1 | //===-- APInt.cpp - Implement APInt class ---------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements a class to represent arbitrary precision integer |
10 | // constant values and provide a variety of arithmetic operations on them. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/ADT/APInt.h" |
15 | #include "llvm/ADT/ArrayRef.h" |
16 | #include "llvm/ADT/FoldingSet.h" |
17 | #include "llvm/ADT/Hashing.h" |
18 | #include "llvm/ADT/SmallString.h" |
19 | #include "llvm/ADT/StringRef.h" |
20 | #include "llvm/ADT/bit.h" |
21 | #include "llvm/Config/llvm-config.h" |
22 | #include "llvm/Support/Alignment.h" |
23 | #include "llvm/Support/Debug.h" |
24 | #include "llvm/Support/ErrorHandling.h" |
25 | #include "llvm/Support/MathExtras.h" |
26 | #include "llvm/Support/raw_ostream.h" |
27 | #include <cmath> |
28 | #include <optional> |
29 | |
30 | using namespace llvm; |
31 | |
32 | #define DEBUG_TYPE "apint" |
33 | |
34 | /// A utility function for allocating memory, checking for allocation failures, |
35 | /// and ensuring the contents are zeroed. |
36 | inline static uint64_t* getClearedMemory(unsigned numWords) { |
37 | uint64_t *result = new uint64_t[numWords]; |
38 | memset(s: result, c: 0, n: numWords * sizeof(uint64_t)); |
39 | return result; |
40 | } |
41 | |
42 | /// A utility function for allocating memory and checking for allocation |
43 | /// failure. The content is not zeroed. |
44 | inline static uint64_t* getMemory(unsigned numWords) { |
45 | return new uint64_t[numWords]; |
46 | } |
47 | |
48 | /// A utility function that converts a character to a digit. |
49 | inline static unsigned getDigit(char cdigit, uint8_t radix) { |
50 | unsigned r; |
51 | |
52 | if (radix == 16 || radix == 36) { |
53 | r = cdigit - '0'; |
54 | if (r <= 9) |
55 | return r; |
56 | |
57 | r = cdigit - 'A'; |
58 | if (r <= radix - 11U) |
59 | return r + 10; |
60 | |
61 | r = cdigit - 'a'; |
62 | if (r <= radix - 11U) |
63 | return r + 10; |
64 | |
65 | radix = 10; |
66 | } |
67 | |
68 | r = cdigit - '0'; |
69 | if (r < radix) |
70 | return r; |
71 | |
72 | return UINT_MAX; |
73 | } |
74 | |
75 | |
76 | void APInt::initSlowCase(uint64_t val, bool isSigned) { |
77 | U.pVal = getClearedMemory(numWords: getNumWords()); |
78 | U.pVal[0] = val; |
79 | if (isSigned && int64_t(val) < 0) |
80 | for (unsigned i = 1; i < getNumWords(); ++i) |
81 | U.pVal[i] = WORDTYPE_MAX; |
82 | clearUnusedBits(); |
83 | } |
84 | |
85 | void APInt::initSlowCase(const APInt& that) { |
86 | U.pVal = getMemory(numWords: getNumWords()); |
87 | memcpy(dest: U.pVal, src: that.U.pVal, n: getNumWords() * APINT_WORD_SIZE); |
88 | } |
89 | |
90 | void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { |
91 | assert(bigVal.data() && "Null pointer detected!" ); |
92 | if (isSingleWord()) |
93 | U.VAL = bigVal[0]; |
94 | else { |
95 | // Get memory, cleared to 0 |
96 | U.pVal = getClearedMemory(numWords: getNumWords()); |
97 | // Calculate the number of words to copy |
98 | unsigned words = std::min<unsigned>(a: bigVal.size(), b: getNumWords()); |
99 | // Copy the words from bigVal to pVal |
100 | memcpy(dest: U.pVal, src: bigVal.data(), n: words * APINT_WORD_SIZE); |
101 | } |
102 | // Make sure unused high bits are cleared |
103 | clearUnusedBits(); |
104 | } |
105 | |
106 | APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) { |
107 | initFromArray(bigVal); |
108 | } |
109 | |
110 | APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) |
111 | : BitWidth(numBits) { |
112 | initFromArray(bigVal: ArrayRef(bigVal, numWords)); |
113 | } |
114 | |
115 | APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) |
116 | : BitWidth(numbits) { |
117 | fromString(numBits: numbits, str: Str, radix); |
118 | } |
119 | |
120 | void APInt::reallocate(unsigned NewBitWidth) { |
121 | // If the number of words is the same we can just change the width and stop. |
122 | if (getNumWords() == getNumWords(BitWidth: NewBitWidth)) { |
123 | BitWidth = NewBitWidth; |
124 | return; |
125 | } |
126 | |
127 | // If we have an allocation, delete it. |
128 | if (!isSingleWord()) |
129 | delete [] U.pVal; |
130 | |
131 | // Update BitWidth. |
132 | BitWidth = NewBitWidth; |
133 | |
134 | // If we are supposed to have an allocation, create it. |
135 | if (!isSingleWord()) |
136 | U.pVal = getMemory(numWords: getNumWords()); |
137 | } |
138 | |
139 | void APInt::assignSlowCase(const APInt &RHS) { |
140 | // Don't do anything for X = X |
141 | if (this == &RHS) |
142 | return; |
143 | |
144 | // Adjust the bit width and handle allocations as necessary. |
145 | reallocate(NewBitWidth: RHS.getBitWidth()); |
146 | |
147 | // Copy the data. |
148 | if (isSingleWord()) |
149 | U.VAL = RHS.U.VAL; |
150 | else |
151 | memcpy(dest: U.pVal, src: RHS.U.pVal, n: getNumWords() * APINT_WORD_SIZE); |
152 | } |
153 | |
154 | /// This method 'profiles' an APInt for use with FoldingSet. |
155 | void APInt::Profile(FoldingSetNodeID& ID) const { |
156 | ID.AddInteger(I: BitWidth); |
157 | |
158 | if (isSingleWord()) { |
159 | ID.AddInteger(I: U.VAL); |
160 | return; |
161 | } |
162 | |
163 | unsigned NumWords = getNumWords(); |
164 | for (unsigned i = 0; i < NumWords; ++i) |
165 | ID.AddInteger(I: U.pVal[i]); |
166 | } |
167 | |
168 | bool APInt::isAligned(Align A) const { |
169 | if (isZero()) |
170 | return true; |
171 | const unsigned TrailingZeroes = countr_zero(); |
172 | const unsigned MinimumTrailingZeroes = Log2(A); |
173 | return TrailingZeroes >= MinimumTrailingZeroes; |
174 | } |
175 | |
176 | /// Prefix increment operator. Increments the APInt by one. |
177 | APInt& APInt::operator++() { |
178 | if (isSingleWord()) |
179 | ++U.VAL; |
180 | else |
181 | tcIncrement(dst: U.pVal, parts: getNumWords()); |
182 | return clearUnusedBits(); |
183 | } |
184 | |
185 | /// Prefix decrement operator. Decrements the APInt by one. |
186 | APInt& APInt::operator--() { |
187 | if (isSingleWord()) |
188 | --U.VAL; |
189 | else |
190 | tcDecrement(dst: U.pVal, parts: getNumWords()); |
191 | return clearUnusedBits(); |
192 | } |
193 | |
194 | /// Adds the RHS APInt to this APInt. |
195 | /// @returns this, after addition of RHS. |
196 | /// Addition assignment operator. |
197 | APInt& APInt::operator+=(const APInt& RHS) { |
198 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
199 | if (isSingleWord()) |
200 | U.VAL += RHS.U.VAL; |
201 | else |
202 | tcAdd(U.pVal, RHS.U.pVal, carry: 0, getNumWords()); |
203 | return clearUnusedBits(); |
204 | } |
205 | |
206 | APInt& APInt::operator+=(uint64_t RHS) { |
207 | if (isSingleWord()) |
208 | U.VAL += RHS; |
209 | else |
210 | tcAddPart(U.pVal, RHS, getNumWords()); |
211 | return clearUnusedBits(); |
212 | } |
213 | |
214 | /// Subtracts the RHS APInt from this APInt |
215 | /// @returns this, after subtraction |
216 | /// Subtraction assignment operator. |
217 | APInt& APInt::operator-=(const APInt& RHS) { |
218 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
219 | if (isSingleWord()) |
220 | U.VAL -= RHS.U.VAL; |
221 | else |
222 | tcSubtract(U.pVal, RHS.U.pVal, carry: 0, getNumWords()); |
223 | return clearUnusedBits(); |
224 | } |
225 | |
226 | APInt& APInt::operator-=(uint64_t RHS) { |
227 | if (isSingleWord()) |
228 | U.VAL -= RHS; |
229 | else |
230 | tcSubtractPart(U.pVal, RHS, getNumWords()); |
231 | return clearUnusedBits(); |
232 | } |
233 | |
234 | APInt APInt::operator*(const APInt& RHS) const { |
235 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
236 | if (isSingleWord()) |
237 | return APInt(BitWidth, U.VAL * RHS.U.VAL); |
238 | |
239 | APInt Result(getMemory(numWords: getNumWords()), getBitWidth()); |
240 | tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords()); |
241 | Result.clearUnusedBits(); |
242 | return Result; |
243 | } |
244 | |
245 | void APInt::andAssignSlowCase(const APInt &RHS) { |
246 | WordType *dst = U.pVal, *rhs = RHS.U.pVal; |
247 | for (size_t i = 0, e = getNumWords(); i != e; ++i) |
248 | dst[i] &= rhs[i]; |
249 | } |
250 | |
251 | void APInt::orAssignSlowCase(const APInt &RHS) { |
252 | WordType *dst = U.pVal, *rhs = RHS.U.pVal; |
253 | for (size_t i = 0, e = getNumWords(); i != e; ++i) |
254 | dst[i] |= rhs[i]; |
255 | } |
256 | |
257 | void APInt::xorAssignSlowCase(const APInt &RHS) { |
258 | WordType *dst = U.pVal, *rhs = RHS.U.pVal; |
259 | for (size_t i = 0, e = getNumWords(); i != e; ++i) |
260 | dst[i] ^= rhs[i]; |
261 | } |
262 | |
263 | APInt &APInt::operator*=(const APInt &RHS) { |
264 | *this = *this * RHS; |
265 | return *this; |
266 | } |
267 | |
268 | APInt& APInt::operator*=(uint64_t RHS) { |
269 | if (isSingleWord()) { |
270 | U.VAL *= RHS; |
271 | } else { |
272 | unsigned NumWords = getNumWords(); |
273 | tcMultiplyPart(dst: U.pVal, src: U.pVal, multiplier: RHS, carry: 0, srcParts: NumWords, dstParts: NumWords, add: false); |
274 | } |
275 | return clearUnusedBits(); |
276 | } |
277 | |
278 | bool APInt::equalSlowCase(const APInt &RHS) const { |
279 | return std::equal(first1: U.pVal, last1: U.pVal + getNumWords(), first2: RHS.U.pVal); |
280 | } |
281 | |
282 | int APInt::compare(const APInt& RHS) const { |
283 | assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison" ); |
284 | if (isSingleWord()) |
285 | return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL; |
286 | |
287 | return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); |
288 | } |
289 | |
290 | int APInt::compareSigned(const APInt& RHS) const { |
291 | assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison" ); |
292 | if (isSingleWord()) { |
293 | int64_t lhsSext = SignExtend64(X: U.VAL, B: BitWidth); |
294 | int64_t rhsSext = SignExtend64(X: RHS.U.VAL, B: BitWidth); |
295 | return lhsSext < rhsSext ? -1 : lhsSext > rhsSext; |
296 | } |
297 | |
298 | bool lhsNeg = isNegative(); |
299 | bool rhsNeg = RHS.isNegative(); |
300 | |
301 | // If the sign bits don't match, then (LHS < RHS) if LHS is negative |
302 | if (lhsNeg != rhsNeg) |
303 | return lhsNeg ? -1 : 1; |
304 | |
305 | // Otherwise we can just use an unsigned comparison, because even negative |
306 | // numbers compare correctly this way if both have the same signed-ness. |
307 | return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); |
308 | } |
309 | |
310 | void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) { |
311 | unsigned loWord = whichWord(bitPosition: loBit); |
312 | unsigned hiWord = whichWord(bitPosition: hiBit); |
313 | |
314 | // Create an initial mask for the low word with zeros below loBit. |
315 | uint64_t loMask = WORDTYPE_MAX << whichBit(bitPosition: loBit); |
316 | |
317 | // If hiBit is not aligned, we need a high mask. |
318 | unsigned hiShiftAmt = whichBit(bitPosition: hiBit); |
319 | if (hiShiftAmt != 0) { |
320 | // Create a high mask with zeros above hiBit. |
321 | uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt); |
322 | // If loWord and hiWord are equal, then we combine the masks. Otherwise, |
323 | // set the bits in hiWord. |
324 | if (hiWord == loWord) |
325 | loMask &= hiMask; |
326 | else |
327 | U.pVal[hiWord] |= hiMask; |
328 | } |
329 | // Apply the mask to the low word. |
330 | U.pVal[loWord] |= loMask; |
331 | |
332 | // Fill any words between loWord and hiWord with all ones. |
333 | for (unsigned word = loWord + 1; word < hiWord; ++word) |
334 | U.pVal[word] = WORDTYPE_MAX; |
335 | } |
336 | |
337 | // Complement a bignum in-place. |
338 | static void tcComplement(APInt::WordType *dst, unsigned parts) { |
339 | for (unsigned i = 0; i < parts; i++) |
340 | dst[i] = ~dst[i]; |
341 | } |
342 | |
343 | /// Toggle every bit to its opposite value. |
344 | void APInt::flipAllBitsSlowCase() { |
345 | tcComplement(dst: U.pVal, parts: getNumWords()); |
346 | clearUnusedBits(); |
347 | } |
348 | |
349 | /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is |
350 | /// equivalent to: |
351 | /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth) |
352 | /// In the slow case, we know the result is large. |
353 | APInt APInt::concatSlowCase(const APInt &NewLSB) const { |
354 | unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth(); |
355 | APInt Result = NewLSB.zext(width: NewWidth); |
356 | Result.insertBits(SubBits: *this, bitPosition: NewLSB.getBitWidth()); |
357 | return Result; |
358 | } |
359 | |
360 | /// Toggle a given bit to its opposite value whose position is given |
361 | /// as "bitPosition". |
362 | /// Toggles a given bit to its opposite value. |
363 | void APInt::flipBit(unsigned bitPosition) { |
364 | assert(bitPosition < BitWidth && "Out of the bit-width range!" ); |
365 | setBitVal(BitPosition: bitPosition, BitValue: !(*this)[bitPosition]); |
366 | } |
367 | |
368 | void APInt::insertBits(const APInt &subBits, unsigned bitPosition) { |
369 | unsigned subBitWidth = subBits.getBitWidth(); |
370 | assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion" ); |
371 | |
372 | // inserting no bits is a noop. |
373 | if (subBitWidth == 0) |
374 | return; |
375 | |
376 | // Insertion is a direct copy. |
377 | if (subBitWidth == BitWidth) { |
378 | *this = subBits; |
379 | return; |
380 | } |
381 | |
382 | // Single word result can be done as a direct bitmask. |
383 | if (isSingleWord()) { |
384 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); |
385 | U.VAL &= ~(mask << bitPosition); |
386 | U.VAL |= (subBits.U.VAL << bitPosition); |
387 | return; |
388 | } |
389 | |
390 | unsigned loBit = whichBit(bitPosition); |
391 | unsigned loWord = whichWord(bitPosition); |
392 | unsigned hi1Word = whichWord(bitPosition: bitPosition + subBitWidth - 1); |
393 | |
394 | // Insertion within a single word can be done as a direct bitmask. |
395 | if (loWord == hi1Word) { |
396 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); |
397 | U.pVal[loWord] &= ~(mask << loBit); |
398 | U.pVal[loWord] |= (subBits.U.VAL << loBit); |
399 | return; |
400 | } |
401 | |
402 | // Insert on word boundaries. |
403 | if (loBit == 0) { |
404 | // Direct copy whole words. |
405 | unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD; |
406 | memcpy(dest: U.pVal + loWord, src: subBits.getRawData(), |
407 | n: numWholeSubWords * APINT_WORD_SIZE); |
408 | |
409 | // Mask+insert remaining bits. |
410 | unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD; |
411 | if (remainingBits != 0) { |
412 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits); |
413 | U.pVal[hi1Word] &= ~mask; |
414 | U.pVal[hi1Word] |= subBits.getWord(bitPosition: subBitWidth - 1); |
415 | } |
416 | return; |
417 | } |
418 | |
419 | // General case - set/clear individual bits in dst based on src. |
420 | // TODO - there is scope for optimization here, but at the moment this code |
421 | // path is barely used so prefer readability over performance. |
422 | for (unsigned i = 0; i != subBitWidth; ++i) |
423 | setBitVal(BitPosition: bitPosition + i, BitValue: subBits[i]); |
424 | } |
425 | |
426 | void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) { |
427 | uint64_t maskBits = maskTrailingOnes<uint64_t>(N: numBits); |
428 | subBits &= maskBits; |
429 | if (isSingleWord()) { |
430 | U.VAL &= ~(maskBits << bitPosition); |
431 | U.VAL |= subBits << bitPosition; |
432 | return; |
433 | } |
434 | |
435 | unsigned loBit = whichBit(bitPosition); |
436 | unsigned loWord = whichWord(bitPosition); |
437 | unsigned hiWord = whichWord(bitPosition: bitPosition + numBits - 1); |
438 | if (loWord == hiWord) { |
439 | U.pVal[loWord] &= ~(maskBits << loBit); |
440 | U.pVal[loWord] |= subBits << loBit; |
441 | return; |
442 | } |
443 | |
444 | static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected" ); |
445 | unsigned wordBits = 8 * sizeof(WordType); |
446 | U.pVal[loWord] &= ~(maskBits << loBit); |
447 | U.pVal[loWord] |= subBits << loBit; |
448 | |
449 | U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit)); |
450 | U.pVal[hiWord] |= subBits >> (wordBits - loBit); |
451 | } |
452 | |
453 | APInt APInt::(unsigned numBits, unsigned bitPosition) const { |
454 | assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && |
455 | "Illegal bit extraction" ); |
456 | |
457 | if (isSingleWord()) |
458 | return APInt(numBits, U.VAL >> bitPosition); |
459 | |
460 | unsigned loBit = whichBit(bitPosition); |
461 | unsigned loWord = whichWord(bitPosition); |
462 | unsigned hiWord = whichWord(bitPosition: bitPosition + numBits - 1); |
463 | |
464 | // Single word result extracting bits from a single word source. |
465 | if (loWord == hiWord) |
466 | return APInt(numBits, U.pVal[loWord] >> loBit); |
467 | |
468 | // Extracting bits that start on a source word boundary can be done |
469 | // as a fast memory copy. |
470 | if (loBit == 0) |
471 | return APInt(numBits, ArrayRef(U.pVal + loWord, 1 + hiWord - loWord)); |
472 | |
473 | // General case - shift + copy source words directly into place. |
474 | APInt Result(numBits, 0); |
475 | unsigned NumSrcWords = getNumWords(); |
476 | unsigned NumDstWords = Result.getNumWords(); |
477 | |
478 | uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal; |
479 | for (unsigned word = 0; word < NumDstWords; ++word) { |
480 | uint64_t w0 = U.pVal[loWord + word]; |
481 | uint64_t w1 = |
482 | (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0; |
483 | DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit)); |
484 | } |
485 | |
486 | return Result.clearUnusedBits(); |
487 | } |
488 | |
489 | uint64_t APInt::(unsigned numBits, |
490 | unsigned bitPosition) const { |
491 | assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && |
492 | "Illegal bit extraction" ); |
493 | assert(numBits <= 64 && "Illegal bit extraction" ); |
494 | |
495 | uint64_t maskBits = maskTrailingOnes<uint64_t>(N: numBits); |
496 | if (isSingleWord()) |
497 | return (U.VAL >> bitPosition) & maskBits; |
498 | |
499 | unsigned loBit = whichBit(bitPosition); |
500 | unsigned loWord = whichWord(bitPosition); |
501 | unsigned hiWord = whichWord(bitPosition: bitPosition + numBits - 1); |
502 | if (loWord == hiWord) |
503 | return (U.pVal[loWord] >> loBit) & maskBits; |
504 | |
505 | static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected" ); |
506 | unsigned wordBits = 8 * sizeof(WordType); |
507 | uint64_t retBits = U.pVal[loWord] >> loBit; |
508 | retBits |= U.pVal[hiWord] << (wordBits - loBit); |
509 | retBits &= maskBits; |
510 | return retBits; |
511 | } |
512 | |
513 | unsigned APInt::getSufficientBitsNeeded(StringRef Str, uint8_t Radix) { |
514 | assert(!Str.empty() && "Invalid string length" ); |
515 | size_t StrLen = Str.size(); |
516 | |
517 | // Each computation below needs to know if it's negative. |
518 | unsigned IsNegative = false; |
519 | if (Str[0] == '-' || Str[0] == '+') { |
520 | IsNegative = Str[0] == '-'; |
521 | StrLen--; |
522 | assert(StrLen && "String is only a sign, needs a value." ); |
523 | } |
524 | |
525 | // For radixes of power-of-two values, the bits required is accurately and |
526 | // easily computed. |
527 | if (Radix == 2) |
528 | return StrLen + IsNegative; |
529 | if (Radix == 8) |
530 | return StrLen * 3 + IsNegative; |
531 | if (Radix == 16) |
532 | return StrLen * 4 + IsNegative; |
533 | |
534 | // Compute a sufficient number of bits that is always large enough but might |
535 | // be too large. This avoids the assertion in the constructor. This |
536 | // calculation doesn't work appropriately for the numbers 0-9, so just use 4 |
537 | // bits in that case. |
538 | if (Radix == 10) |
539 | return (StrLen == 1 ? 4 : StrLen * 64 / 18) + IsNegative; |
540 | |
541 | assert(Radix == 36); |
542 | return (StrLen == 1 ? 7 : StrLen * 16 / 3) + IsNegative; |
543 | } |
544 | |
545 | unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { |
546 | // Compute a sufficient number of bits that is always large enough but might |
547 | // be too large. |
548 | unsigned sufficient = getSufficientBitsNeeded(Str: str, Radix: radix); |
549 | |
550 | // For bases 2, 8, and 16, the sufficient number of bits is exact and we can |
551 | // return the value directly. For bases 10 and 36, we need to do extra work. |
552 | if (radix == 2 || radix == 8 || radix == 16) |
553 | return sufficient; |
554 | |
555 | // This is grossly inefficient but accurate. We could probably do something |
556 | // with a computation of roughly slen*64/20 and then adjust by the value of |
557 | // the first few digits. But, I'm not sure how accurate that could be. |
558 | size_t slen = str.size(); |
559 | |
560 | // Each computation below needs to know if it's negative. |
561 | StringRef::iterator p = str.begin(); |
562 | unsigned isNegative = *p == '-'; |
563 | if (*p == '-' || *p == '+') { |
564 | p++; |
565 | slen--; |
566 | assert(slen && "String is only a sign, needs a value." ); |
567 | } |
568 | |
569 | |
570 | // Convert to the actual binary value. |
571 | APInt tmp(sufficient, StringRef(p, slen), radix); |
572 | |
573 | // Compute how many bits are required. If the log is infinite, assume we need |
574 | // just bit. If the log is exact and value is negative, then the value is |
575 | // MinSignedValue with (log + 1) bits. |
576 | unsigned log = tmp.logBase2(); |
577 | if (log == (unsigned)-1) { |
578 | return isNegative + 1; |
579 | } else if (isNegative && tmp.isPowerOf2()) { |
580 | return isNegative + log; |
581 | } else { |
582 | return isNegative + log + 1; |
583 | } |
584 | } |
585 | |
586 | hash_code llvm::hash_value(const APInt &Arg) { |
587 | if (Arg.isSingleWord()) |
588 | return hash_combine(args: Arg.BitWidth, args: Arg.U.VAL); |
589 | |
590 | return hash_combine( |
591 | args: Arg.BitWidth, |
592 | args: hash_combine_range(first: Arg.U.pVal, last: Arg.U.pVal + Arg.getNumWords())); |
593 | } |
594 | |
595 | unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) { |
596 | return static_cast<unsigned>(hash_value(Arg: Key)); |
597 | } |
598 | |
599 | bool APInt::isSplat(unsigned SplatSizeInBits) const { |
600 | assert(getBitWidth() % SplatSizeInBits == 0 && |
601 | "SplatSizeInBits must divide width!" ); |
602 | // We can check that all parts of an integer are equal by making use of a |
603 | // little trick: rotate and check if it's still the same value. |
604 | return *this == rotl(rotateAmt: SplatSizeInBits); |
605 | } |
606 | |
607 | /// This function returns the high "numBits" bits of this APInt. |
608 | APInt APInt::getHiBits(unsigned numBits) const { |
609 | return this->lshr(shiftAmt: BitWidth - numBits); |
610 | } |
611 | |
612 | /// This function returns the low "numBits" bits of this APInt. |
613 | APInt APInt::getLoBits(unsigned numBits) const { |
614 | APInt Result(getLowBitsSet(numBits: BitWidth, loBitsSet: numBits)); |
615 | Result &= *this; |
616 | return Result; |
617 | } |
618 | |
619 | /// Return a value containing V broadcasted over NewLen bits. |
620 | APInt APInt::getSplat(unsigned NewLen, const APInt &V) { |
621 | assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!" ); |
622 | |
623 | APInt Val = V.zext(width: NewLen); |
624 | for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) |
625 | Val |= Val << I; |
626 | |
627 | return Val; |
628 | } |
629 | |
630 | unsigned APInt::countLeadingZerosSlowCase() const { |
631 | unsigned Count = 0; |
632 | for (int i = getNumWords()-1; i >= 0; --i) { |
633 | uint64_t V = U.pVal[i]; |
634 | if (V == 0) |
635 | Count += APINT_BITS_PER_WORD; |
636 | else { |
637 | Count += llvm::countl_zero(Val: V); |
638 | break; |
639 | } |
640 | } |
641 | // Adjust for unused bits in the most significant word (they are zero). |
642 | unsigned Mod = BitWidth % APINT_BITS_PER_WORD; |
643 | Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; |
644 | return Count; |
645 | } |
646 | |
647 | unsigned APInt::countLeadingOnesSlowCase() const { |
648 | unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; |
649 | unsigned shift; |
650 | if (!highWordBits) { |
651 | highWordBits = APINT_BITS_PER_WORD; |
652 | shift = 0; |
653 | } else { |
654 | shift = APINT_BITS_PER_WORD - highWordBits; |
655 | } |
656 | int i = getNumWords() - 1; |
657 | unsigned Count = llvm::countl_one(Value: U.pVal[i] << shift); |
658 | if (Count == highWordBits) { |
659 | for (i--; i >= 0; --i) { |
660 | if (U.pVal[i] == WORDTYPE_MAX) |
661 | Count += APINT_BITS_PER_WORD; |
662 | else { |
663 | Count += llvm::countl_one(Value: U.pVal[i]); |
664 | break; |
665 | } |
666 | } |
667 | } |
668 | return Count; |
669 | } |
670 | |
671 | unsigned APInt::countTrailingZerosSlowCase() const { |
672 | unsigned Count = 0; |
673 | unsigned i = 0; |
674 | for (; i < getNumWords() && U.pVal[i] == 0; ++i) |
675 | Count += APINT_BITS_PER_WORD; |
676 | if (i < getNumWords()) |
677 | Count += llvm::countr_zero(Val: U.pVal[i]); |
678 | return std::min(a: Count, b: BitWidth); |
679 | } |
680 | |
681 | unsigned APInt::countTrailingOnesSlowCase() const { |
682 | unsigned Count = 0; |
683 | unsigned i = 0; |
684 | for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i) |
685 | Count += APINT_BITS_PER_WORD; |
686 | if (i < getNumWords()) |
687 | Count += llvm::countr_one(Value: U.pVal[i]); |
688 | assert(Count <= BitWidth); |
689 | return Count; |
690 | } |
691 | |
692 | unsigned APInt::countPopulationSlowCase() const { |
693 | unsigned Count = 0; |
694 | for (unsigned i = 0; i < getNumWords(); ++i) |
695 | Count += llvm::popcount(Value: U.pVal[i]); |
696 | return Count; |
697 | } |
698 | |
699 | bool APInt::intersectsSlowCase(const APInt &RHS) const { |
700 | for (unsigned i = 0, e = getNumWords(); i != e; ++i) |
701 | if ((U.pVal[i] & RHS.U.pVal[i]) != 0) |
702 | return true; |
703 | |
704 | return false; |
705 | } |
706 | |
707 | bool APInt::isSubsetOfSlowCase(const APInt &RHS) const { |
708 | for (unsigned i = 0, e = getNumWords(); i != e; ++i) |
709 | if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0) |
710 | return false; |
711 | |
712 | return true; |
713 | } |
714 | |
715 | APInt APInt::byteSwap() const { |
716 | assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!" ); |
717 | if (BitWidth == 16) |
718 | return APInt(BitWidth, llvm::byteswap<uint16_t>(V: U.VAL)); |
719 | if (BitWidth == 32) |
720 | return APInt(BitWidth, llvm::byteswap<uint32_t>(V: U.VAL)); |
721 | if (BitWidth <= 64) { |
722 | uint64_t Tmp1 = llvm::byteswap<uint64_t>(V: U.VAL); |
723 | Tmp1 >>= (64 - BitWidth); |
724 | return APInt(BitWidth, Tmp1); |
725 | } |
726 | |
727 | APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); |
728 | for (unsigned I = 0, N = getNumWords(); I != N; ++I) |
729 | Result.U.pVal[I] = llvm::byteswap<uint64_t>(V: U.pVal[N - I - 1]); |
730 | if (Result.BitWidth != BitWidth) { |
731 | Result.lshrInPlace(ShiftAmt: Result.BitWidth - BitWidth); |
732 | Result.BitWidth = BitWidth; |
733 | } |
734 | return Result; |
735 | } |
736 | |
737 | APInt APInt::reverseBits() const { |
738 | switch (BitWidth) { |
739 | case 64: |
740 | return APInt(BitWidth, llvm::reverseBits<uint64_t>(Val: U.VAL)); |
741 | case 32: |
742 | return APInt(BitWidth, llvm::reverseBits<uint32_t>(Val: U.VAL)); |
743 | case 16: |
744 | return APInt(BitWidth, llvm::reverseBits<uint16_t>(Val: U.VAL)); |
745 | case 8: |
746 | return APInt(BitWidth, llvm::reverseBits<uint8_t>(Val: U.VAL)); |
747 | case 0: |
748 | return *this; |
749 | default: |
750 | break; |
751 | } |
752 | |
753 | APInt Val(*this); |
754 | APInt Reversed(BitWidth, 0); |
755 | unsigned S = BitWidth; |
756 | |
757 | for (; Val != 0; Val.lshrInPlace(ShiftAmt: 1)) { |
758 | Reversed <<= 1; |
759 | Reversed |= Val[0]; |
760 | --S; |
761 | } |
762 | |
763 | Reversed <<= S; |
764 | return Reversed; |
765 | } |
766 | |
767 | APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) { |
768 | // Fast-path a common case. |
769 | if (A == B) return A; |
770 | |
771 | // Corner cases: if either operand is zero, the other is the gcd. |
772 | if (!A) return B; |
773 | if (!B) return A; |
774 | |
775 | // Count common powers of 2 and remove all other powers of 2. |
776 | unsigned Pow2; |
777 | { |
778 | unsigned Pow2_A = A.countr_zero(); |
779 | unsigned Pow2_B = B.countr_zero(); |
780 | if (Pow2_A > Pow2_B) { |
781 | A.lshrInPlace(ShiftAmt: Pow2_A - Pow2_B); |
782 | Pow2 = Pow2_B; |
783 | } else if (Pow2_B > Pow2_A) { |
784 | B.lshrInPlace(ShiftAmt: Pow2_B - Pow2_A); |
785 | Pow2 = Pow2_A; |
786 | } else { |
787 | Pow2 = Pow2_A; |
788 | } |
789 | } |
790 | |
791 | // Both operands are odd multiples of 2^Pow_2: |
792 | // |
793 | // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b)) |
794 | // |
795 | // This is a modified version of Stein's algorithm, taking advantage of |
796 | // efficient countTrailingZeros(). |
797 | while (A != B) { |
798 | if (A.ugt(RHS: B)) { |
799 | A -= B; |
800 | A.lshrInPlace(ShiftAmt: A.countr_zero() - Pow2); |
801 | } else { |
802 | B -= A; |
803 | B.lshrInPlace(ShiftAmt: B.countr_zero() - Pow2); |
804 | } |
805 | } |
806 | |
807 | return A; |
808 | } |
809 | |
810 | APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { |
811 | uint64_t I = bit_cast<uint64_t>(from: Double); |
812 | |
813 | // Get the sign bit from the highest order bit |
814 | bool isNeg = I >> 63; |
815 | |
816 | // Get the 11-bit exponent and adjust for the 1023 bit bias |
817 | int64_t exp = ((I >> 52) & 0x7ff) - 1023; |
818 | |
819 | // If the exponent is negative, the value is < 0 so just return 0. |
820 | if (exp < 0) |
821 | return APInt(width, 0u); |
822 | |
823 | // Extract the mantissa by clearing the top 12 bits (sign + exponent). |
824 | uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52; |
825 | |
826 | // If the exponent doesn't shift all bits out of the mantissa |
827 | if (exp < 52) |
828 | return isNeg ? -APInt(width, mantissa >> (52 - exp)) : |
829 | APInt(width, mantissa >> (52 - exp)); |
830 | |
831 | // If the client didn't provide enough bits for us to shift the mantissa into |
832 | // then the result is undefined, just return 0 |
833 | if (width <= exp - 52) |
834 | return APInt(width, 0); |
835 | |
836 | // Otherwise, we have to shift the mantissa bits up to the right location |
837 | APInt Tmp(width, mantissa); |
838 | Tmp <<= (unsigned)exp - 52; |
839 | return isNeg ? -Tmp : Tmp; |
840 | } |
841 | |
842 | /// This function converts this APInt to a double. |
843 | /// The layout for double is as following (IEEE Standard 754): |
844 | /// -------------------------------------- |
845 | /// | Sign Exponent Fraction Bias | |
846 | /// |-------------------------------------- | |
847 | /// | 1[63] 11[62-52] 52[51-00] 1023 | |
848 | /// -------------------------------------- |
849 | double APInt::roundToDouble(bool isSigned) const { |
850 | |
851 | // Handle the simple case where the value is contained in one uint64_t. |
852 | // It is wrong to optimize getWord(0) to VAL; there might be more than one word. |
853 | if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { |
854 | if (isSigned) { |
855 | int64_t sext = SignExtend64(X: getWord(bitPosition: 0), B: BitWidth); |
856 | return double(sext); |
857 | } else |
858 | return double(getWord(bitPosition: 0)); |
859 | } |
860 | |
861 | // Determine if the value is negative. |
862 | bool isNeg = isSigned ? (*this)[BitWidth-1] : false; |
863 | |
864 | // Construct the absolute value if we're negative. |
865 | APInt Tmp(isNeg ? -(*this) : (*this)); |
866 | |
867 | // Figure out how many bits we're using. |
868 | unsigned n = Tmp.getActiveBits(); |
869 | |
870 | // The exponent (without bias normalization) is just the number of bits |
871 | // we are using. Note that the sign bit is gone since we constructed the |
872 | // absolute value. |
873 | uint64_t exp = n; |
874 | |
875 | // Return infinity for exponent overflow |
876 | if (exp > 1023) { |
877 | if (!isSigned || !isNeg) |
878 | return std::numeric_limits<double>::infinity(); |
879 | else |
880 | return -std::numeric_limits<double>::infinity(); |
881 | } |
882 | exp += 1023; // Increment for 1023 bias |
883 | |
884 | // Number of bits in mantissa is 52. To obtain the mantissa value, we must |
885 | // extract the high 52 bits from the correct words in pVal. |
886 | uint64_t mantissa; |
887 | unsigned hiWord = whichWord(bitPosition: n-1); |
888 | if (hiWord == 0) { |
889 | mantissa = Tmp.U.pVal[0]; |
890 | if (n > 52) |
891 | mantissa >>= n - 52; // shift down, we want the top 52 bits. |
892 | } else { |
893 | assert(hiWord > 0 && "huh?" ); |
894 | uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); |
895 | uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); |
896 | mantissa = hibits | lobits; |
897 | } |
898 | |
899 | // The leading bit of mantissa is implicit, so get rid of it. |
900 | uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; |
901 | uint64_t I = sign | (exp << 52) | mantissa; |
902 | return bit_cast<double>(from: I); |
903 | } |
904 | |
905 | // Truncate to new width. |
906 | APInt APInt::trunc(unsigned width) const { |
907 | assert(width <= BitWidth && "Invalid APInt Truncate request" ); |
908 | |
909 | if (width <= APINT_BITS_PER_WORD) |
910 | return APInt(width, getRawData()[0]); |
911 | |
912 | if (width == BitWidth) |
913 | return *this; |
914 | |
915 | APInt Result(getMemory(numWords: getNumWords(BitWidth: width)), width); |
916 | |
917 | // Copy full words. |
918 | unsigned i; |
919 | for (i = 0; i != width / APINT_BITS_PER_WORD; i++) |
920 | Result.U.pVal[i] = U.pVal[i]; |
921 | |
922 | // Truncate and copy any partial word. |
923 | unsigned bits = (0 - width) % APINT_BITS_PER_WORD; |
924 | if (bits != 0) |
925 | Result.U.pVal[i] = U.pVal[i] << bits >> bits; |
926 | |
927 | return Result; |
928 | } |
929 | |
930 | // Truncate to new width with unsigned saturation. |
931 | APInt APInt::truncUSat(unsigned width) const { |
932 | assert(width <= BitWidth && "Invalid APInt Truncate request" ); |
933 | |
934 | // Can we just losslessly truncate it? |
935 | if (isIntN(N: width)) |
936 | return trunc(width); |
937 | // If not, then just return the new limit. |
938 | return APInt::getMaxValue(numBits: width); |
939 | } |
940 | |
941 | // Truncate to new width with signed saturation. |
942 | APInt APInt::truncSSat(unsigned width) const { |
943 | assert(width <= BitWidth && "Invalid APInt Truncate request" ); |
944 | |
945 | // Can we just losslessly truncate it? |
946 | if (isSignedIntN(N: width)) |
947 | return trunc(width); |
948 | // If not, then just return the new limits. |
949 | return isNegative() ? APInt::getSignedMinValue(numBits: width) |
950 | : APInt::getSignedMaxValue(numBits: width); |
951 | } |
952 | |
953 | // Sign extend to a new width. |
954 | APInt APInt::sext(unsigned Width) const { |
955 | assert(Width >= BitWidth && "Invalid APInt SignExtend request" ); |
956 | |
957 | if (Width <= APINT_BITS_PER_WORD) |
958 | return APInt(Width, SignExtend64(X: U.VAL, B: BitWidth)); |
959 | |
960 | if (Width == BitWidth) |
961 | return *this; |
962 | |
963 | APInt Result(getMemory(numWords: getNumWords(BitWidth: Width)), Width); |
964 | |
965 | // Copy words. |
966 | std::memcpy(dest: Result.U.pVal, src: getRawData(), n: getNumWords() * APINT_WORD_SIZE); |
967 | |
968 | // Sign extend the last word since there may be unused bits in the input. |
969 | Result.U.pVal[getNumWords() - 1] = |
970 | SignExtend64(X: Result.U.pVal[getNumWords() - 1], |
971 | B: ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); |
972 | |
973 | // Fill with sign bits. |
974 | std::memset(s: Result.U.pVal + getNumWords(), c: isNegative() ? -1 : 0, |
975 | n: (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); |
976 | Result.clearUnusedBits(); |
977 | return Result; |
978 | } |
979 | |
980 | // Zero extend to a new width. |
981 | APInt APInt::zext(unsigned width) const { |
982 | assert(width >= BitWidth && "Invalid APInt ZeroExtend request" ); |
983 | |
984 | if (width <= APINT_BITS_PER_WORD) |
985 | return APInt(width, U.VAL); |
986 | |
987 | if (width == BitWidth) |
988 | return *this; |
989 | |
990 | APInt Result(getMemory(numWords: getNumWords(BitWidth: width)), width); |
991 | |
992 | // Copy words. |
993 | std::memcpy(dest: Result.U.pVal, src: getRawData(), n: getNumWords() * APINT_WORD_SIZE); |
994 | |
995 | // Zero remaining words. |
996 | std::memset(s: Result.U.pVal + getNumWords(), c: 0, |
997 | n: (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); |
998 | |
999 | return Result; |
1000 | } |
1001 | |
1002 | APInt APInt::zextOrTrunc(unsigned width) const { |
1003 | if (BitWidth < width) |
1004 | return zext(width); |
1005 | if (BitWidth > width) |
1006 | return trunc(width); |
1007 | return *this; |
1008 | } |
1009 | |
1010 | APInt APInt::sextOrTrunc(unsigned width) const { |
1011 | if (BitWidth < width) |
1012 | return sext(Width: width); |
1013 | if (BitWidth > width) |
1014 | return trunc(width); |
1015 | return *this; |
1016 | } |
1017 | |
1018 | /// Arithmetic right-shift this APInt by shiftAmt. |
1019 | /// Arithmetic right-shift function. |
1020 | void APInt::ashrInPlace(const APInt &shiftAmt) { |
1021 | ashrInPlace(ShiftAmt: (unsigned)shiftAmt.getLimitedValue(Limit: BitWidth)); |
1022 | } |
1023 | |
1024 | /// Arithmetic right-shift this APInt by shiftAmt. |
1025 | /// Arithmetic right-shift function. |
1026 | void APInt::ashrSlowCase(unsigned ShiftAmt) { |
1027 | // Don't bother performing a no-op shift. |
1028 | if (!ShiftAmt) |
1029 | return; |
1030 | |
1031 | // Save the original sign bit for later. |
1032 | bool Negative = isNegative(); |
1033 | |
1034 | // WordShift is the inter-part shift; BitShift is intra-part shift. |
1035 | unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD; |
1036 | unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD; |
1037 | |
1038 | unsigned WordsToMove = getNumWords() - WordShift; |
1039 | if (WordsToMove != 0) { |
1040 | // Sign extend the last word to fill in the unused bits. |
1041 | U.pVal[getNumWords() - 1] = SignExtend64( |
1042 | X: U.pVal[getNumWords() - 1], B: ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); |
1043 | |
1044 | // Fastpath for moving by whole words. |
1045 | if (BitShift == 0) { |
1046 | std::memmove(dest: U.pVal, src: U.pVal + WordShift, n: WordsToMove * APINT_WORD_SIZE); |
1047 | } else { |
1048 | // Move the words containing significant bits. |
1049 | for (unsigned i = 0; i != WordsToMove - 1; ++i) |
1050 | U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) | |
1051 | (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift)); |
1052 | |
1053 | // Handle the last word which has no high bits to copy. |
1054 | U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift; |
1055 | // Sign extend one more time. |
1056 | U.pVal[WordsToMove - 1] = |
1057 | SignExtend64(X: U.pVal[WordsToMove - 1], B: APINT_BITS_PER_WORD - BitShift); |
1058 | } |
1059 | } |
1060 | |
1061 | // Fill in the remainder based on the original sign. |
1062 | std::memset(s: U.pVal + WordsToMove, c: Negative ? -1 : 0, |
1063 | n: WordShift * APINT_WORD_SIZE); |
1064 | clearUnusedBits(); |
1065 | } |
1066 | |
1067 | /// Logical right-shift this APInt by shiftAmt. |
1068 | /// Logical right-shift function. |
1069 | void APInt::lshrInPlace(const APInt &shiftAmt) { |
1070 | lshrInPlace(ShiftAmt: (unsigned)shiftAmt.getLimitedValue(Limit: BitWidth)); |
1071 | } |
1072 | |
1073 | /// Logical right-shift this APInt by shiftAmt. |
1074 | /// Logical right-shift function. |
1075 | void APInt::lshrSlowCase(unsigned ShiftAmt) { |
1076 | tcShiftRight(U.pVal, Words: getNumWords(), Count: ShiftAmt); |
1077 | } |
1078 | |
1079 | /// Left-shift this APInt by shiftAmt. |
1080 | /// Left-shift function. |
1081 | APInt &APInt::operator<<=(const APInt &shiftAmt) { |
1082 | // It's undefined behavior in C to shift by BitWidth or greater. |
1083 | *this <<= (unsigned)shiftAmt.getLimitedValue(Limit: BitWidth); |
1084 | return *this; |
1085 | } |
1086 | |
1087 | void APInt::shlSlowCase(unsigned ShiftAmt) { |
1088 | tcShiftLeft(U.pVal, Words: getNumWords(), Count: ShiftAmt); |
1089 | clearUnusedBits(); |
1090 | } |
1091 | |
1092 | // Calculate the rotate amount modulo the bit width. |
1093 | static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) { |
1094 | if (LLVM_UNLIKELY(BitWidth == 0)) |
1095 | return 0; |
1096 | unsigned rotBitWidth = rotateAmt.getBitWidth(); |
1097 | APInt rot = rotateAmt; |
1098 | if (rotBitWidth < BitWidth) { |
1099 | // Extend the rotate APInt, so that the urem doesn't divide by 0. |
1100 | // e.g. APInt(1, 32) would give APInt(1, 0). |
1101 | rot = rotateAmt.zext(width: BitWidth); |
1102 | } |
1103 | rot = rot.urem(RHS: APInt(rot.getBitWidth(), BitWidth)); |
1104 | return rot.getLimitedValue(Limit: BitWidth); |
1105 | } |
1106 | |
1107 | APInt APInt::rotl(const APInt &rotateAmt) const { |
1108 | return rotl(rotateAmt: rotateModulo(BitWidth, rotateAmt)); |
1109 | } |
1110 | |
1111 | APInt APInt::rotl(unsigned rotateAmt) const { |
1112 | if (LLVM_UNLIKELY(BitWidth == 0)) |
1113 | return *this; |
1114 | rotateAmt %= BitWidth; |
1115 | if (rotateAmt == 0) |
1116 | return *this; |
1117 | return shl(shiftAmt: rotateAmt) | lshr(shiftAmt: BitWidth - rotateAmt); |
1118 | } |
1119 | |
1120 | APInt APInt::rotr(const APInt &rotateAmt) const { |
1121 | return rotr(rotateAmt: rotateModulo(BitWidth, rotateAmt)); |
1122 | } |
1123 | |
1124 | APInt APInt::rotr(unsigned rotateAmt) const { |
1125 | if (BitWidth == 0) |
1126 | return *this; |
1127 | rotateAmt %= BitWidth; |
1128 | if (rotateAmt == 0) |
1129 | return *this; |
1130 | return lshr(shiftAmt: rotateAmt) | shl(shiftAmt: BitWidth - rotateAmt); |
1131 | } |
1132 | |
1133 | /// \returns the nearest log base 2 of this APInt. Ties round up. |
1134 | /// |
1135 | /// NOTE: When we have a BitWidth of 1, we define: |
1136 | /// |
1137 | /// log2(0) = UINT32_MAX |
1138 | /// log2(1) = 0 |
1139 | /// |
1140 | /// to get around any mathematical concerns resulting from |
1141 | /// referencing 2 in a space where 2 does no exist. |
1142 | unsigned APInt::nearestLogBase2() const { |
1143 | // Special case when we have a bitwidth of 1. If VAL is 1, then we |
1144 | // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to |
1145 | // UINT32_MAX. |
1146 | if (BitWidth == 1) |
1147 | return U.VAL - 1; |
1148 | |
1149 | // Handle the zero case. |
1150 | if (isZero()) |
1151 | return UINT32_MAX; |
1152 | |
1153 | // The non-zero case is handled by computing: |
1154 | // |
1155 | // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. |
1156 | // |
1157 | // where x[i] is referring to the value of the ith bit of x. |
1158 | unsigned lg = logBase2(); |
1159 | return lg + unsigned((*this)[lg - 1]); |
1160 | } |
1161 | |
1162 | // Square Root - this method computes and returns the square root of "this". |
1163 | // Three mechanisms are used for computation. For small values (<= 5 bits), |
1164 | // a table lookup is done. This gets some performance for common cases. For |
1165 | // values using less than 52 bits, the value is converted to double and then |
1166 | // the libc sqrt function is called. The result is rounded and then converted |
1167 | // back to a uint64_t which is then used to construct the result. Finally, |
1168 | // the Babylonian method for computing square roots is used. |
1169 | APInt APInt::sqrt() const { |
1170 | |
1171 | // Determine the magnitude of the value. |
1172 | unsigned magnitude = getActiveBits(); |
1173 | |
1174 | // Use a fast table for some small values. This also gets rid of some |
1175 | // rounding errors in libc sqrt for small values. |
1176 | if (magnitude <= 5) { |
1177 | static const uint8_t results[32] = { |
1178 | /* 0 */ 0, |
1179 | /* 1- 2 */ 1, 1, |
1180 | /* 3- 6 */ 2, 2, 2, 2, |
1181 | /* 7-12 */ 3, 3, 3, 3, 3, 3, |
1182 | /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, |
1183 | /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
1184 | /* 31 */ 6 |
1185 | }; |
1186 | return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]); |
1187 | } |
1188 | |
1189 | // If the magnitude of the value fits in less than 52 bits (the precision of |
1190 | // an IEEE double precision floating point value), then we can use the |
1191 | // libc sqrt function which will probably use a hardware sqrt computation. |
1192 | // This should be faster than the algorithm below. |
1193 | if (magnitude < 52) { |
1194 | return APInt(BitWidth, |
1195 | uint64_t(::round(x: ::sqrt(x: double(isSingleWord() ? U.VAL |
1196 | : U.pVal[0]))))); |
1197 | } |
1198 | |
1199 | // Okay, all the short cuts are exhausted. We must compute it. The following |
1200 | // is a classical Babylonian method for computing the square root. This code |
1201 | // was adapted to APInt from a wikipedia article on such computations. |
1202 | // See http://www.wikipedia.org/ and go to the page named |
1203 | // Calculate_an_integer_square_root. |
1204 | unsigned nbits = BitWidth, i = 4; |
1205 | APInt testy(BitWidth, 16); |
1206 | APInt x_old(BitWidth, 1); |
1207 | APInt x_new(BitWidth, 0); |
1208 | APInt two(BitWidth, 2); |
1209 | |
1210 | // Select a good starting value using binary logarithms. |
1211 | for (;; i += 2, testy = testy.shl(shiftAmt: 2)) |
1212 | if (i >= nbits || this->ule(RHS: testy)) { |
1213 | x_old = x_old.shl(shiftAmt: i / 2); |
1214 | break; |
1215 | } |
1216 | |
1217 | // Use the Babylonian method to arrive at the integer square root: |
1218 | for (;;) { |
1219 | x_new = (this->udiv(RHS: x_old) + x_old).udiv(RHS: two); |
1220 | if (x_old.ule(RHS: x_new)) |
1221 | break; |
1222 | x_old = x_new; |
1223 | } |
1224 | |
1225 | // Make sure we return the closest approximation |
1226 | // NOTE: The rounding calculation below is correct. It will produce an |
1227 | // off-by-one discrepancy with results from pari/gp. That discrepancy has been |
1228 | // determined to be a rounding issue with pari/gp as it begins to use a |
1229 | // floating point representation after 192 bits. There are no discrepancies |
1230 | // between this algorithm and pari/gp for bit widths < 192 bits. |
1231 | APInt square(x_old * x_old); |
1232 | APInt nextSquare((x_old + 1) * (x_old +1)); |
1233 | if (this->ult(RHS: square)) |
1234 | return x_old; |
1235 | assert(this->ule(nextSquare) && "Error in APInt::sqrt computation" ); |
1236 | APInt midpoint((nextSquare - square).udiv(RHS: two)); |
1237 | APInt offset(*this - square); |
1238 | if (offset.ult(RHS: midpoint)) |
1239 | return x_old; |
1240 | return x_old + 1; |
1241 | } |
1242 | |
1243 | /// \returns the multiplicative inverse of an odd APInt modulo 2^BitWidth. |
1244 | APInt APInt::multiplicativeInverse() const { |
1245 | assert((*this)[0] && |
1246 | "multiplicative inverse is only defined for odd numbers!" ); |
1247 | |
1248 | // Use Newton's method. |
1249 | APInt Factor = *this; |
1250 | APInt T; |
1251 | while (!(T = *this * Factor).isOne()) |
1252 | Factor *= 2 - std::move(T); |
1253 | return Factor; |
1254 | } |
1255 | |
1256 | /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) |
1257 | /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The |
1258 | /// variables here have the same names as in the algorithm. Comments explain |
1259 | /// the algorithm and any deviation from it. |
1260 | static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, |
1261 | unsigned m, unsigned n) { |
1262 | assert(u && "Must provide dividend" ); |
1263 | assert(v && "Must provide divisor" ); |
1264 | assert(q && "Must provide quotient" ); |
1265 | assert(u != v && u != q && v != q && "Must use different memory" ); |
1266 | assert(n>1 && "n must be > 1" ); |
1267 | |
1268 | // b denotes the base of the number system. In our case b is 2^32. |
1269 | const uint64_t b = uint64_t(1) << 32; |
1270 | |
1271 | // The DEBUG macros here tend to be spam in the debug output if you're not |
1272 | // debugging this code. Disable them unless KNUTH_DEBUG is defined. |
1273 | #ifdef KNUTH_DEBUG |
1274 | #define DEBUG_KNUTH(X) LLVM_DEBUG(X) |
1275 | #else |
1276 | #define DEBUG_KNUTH(X) do {} while(false) |
1277 | #endif |
1278 | |
1279 | DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); |
1280 | DEBUG_KNUTH(dbgs() << "KnuthDiv: original:" ); |
1281 | DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); |
1282 | DEBUG_KNUTH(dbgs() << " by" ); |
1283 | DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); |
1284 | DEBUG_KNUTH(dbgs() << '\n'); |
1285 | // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of |
1286 | // u and v by d. Note that we have taken Knuth's advice here to use a power |
1287 | // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of |
1288 | // 2 allows us to shift instead of multiply and it is easy to determine the |
1289 | // shift amount from the leading zeros. We are basically normalizing the u |
1290 | // and v so that its high bits are shifted to the top of v's range without |
1291 | // overflow. Note that this can require an extra word in u so that u must |
1292 | // be of length m+n+1. |
1293 | unsigned shift = llvm::countl_zero(Val: v[n - 1]); |
1294 | uint32_t v_carry = 0; |
1295 | uint32_t u_carry = 0; |
1296 | if (shift) { |
1297 | for (unsigned i = 0; i < m+n; ++i) { |
1298 | uint32_t u_tmp = u[i] >> (32 - shift); |
1299 | u[i] = (u[i] << shift) | u_carry; |
1300 | u_carry = u_tmp; |
1301 | } |
1302 | for (unsigned i = 0; i < n; ++i) { |
1303 | uint32_t v_tmp = v[i] >> (32 - shift); |
1304 | v[i] = (v[i] << shift) | v_carry; |
1305 | v_carry = v_tmp; |
1306 | } |
1307 | } |
1308 | u[m+n] = u_carry; |
1309 | |
1310 | DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:" ); |
1311 | DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); |
1312 | DEBUG_KNUTH(dbgs() << " by" ); |
1313 | DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); |
1314 | DEBUG_KNUTH(dbgs() << '\n'); |
1315 | |
1316 | // D2. [Initialize j.] Set j to m. This is the loop counter over the places. |
1317 | int j = m; |
1318 | do { |
1319 | DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); |
1320 | // D3. [Calculate q'.]. |
1321 | // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') |
1322 | // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') |
1323 | // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease |
1324 | // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test |
1325 | // on v[n-2] determines at high speed most of the cases in which the trial |
1326 | // value qp is one too large, and it eliminates all cases where qp is two |
1327 | // too large. |
1328 | uint64_t dividend = Make_64(High: u[j+n], Low: u[j+n-1]); |
1329 | DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); |
1330 | uint64_t qp = dividend / v[n-1]; |
1331 | uint64_t rp = dividend % v[n-1]; |
1332 | if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { |
1333 | qp--; |
1334 | rp += v[n-1]; |
1335 | if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) |
1336 | qp--; |
1337 | } |
1338 | DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); |
1339 | |
1340 | // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with |
1341 | // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation |
1342 | // consists of a simple multiplication by a one-place number, combined with |
1343 | // a subtraction. |
1344 | // The digits (u[j+n]...u[j]) should be kept positive; if the result of |
1345 | // this step is actually negative, (u[j+n]...u[j]) should be left as the |
1346 | // true value plus b**(n+1), namely as the b's complement of |
1347 | // the true value, and a "borrow" to the left should be remembered. |
1348 | int64_t borrow = 0; |
1349 | for (unsigned i = 0; i < n; ++i) { |
1350 | uint64_t p = uint64_t(qp) * uint64_t(v[i]); |
1351 | int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(Value: p); |
1352 | u[j+i] = Lo_32(Value: subres); |
1353 | borrow = Hi_32(Value: p) - Hi_32(Value: subres); |
1354 | DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i] |
1355 | << ", borrow = " << borrow << '\n'); |
1356 | } |
1357 | bool isNeg = u[j+n] < borrow; |
1358 | u[j+n] -= Lo_32(Value: borrow); |
1359 | |
1360 | DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:" ); |
1361 | DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); |
1362 | DEBUG_KNUTH(dbgs() << '\n'); |
1363 | |
1364 | // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was |
1365 | // negative, go to step D6; otherwise go on to step D7. |
1366 | q[j] = Lo_32(Value: qp); |
1367 | if (isNeg) { |
1368 | // D6. [Add back]. The probability that this step is necessary is very |
1369 | // small, on the order of only 2/b. Make sure that test data accounts for |
1370 | // this possibility. Decrease q[j] by 1 |
1371 | q[j]--; |
1372 | // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). |
1373 | // A carry will occur to the left of u[j+n], and it should be ignored |
1374 | // since it cancels with the borrow that occurred in D4. |
1375 | bool carry = false; |
1376 | for (unsigned i = 0; i < n; i++) { |
1377 | uint32_t limit = std::min(a: u[j+i],b: v[i]); |
1378 | u[j+i] += v[i] + carry; |
1379 | carry = u[j+i] < limit || (carry && u[j+i] == limit); |
1380 | } |
1381 | u[j+n] += carry; |
1382 | } |
1383 | DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:" ); |
1384 | DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); |
1385 | DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); |
1386 | |
1387 | // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. |
1388 | } while (--j >= 0); |
1389 | |
1390 | DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:" ); |
1391 | DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]); |
1392 | DEBUG_KNUTH(dbgs() << '\n'); |
1393 | |
1394 | // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired |
1395 | // remainder may be obtained by dividing u[...] by d. If r is non-null we |
1396 | // compute the remainder (urem uses this). |
1397 | if (r) { |
1398 | // The value d is expressed by the "shift" value above since we avoided |
1399 | // multiplication by d by using a shift left. So, all we have to do is |
1400 | // shift right here. |
1401 | if (shift) { |
1402 | uint32_t carry = 0; |
1403 | DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:" ); |
1404 | for (int i = n-1; i >= 0; i--) { |
1405 | r[i] = (u[i] >> shift) | carry; |
1406 | carry = u[i] << (32 - shift); |
1407 | DEBUG_KNUTH(dbgs() << " " << r[i]); |
1408 | } |
1409 | } else { |
1410 | for (int i = n-1; i >= 0; i--) { |
1411 | r[i] = u[i]; |
1412 | DEBUG_KNUTH(dbgs() << " " << r[i]); |
1413 | } |
1414 | } |
1415 | DEBUG_KNUTH(dbgs() << '\n'); |
1416 | } |
1417 | DEBUG_KNUTH(dbgs() << '\n'); |
1418 | } |
1419 | |
1420 | void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS, |
1421 | unsigned rhsWords, WordType *Quotient, WordType *Remainder) { |
1422 | assert(lhsWords >= rhsWords && "Fractional result" ); |
1423 | |
1424 | // First, compose the values into an array of 32-bit words instead of |
1425 | // 64-bit words. This is a necessity of both the "short division" algorithm |
1426 | // and the Knuth "classical algorithm" which requires there to be native |
1427 | // operations for +, -, and * on an m bit value with an m*2 bit result. We |
1428 | // can't use 64-bit operands here because we don't have native results of |
1429 | // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't |
1430 | // work on large-endian machines. |
1431 | unsigned n = rhsWords * 2; |
1432 | unsigned m = (lhsWords * 2) - n; |
1433 | |
1434 | // Allocate space for the temporary values we need either on the stack, if |
1435 | // it will fit, or on the heap if it won't. |
1436 | uint32_t SPACE[128]; |
1437 | uint32_t *U = nullptr; |
1438 | uint32_t *V = nullptr; |
1439 | uint32_t *Q = nullptr; |
1440 | uint32_t *R = nullptr; |
1441 | if ((Remainder?4:3)*n+2*m+1 <= 128) { |
1442 | U = &SPACE[0]; |
1443 | V = &SPACE[m+n+1]; |
1444 | Q = &SPACE[(m+n+1) + n]; |
1445 | if (Remainder) |
1446 | R = &SPACE[(m+n+1) + n + (m+n)]; |
1447 | } else { |
1448 | U = new uint32_t[m + n + 1]; |
1449 | V = new uint32_t[n]; |
1450 | Q = new uint32_t[m+n]; |
1451 | if (Remainder) |
1452 | R = new uint32_t[n]; |
1453 | } |
1454 | |
1455 | // Initialize the dividend |
1456 | memset(s: U, c: 0, n: (m+n+1)*sizeof(uint32_t)); |
1457 | for (unsigned i = 0; i < lhsWords; ++i) { |
1458 | uint64_t tmp = LHS[i]; |
1459 | U[i * 2] = Lo_32(Value: tmp); |
1460 | U[i * 2 + 1] = Hi_32(Value: tmp); |
1461 | } |
1462 | U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. |
1463 | |
1464 | // Initialize the divisor |
1465 | memset(s: V, c: 0, n: (n)*sizeof(uint32_t)); |
1466 | for (unsigned i = 0; i < rhsWords; ++i) { |
1467 | uint64_t tmp = RHS[i]; |
1468 | V[i * 2] = Lo_32(Value: tmp); |
1469 | V[i * 2 + 1] = Hi_32(Value: tmp); |
1470 | } |
1471 | |
1472 | // initialize the quotient and remainder |
1473 | memset(s: Q, c: 0, n: (m+n) * sizeof(uint32_t)); |
1474 | if (Remainder) |
1475 | memset(s: R, c: 0, n: n * sizeof(uint32_t)); |
1476 | |
1477 | // Now, adjust m and n for the Knuth division. n is the number of words in |
1478 | // the divisor. m is the number of words by which the dividend exceeds the |
1479 | // divisor (i.e. m+n is the length of the dividend). These sizes must not |
1480 | // contain any zero words or the Knuth algorithm fails. |
1481 | for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { |
1482 | n--; |
1483 | m++; |
1484 | } |
1485 | for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) |
1486 | m--; |
1487 | |
1488 | // If we're left with only a single word for the divisor, Knuth doesn't work |
1489 | // so we implement the short division algorithm here. This is much simpler |
1490 | // and faster because we are certain that we can divide a 64-bit quantity |
1491 | // by a 32-bit quantity at hardware speed and short division is simply a |
1492 | // series of such operations. This is just like doing short division but we |
1493 | // are using base 2^32 instead of base 10. |
1494 | assert(n != 0 && "Divide by zero?" ); |
1495 | if (n == 1) { |
1496 | uint32_t divisor = V[0]; |
1497 | uint32_t remainder = 0; |
1498 | for (int i = m; i >= 0; i--) { |
1499 | uint64_t partial_dividend = Make_64(High: remainder, Low: U[i]); |
1500 | if (partial_dividend == 0) { |
1501 | Q[i] = 0; |
1502 | remainder = 0; |
1503 | } else if (partial_dividend < divisor) { |
1504 | Q[i] = 0; |
1505 | remainder = Lo_32(Value: partial_dividend); |
1506 | } else if (partial_dividend == divisor) { |
1507 | Q[i] = 1; |
1508 | remainder = 0; |
1509 | } else { |
1510 | Q[i] = Lo_32(Value: partial_dividend / divisor); |
1511 | remainder = Lo_32(Value: partial_dividend - (Q[i] * divisor)); |
1512 | } |
1513 | } |
1514 | if (R) |
1515 | R[0] = remainder; |
1516 | } else { |
1517 | // Now we're ready to invoke the Knuth classical divide algorithm. In this |
1518 | // case n > 1. |
1519 | KnuthDiv(u: U, v: V, q: Q, r: R, m, n); |
1520 | } |
1521 | |
1522 | // If the caller wants the quotient |
1523 | if (Quotient) { |
1524 | for (unsigned i = 0; i < lhsWords; ++i) |
1525 | Quotient[i] = Make_64(High: Q[i*2+1], Low: Q[i*2]); |
1526 | } |
1527 | |
1528 | // If the caller wants the remainder |
1529 | if (Remainder) { |
1530 | for (unsigned i = 0; i < rhsWords; ++i) |
1531 | Remainder[i] = Make_64(High: R[i*2+1], Low: R[i*2]); |
1532 | } |
1533 | |
1534 | // Clean up the memory we allocated. |
1535 | if (U != &SPACE[0]) { |
1536 | delete [] U; |
1537 | delete [] V; |
1538 | delete [] Q; |
1539 | delete [] R; |
1540 | } |
1541 | } |
1542 | |
1543 | APInt APInt::udiv(const APInt &RHS) const { |
1544 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
1545 | |
1546 | // First, deal with the easy case |
1547 | if (isSingleWord()) { |
1548 | assert(RHS.U.VAL != 0 && "Divide by zero?" ); |
1549 | return APInt(BitWidth, U.VAL / RHS.U.VAL); |
1550 | } |
1551 | |
1552 | // Get some facts about the LHS and RHS number of bits and words |
1553 | unsigned lhsWords = getNumWords(BitWidth: getActiveBits()); |
1554 | unsigned rhsBits = RHS.getActiveBits(); |
1555 | unsigned rhsWords = getNumWords(BitWidth: rhsBits); |
1556 | assert(rhsWords && "Divided by zero???" ); |
1557 | |
1558 | // Deal with some degenerate cases |
1559 | if (!lhsWords) |
1560 | // 0 / X ===> 0 |
1561 | return APInt(BitWidth, 0); |
1562 | if (rhsBits == 1) |
1563 | // X / 1 ===> X |
1564 | return *this; |
1565 | if (lhsWords < rhsWords || this->ult(RHS)) |
1566 | // X / Y ===> 0, iff X < Y |
1567 | return APInt(BitWidth, 0); |
1568 | if (*this == RHS) |
1569 | // X / X ===> 1 |
1570 | return APInt(BitWidth, 1); |
1571 | if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. |
1572 | // All high words are zero, just use native divide |
1573 | return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]); |
1574 | |
1575 | // We have to compute it the hard way. Invoke the Knuth divide algorithm. |
1576 | APInt Quotient(BitWidth, 0); // to hold result. |
1577 | divide(LHS: U.pVal, lhsWords, RHS: RHS.U.pVal, rhsWords, Quotient: Quotient.U.pVal, Remainder: nullptr); |
1578 | return Quotient; |
1579 | } |
1580 | |
1581 | APInt APInt::udiv(uint64_t RHS) const { |
1582 | assert(RHS != 0 && "Divide by zero?" ); |
1583 | |
1584 | // First, deal with the easy case |
1585 | if (isSingleWord()) |
1586 | return APInt(BitWidth, U.VAL / RHS); |
1587 | |
1588 | // Get some facts about the LHS words. |
1589 | unsigned lhsWords = getNumWords(BitWidth: getActiveBits()); |
1590 | |
1591 | // Deal with some degenerate cases |
1592 | if (!lhsWords) |
1593 | // 0 / X ===> 0 |
1594 | return APInt(BitWidth, 0); |
1595 | if (RHS == 1) |
1596 | // X / 1 ===> X |
1597 | return *this; |
1598 | if (this->ult(RHS)) |
1599 | // X / Y ===> 0, iff X < Y |
1600 | return APInt(BitWidth, 0); |
1601 | if (*this == RHS) |
1602 | // X / X ===> 1 |
1603 | return APInt(BitWidth, 1); |
1604 | if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. |
1605 | // All high words are zero, just use native divide |
1606 | return APInt(BitWidth, this->U.pVal[0] / RHS); |
1607 | |
1608 | // We have to compute it the hard way. Invoke the Knuth divide algorithm. |
1609 | APInt Quotient(BitWidth, 0); // to hold result. |
1610 | divide(LHS: U.pVal, lhsWords, RHS: &RHS, rhsWords: 1, Quotient: Quotient.U.pVal, Remainder: nullptr); |
1611 | return Quotient; |
1612 | } |
1613 | |
1614 | APInt APInt::sdiv(const APInt &RHS) const { |
1615 | if (isNegative()) { |
1616 | if (RHS.isNegative()) |
1617 | return (-(*this)).udiv(RHS: -RHS); |
1618 | return -((-(*this)).udiv(RHS)); |
1619 | } |
1620 | if (RHS.isNegative()) |
1621 | return -(this->udiv(RHS: -RHS)); |
1622 | return this->udiv(RHS); |
1623 | } |
1624 | |
1625 | APInt APInt::sdiv(int64_t RHS) const { |
1626 | if (isNegative()) { |
1627 | if (RHS < 0) |
1628 | return (-(*this)).udiv(RHS: -RHS); |
1629 | return -((-(*this)).udiv(RHS)); |
1630 | } |
1631 | if (RHS < 0) |
1632 | return -(this->udiv(RHS: -RHS)); |
1633 | return this->udiv(RHS); |
1634 | } |
1635 | |
1636 | APInt APInt::urem(const APInt &RHS) const { |
1637 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
1638 | if (isSingleWord()) { |
1639 | assert(RHS.U.VAL != 0 && "Remainder by zero?" ); |
1640 | return APInt(BitWidth, U.VAL % RHS.U.VAL); |
1641 | } |
1642 | |
1643 | // Get some facts about the LHS |
1644 | unsigned lhsWords = getNumWords(BitWidth: getActiveBits()); |
1645 | |
1646 | // Get some facts about the RHS |
1647 | unsigned rhsBits = RHS.getActiveBits(); |
1648 | unsigned rhsWords = getNumWords(BitWidth: rhsBits); |
1649 | assert(rhsWords && "Performing remainder operation by zero ???" ); |
1650 | |
1651 | // Check the degenerate cases |
1652 | if (lhsWords == 0) |
1653 | // 0 % Y ===> 0 |
1654 | return APInt(BitWidth, 0); |
1655 | if (rhsBits == 1) |
1656 | // X % 1 ===> 0 |
1657 | return APInt(BitWidth, 0); |
1658 | if (lhsWords < rhsWords || this->ult(RHS)) |
1659 | // X % Y ===> X, iff X < Y |
1660 | return *this; |
1661 | if (*this == RHS) |
1662 | // X % X == 0; |
1663 | return APInt(BitWidth, 0); |
1664 | if (lhsWords == 1) |
1665 | // All high words are zero, just use native remainder |
1666 | return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]); |
1667 | |
1668 | // We have to compute it the hard way. Invoke the Knuth divide algorithm. |
1669 | APInt Remainder(BitWidth, 0); |
1670 | divide(LHS: U.pVal, lhsWords, RHS: RHS.U.pVal, rhsWords, Quotient: nullptr, Remainder: Remainder.U.pVal); |
1671 | return Remainder; |
1672 | } |
1673 | |
1674 | uint64_t APInt::urem(uint64_t RHS) const { |
1675 | assert(RHS != 0 && "Remainder by zero?" ); |
1676 | |
1677 | if (isSingleWord()) |
1678 | return U.VAL % RHS; |
1679 | |
1680 | // Get some facts about the LHS |
1681 | unsigned lhsWords = getNumWords(BitWidth: getActiveBits()); |
1682 | |
1683 | // Check the degenerate cases |
1684 | if (lhsWords == 0) |
1685 | // 0 % Y ===> 0 |
1686 | return 0; |
1687 | if (RHS == 1) |
1688 | // X % 1 ===> 0 |
1689 | return 0; |
1690 | if (this->ult(RHS)) |
1691 | // X % Y ===> X, iff X < Y |
1692 | return getZExtValue(); |
1693 | if (*this == RHS) |
1694 | // X % X == 0; |
1695 | return 0; |
1696 | if (lhsWords == 1) |
1697 | // All high words are zero, just use native remainder |
1698 | return U.pVal[0] % RHS; |
1699 | |
1700 | // We have to compute it the hard way. Invoke the Knuth divide algorithm. |
1701 | uint64_t Remainder; |
1702 | divide(LHS: U.pVal, lhsWords, RHS: &RHS, rhsWords: 1, Quotient: nullptr, Remainder: &Remainder); |
1703 | return Remainder; |
1704 | } |
1705 | |
1706 | APInt APInt::srem(const APInt &RHS) const { |
1707 | if (isNegative()) { |
1708 | if (RHS.isNegative()) |
1709 | return -((-(*this)).urem(RHS: -RHS)); |
1710 | return -((-(*this)).urem(RHS)); |
1711 | } |
1712 | if (RHS.isNegative()) |
1713 | return this->urem(RHS: -RHS); |
1714 | return this->urem(RHS); |
1715 | } |
1716 | |
1717 | int64_t APInt::srem(int64_t RHS) const { |
1718 | if (isNegative()) { |
1719 | if (RHS < 0) |
1720 | return -((-(*this)).urem(RHS: -RHS)); |
1721 | return -((-(*this)).urem(RHS)); |
1722 | } |
1723 | if (RHS < 0) |
1724 | return this->urem(RHS: -RHS); |
1725 | return this->urem(RHS); |
1726 | } |
1727 | |
1728 | void APInt::udivrem(const APInt &LHS, const APInt &RHS, |
1729 | APInt &Quotient, APInt &Remainder) { |
1730 | assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
1731 | unsigned BitWidth = LHS.BitWidth; |
1732 | |
1733 | // First, deal with the easy case |
1734 | if (LHS.isSingleWord()) { |
1735 | assert(RHS.U.VAL != 0 && "Divide by zero?" ); |
1736 | uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL; |
1737 | uint64_t RemVal = LHS.U.VAL % RHS.U.VAL; |
1738 | Quotient = APInt(BitWidth, QuotVal); |
1739 | Remainder = APInt(BitWidth, RemVal); |
1740 | return; |
1741 | } |
1742 | |
1743 | // Get some size facts about the dividend and divisor |
1744 | unsigned lhsWords = getNumWords(BitWidth: LHS.getActiveBits()); |
1745 | unsigned rhsBits = RHS.getActiveBits(); |
1746 | unsigned rhsWords = getNumWords(BitWidth: rhsBits); |
1747 | assert(rhsWords && "Performing divrem operation by zero ???" ); |
1748 | |
1749 | // Check the degenerate cases |
1750 | if (lhsWords == 0) { |
1751 | Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 |
1752 | Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0 |
1753 | return; |
1754 | } |
1755 | |
1756 | if (rhsBits == 1) { |
1757 | Quotient = LHS; // X / 1 ===> X |
1758 | Remainder = APInt(BitWidth, 0); // X % 1 ===> 0 |
1759 | } |
1760 | |
1761 | if (lhsWords < rhsWords || LHS.ult(RHS)) { |
1762 | Remainder = LHS; // X % Y ===> X, iff X < Y |
1763 | Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y |
1764 | return; |
1765 | } |
1766 | |
1767 | if (LHS == RHS) { |
1768 | Quotient = APInt(BitWidth, 1); // X / X ===> 1 |
1769 | Remainder = APInt(BitWidth, 0); // X % X ===> 0; |
1770 | return; |
1771 | } |
1772 | |
1773 | // Make sure there is enough space to hold the results. |
1774 | // NOTE: This assumes that reallocate won't affect any bits if it doesn't |
1775 | // change the size. This is necessary if Quotient or Remainder is aliased |
1776 | // with LHS or RHS. |
1777 | Quotient.reallocate(NewBitWidth: BitWidth); |
1778 | Remainder.reallocate(NewBitWidth: BitWidth); |
1779 | |
1780 | if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. |
1781 | // There is only one word to consider so use the native versions. |
1782 | uint64_t lhsValue = LHS.U.pVal[0]; |
1783 | uint64_t rhsValue = RHS.U.pVal[0]; |
1784 | Quotient = lhsValue / rhsValue; |
1785 | Remainder = lhsValue % rhsValue; |
1786 | return; |
1787 | } |
1788 | |
1789 | // Okay, lets do it the long way |
1790 | divide(LHS: LHS.U.pVal, lhsWords, RHS: RHS.U.pVal, rhsWords, Quotient: Quotient.U.pVal, |
1791 | Remainder: Remainder.U.pVal); |
1792 | // Clear the rest of the Quotient and Remainder. |
1793 | std::memset(s: Quotient.U.pVal + lhsWords, c: 0, |
1794 | n: (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); |
1795 | std::memset(s: Remainder.U.pVal + rhsWords, c: 0, |
1796 | n: (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE); |
1797 | } |
1798 | |
1799 | void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, |
1800 | uint64_t &Remainder) { |
1801 | assert(RHS != 0 && "Divide by zero?" ); |
1802 | unsigned BitWidth = LHS.BitWidth; |
1803 | |
1804 | // First, deal with the easy case |
1805 | if (LHS.isSingleWord()) { |
1806 | uint64_t QuotVal = LHS.U.VAL / RHS; |
1807 | Remainder = LHS.U.VAL % RHS; |
1808 | Quotient = APInt(BitWidth, QuotVal); |
1809 | return; |
1810 | } |
1811 | |
1812 | // Get some size facts about the dividend and divisor |
1813 | unsigned lhsWords = getNumWords(BitWidth: LHS.getActiveBits()); |
1814 | |
1815 | // Check the degenerate cases |
1816 | if (lhsWords == 0) { |
1817 | Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 |
1818 | Remainder = 0; // 0 % Y ===> 0 |
1819 | return; |
1820 | } |
1821 | |
1822 | if (RHS == 1) { |
1823 | Quotient = LHS; // X / 1 ===> X |
1824 | Remainder = 0; // X % 1 ===> 0 |
1825 | return; |
1826 | } |
1827 | |
1828 | if (LHS.ult(RHS)) { |
1829 | Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y |
1830 | Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y |
1831 | return; |
1832 | } |
1833 | |
1834 | if (LHS == RHS) { |
1835 | Quotient = APInt(BitWidth, 1); // X / X ===> 1 |
1836 | Remainder = 0; // X % X ===> 0; |
1837 | return; |
1838 | } |
1839 | |
1840 | // Make sure there is enough space to hold the results. |
1841 | // NOTE: This assumes that reallocate won't affect any bits if it doesn't |
1842 | // change the size. This is necessary if Quotient is aliased with LHS. |
1843 | Quotient.reallocate(NewBitWidth: BitWidth); |
1844 | |
1845 | if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. |
1846 | // There is only one word to consider so use the native versions. |
1847 | uint64_t lhsValue = LHS.U.pVal[0]; |
1848 | Quotient = lhsValue / RHS; |
1849 | Remainder = lhsValue % RHS; |
1850 | return; |
1851 | } |
1852 | |
1853 | // Okay, lets do it the long way |
1854 | divide(LHS: LHS.U.pVal, lhsWords, RHS: &RHS, rhsWords: 1, Quotient: Quotient.U.pVal, Remainder: &Remainder); |
1855 | // Clear the rest of the Quotient. |
1856 | std::memset(s: Quotient.U.pVal + lhsWords, c: 0, |
1857 | n: (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); |
1858 | } |
1859 | |
1860 | void APInt::sdivrem(const APInt &LHS, const APInt &RHS, |
1861 | APInt &Quotient, APInt &Remainder) { |
1862 | if (LHS.isNegative()) { |
1863 | if (RHS.isNegative()) |
1864 | APInt::udivrem(LHS: -LHS, RHS: -RHS, Quotient, Remainder); |
1865 | else { |
1866 | APInt::udivrem(LHS: -LHS, RHS, Quotient, Remainder); |
1867 | Quotient.negate(); |
1868 | } |
1869 | Remainder.negate(); |
1870 | } else if (RHS.isNegative()) { |
1871 | APInt::udivrem(LHS, RHS: -RHS, Quotient, Remainder); |
1872 | Quotient.negate(); |
1873 | } else { |
1874 | APInt::udivrem(LHS, RHS, Quotient, Remainder); |
1875 | } |
1876 | } |
1877 | |
1878 | void APInt::sdivrem(const APInt &LHS, int64_t RHS, |
1879 | APInt &Quotient, int64_t &Remainder) { |
1880 | uint64_t R = Remainder; |
1881 | if (LHS.isNegative()) { |
1882 | if (RHS < 0) |
1883 | APInt::udivrem(LHS: -LHS, RHS: -RHS, Quotient, Remainder&: R); |
1884 | else { |
1885 | APInt::udivrem(LHS: -LHS, RHS, Quotient, Remainder&: R); |
1886 | Quotient.negate(); |
1887 | } |
1888 | R = -R; |
1889 | } else if (RHS < 0) { |
1890 | APInt::udivrem(LHS, RHS: -RHS, Quotient, Remainder&: R); |
1891 | Quotient.negate(); |
1892 | } else { |
1893 | APInt::udivrem(LHS, RHS, Quotient, Remainder&: R); |
1894 | } |
1895 | Remainder = R; |
1896 | } |
1897 | |
1898 | APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { |
1899 | APInt Res = *this+RHS; |
1900 | Overflow = isNonNegative() == RHS.isNonNegative() && |
1901 | Res.isNonNegative() != isNonNegative(); |
1902 | return Res; |
1903 | } |
1904 | |
1905 | APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { |
1906 | APInt Res = *this+RHS; |
1907 | Overflow = Res.ult(RHS); |
1908 | return Res; |
1909 | } |
1910 | |
1911 | APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { |
1912 | APInt Res = *this - RHS; |
1913 | Overflow = isNonNegative() != RHS.isNonNegative() && |
1914 | Res.isNonNegative() != isNonNegative(); |
1915 | return Res; |
1916 | } |
1917 | |
1918 | APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { |
1919 | APInt Res = *this-RHS; |
1920 | Overflow = Res.ugt(RHS: *this); |
1921 | return Res; |
1922 | } |
1923 | |
1924 | APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { |
1925 | // MININT/-1 --> overflow. |
1926 | Overflow = isMinSignedValue() && RHS.isAllOnes(); |
1927 | return sdiv(RHS); |
1928 | } |
1929 | |
1930 | APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { |
1931 | APInt Res = *this * RHS; |
1932 | |
1933 | if (RHS != 0) |
1934 | Overflow = Res.sdiv(RHS) != *this || |
1935 | (isMinSignedValue() && RHS.isAllOnes()); |
1936 | else |
1937 | Overflow = false; |
1938 | return Res; |
1939 | } |
1940 | |
1941 | APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { |
1942 | if (countl_zero() + RHS.countl_zero() + 2 <= BitWidth) { |
1943 | Overflow = true; |
1944 | return *this * RHS; |
1945 | } |
1946 | |
1947 | APInt Res = lshr(shiftAmt: 1) * RHS; |
1948 | Overflow = Res.isNegative(); |
1949 | Res <<= 1; |
1950 | if ((*this)[0]) { |
1951 | Res += RHS; |
1952 | if (Res.ult(RHS)) |
1953 | Overflow = true; |
1954 | } |
1955 | return Res; |
1956 | } |
1957 | |
1958 | APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { |
1959 | return sshl_ov(Amt: ShAmt.getLimitedValue(Limit: getBitWidth()), Overflow); |
1960 | } |
1961 | |
1962 | APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const { |
1963 | Overflow = ShAmt >= getBitWidth(); |
1964 | if (Overflow) |
1965 | return APInt(BitWidth, 0); |
1966 | |
1967 | if (isNonNegative()) // Don't allow sign change. |
1968 | Overflow = ShAmt >= countl_zero(); |
1969 | else |
1970 | Overflow = ShAmt >= countl_one(); |
1971 | |
1972 | return *this << ShAmt; |
1973 | } |
1974 | |
1975 | APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { |
1976 | return ushl_ov(Amt: ShAmt.getLimitedValue(Limit: getBitWidth()), Overflow); |
1977 | } |
1978 | |
1979 | APInt APInt::ushl_ov(unsigned ShAmt, bool &Overflow) const { |
1980 | Overflow = ShAmt >= getBitWidth(); |
1981 | if (Overflow) |
1982 | return APInt(BitWidth, 0); |
1983 | |
1984 | Overflow = ShAmt > countl_zero(); |
1985 | |
1986 | return *this << ShAmt; |
1987 | } |
1988 | |
1989 | APInt APInt::sfloordiv_ov(const APInt &RHS, bool &Overflow) const { |
1990 | APInt quotient = sdiv_ov(RHS, Overflow); |
1991 | if ((quotient * RHS != *this) && (isNegative() != RHS.isNegative())) |
1992 | return quotient - 1; |
1993 | return quotient; |
1994 | } |
1995 | |
1996 | APInt APInt::sadd_sat(const APInt &RHS) const { |
1997 | bool Overflow; |
1998 | APInt Res = sadd_ov(RHS, Overflow); |
1999 | if (!Overflow) |
2000 | return Res; |
2001 | |
2002 | return isNegative() ? APInt::getSignedMinValue(numBits: BitWidth) |
2003 | : APInt::getSignedMaxValue(numBits: BitWidth); |
2004 | } |
2005 | |
2006 | APInt APInt::uadd_sat(const APInt &RHS) const { |
2007 | bool Overflow; |
2008 | APInt Res = uadd_ov(RHS, Overflow); |
2009 | if (!Overflow) |
2010 | return Res; |
2011 | |
2012 | return APInt::getMaxValue(numBits: BitWidth); |
2013 | } |
2014 | |
2015 | APInt APInt::ssub_sat(const APInt &RHS) const { |
2016 | bool Overflow; |
2017 | APInt Res = ssub_ov(RHS, Overflow); |
2018 | if (!Overflow) |
2019 | return Res; |
2020 | |
2021 | return isNegative() ? APInt::getSignedMinValue(numBits: BitWidth) |
2022 | : APInt::getSignedMaxValue(numBits: BitWidth); |
2023 | } |
2024 | |
2025 | APInt APInt::usub_sat(const APInt &RHS) const { |
2026 | bool Overflow; |
2027 | APInt Res = usub_ov(RHS, Overflow); |
2028 | if (!Overflow) |
2029 | return Res; |
2030 | |
2031 | return APInt(BitWidth, 0); |
2032 | } |
2033 | |
2034 | APInt APInt::smul_sat(const APInt &RHS) const { |
2035 | bool Overflow; |
2036 | APInt Res = smul_ov(RHS, Overflow); |
2037 | if (!Overflow) |
2038 | return Res; |
2039 | |
2040 | // The result is negative if one and only one of inputs is negative. |
2041 | bool ResIsNegative = isNegative() ^ RHS.isNegative(); |
2042 | |
2043 | return ResIsNegative ? APInt::getSignedMinValue(numBits: BitWidth) |
2044 | : APInt::getSignedMaxValue(numBits: BitWidth); |
2045 | } |
2046 | |
2047 | APInt APInt::umul_sat(const APInt &RHS) const { |
2048 | bool Overflow; |
2049 | APInt Res = umul_ov(RHS, Overflow); |
2050 | if (!Overflow) |
2051 | return Res; |
2052 | |
2053 | return APInt::getMaxValue(numBits: BitWidth); |
2054 | } |
2055 | |
2056 | APInt APInt::sshl_sat(const APInt &RHS) const { |
2057 | return sshl_sat(RHS: RHS.getLimitedValue(Limit: getBitWidth())); |
2058 | } |
2059 | |
2060 | APInt APInt::sshl_sat(unsigned RHS) const { |
2061 | bool Overflow; |
2062 | APInt Res = sshl_ov(ShAmt: RHS, Overflow); |
2063 | if (!Overflow) |
2064 | return Res; |
2065 | |
2066 | return isNegative() ? APInt::getSignedMinValue(numBits: BitWidth) |
2067 | : APInt::getSignedMaxValue(numBits: BitWidth); |
2068 | } |
2069 | |
2070 | APInt APInt::ushl_sat(const APInt &RHS) const { |
2071 | return ushl_sat(RHS: RHS.getLimitedValue(Limit: getBitWidth())); |
2072 | } |
2073 | |
2074 | APInt APInt::ushl_sat(unsigned RHS) const { |
2075 | bool Overflow; |
2076 | APInt Res = ushl_ov(ShAmt: RHS, Overflow); |
2077 | if (!Overflow) |
2078 | return Res; |
2079 | |
2080 | return APInt::getMaxValue(numBits: BitWidth); |
2081 | } |
2082 | |
2083 | void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { |
2084 | // Check our assumptions here |
2085 | assert(!str.empty() && "Invalid string length" ); |
2086 | assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || |
2087 | radix == 36) && |
2088 | "Radix should be 2, 8, 10, 16, or 36!" ); |
2089 | |
2090 | StringRef::iterator p = str.begin(); |
2091 | size_t slen = str.size(); |
2092 | bool isNeg = *p == '-'; |
2093 | if (*p == '-' || *p == '+') { |
2094 | p++; |
2095 | slen--; |
2096 | assert(slen && "String is only a sign, needs a value." ); |
2097 | } |
2098 | assert((slen <= numbits || radix != 2) && "Insufficient bit width" ); |
2099 | assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width" ); |
2100 | assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width" ); |
2101 | assert((((slen-1)*64)/22 <= numbits || radix != 10) && |
2102 | "Insufficient bit width" ); |
2103 | |
2104 | // Allocate memory if needed |
2105 | if (isSingleWord()) |
2106 | U.VAL = 0; |
2107 | else |
2108 | U.pVal = getClearedMemory(numWords: getNumWords()); |
2109 | |
2110 | // Figure out if we can shift instead of multiply |
2111 | unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); |
2112 | |
2113 | // Enter digit traversal loop |
2114 | for (StringRef::iterator e = str.end(); p != e; ++p) { |
2115 | unsigned digit = getDigit(cdigit: *p, radix); |
2116 | assert(digit < radix && "Invalid character in digit string" ); |
2117 | |
2118 | // Shift or multiply the value by the radix |
2119 | if (slen > 1) { |
2120 | if (shift) |
2121 | *this <<= shift; |
2122 | else |
2123 | *this *= radix; |
2124 | } |
2125 | |
2126 | // Add in the digit we just interpreted |
2127 | *this += digit; |
2128 | } |
2129 | // If its negative, put it in two's complement form |
2130 | if (isNeg) |
2131 | this->negate(); |
2132 | } |
2133 | |
2134 | void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, |
2135 | bool formatAsCLiteral, bool UpperCase, |
2136 | bool InsertSeparators) const { |
2137 | assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || |
2138 | Radix == 36) && |
2139 | "Radix should be 2, 8, 10, 16, or 36!" ); |
2140 | |
2141 | const char *Prefix = "" ; |
2142 | if (formatAsCLiteral) { |
2143 | switch (Radix) { |
2144 | case 2: |
2145 | // Binary literals are a non-standard extension added in gcc 4.3: |
2146 | // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html |
2147 | Prefix = "0b" ; |
2148 | break; |
2149 | case 8: |
2150 | Prefix = "0" ; |
2151 | break; |
2152 | case 10: |
2153 | break; // No prefix |
2154 | case 16: |
2155 | Prefix = "0x" ; |
2156 | break; |
2157 | default: |
2158 | llvm_unreachable("Invalid radix!" ); |
2159 | } |
2160 | } |
2161 | |
2162 | // Number of digits in a group between separators. |
2163 | unsigned Grouping = (Radix == 8 || Radix == 10) ? 3 : 4; |
2164 | |
2165 | // First, check for a zero value and just short circuit the logic below. |
2166 | if (isZero()) { |
2167 | while (*Prefix) { |
2168 | Str.push_back(Elt: *Prefix); |
2169 | ++Prefix; |
2170 | }; |
2171 | Str.push_back(Elt: '0'); |
2172 | return; |
2173 | } |
2174 | |
2175 | static const char BothDigits[] = "0123456789abcdefghijklmnopqrstuvwxyz" |
2176 | "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" ; |
2177 | const char *Digits = BothDigits + (UpperCase ? 36 : 0); |
2178 | |
2179 | if (isSingleWord()) { |
2180 | char Buffer[65]; |
2181 | char *BufPtr = std::end(arr&: Buffer); |
2182 | |
2183 | uint64_t N; |
2184 | if (!Signed) { |
2185 | N = getZExtValue(); |
2186 | } else { |
2187 | int64_t I = getSExtValue(); |
2188 | if (I >= 0) { |
2189 | N = I; |
2190 | } else { |
2191 | Str.push_back(Elt: '-'); |
2192 | N = -(uint64_t)I; |
2193 | } |
2194 | } |
2195 | |
2196 | while (*Prefix) { |
2197 | Str.push_back(Elt: *Prefix); |
2198 | ++Prefix; |
2199 | }; |
2200 | |
2201 | int Pos = 0; |
2202 | while (N) { |
2203 | if (InsertSeparators && Pos % Grouping == 0 && Pos > 0) |
2204 | *--BufPtr = '\''; |
2205 | *--BufPtr = Digits[N % Radix]; |
2206 | N /= Radix; |
2207 | Pos++; |
2208 | } |
2209 | Str.append(in_start: BufPtr, in_end: std::end(arr&: Buffer)); |
2210 | return; |
2211 | } |
2212 | |
2213 | APInt Tmp(*this); |
2214 | |
2215 | if (Signed && isNegative()) { |
2216 | // They want to print the signed version and it is a negative value |
2217 | // Flip the bits and add one to turn it into the equivalent positive |
2218 | // value and put a '-' in the result. |
2219 | Tmp.negate(); |
2220 | Str.push_back(Elt: '-'); |
2221 | } |
2222 | |
2223 | while (*Prefix) { |
2224 | Str.push_back(Elt: *Prefix); |
2225 | ++Prefix; |
2226 | }; |
2227 | |
2228 | // We insert the digits backward, then reverse them to get the right order. |
2229 | unsigned StartDig = Str.size(); |
2230 | |
2231 | // For the 2, 8 and 16 bit cases, we can just shift instead of divide |
2232 | // because the number of bits per digit (1, 3 and 4 respectively) divides |
2233 | // equally. We just shift until the value is zero. |
2234 | if (Radix == 2 || Radix == 8 || Radix == 16) { |
2235 | // Just shift tmp right for each digit width until it becomes zero |
2236 | unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); |
2237 | unsigned MaskAmt = Radix - 1; |
2238 | |
2239 | int Pos = 0; |
2240 | while (Tmp.getBoolValue()) { |
2241 | unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; |
2242 | if (InsertSeparators && Pos % Grouping == 0 && Pos > 0) |
2243 | Str.push_back(Elt: '\''); |
2244 | |
2245 | Str.push_back(Elt: Digits[Digit]); |
2246 | Tmp.lshrInPlace(ShiftAmt); |
2247 | Pos++; |
2248 | } |
2249 | } else { |
2250 | int Pos = 0; |
2251 | while (Tmp.getBoolValue()) { |
2252 | uint64_t Digit; |
2253 | udivrem(LHS: Tmp, RHS: Radix, Quotient&: Tmp, Remainder&: Digit); |
2254 | assert(Digit < Radix && "divide failed" ); |
2255 | if (InsertSeparators && Pos % Grouping == 0 && Pos > 0) |
2256 | Str.push_back(Elt: '\''); |
2257 | |
2258 | Str.push_back(Elt: Digits[Digit]); |
2259 | Pos++; |
2260 | } |
2261 | } |
2262 | |
2263 | // Reverse the digits before returning. |
2264 | std::reverse(first: Str.begin()+StartDig, last: Str.end()); |
2265 | } |
2266 | |
2267 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
2268 | LLVM_DUMP_METHOD void APInt::dump() const { |
2269 | SmallString<40> S, U; |
2270 | this->toStringUnsigned(U); |
2271 | this->toStringSigned(S); |
2272 | dbgs() << "APInt(" << BitWidth << "b, " |
2273 | << U << "u " << S << "s)\n" ; |
2274 | } |
2275 | #endif |
2276 | |
2277 | void APInt::print(raw_ostream &OS, bool isSigned) const { |
2278 | SmallString<40> S; |
2279 | this->toString(Str&: S, Radix: 10, Signed: isSigned, /* formatAsCLiteral = */false); |
2280 | OS << S; |
2281 | } |
2282 | |
2283 | // This implements a variety of operations on a representation of |
2284 | // arbitrary precision, two's-complement, bignum integer values. |
2285 | |
2286 | // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe |
2287 | // and unrestricting assumption. |
2288 | static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0, |
2289 | "Part width must be divisible by 2!" ); |
2290 | |
2291 | // Returns the integer part with the least significant BITS set. |
2292 | // BITS cannot be zero. |
2293 | static inline APInt::WordType lowBitMask(unsigned bits) { |
2294 | assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD); |
2295 | return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits); |
2296 | } |
2297 | |
2298 | /// Returns the value of the lower half of PART. |
2299 | static inline APInt::WordType lowHalf(APInt::WordType part) { |
2300 | return part & lowBitMask(bits: APInt::APINT_BITS_PER_WORD / 2); |
2301 | } |
2302 | |
2303 | /// Returns the value of the upper half of PART. |
2304 | static inline APInt::WordType highHalf(APInt::WordType part) { |
2305 | return part >> (APInt::APINT_BITS_PER_WORD / 2); |
2306 | } |
2307 | |
2308 | /// Sets the least significant part of a bignum to the input value, and zeroes |
2309 | /// out higher parts. |
2310 | void APInt::tcSet(WordType *dst, WordType part, unsigned parts) { |
2311 | assert(parts > 0); |
2312 | dst[0] = part; |
2313 | for (unsigned i = 1; i < parts; i++) |
2314 | dst[i] = 0; |
2315 | } |
2316 | |
2317 | /// Assign one bignum to another. |
2318 | void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) { |
2319 | for (unsigned i = 0; i < parts; i++) |
2320 | dst[i] = src[i]; |
2321 | } |
2322 | |
2323 | /// Returns true if a bignum is zero, false otherwise. |
2324 | bool APInt::tcIsZero(const WordType *src, unsigned parts) { |
2325 | for (unsigned i = 0; i < parts; i++) |
2326 | if (src[i]) |
2327 | return false; |
2328 | |
2329 | return true; |
2330 | } |
2331 | |
2332 | /// Extract the given bit of a bignum; returns 0 or 1. |
2333 | int APInt::(const WordType *parts, unsigned bit) { |
2334 | return (parts[whichWord(bitPosition: bit)] & maskBit(bitPosition: bit)) != 0; |
2335 | } |
2336 | |
2337 | /// Set the given bit of a bignum. |
2338 | void APInt::tcSetBit(WordType *parts, unsigned bit) { |
2339 | parts[whichWord(bitPosition: bit)] |= maskBit(bitPosition: bit); |
2340 | } |
2341 | |
2342 | /// Clears the given bit of a bignum. |
2343 | void APInt::tcClearBit(WordType *parts, unsigned bit) { |
2344 | parts[whichWord(bitPosition: bit)] &= ~maskBit(bitPosition: bit); |
2345 | } |
2346 | |
2347 | /// Returns the bit number of the least significant set bit of a number. If the |
2348 | /// input number has no bits set UINT_MAX is returned. |
2349 | unsigned APInt::tcLSB(const WordType *parts, unsigned n) { |
2350 | for (unsigned i = 0; i < n; i++) { |
2351 | if (parts[i] != 0) { |
2352 | unsigned lsb = llvm::countr_zero(Val: parts[i]); |
2353 | return lsb + i * APINT_BITS_PER_WORD; |
2354 | } |
2355 | } |
2356 | |
2357 | return UINT_MAX; |
2358 | } |
2359 | |
2360 | /// Returns the bit number of the most significant set bit of a number. |
2361 | /// If the input number has no bits set UINT_MAX is returned. |
2362 | unsigned APInt::tcMSB(const WordType *parts, unsigned n) { |
2363 | do { |
2364 | --n; |
2365 | |
2366 | if (parts[n] != 0) { |
2367 | static_assert(sizeof(parts[n]) <= sizeof(uint64_t)); |
2368 | unsigned msb = llvm::Log2_64(Value: parts[n]); |
2369 | |
2370 | return msb + n * APINT_BITS_PER_WORD; |
2371 | } |
2372 | } while (n); |
2373 | |
2374 | return UINT_MAX; |
2375 | } |
2376 | |
2377 | /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to |
2378 | /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least |
2379 | /// significant bit of DST. All high bits above srcBITS in DST are zero-filled. |
2380 | /// */ |
2381 | void |
2382 | APInt::(WordType *dst, unsigned dstCount, const WordType *src, |
2383 | unsigned srcBits, unsigned srcLSB) { |
2384 | unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; |
2385 | assert(dstParts <= dstCount); |
2386 | |
2387 | unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD; |
2388 | tcAssign(dst, src: src + firstSrcPart, parts: dstParts); |
2389 | |
2390 | unsigned shift = srcLSB % APINT_BITS_PER_WORD; |
2391 | tcShiftRight(dst, Words: dstParts, Count: shift); |
2392 | |
2393 | // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC |
2394 | // in DST. If this is less that srcBits, append the rest, else |
2395 | // clear the high bits. |
2396 | unsigned n = dstParts * APINT_BITS_PER_WORD - shift; |
2397 | if (n < srcBits) { |
2398 | WordType mask = lowBitMask (bits: srcBits - n); |
2399 | dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) |
2400 | << n % APINT_BITS_PER_WORD); |
2401 | } else if (n > srcBits) { |
2402 | if (srcBits % APINT_BITS_PER_WORD) |
2403 | dst[dstParts - 1] &= lowBitMask (bits: srcBits % APINT_BITS_PER_WORD); |
2404 | } |
2405 | |
2406 | // Clear high parts. |
2407 | while (dstParts < dstCount) |
2408 | dst[dstParts++] = 0; |
2409 | } |
2410 | |
2411 | //// DST += RHS + C where C is zero or one. Returns the carry flag. |
2412 | APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs, |
2413 | WordType c, unsigned parts) { |
2414 | assert(c <= 1); |
2415 | |
2416 | for (unsigned i = 0; i < parts; i++) { |
2417 | WordType l = dst[i]; |
2418 | if (c) { |
2419 | dst[i] += rhs[i] + 1; |
2420 | c = (dst[i] <= l); |
2421 | } else { |
2422 | dst[i] += rhs[i]; |
2423 | c = (dst[i] < l); |
2424 | } |
2425 | } |
2426 | |
2427 | return c; |
2428 | } |
2429 | |
2430 | /// This function adds a single "word" integer, src, to the multiple |
2431 | /// "word" integer array, dst[]. dst[] is modified to reflect the addition and |
2432 | /// 1 is returned if there is a carry out, otherwise 0 is returned. |
2433 | /// @returns the carry of the addition. |
2434 | APInt::WordType APInt::tcAddPart(WordType *dst, WordType src, |
2435 | unsigned parts) { |
2436 | for (unsigned i = 0; i < parts; ++i) { |
2437 | dst[i] += src; |
2438 | if (dst[i] >= src) |
2439 | return 0; // No need to carry so exit early. |
2440 | src = 1; // Carry one to next digit. |
2441 | } |
2442 | |
2443 | return 1; |
2444 | } |
2445 | |
2446 | /// DST -= RHS + C where C is zero or one. Returns the carry flag. |
2447 | APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs, |
2448 | WordType c, unsigned parts) { |
2449 | assert(c <= 1); |
2450 | |
2451 | for (unsigned i = 0; i < parts; i++) { |
2452 | WordType l = dst[i]; |
2453 | if (c) { |
2454 | dst[i] -= rhs[i] + 1; |
2455 | c = (dst[i] >= l); |
2456 | } else { |
2457 | dst[i] -= rhs[i]; |
2458 | c = (dst[i] > l); |
2459 | } |
2460 | } |
2461 | |
2462 | return c; |
2463 | } |
2464 | |
2465 | /// This function subtracts a single "word" (64-bit word), src, from |
2466 | /// the multi-word integer array, dst[], propagating the borrowed 1 value until |
2467 | /// no further borrowing is needed or it runs out of "words" in dst. The result |
2468 | /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not |
2469 | /// exhausted. In other words, if src > dst then this function returns 1, |
2470 | /// otherwise 0. |
2471 | /// @returns the borrow out of the subtraction |
2472 | APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src, |
2473 | unsigned parts) { |
2474 | for (unsigned i = 0; i < parts; ++i) { |
2475 | WordType Dst = dst[i]; |
2476 | dst[i] -= src; |
2477 | if (src <= Dst) |
2478 | return 0; // No need to borrow so exit early. |
2479 | src = 1; // We have to "borrow 1" from next "word" |
2480 | } |
2481 | |
2482 | return 1; |
2483 | } |
2484 | |
2485 | /// Negate a bignum in-place. |
2486 | void APInt::tcNegate(WordType *dst, unsigned parts) { |
2487 | tcComplement(dst, parts); |
2488 | tcIncrement(dst, parts); |
2489 | } |
2490 | |
2491 | /// DST += SRC * MULTIPLIER + CARRY if add is true |
2492 | /// DST = SRC * MULTIPLIER + CARRY if add is false |
2493 | /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC |
2494 | /// they must start at the same point, i.e. DST == SRC. |
2495 | /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is |
2496 | /// returned. Otherwise DST is filled with the least significant |
2497 | /// DSTPARTS parts of the result, and if all of the omitted higher |
2498 | /// parts were zero return zero, otherwise overflow occurred and |
2499 | /// return one. |
2500 | int APInt::tcMultiplyPart(WordType *dst, const WordType *src, |
2501 | WordType multiplier, WordType carry, |
2502 | unsigned srcParts, unsigned dstParts, |
2503 | bool add) { |
2504 | // Otherwise our writes of DST kill our later reads of SRC. |
2505 | assert(dst <= src || dst >= src + srcParts); |
2506 | assert(dstParts <= srcParts + 1); |
2507 | |
2508 | // N loops; minimum of dstParts and srcParts. |
2509 | unsigned n = std::min(a: dstParts, b: srcParts); |
2510 | |
2511 | for (unsigned i = 0; i < n; i++) { |
2512 | // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY. |
2513 | // This cannot overflow, because: |
2514 | // (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) |
2515 | // which is less than n^2. |
2516 | WordType srcPart = src[i]; |
2517 | WordType low, mid, high; |
2518 | if (multiplier == 0 || srcPart == 0) { |
2519 | low = carry; |
2520 | high = 0; |
2521 | } else { |
2522 | low = lowHalf(part: srcPart) * lowHalf(part: multiplier); |
2523 | high = highHalf(part: srcPart) * highHalf(part: multiplier); |
2524 | |
2525 | mid = lowHalf(part: srcPart) * highHalf(part: multiplier); |
2526 | high += highHalf(part: mid); |
2527 | mid <<= APINT_BITS_PER_WORD / 2; |
2528 | if (low + mid < low) |
2529 | high++; |
2530 | low += mid; |
2531 | |
2532 | mid = highHalf(part: srcPart) * lowHalf(part: multiplier); |
2533 | high += highHalf(part: mid); |
2534 | mid <<= APINT_BITS_PER_WORD / 2; |
2535 | if (low + mid < low) |
2536 | high++; |
2537 | low += mid; |
2538 | |
2539 | // Now add carry. |
2540 | if (low + carry < low) |
2541 | high++; |
2542 | low += carry; |
2543 | } |
2544 | |
2545 | if (add) { |
2546 | // And now DST[i], and store the new low part there. |
2547 | if (low + dst[i] < low) |
2548 | high++; |
2549 | dst[i] += low; |
2550 | } else |
2551 | dst[i] = low; |
2552 | |
2553 | carry = high; |
2554 | } |
2555 | |
2556 | if (srcParts < dstParts) { |
2557 | // Full multiplication, there is no overflow. |
2558 | assert(srcParts + 1 == dstParts); |
2559 | dst[srcParts] = carry; |
2560 | return 0; |
2561 | } |
2562 | |
2563 | // We overflowed if there is carry. |
2564 | if (carry) |
2565 | return 1; |
2566 | |
2567 | // We would overflow if any significant unwritten parts would be |
2568 | // non-zero. This is true if any remaining src parts are non-zero |
2569 | // and the multiplier is non-zero. |
2570 | if (multiplier) |
2571 | for (unsigned i = dstParts; i < srcParts; i++) |
2572 | if (src[i]) |
2573 | return 1; |
2574 | |
2575 | // We fitted in the narrow destination. |
2576 | return 0; |
2577 | } |
2578 | |
2579 | /// DST = LHS * RHS, where DST has the same width as the operands and |
2580 | /// is filled with the least significant parts of the result. Returns |
2581 | /// one if overflow occurred, otherwise zero. DST must be disjoint |
2582 | /// from both operands. |
2583 | int APInt::tcMultiply(WordType *dst, const WordType *lhs, |
2584 | const WordType *rhs, unsigned parts) { |
2585 | assert(dst != lhs && dst != rhs); |
2586 | |
2587 | int overflow = 0; |
2588 | |
2589 | for (unsigned i = 0; i < parts; i++) { |
2590 | // Don't accumulate on the first iteration so we don't need to initalize |
2591 | // dst to 0. |
2592 | overflow |= |
2593 | tcMultiplyPart(dst: &dst[i], src: lhs, multiplier: rhs[i], carry: 0, srcParts: parts, dstParts: parts - i, add: i != 0); |
2594 | } |
2595 | |
2596 | return overflow; |
2597 | } |
2598 | |
2599 | /// DST = LHS * RHS, where DST has width the sum of the widths of the |
2600 | /// operands. No overflow occurs. DST must be disjoint from both operands. |
2601 | void APInt::tcFullMultiply(WordType *dst, const WordType *lhs, |
2602 | const WordType *rhs, unsigned lhsParts, |
2603 | unsigned rhsParts) { |
2604 | // Put the narrower number on the LHS for less loops below. |
2605 | if (lhsParts > rhsParts) |
2606 | return tcFullMultiply (dst, lhs: rhs, rhs: lhs, lhsParts: rhsParts, rhsParts: lhsParts); |
2607 | |
2608 | assert(dst != lhs && dst != rhs); |
2609 | |
2610 | for (unsigned i = 0; i < lhsParts; i++) { |
2611 | // Don't accumulate on the first iteration so we don't need to initalize |
2612 | // dst to 0. |
2613 | tcMultiplyPart(dst: &dst[i], src: rhs, multiplier: lhs[i], carry: 0, srcParts: rhsParts, dstParts: rhsParts + 1, add: i != 0); |
2614 | } |
2615 | } |
2616 | |
2617 | // If RHS is zero LHS and REMAINDER are left unchanged, return one. |
2618 | // Otherwise set LHS to LHS / RHS with the fractional part discarded, |
2619 | // set REMAINDER to the remainder, return zero. i.e. |
2620 | // |
2621 | // OLD_LHS = RHS * LHS + REMAINDER |
2622 | // |
2623 | // SCRATCH is a bignum of the same size as the operands and result for |
2624 | // use by the routine; its contents need not be initialized and are |
2625 | // destroyed. LHS, REMAINDER and SCRATCH must be distinct. |
2626 | int APInt::tcDivide(WordType *lhs, const WordType *rhs, |
2627 | WordType *remainder, WordType *srhs, |
2628 | unsigned parts) { |
2629 | assert(lhs != remainder && lhs != srhs && remainder != srhs); |
2630 | |
2631 | unsigned shiftCount = tcMSB(parts: rhs, n: parts) + 1; |
2632 | if (shiftCount == 0) |
2633 | return true; |
2634 | |
2635 | shiftCount = parts * APINT_BITS_PER_WORD - shiftCount; |
2636 | unsigned n = shiftCount / APINT_BITS_PER_WORD; |
2637 | WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD); |
2638 | |
2639 | tcAssign(dst: srhs, src: rhs, parts); |
2640 | tcShiftLeft(srhs, Words: parts, Count: shiftCount); |
2641 | tcAssign(dst: remainder, src: lhs, parts); |
2642 | tcSet(dst: lhs, part: 0, parts); |
2643 | |
2644 | // Loop, subtracting SRHS if REMAINDER is greater and adding that to the |
2645 | // total. |
2646 | for (;;) { |
2647 | int compare = tcCompare(remainder, srhs, parts); |
2648 | if (compare >= 0) { |
2649 | tcSubtract(dst: remainder, rhs: srhs, c: 0, parts); |
2650 | lhs[n] |= mask; |
2651 | } |
2652 | |
2653 | if (shiftCount == 0) |
2654 | break; |
2655 | shiftCount--; |
2656 | tcShiftRight(srhs, Words: parts, Count: 1); |
2657 | if ((mask >>= 1) == 0) { |
2658 | mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1); |
2659 | n--; |
2660 | } |
2661 | } |
2662 | |
2663 | return false; |
2664 | } |
2665 | |
2666 | /// Shift a bignum left Count bits in-place. Shifted in bits are zero. There are |
2667 | /// no restrictions on Count. |
2668 | void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) { |
2669 | // Don't bother performing a no-op shift. |
2670 | if (!Count) |
2671 | return; |
2672 | |
2673 | // WordShift is the inter-part shift; BitShift is the intra-part shift. |
2674 | unsigned WordShift = std::min(a: Count / APINT_BITS_PER_WORD, b: Words); |
2675 | unsigned BitShift = Count % APINT_BITS_PER_WORD; |
2676 | |
2677 | // Fastpath for moving by whole words. |
2678 | if (BitShift == 0) { |
2679 | std::memmove(dest: Dst + WordShift, src: Dst, n: (Words - WordShift) * APINT_WORD_SIZE); |
2680 | } else { |
2681 | while (Words-- > WordShift) { |
2682 | Dst[Words] = Dst[Words - WordShift] << BitShift; |
2683 | if (Words > WordShift) |
2684 | Dst[Words] |= |
2685 | Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift); |
2686 | } |
2687 | } |
2688 | |
2689 | // Fill in the remainder with 0s. |
2690 | std::memset(s: Dst, c: 0, n: WordShift * APINT_WORD_SIZE); |
2691 | } |
2692 | |
2693 | /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There |
2694 | /// are no restrictions on Count. |
2695 | void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) { |
2696 | // Don't bother performing a no-op shift. |
2697 | if (!Count) |
2698 | return; |
2699 | |
2700 | // WordShift is the inter-part shift; BitShift is the intra-part shift. |
2701 | unsigned WordShift = std::min(a: Count / APINT_BITS_PER_WORD, b: Words); |
2702 | unsigned BitShift = Count % APINT_BITS_PER_WORD; |
2703 | |
2704 | unsigned WordsToMove = Words - WordShift; |
2705 | // Fastpath for moving by whole words. |
2706 | if (BitShift == 0) { |
2707 | std::memmove(dest: Dst, src: Dst + WordShift, n: WordsToMove * APINT_WORD_SIZE); |
2708 | } else { |
2709 | for (unsigned i = 0; i != WordsToMove; ++i) { |
2710 | Dst[i] = Dst[i + WordShift] >> BitShift; |
2711 | if (i + 1 != WordsToMove) |
2712 | Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift); |
2713 | } |
2714 | } |
2715 | |
2716 | // Fill in the remainder with 0s. |
2717 | std::memset(s: Dst + WordsToMove, c: 0, n: WordShift * APINT_WORD_SIZE); |
2718 | } |
2719 | |
2720 | // Comparison (unsigned) of two bignums. |
2721 | int APInt::tcCompare(const WordType *lhs, const WordType *rhs, |
2722 | unsigned parts) { |
2723 | while (parts) { |
2724 | parts--; |
2725 | if (lhs[parts] != rhs[parts]) |
2726 | return (lhs[parts] > rhs[parts]) ? 1 : -1; |
2727 | } |
2728 | |
2729 | return 0; |
2730 | } |
2731 | |
2732 | APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B, |
2733 | APInt::Rounding RM) { |
2734 | // Currently udivrem always rounds down. |
2735 | switch (RM) { |
2736 | case APInt::Rounding::DOWN: |
2737 | case APInt::Rounding::TOWARD_ZERO: |
2738 | return A.udiv(RHS: B); |
2739 | case APInt::Rounding::UP: { |
2740 | APInt Quo, Rem; |
2741 | APInt::udivrem(LHS: A, RHS: B, Quotient&: Quo, Remainder&: Rem); |
2742 | if (Rem.isZero()) |
2743 | return Quo; |
2744 | return Quo + 1; |
2745 | } |
2746 | } |
2747 | llvm_unreachable("Unknown APInt::Rounding enum" ); |
2748 | } |
2749 | |
2750 | APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B, |
2751 | APInt::Rounding RM) { |
2752 | switch (RM) { |
2753 | case APInt::Rounding::DOWN: |
2754 | case APInt::Rounding::UP: { |
2755 | APInt Quo, Rem; |
2756 | APInt::sdivrem(LHS: A, RHS: B, Quotient&: Quo, Remainder&: Rem); |
2757 | if (Rem.isZero()) |
2758 | return Quo; |
2759 | // This algorithm deals with arbitrary rounding mode used by sdivrem. |
2760 | // We want to check whether the non-integer part of the mathematical value |
2761 | // is negative or not. If the non-integer part is negative, we need to round |
2762 | // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's |
2763 | // already rounded down. |
2764 | if (RM == APInt::Rounding::DOWN) { |
2765 | if (Rem.isNegative() != B.isNegative()) |
2766 | return Quo - 1; |
2767 | return Quo; |
2768 | } |
2769 | if (Rem.isNegative() != B.isNegative()) |
2770 | return Quo; |
2771 | return Quo + 1; |
2772 | } |
2773 | // Currently sdiv rounds towards zero. |
2774 | case APInt::Rounding::TOWARD_ZERO: |
2775 | return A.sdiv(RHS: B); |
2776 | } |
2777 | llvm_unreachable("Unknown APInt::Rounding enum" ); |
2778 | } |
2779 | |
2780 | std::optional<APInt> |
2781 | llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, |
2782 | unsigned RangeWidth) { |
2783 | unsigned CoeffWidth = A.getBitWidth(); |
2784 | assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth()); |
2785 | assert(RangeWidth <= CoeffWidth && |
2786 | "Value range width should be less than coefficient width" ); |
2787 | assert(RangeWidth > 1 && "Value range bit width should be > 1" ); |
2788 | |
2789 | LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B |
2790 | << "x + " << C << ", rw:" << RangeWidth << '\n'); |
2791 | |
2792 | // Identify 0 as a (non)solution immediately. |
2793 | if (C.sextOrTrunc(width: RangeWidth).isZero()) { |
2794 | LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n" ); |
2795 | return APInt(CoeffWidth, 0); |
2796 | } |
2797 | |
2798 | // The result of APInt arithmetic has the same bit width as the operands, |
2799 | // so it can actually lose high bits. A product of two n-bit integers needs |
2800 | // 2n-1 bits to represent the full value. |
2801 | // The operation done below (on quadratic coefficients) that can produce |
2802 | // the largest value is the evaluation of the equation during bisection, |
2803 | // which needs 3 times the bitwidth of the coefficient, so the total number |
2804 | // of required bits is 3n. |
2805 | // |
2806 | // The purpose of this extension is to simulate the set Z of all integers, |
2807 | // where n+1 > n for all n in Z. In Z it makes sense to talk about positive |
2808 | // and negative numbers (not so much in a modulo arithmetic). The method |
2809 | // used to solve the equation is based on the standard formula for real |
2810 | // numbers, and uses the concepts of "positive" and "negative" with their |
2811 | // usual meanings. |
2812 | CoeffWidth *= 3; |
2813 | A = A.sext(Width: CoeffWidth); |
2814 | B = B.sext(Width: CoeffWidth); |
2815 | C = C.sext(Width: CoeffWidth); |
2816 | |
2817 | // Make A > 0 for simplicity. Negate cannot overflow at this point because |
2818 | // the bit width has increased. |
2819 | if (A.isNegative()) { |
2820 | A.negate(); |
2821 | B.negate(); |
2822 | C.negate(); |
2823 | } |
2824 | |
2825 | // Solving an equation q(x) = 0 with coefficients in modular arithmetic |
2826 | // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ..., |
2827 | // and R = 2^BitWidth. |
2828 | // Since we're trying not only to find exact solutions, but also values |
2829 | // that "wrap around", such a set will always have a solution, i.e. an x |
2830 | // that satisfies at least one of the equations, or such that |q(x)| |
2831 | // exceeds kR, while |q(x-1)| for the same k does not. |
2832 | // |
2833 | // We need to find a value k, such that Ax^2 + Bx + C = kR will have a |
2834 | // positive solution n (in the above sense), and also such that the n |
2835 | // will be the least among all solutions corresponding to k = 0, 1, ... |
2836 | // (more precisely, the least element in the set |
2837 | // { n(k) | k is such that a solution n(k) exists }). |
2838 | // |
2839 | // Consider the parabola (over real numbers) that corresponds to the |
2840 | // quadratic equation. Since A > 0, the arms of the parabola will point |
2841 | // up. Picking different values of k will shift it up and down by R. |
2842 | // |
2843 | // We want to shift the parabola in such a way as to reduce the problem |
2844 | // of solving q(x) = kR to solving shifted_q(x) = 0. |
2845 | // (The interesting solutions are the ceilings of the real number |
2846 | // solutions.) |
2847 | APInt R = APInt::getOneBitSet(numBits: CoeffWidth, BitNo: RangeWidth); |
2848 | APInt TwoA = 2 * A; |
2849 | APInt SqrB = B * B; |
2850 | bool PickLow; |
2851 | |
2852 | auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt { |
2853 | assert(A.isStrictlyPositive()); |
2854 | APInt T = V.abs().urem(RHS: A); |
2855 | if (T.isZero()) |
2856 | return V; |
2857 | return V.isNegative() ? V+T : V+(A-T); |
2858 | }; |
2859 | |
2860 | // The vertex of the parabola is at -B/2A, but since A > 0, it's negative |
2861 | // iff B is positive. |
2862 | if (B.isNonNegative()) { |
2863 | // If B >= 0, the vertex it at a negative location (or at 0), so in |
2864 | // order to have a non-negative solution we need to pick k that makes |
2865 | // C-kR negative. To satisfy all the requirements for the solution |
2866 | // that we are looking for, it needs to be closest to 0 of all k. |
2867 | C = C.srem(RHS: R); |
2868 | if (C.isStrictlyPositive()) |
2869 | C -= R; |
2870 | // Pick the greater solution. |
2871 | PickLow = false; |
2872 | } else { |
2873 | // If B < 0, the vertex is at a positive location. For any solution |
2874 | // to exist, the discriminant must be non-negative. This means that |
2875 | // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a |
2876 | // lower bound on values of k: kR >= C - B^2/4A. |
2877 | APInt LowkR = C - SqrB.udiv(RHS: 2*TwoA); // udiv because all values > 0. |
2878 | // Round LowkR up (towards +inf) to the nearest kR. |
2879 | LowkR = RoundUp(LowkR, R); |
2880 | |
2881 | // If there exists k meeting the condition above, and such that |
2882 | // C-kR > 0, there will be two positive real number solutions of |
2883 | // q(x) = kR. Out of all such values of k, pick the one that makes |
2884 | // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0). |
2885 | // In other words, find maximum k such that LowkR <= kR < C. |
2886 | if (C.sgt(RHS: LowkR)) { |
2887 | // If LowkR < C, then such a k is guaranteed to exist because |
2888 | // LowkR itself is a multiple of R. |
2889 | C -= -RoundUp(-C, R); // C = C - RoundDown(C, R) |
2890 | // Pick the smaller solution. |
2891 | PickLow = true; |
2892 | } else { |
2893 | // If C-kR < 0 for all potential k's, it means that one solution |
2894 | // will be negative, while the other will be positive. The positive |
2895 | // solution will shift towards 0 if the parabola is moved up. |
2896 | // Pick the kR closest to the lower bound (i.e. make C-kR closest |
2897 | // to 0, or in other words, out of all parabolas that have solutions, |
2898 | // pick the one that is the farthest "up"). |
2899 | // Since LowkR is itself a multiple of R, simply take C-LowkR. |
2900 | C -= LowkR; |
2901 | // Pick the greater solution. |
2902 | PickLow = false; |
2903 | } |
2904 | } |
2905 | |
2906 | LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + " |
2907 | << B << "x + " << C << ", rw:" << RangeWidth << '\n'); |
2908 | |
2909 | APInt D = SqrB - 4*A*C; |
2910 | assert(D.isNonNegative() && "Negative discriminant" ); |
2911 | APInt SQ = D.sqrt(); |
2912 | |
2913 | APInt Q = SQ * SQ; |
2914 | bool InexactSQ = Q != D; |
2915 | // The calculated SQ may actually be greater than the exact (non-integer) |
2916 | // value. If that's the case, decrement SQ to get a value that is lower. |
2917 | if (Q.sgt(RHS: D)) |
2918 | SQ -= 1; |
2919 | |
2920 | APInt X; |
2921 | APInt Rem; |
2922 | |
2923 | // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact. |
2924 | // When using the quadratic formula directly, the calculated low root |
2925 | // may be greater than the exact one, since we would be subtracting SQ. |
2926 | // To make sure that the calculated root is not greater than the exact |
2927 | // one, subtract SQ+1 when calculating the low root (for inexact value |
2928 | // of SQ). |
2929 | if (PickLow) |
2930 | APInt::sdivrem(LHS: -B - (SQ+InexactSQ), RHS: TwoA, Quotient&: X, Remainder&: Rem); |
2931 | else |
2932 | APInt::sdivrem(LHS: -B + SQ, RHS: TwoA, Quotient&: X, Remainder&: Rem); |
2933 | |
2934 | // The updated coefficients should be such that the (exact) solution is |
2935 | // positive. Since APInt division rounds towards 0, the calculated one |
2936 | // can be 0, but cannot be negative. |
2937 | assert(X.isNonNegative() && "Solution should be non-negative" ); |
2938 | |
2939 | if (!InexactSQ && Rem.isZero()) { |
2940 | LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n'); |
2941 | return X; |
2942 | } |
2943 | |
2944 | assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D" ); |
2945 | // The exact value of the square root of D should be between SQ and SQ+1. |
2946 | // This implies that the solution should be between that corresponding to |
2947 | // SQ (i.e. X) and that corresponding to SQ+1. |
2948 | // |
2949 | // The calculated X cannot be greater than the exact (real) solution. |
2950 | // Actually it must be strictly less than the exact solution, while |
2951 | // X+1 will be greater than or equal to it. |
2952 | |
2953 | APInt VX = (A*X + B)*X + C; |
2954 | APInt VY = VX + TwoA*X + A + B; |
2955 | bool SignChange = |
2956 | VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero(); |
2957 | // If the sign did not change between X and X+1, X is not a valid solution. |
2958 | // This could happen when the actual (exact) roots don't have an integer |
2959 | // between them, so they would both be contained between X and X+1. |
2960 | if (!SignChange) { |
2961 | LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n" ); |
2962 | return std::nullopt; |
2963 | } |
2964 | |
2965 | X += 1; |
2966 | LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n'); |
2967 | return X; |
2968 | } |
2969 | |
2970 | std::optional<unsigned> |
2971 | llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) { |
2972 | assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth" ); |
2973 | if (A == B) |
2974 | return std::nullopt; |
2975 | return A.getBitWidth() - ((A ^ B).countl_zero() + 1); |
2976 | } |
2977 | |
2978 | APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth, |
2979 | bool MatchAllBits) { |
2980 | unsigned OldBitWidth = A.getBitWidth(); |
2981 | assert((((OldBitWidth % NewBitWidth) == 0) || |
2982 | ((NewBitWidth % OldBitWidth) == 0)) && |
2983 | "One size should be a multiple of the other one. " |
2984 | "Can't do fractional scaling." ); |
2985 | |
2986 | // Check for matching bitwidths. |
2987 | if (OldBitWidth == NewBitWidth) |
2988 | return A; |
2989 | |
2990 | APInt NewA = APInt::getZero(numBits: NewBitWidth); |
2991 | |
2992 | // Check for null input. |
2993 | if (A.isZero()) |
2994 | return NewA; |
2995 | |
2996 | if (NewBitWidth > OldBitWidth) { |
2997 | // Repeat bits. |
2998 | unsigned Scale = NewBitWidth / OldBitWidth; |
2999 | for (unsigned i = 0; i != OldBitWidth; ++i) |
3000 | if (A[i]) |
3001 | NewA.setBits(loBit: i * Scale, hiBit: (i + 1) * Scale); |
3002 | } else { |
3003 | unsigned Scale = OldBitWidth / NewBitWidth; |
3004 | for (unsigned i = 0; i != NewBitWidth; ++i) { |
3005 | if (MatchAllBits) { |
3006 | if (A.extractBits(numBits: Scale, bitPosition: i * Scale).isAllOnes()) |
3007 | NewA.setBit(i); |
3008 | } else { |
3009 | if (!A.extractBits(numBits: Scale, bitPosition: i * Scale).isZero()) |
3010 | NewA.setBit(i); |
3011 | } |
3012 | } |
3013 | } |
3014 | |
3015 | return NewA; |
3016 | } |
3017 | |
3018 | /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst |
3019 | /// with the integer held in IntVal. |
3020 | void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, |
3021 | unsigned StoreBytes) { |
3022 | assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!" ); |
3023 | const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); |
3024 | |
3025 | if (sys::IsLittleEndianHost) { |
3026 | // Little-endian host - the source is ordered from LSB to MSB. Order the |
3027 | // destination from LSB to MSB: Do a straight copy. |
3028 | memcpy(dest: Dst, src: Src, n: StoreBytes); |
3029 | } else { |
3030 | // Big-endian host - the source is an array of 64 bit words ordered from |
3031 | // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination |
3032 | // from MSB to LSB: Reverse the word order, but not the bytes in a word. |
3033 | while (StoreBytes > sizeof(uint64_t)) { |
3034 | StoreBytes -= sizeof(uint64_t); |
3035 | // May not be aligned so use memcpy. |
3036 | memcpy(dest: Dst + StoreBytes, src: Src, n: sizeof(uint64_t)); |
3037 | Src += sizeof(uint64_t); |
3038 | } |
3039 | |
3040 | memcpy(dest: Dst, src: Src + sizeof(uint64_t) - StoreBytes, n: StoreBytes); |
3041 | } |
3042 | } |
3043 | |
3044 | /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting |
3045 | /// from Src into IntVal, which is assumed to be wide enough and to hold zero. |
3046 | void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, |
3047 | unsigned LoadBytes) { |
3048 | assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!" ); |
3049 | uint8_t *Dst = reinterpret_cast<uint8_t *>( |
3050 | const_cast<uint64_t *>(IntVal.getRawData())); |
3051 | |
3052 | if (sys::IsLittleEndianHost) |
3053 | // Little-endian host - the destination must be ordered from LSB to MSB. |
3054 | // The source is ordered from LSB to MSB: Do a straight copy. |
3055 | memcpy(dest: Dst, src: Src, n: LoadBytes); |
3056 | else { |
3057 | // Big-endian - the destination is an array of 64 bit words ordered from |
3058 | // LSW to MSW. Each word must be ordered from MSB to LSB. The source is |
3059 | // ordered from MSB to LSB: Reverse the word order, but not the bytes in |
3060 | // a word. |
3061 | while (LoadBytes > sizeof(uint64_t)) { |
3062 | LoadBytes -= sizeof(uint64_t); |
3063 | // May not be aligned so use memcpy. |
3064 | memcpy(dest: Dst, src: Src + LoadBytes, n: sizeof(uint64_t)); |
3065 | Dst += sizeof(uint64_t); |
3066 | } |
3067 | |
3068 | memcpy(dest: Dst + sizeof(uint64_t) - LoadBytes, src: Src, n: LoadBytes); |
3069 | } |
3070 | } |
3071 | |
3072 | APInt APIntOps::avgFloorS(const APInt &C1, const APInt &C2) { |
3073 | // Return floor((C1 + C2) / 2) |
3074 | return (C1 & C2) + (C1 ^ C2).ashr(ShiftAmt: 1); |
3075 | } |
3076 | |
3077 | APInt APIntOps::avgFloorU(const APInt &C1, const APInt &C2) { |
3078 | // Return floor((C1 + C2) / 2) |
3079 | return (C1 & C2) + (C1 ^ C2).lshr(shiftAmt: 1); |
3080 | } |
3081 | |
3082 | APInt APIntOps::avgCeilS(const APInt &C1, const APInt &C2) { |
3083 | // Return ceil((C1 + C2) / 2) |
3084 | return (C1 | C2) - (C1 ^ C2).ashr(ShiftAmt: 1); |
3085 | } |
3086 | |
3087 | APInt APIntOps::avgCeilU(const APInt &C1, const APInt &C2) { |
3088 | // Return ceil((C1 + C2) / 2) |
3089 | return (C1 | C2) - (C1 ^ C2).lshr(shiftAmt: 1); |
3090 | } |
3091 | |
3092 | APInt APIntOps::mulhs(const APInt &C1, const APInt &C2) { |
3093 | assert(C1.getBitWidth() == C2.getBitWidth() && "Unequal bitwidths" ); |
3094 | unsigned FullWidth = C1.getBitWidth() * 2; |
3095 | APInt C1Ext = C1.sext(Width: FullWidth); |
3096 | APInt C2Ext = C2.sext(Width: FullWidth); |
3097 | return (C1Ext * C2Ext).extractBits(numBits: C1.getBitWidth(), bitPosition: C1.getBitWidth()); |
3098 | } |
3099 | |
3100 | APInt APIntOps::mulhu(const APInt &C1, const APInt &C2) { |
3101 | assert(C1.getBitWidth() == C2.getBitWidth() && "Unequal bitwidths" ); |
3102 | unsigned FullWidth = C1.getBitWidth() * 2; |
3103 | APInt C1Ext = C1.zext(width: FullWidth); |
3104 | APInt C2Ext = C2.zext(width: FullWidth); |
3105 | return (C1Ext * C2Ext).extractBits(numBits: C1.getBitWidth(), bitPosition: C1.getBitWidth()); |
3106 | } |
3107 | |