1 | //===- X86InterleavedAccess.cpp -------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// This file contains the X86 implementation of the interleaved accesses |
11 | /// optimization generating X86-specific instructions/intrinsics for |
12 | /// interleaved access groups. |
13 | // |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #include "X86ISelLowering.h" |
17 | #include "X86Subtarget.h" |
18 | #include "llvm/ADT/ArrayRef.h" |
19 | #include "llvm/ADT/SmallVector.h" |
20 | #include "llvm/Analysis/VectorUtils.h" |
21 | #include "llvm/CodeGenTypes/MachineValueType.h" |
22 | #include "llvm/IR/Constants.h" |
23 | #include "llvm/IR/DataLayout.h" |
24 | #include "llvm/IR/DerivedTypes.h" |
25 | #include "llvm/IR/IRBuilder.h" |
26 | #include "llvm/IR/Instruction.h" |
27 | #include "llvm/IR/Instructions.h" |
28 | #include "llvm/IR/Module.h" |
29 | #include "llvm/IR/Type.h" |
30 | #include "llvm/IR/Value.h" |
31 | #include "llvm/Support/Casting.h" |
32 | #include <algorithm> |
33 | #include <cassert> |
34 | #include <cmath> |
35 | #include <cstdint> |
36 | |
37 | using namespace llvm; |
38 | |
39 | namespace { |
40 | |
41 | /// This class holds necessary information to represent an interleaved |
42 | /// access group and supports utilities to lower the group into |
43 | /// X86-specific instructions/intrinsics. |
44 | /// E.g. A group of interleaving access loads (Factor = 2; accessing every |
45 | /// other element) |
46 | /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr |
47 | /// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6> |
48 | /// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7> |
49 | class X86InterleavedAccessGroup { |
50 | /// Reference to the wide-load instruction of an interleaved access |
51 | /// group. |
52 | Instruction *const Inst; |
53 | |
54 | /// Reference to the shuffle(s), consumer(s) of the (load) 'Inst'. |
55 | ArrayRef<ShuffleVectorInst *> Shuffles; |
56 | |
57 | /// Reference to the starting index of each user-shuffle. |
58 | ArrayRef<unsigned> Indices; |
59 | |
60 | /// Reference to the interleaving stride in terms of elements. |
61 | const unsigned Factor; |
62 | |
63 | /// Reference to the underlying target. |
64 | const X86Subtarget &Subtarget; |
65 | |
66 | const DataLayout &DL; |
67 | |
68 | IRBuilder<> &Builder; |
69 | |
70 | /// Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors |
71 | /// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors. |
72 | void decompose(Instruction *Inst, unsigned NumSubVectors, FixedVectorType *T, |
73 | SmallVectorImpl<Instruction *> &DecomposedVectors); |
74 | |
75 | /// Performs matrix transposition on a 4x4 matrix \p InputVectors and |
76 | /// returns the transposed-vectors in \p TransposedVectors. |
77 | /// E.g. |
78 | /// InputVectors: |
79 | /// In-V0 = p1, p2, p3, p4 |
80 | /// In-V1 = q1, q2, q3, q4 |
81 | /// In-V2 = r1, r2, r3, r4 |
82 | /// In-V3 = s1, s2, s3, s4 |
83 | /// OutputVectors: |
84 | /// Out-V0 = p1, q1, r1, s1 |
85 | /// Out-V1 = p2, q2, r2, s2 |
86 | /// Out-V2 = p3, q3, r3, s3 |
87 | /// Out-V3 = P4, q4, r4, s4 |
88 | void transpose_4x4(ArrayRef<Instruction *> InputVectors, |
89 | SmallVectorImpl<Value *> &TransposedMatrix); |
90 | void interleave8bitStride4(ArrayRef<Instruction *> InputVectors, |
91 | SmallVectorImpl<Value *> &TransposedMatrix, |
92 | unsigned NumSubVecElems); |
93 | void interleave8bitStride4VF8(ArrayRef<Instruction *> InputVectors, |
94 | SmallVectorImpl<Value *> &TransposedMatrix); |
95 | void interleave8bitStride3(ArrayRef<Instruction *> InputVectors, |
96 | SmallVectorImpl<Value *> &TransposedMatrix, |
97 | unsigned NumSubVecElems); |
98 | void deinterleave8bitStride3(ArrayRef<Instruction *> InputVectors, |
99 | SmallVectorImpl<Value *> &TransposedMatrix, |
100 | unsigned NumSubVecElems); |
101 | |
102 | public: |
103 | /// In order to form an interleaved access group X86InterleavedAccessGroup |
104 | /// requires a wide-load instruction \p 'I', a group of interleaved-vectors |
105 | /// \p Shuffs, reference to the first indices of each interleaved-vector |
106 | /// \p 'Ind' and the interleaving stride factor \p F. In order to generate |
107 | /// X86-specific instructions/intrinsics it also requires the underlying |
108 | /// target information \p STarget. |
109 | explicit X86InterleavedAccessGroup(Instruction *I, |
110 | ArrayRef<ShuffleVectorInst *> Shuffs, |
111 | ArrayRef<unsigned> Ind, const unsigned F, |
112 | const X86Subtarget &STarget, |
113 | IRBuilder<> &B) |
114 | : Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget), |
115 | DL(Inst->getDataLayout()), Builder(B) {} |
116 | |
117 | /// Returns true if this interleaved access group can be lowered into |
118 | /// x86-specific instructions/intrinsics, false otherwise. |
119 | bool isSupported() const; |
120 | |
121 | /// Lowers this interleaved access group into X86-specific |
122 | /// instructions/intrinsics. |
123 | bool lowerIntoOptimizedSequence(); |
124 | }; |
125 | |
126 | } // end anonymous namespace |
127 | |
128 | bool X86InterleavedAccessGroup::isSupported() const { |
129 | VectorType *ShuffleVecTy = Shuffles[0]->getType(); |
130 | Type *ShuffleEltTy = ShuffleVecTy->getElementType(); |
131 | unsigned ShuffleElemSize = DL.getTypeSizeInBits(Ty: ShuffleEltTy); |
132 | unsigned WideInstSize; |
133 | |
134 | // Currently, lowering is supported for the following vectors: |
135 | // Stride 4: |
136 | // 1. Store and load of 4-element vectors of 64 bits on AVX. |
137 | // 2. Store of 16/32-element vectors of 8 bits on AVX. |
138 | // Stride 3: |
139 | // 1. Load of 16/32-element vectors of 8 bits on AVX. |
140 | if (!Subtarget.hasAVX() || (Factor != 4 && Factor != 3)) |
141 | return false; |
142 | |
143 | if (isa<LoadInst>(Val: Inst)) { |
144 | WideInstSize = DL.getTypeSizeInBits(Ty: Inst->getType()); |
145 | if (cast<LoadInst>(Val: Inst)->getPointerAddressSpace()) |
146 | return false; |
147 | } else |
148 | WideInstSize = DL.getTypeSizeInBits(Ty: Shuffles[0]->getType()); |
149 | |
150 | // We support shuffle represents stride 4 for byte type with size of |
151 | // WideInstSize. |
152 | if (ShuffleElemSize == 64 && WideInstSize == 1024 && Factor == 4) |
153 | return true; |
154 | |
155 | if (ShuffleElemSize == 8 && isa<StoreInst>(Val: Inst) && Factor == 4 && |
156 | (WideInstSize == 256 || WideInstSize == 512 || WideInstSize == 1024 || |
157 | WideInstSize == 2048)) |
158 | return true; |
159 | |
160 | if (ShuffleElemSize == 8 && Factor == 3 && |
161 | (WideInstSize == 384 || WideInstSize == 768 || WideInstSize == 1536)) |
162 | return true; |
163 | |
164 | return false; |
165 | } |
166 | |
167 | void X86InterleavedAccessGroup::decompose( |
168 | Instruction *VecInst, unsigned NumSubVectors, FixedVectorType *SubVecTy, |
169 | SmallVectorImpl<Instruction *> &DecomposedVectors) { |
170 | assert((isa<LoadInst>(VecInst) || isa<ShuffleVectorInst>(VecInst)) && |
171 | "Expected Load or Shuffle" ); |
172 | |
173 | Type *VecWidth = VecInst->getType(); |
174 | (void)VecWidth; |
175 | assert(VecWidth->isVectorTy() && |
176 | DL.getTypeSizeInBits(VecWidth) >= |
177 | DL.getTypeSizeInBits(SubVecTy) * NumSubVectors && |
178 | "Invalid Inst-size!!!" ); |
179 | |
180 | if (auto *SVI = dyn_cast<ShuffleVectorInst>(Val: VecInst)) { |
181 | Value *Op0 = SVI->getOperand(i_nocapture: 0); |
182 | Value *Op1 = SVI->getOperand(i_nocapture: 1); |
183 | |
184 | // Generate N(= NumSubVectors) shuffles of T(= SubVecTy) type. |
185 | for (unsigned i = 0; i < NumSubVectors; ++i) |
186 | DecomposedVectors.push_back( |
187 | Elt: cast<ShuffleVectorInst>(Val: Builder.CreateShuffleVector( |
188 | V1: Op0, V2: Op1, |
189 | Mask: createSequentialMask(Start: Indices[i], NumInts: SubVecTy->getNumElements(), |
190 | NumUndefs: 0)))); |
191 | return; |
192 | } |
193 | |
194 | // Decompose the load instruction. |
195 | LoadInst *LI = cast<LoadInst>(Val: VecInst); |
196 | Type *VecBaseTy; |
197 | unsigned int NumLoads = NumSubVectors; |
198 | // In the case of stride 3 with a vector of 32 elements load the information |
199 | // in the following way: |
200 | // [0,1...,VF/2-1,VF/2+VF,VF/2+VF+1,...,2VF-1] |
201 | unsigned VecLength = DL.getTypeSizeInBits(Ty: VecWidth); |
202 | Value *VecBasePtr = LI->getPointerOperand(); |
203 | if (VecLength == 768 || VecLength == 1536) { |
204 | VecBaseTy = FixedVectorType::get(ElementType: Type::getInt8Ty(C&: LI->getContext()), NumElts: 16); |
205 | NumLoads = NumSubVectors * (VecLength / 384); |
206 | } else { |
207 | VecBaseTy = SubVecTy; |
208 | } |
209 | // Generate N loads of T type. |
210 | assert(VecBaseTy->getPrimitiveSizeInBits().isKnownMultipleOf(8) && |
211 | "VecBaseTy's size must be a multiple of 8" ); |
212 | const Align FirstAlignment = LI->getAlign(); |
213 | const Align SubsequentAlignment = commonAlignment( |
214 | A: FirstAlignment, Offset: VecBaseTy->getPrimitiveSizeInBits().getFixedValue() / 8); |
215 | Align Alignment = FirstAlignment; |
216 | for (unsigned i = 0; i < NumLoads; i++) { |
217 | // TODO: Support inbounds GEP. |
218 | Value *NewBasePtr = |
219 | Builder.CreateGEP(Ty: VecBaseTy, Ptr: VecBasePtr, IdxList: Builder.getInt32(C: i)); |
220 | Instruction *NewLoad = |
221 | Builder.CreateAlignedLoad(Ty: VecBaseTy, Ptr: NewBasePtr, Align: Alignment); |
222 | DecomposedVectors.push_back(Elt: NewLoad); |
223 | Alignment = SubsequentAlignment; |
224 | } |
225 | } |
226 | |
227 | // Changing the scale of the vector type by reducing the number of elements and |
228 | // doubling the scalar size. |
229 | static MVT scaleVectorType(MVT VT) { |
230 | unsigned ScalarSize = VT.getVectorElementType().getScalarSizeInBits() * 2; |
231 | return MVT::getVectorVT(VT: MVT::getIntegerVT(BitWidth: ScalarSize), |
232 | NumElements: VT.getVectorNumElements() / 2); |
233 | } |
234 | |
235 | static constexpr int Concat[] = { |
236 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
237 | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
238 | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
239 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63}; |
240 | |
241 | // genShuffleBland - Creates shuffle according to two vectors.This function is |
242 | // only works on instructions with lane inside 256 registers. According to |
243 | // the mask 'Mask' creates a new Mask 'Out' by the offset of the mask. The |
244 | // offset amount depends on the two integer, 'LowOffset' and 'HighOffset'. |
245 | // Where the 'LowOffset' refers to the first vector and the highOffset refers to |
246 | // the second vector. |
247 | // |a0....a5,b0....b4,c0....c4|a16..a21,b16..b20,c16..c20| |
248 | // |c5...c10,a5....a9,b5....b9|c21..c26,a22..a26,b21..b25| |
249 | // |b10..b15,c11..c15,a10..a15|b26..b31,c27..c31,a27..a31| |
250 | // For the sequence to work as a mirror to the load. |
251 | // We must consider the elements order as above. |
252 | // In this function we are combining two types of shuffles. |
253 | // The first one is vpshufed and the second is a type of "blend" shuffle. |
254 | // By computing the shuffle on a sequence of 16 elements(one lane) and add the |
255 | // correct offset. We are creating a vpsuffed + blend sequence between two |
256 | // shuffles. |
257 | static void genShuffleBland(MVT VT, ArrayRef<int> Mask, |
258 | SmallVectorImpl<int> &Out, int LowOffset, |
259 | int HighOffset) { |
260 | assert(VT.getSizeInBits() >= 256 && |
261 | "This function doesn't accept width smaller then 256" ); |
262 | unsigned NumOfElm = VT.getVectorNumElements(); |
263 | for (int I : Mask) |
264 | Out.push_back(Elt: I + LowOffset); |
265 | for (int I : Mask) |
266 | Out.push_back(Elt: I + HighOffset + NumOfElm); |
267 | } |
268 | |
269 | // reorderSubVector returns the data to is the original state. And de-facto is |
270 | // the opposite of the function concatSubVector. |
271 | |
272 | // For VecElems = 16 |
273 | // Invec[0] - |0| TransposedMatrix[0] - |0| |
274 | // Invec[1] - |1| => TransposedMatrix[1] - |1| |
275 | // Invec[2] - |2| TransposedMatrix[2] - |2| |
276 | |
277 | // For VecElems = 32 |
278 | // Invec[0] - |0|3| TransposedMatrix[0] - |0|1| |
279 | // Invec[1] - |1|4| => TransposedMatrix[1] - |2|3| |
280 | // Invec[2] - |2|5| TransposedMatrix[2] - |4|5| |
281 | |
282 | // For VecElems = 64 |
283 | // Invec[0] - |0|3|6|9 | TransposedMatrix[0] - |0|1|2 |3 | |
284 | // Invec[1] - |1|4|7|10| => TransposedMatrix[1] - |4|5|6 |7 | |
285 | // Invec[2] - |2|5|8|11| TransposedMatrix[2] - |8|9|10|11| |
286 | |
287 | static void reorderSubVector(MVT VT, SmallVectorImpl<Value *> &TransposedMatrix, |
288 | ArrayRef<Value *> Vec, ArrayRef<int> VPShuf, |
289 | unsigned VecElems, unsigned Stride, |
290 | IRBuilder<> &Builder) { |
291 | |
292 | if (VecElems == 16) { |
293 | for (unsigned i = 0; i < Stride; i++) |
294 | TransposedMatrix[i] = Builder.CreateShuffleVector(V: Vec[i], Mask: VPShuf); |
295 | return; |
296 | } |
297 | |
298 | SmallVector<int, 32> OptimizeShuf; |
299 | Value *Temp[8]; |
300 | |
301 | for (unsigned i = 0; i < (VecElems / 16) * Stride; i += 2) { |
302 | genShuffleBland(VT, Mask: VPShuf, Out&: OptimizeShuf, LowOffset: (i / Stride) * 16, |
303 | HighOffset: (i + 1) / Stride * 16); |
304 | Temp[i / 2] = Builder.CreateShuffleVector( |
305 | V1: Vec[i % Stride], V2: Vec[(i + 1) % Stride], Mask: OptimizeShuf); |
306 | OptimizeShuf.clear(); |
307 | } |
308 | |
309 | if (VecElems == 32) { |
310 | std::copy(first: Temp, last: Temp + Stride, result: TransposedMatrix.begin()); |
311 | return; |
312 | } else |
313 | for (unsigned i = 0; i < Stride; i++) |
314 | TransposedMatrix[i] = |
315 | Builder.CreateShuffleVector(V1: Temp[2 * i], V2: Temp[2 * i + 1], Mask: Concat); |
316 | } |
317 | |
318 | void X86InterleavedAccessGroup::interleave8bitStride4VF8( |
319 | ArrayRef<Instruction *> Matrix, |
320 | SmallVectorImpl<Value *> &TransposedMatrix) { |
321 | // Assuming we start from the following vectors: |
322 | // Matrix[0]= c0 c1 c2 c3 c4 ... c7 |
323 | // Matrix[1]= m0 m1 m2 m3 m4 ... m7 |
324 | // Matrix[2]= y0 y1 y2 y3 y4 ... y7 |
325 | // Matrix[3]= k0 k1 k2 k3 k4 ... k7 |
326 | |
327 | MVT VT = MVT::v8i16; |
328 | TransposedMatrix.resize(N: 2); |
329 | SmallVector<int, 16> MaskLow; |
330 | SmallVector<int, 32> MaskLowTemp1, MaskLowWord; |
331 | SmallVector<int, 32> MaskHighTemp1, MaskHighWord; |
332 | |
333 | for (unsigned i = 0; i < 8; ++i) { |
334 | MaskLow.push_back(Elt: i); |
335 | MaskLow.push_back(Elt: i + 8); |
336 | } |
337 | |
338 | createUnpackShuffleMask(VT, Mask&: MaskLowTemp1, Lo: true, Unary: false); |
339 | createUnpackShuffleMask(VT, Mask&: MaskHighTemp1, Lo: false, Unary: false); |
340 | narrowShuffleMaskElts(Scale: 2, Mask: MaskHighTemp1, ScaledMask&: MaskHighWord); |
341 | narrowShuffleMaskElts(Scale: 2, Mask: MaskLowTemp1, ScaledMask&: MaskLowWord); |
342 | // IntrVec1Low = c0 m0 c1 m1 c2 m2 c3 m3 c4 m4 c5 m5 c6 m6 c7 m7 |
343 | // IntrVec2Low = y0 k0 y1 k1 y2 k2 y3 k3 y4 k4 y5 k5 y6 k6 y7 k7 |
344 | Value *IntrVec1Low = |
345 | Builder.CreateShuffleVector(V1: Matrix[0], V2: Matrix[1], Mask: MaskLow); |
346 | Value *IntrVec2Low = |
347 | Builder.CreateShuffleVector(V1: Matrix[2], V2: Matrix[3], Mask: MaskLow); |
348 | |
349 | // TransposedMatrix[0] = c0 m0 y0 k0 c1 m1 y1 k1 c2 m2 y2 k2 c3 m3 y3 k3 |
350 | // TransposedMatrix[1] = c4 m4 y4 k4 c5 m5 y5 k5 c6 m6 y6 k6 c7 m7 y7 k7 |
351 | |
352 | TransposedMatrix[0] = |
353 | Builder.CreateShuffleVector(V1: IntrVec1Low, V2: IntrVec2Low, Mask: MaskLowWord); |
354 | TransposedMatrix[1] = |
355 | Builder.CreateShuffleVector(V1: IntrVec1Low, V2: IntrVec2Low, Mask: MaskHighWord); |
356 | } |
357 | |
358 | void X86InterleavedAccessGroup::interleave8bitStride4( |
359 | ArrayRef<Instruction *> Matrix, SmallVectorImpl<Value *> &TransposedMatrix, |
360 | unsigned NumOfElm) { |
361 | // Example: Assuming we start from the following vectors: |
362 | // Matrix[0]= c0 c1 c2 c3 c4 ... c31 |
363 | // Matrix[1]= m0 m1 m2 m3 m4 ... m31 |
364 | // Matrix[2]= y0 y1 y2 y3 y4 ... y31 |
365 | // Matrix[3]= k0 k1 k2 k3 k4 ... k31 |
366 | |
367 | MVT VT = MVT::getVectorVT(VT: MVT::i8, NumElements: NumOfElm); |
368 | MVT HalfVT = scaleVectorType(VT); |
369 | |
370 | TransposedMatrix.resize(N: 4); |
371 | SmallVector<int, 32> MaskHigh; |
372 | SmallVector<int, 32> MaskLow; |
373 | SmallVector<int, 32> LowHighMask[2]; |
374 | SmallVector<int, 32> MaskHighTemp; |
375 | SmallVector<int, 32> MaskLowTemp; |
376 | |
377 | // MaskHighTemp and MaskLowTemp built in the vpunpckhbw and vpunpcklbw X86 |
378 | // shuffle pattern. |
379 | |
380 | createUnpackShuffleMask(VT, Mask&: MaskLow, Lo: true, Unary: false); |
381 | createUnpackShuffleMask(VT, Mask&: MaskHigh, Lo: false, Unary: false); |
382 | |
383 | // MaskHighTemp1 and MaskLowTemp1 built in the vpunpckhdw and vpunpckldw X86 |
384 | // shuffle pattern. |
385 | |
386 | createUnpackShuffleMask(VT: HalfVT, Mask&: MaskLowTemp, Lo: true, Unary: false); |
387 | createUnpackShuffleMask(VT: HalfVT, Mask&: MaskHighTemp, Lo: false, Unary: false); |
388 | narrowShuffleMaskElts(Scale: 2, Mask: MaskLowTemp, ScaledMask&: LowHighMask[0]); |
389 | narrowShuffleMaskElts(Scale: 2, Mask: MaskHighTemp, ScaledMask&: LowHighMask[1]); |
390 | |
391 | // IntrVec1Low = c0 m0 c1 m1 ... c7 m7 | c16 m16 c17 m17 ... c23 m23 |
392 | // IntrVec1High = c8 m8 c9 m9 ... c15 m15 | c24 m24 c25 m25 ... c31 m31 |
393 | // IntrVec2Low = y0 k0 y1 k1 ... y7 k7 | y16 k16 y17 k17 ... y23 k23 |
394 | // IntrVec2High = y8 k8 y9 k9 ... y15 k15 | y24 k24 y25 k25 ... y31 k31 |
395 | Value *IntrVec[4]; |
396 | |
397 | IntrVec[0] = Builder.CreateShuffleVector(V1: Matrix[0], V2: Matrix[1], Mask: MaskLow); |
398 | IntrVec[1] = Builder.CreateShuffleVector(V1: Matrix[0], V2: Matrix[1], Mask: MaskHigh); |
399 | IntrVec[2] = Builder.CreateShuffleVector(V1: Matrix[2], V2: Matrix[3], Mask: MaskLow); |
400 | IntrVec[3] = Builder.CreateShuffleVector(V1: Matrix[2], V2: Matrix[3], Mask: MaskHigh); |
401 | |
402 | // cmyk4 cmyk5 cmyk6 cmyk7 | cmyk20 cmyk21 cmyk22 cmyk23 |
403 | // cmyk12 cmyk13 cmyk14 cmyk15 | cmyk28 cmyk29 cmyk30 cmyk31 |
404 | // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk16 cmyk17 cmyk18 cmyk19 |
405 | // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk24 cmyk25 cmyk26 cmyk27 |
406 | |
407 | Value *VecOut[4]; |
408 | for (int i = 0; i < 4; i++) |
409 | VecOut[i] = Builder.CreateShuffleVector(V1: IntrVec[i / 2], V2: IntrVec[i / 2 + 2], |
410 | Mask: LowHighMask[i % 2]); |
411 | |
412 | // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk4 cmyk5 cmyk6 cmyk7 |
413 | // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk12 cmyk13 cmyk14 cmyk15 |
414 | // cmyk16 cmyk17 cmyk18 cmyk19 | cmyk20 cmyk21 cmyk22 cmyk23 |
415 | // cmyk24 cmyk25 cmyk26 cmyk27 | cmyk28 cmyk29 cmyk30 cmyk31 |
416 | |
417 | if (VT == MVT::v16i8) { |
418 | std::copy(first: VecOut, last: VecOut + 4, result: TransposedMatrix.begin()); |
419 | return; |
420 | } |
421 | |
422 | reorderSubVector(VT, TransposedMatrix, Vec: VecOut, VPShuf: ArrayRef(Concat, 16), VecElems: NumOfElm, |
423 | Stride: 4, Builder); |
424 | } |
425 | |
426 | // createShuffleStride returns shuffle mask of size N. |
427 | // The shuffle pattern is as following : |
428 | // {0, Stride%(VF/Lane), (2*Stride%(VF/Lane))...(VF*Stride/Lane)%(VF/Lane), |
429 | // (VF/ Lane) ,(VF / Lane)+Stride%(VF/Lane),..., |
430 | // (VF / Lane)+(VF*Stride/Lane)%(VF/Lane)} |
431 | // Where Lane is the # of lanes in a register: |
432 | // VectorSize = 128 => Lane = 1 |
433 | // VectorSize = 256 => Lane = 2 |
434 | // For example shuffle pattern for VF 16 register size 256 -> lanes = 2 |
435 | // {<[0|3|6|1|4|7|2|5]-[8|11|14|9|12|15|10|13]>} |
436 | static void createShuffleStride(MVT VT, int Stride, |
437 | SmallVectorImpl<int> &Mask) { |
438 | int VectorSize = VT.getSizeInBits(); |
439 | int VF = VT.getVectorNumElements(); |
440 | int LaneCount = std::max(a: VectorSize / 128, b: 1); |
441 | for (int Lane = 0; Lane < LaneCount; Lane++) |
442 | for (int i = 0, LaneSize = VF / LaneCount; i != LaneSize; ++i) |
443 | Mask.push_back(Elt: (i * Stride) % LaneSize + LaneSize * Lane); |
444 | } |
445 | |
446 | // setGroupSize sets 'SizeInfo' to the size(number of elements) of group |
447 | // inside mask a shuffleMask. A mask contains exactly 3 groups, where |
448 | // each group is a monotonically increasing sequence with stride 3. |
449 | // For example shuffleMask {0,3,6,1,4,7,2,5} => {3,3,2} |
450 | static void setGroupSize(MVT VT, SmallVectorImpl<int> &SizeInfo) { |
451 | int VectorSize = VT.getSizeInBits(); |
452 | int VF = VT.getVectorNumElements() / std::max(a: VectorSize / 128, b: 1); |
453 | for (int i = 0, FirstGroupElement = 0; i < 3; i++) { |
454 | int GroupSize = std::ceil(x: (VF - FirstGroupElement) / 3.0); |
455 | SizeInfo.push_back(Elt: GroupSize); |
456 | FirstGroupElement = ((GroupSize)*3 + FirstGroupElement) % VF; |
457 | } |
458 | } |
459 | |
460 | // DecodePALIGNRMask returns the shuffle mask of vpalign instruction. |
461 | // vpalign works according to lanes |
462 | // Where Lane is the # of lanes in a register: |
463 | // VectorWide = 128 => Lane = 1 |
464 | // VectorWide = 256 => Lane = 2 |
465 | // For Lane = 1 shuffle pattern is: {DiffToJump,...,DiffToJump+VF-1}. |
466 | // For Lane = 2 shuffle pattern is: |
467 | // {DiffToJump,...,VF/2-1,VF,...,DiffToJump+VF-1}. |
468 | // Imm variable sets the offset amount. The result of the |
469 | // function is stored inside ShuffleMask vector and it built as described in |
470 | // the begin of the description. AlignDirection is a boolean that indicates the |
471 | // direction of the alignment. (false - align to the "right" side while true - |
472 | // align to the "left" side) |
473 | static void DecodePALIGNRMask(MVT VT, unsigned Imm, |
474 | SmallVectorImpl<int> &ShuffleMask, |
475 | bool AlignDirection = true, bool Unary = false) { |
476 | unsigned NumElts = VT.getVectorNumElements(); |
477 | unsigned NumLanes = std::max(a: (int)VT.getSizeInBits() / 128, b: 1); |
478 | unsigned NumLaneElts = NumElts / NumLanes; |
479 | |
480 | Imm = AlignDirection ? Imm : (NumLaneElts - Imm); |
481 | unsigned Offset = Imm * (VT.getScalarSizeInBits() / 8); |
482 | |
483 | for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
484 | for (unsigned i = 0; i != NumLaneElts; ++i) { |
485 | unsigned Base = i + Offset; |
486 | // if i+offset is out of this lane then we actually need the other source |
487 | // If Unary the other source is the first source. |
488 | if (Base >= NumLaneElts) |
489 | Base = Unary ? Base % NumLaneElts : Base + NumElts - NumLaneElts; |
490 | ShuffleMask.push_back(Elt: Base + l); |
491 | } |
492 | } |
493 | } |
494 | |
495 | // concatSubVector - The function rebuilds the data to a correct expected |
496 | // order. An assumption(The shape of the matrix) was taken for the |
497 | // deinterleaved to work with lane's instructions like 'vpalign' or 'vphuf'. |
498 | // This function ensures that the data is built in correct way for the lane |
499 | // instructions. Each lane inside the vector is a 128-bit length. |
500 | // |
501 | // The 'InVec' argument contains the data in increasing order. In InVec[0] You |
502 | // can find the first 128 bit data. The number of different lanes inside a |
503 | // vector depends on the 'VecElems'.In general, the formula is |
504 | // VecElems * type / 128. The size of the array 'InVec' depends and equal to |
505 | // 'VecElems'. |
506 | |
507 | // For VecElems = 16 |
508 | // Invec[0] - |0| Vec[0] - |0| |
509 | // Invec[1] - |1| => Vec[1] - |1| |
510 | // Invec[2] - |2| Vec[2] - |2| |
511 | |
512 | // For VecElems = 32 |
513 | // Invec[0] - |0|1| Vec[0] - |0|3| |
514 | // Invec[1] - |2|3| => Vec[1] - |1|4| |
515 | // Invec[2] - |4|5| Vec[2] - |2|5| |
516 | |
517 | // For VecElems = 64 |
518 | // Invec[0] - |0|1|2 |3 | Vec[0] - |0|3|6|9 | |
519 | // Invec[1] - |4|5|6 |7 | => Vec[1] - |1|4|7|10| |
520 | // Invec[2] - |8|9|10|11| Vec[2] - |2|5|8|11| |
521 | |
522 | static void concatSubVector(Value **Vec, ArrayRef<Instruction *> InVec, |
523 | unsigned VecElems, IRBuilder<> &Builder) { |
524 | if (VecElems == 16) { |
525 | for (int i = 0; i < 3; i++) |
526 | Vec[i] = InVec[i]; |
527 | return; |
528 | } |
529 | |
530 | for (unsigned j = 0; j < VecElems / 32; j++) |
531 | for (int i = 0; i < 3; i++) |
532 | Vec[i + j * 3] = Builder.CreateShuffleVector( |
533 | V1: InVec[j * 6 + i], V2: InVec[j * 6 + i + 3], Mask: ArrayRef(Concat, 32)); |
534 | |
535 | if (VecElems == 32) |
536 | return; |
537 | |
538 | for (int i = 0; i < 3; i++) |
539 | Vec[i] = Builder.CreateShuffleVector(V1: Vec[i], V2: Vec[i + 3], Mask: Concat); |
540 | } |
541 | |
542 | void X86InterleavedAccessGroup::deinterleave8bitStride3( |
543 | ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix, |
544 | unsigned VecElems) { |
545 | // Example: Assuming we start from the following vectors: |
546 | // Matrix[0]= a0 b0 c0 a1 b1 c1 a2 b2 |
547 | // Matrix[1]= c2 a3 b3 c3 a4 b4 c4 a5 |
548 | // Matrix[2]= b5 c5 a6 b6 c6 a7 b7 c7 |
549 | |
550 | TransposedMatrix.resize(N: 3); |
551 | SmallVector<int, 32> VPShuf; |
552 | SmallVector<int, 32> VPAlign[2]; |
553 | SmallVector<int, 32> VPAlign2; |
554 | SmallVector<int, 32> VPAlign3; |
555 | SmallVector<int, 3> GroupSize; |
556 | Value *Vec[6], *TempVector[3]; |
557 | |
558 | MVT VT = MVT::getVT(Ty: Shuffles[0]->getType()); |
559 | |
560 | createShuffleStride(VT, Stride: 3, Mask&: VPShuf); |
561 | setGroupSize(VT, SizeInfo&: GroupSize); |
562 | |
563 | for (int i = 0; i < 2; i++) |
564 | DecodePALIGNRMask(VT, Imm: GroupSize[2 - i], ShuffleMask&: VPAlign[i], AlignDirection: false); |
565 | |
566 | DecodePALIGNRMask(VT, Imm: GroupSize[2] + GroupSize[1], ShuffleMask&: VPAlign2, AlignDirection: true, Unary: true); |
567 | DecodePALIGNRMask(VT, Imm: GroupSize[1], ShuffleMask&: VPAlign3, AlignDirection: true, Unary: true); |
568 | |
569 | concatSubVector(Vec, InVec, VecElems, Builder); |
570 | // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1 |
571 | // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4 |
572 | // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7 |
573 | |
574 | for (int i = 0; i < 3; i++) |
575 | Vec[i] = Builder.CreateShuffleVector(V: Vec[i], Mask: VPShuf); |
576 | |
577 | // TempVector[0]= a6 a7 a0 a1 a2 b0 b1 b2 |
578 | // TempVector[1]= c0 c1 c2 c3 c4 a3 a4 a5 |
579 | // TempVector[2]= b3 b4 b5 b6 b7 c5 c6 c7 |
580 | |
581 | for (int i = 0; i < 3; i++) |
582 | TempVector[i] = |
583 | Builder.CreateShuffleVector(V1: Vec[(i + 2) % 3], V2: Vec[i], Mask: VPAlign[0]); |
584 | |
585 | // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2 |
586 | // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4 |
587 | // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7 |
588 | |
589 | for (int i = 0; i < 3; i++) |
590 | Vec[i] = Builder.CreateShuffleVector(V1: TempVector[(i + 1) % 3], V2: TempVector[i], |
591 | Mask: VPAlign[1]); |
592 | |
593 | // TransposedMatrix[0]= a0 a1 a2 a3 a4 a5 a6 a7 |
594 | // TransposedMatrix[1]= b0 b1 b2 b3 b4 b5 b6 b7 |
595 | // TransposedMatrix[2]= c0 c1 c2 c3 c4 c5 c6 c7 |
596 | |
597 | Value *TempVec = Builder.CreateShuffleVector(V: Vec[1], Mask: VPAlign3); |
598 | TransposedMatrix[0] = Builder.CreateShuffleVector(V: Vec[0], Mask: VPAlign2); |
599 | TransposedMatrix[1] = VecElems == 8 ? Vec[2] : TempVec; |
600 | TransposedMatrix[2] = VecElems == 8 ? TempVec : Vec[2]; |
601 | } |
602 | |
603 | // group2Shuffle reorder the shuffle stride back into continuous order. |
604 | // For example For VF16 with Mask1 = {0,3,6,9,12,15,2,5,8,11,14,1,4,7,10,13} => |
605 | // MaskResult = {0,11,6,1,12,7,2,13,8,3,14,9,4,15,10,5}. |
606 | static void group2Shuffle(MVT VT, SmallVectorImpl<int> &Mask, |
607 | SmallVectorImpl<int> &Output) { |
608 | int IndexGroup[3] = {0, 0, 0}; |
609 | int Index = 0; |
610 | int VectorWidth = VT.getSizeInBits(); |
611 | int VF = VT.getVectorNumElements(); |
612 | // Find the index of the different groups. |
613 | int Lane = (VectorWidth / 128 > 0) ? VectorWidth / 128 : 1; |
614 | for (int i = 0; i < 3; i++) { |
615 | IndexGroup[(Index * 3) % (VF / Lane)] = Index; |
616 | Index += Mask[i]; |
617 | } |
618 | // According to the index compute the convert mask. |
619 | for (int i = 0; i < VF / Lane; i++) { |
620 | Output.push_back(Elt: IndexGroup[i % 3]); |
621 | IndexGroup[i % 3]++; |
622 | } |
623 | } |
624 | |
625 | void X86InterleavedAccessGroup::interleave8bitStride3( |
626 | ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix, |
627 | unsigned VecElems) { |
628 | // Example: Assuming we start from the following vectors: |
629 | // Matrix[0]= a0 a1 a2 a3 a4 a5 a6 a7 |
630 | // Matrix[1]= b0 b1 b2 b3 b4 b5 b6 b7 |
631 | // Matrix[2]= c0 c1 c2 c3 c3 a7 b7 c7 |
632 | |
633 | TransposedMatrix.resize(N: 3); |
634 | SmallVector<int, 3> GroupSize; |
635 | SmallVector<int, 32> VPShuf; |
636 | SmallVector<int, 32> VPAlign[3]; |
637 | SmallVector<int, 32> VPAlign2; |
638 | SmallVector<int, 32> VPAlign3; |
639 | |
640 | Value *Vec[3], *TempVector[3]; |
641 | MVT VT = MVT::getVectorVT(VT: MVT::i8, NumElements: VecElems); |
642 | |
643 | setGroupSize(VT, SizeInfo&: GroupSize); |
644 | |
645 | for (int i = 0; i < 3; i++) |
646 | DecodePALIGNRMask(VT, Imm: GroupSize[i], ShuffleMask&: VPAlign[i]); |
647 | |
648 | DecodePALIGNRMask(VT, Imm: GroupSize[1] + GroupSize[2], ShuffleMask&: VPAlign2, AlignDirection: false, Unary: true); |
649 | DecodePALIGNRMask(VT, Imm: GroupSize[1], ShuffleMask&: VPAlign3, AlignDirection: false, Unary: true); |
650 | |
651 | // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2 |
652 | // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4 |
653 | // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7 |
654 | |
655 | Vec[0] = Builder.CreateShuffleVector(V: InVec[0], Mask: VPAlign2); |
656 | Vec[1] = Builder.CreateShuffleVector(V: InVec[1], Mask: VPAlign3); |
657 | Vec[2] = InVec[2]; |
658 | |
659 | // Vec[0]= a6 a7 a0 a1 a2 b0 b1 b2 |
660 | // Vec[1]= c0 c1 c2 c3 c4 a3 a4 a5 |
661 | // Vec[2]= b3 b4 b5 b6 b7 c5 c6 c7 |
662 | |
663 | for (int i = 0; i < 3; i++) |
664 | TempVector[i] = |
665 | Builder.CreateShuffleVector(V1: Vec[i], V2: Vec[(i + 2) % 3], Mask: VPAlign[1]); |
666 | |
667 | // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1 |
668 | // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4 |
669 | // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7 |
670 | |
671 | for (int i = 0; i < 3; i++) |
672 | Vec[i] = Builder.CreateShuffleVector(V1: TempVector[i], V2: TempVector[(i + 1) % 3], |
673 | Mask: VPAlign[2]); |
674 | |
675 | // TransposedMatrix[0] = a0 b0 c0 a1 b1 c1 a2 b2 |
676 | // TransposedMatrix[1] = c2 a3 b3 c3 a4 b4 c4 a5 |
677 | // TransposedMatrix[2] = b5 c5 a6 b6 c6 a7 b7 c7 |
678 | |
679 | unsigned NumOfElm = VT.getVectorNumElements(); |
680 | group2Shuffle(VT, Mask&: GroupSize, Output&: VPShuf); |
681 | reorderSubVector(VT, TransposedMatrix, Vec, VPShuf, VecElems: NumOfElm, Stride: 3, Builder); |
682 | } |
683 | |
684 | void X86InterleavedAccessGroup::transpose_4x4( |
685 | ArrayRef<Instruction *> Matrix, |
686 | SmallVectorImpl<Value *> &TransposedMatrix) { |
687 | assert(Matrix.size() == 4 && "Invalid matrix size" ); |
688 | TransposedMatrix.resize(N: 4); |
689 | |
690 | // dst = src1[0,1],src2[0,1] |
691 | static constexpr int IntMask1[] = {0, 1, 4, 5}; |
692 | ArrayRef<int> Mask = ArrayRef(IntMask1, 4); |
693 | Value *IntrVec1 = Builder.CreateShuffleVector(V1: Matrix[0], V2: Matrix[2], Mask); |
694 | Value *IntrVec2 = Builder.CreateShuffleVector(V1: Matrix[1], V2: Matrix[3], Mask); |
695 | |
696 | // dst = src1[2,3],src2[2,3] |
697 | static constexpr int IntMask2[] = {2, 3, 6, 7}; |
698 | Mask = ArrayRef(IntMask2, 4); |
699 | Value *IntrVec3 = Builder.CreateShuffleVector(V1: Matrix[0], V2: Matrix[2], Mask); |
700 | Value *IntrVec4 = Builder.CreateShuffleVector(V1: Matrix[1], V2: Matrix[3], Mask); |
701 | |
702 | // dst = src1[0],src2[0],src1[2],src2[2] |
703 | static constexpr int IntMask3[] = {0, 4, 2, 6}; |
704 | Mask = ArrayRef(IntMask3, 4); |
705 | TransposedMatrix[0] = Builder.CreateShuffleVector(V1: IntrVec1, V2: IntrVec2, Mask); |
706 | TransposedMatrix[2] = Builder.CreateShuffleVector(V1: IntrVec3, V2: IntrVec4, Mask); |
707 | |
708 | // dst = src1[1],src2[1],src1[3],src2[3] |
709 | static constexpr int IntMask4[] = {1, 5, 3, 7}; |
710 | Mask = ArrayRef(IntMask4, 4); |
711 | TransposedMatrix[1] = Builder.CreateShuffleVector(V1: IntrVec1, V2: IntrVec2, Mask); |
712 | TransposedMatrix[3] = Builder.CreateShuffleVector(V1: IntrVec3, V2: IntrVec4, Mask); |
713 | } |
714 | |
715 | // Lowers this interleaved access group into X86-specific |
716 | // instructions/intrinsics. |
717 | bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() { |
718 | SmallVector<Instruction *, 4> DecomposedVectors; |
719 | SmallVector<Value *, 4> TransposedVectors; |
720 | auto *ShuffleTy = cast<FixedVectorType>(Val: Shuffles[0]->getType()); |
721 | |
722 | if (isa<LoadInst>(Val: Inst)) { |
723 | auto *ShuffleEltTy = cast<FixedVectorType>(Val: Inst->getType()); |
724 | unsigned NumSubVecElems = ShuffleEltTy->getNumElements() / Factor; |
725 | switch (NumSubVecElems) { |
726 | default: |
727 | return false; |
728 | case 4: |
729 | case 8: |
730 | case 16: |
731 | case 32: |
732 | case 64: |
733 | if (ShuffleTy->getNumElements() != NumSubVecElems) |
734 | return false; |
735 | break; |
736 | } |
737 | |
738 | // Try to generate target-sized register(/instruction). |
739 | decompose(VecInst: Inst, NumSubVectors: Factor, SubVecTy: ShuffleTy, DecomposedVectors); |
740 | |
741 | // Perform matrix-transposition in order to compute interleaved |
742 | // results by generating some sort of (optimized) target-specific |
743 | // instructions. |
744 | |
745 | if (NumSubVecElems == 4) |
746 | transpose_4x4(Matrix: DecomposedVectors, TransposedMatrix&: TransposedVectors); |
747 | else |
748 | deinterleave8bitStride3(InVec: DecomposedVectors, TransposedMatrix&: TransposedVectors, |
749 | VecElems: NumSubVecElems); |
750 | |
751 | // Now replace the unoptimized-interleaved-vectors with the |
752 | // transposed-interleaved vectors. |
753 | for (unsigned i = 0, e = Shuffles.size(); i < e; ++i) |
754 | Shuffles[i]->replaceAllUsesWith(V: TransposedVectors[Indices[i]]); |
755 | |
756 | return true; |
757 | } |
758 | |
759 | Type *ShuffleEltTy = ShuffleTy->getElementType(); |
760 | unsigned NumSubVecElems = ShuffleTy->getNumElements() / Factor; |
761 | |
762 | // Lower the interleaved stores: |
763 | // 1. Decompose the interleaved wide shuffle into individual shuffle |
764 | // vectors. |
765 | decompose(VecInst: Shuffles[0], NumSubVectors: Factor, |
766 | SubVecTy: FixedVectorType::get(ElementType: ShuffleEltTy, NumElts: NumSubVecElems), |
767 | DecomposedVectors); |
768 | |
769 | // 2. Transpose the interleaved-vectors into vectors of contiguous |
770 | // elements. |
771 | switch (NumSubVecElems) { |
772 | case 4: |
773 | transpose_4x4(Matrix: DecomposedVectors, TransposedMatrix&: TransposedVectors); |
774 | break; |
775 | case 8: |
776 | interleave8bitStride4VF8(Matrix: DecomposedVectors, TransposedMatrix&: TransposedVectors); |
777 | break; |
778 | case 16: |
779 | case 32: |
780 | case 64: |
781 | if (Factor == 4) |
782 | interleave8bitStride4(Matrix: DecomposedVectors, TransposedMatrix&: TransposedVectors, |
783 | NumOfElm: NumSubVecElems); |
784 | if (Factor == 3) |
785 | interleave8bitStride3(InVec: DecomposedVectors, TransposedMatrix&: TransposedVectors, |
786 | VecElems: NumSubVecElems); |
787 | break; |
788 | default: |
789 | return false; |
790 | } |
791 | |
792 | // 3. Concatenate the contiguous-vectors back into a wide vector. |
793 | Value *WideVec = concatenateVectors(Builder, Vecs: TransposedVectors); |
794 | |
795 | // 4. Generate a store instruction for wide-vec. |
796 | StoreInst *SI = cast<StoreInst>(Val: Inst); |
797 | Builder.CreateAlignedStore(Val: WideVec, Ptr: SI->getPointerOperand(), Align: SI->getAlign()); |
798 | |
799 | return true; |
800 | } |
801 | |
802 | // Lower interleaved load(s) into target specific instructions/ |
803 | // intrinsics. Lowering sequence varies depending on the vector-types, factor, |
804 | // number of shuffles and ISA. |
805 | // Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX. |
806 | bool X86TargetLowering::lowerInterleavedLoad( |
807 | LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles, |
808 | ArrayRef<unsigned> Indices, unsigned Factor) const { |
809 | assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && |
810 | "Invalid interleave factor" ); |
811 | assert(!Shuffles.empty() && "Empty shufflevector input" ); |
812 | assert(Shuffles.size() == Indices.size() && |
813 | "Unmatched number of shufflevectors and indices" ); |
814 | |
815 | // Create an interleaved access group. |
816 | IRBuilder<> Builder(LI); |
817 | X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget, |
818 | Builder); |
819 | |
820 | return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); |
821 | } |
822 | |
823 | bool X86TargetLowering::lowerInterleavedStore(StoreInst *SI, |
824 | ShuffleVectorInst *SVI, |
825 | unsigned Factor) const { |
826 | assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && |
827 | "Invalid interleave factor" ); |
828 | |
829 | assert(cast<FixedVectorType>(SVI->getType())->getNumElements() % Factor == |
830 | 0 && |
831 | "Invalid interleaved store" ); |
832 | |
833 | // Holds the indices of SVI that correspond to the starting index of each |
834 | // interleaved shuffle. |
835 | SmallVector<unsigned, 4> Indices; |
836 | auto Mask = SVI->getShuffleMask(); |
837 | for (unsigned i = 0; i < Factor; i++) |
838 | Indices.push_back(Elt: Mask[i]); |
839 | |
840 | ArrayRef<ShuffleVectorInst *> Shuffles = ArrayRef(SVI); |
841 | |
842 | // Create an interleaved access group. |
843 | IRBuilder<> Builder(SI); |
844 | X86InterleavedAccessGroup Grp(SI, Shuffles, Indices, Factor, Subtarget, |
845 | Builder); |
846 | |
847 | return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); |
848 | } |
849 | |