1 | //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file This file implements the LiveInterval analysis pass which is used |
10 | /// by the Linear Scan Register allocator. This pass linearizes the |
11 | /// basic blocks of the function in DFS order and computes live intervals for |
12 | /// each virtual and physical register. |
13 | // |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #include "llvm/CodeGen/LiveIntervals.h" |
17 | #include "llvm/ADT/ArrayRef.h" |
18 | #include "llvm/ADT/DepthFirstIterator.h" |
19 | #include "llvm/ADT/SmallPtrSet.h" |
20 | #include "llvm/ADT/SmallVector.h" |
21 | #include "llvm/ADT/iterator_range.h" |
22 | #include "llvm/CodeGen/LiveInterval.h" |
23 | #include "llvm/CodeGen/LiveIntervalCalc.h" |
24 | #include "llvm/CodeGen/LiveVariables.h" |
25 | #include "llvm/CodeGen/MachineBasicBlock.h" |
26 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
27 | #include "llvm/CodeGen/MachineDominators.h" |
28 | #include "llvm/CodeGen/MachineFunction.h" |
29 | #include "llvm/CodeGen/MachineInstr.h" |
30 | #include "llvm/CodeGen/MachineInstrBundle.h" |
31 | #include "llvm/CodeGen/MachineOperand.h" |
32 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
33 | #include "llvm/CodeGen/Passes.h" |
34 | #include "llvm/CodeGen/SlotIndexes.h" |
35 | #include "llvm/CodeGen/StackMaps.h" |
36 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
37 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
38 | #include "llvm/CodeGen/VirtRegMap.h" |
39 | #include "llvm/Config/llvm-config.h" |
40 | #include "llvm/IR/Statepoint.h" |
41 | #include "llvm/MC/LaneBitmask.h" |
42 | #include "llvm/MC/MCRegisterInfo.h" |
43 | #include "llvm/Pass.h" |
44 | #include "llvm/Support/CommandLine.h" |
45 | #include "llvm/Support/Compiler.h" |
46 | #include "llvm/Support/Debug.h" |
47 | #include "llvm/Support/MathExtras.h" |
48 | #include "llvm/Support/raw_ostream.h" |
49 | #include <algorithm> |
50 | #include <cassert> |
51 | #include <cstdint> |
52 | #include <iterator> |
53 | #include <tuple> |
54 | #include <utility> |
55 | |
56 | using namespace llvm; |
57 | |
58 | #define DEBUG_TYPE "regalloc" |
59 | |
60 | AnalysisKey LiveIntervalsAnalysis::Key; |
61 | |
62 | LiveIntervalsAnalysis::Result |
63 | LiveIntervalsAnalysis::run(MachineFunction &MF, |
64 | MachineFunctionAnalysisManager &MFAM) { |
65 | return Result(MF, MFAM.getResult<SlotIndexesAnalysis>(IR&: MF), |
66 | MFAM.getResult<MachineDominatorTreeAnalysis>(IR&: MF)); |
67 | } |
68 | |
69 | PreservedAnalyses |
70 | LiveIntervalsPrinterPass::run(MachineFunction &MF, |
71 | MachineFunctionAnalysisManager &MFAM) { |
72 | OS << "Live intervals for machine function: " << MF.getName() << ":\n" ; |
73 | MFAM.getResult<LiveIntervalsAnalysis>(IR&: MF).print(O&: OS); |
74 | return PreservedAnalyses::all(); |
75 | } |
76 | |
77 | char LiveIntervalsWrapperPass::ID = 0; |
78 | char &llvm::LiveIntervalsID = LiveIntervalsWrapperPass::ID; |
79 | INITIALIZE_PASS_BEGIN(LiveIntervalsWrapperPass, "liveintervals" , |
80 | "Live Interval Analysis" , false, false) |
81 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
82 | INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) |
83 | INITIALIZE_PASS_END(LiveIntervalsWrapperPass, "liveintervals" , |
84 | "Live Interval Analysis" , false, false) |
85 | |
86 | bool LiveIntervalsWrapperPass::runOnMachineFunction(MachineFunction &MF) { |
87 | LIS.Indexes = &getAnalysis<SlotIndexesWrapperPass>().getSI(); |
88 | LIS.DomTree = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
89 | LIS.analyze(MF); |
90 | LLVM_DEBUG(dump()); |
91 | return false; |
92 | } |
93 | |
94 | #ifndef NDEBUG |
95 | static cl::opt<bool> EnablePrecomputePhysRegs( |
96 | "precompute-phys-liveness" , cl::Hidden, |
97 | cl::desc("Eagerly compute live intervals for all physreg units." )); |
98 | #else |
99 | static bool EnablePrecomputePhysRegs = false; |
100 | #endif // NDEBUG |
101 | |
102 | namespace llvm { |
103 | |
104 | cl::opt<bool> UseSegmentSetForPhysRegs( |
105 | "use-segment-set-for-physregs" , cl::Hidden, cl::init(Val: true), |
106 | cl::desc( |
107 | "Use segment set for the computation of the live ranges of physregs." )); |
108 | |
109 | } // end namespace llvm |
110 | |
111 | void LiveIntervalsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
112 | AU.setPreservesCFG(); |
113 | AU.addPreserved<LiveVariablesWrapperPass>(); |
114 | AU.addPreservedID(ID&: MachineLoopInfoID); |
115 | AU.addRequiredTransitiveID(ID&: MachineDominatorsID); |
116 | AU.addPreservedID(ID&: MachineDominatorsID); |
117 | AU.addPreserved<SlotIndexesWrapperPass>(); |
118 | AU.addRequiredTransitive<SlotIndexesWrapperPass>(); |
119 | MachineFunctionPass::getAnalysisUsage(AU); |
120 | } |
121 | |
122 | LiveIntervalsWrapperPass::LiveIntervalsWrapperPass() : MachineFunctionPass(ID) { |
123 | initializeLiveIntervalsWrapperPassPass(Registry&: *PassRegistry::getPassRegistry()); |
124 | } |
125 | |
126 | LiveIntervals::~LiveIntervals() { clear(); } |
127 | |
128 | void LiveIntervals::clear() { |
129 | // Free the live intervals themselves. |
130 | for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i) |
131 | delete VirtRegIntervals[Register::index2VirtReg(Index: i)]; |
132 | VirtRegIntervals.clear(); |
133 | RegMaskSlots.clear(); |
134 | RegMaskBits.clear(); |
135 | RegMaskBlocks.clear(); |
136 | |
137 | for (LiveRange *LR : RegUnitRanges) |
138 | delete LR; |
139 | RegUnitRanges.clear(); |
140 | |
141 | // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. |
142 | VNInfoAllocator.Reset(); |
143 | } |
144 | |
145 | void LiveIntervals::analyze(MachineFunction &fn) { |
146 | MF = &fn; |
147 | MRI = &MF->getRegInfo(); |
148 | TRI = MF->getSubtarget().getRegisterInfo(); |
149 | TII = MF->getSubtarget().getInstrInfo(); |
150 | |
151 | if (!LICalc) |
152 | LICalc = std::make_unique<LiveIntervalCalc>(); |
153 | |
154 | // Allocate space for all virtual registers. |
155 | VirtRegIntervals.resize(s: MRI->getNumVirtRegs()); |
156 | |
157 | computeVirtRegs(); |
158 | computeRegMasks(); |
159 | computeLiveInRegUnits(); |
160 | |
161 | if (EnablePrecomputePhysRegs) { |
162 | // For stress testing, precompute live ranges of all physical register |
163 | // units, including reserved registers. |
164 | for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) |
165 | getRegUnit(Unit: i); |
166 | } |
167 | } |
168 | |
169 | void LiveIntervals::print(raw_ostream &OS) const { |
170 | OS << "********** INTERVALS **********\n" ; |
171 | |
172 | // Dump the regunits. |
173 | for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit) |
174 | if (LiveRange *LR = RegUnitRanges[Unit]) |
175 | OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n'; |
176 | |
177 | // Dump the virtregs. |
178 | for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
179 | Register Reg = Register::index2VirtReg(Index: i); |
180 | if (hasInterval(Reg)) |
181 | OS << getInterval(Reg) << '\n'; |
182 | } |
183 | |
184 | OS << "RegMasks:" ; |
185 | for (SlotIndex Idx : RegMaskSlots) |
186 | OS << ' ' << Idx; |
187 | OS << '\n'; |
188 | |
189 | printInstrs(O&: OS); |
190 | } |
191 | |
192 | void LiveIntervals::printInstrs(raw_ostream &OS) const { |
193 | OS << "********** MACHINEINSTRS **********\n" ; |
194 | MF->print(OS, Indexes); |
195 | } |
196 | |
197 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
198 | LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const { |
199 | printInstrs(dbgs()); |
200 | } |
201 | #endif |
202 | |
203 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
204 | LLVM_DUMP_METHOD void LiveIntervals::dump() const { print(dbgs()); } |
205 | #endif |
206 | |
207 | LiveInterval *LiveIntervals::createInterval(Register reg) { |
208 | float Weight = reg.isPhysical() ? huge_valf : 0.0F; |
209 | return new LiveInterval(reg, Weight); |
210 | } |
211 | |
212 | /// Compute the live interval of a virtual register, based on defs and uses. |
213 | bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) { |
214 | assert(LICalc && "LICalc not initialized." ); |
215 | assert(LI.empty() && "Should only compute empty intervals." ); |
216 | LICalc->reset(mf: MF, SI: getSlotIndexes(), MDT: DomTree, VNIA: &getVNInfoAllocator()); |
217 | LICalc->calculate(LI, TrackSubRegs: MRI->shouldTrackSubRegLiveness(VReg: LI.reg())); |
218 | return computeDeadValues(LI, dead: nullptr); |
219 | } |
220 | |
221 | void LiveIntervals::computeVirtRegs() { |
222 | for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
223 | Register Reg = Register::index2VirtReg(Index: i); |
224 | if (MRI->reg_nodbg_empty(RegNo: Reg)) |
225 | continue; |
226 | LiveInterval &LI = createEmptyInterval(Reg); |
227 | bool NeedSplit = computeVirtRegInterval(LI); |
228 | if (NeedSplit) { |
229 | SmallVector<LiveInterval*, 8> SplitLIs; |
230 | splitSeparateComponents(LI, SplitLIs); |
231 | } |
232 | } |
233 | } |
234 | |
235 | void LiveIntervals::computeRegMasks() { |
236 | RegMaskBlocks.resize(N: MF->getNumBlockIDs()); |
237 | |
238 | // Find all instructions with regmask operands. |
239 | for (const MachineBasicBlock &MBB : *MF) { |
240 | std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()]; |
241 | RMB.first = RegMaskSlots.size(); |
242 | |
243 | // Some block starts, such as EH funclets, create masks. |
244 | if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) { |
245 | RegMaskSlots.push_back(Elt: Indexes->getMBBStartIdx(mbb: &MBB)); |
246 | RegMaskBits.push_back(Elt: Mask); |
247 | } |
248 | |
249 | // Unwinders may clobber additional registers. |
250 | // FIXME: This functionality can possibly be merged into |
251 | // MachineBasicBlock::getBeginClobberMask(). |
252 | if (MBB.isEHPad()) |
253 | if (auto *Mask = TRI->getCustomEHPadPreservedMask(MF: *MBB.getParent())) { |
254 | RegMaskSlots.push_back(Elt: Indexes->getMBBStartIdx(mbb: &MBB)); |
255 | RegMaskBits.push_back(Elt: Mask); |
256 | } |
257 | |
258 | for (const MachineInstr &MI : MBB) { |
259 | for (const MachineOperand &MO : MI.operands()) { |
260 | if (!MO.isRegMask()) |
261 | continue; |
262 | RegMaskSlots.push_back(Elt: Indexes->getInstructionIndex(MI).getRegSlot()); |
263 | RegMaskBits.push_back(Elt: MO.getRegMask()); |
264 | } |
265 | } |
266 | |
267 | // Some block ends, such as funclet returns, create masks. Put the mask on |
268 | // the last instruction of the block, because MBB slot index intervals are |
269 | // half-open. |
270 | if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) { |
271 | assert(!MBB.empty() && "empty return block?" ); |
272 | RegMaskSlots.push_back( |
273 | Elt: Indexes->getInstructionIndex(MI: MBB.back()).getRegSlot()); |
274 | RegMaskBits.push_back(Elt: Mask); |
275 | } |
276 | |
277 | // Compute the number of register mask instructions in this block. |
278 | RMB.second = RegMaskSlots.size() - RMB.first; |
279 | } |
280 | } |
281 | |
282 | //===----------------------------------------------------------------------===// |
283 | // Register Unit Liveness |
284 | //===----------------------------------------------------------------------===// |
285 | // |
286 | // Fixed interference typically comes from ABI boundaries: Function arguments |
287 | // and return values are passed in fixed registers, and so are exception |
288 | // pointers entering landing pads. Certain instructions require values to be |
289 | // present in specific registers. That is also represented through fixed |
290 | // interference. |
291 | // |
292 | |
293 | /// Compute the live range of a register unit, based on the uses and defs of |
294 | /// aliasing registers. The range should be empty, or contain only dead |
295 | /// phi-defs from ABI blocks. |
296 | void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) { |
297 | assert(LICalc && "LICalc not initialized." ); |
298 | LICalc->reset(mf: MF, SI: getSlotIndexes(), MDT: DomTree, VNIA: &getVNInfoAllocator()); |
299 | |
300 | // The physregs aliasing Unit are the roots and their super-registers. |
301 | // Create all values as dead defs before extending to uses. Note that roots |
302 | // may share super-registers. That's OK because createDeadDefs() is |
303 | // idempotent. It is very rare for a register unit to have multiple roots, so |
304 | // uniquing super-registers is probably not worthwhile. |
305 | bool IsReserved = false; |
306 | for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { |
307 | bool IsRootReserved = true; |
308 | for (MCPhysReg Reg : TRI->superregs_inclusive(Reg: *Root)) { |
309 | if (!MRI->reg_empty(RegNo: Reg)) |
310 | LICalc->createDeadDefs(LR, Reg); |
311 | // A register unit is considered reserved if all its roots and all their |
312 | // super registers are reserved. |
313 | if (!MRI->isReserved(PhysReg: Reg)) |
314 | IsRootReserved = false; |
315 | } |
316 | IsReserved |= IsRootReserved; |
317 | } |
318 | assert(IsReserved == MRI->isReservedRegUnit(Unit) && |
319 | "reserved computation mismatch" ); |
320 | |
321 | // Now extend LR to reach all uses. |
322 | // Ignore uses of reserved registers. We only track defs of those. |
323 | if (!IsReserved) { |
324 | for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { |
325 | for (MCPhysReg Reg : TRI->superregs_inclusive(Reg: *Root)) { |
326 | if (!MRI->reg_empty(RegNo: Reg)) |
327 | LICalc->extendToUses(LR, PhysReg: Reg); |
328 | } |
329 | } |
330 | } |
331 | |
332 | // Flush the segment set to the segment vector. |
333 | if (UseSegmentSetForPhysRegs) |
334 | LR.flushSegmentSet(); |
335 | } |
336 | |
337 | /// Precompute the live ranges of any register units that are live-in to an ABI |
338 | /// block somewhere. Register values can appear without a corresponding def when |
339 | /// entering the entry block or a landing pad. |
340 | void LiveIntervals::computeLiveInRegUnits() { |
341 | RegUnitRanges.resize(N: TRI->getNumRegUnits()); |
342 | LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n" ); |
343 | |
344 | // Keep track of the live range sets allocated. |
345 | SmallVector<unsigned, 8> NewRanges; |
346 | |
347 | // Check all basic blocks for live-ins. |
348 | for (const MachineBasicBlock &MBB : *MF) { |
349 | // We only care about ABI blocks: Entry + landing pads. |
350 | if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty()) |
351 | continue; |
352 | |
353 | // Create phi-defs at Begin for all live-in registers. |
354 | SlotIndex Begin = Indexes->getMBBStartIdx(mbb: &MBB); |
355 | LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB)); |
356 | for (const auto &LI : MBB.liveins()) { |
357 | for (MCRegUnit Unit : TRI->regunits(Reg: LI.PhysReg)) { |
358 | LiveRange *LR = RegUnitRanges[Unit]; |
359 | if (!LR) { |
360 | // Use segment set to speed-up initial computation of the live range. |
361 | LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs); |
362 | NewRanges.push_back(Elt: Unit); |
363 | } |
364 | VNInfo *VNI = LR->createDeadDef(Def: Begin, VNIAlloc&: getVNInfoAllocator()); |
365 | (void)VNI; |
366 | LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id); |
367 | } |
368 | } |
369 | LLVM_DEBUG(dbgs() << '\n'); |
370 | } |
371 | LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n" ); |
372 | |
373 | // Compute the 'normal' part of the ranges. |
374 | for (unsigned Unit : NewRanges) |
375 | computeRegUnitRange(LR&: *RegUnitRanges[Unit], Unit); |
376 | } |
377 | |
378 | static void createSegmentsForValues(LiveRange &LR, |
379 | iterator_range<LiveInterval::vni_iterator> VNIs) { |
380 | for (VNInfo *VNI : VNIs) { |
381 | if (VNI->isUnused()) |
382 | continue; |
383 | SlotIndex Def = VNI->def; |
384 | LR.addSegment(S: LiveRange::Segment(Def, Def.getDeadSlot(), VNI)); |
385 | } |
386 | } |
387 | |
388 | void LiveIntervals::extendSegmentsToUses(LiveRange &Segments, |
389 | ShrinkToUsesWorkList &WorkList, |
390 | Register Reg, LaneBitmask LaneMask) { |
391 | // Keep track of the PHIs that are in use. |
392 | SmallPtrSet<VNInfo*, 8> UsedPHIs; |
393 | // Blocks that have already been added to WorkList as live-out. |
394 | SmallPtrSet<const MachineBasicBlock*, 16> LiveOut; |
395 | |
396 | auto getSubRange = [](const LiveInterval &I, LaneBitmask M) |
397 | -> const LiveRange& { |
398 | if (M.none()) |
399 | return I; |
400 | for (const LiveInterval::SubRange &SR : I.subranges()) { |
401 | if ((SR.LaneMask & M).any()) { |
402 | assert(SR.LaneMask == M && "Expecting lane masks to match exactly" ); |
403 | return SR; |
404 | } |
405 | } |
406 | llvm_unreachable("Subrange for mask not found" ); |
407 | }; |
408 | |
409 | const LiveInterval &LI = getInterval(Reg); |
410 | const LiveRange &OldRange = getSubRange(LI, LaneMask); |
411 | |
412 | // Extend intervals to reach all uses in WorkList. |
413 | while (!WorkList.empty()) { |
414 | SlotIndex Idx = WorkList.back().first; |
415 | VNInfo *VNI = WorkList.back().second; |
416 | WorkList.pop_back(); |
417 | const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(index: Idx.getPrevSlot()); |
418 | SlotIndex BlockStart = Indexes->getMBBStartIdx(mbb: MBB); |
419 | |
420 | // Extend the live range for VNI to be live at Idx. |
421 | if (VNInfo *ExtVNI = Segments.extendInBlock(StartIdx: BlockStart, Kill: Idx)) { |
422 | assert(ExtVNI == VNI && "Unexpected existing value number" ); |
423 | (void)ExtVNI; |
424 | // Is this a PHIDef we haven't seen before? |
425 | if (!VNI->isPHIDef() || VNI->def != BlockStart || |
426 | !UsedPHIs.insert(Ptr: VNI).second) |
427 | continue; |
428 | // The PHI is live, make sure the predecessors are live-out. |
429 | for (const MachineBasicBlock *Pred : MBB->predecessors()) { |
430 | if (!LiveOut.insert(Ptr: Pred).second) |
431 | continue; |
432 | SlotIndex Stop = Indexes->getMBBEndIdx(mbb: Pred); |
433 | // A predecessor is not required to have a live-out value for a PHI. |
434 | if (VNInfo *PVNI = OldRange.getVNInfoBefore(Idx: Stop)) |
435 | WorkList.push_back(Elt: std::make_pair(x&: Stop, y&: PVNI)); |
436 | } |
437 | continue; |
438 | } |
439 | |
440 | // VNI is live-in to MBB. |
441 | LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); |
442 | Segments.addSegment(S: LiveRange::Segment(BlockStart, Idx, VNI)); |
443 | |
444 | // Make sure VNI is live-out from the predecessors. |
445 | for (const MachineBasicBlock *Pred : MBB->predecessors()) { |
446 | if (!LiveOut.insert(Ptr: Pred).second) |
447 | continue; |
448 | SlotIndex Stop = Indexes->getMBBEndIdx(mbb: Pred); |
449 | if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Idx: Stop)) { |
450 | assert(OldVNI == VNI && "Wrong value out of predecessor" ); |
451 | (void)OldVNI; |
452 | WorkList.push_back(Elt: std::make_pair(x&: Stop, y&: VNI)); |
453 | } else { |
454 | #ifndef NDEBUG |
455 | // There was no old VNI. Verify that Stop is jointly dominated |
456 | // by <undef>s for this live range. |
457 | assert(LaneMask.any() && |
458 | "Missing value out of predecessor for main range" ); |
459 | SmallVector<SlotIndex,8> Undefs; |
460 | LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); |
461 | assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) && |
462 | "Missing value out of predecessor for subrange" ); |
463 | #endif |
464 | } |
465 | } |
466 | } |
467 | } |
468 | |
469 | bool LiveIntervals::shrinkToUses(LiveInterval *li, |
470 | SmallVectorImpl<MachineInstr*> *dead) { |
471 | LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n'); |
472 | assert(li->reg().isVirtual() && "Can only shrink virtual registers" ); |
473 | |
474 | // Shrink subregister live ranges. |
475 | bool NeedsCleanup = false; |
476 | for (LiveInterval::SubRange &S : li->subranges()) { |
477 | shrinkToUses(SR&: S, Reg: li->reg()); |
478 | if (S.empty()) |
479 | NeedsCleanup = true; |
480 | } |
481 | if (NeedsCleanup) |
482 | li->removeEmptySubRanges(); |
483 | |
484 | // Find all the values used, including PHI kills. |
485 | ShrinkToUsesWorkList WorkList; |
486 | |
487 | // Visit all instructions reading li->reg(). |
488 | Register Reg = li->reg(); |
489 | for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) { |
490 | if (UseMI.isDebugInstr() || !UseMI.readsVirtualRegister(Reg)) |
491 | continue; |
492 | SlotIndex Idx = getInstructionIndex(Instr: UseMI).getRegSlot(); |
493 | LiveQueryResult LRQ = li->Query(Idx); |
494 | VNInfo *VNI = LRQ.valueIn(); |
495 | if (!VNI) { |
496 | // This shouldn't happen: readsVirtualRegister returns true, but there is |
497 | // no live value. It is likely caused by a target getting <undef> flags |
498 | // wrong. |
499 | LLVM_DEBUG( |
500 | dbgs() << Idx << '\t' << UseMI |
501 | << "Warning: Instr claims to read non-existent value in " |
502 | << *li << '\n'); |
503 | continue; |
504 | } |
505 | // Special case: An early-clobber tied operand reads and writes the |
506 | // register one slot early. |
507 | if (VNInfo *DefVNI = LRQ.valueDefined()) |
508 | Idx = DefVNI->def; |
509 | |
510 | WorkList.push_back(Elt: std::make_pair(x&: Idx, y&: VNI)); |
511 | } |
512 | |
513 | // Create new live ranges with only minimal live segments per def. |
514 | LiveRange NewLR; |
515 | createSegmentsForValues(LR&: NewLR, VNIs: li->vnis()); |
516 | extendSegmentsToUses(Segments&: NewLR, WorkList, Reg, LaneMask: LaneBitmask::getNone()); |
517 | |
518 | // Move the trimmed segments back. |
519 | li->segments.swap(RHS&: NewLR.segments); |
520 | |
521 | // Handle dead values. |
522 | bool CanSeparate = computeDeadValues(LI&: *li, dead); |
523 | LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n'); |
524 | return CanSeparate; |
525 | } |
526 | |
527 | bool LiveIntervals::computeDeadValues(LiveInterval &LI, |
528 | SmallVectorImpl<MachineInstr*> *dead) { |
529 | bool MayHaveSplitComponents = false; |
530 | |
531 | for (VNInfo *VNI : LI.valnos) { |
532 | if (VNI->isUnused()) |
533 | continue; |
534 | SlotIndex Def = VNI->def; |
535 | LiveRange::iterator I = LI.FindSegmentContaining(Idx: Def); |
536 | assert(I != LI.end() && "Missing segment for VNI" ); |
537 | |
538 | // Is the register live before? Otherwise we may have to add a read-undef |
539 | // flag for subregister defs. |
540 | Register VReg = LI.reg(); |
541 | if (MRI->shouldTrackSubRegLiveness(VReg)) { |
542 | if ((I == LI.begin() || std::prev(x: I)->end < Def) && !VNI->isPHIDef()) { |
543 | MachineInstr *MI = getInstructionFromIndex(index: Def); |
544 | MI->setRegisterDefReadUndef(Reg: VReg); |
545 | } |
546 | } |
547 | |
548 | if (I->end != Def.getDeadSlot()) |
549 | continue; |
550 | if (VNI->isPHIDef()) { |
551 | // This is a dead PHI. Remove it. |
552 | VNI->markUnused(); |
553 | LI.removeSegment(I); |
554 | LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n" ); |
555 | } else { |
556 | // This is a dead def. Make sure the instruction knows. |
557 | MachineInstr *MI = getInstructionFromIndex(index: Def); |
558 | assert(MI && "No instruction defining live value" ); |
559 | MI->addRegisterDead(Reg: LI.reg(), RegInfo: TRI); |
560 | |
561 | if (dead && MI->allDefsAreDead()) { |
562 | LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI); |
563 | dead->push_back(Elt: MI); |
564 | } |
565 | } |
566 | MayHaveSplitComponents = true; |
567 | } |
568 | return MayHaveSplitComponents; |
569 | } |
570 | |
571 | void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, Register Reg) { |
572 | LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n'); |
573 | assert(Reg.isVirtual() && "Can only shrink virtual registers" ); |
574 | // Find all the values used, including PHI kills. |
575 | ShrinkToUsesWorkList WorkList; |
576 | |
577 | // Visit all instructions reading Reg. |
578 | SlotIndex LastIdx; |
579 | for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { |
580 | // Skip "undef" uses. |
581 | if (!MO.readsReg()) |
582 | continue; |
583 | // Maybe the operand is for a subregister we don't care about. |
584 | unsigned SubReg = MO.getSubReg(); |
585 | if (SubReg != 0) { |
586 | LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubIdx: SubReg); |
587 | if ((LaneMask & SR.LaneMask).none()) |
588 | continue; |
589 | } |
590 | // We only need to visit each instruction once. |
591 | MachineInstr *UseMI = MO.getParent(); |
592 | SlotIndex Idx = getInstructionIndex(Instr: *UseMI).getRegSlot(); |
593 | if (Idx == LastIdx) |
594 | continue; |
595 | LastIdx = Idx; |
596 | |
597 | LiveQueryResult LRQ = SR.Query(Idx); |
598 | VNInfo *VNI = LRQ.valueIn(); |
599 | // For Subranges it is possible that only undef values are left in that |
600 | // part of the subregister, so there is no real liverange at the use |
601 | if (!VNI) |
602 | continue; |
603 | |
604 | // Special case: An early-clobber tied operand reads and writes the |
605 | // register one slot early. |
606 | if (VNInfo *DefVNI = LRQ.valueDefined()) |
607 | Idx = DefVNI->def; |
608 | |
609 | WorkList.push_back(Elt: std::make_pair(x&: Idx, y&: VNI)); |
610 | } |
611 | |
612 | // Create a new live ranges with only minimal live segments per def. |
613 | LiveRange NewLR; |
614 | createSegmentsForValues(LR&: NewLR, VNIs: SR.vnis()); |
615 | extendSegmentsToUses(Segments&: NewLR, WorkList, Reg, LaneMask: SR.LaneMask); |
616 | |
617 | // Move the trimmed ranges back. |
618 | SR.segments.swap(RHS&: NewLR.segments); |
619 | |
620 | // Remove dead PHI value numbers |
621 | for (VNInfo *VNI : SR.valnos) { |
622 | if (VNI->isUnused()) |
623 | continue; |
624 | const LiveRange::Segment *Segment = SR.getSegmentContaining(Idx: VNI->def); |
625 | assert(Segment != nullptr && "Missing segment for VNI" ); |
626 | if (Segment->end != VNI->def.getDeadSlot()) |
627 | continue; |
628 | if (VNI->isPHIDef()) { |
629 | // This is a dead PHI. Remove it. |
630 | LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def |
631 | << " may separate interval\n" ); |
632 | VNI->markUnused(); |
633 | SR.removeSegment(S: *Segment); |
634 | } |
635 | } |
636 | |
637 | LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n'); |
638 | } |
639 | |
640 | void LiveIntervals::extendToIndices(LiveRange &LR, |
641 | ArrayRef<SlotIndex> Indices, |
642 | ArrayRef<SlotIndex> Undefs) { |
643 | assert(LICalc && "LICalc not initialized." ); |
644 | LICalc->reset(mf: MF, SI: getSlotIndexes(), MDT: DomTree, VNIA: &getVNInfoAllocator()); |
645 | for (SlotIndex Idx : Indices) |
646 | LICalc->extend(LR, Use: Idx, /*PhysReg=*/0, Undefs); |
647 | } |
648 | |
649 | void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill, |
650 | SmallVectorImpl<SlotIndex> *EndPoints) { |
651 | LiveQueryResult LRQ = LR.Query(Idx: Kill); |
652 | VNInfo *VNI = LRQ.valueOutOrDead(); |
653 | if (!VNI) |
654 | return; |
655 | |
656 | MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(index: Kill); |
657 | SlotIndex MBBEnd = Indexes->getMBBEndIdx(mbb: KillMBB); |
658 | |
659 | // If VNI isn't live out from KillMBB, the value is trivially pruned. |
660 | if (LRQ.endPoint() < MBBEnd) { |
661 | LR.removeSegment(Start: Kill, End: LRQ.endPoint()); |
662 | if (EndPoints) EndPoints->push_back(Elt: LRQ.endPoint()); |
663 | return; |
664 | } |
665 | |
666 | // VNI is live out of KillMBB. |
667 | LR.removeSegment(Start: Kill, End: MBBEnd); |
668 | if (EndPoints) EndPoints->push_back(Elt: MBBEnd); |
669 | |
670 | // Find all blocks that are reachable from KillMBB without leaving VNI's live |
671 | // range. It is possible that KillMBB itself is reachable, so start a DFS |
672 | // from each successor. |
673 | using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>; |
674 | VisitedTy Visited; |
675 | for (MachineBasicBlock *Succ : KillMBB->successors()) { |
676 | for (df_ext_iterator<MachineBasicBlock*, VisitedTy> |
677 | I = df_ext_begin(G: Succ, S&: Visited), E = df_ext_end(G: Succ, S&: Visited); |
678 | I != E;) { |
679 | MachineBasicBlock *MBB = *I; |
680 | |
681 | // Check if VNI is live in to MBB. |
682 | SlotIndex MBBStart, MBBEnd; |
683 | std::tie(args&: MBBStart, args&: MBBEnd) = Indexes->getMBBRange(MBB); |
684 | LiveQueryResult LRQ = LR.Query(Idx: MBBStart); |
685 | if (LRQ.valueIn() != VNI) { |
686 | // This block isn't part of the VNI segment. Prune the search. |
687 | I.skipChildren(); |
688 | continue; |
689 | } |
690 | |
691 | // Prune the search if VNI is killed in MBB. |
692 | if (LRQ.endPoint() < MBBEnd) { |
693 | LR.removeSegment(Start: MBBStart, End: LRQ.endPoint()); |
694 | if (EndPoints) EndPoints->push_back(Elt: LRQ.endPoint()); |
695 | I.skipChildren(); |
696 | continue; |
697 | } |
698 | |
699 | // VNI is live through MBB. |
700 | LR.removeSegment(Start: MBBStart, End: MBBEnd); |
701 | if (EndPoints) EndPoints->push_back(Elt: MBBEnd); |
702 | ++I; |
703 | } |
704 | } |
705 | } |
706 | |
707 | //===----------------------------------------------------------------------===// |
708 | // Register allocator hooks. |
709 | // |
710 | |
711 | void LiveIntervals::addKillFlags(const VirtRegMap *VRM) { |
712 | // Keep track of regunit ranges. |
713 | SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU; |
714 | |
715 | for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
716 | Register Reg = Register::index2VirtReg(Index: i); |
717 | if (MRI->reg_nodbg_empty(RegNo: Reg)) |
718 | continue; |
719 | const LiveInterval &LI = getInterval(Reg); |
720 | if (LI.empty()) |
721 | continue; |
722 | |
723 | // Target may have not allocated this yet. |
724 | Register PhysReg = VRM->getPhys(virtReg: Reg); |
725 | if (!PhysReg) |
726 | continue; |
727 | |
728 | // Find the regunit intervals for the assigned register. They may overlap |
729 | // the virtual register live range, cancelling any kills. |
730 | RU.clear(); |
731 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) { |
732 | const LiveRange &RURange = getRegUnit(Unit); |
733 | if (RURange.empty()) |
734 | continue; |
735 | RU.push_back(Elt: std::make_pair(x: &RURange, y: RURange.find(Pos: LI.begin()->end))); |
736 | } |
737 | // Every instruction that kills Reg corresponds to a segment range end |
738 | // point. |
739 | for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE; |
740 | ++RI) { |
741 | // A block index indicates an MBB edge. |
742 | if (RI->end.isBlock()) |
743 | continue; |
744 | MachineInstr *MI = getInstructionFromIndex(index: RI->end); |
745 | if (!MI) |
746 | continue; |
747 | |
748 | // Check if any of the regunits are live beyond the end of RI. That could |
749 | // happen when a physreg is defined as a copy of a virtreg: |
750 | // |
751 | // %eax = COPY %5 |
752 | // FOO %5 <--- MI, cancel kill because %eax is live. |
753 | // BAR killed %eax |
754 | // |
755 | // There should be no kill flag on FOO when %5 is rewritten as %eax. |
756 | for (auto &RUP : RU) { |
757 | const LiveRange &RURange = *RUP.first; |
758 | LiveRange::const_iterator &I = RUP.second; |
759 | if (I == RURange.end()) |
760 | continue; |
761 | I = RURange.advanceTo(I, Pos: RI->end); |
762 | if (I == RURange.end() || I->start >= RI->end) |
763 | continue; |
764 | // I is overlapping RI. |
765 | goto CancelKill; |
766 | } |
767 | |
768 | if (MRI->subRegLivenessEnabled()) { |
769 | // When reading a partial undefined value we must not add a kill flag. |
770 | // The regalloc might have used the undef lane for something else. |
771 | // Example: |
772 | // %1 = ... ; R32: %1 |
773 | // %2:high16 = ... ; R64: %2 |
774 | // = read killed %2 ; R64: %2 |
775 | // = read %1 ; R32: %1 |
776 | // The <kill> flag is correct for %2, but the register allocator may |
777 | // assign R0L to %1, and R0 to %2 because the low 32bits of R0 |
778 | // are actually never written by %2. After assignment the <kill> |
779 | // flag at the read instruction is invalid. |
780 | LaneBitmask DefinedLanesMask; |
781 | if (LI.hasSubRanges()) { |
782 | // Compute a mask of lanes that are defined. |
783 | DefinedLanesMask = LaneBitmask::getNone(); |
784 | for (const LiveInterval::SubRange &SR : LI.subranges()) |
785 | for (const LiveRange::Segment &Segment : SR.segments) { |
786 | if (Segment.start >= RI->end) |
787 | break; |
788 | if (Segment.end == RI->end) { |
789 | DefinedLanesMask |= SR.LaneMask; |
790 | break; |
791 | } |
792 | } |
793 | } else |
794 | DefinedLanesMask = LaneBitmask::getAll(); |
795 | |
796 | bool IsFullWrite = false; |
797 | for (const MachineOperand &MO : MI->operands()) { |
798 | if (!MO.isReg() || MO.getReg() != Reg) |
799 | continue; |
800 | if (MO.isUse()) { |
801 | // Reading any undefined lanes? |
802 | unsigned SubReg = MO.getSubReg(); |
803 | LaneBitmask UseMask = SubReg ? TRI->getSubRegIndexLaneMask(SubIdx: SubReg) |
804 | : MRI->getMaxLaneMaskForVReg(Reg); |
805 | if ((UseMask & ~DefinedLanesMask).any()) |
806 | goto CancelKill; |
807 | } else if (MO.getSubReg() == 0) { |
808 | // Writing to the full register? |
809 | assert(MO.isDef()); |
810 | IsFullWrite = true; |
811 | } |
812 | } |
813 | |
814 | // If an instruction writes to a subregister, a new segment starts in |
815 | // the LiveInterval. But as this is only overriding part of the register |
816 | // adding kill-flags is not correct here after registers have been |
817 | // assigned. |
818 | if (!IsFullWrite) { |
819 | // Next segment has to be adjacent in the subregister write case. |
820 | LiveRange::const_iterator N = std::next(x: RI); |
821 | if (N != LI.end() && N->start == RI->end) |
822 | goto CancelKill; |
823 | } |
824 | } |
825 | |
826 | MI->addRegisterKilled(IncomingReg: Reg, RegInfo: nullptr); |
827 | continue; |
828 | CancelKill: |
829 | MI->clearRegisterKills(Reg, RegInfo: nullptr); |
830 | } |
831 | } |
832 | } |
833 | |
834 | MachineBasicBlock* |
835 | LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { |
836 | assert(!LI.empty() && "LiveInterval is empty." ); |
837 | |
838 | // A local live range must be fully contained inside the block, meaning it is |
839 | // defined and killed at instructions, not at block boundaries. It is not |
840 | // live in or out of any block. |
841 | // |
842 | // It is technically possible to have a PHI-defined live range identical to a |
843 | // single block, but we are going to return false in that case. |
844 | |
845 | SlotIndex Start = LI.beginIndex(); |
846 | if (Start.isBlock()) |
847 | return nullptr; |
848 | |
849 | SlotIndex Stop = LI.endIndex(); |
850 | if (Stop.isBlock()) |
851 | return nullptr; |
852 | |
853 | // getMBBFromIndex doesn't need to search the MBB table when both indexes |
854 | // belong to proper instructions. |
855 | MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(index: Start); |
856 | MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(index: Stop); |
857 | return MBB1 == MBB2 ? MBB1 : nullptr; |
858 | } |
859 | |
860 | bool |
861 | LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const { |
862 | for (const VNInfo *PHI : LI.valnos) { |
863 | if (PHI->isUnused() || !PHI->isPHIDef()) |
864 | continue; |
865 | const MachineBasicBlock *PHIMBB = getMBBFromIndex(index: PHI->def); |
866 | // Conservatively return true instead of scanning huge predecessor lists. |
867 | if (PHIMBB->pred_size() > 100) |
868 | return true; |
869 | for (const MachineBasicBlock *Pred : PHIMBB->predecessors()) |
870 | if (VNI == LI.getVNInfoBefore(Idx: Indexes->getMBBEndIdx(mbb: Pred))) |
871 | return true; |
872 | } |
873 | return false; |
874 | } |
875 | |
876 | float LiveIntervals::getSpillWeight(bool isDef, bool isUse, |
877 | const MachineBlockFrequencyInfo *MBFI, |
878 | const MachineInstr &MI) { |
879 | return getSpillWeight(isDef, isUse, MBFI, MBB: MI.getParent()); |
880 | } |
881 | |
882 | float LiveIntervals::getSpillWeight(bool isDef, bool isUse, |
883 | const MachineBlockFrequencyInfo *MBFI, |
884 | const MachineBasicBlock *MBB) { |
885 | return (isDef + isUse) * MBFI->getBlockFreqRelativeToEntryBlock(MBB); |
886 | } |
887 | |
888 | LiveRange::Segment |
889 | LiveIntervals::addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst) { |
890 | LiveInterval &Interval = getOrCreateEmptyInterval(Reg); |
891 | VNInfo *VN = Interval.getNextValue( |
892 | Def: SlotIndex(getInstructionIndex(Instr: startInst).getRegSlot()), |
893 | VNInfoAllocator&: getVNInfoAllocator()); |
894 | LiveRange::Segment S(SlotIndex(getInstructionIndex(Instr: startInst).getRegSlot()), |
895 | getMBBEndIdx(mbb: startInst.getParent()), VN); |
896 | Interval.addSegment(S); |
897 | |
898 | return S; |
899 | } |
900 | |
901 | //===----------------------------------------------------------------------===// |
902 | // Register mask functions |
903 | //===----------------------------------------------------------------------===// |
904 | /// Check whether use of reg in MI is live-through. Live-through means that |
905 | /// the value is alive on exit from Machine instruction. The example of such |
906 | /// use is a deopt value in statepoint instruction. |
907 | static bool hasLiveThroughUse(const MachineInstr *MI, Register Reg) { |
908 | if (MI->getOpcode() != TargetOpcode::STATEPOINT) |
909 | return false; |
910 | StatepointOpers SO(MI); |
911 | if (SO.getFlags() & (uint64_t)StatepointFlags::DeoptLiveIn) |
912 | return false; |
913 | for (unsigned Idx = SO.getNumDeoptArgsIdx(), E = SO.getNumGCPtrIdx(); Idx < E; |
914 | ++Idx) { |
915 | const MachineOperand &MO = MI->getOperand(i: Idx); |
916 | if (MO.isReg() && MO.getReg() == Reg) |
917 | return true; |
918 | } |
919 | return false; |
920 | } |
921 | |
922 | bool LiveIntervals::checkRegMaskInterference(const LiveInterval &LI, |
923 | BitVector &UsableRegs) { |
924 | if (LI.empty()) |
925 | return false; |
926 | LiveInterval::const_iterator LiveI = LI.begin(), LiveE = LI.end(); |
927 | |
928 | // Use a smaller arrays for local live ranges. |
929 | ArrayRef<SlotIndex> Slots; |
930 | ArrayRef<const uint32_t*> Bits; |
931 | if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) { |
932 | Slots = getRegMaskSlotsInBlock(MBBNum: MBB->getNumber()); |
933 | Bits = getRegMaskBitsInBlock(MBBNum: MBB->getNumber()); |
934 | } else { |
935 | Slots = getRegMaskSlots(); |
936 | Bits = getRegMaskBits(); |
937 | } |
938 | |
939 | // We are going to enumerate all the register mask slots contained in LI. |
940 | // Start with a binary search of RegMaskSlots to find a starting point. |
941 | ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Range&: Slots, Value: LiveI->start); |
942 | ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); |
943 | |
944 | // No slots in range, LI begins after the last call. |
945 | if (SlotI == SlotE) |
946 | return false; |
947 | |
948 | bool Found = false; |
949 | // Utility to union regmasks. |
950 | auto unionBitMask = [&](unsigned Idx) { |
951 | if (!Found) { |
952 | // This is the first overlap. Initialize UsableRegs to all ones. |
953 | UsableRegs.clear(); |
954 | UsableRegs.resize(N: TRI->getNumRegs(), t: true); |
955 | Found = true; |
956 | } |
957 | // Remove usable registers clobbered by this mask. |
958 | UsableRegs.clearBitsNotInMask(Mask: Bits[Idx]); |
959 | }; |
960 | while (true) { |
961 | assert(*SlotI >= LiveI->start); |
962 | // Loop over all slots overlapping this segment. |
963 | while (*SlotI < LiveI->end) { |
964 | // *SlotI overlaps LI. Collect mask bits. |
965 | unionBitMask(SlotI - Slots.begin()); |
966 | if (++SlotI == SlotE) |
967 | return Found; |
968 | } |
969 | // If segment ends with live-through use we need to collect its regmask. |
970 | if (*SlotI == LiveI->end) |
971 | if (MachineInstr *MI = getInstructionFromIndex(index: *SlotI)) |
972 | if (hasLiveThroughUse(MI, Reg: LI.reg())) |
973 | unionBitMask(SlotI++ - Slots.begin()); |
974 | // *SlotI is beyond the current LI segment. |
975 | // Special advance implementation to not miss next LiveI->end. |
976 | if (++LiveI == LiveE || SlotI == SlotE || *SlotI > LI.endIndex()) |
977 | return Found; |
978 | while (LiveI->end < *SlotI) |
979 | ++LiveI; |
980 | // Advance SlotI until it overlaps. |
981 | while (*SlotI < LiveI->start) |
982 | if (++SlotI == SlotE) |
983 | return Found; |
984 | } |
985 | } |
986 | |
987 | //===----------------------------------------------------------------------===// |
988 | // IntervalUpdate class. |
989 | //===----------------------------------------------------------------------===// |
990 | |
991 | /// Toolkit used by handleMove to trim or extend live intervals. |
992 | class LiveIntervals::HMEditor { |
993 | private: |
994 | LiveIntervals& LIS; |
995 | const MachineRegisterInfo& MRI; |
996 | const TargetRegisterInfo& TRI; |
997 | SlotIndex OldIdx; |
998 | SlotIndex NewIdx; |
999 | SmallPtrSet<LiveRange*, 8> Updated; |
1000 | bool UpdateFlags; |
1001 | |
1002 | public: |
1003 | HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI, |
1004 | const TargetRegisterInfo& TRI, |
1005 | SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags) |
1006 | : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx), |
1007 | UpdateFlags(UpdateFlags) {} |
1008 | |
1009 | // FIXME: UpdateFlags is a workaround that creates live intervals for all |
1010 | // physregs, even those that aren't needed for regalloc, in order to update |
1011 | // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill |
1012 | // flags, and postRA passes will use a live register utility instead. |
1013 | LiveRange *getRegUnitLI(unsigned Unit) { |
1014 | if (UpdateFlags && !MRI.isReservedRegUnit(Unit)) |
1015 | return &LIS.getRegUnit(Unit); |
1016 | return LIS.getCachedRegUnit(Unit); |
1017 | } |
1018 | |
1019 | /// Update all live ranges touched by MI, assuming a move from OldIdx to |
1020 | /// NewIdx. |
1021 | void updateAllRanges(MachineInstr *MI) { |
1022 | LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " |
1023 | << *MI); |
1024 | bool hasRegMask = false; |
1025 | for (MachineOperand &MO : MI->operands()) { |
1026 | if (MO.isRegMask()) |
1027 | hasRegMask = true; |
1028 | if (!MO.isReg()) |
1029 | continue; |
1030 | if (MO.isUse()) { |
1031 | if (!MO.readsReg()) |
1032 | continue; |
1033 | // Aggressively clear all kill flags. |
1034 | // They are reinserted by VirtRegRewriter. |
1035 | MO.setIsKill(false); |
1036 | } |
1037 | |
1038 | Register Reg = MO.getReg(); |
1039 | if (!Reg) |
1040 | continue; |
1041 | if (Reg.isVirtual()) { |
1042 | LiveInterval &LI = LIS.getInterval(Reg); |
1043 | if (LI.hasSubRanges()) { |
1044 | unsigned SubReg = MO.getSubReg(); |
1045 | LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubIdx: SubReg) |
1046 | : MRI.getMaxLaneMaskForVReg(Reg); |
1047 | for (LiveInterval::SubRange &S : LI.subranges()) { |
1048 | if ((S.LaneMask & LaneMask).none()) |
1049 | continue; |
1050 | updateRange(LR&: S, Reg, LaneMask: S.LaneMask); |
1051 | } |
1052 | } |
1053 | updateRange(LR&: LI, Reg, LaneMask: LaneBitmask::getNone()); |
1054 | // If main range has a hole and we are moving a subrange use across |
1055 | // the hole updateRange() cannot properly handle it since it only |
1056 | // gets the LiveRange and not the whole LiveInterval. As a result |
1057 | // we may end up with a main range not covering all subranges. |
1058 | // This is extremely rare case, so let's check and reconstruct the |
1059 | // main range. |
1060 | if (LI.hasSubRanges()) { |
1061 | unsigned SubReg = MO.getSubReg(); |
1062 | LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubIdx: SubReg) |
1063 | : MRI.getMaxLaneMaskForVReg(Reg); |
1064 | for (LiveInterval::SubRange &S : LI.subranges()) { |
1065 | if ((S.LaneMask & LaneMask).none() || LI.covers(Other: S)) |
1066 | continue; |
1067 | LI.clear(); |
1068 | LIS.constructMainRangeFromSubranges(LI); |
1069 | break; |
1070 | } |
1071 | } |
1072 | |
1073 | continue; |
1074 | } |
1075 | |
1076 | // For physregs, only update the regunits that actually have a |
1077 | // precomputed live range. |
1078 | for (MCRegUnit Unit : TRI.regunits(Reg: Reg.asMCReg())) |
1079 | if (LiveRange *LR = getRegUnitLI(Unit)) |
1080 | updateRange(LR&: *LR, Reg: Unit, LaneMask: LaneBitmask::getNone()); |
1081 | } |
1082 | if (hasRegMask) |
1083 | updateRegMaskSlots(); |
1084 | } |
1085 | |
1086 | private: |
1087 | /// Update a single live range, assuming an instruction has been moved from |
1088 | /// OldIdx to NewIdx. |
1089 | void updateRange(LiveRange &LR, Register Reg, LaneBitmask LaneMask) { |
1090 | if (!Updated.insert(Ptr: &LR).second) |
1091 | return; |
1092 | LLVM_DEBUG({ |
1093 | dbgs() << " " ; |
1094 | if (Reg.isVirtual()) { |
1095 | dbgs() << printReg(Reg); |
1096 | if (LaneMask.any()) |
1097 | dbgs() << " L" << PrintLaneMask(LaneMask); |
1098 | } else { |
1099 | dbgs() << printRegUnit(Reg, &TRI); |
1100 | } |
1101 | dbgs() << ":\t" << LR << '\n'; |
1102 | }); |
1103 | if (SlotIndex::isEarlierInstr(A: OldIdx, B: NewIdx)) |
1104 | handleMoveDown(LR); |
1105 | else |
1106 | handleMoveUp(LR, Reg, LaneMask); |
1107 | LLVM_DEBUG(dbgs() << " -->\t" << LR << '\n'); |
1108 | LR.verify(); |
1109 | } |
1110 | |
1111 | /// Update LR to reflect an instruction has been moved downwards from OldIdx |
1112 | /// to NewIdx (OldIdx < NewIdx). |
1113 | void handleMoveDown(LiveRange &LR) { |
1114 | LiveRange::iterator E = LR.end(); |
1115 | // Segment going into OldIdx. |
1116 | LiveRange::iterator OldIdxIn = LR.find(Pos: OldIdx.getBaseIndex()); |
1117 | |
1118 | // No value live before or after OldIdx? Nothing to do. |
1119 | if (OldIdxIn == E || SlotIndex::isEarlierInstr(A: OldIdx, B: OldIdxIn->start)) |
1120 | return; |
1121 | |
1122 | LiveRange::iterator OldIdxOut; |
1123 | // Do we have a value live-in to OldIdx? |
1124 | if (SlotIndex::isEarlierInstr(A: OldIdxIn->start, B: OldIdx)) { |
1125 | // If the live-in value already extends to NewIdx, there is nothing to do. |
1126 | if (SlotIndex::isEarlierEqualInstr(A: NewIdx, B: OldIdxIn->end)) |
1127 | return; |
1128 | // Aggressively remove all kill flags from the old kill point. |
1129 | // Kill flags shouldn't be used while live intervals exist, they will be |
1130 | // reinserted by VirtRegRewriter. |
1131 | if (MachineInstr *KillMI = LIS.getInstructionFromIndex(index: OldIdxIn->end)) |
1132 | for (MachineOperand &MOP : mi_bundle_ops(MI&: *KillMI)) |
1133 | if (MOP.isReg() && MOP.isUse()) |
1134 | MOP.setIsKill(false); |
1135 | |
1136 | // Is there a def before NewIdx which is not OldIdx? |
1137 | LiveRange::iterator Next = std::next(x: OldIdxIn); |
1138 | if (Next != E && !SlotIndex::isSameInstr(A: OldIdx, B: Next->start) && |
1139 | SlotIndex::isEarlierInstr(A: Next->start, B: NewIdx)) { |
1140 | // If we are here then OldIdx was just a use but not a def. We only have |
1141 | // to ensure liveness extends to NewIdx. |
1142 | LiveRange::iterator NewIdxIn = |
1143 | LR.advanceTo(I: Next, Pos: NewIdx.getBaseIndex()); |
1144 | // Extend the segment before NewIdx if necessary. |
1145 | if (NewIdxIn == E || |
1146 | !SlotIndex::isEarlierInstr(A: NewIdxIn->start, B: NewIdx)) { |
1147 | LiveRange::iterator Prev = std::prev(x: NewIdxIn); |
1148 | Prev->end = NewIdx.getRegSlot(); |
1149 | } |
1150 | // Extend OldIdxIn. |
1151 | OldIdxIn->end = Next->start; |
1152 | return; |
1153 | } |
1154 | |
1155 | // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR |
1156 | // invalid by overlapping ranges. |
1157 | bool isKill = SlotIndex::isSameInstr(A: OldIdx, B: OldIdxIn->end); |
1158 | OldIdxIn->end = NewIdx.getRegSlot(EC: OldIdxIn->end.isEarlyClobber()); |
1159 | // If this was not a kill, then there was no def and we're done. |
1160 | if (!isKill) |
1161 | return; |
1162 | |
1163 | // Did we have a Def at OldIdx? |
1164 | OldIdxOut = Next; |
1165 | if (OldIdxOut == E || !SlotIndex::isSameInstr(A: OldIdx, B: OldIdxOut->start)) |
1166 | return; |
1167 | } else { |
1168 | OldIdxOut = OldIdxIn; |
1169 | } |
1170 | |
1171 | // If we are here then there is a Definition at OldIdx. OldIdxOut points |
1172 | // to the segment starting there. |
1173 | assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && |
1174 | "No def?" ); |
1175 | VNInfo *OldIdxVNI = OldIdxOut->valno; |
1176 | assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def" ); |
1177 | |
1178 | // If the defined value extends beyond NewIdx, just move the beginning |
1179 | // of the segment to NewIdx. |
1180 | SlotIndex NewIdxDef = NewIdx.getRegSlot(EC: OldIdxOut->start.isEarlyClobber()); |
1181 | if (SlotIndex::isEarlierInstr(A: NewIdxDef, B: OldIdxOut->end)) { |
1182 | OldIdxVNI->def = NewIdxDef; |
1183 | OldIdxOut->start = OldIdxVNI->def; |
1184 | return; |
1185 | } |
1186 | |
1187 | // If we are here then we have a Definition at OldIdx which ends before |
1188 | // NewIdx. |
1189 | |
1190 | // Is there an existing Def at NewIdx? |
1191 | LiveRange::iterator AfterNewIdx |
1192 | = LR.advanceTo(I: OldIdxOut, Pos: NewIdx.getRegSlot()); |
1193 | bool OldIdxDefIsDead = OldIdxOut->end.isDead(); |
1194 | if (!OldIdxDefIsDead && |
1195 | SlotIndex::isEarlierInstr(A: OldIdxOut->end, B: NewIdxDef)) { |
1196 | // OldIdx is not a dead def, and NewIdxDef is inside a new interval. |
1197 | VNInfo *DefVNI; |
1198 | if (OldIdxOut != LR.begin() && |
1199 | !SlotIndex::isEarlierInstr(A: std::prev(x: OldIdxOut)->end, |
1200 | B: OldIdxOut->start)) { |
1201 | // There is no gap between OldIdxOut and its predecessor anymore, |
1202 | // merge them. |
1203 | LiveRange::iterator IPrev = std::prev(x: OldIdxOut); |
1204 | DefVNI = OldIdxVNI; |
1205 | IPrev->end = OldIdxOut->end; |
1206 | } else { |
1207 | // The value is live in to OldIdx |
1208 | LiveRange::iterator INext = std::next(x: OldIdxOut); |
1209 | assert(INext != E && "Must have following segment" ); |
1210 | // We merge OldIdxOut and its successor. As we're dealing with subreg |
1211 | // reordering, there is always a successor to OldIdxOut in the same BB |
1212 | // We don't need INext->valno anymore and will reuse for the new segment |
1213 | // we create later. |
1214 | DefVNI = OldIdxVNI; |
1215 | INext->start = OldIdxOut->end; |
1216 | INext->valno->def = INext->start; |
1217 | } |
1218 | // If NewIdx is behind the last segment, extend that and append a new one. |
1219 | if (AfterNewIdx == E) { |
1220 | // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up |
1221 | // one position. |
1222 | // |- ?/OldIdxOut -| |- X0 -| ... |- Xn -| end |
1223 | // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end |
1224 | std::copy(first: std::next(x: OldIdxOut), last: E, result: OldIdxOut); |
1225 | // The last segment is undefined now, reuse it for a dead def. |
1226 | LiveRange::iterator NewSegment = std::prev(x: E); |
1227 | *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), |
1228 | DefVNI); |
1229 | DefVNI->def = NewIdxDef; |
1230 | |
1231 | LiveRange::iterator Prev = std::prev(x: NewSegment); |
1232 | Prev->end = NewIdxDef; |
1233 | } else { |
1234 | // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up |
1235 | // one position. |
1236 | // |- ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -| |
1237 | // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -| |
1238 | std::copy(first: std::next(x: OldIdxOut), last: std::next(x: AfterNewIdx), result: OldIdxOut); |
1239 | LiveRange::iterator Prev = std::prev(x: AfterNewIdx); |
1240 | // We have two cases: |
1241 | if (SlotIndex::isEarlierInstr(A: Prev->start, B: NewIdxDef)) { |
1242 | // Case 1: NewIdx is inside a liverange. Split this liverange at |
1243 | // NewIdxDef into the segment "Prev" followed by "NewSegment". |
1244 | LiveRange::iterator NewSegment = AfterNewIdx; |
1245 | *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno); |
1246 | Prev->valno->def = NewIdxDef; |
1247 | |
1248 | *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI); |
1249 | DefVNI->def = Prev->start; |
1250 | } else { |
1251 | // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and |
1252 | // turn Prev into a segment from NewIdx to AfterNewIdx->start. |
1253 | *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI); |
1254 | DefVNI->def = NewIdxDef; |
1255 | assert(DefVNI != AfterNewIdx->valno); |
1256 | } |
1257 | } |
1258 | return; |
1259 | } |
1260 | |
1261 | if (AfterNewIdx != E && |
1262 | SlotIndex::isSameInstr(A: AfterNewIdx->start, B: NewIdxDef)) { |
1263 | // There is an existing def at NewIdx. The def at OldIdx is coalesced into |
1264 | // that value. |
1265 | assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?" ); |
1266 | LR.removeValNo(ValNo: OldIdxVNI); |
1267 | } else { |
1268 | // There was no existing def at NewIdx. We need to create a dead def |
1269 | // at NewIdx. Shift segments over the old OldIdxOut segment, this frees |
1270 | // a new segment at the place where we want to construct the dead def. |
1271 | // |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -| |
1272 | // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -| |
1273 | assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators" ); |
1274 | std::copy(first: std::next(x: OldIdxOut), last: AfterNewIdx, result: OldIdxOut); |
1275 | // We can reuse OldIdxVNI now. |
1276 | LiveRange::iterator NewSegment = std::prev(x: AfterNewIdx); |
1277 | VNInfo *NewSegmentVNI = OldIdxVNI; |
1278 | NewSegmentVNI->def = NewIdxDef; |
1279 | *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), |
1280 | NewSegmentVNI); |
1281 | } |
1282 | } |
1283 | |
1284 | /// Update LR to reflect an instruction has been moved upwards from OldIdx |
1285 | /// to NewIdx (NewIdx < OldIdx). |
1286 | void handleMoveUp(LiveRange &LR, Register Reg, LaneBitmask LaneMask) { |
1287 | LiveRange::iterator E = LR.end(); |
1288 | // Segment going into OldIdx. |
1289 | LiveRange::iterator OldIdxIn = LR.find(Pos: OldIdx.getBaseIndex()); |
1290 | |
1291 | // No value live before or after OldIdx? Nothing to do. |
1292 | if (OldIdxIn == E || SlotIndex::isEarlierInstr(A: OldIdx, B: OldIdxIn->start)) |
1293 | return; |
1294 | |
1295 | LiveRange::iterator OldIdxOut; |
1296 | // Do we have a value live-in to OldIdx? |
1297 | if (SlotIndex::isEarlierInstr(A: OldIdxIn->start, B: OldIdx)) { |
1298 | // If the live-in value isn't killed here, then we have no Def at |
1299 | // OldIdx, moreover the value must be live at NewIdx so there is nothing |
1300 | // to do. |
1301 | bool isKill = SlotIndex::isSameInstr(A: OldIdx, B: OldIdxIn->end); |
1302 | if (!isKill) |
1303 | return; |
1304 | |
1305 | // At this point we have to move OldIdxIn->end back to the nearest |
1306 | // previous use or (dead-)def but no further than NewIdx. |
1307 | SlotIndex DefBeforeOldIdx |
1308 | = std::max(a: OldIdxIn->start.getDeadSlot(), |
1309 | b: NewIdx.getRegSlot(EC: OldIdxIn->end.isEarlyClobber())); |
1310 | OldIdxIn->end = findLastUseBefore(Before: DefBeforeOldIdx, Reg, LaneMask); |
1311 | |
1312 | // Did we have a Def at OldIdx? If not we are done now. |
1313 | OldIdxOut = std::next(x: OldIdxIn); |
1314 | if (OldIdxOut == E || !SlotIndex::isSameInstr(A: OldIdx, B: OldIdxOut->start)) |
1315 | return; |
1316 | } else { |
1317 | OldIdxOut = OldIdxIn; |
1318 | OldIdxIn = OldIdxOut != LR.begin() ? std::prev(x: OldIdxOut) : E; |
1319 | } |
1320 | |
1321 | // If we are here then there is a Definition at OldIdx. OldIdxOut points |
1322 | // to the segment starting there. |
1323 | assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && |
1324 | "No def?" ); |
1325 | VNInfo *OldIdxVNI = OldIdxOut->valno; |
1326 | assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def" ); |
1327 | bool OldIdxDefIsDead = OldIdxOut->end.isDead(); |
1328 | |
1329 | // Is there an existing def at NewIdx? |
1330 | SlotIndex NewIdxDef = NewIdx.getRegSlot(EC: OldIdxOut->start.isEarlyClobber()); |
1331 | LiveRange::iterator NewIdxOut = LR.find(Pos: NewIdx.getRegSlot()); |
1332 | if (SlotIndex::isSameInstr(A: NewIdxOut->start, B: NewIdx)) { |
1333 | assert(NewIdxOut->valno != OldIdxVNI && |
1334 | "Same value defined more than once?" ); |
1335 | // If OldIdx was a dead def remove it. |
1336 | if (!OldIdxDefIsDead) { |
1337 | // Remove segment starting at NewIdx and move begin of OldIdxOut to |
1338 | // NewIdx so it can take its place. |
1339 | OldIdxVNI->def = NewIdxDef; |
1340 | OldIdxOut->start = NewIdxDef; |
1341 | LR.removeValNo(ValNo: NewIdxOut->valno); |
1342 | } else { |
1343 | // Simply remove the dead def at OldIdx. |
1344 | LR.removeValNo(ValNo: OldIdxVNI); |
1345 | } |
1346 | } else { |
1347 | // Previously nothing was live after NewIdx, so all we have to do now is |
1348 | // move the begin of OldIdxOut to NewIdx. |
1349 | if (!OldIdxDefIsDead) { |
1350 | // Do we have any intermediate Defs between OldIdx and NewIdx? |
1351 | if (OldIdxIn != E && |
1352 | SlotIndex::isEarlierInstr(A: NewIdxDef, B: OldIdxIn->start)) { |
1353 | // OldIdx is not a dead def and NewIdx is before predecessor start. |
1354 | LiveRange::iterator NewIdxIn = NewIdxOut; |
1355 | assert(NewIdxIn == LR.find(NewIdx.getBaseIndex())); |
1356 | const SlotIndex SplitPos = NewIdxDef; |
1357 | OldIdxVNI = OldIdxIn->valno; |
1358 | |
1359 | SlotIndex NewDefEndPoint = std::next(x: NewIdxIn)->end; |
1360 | LiveRange::iterator Prev = std::prev(x: OldIdxIn); |
1361 | if (OldIdxIn != LR.begin() && |
1362 | SlotIndex::isEarlierInstr(A: NewIdx, B: Prev->end)) { |
1363 | // If the segment before OldIdx read a value defined earlier than |
1364 | // NewIdx, the moved instruction also reads and forwards that |
1365 | // value. Extend the lifetime of the new def point. |
1366 | |
1367 | // Extend to where the previous range started, unless there is |
1368 | // another redef first. |
1369 | NewDefEndPoint = std::min(a: OldIdxIn->start, |
1370 | b: std::next(x: NewIdxOut)->start); |
1371 | } |
1372 | |
1373 | // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut. |
1374 | OldIdxOut->valno->def = OldIdxIn->start; |
1375 | *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end, |
1376 | OldIdxOut->valno); |
1377 | // OldIdxIn and OldIdxVNI are now undef and can be overridden. |
1378 | // We Slide [NewIdxIn, OldIdxIn) down one position. |
1379 | // |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -| |
1380 | // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |
1381 | std::copy_backward(first: NewIdxIn, last: OldIdxIn, result: OldIdxOut); |
1382 | // NewIdxIn is now considered undef so we can reuse it for the moved |
1383 | // value. |
1384 | LiveRange::iterator NewSegment = NewIdxIn; |
1385 | LiveRange::iterator Next = std::next(x: NewSegment); |
1386 | if (SlotIndex::isEarlierInstr(A: Next->start, B: NewIdx)) { |
1387 | // There is no gap between NewSegment and its predecessor. |
1388 | *NewSegment = LiveRange::Segment(Next->start, SplitPos, |
1389 | Next->valno); |
1390 | |
1391 | *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI); |
1392 | Next->valno->def = SplitPos; |
1393 | } else { |
1394 | // There is a gap between NewSegment and its predecessor |
1395 | // Value becomes live in. |
1396 | *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI); |
1397 | NewSegment->valno->def = SplitPos; |
1398 | } |
1399 | } else { |
1400 | // Leave the end point of a live def. |
1401 | OldIdxOut->start = NewIdxDef; |
1402 | OldIdxVNI->def = NewIdxDef; |
1403 | if (OldIdxIn != E && SlotIndex::isEarlierInstr(A: NewIdx, B: OldIdxIn->end)) |
1404 | OldIdxIn->end = NewIdxDef; |
1405 | } |
1406 | } else if (OldIdxIn != E |
1407 | && SlotIndex::isEarlierInstr(A: NewIdxOut->start, B: NewIdx) |
1408 | && SlotIndex::isEarlierInstr(A: NewIdx, B: NewIdxOut->end)) { |
1409 | // OldIdxVNI is a dead def that has been moved into the middle of |
1410 | // another value in LR. That can happen when LR is a whole register, |
1411 | // but the dead def is a write to a subreg that is dead at NewIdx. |
1412 | // The dead def may have been moved across other values |
1413 | // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) |
1414 | // down one position. |
1415 | // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | |
1416 | // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| |
1417 | std::copy_backward(first: NewIdxOut, last: OldIdxOut, result: std::next(x: OldIdxOut)); |
1418 | // Modify the segment at NewIdxOut and the following segment to meet at |
1419 | // the point of the dead def, with the following segment getting |
1420 | // OldIdxVNI as its value number. |
1421 | *NewIdxOut = LiveRange::Segment( |
1422 | NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno); |
1423 | *(NewIdxOut + 1) = LiveRange::Segment( |
1424 | NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI); |
1425 | OldIdxVNI->def = NewIdxDef; |
1426 | // Modify subsequent segments to be defined by the moved def OldIdxVNI. |
1427 | for (auto *Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx) |
1428 | Idx->valno = OldIdxVNI; |
1429 | // Aggressively remove all dead flags from the former dead definition. |
1430 | // Kill/dead flags shouldn't be used while live intervals exist; they |
1431 | // will be reinserted by VirtRegRewriter. |
1432 | if (MachineInstr *KillMI = LIS.getInstructionFromIndex(index: NewIdx)) |
1433 | for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO) |
1434 | if (MO->isReg() && !MO->isUse()) |
1435 | MO->setIsDead(false); |
1436 | } else { |
1437 | // OldIdxVNI is a dead def. It may have been moved across other values |
1438 | // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) |
1439 | // down one position. |
1440 | // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | |
1441 | // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| |
1442 | std::copy_backward(first: NewIdxOut, last: OldIdxOut, result: std::next(x: OldIdxOut)); |
1443 | // OldIdxVNI can be reused now to build a new dead def segment. |
1444 | LiveRange::iterator NewSegment = NewIdxOut; |
1445 | VNInfo *NewSegmentVNI = OldIdxVNI; |
1446 | *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), |
1447 | NewSegmentVNI); |
1448 | NewSegmentVNI->def = NewIdxDef; |
1449 | } |
1450 | } |
1451 | } |
1452 | |
1453 | void updateRegMaskSlots() { |
1454 | SmallVectorImpl<SlotIndex>::iterator RI = |
1455 | llvm::lower_bound(Range&: LIS.RegMaskSlots, Value&: OldIdx); |
1456 | assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() && |
1457 | "No RegMask at OldIdx." ); |
1458 | *RI = NewIdx.getRegSlot(); |
1459 | assert((RI == LIS.RegMaskSlots.begin() || |
1460 | SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) && |
1461 | "Cannot move regmask instruction above another call" ); |
1462 | assert((std::next(RI) == LIS.RegMaskSlots.end() || |
1463 | SlotIndex::isEarlierInstr(*RI, *std::next(RI))) && |
1464 | "Cannot move regmask instruction below another call" ); |
1465 | } |
1466 | |
1467 | // Return the last use of reg between NewIdx and OldIdx. |
1468 | SlotIndex findLastUseBefore(SlotIndex Before, Register Reg, |
1469 | LaneBitmask LaneMask) { |
1470 | if (Reg.isVirtual()) { |
1471 | SlotIndex LastUse = Before; |
1472 | for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) { |
1473 | if (MO.isUndef()) |
1474 | continue; |
1475 | unsigned SubReg = MO.getSubReg(); |
1476 | if (SubReg != 0 && LaneMask.any() |
1477 | && (TRI.getSubRegIndexLaneMask(SubIdx: SubReg) & LaneMask).none()) |
1478 | continue; |
1479 | |
1480 | const MachineInstr &MI = *MO.getParent(); |
1481 | SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI); |
1482 | if (InstSlot > LastUse && InstSlot < OldIdx) |
1483 | LastUse = InstSlot.getRegSlot(); |
1484 | } |
1485 | return LastUse; |
1486 | } |
1487 | |
1488 | // This is a regunit interval, so scanning the use list could be very |
1489 | // expensive. Scan upwards from OldIdx instead. |
1490 | assert(Before < OldIdx && "Expected upwards move" ); |
1491 | SlotIndexes *Indexes = LIS.getSlotIndexes(); |
1492 | MachineBasicBlock *MBB = Indexes->getMBBFromIndex(index: Before); |
1493 | |
1494 | // OldIdx may not correspond to an instruction any longer, so set MII to |
1495 | // point to the next instruction after OldIdx, or MBB->end(). |
1496 | MachineBasicBlock::iterator MII = MBB->end(); |
1497 | if (MachineInstr *MI = Indexes->getInstructionFromIndex( |
1498 | index: Indexes->getNextNonNullIndex(Index: OldIdx))) |
1499 | if (MI->getParent() == MBB) |
1500 | MII = MI; |
1501 | |
1502 | MachineBasicBlock::iterator Begin = MBB->begin(); |
1503 | while (MII != Begin) { |
1504 | if ((--MII)->isDebugOrPseudoInstr()) |
1505 | continue; |
1506 | SlotIndex Idx = Indexes->getInstructionIndex(MI: *MII); |
1507 | |
1508 | // Stop searching when Before is reached. |
1509 | if (!SlotIndex::isEarlierInstr(A: Before, B: Idx)) |
1510 | return Before; |
1511 | |
1512 | // Check if MII uses Reg. |
1513 | for (MIBundleOperands MO(*MII); MO.isValid(); ++MO) |
1514 | if (MO->isReg() && !MO->isUndef() && MO->getReg().isPhysical() && |
1515 | TRI.hasRegUnit(Reg: MO->getReg(), RegUnit: Reg)) |
1516 | return Idx.getRegSlot(); |
1517 | } |
1518 | // Didn't reach Before. It must be the first instruction in the block. |
1519 | return Before; |
1520 | } |
1521 | }; |
1522 | |
1523 | void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) { |
1524 | // It is fine to move a bundle as a whole, but not an individual instruction |
1525 | // inside it. |
1526 | assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) && |
1527 | "Cannot move instruction in bundle" ); |
1528 | SlotIndex OldIndex = Indexes->getInstructionIndex(MI); |
1529 | Indexes->removeMachineInstrFromMaps(MI); |
1530 | SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI); |
1531 | assert(getMBBStartIdx(MI.getParent()) <= OldIndex && |
1532 | OldIndex < getMBBEndIdx(MI.getParent()) && |
1533 | "Cannot handle moves across basic block boundaries." ); |
1534 | |
1535 | HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); |
1536 | HME.updateAllRanges(MI: &MI); |
1537 | } |
1538 | |
1539 | void LiveIntervals::handleMoveIntoNewBundle(MachineInstr &BundleStart, |
1540 | bool UpdateFlags) { |
1541 | assert((BundleStart.getOpcode() == TargetOpcode::BUNDLE) && |
1542 | "Bundle start is not a bundle" ); |
1543 | SmallVector<SlotIndex, 16> ToProcess; |
1544 | const SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI&: BundleStart); |
1545 | auto BundleEnd = getBundleEnd(I: BundleStart.getIterator()); |
1546 | |
1547 | auto I = BundleStart.getIterator(); |
1548 | I++; |
1549 | while (I != BundleEnd) { |
1550 | if (!Indexes->hasIndex(instr: *I)) |
1551 | continue; |
1552 | SlotIndex OldIndex = Indexes->getInstructionIndex(MI: *I, IgnoreBundle: true); |
1553 | ToProcess.push_back(Elt: OldIndex); |
1554 | Indexes->removeMachineInstrFromMaps(MI&: *I, AllowBundled: true); |
1555 | I++; |
1556 | } |
1557 | for (SlotIndex OldIndex : ToProcess) { |
1558 | HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); |
1559 | HME.updateAllRanges(MI: &BundleStart); |
1560 | } |
1561 | |
1562 | // Fix up dead defs |
1563 | const SlotIndex Index = getInstructionIndex(Instr: BundleStart); |
1564 | for (MachineOperand &MO : BundleStart.operands()) { |
1565 | if (!MO.isReg()) |
1566 | continue; |
1567 | Register Reg = MO.getReg(); |
1568 | if (Reg.isVirtual() && hasInterval(Reg) && !MO.isUndef()) { |
1569 | LiveInterval &LI = getInterval(Reg); |
1570 | LiveQueryResult LRQ = LI.Query(Idx: Index); |
1571 | if (LRQ.isDeadDef()) |
1572 | MO.setIsDead(); |
1573 | } |
1574 | } |
1575 | } |
1576 | |
1577 | void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin, |
1578 | const MachineBasicBlock::iterator End, |
1579 | const SlotIndex EndIdx, LiveRange &LR, |
1580 | const Register Reg, |
1581 | LaneBitmask LaneMask) { |
1582 | LiveInterval::iterator LII = LR.find(Pos: EndIdx); |
1583 | SlotIndex lastUseIdx; |
1584 | if (LII != LR.end() && LII->start < EndIdx) { |
1585 | lastUseIdx = LII->end; |
1586 | } else if (LII == LR.begin()) { |
1587 | // We may not have a liverange at all if this is a subregister untouched |
1588 | // between \p Begin and \p End. |
1589 | } else { |
1590 | --LII; |
1591 | } |
1592 | |
1593 | for (MachineBasicBlock::iterator I = End; I != Begin;) { |
1594 | --I; |
1595 | MachineInstr &MI = *I; |
1596 | if (MI.isDebugOrPseudoInstr()) |
1597 | continue; |
1598 | |
1599 | SlotIndex instrIdx = getInstructionIndex(Instr: MI); |
1600 | bool isStartValid = getInstructionFromIndex(index: LII->start); |
1601 | bool isEndValid = getInstructionFromIndex(index: LII->end); |
1602 | |
1603 | // FIXME: This doesn't currently handle early-clobber or multiple removed |
1604 | // defs inside of the region to repair. |
1605 | for (const MachineOperand &MO : MI.operands()) { |
1606 | if (!MO.isReg() || MO.getReg() != Reg) |
1607 | continue; |
1608 | |
1609 | unsigned SubReg = MO.getSubReg(); |
1610 | LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubIdx: SubReg); |
1611 | if ((Mask & LaneMask).none()) |
1612 | continue; |
1613 | |
1614 | if (MO.isDef()) { |
1615 | if (!isStartValid) { |
1616 | if (LII->end.isDead()) { |
1617 | LII = LR.removeSegment(I: LII, RemoveDeadValNo: true); |
1618 | if (LII != LR.begin()) |
1619 | --LII; |
1620 | } else { |
1621 | LII->start = instrIdx.getRegSlot(); |
1622 | LII->valno->def = instrIdx.getRegSlot(); |
1623 | if (MO.getSubReg() && !MO.isUndef()) |
1624 | lastUseIdx = instrIdx.getRegSlot(); |
1625 | else |
1626 | lastUseIdx = SlotIndex(); |
1627 | continue; |
1628 | } |
1629 | } |
1630 | |
1631 | if (!lastUseIdx.isValid()) { |
1632 | VNInfo *VNI = LR.getNextValue(Def: instrIdx.getRegSlot(), VNInfoAllocator); |
1633 | LiveRange::Segment S(instrIdx.getRegSlot(), |
1634 | instrIdx.getDeadSlot(), VNI); |
1635 | LII = LR.addSegment(S); |
1636 | } else if (LII->start != instrIdx.getRegSlot()) { |
1637 | VNInfo *VNI = LR.getNextValue(Def: instrIdx.getRegSlot(), VNInfoAllocator); |
1638 | LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI); |
1639 | LII = LR.addSegment(S); |
1640 | } |
1641 | |
1642 | if (MO.getSubReg() && !MO.isUndef()) |
1643 | lastUseIdx = instrIdx.getRegSlot(); |
1644 | else |
1645 | lastUseIdx = SlotIndex(); |
1646 | } else if (MO.isUse()) { |
1647 | // FIXME: This should probably be handled outside of this branch, |
1648 | // either as part of the def case (for defs inside of the region) or |
1649 | // after the loop over the region. |
1650 | if (!isEndValid && !LII->end.isBlock()) |
1651 | LII->end = instrIdx.getRegSlot(); |
1652 | if (!lastUseIdx.isValid()) |
1653 | lastUseIdx = instrIdx.getRegSlot(); |
1654 | } |
1655 | } |
1656 | } |
1657 | |
1658 | bool isStartValid = getInstructionFromIndex(index: LII->start); |
1659 | if (!isStartValid && LII->end.isDead()) |
1660 | LR.removeSegment(S: *LII, RemoveDeadValNo: true); |
1661 | } |
1662 | |
1663 | void |
1664 | LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB, |
1665 | MachineBasicBlock::iterator Begin, |
1666 | MachineBasicBlock::iterator End, |
1667 | ArrayRef<Register> OrigRegs) { |
1668 | // Find anchor points, which are at the beginning/end of blocks or at |
1669 | // instructions that already have indexes. |
1670 | while (Begin != MBB->begin() && !Indexes->hasIndex(instr: *std::prev(x: Begin))) |
1671 | --Begin; |
1672 | while (End != MBB->end() && !Indexes->hasIndex(instr: *End)) |
1673 | ++End; |
1674 | |
1675 | SlotIndex EndIdx; |
1676 | if (End == MBB->end()) |
1677 | EndIdx = getMBBEndIdx(mbb: MBB).getPrevSlot(); |
1678 | else |
1679 | EndIdx = getInstructionIndex(Instr: *End); |
1680 | |
1681 | Indexes->repairIndexesInRange(MBB, Begin, End); |
1682 | |
1683 | // Make sure a live interval exists for all register operands in the range. |
1684 | SmallVector<Register> RegsToRepair(OrigRegs.begin(), OrigRegs.end()); |
1685 | for (MachineBasicBlock::iterator I = End; I != Begin;) { |
1686 | --I; |
1687 | MachineInstr &MI = *I; |
1688 | if (MI.isDebugOrPseudoInstr()) |
1689 | continue; |
1690 | for (const MachineOperand &MO : MI.operands()) { |
1691 | if (MO.isReg() && MO.getReg().isVirtual()) { |
1692 | Register Reg = MO.getReg(); |
1693 | if (MO.getSubReg() && hasInterval(Reg) && |
1694 | MRI->shouldTrackSubRegLiveness(VReg: Reg)) { |
1695 | LiveInterval &LI = getInterval(Reg); |
1696 | if (!LI.hasSubRanges()) { |
1697 | // If the new instructions refer to subregs but the old instructions |
1698 | // did not, throw away any old live interval so it will be |
1699 | // recomputed with subranges. |
1700 | removeInterval(Reg); |
1701 | } else if (MO.isDef()) { |
1702 | // Similarly if a subreg def has no precise subrange match then |
1703 | // assume we need to recompute all subranges. |
1704 | unsigned SubReg = MO.getSubReg(); |
1705 | LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubIdx: SubReg); |
1706 | if (llvm::none_of(Range: LI.subranges(), |
1707 | P: [Mask](LiveInterval::SubRange &SR) { |
1708 | return SR.LaneMask == Mask; |
1709 | })) { |
1710 | removeInterval(Reg); |
1711 | } |
1712 | } |
1713 | } |
1714 | if (!hasInterval(Reg)) { |
1715 | createAndComputeVirtRegInterval(Reg); |
1716 | // Don't bother to repair a freshly calculated live interval. |
1717 | llvm::erase(C&: RegsToRepair, V: Reg); |
1718 | } |
1719 | } |
1720 | } |
1721 | } |
1722 | |
1723 | for (Register Reg : RegsToRepair) { |
1724 | if (!Reg.isVirtual()) |
1725 | continue; |
1726 | |
1727 | LiveInterval &LI = getInterval(Reg); |
1728 | // FIXME: Should we support undefs that gain defs? |
1729 | if (!LI.hasAtLeastOneValue()) |
1730 | continue; |
1731 | |
1732 | for (LiveInterval::SubRange &S : LI.subranges()) |
1733 | repairOldRegInRange(Begin, End, EndIdx, LR&: S, Reg, LaneMask: S.LaneMask); |
1734 | LI.removeEmptySubRanges(); |
1735 | |
1736 | repairOldRegInRange(Begin, End, EndIdx, LR&: LI, Reg); |
1737 | } |
1738 | } |
1739 | |
1740 | void LiveIntervals::removePhysRegDefAt(MCRegister Reg, SlotIndex Pos) { |
1741 | for (MCRegUnit Unit : TRI->regunits(Reg)) { |
1742 | if (LiveRange *LR = getCachedRegUnit(Unit)) |
1743 | if (VNInfo *VNI = LR->getVNInfoAt(Idx: Pos)) |
1744 | LR->removeValNo(ValNo: VNI); |
1745 | } |
1746 | } |
1747 | |
1748 | void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) { |
1749 | // LI may not have the main range computed yet, but its subranges may |
1750 | // be present. |
1751 | VNInfo *VNI = LI.getVNInfoAt(Idx: Pos); |
1752 | if (VNI != nullptr) { |
1753 | assert(VNI->def.getBaseIndex() == Pos.getBaseIndex()); |
1754 | LI.removeValNo(ValNo: VNI); |
1755 | } |
1756 | |
1757 | // Also remove the value defined in subranges. |
1758 | for (LiveInterval::SubRange &S : LI.subranges()) { |
1759 | if (VNInfo *SVNI = S.getVNInfoAt(Idx: Pos)) |
1760 | if (SVNI->def.getBaseIndex() == Pos.getBaseIndex()) |
1761 | S.removeValNo(ValNo: SVNI); |
1762 | } |
1763 | LI.removeEmptySubRanges(); |
1764 | } |
1765 | |
1766 | void LiveIntervals::splitSeparateComponents(LiveInterval &LI, |
1767 | SmallVectorImpl<LiveInterval*> &SplitLIs) { |
1768 | ConnectedVNInfoEqClasses ConEQ(*this); |
1769 | unsigned NumComp = ConEQ.Classify(LR: LI); |
1770 | if (NumComp <= 1) |
1771 | return; |
1772 | LLVM_DEBUG(dbgs() << " Split " << NumComp << " components: " << LI << '\n'); |
1773 | Register Reg = LI.reg(); |
1774 | for (unsigned I = 1; I < NumComp; ++I) { |
1775 | Register NewVReg = MRI->cloneVirtualRegister(VReg: Reg); |
1776 | LiveInterval &NewLI = createEmptyInterval(Reg: NewVReg); |
1777 | SplitLIs.push_back(Elt: &NewLI); |
1778 | } |
1779 | ConEQ.Distribute(LI, LIV: SplitLIs.data(), MRI&: *MRI); |
1780 | } |
1781 | |
1782 | void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) { |
1783 | assert(LICalc && "LICalc not initialized." ); |
1784 | LICalc->reset(mf: MF, SI: getSlotIndexes(), MDT: DomTree, VNIA: &getVNInfoAllocator()); |
1785 | LICalc->constructMainRangeFromSubranges(LI); |
1786 | } |
1787 | |