRealType(SubTypes&: CallSubTypes, Path&: CallPath); |
709 | } while(nextRealType(SubTypes&: RetSubTypes, Path&: RetPath)); |
710 | |
711 | return true; |
712 | } |
713 | |
714 | bool llvm::funcReturnsFirstArgOfCall(const CallInst &CI) { |
715 | const ReturnInst *Ret = dyn_cast<ReturnInst>(Val: CI.getParent()->getTerminator()); |
716 | Value *RetVal = Ret ? Ret->getReturnValue() : nullptr; |
717 | bool ReturnsFirstArg = false; |
718 | if (RetVal && ((RetVal == CI.getArgOperand(i: 0)))) |
719 | ReturnsFirstArg = true; |
720 | return ReturnsFirstArg; |
721 | } |
722 | |
723 | static void collectEHScopeMembers( |
724 | DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope, |
725 | const MachineBasicBlock *MBB) { |
726 | SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB}; |
727 | while (!Worklist.empty()) { |
728 | const MachineBasicBlock *Visiting = Worklist.pop_back_val(); |
729 | // Don't follow blocks which start new scopes. |
730 | if (Visiting->isEHPad() && Visiting != MBB) |
731 | continue; |
732 | |
733 | // Add this MBB to our scope. |
734 | auto P = EHScopeMembership.insert(KV: std::make_pair(x&: Visiting, y&: EHScope)); |
735 | |
736 | // Don't revisit blocks. |
737 | if (!P.second) { |
738 | assert(P.first->second == EHScope && "MBB is part of two scopes!" ); |
739 | continue; |
740 | } |
741 | |
742 | // Returns are boundaries where scope transfer can occur, don't follow |
743 | // successors. |
744 | if (Visiting->isEHScopeReturnBlock()) |
745 | continue; |
746 | |
747 | append_range(C&: Worklist, R: Visiting->successors()); |
748 | } |
749 | } |
750 | |
751 | DenseMap<const MachineBasicBlock *, int> |
752 | llvm::getEHScopeMembership(const MachineFunction &MF) { |
753 | DenseMap<const MachineBasicBlock *, int> EHScopeMembership; |
754 | |
755 | // We don't have anything to do if there aren't any EH pads. |
756 | if (!MF.hasEHScopes()) |
757 | return EHScopeMembership; |
758 | |
759 | int EntryBBNumber = MF.front().getNumber(); |
760 | bool IsSEH = isAsynchronousEHPersonality( |
761 | Pers: classifyEHPersonality(Pers: MF.getFunction().getPersonalityFn())); |
762 | |
763 | const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); |
764 | SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks; |
765 | SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; |
766 | SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; |
767 | SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; |
768 | for (const MachineBasicBlock &MBB : MF) { |
769 | if (MBB.isEHScopeEntry()) { |
770 | EHScopeBlocks.push_back(Elt: &MBB); |
771 | } else if (IsSEH && MBB.isEHPad()) { |
772 | SEHCatchPads.push_back(Elt: &MBB); |
773 | } else if (MBB.pred_empty()) { |
774 | UnreachableBlocks.push_back(Elt: &MBB); |
775 | } |
776 | |
777 | MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); |
778 | |
779 | // CatchPads are not scopes for SEH so do not consider CatchRet to |
780 | // transfer control to another scope. |
781 | if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode()) |
782 | continue; |
783 | |
784 | // FIXME: SEH CatchPads are not necessarily in the parent function: |
785 | // they could be inside a finally block. |
786 | const MachineBasicBlock *Successor = MBBI->getOperand(i: 0).getMBB(); |
787 | const MachineBasicBlock *SuccessorColor = MBBI->getOperand(i: 1).getMBB(); |
788 | CatchRetSuccessors.push_back( |
789 | Elt: {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); |
790 | } |
791 | |
792 | // We don't have anything to do if there aren't any EH pads. |
793 | if (EHScopeBlocks.empty()) |
794 | return EHScopeMembership; |
795 | |
796 | // Identify all the basic blocks reachable from the function entry. |
797 | collectEHScopeMembers(EHScopeMembership, EHScope: EntryBBNumber, MBB: &MF.front()); |
798 | // All blocks not part of a scope are in the parent function. |
799 | for (const MachineBasicBlock *MBB : UnreachableBlocks) |
800 | collectEHScopeMembers(EHScopeMembership, EHScope: EntryBBNumber, MBB); |
801 | // Next, identify all the blocks inside the scopes. |
802 | for (const MachineBasicBlock *MBB : EHScopeBlocks) |
803 | collectEHScopeMembers(EHScopeMembership, EHScope: MBB->getNumber(), MBB); |
804 | // SEH CatchPads aren't really scopes, handle them separately. |
805 | for (const MachineBasicBlock *MBB : SEHCatchPads) |
806 | collectEHScopeMembers(EHScopeMembership, EHScope: EntryBBNumber, MBB); |
807 | // Finally, identify all the targets of a catchret. |
808 | for (std::pair<const MachineBasicBlock *, int> CatchRetPair : |
809 | CatchRetSuccessors) |
810 | collectEHScopeMembers(EHScopeMembership, EHScope: CatchRetPair.second, |
811 | MBB: CatchRetPair.first); |
812 | return EHScopeMembership; |
813 | } |
814 | |