| 1 | //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file This file implements the utility functions used by the GlobalISel |
| 9 | /// pipeline. |
| 10 | //===----------------------------------------------------------------------===// |
| 11 | |
| 12 | #include "llvm/CodeGen/GlobalISel/Utils.h" |
| 13 | #include "llvm/ADT/APFloat.h" |
| 14 | #include "llvm/ADT/APInt.h" |
| 15 | #include "llvm/Analysis/ValueTracking.h" |
| 16 | #include "llvm/CodeGen/CodeGenCommonISel.h" |
| 17 | #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" |
| 18 | #include "llvm/CodeGen/GlobalISel/GISelValueTracking.h" |
| 19 | #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" |
| 20 | #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" |
| 21 | #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" |
| 22 | #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" |
| 23 | #include "llvm/CodeGen/MachineInstr.h" |
| 24 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 25 | #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" |
| 26 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 27 | #include "llvm/CodeGen/MachineSizeOpts.h" |
| 28 | #include "llvm/CodeGen/RegisterBankInfo.h" |
| 29 | #include "llvm/CodeGen/StackProtector.h" |
| 30 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 31 | #include "llvm/CodeGen/TargetLowering.h" |
| 32 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 33 | #include "llvm/CodeGen/TargetPassConfig.h" |
| 34 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 35 | #include "llvm/IR/Constants.h" |
| 36 | #include "llvm/Target/TargetMachine.h" |
| 37 | #include "llvm/Transforms/Utils/SizeOpts.h" |
| 38 | #include <numeric> |
| 39 | #include <optional> |
| 40 | |
| 41 | #define DEBUG_TYPE "globalisel-utils" |
| 42 | |
| 43 | using namespace llvm; |
| 44 | using namespace MIPatternMatch; |
| 45 | |
| 46 | Register llvm::constrainRegToClass(MachineRegisterInfo &MRI, |
| 47 | const TargetInstrInfo &TII, |
| 48 | const RegisterBankInfo &RBI, Register Reg, |
| 49 | const TargetRegisterClass &RegClass) { |
| 50 | if (!RBI.constrainGenericRegister(Reg, RC: RegClass, MRI)) |
| 51 | return MRI.createVirtualRegister(RegClass: &RegClass); |
| 52 | |
| 53 | return Reg; |
| 54 | } |
| 55 | |
| 56 | Register llvm::constrainOperandRegClass( |
| 57 | const MachineFunction &MF, const TargetRegisterInfo &TRI, |
| 58 | MachineRegisterInfo &MRI, const TargetInstrInfo &TII, |
| 59 | const RegisterBankInfo &RBI, MachineInstr &InsertPt, |
| 60 | const TargetRegisterClass &RegClass, MachineOperand &RegMO) { |
| 61 | Register Reg = RegMO.getReg(); |
| 62 | // Assume physical registers are properly constrained. |
| 63 | assert(Reg.isVirtual() && "PhysReg not implemented" ); |
| 64 | |
| 65 | // Save the old register class to check whether |
| 66 | // the change notifications will be required. |
| 67 | // TODO: A better approach would be to pass |
| 68 | // the observers to constrainRegToClass(). |
| 69 | auto *OldRegClass = MRI.getRegClassOrNull(Reg); |
| 70 | Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass); |
| 71 | // If we created a new virtual register because the class is not compatible |
| 72 | // then create a copy between the new and the old register. |
| 73 | if (ConstrainedReg != Reg) { |
| 74 | MachineBasicBlock::iterator InsertIt(&InsertPt); |
| 75 | MachineBasicBlock &MBB = *InsertPt.getParent(); |
| 76 | // FIXME: The copy needs to have the classes constrained for its operands. |
| 77 | // Use operand's regbank to get the class for old register (Reg). |
| 78 | if (RegMO.isUse()) { |
| 79 | BuildMI(BB&: MBB, I: InsertIt, MIMD: InsertPt.getDebugLoc(), |
| 80 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ConstrainedReg) |
| 81 | .addReg(RegNo: Reg); |
| 82 | } else { |
| 83 | assert(RegMO.isDef() && "Must be a definition" ); |
| 84 | BuildMI(BB&: MBB, I: std::next(x: InsertIt), MIMD: InsertPt.getDebugLoc(), |
| 85 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: Reg) |
| 86 | .addReg(RegNo: ConstrainedReg); |
| 87 | } |
| 88 | if (GISelChangeObserver *Observer = MF.getObserver()) { |
| 89 | Observer->changingInstr(MI&: *RegMO.getParent()); |
| 90 | } |
| 91 | RegMO.setReg(ConstrainedReg); |
| 92 | if (GISelChangeObserver *Observer = MF.getObserver()) { |
| 93 | Observer->changedInstr(MI&: *RegMO.getParent()); |
| 94 | } |
| 95 | } else if (OldRegClass != MRI.getRegClassOrNull(Reg)) { |
| 96 | if (GISelChangeObserver *Observer = MF.getObserver()) { |
| 97 | if (!RegMO.isDef()) { |
| 98 | MachineInstr *RegDef = MRI.getVRegDef(Reg); |
| 99 | Observer->changedInstr(MI&: *RegDef); |
| 100 | } |
| 101 | Observer->changingAllUsesOfReg(MRI, Reg); |
| 102 | Observer->finishedChangingAllUsesOfReg(); |
| 103 | } |
| 104 | } |
| 105 | return ConstrainedReg; |
| 106 | } |
| 107 | |
| 108 | Register llvm::constrainOperandRegClass( |
| 109 | const MachineFunction &MF, const TargetRegisterInfo &TRI, |
| 110 | MachineRegisterInfo &MRI, const TargetInstrInfo &TII, |
| 111 | const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II, |
| 112 | MachineOperand &RegMO, unsigned OpIdx) { |
| 113 | Register Reg = RegMO.getReg(); |
| 114 | // Assume physical registers are properly constrained. |
| 115 | assert(Reg.isVirtual() && "PhysReg not implemented" ); |
| 116 | |
| 117 | const TargetRegisterClass *OpRC = TII.getRegClass(MCID: II, OpNum: OpIdx); |
| 118 | // Some of the target independent instructions, like COPY, may not impose any |
| 119 | // register class constraints on some of their operands: If it's a use, we can |
| 120 | // skip constraining as the instruction defining the register would constrain |
| 121 | // it. |
| 122 | |
| 123 | if (OpRC) { |
| 124 | // Obtain the RC from incoming regbank if it is a proper sub-class. Operands |
| 125 | // can have multiple regbanks for a superclass that combine different |
| 126 | // register types (E.g., AMDGPU's VGPR and AGPR). The regbank ambiguity |
| 127 | // resolved by targets during regbankselect should not be overridden. |
| 128 | if (const auto *SubRC = TRI.getCommonSubClass( |
| 129 | A: OpRC, B: TRI.getConstrainedRegClassForOperand(MO: RegMO, MRI))) |
| 130 | OpRC = SubRC; |
| 131 | |
| 132 | OpRC = TRI.getAllocatableClass(RC: OpRC); |
| 133 | } |
| 134 | |
| 135 | if (!OpRC) { |
| 136 | assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) && |
| 137 | "Register class constraint is required unless either the " |
| 138 | "instruction is target independent or the operand is a use" ); |
| 139 | // FIXME: Just bailing out like this here could be not enough, unless we |
| 140 | // expect the users of this function to do the right thing for PHIs and |
| 141 | // COPY: |
| 142 | // v1 = COPY v0 |
| 143 | // v2 = COPY v1 |
| 144 | // v1 here may end up not being constrained at all. Please notice that to |
| 145 | // reproduce the issue we likely need a destination pattern of a selection |
| 146 | // rule producing such extra copies, not just an input GMIR with them as |
| 147 | // every existing target using selectImpl handles copies before calling it |
| 148 | // and they never reach this function. |
| 149 | return Reg; |
| 150 | } |
| 151 | return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, RegClass: *OpRC, |
| 152 | RegMO); |
| 153 | } |
| 154 | |
| 155 | bool llvm::constrainSelectedInstRegOperands(MachineInstr &I, |
| 156 | const TargetInstrInfo &TII, |
| 157 | const TargetRegisterInfo &TRI, |
| 158 | const RegisterBankInfo &RBI) { |
| 159 | assert(!isPreISelGenericOpcode(I.getOpcode()) && |
| 160 | "A selected instruction is expected" ); |
| 161 | MachineBasicBlock &MBB = *I.getParent(); |
| 162 | MachineFunction &MF = *MBB.getParent(); |
| 163 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 164 | |
| 165 | for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) { |
| 166 | MachineOperand &MO = I.getOperand(i: OpI); |
| 167 | |
| 168 | // There's nothing to be done on non-register operands. |
| 169 | if (!MO.isReg()) |
| 170 | continue; |
| 171 | |
| 172 | LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n'); |
| 173 | assert(MO.isReg() && "Unsupported non-reg operand" ); |
| 174 | |
| 175 | Register Reg = MO.getReg(); |
| 176 | // Physical registers don't need to be constrained. |
| 177 | if (Reg.isPhysical()) |
| 178 | continue; |
| 179 | |
| 180 | // Register operands with a value of 0 (e.g. predicate operands) don't need |
| 181 | // to be constrained. |
| 182 | if (Reg == 0) |
| 183 | continue; |
| 184 | |
| 185 | // If the operand is a vreg, we should constrain its regclass, and only |
| 186 | // insert COPYs if that's impossible. |
| 187 | // constrainOperandRegClass does that for us. |
| 188 | constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt&: I, II: I.getDesc(), RegMO&: MO, OpIdx: OpI); |
| 189 | |
| 190 | // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been |
| 191 | // done. |
| 192 | if (MO.isUse()) { |
| 193 | int DefIdx = I.getDesc().getOperandConstraint(OpNum: OpI, Constraint: MCOI::TIED_TO); |
| 194 | if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefOpIdx: DefIdx)) |
| 195 | I.tieOperands(DefIdx, UseIdx: OpI); |
| 196 | } |
| 197 | } |
| 198 | return true; |
| 199 | } |
| 200 | |
| 201 | bool llvm::canReplaceReg(Register DstReg, Register SrcReg, |
| 202 | MachineRegisterInfo &MRI) { |
| 203 | // Give up if either DstReg or SrcReg is a physical register. |
| 204 | if (DstReg.isPhysical() || SrcReg.isPhysical()) |
| 205 | return false; |
| 206 | // Give up if the types don't match. |
| 207 | if (MRI.getType(Reg: DstReg) != MRI.getType(Reg: SrcReg)) |
| 208 | return false; |
| 209 | // Replace if either DstReg has no constraints or the register |
| 210 | // constraints match. |
| 211 | const auto &DstRBC = MRI.getRegClassOrRegBank(Reg: DstReg); |
| 212 | if (!DstRBC || DstRBC == MRI.getRegClassOrRegBank(Reg: SrcReg)) |
| 213 | return true; |
| 214 | |
| 215 | // Otherwise match if the Src is already a regclass that is covered by the Dst |
| 216 | // RegBank. |
| 217 | return isa<const RegisterBank *>(Val: DstRBC) && MRI.getRegClassOrNull(Reg: SrcReg) && |
| 218 | cast<const RegisterBank *>(Val: DstRBC)->covers( |
| 219 | RC: *MRI.getRegClassOrNull(Reg: SrcReg)); |
| 220 | } |
| 221 | |
| 222 | bool llvm::isTriviallyDead(const MachineInstr &MI, |
| 223 | const MachineRegisterInfo &MRI) { |
| 224 | // Instructions without side-effects are dead iff they only define dead regs. |
| 225 | // This function is hot and this loop returns early in the common case, |
| 226 | // so only perform additional checks before this if absolutely necessary. |
| 227 | for (const auto &MO : MI.all_defs()) { |
| 228 | Register Reg = MO.getReg(); |
| 229 | if (Reg.isPhysical() || !MRI.use_nodbg_empty(RegNo: Reg)) |
| 230 | return false; |
| 231 | } |
| 232 | return MI.wouldBeTriviallyDead(); |
| 233 | } |
| 234 | |
| 235 | static void (DiagnosticSeverity Severity, |
| 236 | MachineFunction &MF, |
| 237 | MachineOptimizationRemarkEmitter &MORE, |
| 238 | MachineOptimizationRemarkMissed &R) { |
| 239 | bool IsGlobalISelAbortEnabled = |
| 240 | MF.getTarget().Options.GlobalISelAbort == GlobalISelAbortMode::Enable; |
| 241 | bool IsFatal = Severity == DS_Error && IsGlobalISelAbortEnabled; |
| 242 | // Print the function name explicitly if we don't have a debug location (which |
| 243 | // makes the diagnostic less useful) or if we're going to emit a raw error. |
| 244 | if (!R.getLocation().isValid() || IsFatal) |
| 245 | R << (" (in function: " + MF.getName() + ")" ).str(); |
| 246 | |
| 247 | if (IsFatal) |
| 248 | reportFatalUsageError(reason: Twine(R.getMsg())); |
| 249 | else |
| 250 | MORE.emit(OptDiag&: R); |
| 251 | } |
| 252 | |
| 253 | void llvm::(MachineFunction &MF, |
| 254 | MachineOptimizationRemarkEmitter &MORE, |
| 255 | MachineOptimizationRemarkMissed &R) { |
| 256 | reportGISelDiagnostic(Severity: DS_Warning, MF, MORE, R); |
| 257 | } |
| 258 | |
| 259 | void llvm::(MachineFunction &MF, |
| 260 | MachineOptimizationRemarkEmitter &MORE, |
| 261 | MachineOptimizationRemarkMissed &R) { |
| 262 | MF.getProperties().setFailedISel(); |
| 263 | reportGISelDiagnostic(Severity: DS_Error, MF, MORE, R); |
| 264 | } |
| 265 | |
| 266 | void llvm::(MachineFunction &MF, |
| 267 | MachineOptimizationRemarkEmitter &MORE, |
| 268 | const char *PassName, StringRef Msg, |
| 269 | const MachineInstr &MI) { |
| 270 | MachineOptimizationRemarkMissed R(PassName, "GISelFailure: " , |
| 271 | MI.getDebugLoc(), MI.getParent()); |
| 272 | R << Msg; |
| 273 | // Printing MI is expensive; only do it if expensive remarks are enabled. |
| 274 | if (MF.getTarget().Options.GlobalISelAbort == GlobalISelAbortMode::Enable || |
| 275 | MORE.allowExtraAnalysis(PassName)) |
| 276 | R << ": " << ore::MNV("Inst" , MI); |
| 277 | reportGISelFailure(MF, MORE, R); |
| 278 | } |
| 279 | |
| 280 | unsigned llvm::getInverseGMinMaxOpcode(unsigned MinMaxOpc) { |
| 281 | switch (MinMaxOpc) { |
| 282 | case TargetOpcode::G_SMIN: |
| 283 | return TargetOpcode::G_SMAX; |
| 284 | case TargetOpcode::G_SMAX: |
| 285 | return TargetOpcode::G_SMIN; |
| 286 | case TargetOpcode::G_UMIN: |
| 287 | return TargetOpcode::G_UMAX; |
| 288 | case TargetOpcode::G_UMAX: |
| 289 | return TargetOpcode::G_UMIN; |
| 290 | default: |
| 291 | llvm_unreachable("unrecognized opcode" ); |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | std::optional<APInt> llvm::getIConstantVRegVal(Register VReg, |
| 296 | const MachineRegisterInfo &MRI) { |
| 297 | std::optional<ValueAndVReg> ValAndVReg = getIConstantVRegValWithLookThrough( |
| 298 | VReg, MRI, /*LookThroughInstrs*/ false); |
| 299 | assert((!ValAndVReg || ValAndVReg->VReg == VReg) && |
| 300 | "Value found while looking through instrs" ); |
| 301 | if (!ValAndVReg) |
| 302 | return std::nullopt; |
| 303 | return ValAndVReg->Value; |
| 304 | } |
| 305 | |
| 306 | const APInt &llvm::getIConstantFromReg(Register Reg, |
| 307 | const MachineRegisterInfo &MRI) { |
| 308 | MachineInstr *Const = MRI.getVRegDef(Reg); |
| 309 | assert((Const && Const->getOpcode() == TargetOpcode::G_CONSTANT) && |
| 310 | "expected a G_CONSTANT on Reg" ); |
| 311 | return Const->getOperand(i: 1).getCImm()->getValue(); |
| 312 | } |
| 313 | |
| 314 | std::optional<int64_t> |
| 315 | llvm::getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI) { |
| 316 | std::optional<APInt> Val = getIConstantVRegVal(VReg, MRI); |
| 317 | if (Val && Val->getBitWidth() <= 64) |
| 318 | return Val->getSExtValue(); |
| 319 | return std::nullopt; |
| 320 | } |
| 321 | |
| 322 | namespace { |
| 323 | |
| 324 | // This function is used in many places, and as such, it has some |
| 325 | // micro-optimizations to try and make it as fast as it can be. |
| 326 | // |
| 327 | // - We use template arguments to avoid an indirect call caused by passing a |
| 328 | // function_ref/std::function |
| 329 | // - GetAPCstValue does not return std::optional<APInt> as that's expensive. |
| 330 | // Instead it returns true/false and places the result in a pre-constructed |
| 331 | // APInt. |
| 332 | // |
| 333 | // Please change this function carefully and benchmark your changes. |
| 334 | template <bool (*IsConstantOpcode)(const MachineInstr *), |
| 335 | bool (*GetAPCstValue)(const MachineInstr *MI, APInt &)> |
| 336 | std::optional<ValueAndVReg> |
| 337 | getConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, |
| 338 | bool LookThroughInstrs = true, |
| 339 | bool LookThroughAnyExt = false) { |
| 340 | SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes; |
| 341 | MachineInstr *MI; |
| 342 | |
| 343 | while ((MI = MRI.getVRegDef(Reg: VReg)) && !IsConstantOpcode(MI) && |
| 344 | LookThroughInstrs) { |
| 345 | switch (MI->getOpcode()) { |
| 346 | case TargetOpcode::G_ANYEXT: |
| 347 | if (!LookThroughAnyExt) |
| 348 | return std::nullopt; |
| 349 | [[fallthrough]]; |
| 350 | case TargetOpcode::G_TRUNC: |
| 351 | case TargetOpcode::G_SEXT: |
| 352 | case TargetOpcode::G_ZEXT: |
| 353 | SeenOpcodes.push_back(Elt: std::make_pair( |
| 354 | x: MI->getOpcode(), |
| 355 | y: MRI.getType(Reg: MI->getOperand(i: 0).getReg()).getSizeInBits())); |
| 356 | VReg = MI->getOperand(i: 1).getReg(); |
| 357 | break; |
| 358 | case TargetOpcode::COPY: |
| 359 | VReg = MI->getOperand(i: 1).getReg(); |
| 360 | if (VReg.isPhysical()) |
| 361 | return std::nullopt; |
| 362 | break; |
| 363 | case TargetOpcode::G_INTTOPTR: |
| 364 | VReg = MI->getOperand(i: 1).getReg(); |
| 365 | break; |
| 366 | default: |
| 367 | return std::nullopt; |
| 368 | } |
| 369 | } |
| 370 | if (!MI || !IsConstantOpcode(MI)) |
| 371 | return std::nullopt; |
| 372 | |
| 373 | APInt Val; |
| 374 | if (!GetAPCstValue(MI, Val)) |
| 375 | return std::nullopt; |
| 376 | for (auto &Pair : reverse(C&: SeenOpcodes)) { |
| 377 | switch (Pair.first) { |
| 378 | case TargetOpcode::G_TRUNC: |
| 379 | Val = Val.trunc(width: Pair.second); |
| 380 | break; |
| 381 | case TargetOpcode::G_ANYEXT: |
| 382 | case TargetOpcode::G_SEXT: |
| 383 | Val = Val.sext(width: Pair.second); |
| 384 | break; |
| 385 | case TargetOpcode::G_ZEXT: |
| 386 | Val = Val.zext(width: Pair.second); |
| 387 | break; |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | return ValueAndVReg{.Value: std::move(Val), .VReg: VReg}; |
| 392 | } |
| 393 | |
| 394 | bool isIConstant(const MachineInstr *MI) { |
| 395 | if (!MI) |
| 396 | return false; |
| 397 | return MI->getOpcode() == TargetOpcode::G_CONSTANT; |
| 398 | } |
| 399 | |
| 400 | bool isFConstant(const MachineInstr *MI) { |
| 401 | if (!MI) |
| 402 | return false; |
| 403 | return MI->getOpcode() == TargetOpcode::G_FCONSTANT; |
| 404 | } |
| 405 | |
| 406 | bool isAnyConstant(const MachineInstr *MI) { |
| 407 | if (!MI) |
| 408 | return false; |
| 409 | unsigned Opc = MI->getOpcode(); |
| 410 | return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT; |
| 411 | } |
| 412 | |
| 413 | bool getCImmAsAPInt(const MachineInstr *MI, APInt &Result) { |
| 414 | const MachineOperand &CstVal = MI->getOperand(i: 1); |
| 415 | if (!CstVal.isCImm()) |
| 416 | return false; |
| 417 | Result = CstVal.getCImm()->getValue(); |
| 418 | return true; |
| 419 | } |
| 420 | |
| 421 | bool getCImmOrFPImmAsAPInt(const MachineInstr *MI, APInt &Result) { |
| 422 | const MachineOperand &CstVal = MI->getOperand(i: 1); |
| 423 | if (CstVal.isCImm()) |
| 424 | Result = CstVal.getCImm()->getValue(); |
| 425 | else if (CstVal.isFPImm()) |
| 426 | Result = CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); |
| 427 | else |
| 428 | return false; |
| 429 | return true; |
| 430 | } |
| 431 | |
| 432 | } // end anonymous namespace |
| 433 | |
| 434 | std::optional<ValueAndVReg> llvm::getIConstantVRegValWithLookThrough( |
| 435 | Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { |
| 436 | return getConstantVRegValWithLookThrough<isIConstant, getCImmAsAPInt>( |
| 437 | VReg, MRI, LookThroughInstrs); |
| 438 | } |
| 439 | |
| 440 | std::optional<ValueAndVReg> llvm::getAnyConstantVRegValWithLookThrough( |
| 441 | Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs, |
| 442 | bool LookThroughAnyExt) { |
| 443 | return getConstantVRegValWithLookThrough<isAnyConstant, |
| 444 | getCImmOrFPImmAsAPInt>( |
| 445 | VReg, MRI, LookThroughInstrs, LookThroughAnyExt); |
| 446 | } |
| 447 | |
| 448 | std::optional<FPValueAndVReg> llvm::getFConstantVRegValWithLookThrough( |
| 449 | Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { |
| 450 | auto Reg = |
| 451 | getConstantVRegValWithLookThrough<isFConstant, getCImmOrFPImmAsAPInt>( |
| 452 | VReg, MRI, LookThroughInstrs); |
| 453 | if (!Reg) |
| 454 | return std::nullopt; |
| 455 | |
| 456 | APFloat FloatVal(getFltSemanticForLLT(Ty: LLT::scalar(SizeInBits: Reg->Value.getBitWidth())), |
| 457 | Reg->Value); |
| 458 | return FPValueAndVReg{.Value: FloatVal, .VReg: Reg->VReg}; |
| 459 | } |
| 460 | |
| 461 | const ConstantFP * |
| 462 | llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) { |
| 463 | MachineInstr *MI = MRI.getVRegDef(Reg: VReg); |
| 464 | if (TargetOpcode::G_FCONSTANT != MI->getOpcode()) |
| 465 | return nullptr; |
| 466 | return MI->getOperand(i: 1).getFPImm(); |
| 467 | } |
| 468 | |
| 469 | std::optional<DefinitionAndSourceRegister> |
| 470 | llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) { |
| 471 | Register DefSrcReg = Reg; |
| 472 | // This assumes that the code is in SSA form, so there should only be one |
| 473 | // definition. |
| 474 | auto DefIt = MRI.def_begin(RegNo: Reg); |
| 475 | if (DefIt == MRI.def_end()) |
| 476 | return {}; |
| 477 | MachineOperand &DefOpnd = *DefIt; |
| 478 | MachineInstr *DefMI = DefOpnd.getParent(); |
| 479 | auto DstTy = MRI.getType(Reg: DefOpnd.getReg()); |
| 480 | if (!DstTy.isValid()) |
| 481 | return std::nullopt; |
| 482 | unsigned Opc = DefMI->getOpcode(); |
| 483 | while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opcode: Opc)) { |
| 484 | Register SrcReg = DefMI->getOperand(i: 1).getReg(); |
| 485 | auto SrcTy = MRI.getType(Reg: SrcReg); |
| 486 | if (!SrcTy.isValid()) |
| 487 | break; |
| 488 | DefMI = MRI.getVRegDef(Reg: SrcReg); |
| 489 | DefSrcReg = SrcReg; |
| 490 | Opc = DefMI->getOpcode(); |
| 491 | } |
| 492 | return DefinitionAndSourceRegister{.MI: DefMI, .Reg: DefSrcReg}; |
| 493 | } |
| 494 | |
| 495 | MachineInstr *llvm::getDefIgnoringCopies(Register Reg, |
| 496 | const MachineRegisterInfo &MRI) { |
| 497 | std::optional<DefinitionAndSourceRegister> DefSrcReg = |
| 498 | getDefSrcRegIgnoringCopies(Reg, MRI); |
| 499 | return DefSrcReg ? DefSrcReg->MI : nullptr; |
| 500 | } |
| 501 | |
| 502 | Register llvm::getSrcRegIgnoringCopies(Register Reg, |
| 503 | const MachineRegisterInfo &MRI) { |
| 504 | std::optional<DefinitionAndSourceRegister> DefSrcReg = |
| 505 | getDefSrcRegIgnoringCopies(Reg, MRI); |
| 506 | return DefSrcReg ? DefSrcReg->Reg : Register(); |
| 507 | } |
| 508 | |
| 509 | void llvm::(Register Reg, LLT Ty, int NumParts, |
| 510 | SmallVectorImpl<Register> &VRegs, |
| 511 | MachineIRBuilder &MIRBuilder, |
| 512 | MachineRegisterInfo &MRI) { |
| 513 | for (int i = 0; i < NumParts; ++i) |
| 514 | VRegs.push_back(Elt: MRI.createGenericVirtualRegister(Ty)); |
| 515 | MIRBuilder.buildUnmerge(Res: VRegs, Op: Reg); |
| 516 | } |
| 517 | |
| 518 | bool llvm::(Register Reg, LLT RegTy, LLT MainTy, LLT &LeftoverTy, |
| 519 | SmallVectorImpl<Register> &VRegs, |
| 520 | SmallVectorImpl<Register> &LeftoverRegs, |
| 521 | MachineIRBuilder &MIRBuilder, |
| 522 | MachineRegisterInfo &MRI) { |
| 523 | assert(!LeftoverTy.isValid() && "this is an out argument" ); |
| 524 | |
| 525 | unsigned RegSize = RegTy.getSizeInBits(); |
| 526 | unsigned MainSize = MainTy.getSizeInBits(); |
| 527 | unsigned NumParts = RegSize / MainSize; |
| 528 | unsigned LeftoverSize = RegSize - NumParts * MainSize; |
| 529 | |
| 530 | // Use an unmerge when possible. |
| 531 | if (LeftoverSize == 0) { |
| 532 | for (unsigned I = 0; I < NumParts; ++I) |
| 533 | VRegs.push_back(Elt: MRI.createGenericVirtualRegister(Ty: MainTy)); |
| 534 | MIRBuilder.buildUnmerge(Res: VRegs, Op: Reg); |
| 535 | return true; |
| 536 | } |
| 537 | |
| 538 | // Try to use unmerge for irregular vector split where possible |
| 539 | // For example when splitting a <6 x i32> into <4 x i32> with <2 x i32> |
| 540 | // leftover, it becomes: |
| 541 | // <2 x i32> %2, <2 x i32>%3, <2 x i32> %4 = G_UNMERGE_VALUE <6 x i32> %1 |
| 542 | // <4 x i32> %5 = G_CONCAT_VECTOR <2 x i32> %2, <2 x i32> %3 |
| 543 | if (RegTy.isVector() && MainTy.isVector()) { |
| 544 | unsigned RegNumElts = RegTy.getNumElements(); |
| 545 | unsigned MainNumElts = MainTy.getNumElements(); |
| 546 | unsigned LeftoverNumElts = RegNumElts % MainNumElts; |
| 547 | // If can unmerge to LeftoverTy, do it |
| 548 | if (MainNumElts % LeftoverNumElts == 0 && |
| 549 | RegNumElts % LeftoverNumElts == 0 && |
| 550 | RegTy.getScalarSizeInBits() == MainTy.getScalarSizeInBits() && |
| 551 | LeftoverNumElts > 1) { |
| 552 | LeftoverTy = LLT::fixed_vector(NumElements: LeftoverNumElts, ScalarTy: RegTy.getElementType()); |
| 553 | |
| 554 | // Unmerge the SrcReg to LeftoverTy vectors |
| 555 | SmallVector<Register, 4> UnmergeValues; |
| 556 | extractParts(Reg, Ty: LeftoverTy, NumParts: RegNumElts / LeftoverNumElts, VRegs&: UnmergeValues, |
| 557 | MIRBuilder, MRI); |
| 558 | |
| 559 | // Find how many LeftoverTy makes one MainTy |
| 560 | unsigned LeftoverPerMain = MainNumElts / LeftoverNumElts; |
| 561 | unsigned NumOfLeftoverVal = |
| 562 | ((RegNumElts % MainNumElts) / LeftoverNumElts); |
| 563 | |
| 564 | // Create as many MainTy as possible using unmerged value |
| 565 | SmallVector<Register, 4> MergeValues; |
| 566 | for (unsigned I = 0; I < UnmergeValues.size() - NumOfLeftoverVal; I++) { |
| 567 | MergeValues.push_back(Elt: UnmergeValues[I]); |
| 568 | if (MergeValues.size() == LeftoverPerMain) { |
| 569 | VRegs.push_back( |
| 570 | Elt: MIRBuilder.buildMergeLikeInstr(Res: MainTy, Ops: MergeValues).getReg(Idx: 0)); |
| 571 | MergeValues.clear(); |
| 572 | } |
| 573 | } |
| 574 | // Populate LeftoverRegs with the leftovers |
| 575 | for (unsigned I = UnmergeValues.size() - NumOfLeftoverVal; |
| 576 | I < UnmergeValues.size(); I++) { |
| 577 | LeftoverRegs.push_back(Elt: UnmergeValues[I]); |
| 578 | } |
| 579 | return true; |
| 580 | } |
| 581 | } |
| 582 | // Perform irregular split. Leftover is last element of RegPieces. |
| 583 | if (MainTy.isVector()) { |
| 584 | SmallVector<Register, 8> RegPieces; |
| 585 | extractVectorParts(Reg, NumElts: MainTy.getNumElements(), VRegs&: RegPieces, MIRBuilder, |
| 586 | MRI); |
| 587 | for (unsigned i = 0; i < RegPieces.size() - 1; ++i) |
| 588 | VRegs.push_back(Elt: RegPieces[i]); |
| 589 | LeftoverRegs.push_back(Elt: RegPieces[RegPieces.size() - 1]); |
| 590 | LeftoverTy = MRI.getType(Reg: LeftoverRegs[0]); |
| 591 | return true; |
| 592 | } |
| 593 | |
| 594 | LeftoverTy = LLT::scalar(SizeInBits: LeftoverSize); |
| 595 | // For irregular sizes, extract the individual parts. |
| 596 | for (unsigned I = 0; I != NumParts; ++I) { |
| 597 | Register NewReg = MRI.createGenericVirtualRegister(Ty: MainTy); |
| 598 | VRegs.push_back(Elt: NewReg); |
| 599 | MIRBuilder.buildExtract(Res: NewReg, Src: Reg, Index: MainSize * I); |
| 600 | } |
| 601 | |
| 602 | for (unsigned Offset = MainSize * NumParts; Offset < RegSize; |
| 603 | Offset += LeftoverSize) { |
| 604 | Register NewReg = MRI.createGenericVirtualRegister(Ty: LeftoverTy); |
| 605 | LeftoverRegs.push_back(Elt: NewReg); |
| 606 | MIRBuilder.buildExtract(Res: NewReg, Src: Reg, Index: Offset); |
| 607 | } |
| 608 | |
| 609 | return true; |
| 610 | } |
| 611 | |
| 612 | void llvm::(Register Reg, unsigned NumElts, |
| 613 | SmallVectorImpl<Register> &VRegs, |
| 614 | MachineIRBuilder &MIRBuilder, |
| 615 | MachineRegisterInfo &MRI) { |
| 616 | LLT RegTy = MRI.getType(Reg); |
| 617 | assert(RegTy.isVector() && "Expected a vector type" ); |
| 618 | |
| 619 | LLT EltTy = RegTy.getElementType(); |
| 620 | LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElements: NumElts, ScalarTy: EltTy); |
| 621 | unsigned RegNumElts = RegTy.getNumElements(); |
| 622 | unsigned LeftoverNumElts = RegNumElts % NumElts; |
| 623 | unsigned NumNarrowTyPieces = RegNumElts / NumElts; |
| 624 | |
| 625 | // Perfect split without leftover |
| 626 | if (LeftoverNumElts == 0) |
| 627 | return extractParts(Reg, Ty: NarrowTy, NumParts: NumNarrowTyPieces, VRegs, MIRBuilder, |
| 628 | MRI); |
| 629 | |
| 630 | // Irregular split. Provide direct access to all elements for artifact |
| 631 | // combiner using unmerge to elements. Then build vectors with NumElts |
| 632 | // elements. Remaining element(s) will be (used to build vector) Leftover. |
| 633 | SmallVector<Register, 8> Elts; |
| 634 | extractParts(Reg, Ty: EltTy, NumParts: RegNumElts, VRegs&: Elts, MIRBuilder, MRI); |
| 635 | |
| 636 | unsigned Offset = 0; |
| 637 | // Requested sub-vectors of NarrowTy. |
| 638 | for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) { |
| 639 | ArrayRef<Register> Pieces(&Elts[Offset], NumElts); |
| 640 | VRegs.push_back(Elt: MIRBuilder.buildMergeLikeInstr(Res: NarrowTy, Ops: Pieces).getReg(Idx: 0)); |
| 641 | } |
| 642 | |
| 643 | // Leftover element(s). |
| 644 | if (LeftoverNumElts == 1) { |
| 645 | VRegs.push_back(Elt: Elts[Offset]); |
| 646 | } else { |
| 647 | LLT LeftoverTy = LLT::fixed_vector(NumElements: LeftoverNumElts, ScalarTy: EltTy); |
| 648 | ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts); |
| 649 | VRegs.push_back( |
| 650 | Elt: MIRBuilder.buildMergeLikeInstr(Res: LeftoverTy, Ops: Pieces).getReg(Idx: 0)); |
| 651 | } |
| 652 | } |
| 653 | |
| 654 | MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg, |
| 655 | const MachineRegisterInfo &MRI) { |
| 656 | MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI); |
| 657 | return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr; |
| 658 | } |
| 659 | |
| 660 | APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) { |
| 661 | if (Size == 32) |
| 662 | return APFloat(float(Val)); |
| 663 | if (Size == 64) |
| 664 | return APFloat(Val); |
| 665 | if (Size != 16) |
| 666 | llvm_unreachable("Unsupported FPConstant size" ); |
| 667 | bool Ignored; |
| 668 | APFloat APF(Val); |
| 669 | APF.convert(ToSemantics: APFloat::IEEEhalf(), RM: APFloat::rmNearestTiesToEven, losesInfo: &Ignored); |
| 670 | return APF; |
| 671 | } |
| 672 | |
| 673 | std::optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, |
| 674 | const Register Op1, |
| 675 | const Register Op2, |
| 676 | const MachineRegisterInfo &MRI) { |
| 677 | auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(VReg: Op2, MRI, LookThroughInstrs: false); |
| 678 | if (!MaybeOp2Cst) |
| 679 | return std::nullopt; |
| 680 | |
| 681 | auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(VReg: Op1, MRI, LookThroughInstrs: false); |
| 682 | if (!MaybeOp1Cst) |
| 683 | return std::nullopt; |
| 684 | |
| 685 | const APInt &C1 = MaybeOp1Cst->Value; |
| 686 | const APInt &C2 = MaybeOp2Cst->Value; |
| 687 | switch (Opcode) { |
| 688 | default: |
| 689 | break; |
| 690 | case TargetOpcode::G_ADD: |
| 691 | return C1 + C2; |
| 692 | case TargetOpcode::G_PTR_ADD: |
| 693 | // Types can be of different width here. |
| 694 | // Result needs to be the same width as C1, so trunc or sext C2. |
| 695 | return C1 + C2.sextOrTrunc(width: C1.getBitWidth()); |
| 696 | case TargetOpcode::G_AND: |
| 697 | return C1 & C2; |
| 698 | case TargetOpcode::G_ASHR: |
| 699 | return C1.ashr(ShiftAmt: C2); |
| 700 | case TargetOpcode::G_LSHR: |
| 701 | return C1.lshr(ShiftAmt: C2); |
| 702 | case TargetOpcode::G_MUL: |
| 703 | return C1 * C2; |
| 704 | case TargetOpcode::G_OR: |
| 705 | return C1 | C2; |
| 706 | case TargetOpcode::G_SHL: |
| 707 | return C1 << C2; |
| 708 | case TargetOpcode::G_SUB: |
| 709 | return C1 - C2; |
| 710 | case TargetOpcode::G_XOR: |
| 711 | return C1 ^ C2; |
| 712 | case TargetOpcode::G_UDIV: |
| 713 | if (!C2.getBoolValue()) |
| 714 | break; |
| 715 | return C1.udiv(RHS: C2); |
| 716 | case TargetOpcode::G_SDIV: |
| 717 | if (!C2.getBoolValue()) |
| 718 | break; |
| 719 | return C1.sdiv(RHS: C2); |
| 720 | case TargetOpcode::G_UREM: |
| 721 | if (!C2.getBoolValue()) |
| 722 | break; |
| 723 | return C1.urem(RHS: C2); |
| 724 | case TargetOpcode::G_SREM: |
| 725 | if (!C2.getBoolValue()) |
| 726 | break; |
| 727 | return C1.srem(RHS: C2); |
| 728 | case TargetOpcode::G_SMIN: |
| 729 | return APIntOps::smin(A: C1, B: C2); |
| 730 | case TargetOpcode::G_SMAX: |
| 731 | return APIntOps::smax(A: C1, B: C2); |
| 732 | case TargetOpcode::G_UMIN: |
| 733 | return APIntOps::umin(A: C1, B: C2); |
| 734 | case TargetOpcode::G_UMAX: |
| 735 | return APIntOps::umax(A: C1, B: C2); |
| 736 | } |
| 737 | |
| 738 | return std::nullopt; |
| 739 | } |
| 740 | |
| 741 | std::optional<APFloat> |
| 742 | llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1, |
| 743 | const Register Op2, const MachineRegisterInfo &MRI) { |
| 744 | const ConstantFP *Op2Cst = getConstantFPVRegVal(VReg: Op2, MRI); |
| 745 | if (!Op2Cst) |
| 746 | return std::nullopt; |
| 747 | |
| 748 | const ConstantFP *Op1Cst = getConstantFPVRegVal(VReg: Op1, MRI); |
| 749 | if (!Op1Cst) |
| 750 | return std::nullopt; |
| 751 | |
| 752 | APFloat C1 = Op1Cst->getValueAPF(); |
| 753 | const APFloat &C2 = Op2Cst->getValueAPF(); |
| 754 | switch (Opcode) { |
| 755 | case TargetOpcode::G_FADD: |
| 756 | C1.add(RHS: C2, RM: APFloat::rmNearestTiesToEven); |
| 757 | return C1; |
| 758 | case TargetOpcode::G_FSUB: |
| 759 | C1.subtract(RHS: C2, RM: APFloat::rmNearestTiesToEven); |
| 760 | return C1; |
| 761 | case TargetOpcode::G_FMUL: |
| 762 | C1.multiply(RHS: C2, RM: APFloat::rmNearestTiesToEven); |
| 763 | return C1; |
| 764 | case TargetOpcode::G_FDIV: |
| 765 | C1.divide(RHS: C2, RM: APFloat::rmNearestTiesToEven); |
| 766 | return C1; |
| 767 | case TargetOpcode::G_FREM: |
| 768 | C1.mod(RHS: C2); |
| 769 | return C1; |
| 770 | case TargetOpcode::G_FCOPYSIGN: |
| 771 | C1.copySign(RHS: C2); |
| 772 | return C1; |
| 773 | case TargetOpcode::G_FMINNUM: |
| 774 | if (C1.isSignaling() || C2.isSignaling()) |
| 775 | return std::nullopt; |
| 776 | return minnum(A: C1, B: C2); |
| 777 | case TargetOpcode::G_FMAXNUM: |
| 778 | if (C1.isSignaling() || C2.isSignaling()) |
| 779 | return std::nullopt; |
| 780 | return maxnum(A: C1, B: C2); |
| 781 | case TargetOpcode::G_FMINIMUM: |
| 782 | return minimum(A: C1, B: C2); |
| 783 | case TargetOpcode::G_FMAXIMUM: |
| 784 | return maximum(A: C1, B: C2); |
| 785 | case TargetOpcode::G_FMINNUM_IEEE: |
| 786 | case TargetOpcode::G_FMAXNUM_IEEE: |
| 787 | // FIXME: These operations were unfortunately named. fminnum/fmaxnum do not |
| 788 | // follow the IEEE behavior for signaling nans and follow libm's fmin/fmax, |
| 789 | // and currently there isn't a nice wrapper in APFloat for the version with |
| 790 | // correct snan handling. |
| 791 | break; |
| 792 | default: |
| 793 | break; |
| 794 | } |
| 795 | |
| 796 | return std::nullopt; |
| 797 | } |
| 798 | |
| 799 | SmallVector<APInt> |
| 800 | llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1, |
| 801 | const Register Op2, |
| 802 | const MachineRegisterInfo &MRI) { |
| 803 | auto *SrcVec2 = getOpcodeDef<GBuildVector>(Reg: Op2, MRI); |
| 804 | if (!SrcVec2) |
| 805 | return SmallVector<APInt>(); |
| 806 | |
| 807 | auto *SrcVec1 = getOpcodeDef<GBuildVector>(Reg: Op1, MRI); |
| 808 | if (!SrcVec1) |
| 809 | return SmallVector<APInt>(); |
| 810 | |
| 811 | SmallVector<APInt> FoldedElements; |
| 812 | for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) { |
| 813 | auto MaybeCst = ConstantFoldBinOp(Opcode, Op1: SrcVec1->getSourceReg(I: Idx), |
| 814 | Op2: SrcVec2->getSourceReg(I: Idx), MRI); |
| 815 | if (!MaybeCst) |
| 816 | return SmallVector<APInt>(); |
| 817 | FoldedElements.push_back(Elt: *MaybeCst); |
| 818 | } |
| 819 | return FoldedElements; |
| 820 | } |
| 821 | |
| 822 | bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI, |
| 823 | bool SNaN) { |
| 824 | const MachineInstr *DefMI = MRI.getVRegDef(Reg: Val); |
| 825 | if (!DefMI) |
| 826 | return false; |
| 827 | |
| 828 | if (DefMI->getFlag(Flag: MachineInstr::FmNoNans)) |
| 829 | return true; |
| 830 | |
| 831 | // If the value is a constant, we can obviously see if it is a NaN or not. |
| 832 | if (const ConstantFP *FPVal = getConstantFPVRegVal(VReg: Val, MRI)) { |
| 833 | return !FPVal->getValueAPF().isNaN() || |
| 834 | (SNaN && !FPVal->getValueAPF().isSignaling()); |
| 835 | } |
| 836 | |
| 837 | if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { |
| 838 | for (const auto &Op : DefMI->uses()) |
| 839 | if (!isKnownNeverNaN(Val: Op.getReg(), MRI, SNaN)) |
| 840 | return false; |
| 841 | return true; |
| 842 | } |
| 843 | |
| 844 | switch (DefMI->getOpcode()) { |
| 845 | default: |
| 846 | break; |
| 847 | case TargetOpcode::G_FADD: |
| 848 | case TargetOpcode::G_FSUB: |
| 849 | case TargetOpcode::G_FMUL: |
| 850 | case TargetOpcode::G_FDIV: |
| 851 | case TargetOpcode::G_FREM: |
| 852 | case TargetOpcode::G_FSIN: |
| 853 | case TargetOpcode::G_FCOS: |
| 854 | case TargetOpcode::G_FTAN: |
| 855 | case TargetOpcode::G_FACOS: |
| 856 | case TargetOpcode::G_FASIN: |
| 857 | case TargetOpcode::G_FATAN: |
| 858 | case TargetOpcode::G_FATAN2: |
| 859 | case TargetOpcode::G_FCOSH: |
| 860 | case TargetOpcode::G_FSINH: |
| 861 | case TargetOpcode::G_FTANH: |
| 862 | case TargetOpcode::G_FMA: |
| 863 | case TargetOpcode::G_FMAD: |
| 864 | if (SNaN) |
| 865 | return true; |
| 866 | |
| 867 | // TODO: Need isKnownNeverInfinity |
| 868 | return false; |
| 869 | case TargetOpcode::G_FMINNUM_IEEE: |
| 870 | case TargetOpcode::G_FMAXNUM_IEEE: { |
| 871 | if (SNaN) |
| 872 | return true; |
| 873 | // This can return a NaN if either operand is an sNaN, or if both operands |
| 874 | // are NaN. |
| 875 | return (isKnownNeverNaN(Val: DefMI->getOperand(i: 1).getReg(), MRI) && |
| 876 | isKnownNeverSNaN(Val: DefMI->getOperand(i: 2).getReg(), MRI)) || |
| 877 | (isKnownNeverSNaN(Val: DefMI->getOperand(i: 1).getReg(), MRI) && |
| 878 | isKnownNeverNaN(Val: DefMI->getOperand(i: 2).getReg(), MRI)); |
| 879 | } |
| 880 | case TargetOpcode::G_FMINNUM: |
| 881 | case TargetOpcode::G_FMAXNUM: { |
| 882 | // Only one needs to be known not-nan, since it will be returned if the |
| 883 | // other ends up being one. |
| 884 | return isKnownNeverNaN(Val: DefMI->getOperand(i: 1).getReg(), MRI, SNaN) || |
| 885 | isKnownNeverNaN(Val: DefMI->getOperand(i: 2).getReg(), MRI, SNaN); |
| 886 | } |
| 887 | } |
| 888 | |
| 889 | if (SNaN) { |
| 890 | // FP operations quiet. For now, just handle the ones inserted during |
| 891 | // legalization. |
| 892 | switch (DefMI->getOpcode()) { |
| 893 | case TargetOpcode::G_FPEXT: |
| 894 | case TargetOpcode::G_FPTRUNC: |
| 895 | case TargetOpcode::G_FCANONICALIZE: |
| 896 | return true; |
| 897 | default: |
| 898 | return false; |
| 899 | } |
| 900 | } |
| 901 | |
| 902 | return false; |
| 903 | } |
| 904 | |
| 905 | Align llvm::inferAlignFromPtrInfo(MachineFunction &MF, |
| 906 | const MachinePointerInfo &MPO) { |
| 907 | auto PSV = dyn_cast_if_present<const PseudoSourceValue *>(Val: MPO.V); |
| 908 | if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(Val: PSV)) { |
| 909 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 910 | return commonAlignment(A: MFI.getObjectAlign(ObjectIdx: FSPV->getFrameIndex()), |
| 911 | Offset: MPO.Offset); |
| 912 | } |
| 913 | |
| 914 | if (const Value *V = dyn_cast_if_present<const Value *>(Val: MPO.V)) { |
| 915 | const Module *M = MF.getFunction().getParent(); |
| 916 | return V->getPointerAlignment(DL: M->getDataLayout()); |
| 917 | } |
| 918 | |
| 919 | return Align(1); |
| 920 | } |
| 921 | |
| 922 | Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF, |
| 923 | const TargetInstrInfo &TII, |
| 924 | MCRegister PhysReg, |
| 925 | const TargetRegisterClass &RC, |
| 926 | const DebugLoc &DL, LLT RegTy) { |
| 927 | MachineBasicBlock &EntryMBB = MF.front(); |
| 928 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 929 | Register LiveIn = MRI.getLiveInVirtReg(PReg: PhysReg); |
| 930 | if (LiveIn) { |
| 931 | MachineInstr *Def = MRI.getVRegDef(Reg: LiveIn); |
| 932 | if (Def) { |
| 933 | // FIXME: Should the verifier check this is in the entry block? |
| 934 | assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block" ); |
| 935 | return LiveIn; |
| 936 | } |
| 937 | |
| 938 | // It's possible the incoming argument register and copy was added during |
| 939 | // lowering, but later deleted due to being/becoming dead. If this happens, |
| 940 | // re-insert the copy. |
| 941 | } else { |
| 942 | // The live in register was not present, so add it. |
| 943 | LiveIn = MF.addLiveIn(PReg: PhysReg, RC: &RC); |
| 944 | if (RegTy.isValid()) |
| 945 | MRI.setType(VReg: LiveIn, Ty: RegTy); |
| 946 | } |
| 947 | |
| 948 | BuildMI(BB&: EntryMBB, I: EntryMBB.begin(), MIMD: DL, MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: LiveIn) |
| 949 | .addReg(RegNo: PhysReg); |
| 950 | if (!EntryMBB.isLiveIn(Reg: PhysReg)) |
| 951 | EntryMBB.addLiveIn(PhysReg); |
| 952 | return LiveIn; |
| 953 | } |
| 954 | |
| 955 | std::optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, |
| 956 | const Register Op1, uint64_t Imm, |
| 957 | const MachineRegisterInfo &MRI) { |
| 958 | auto MaybeOp1Cst = getIConstantVRegVal(VReg: Op1, MRI); |
| 959 | if (MaybeOp1Cst) { |
| 960 | switch (Opcode) { |
| 961 | default: |
| 962 | break; |
| 963 | case TargetOpcode::G_SEXT_INREG: { |
| 964 | LLT Ty = MRI.getType(Reg: Op1); |
| 965 | return MaybeOp1Cst->trunc(width: Imm).sext(width: Ty.getScalarSizeInBits()); |
| 966 | } |
| 967 | } |
| 968 | } |
| 969 | return std::nullopt; |
| 970 | } |
| 971 | |
| 972 | std::optional<APInt> llvm::ConstantFoldCastOp(unsigned Opcode, LLT DstTy, |
| 973 | const Register Op0, |
| 974 | const MachineRegisterInfo &MRI) { |
| 975 | std::optional<APInt> Val = getIConstantVRegVal(VReg: Op0, MRI); |
| 976 | if (!Val) |
| 977 | return Val; |
| 978 | |
| 979 | const unsigned DstSize = DstTy.getScalarSizeInBits(); |
| 980 | |
| 981 | switch (Opcode) { |
| 982 | case TargetOpcode::G_SEXT: |
| 983 | return Val->sext(width: DstSize); |
| 984 | case TargetOpcode::G_ZEXT: |
| 985 | case TargetOpcode::G_ANYEXT: |
| 986 | // TODO: DAG considers target preference when constant folding any_extend. |
| 987 | return Val->zext(width: DstSize); |
| 988 | default: |
| 989 | break; |
| 990 | } |
| 991 | |
| 992 | llvm_unreachable("unexpected cast opcode to constant fold" ); |
| 993 | } |
| 994 | |
| 995 | std::optional<APFloat> |
| 996 | llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, Register Src, |
| 997 | const MachineRegisterInfo &MRI) { |
| 998 | assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP); |
| 999 | if (auto MaybeSrcVal = getIConstantVRegVal(VReg: Src, MRI)) { |
| 1000 | APFloat DstVal(getFltSemanticForLLT(Ty: DstTy)); |
| 1001 | DstVal.convertFromAPInt(Input: *MaybeSrcVal, IsSigned: Opcode == TargetOpcode::G_SITOFP, |
| 1002 | RM: APFloat::rmNearestTiesToEven); |
| 1003 | return DstVal; |
| 1004 | } |
| 1005 | return std::nullopt; |
| 1006 | } |
| 1007 | |
| 1008 | std::optional<SmallVector<unsigned>> |
| 1009 | llvm::ConstantFoldCountZeros(Register Src, const MachineRegisterInfo &MRI, |
| 1010 | std::function<unsigned(APInt)> CB) { |
| 1011 | LLT Ty = MRI.getType(Reg: Src); |
| 1012 | SmallVector<unsigned> FoldedCTLZs; |
| 1013 | auto tryFoldScalar = [&](Register R) -> std::optional<unsigned> { |
| 1014 | auto MaybeCst = getIConstantVRegVal(VReg: R, MRI); |
| 1015 | if (!MaybeCst) |
| 1016 | return std::nullopt; |
| 1017 | return CB(*MaybeCst); |
| 1018 | }; |
| 1019 | if (Ty.isVector()) { |
| 1020 | // Try to constant fold each element. |
| 1021 | auto *BV = getOpcodeDef<GBuildVector>(Reg: Src, MRI); |
| 1022 | if (!BV) |
| 1023 | return std::nullopt; |
| 1024 | for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { |
| 1025 | if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(I: SrcIdx))) { |
| 1026 | FoldedCTLZs.emplace_back(Args&: *MaybeFold); |
| 1027 | continue; |
| 1028 | } |
| 1029 | return std::nullopt; |
| 1030 | } |
| 1031 | return FoldedCTLZs; |
| 1032 | } |
| 1033 | if (auto MaybeCst = tryFoldScalar(Src)) { |
| 1034 | FoldedCTLZs.emplace_back(Args&: *MaybeCst); |
| 1035 | return FoldedCTLZs; |
| 1036 | } |
| 1037 | return std::nullopt; |
| 1038 | } |
| 1039 | |
| 1040 | std::optional<SmallVector<APInt>> |
| 1041 | llvm::ConstantFoldICmp(unsigned Pred, const Register Op1, const Register Op2, |
| 1042 | unsigned DstScalarSizeInBits, unsigned ExtOp, |
| 1043 | const MachineRegisterInfo &MRI) { |
| 1044 | assert(ExtOp == TargetOpcode::G_SEXT || ExtOp == TargetOpcode::G_ZEXT || |
| 1045 | ExtOp == TargetOpcode::G_ANYEXT); |
| 1046 | |
| 1047 | const LLT Ty = MRI.getType(Reg: Op1); |
| 1048 | |
| 1049 | auto GetICmpResultCst = [&](bool IsTrue) { |
| 1050 | if (IsTrue) |
| 1051 | return ExtOp == TargetOpcode::G_SEXT |
| 1052 | ? APInt::getAllOnes(numBits: DstScalarSizeInBits) |
| 1053 | : APInt::getOneBitSet(numBits: DstScalarSizeInBits, BitNo: 0); |
| 1054 | return APInt::getZero(numBits: DstScalarSizeInBits); |
| 1055 | }; |
| 1056 | |
| 1057 | auto TryFoldScalar = [&](Register LHS, Register RHS) -> std::optional<APInt> { |
| 1058 | auto RHSCst = getIConstantVRegVal(VReg: RHS, MRI); |
| 1059 | if (!RHSCst) |
| 1060 | return std::nullopt; |
| 1061 | auto LHSCst = getIConstantVRegVal(VReg: LHS, MRI); |
| 1062 | if (!LHSCst) |
| 1063 | return std::nullopt; |
| 1064 | |
| 1065 | switch (Pred) { |
| 1066 | case CmpInst::Predicate::ICMP_EQ: |
| 1067 | return GetICmpResultCst(LHSCst->eq(RHS: *RHSCst)); |
| 1068 | case CmpInst::Predicate::ICMP_NE: |
| 1069 | return GetICmpResultCst(LHSCst->ne(RHS: *RHSCst)); |
| 1070 | case CmpInst::Predicate::ICMP_UGT: |
| 1071 | return GetICmpResultCst(LHSCst->ugt(RHS: *RHSCst)); |
| 1072 | case CmpInst::Predicate::ICMP_UGE: |
| 1073 | return GetICmpResultCst(LHSCst->uge(RHS: *RHSCst)); |
| 1074 | case CmpInst::Predicate::ICMP_ULT: |
| 1075 | return GetICmpResultCst(LHSCst->ult(RHS: *RHSCst)); |
| 1076 | case CmpInst::Predicate::ICMP_ULE: |
| 1077 | return GetICmpResultCst(LHSCst->ule(RHS: *RHSCst)); |
| 1078 | case CmpInst::Predicate::ICMP_SGT: |
| 1079 | return GetICmpResultCst(LHSCst->sgt(RHS: *RHSCst)); |
| 1080 | case CmpInst::Predicate::ICMP_SGE: |
| 1081 | return GetICmpResultCst(LHSCst->sge(RHS: *RHSCst)); |
| 1082 | case CmpInst::Predicate::ICMP_SLT: |
| 1083 | return GetICmpResultCst(LHSCst->slt(RHS: *RHSCst)); |
| 1084 | case CmpInst::Predicate::ICMP_SLE: |
| 1085 | return GetICmpResultCst(LHSCst->sle(RHS: *RHSCst)); |
| 1086 | default: |
| 1087 | return std::nullopt; |
| 1088 | } |
| 1089 | }; |
| 1090 | |
| 1091 | SmallVector<APInt> FoldedICmps; |
| 1092 | |
| 1093 | if (Ty.isVector()) { |
| 1094 | // Try to constant fold each element. |
| 1095 | auto *BV1 = getOpcodeDef<GBuildVector>(Reg: Op1, MRI); |
| 1096 | auto *BV2 = getOpcodeDef<GBuildVector>(Reg: Op2, MRI); |
| 1097 | if (!BV1 || !BV2) |
| 1098 | return std::nullopt; |
| 1099 | assert(BV1->getNumSources() == BV2->getNumSources() && "Invalid vectors" ); |
| 1100 | for (unsigned I = 0; I < BV1->getNumSources(); ++I) { |
| 1101 | if (auto MaybeFold = |
| 1102 | TryFoldScalar(BV1->getSourceReg(I), BV2->getSourceReg(I))) { |
| 1103 | FoldedICmps.emplace_back(Args&: *MaybeFold); |
| 1104 | continue; |
| 1105 | } |
| 1106 | return std::nullopt; |
| 1107 | } |
| 1108 | return FoldedICmps; |
| 1109 | } |
| 1110 | |
| 1111 | if (auto MaybeCst = TryFoldScalar(Op1, Op2)) { |
| 1112 | FoldedICmps.emplace_back(Args&: *MaybeCst); |
| 1113 | return FoldedICmps; |
| 1114 | } |
| 1115 | |
| 1116 | return std::nullopt; |
| 1117 | } |
| 1118 | |
| 1119 | bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI, |
| 1120 | GISelValueTracking *VT) { |
| 1121 | std::optional<DefinitionAndSourceRegister> DefSrcReg = |
| 1122 | getDefSrcRegIgnoringCopies(Reg, MRI); |
| 1123 | if (!DefSrcReg) |
| 1124 | return false; |
| 1125 | |
| 1126 | const MachineInstr &MI = *DefSrcReg->MI; |
| 1127 | const LLT Ty = MRI.getType(Reg); |
| 1128 | |
| 1129 | switch (MI.getOpcode()) { |
| 1130 | case TargetOpcode::G_CONSTANT: { |
| 1131 | unsigned BitWidth = Ty.getScalarSizeInBits(); |
| 1132 | const ConstantInt *CI = MI.getOperand(i: 1).getCImm(); |
| 1133 | return CI->getValue().zextOrTrunc(width: BitWidth).isPowerOf2(); |
| 1134 | } |
| 1135 | case TargetOpcode::G_SHL: { |
| 1136 | // A left-shift of a constant one will have exactly one bit set because |
| 1137 | // shifting the bit off the end is undefined. |
| 1138 | |
| 1139 | // TODO: Constant splat |
| 1140 | if (auto ConstLHS = getIConstantVRegVal(VReg: MI.getOperand(i: 1).getReg(), MRI)) { |
| 1141 | if (*ConstLHS == 1) |
| 1142 | return true; |
| 1143 | } |
| 1144 | |
| 1145 | break; |
| 1146 | } |
| 1147 | case TargetOpcode::G_LSHR: { |
| 1148 | if (auto ConstLHS = getIConstantVRegVal(VReg: MI.getOperand(i: 1).getReg(), MRI)) { |
| 1149 | if (ConstLHS->isSignMask()) |
| 1150 | return true; |
| 1151 | } |
| 1152 | |
| 1153 | break; |
| 1154 | } |
| 1155 | case TargetOpcode::G_BUILD_VECTOR: { |
| 1156 | // TODO: Probably should have a recursion depth guard since you could have |
| 1157 | // bitcasted vector elements. |
| 1158 | for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI.operands())) |
| 1159 | if (!isKnownToBeAPowerOfTwo(Reg: MO.getReg(), MRI, VT)) |
| 1160 | return false; |
| 1161 | |
| 1162 | return true; |
| 1163 | } |
| 1164 | case TargetOpcode::G_BUILD_VECTOR_TRUNC: { |
| 1165 | // Only handle constants since we would need to know if number of leading |
| 1166 | // zeros is greater than the truncation amount. |
| 1167 | const unsigned BitWidth = Ty.getScalarSizeInBits(); |
| 1168 | for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI.operands())) { |
| 1169 | auto Const = getIConstantVRegVal(VReg: MO.getReg(), MRI); |
| 1170 | if (!Const || !Const->zextOrTrunc(width: BitWidth).isPowerOf2()) |
| 1171 | return false; |
| 1172 | } |
| 1173 | |
| 1174 | return true; |
| 1175 | } |
| 1176 | default: |
| 1177 | break; |
| 1178 | } |
| 1179 | |
| 1180 | if (!VT) |
| 1181 | return false; |
| 1182 | |
| 1183 | // More could be done here, though the above checks are enough |
| 1184 | // to handle some common cases. |
| 1185 | |
| 1186 | // Fall back to computeKnownBits to catch other known cases. |
| 1187 | KnownBits Known = VT->getKnownBits(R: Reg); |
| 1188 | return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); |
| 1189 | } |
| 1190 | |
| 1191 | void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) { |
| 1192 | AU.addPreserved<StackProtector>(); |
| 1193 | } |
| 1194 | |
| 1195 | LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) { |
| 1196 | if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits()) |
| 1197 | return OrigTy; |
| 1198 | |
| 1199 | if (OrigTy.isVector() && TargetTy.isVector()) { |
| 1200 | LLT OrigElt = OrigTy.getElementType(); |
| 1201 | LLT TargetElt = TargetTy.getElementType(); |
| 1202 | |
| 1203 | // TODO: The docstring for this function says the intention is to use this |
| 1204 | // function to build MERGE/UNMERGE instructions. It won't be the case that |
| 1205 | // we generate a MERGE/UNMERGE between fixed and scalable vector types. We |
| 1206 | // could implement getLCMType between the two in the future if there was a |
| 1207 | // need, but it is not worth it now as this function should not be used in |
| 1208 | // that way. |
| 1209 | assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) || |
| 1210 | (OrigTy.isFixedVector() && !TargetTy.isScalableVector())) && |
| 1211 | "getLCMType not implemented between fixed and scalable vectors." ); |
| 1212 | |
| 1213 | if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { |
| 1214 | int GCDMinElts = std::gcd(m: OrigTy.getElementCount().getKnownMinValue(), |
| 1215 | n: TargetTy.getElementCount().getKnownMinValue()); |
| 1216 | // Prefer the original element type. |
| 1217 | ElementCount Mul = OrigTy.getElementCount().multiplyCoefficientBy( |
| 1218 | RHS: TargetTy.getElementCount().getKnownMinValue()); |
| 1219 | return LLT::vector(EC: Mul.divideCoefficientBy(RHS: GCDMinElts), |
| 1220 | ScalarTy: OrigTy.getElementType()); |
| 1221 | } |
| 1222 | unsigned LCM = std::lcm(m: OrigTy.getSizeInBits().getKnownMinValue(), |
| 1223 | n: TargetTy.getSizeInBits().getKnownMinValue()); |
| 1224 | return LLT::vector( |
| 1225 | EC: ElementCount::get(MinVal: LCM / OrigElt.getSizeInBits(), Scalable: OrigTy.isScalable()), |
| 1226 | ScalarTy: OrigElt); |
| 1227 | } |
| 1228 | |
| 1229 | // One type is scalar, one type is vector |
| 1230 | if (OrigTy.isVector() || TargetTy.isVector()) { |
| 1231 | LLT VecTy = OrigTy.isVector() ? OrigTy : TargetTy; |
| 1232 | LLT ScalarTy = OrigTy.isVector() ? TargetTy : OrigTy; |
| 1233 | LLT EltTy = VecTy.getElementType(); |
| 1234 | LLT OrigEltTy = OrigTy.isVector() ? OrigTy.getElementType() : OrigTy; |
| 1235 | |
| 1236 | // Prefer scalar type from OrigTy. |
| 1237 | if (EltTy.getSizeInBits() == ScalarTy.getSizeInBits()) |
| 1238 | return LLT::vector(EC: VecTy.getElementCount(), ScalarTy: OrigEltTy); |
| 1239 | |
| 1240 | // Different size scalars. Create vector with the same total size. |
| 1241 | // LCM will take fixed/scalable from VecTy. |
| 1242 | unsigned LCM = std::lcm(m: EltTy.getSizeInBits().getFixedValue() * |
| 1243 | VecTy.getElementCount().getKnownMinValue(), |
| 1244 | n: ScalarTy.getSizeInBits().getFixedValue()); |
| 1245 | // Prefer type from OrigTy |
| 1246 | return LLT::vector(EC: ElementCount::get(MinVal: LCM / OrigEltTy.getSizeInBits(), |
| 1247 | Scalable: VecTy.getElementCount().isScalable()), |
| 1248 | ScalarTy: OrigEltTy); |
| 1249 | } |
| 1250 | |
| 1251 | // At this point, both types are scalars of different size |
| 1252 | unsigned LCM = std::lcm(m: OrigTy.getSizeInBits().getFixedValue(), |
| 1253 | n: TargetTy.getSizeInBits().getFixedValue()); |
| 1254 | // Preserve pointer types. |
| 1255 | if (LCM == OrigTy.getSizeInBits()) |
| 1256 | return OrigTy; |
| 1257 | if (LCM == TargetTy.getSizeInBits()) |
| 1258 | return TargetTy; |
| 1259 | return LLT::scalar(SizeInBits: LCM); |
| 1260 | } |
| 1261 | |
| 1262 | LLT llvm::getCoverTy(LLT OrigTy, LLT TargetTy) { |
| 1263 | |
| 1264 | if ((OrigTy.isScalableVector() && TargetTy.isFixedVector()) || |
| 1265 | (OrigTy.isFixedVector() && TargetTy.isScalableVector())) |
| 1266 | llvm_unreachable( |
| 1267 | "getCoverTy not implemented between fixed and scalable vectors." ); |
| 1268 | |
| 1269 | if (!OrigTy.isVector() || !TargetTy.isVector() || OrigTy == TargetTy || |
| 1270 | (OrigTy.getScalarSizeInBits() != TargetTy.getScalarSizeInBits())) |
| 1271 | return getLCMType(OrigTy, TargetTy); |
| 1272 | |
| 1273 | unsigned OrigTyNumElts = OrigTy.getElementCount().getKnownMinValue(); |
| 1274 | unsigned TargetTyNumElts = TargetTy.getElementCount().getKnownMinValue(); |
| 1275 | if (OrigTyNumElts % TargetTyNumElts == 0) |
| 1276 | return OrigTy; |
| 1277 | |
| 1278 | unsigned NumElts = alignTo(Value: OrigTyNumElts, Align: TargetTyNumElts); |
| 1279 | return LLT::scalarOrVector(EC: ElementCount::getFixed(MinVal: NumElts), |
| 1280 | ScalarTy: OrigTy.getElementType()); |
| 1281 | } |
| 1282 | |
| 1283 | LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) { |
| 1284 | if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits()) |
| 1285 | return OrigTy; |
| 1286 | |
| 1287 | if (OrigTy.isVector() && TargetTy.isVector()) { |
| 1288 | LLT OrigElt = OrigTy.getElementType(); |
| 1289 | |
| 1290 | // TODO: The docstring for this function says the intention is to use this |
| 1291 | // function to build MERGE/UNMERGE instructions. It won't be the case that |
| 1292 | // we generate a MERGE/UNMERGE between fixed and scalable vector types. We |
| 1293 | // could implement getGCDType between the two in the future if there was a |
| 1294 | // need, but it is not worth it now as this function should not be used in |
| 1295 | // that way. |
| 1296 | assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) || |
| 1297 | (OrigTy.isFixedVector() && !TargetTy.isScalableVector())) && |
| 1298 | "getGCDType not implemented between fixed and scalable vectors." ); |
| 1299 | |
| 1300 | unsigned GCD = std::gcd(m: OrigTy.getSizeInBits().getKnownMinValue(), |
| 1301 | n: TargetTy.getSizeInBits().getKnownMinValue()); |
| 1302 | if (GCD == OrigElt.getSizeInBits()) |
| 1303 | return LLT::scalarOrVector(EC: ElementCount::get(MinVal: 1, Scalable: OrigTy.isScalable()), |
| 1304 | ScalarTy: OrigElt); |
| 1305 | |
| 1306 | // Cannot produce original element type, but both have vscale in common. |
| 1307 | if (GCD < OrigElt.getSizeInBits()) |
| 1308 | return LLT::scalarOrVector(EC: ElementCount::get(MinVal: 1, Scalable: OrigTy.isScalable()), |
| 1309 | ScalarSize: GCD); |
| 1310 | |
| 1311 | return LLT::vector( |
| 1312 | EC: ElementCount::get(MinVal: GCD / OrigElt.getSizeInBits().getFixedValue(), |
| 1313 | Scalable: OrigTy.isScalable()), |
| 1314 | ScalarTy: OrigElt); |
| 1315 | } |
| 1316 | |
| 1317 | // If one type is vector and the element size matches the scalar size, then |
| 1318 | // the gcd is the scalar type. |
| 1319 | if (OrigTy.isVector() && |
| 1320 | OrigTy.getElementType().getSizeInBits() == TargetTy.getSizeInBits()) |
| 1321 | return OrigTy.getElementType(); |
| 1322 | if (TargetTy.isVector() && |
| 1323 | TargetTy.getElementType().getSizeInBits() == OrigTy.getSizeInBits()) |
| 1324 | return OrigTy; |
| 1325 | |
| 1326 | // At this point, both types are either scalars of different type or one is a |
| 1327 | // vector and one is a scalar. If both types are scalars, the GCD type is the |
| 1328 | // GCD between the two scalar sizes. If one is vector and one is scalar, then |
| 1329 | // the GCD type is the GCD between the scalar and the vector element size. |
| 1330 | LLT OrigScalar = OrigTy.getScalarType(); |
| 1331 | LLT TargetScalar = TargetTy.getScalarType(); |
| 1332 | unsigned GCD = std::gcd(m: OrigScalar.getSizeInBits().getFixedValue(), |
| 1333 | n: TargetScalar.getSizeInBits().getFixedValue()); |
| 1334 | return LLT::scalar(SizeInBits: GCD); |
| 1335 | } |
| 1336 | |
| 1337 | std::optional<int> llvm::getSplatIndex(MachineInstr &MI) { |
| 1338 | assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && |
| 1339 | "Only G_SHUFFLE_VECTOR can have a splat index!" ); |
| 1340 | ArrayRef<int> Mask = MI.getOperand(i: 3).getShuffleMask(); |
| 1341 | auto FirstDefinedIdx = find_if(Range&: Mask, P: [](int Elt) { return Elt >= 0; }); |
| 1342 | |
| 1343 | // If all elements are undefined, this shuffle can be considered a splat. |
| 1344 | // Return 0 for better potential for callers to simplify. |
| 1345 | if (FirstDefinedIdx == Mask.end()) |
| 1346 | return 0; |
| 1347 | |
| 1348 | // Make sure all remaining elements are either undef or the same |
| 1349 | // as the first non-undef value. |
| 1350 | int SplatValue = *FirstDefinedIdx; |
| 1351 | if (any_of(Range: make_range(x: std::next(x: FirstDefinedIdx), y: Mask.end()), |
| 1352 | P: [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; })) |
| 1353 | return std::nullopt; |
| 1354 | |
| 1355 | return SplatValue; |
| 1356 | } |
| 1357 | |
| 1358 | static bool isBuildVectorOp(unsigned Opcode) { |
| 1359 | return Opcode == TargetOpcode::G_BUILD_VECTOR || |
| 1360 | Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC; |
| 1361 | } |
| 1362 | |
| 1363 | namespace { |
| 1364 | |
| 1365 | std::optional<ValueAndVReg> getAnyConstantSplat(Register VReg, |
| 1366 | const MachineRegisterInfo &MRI, |
| 1367 | bool AllowUndef) { |
| 1368 | MachineInstr *MI = getDefIgnoringCopies(Reg: VReg, MRI); |
| 1369 | if (!MI) |
| 1370 | return std::nullopt; |
| 1371 | |
| 1372 | bool isConcatVectorsOp = MI->getOpcode() == TargetOpcode::G_CONCAT_VECTORS; |
| 1373 | if (!isBuildVectorOp(Opcode: MI->getOpcode()) && !isConcatVectorsOp) |
| 1374 | return std::nullopt; |
| 1375 | |
| 1376 | std::optional<ValueAndVReg> SplatValAndReg; |
| 1377 | for (MachineOperand &Op : MI->uses()) { |
| 1378 | Register Element = Op.getReg(); |
| 1379 | // If we have a G_CONCAT_VECTOR, we recursively look into the |
| 1380 | // vectors that we're concatenating to see if they're splats. |
| 1381 | auto ElementValAndReg = |
| 1382 | isConcatVectorsOp |
| 1383 | ? getAnyConstantSplat(VReg: Element, MRI, AllowUndef) |
| 1384 | : getAnyConstantVRegValWithLookThrough(VReg: Element, MRI, LookThroughInstrs: true, LookThroughAnyExt: true); |
| 1385 | |
| 1386 | // If AllowUndef, treat undef as value that will result in a constant splat. |
| 1387 | if (!ElementValAndReg) { |
| 1388 | if (AllowUndef && isa<GImplicitDef>(Val: MRI.getVRegDef(Reg: Element))) |
| 1389 | continue; |
| 1390 | return std::nullopt; |
| 1391 | } |
| 1392 | |
| 1393 | // Record splat value |
| 1394 | if (!SplatValAndReg) |
| 1395 | SplatValAndReg = ElementValAndReg; |
| 1396 | |
| 1397 | // Different constant than the one already recorded, not a constant splat. |
| 1398 | if (SplatValAndReg->Value != ElementValAndReg->Value) |
| 1399 | return std::nullopt; |
| 1400 | } |
| 1401 | |
| 1402 | return SplatValAndReg; |
| 1403 | } |
| 1404 | |
| 1405 | } // end anonymous namespace |
| 1406 | |
| 1407 | bool llvm::isBuildVectorConstantSplat(const Register Reg, |
| 1408 | const MachineRegisterInfo &MRI, |
| 1409 | int64_t SplatValue, bool AllowUndef) { |
| 1410 | if (auto SplatValAndReg = getAnyConstantSplat(VReg: Reg, MRI, AllowUndef)) |
| 1411 | return SplatValAndReg->Value.getSExtValue() == SplatValue; |
| 1412 | |
| 1413 | return false; |
| 1414 | } |
| 1415 | |
| 1416 | bool llvm::isBuildVectorConstantSplat(const Register Reg, |
| 1417 | const MachineRegisterInfo &MRI, |
| 1418 | const APInt &SplatValue, |
| 1419 | bool AllowUndef) { |
| 1420 | if (auto SplatValAndReg = getAnyConstantSplat(VReg: Reg, MRI, AllowUndef)) { |
| 1421 | if (SplatValAndReg->Value.getBitWidth() < SplatValue.getBitWidth()) |
| 1422 | return APInt::isSameValue( |
| 1423 | I1: SplatValAndReg->Value.sext(width: SplatValue.getBitWidth()), I2: SplatValue); |
| 1424 | return APInt::isSameValue( |
| 1425 | I1: SplatValAndReg->Value, |
| 1426 | I2: SplatValue.sext(width: SplatValAndReg->Value.getBitWidth())); |
| 1427 | } |
| 1428 | |
| 1429 | return false; |
| 1430 | } |
| 1431 | |
| 1432 | bool llvm::isBuildVectorConstantSplat(const MachineInstr &MI, |
| 1433 | const MachineRegisterInfo &MRI, |
| 1434 | int64_t SplatValue, bool AllowUndef) { |
| 1435 | return isBuildVectorConstantSplat(Reg: MI.getOperand(i: 0).getReg(), MRI, SplatValue, |
| 1436 | AllowUndef); |
| 1437 | } |
| 1438 | |
| 1439 | bool llvm::isBuildVectorConstantSplat(const MachineInstr &MI, |
| 1440 | const MachineRegisterInfo &MRI, |
| 1441 | const APInt &SplatValue, |
| 1442 | bool AllowUndef) { |
| 1443 | return isBuildVectorConstantSplat(Reg: MI.getOperand(i: 0).getReg(), MRI, SplatValue, |
| 1444 | AllowUndef); |
| 1445 | } |
| 1446 | |
| 1447 | std::optional<APInt> |
| 1448 | llvm::getIConstantSplatVal(const Register Reg, const MachineRegisterInfo &MRI) { |
| 1449 | if (auto SplatValAndReg = |
| 1450 | getAnyConstantSplat(VReg: Reg, MRI, /* AllowUndef */ false)) { |
| 1451 | if (std::optional<ValueAndVReg> ValAndVReg = |
| 1452 | getIConstantVRegValWithLookThrough(VReg: SplatValAndReg->VReg, MRI)) |
| 1453 | return ValAndVReg->Value; |
| 1454 | } |
| 1455 | |
| 1456 | return std::nullopt; |
| 1457 | } |
| 1458 | |
| 1459 | std::optional<APInt> |
| 1460 | llvm::getIConstantSplatVal(const MachineInstr &MI, |
| 1461 | const MachineRegisterInfo &MRI) { |
| 1462 | return getIConstantSplatVal(Reg: MI.getOperand(i: 0).getReg(), MRI); |
| 1463 | } |
| 1464 | |
| 1465 | std::optional<int64_t> |
| 1466 | llvm::getIConstantSplatSExtVal(const Register Reg, |
| 1467 | const MachineRegisterInfo &MRI) { |
| 1468 | if (auto SplatValAndReg = |
| 1469 | getAnyConstantSplat(VReg: Reg, MRI, /* AllowUndef */ false)) |
| 1470 | return getIConstantVRegSExtVal(VReg: SplatValAndReg->VReg, MRI); |
| 1471 | return std::nullopt; |
| 1472 | } |
| 1473 | |
| 1474 | std::optional<int64_t> |
| 1475 | llvm::getIConstantSplatSExtVal(const MachineInstr &MI, |
| 1476 | const MachineRegisterInfo &MRI) { |
| 1477 | return getIConstantSplatSExtVal(Reg: MI.getOperand(i: 0).getReg(), MRI); |
| 1478 | } |
| 1479 | |
| 1480 | std::optional<FPValueAndVReg> |
| 1481 | llvm::getFConstantSplat(Register VReg, const MachineRegisterInfo &MRI, |
| 1482 | bool AllowUndef) { |
| 1483 | if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef)) |
| 1484 | return getFConstantVRegValWithLookThrough(VReg: SplatValAndReg->VReg, MRI); |
| 1485 | return std::nullopt; |
| 1486 | } |
| 1487 | |
| 1488 | bool llvm::isBuildVectorAllZeros(const MachineInstr &MI, |
| 1489 | const MachineRegisterInfo &MRI, |
| 1490 | bool AllowUndef) { |
| 1491 | return isBuildVectorConstantSplat(MI, MRI, SplatValue: 0, AllowUndef); |
| 1492 | } |
| 1493 | |
| 1494 | bool llvm::isBuildVectorAllOnes(const MachineInstr &MI, |
| 1495 | const MachineRegisterInfo &MRI, |
| 1496 | bool AllowUndef) { |
| 1497 | return isBuildVectorConstantSplat(MI, MRI, SplatValue: -1, AllowUndef); |
| 1498 | } |
| 1499 | |
| 1500 | std::optional<RegOrConstant> |
| 1501 | llvm::getVectorSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI) { |
| 1502 | unsigned Opc = MI.getOpcode(); |
| 1503 | if (!isBuildVectorOp(Opcode: Opc)) |
| 1504 | return std::nullopt; |
| 1505 | if (auto Splat = getIConstantSplatSExtVal(MI, MRI)) |
| 1506 | return RegOrConstant(*Splat); |
| 1507 | auto Reg = MI.getOperand(i: 1).getReg(); |
| 1508 | if (any_of(Range: drop_begin(RangeOrContainer: MI.operands(), N: 2), |
| 1509 | P: [&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; })) |
| 1510 | return std::nullopt; |
| 1511 | return RegOrConstant(Reg); |
| 1512 | } |
| 1513 | |
| 1514 | static bool isConstantScalar(const MachineInstr &MI, |
| 1515 | const MachineRegisterInfo &MRI, |
| 1516 | bool AllowFP = true, |
| 1517 | bool AllowOpaqueConstants = true) { |
| 1518 | switch (MI.getOpcode()) { |
| 1519 | case TargetOpcode::G_CONSTANT: |
| 1520 | case TargetOpcode::G_IMPLICIT_DEF: |
| 1521 | return true; |
| 1522 | case TargetOpcode::G_FCONSTANT: |
| 1523 | return AllowFP; |
| 1524 | case TargetOpcode::G_GLOBAL_VALUE: |
| 1525 | case TargetOpcode::G_FRAME_INDEX: |
| 1526 | case TargetOpcode::G_BLOCK_ADDR: |
| 1527 | case TargetOpcode::G_JUMP_TABLE: |
| 1528 | return AllowOpaqueConstants; |
| 1529 | default: |
| 1530 | return false; |
| 1531 | } |
| 1532 | } |
| 1533 | |
| 1534 | bool llvm::isConstantOrConstantVector(MachineInstr &MI, |
| 1535 | const MachineRegisterInfo &MRI) { |
| 1536 | Register Def = MI.getOperand(i: 0).getReg(); |
| 1537 | if (auto C = getIConstantVRegValWithLookThrough(VReg: Def, MRI)) |
| 1538 | return true; |
| 1539 | GBuildVector *BV = dyn_cast<GBuildVector>(Val: &MI); |
| 1540 | if (!BV) |
| 1541 | return false; |
| 1542 | for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { |
| 1543 | if (getIConstantVRegValWithLookThrough(VReg: BV->getSourceReg(I: SrcIdx), MRI) || |
| 1544 | getOpcodeDef<GImplicitDef>(Reg: BV->getSourceReg(I: SrcIdx), MRI)) |
| 1545 | continue; |
| 1546 | return false; |
| 1547 | } |
| 1548 | return true; |
| 1549 | } |
| 1550 | |
| 1551 | bool llvm::isConstantOrConstantVector(const MachineInstr &MI, |
| 1552 | const MachineRegisterInfo &MRI, |
| 1553 | bool AllowFP, bool AllowOpaqueConstants) { |
| 1554 | if (isConstantScalar(MI, MRI, AllowFP, AllowOpaqueConstants)) |
| 1555 | return true; |
| 1556 | |
| 1557 | if (!isBuildVectorOp(Opcode: MI.getOpcode())) |
| 1558 | return false; |
| 1559 | |
| 1560 | const unsigned NumOps = MI.getNumOperands(); |
| 1561 | for (unsigned I = 1; I != NumOps; ++I) { |
| 1562 | const MachineInstr *ElementDef = MRI.getVRegDef(Reg: MI.getOperand(i: I).getReg()); |
| 1563 | if (!isConstantScalar(MI: *ElementDef, MRI, AllowFP, AllowOpaqueConstants)) |
| 1564 | return false; |
| 1565 | } |
| 1566 | |
| 1567 | return true; |
| 1568 | } |
| 1569 | |
| 1570 | std::optional<APInt> |
| 1571 | llvm::isConstantOrConstantSplatVector(MachineInstr &MI, |
| 1572 | const MachineRegisterInfo &MRI) { |
| 1573 | Register Def = MI.getOperand(i: 0).getReg(); |
| 1574 | if (auto C = getIConstantVRegValWithLookThrough(VReg: Def, MRI)) |
| 1575 | return C->Value; |
| 1576 | auto MaybeCst = getIConstantSplatSExtVal(MI, MRI); |
| 1577 | if (!MaybeCst) |
| 1578 | return std::nullopt; |
| 1579 | const unsigned ScalarSize = MRI.getType(Reg: Def).getScalarSizeInBits(); |
| 1580 | return APInt(ScalarSize, *MaybeCst, true); |
| 1581 | } |
| 1582 | |
| 1583 | std::optional<APFloat> |
| 1584 | llvm::isConstantOrConstantSplatVectorFP(MachineInstr &MI, |
| 1585 | const MachineRegisterInfo &MRI) { |
| 1586 | Register Def = MI.getOperand(i: 0).getReg(); |
| 1587 | if (auto FpConst = getFConstantVRegValWithLookThrough(VReg: Def, MRI)) |
| 1588 | return FpConst->Value; |
| 1589 | auto MaybeCstFP = getFConstantSplat(VReg: Def, MRI, /*allowUndef=*/AllowUndef: false); |
| 1590 | if (!MaybeCstFP) |
| 1591 | return std::nullopt; |
| 1592 | return MaybeCstFP->Value; |
| 1593 | } |
| 1594 | |
| 1595 | bool llvm::isNullOrNullSplat(const MachineInstr &MI, |
| 1596 | const MachineRegisterInfo &MRI, bool AllowUndefs) { |
| 1597 | switch (MI.getOpcode()) { |
| 1598 | case TargetOpcode::G_IMPLICIT_DEF: |
| 1599 | return AllowUndefs; |
| 1600 | case TargetOpcode::G_CONSTANT: |
| 1601 | return MI.getOperand(i: 1).getCImm()->isNullValue(); |
| 1602 | case TargetOpcode::G_FCONSTANT: { |
| 1603 | const ConstantFP *FPImm = MI.getOperand(i: 1).getFPImm(); |
| 1604 | return FPImm->isZero() && !FPImm->isNegative(); |
| 1605 | } |
| 1606 | default: |
| 1607 | if (!AllowUndefs) // TODO: isBuildVectorAllZeros assumes undef is OK already |
| 1608 | return false; |
| 1609 | return isBuildVectorAllZeros(MI, MRI); |
| 1610 | } |
| 1611 | } |
| 1612 | |
| 1613 | bool llvm::isAllOnesOrAllOnesSplat(const MachineInstr &MI, |
| 1614 | const MachineRegisterInfo &MRI, |
| 1615 | bool AllowUndefs) { |
| 1616 | switch (MI.getOpcode()) { |
| 1617 | case TargetOpcode::G_IMPLICIT_DEF: |
| 1618 | return AllowUndefs; |
| 1619 | case TargetOpcode::G_CONSTANT: |
| 1620 | return MI.getOperand(i: 1).getCImm()->isAllOnesValue(); |
| 1621 | default: |
| 1622 | if (!AllowUndefs) // TODO: isBuildVectorAllOnes assumes undef is OK already |
| 1623 | return false; |
| 1624 | return isBuildVectorAllOnes(MI, MRI); |
| 1625 | } |
| 1626 | } |
| 1627 | |
| 1628 | bool llvm::matchUnaryPredicate( |
| 1629 | const MachineRegisterInfo &MRI, Register Reg, |
| 1630 | std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) { |
| 1631 | |
| 1632 | const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI); |
| 1633 | if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) |
| 1634 | return Match(nullptr); |
| 1635 | |
| 1636 | // TODO: Also handle fconstant |
| 1637 | if (Def->getOpcode() == TargetOpcode::G_CONSTANT) |
| 1638 | return Match(Def->getOperand(i: 1).getCImm()); |
| 1639 | |
| 1640 | if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR) |
| 1641 | return false; |
| 1642 | |
| 1643 | for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) { |
| 1644 | Register SrcElt = Def->getOperand(i: I).getReg(); |
| 1645 | const MachineInstr *SrcDef = getDefIgnoringCopies(Reg: SrcElt, MRI); |
| 1646 | if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) { |
| 1647 | if (!Match(nullptr)) |
| 1648 | return false; |
| 1649 | continue; |
| 1650 | } |
| 1651 | |
| 1652 | if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT || |
| 1653 | !Match(SrcDef->getOperand(i: 1).getCImm())) |
| 1654 | return false; |
| 1655 | } |
| 1656 | |
| 1657 | return true; |
| 1658 | } |
| 1659 | |
| 1660 | bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector, |
| 1661 | bool IsFP) { |
| 1662 | switch (TLI.getBooleanContents(isVec: IsVector, isFloat: IsFP)) { |
| 1663 | case TargetLowering::UndefinedBooleanContent: |
| 1664 | return Val & 0x1; |
| 1665 | case TargetLowering::ZeroOrOneBooleanContent: |
| 1666 | return Val == 1; |
| 1667 | case TargetLowering::ZeroOrNegativeOneBooleanContent: |
| 1668 | return Val == -1; |
| 1669 | } |
| 1670 | llvm_unreachable("Invalid boolean contents" ); |
| 1671 | } |
| 1672 | |
| 1673 | bool llvm::isConstFalseVal(const TargetLowering &TLI, int64_t Val, |
| 1674 | bool IsVector, bool IsFP) { |
| 1675 | switch (TLI.getBooleanContents(isVec: IsVector, isFloat: IsFP)) { |
| 1676 | case TargetLowering::UndefinedBooleanContent: |
| 1677 | return ~Val & 0x1; |
| 1678 | case TargetLowering::ZeroOrOneBooleanContent: |
| 1679 | case TargetLowering::ZeroOrNegativeOneBooleanContent: |
| 1680 | return Val == 0; |
| 1681 | } |
| 1682 | llvm_unreachable("Invalid boolean contents" ); |
| 1683 | } |
| 1684 | |
| 1685 | int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector, |
| 1686 | bool IsFP) { |
| 1687 | switch (TLI.getBooleanContents(isVec: IsVector, isFloat: IsFP)) { |
| 1688 | case TargetLowering::UndefinedBooleanContent: |
| 1689 | case TargetLowering::ZeroOrOneBooleanContent: |
| 1690 | return 1; |
| 1691 | case TargetLowering::ZeroOrNegativeOneBooleanContent: |
| 1692 | return -1; |
| 1693 | } |
| 1694 | llvm_unreachable("Invalid boolean contents" ); |
| 1695 | } |
| 1696 | |
| 1697 | void llvm::saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 1698 | LostDebugLocObserver *LocObserver, |
| 1699 | SmallInstListTy &DeadInstChain) { |
| 1700 | for (MachineOperand &Op : MI.uses()) { |
| 1701 | if (Op.isReg() && Op.getReg().isVirtual()) |
| 1702 | DeadInstChain.insert(I: MRI.getVRegDef(Reg: Op.getReg())); |
| 1703 | } |
| 1704 | LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n" ); |
| 1705 | DeadInstChain.remove(I: &MI); |
| 1706 | MI.eraseFromParent(); |
| 1707 | if (LocObserver) |
| 1708 | LocObserver->checkpoint(CheckDebugLocs: false); |
| 1709 | } |
| 1710 | |
| 1711 | void llvm::eraseInstrs(ArrayRef<MachineInstr *> DeadInstrs, |
| 1712 | MachineRegisterInfo &MRI, |
| 1713 | LostDebugLocObserver *LocObserver) { |
| 1714 | SmallInstListTy DeadInstChain; |
| 1715 | for (MachineInstr *MI : DeadInstrs) |
| 1716 | saveUsesAndErase(MI&: *MI, MRI, LocObserver, DeadInstChain); |
| 1717 | |
| 1718 | while (!DeadInstChain.empty()) { |
| 1719 | MachineInstr *Inst = DeadInstChain.pop_back_val(); |
| 1720 | if (!isTriviallyDead(MI: *Inst, MRI)) |
| 1721 | continue; |
| 1722 | saveUsesAndErase(MI&: *Inst, MRI, LocObserver, DeadInstChain); |
| 1723 | } |
| 1724 | } |
| 1725 | |
| 1726 | void llvm::eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 1727 | LostDebugLocObserver *LocObserver) { |
| 1728 | return eraseInstrs(DeadInstrs: {&MI}, MRI, LocObserver); |
| 1729 | } |
| 1730 | |
| 1731 | void llvm::salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI) { |
| 1732 | for (auto &Def : MI.defs()) { |
| 1733 | assert(Def.isReg() && "Must be a reg" ); |
| 1734 | |
| 1735 | SmallVector<MachineOperand *, 16> DbgUsers; |
| 1736 | for (auto &MOUse : MRI.use_operands(Reg: Def.getReg())) { |
| 1737 | MachineInstr *DbgValue = MOUse.getParent(); |
| 1738 | // Ignore partially formed DBG_VALUEs. |
| 1739 | if (DbgValue->isNonListDebugValue() && DbgValue->getNumOperands() == 4) { |
| 1740 | DbgUsers.push_back(Elt: &MOUse); |
| 1741 | } |
| 1742 | } |
| 1743 | |
| 1744 | if (!DbgUsers.empty()) { |
| 1745 | salvageDebugInfoForDbgValue(MRI, MI, DbgUsers); |
| 1746 | } |
| 1747 | } |
| 1748 | } |
| 1749 | |
| 1750 | bool llvm::isPreISelGenericFloatingPointOpcode(unsigned Opc) { |
| 1751 | switch (Opc) { |
| 1752 | case TargetOpcode::G_FABS: |
| 1753 | case TargetOpcode::G_FADD: |
| 1754 | case TargetOpcode::G_FCANONICALIZE: |
| 1755 | case TargetOpcode::G_FCEIL: |
| 1756 | case TargetOpcode::G_FCONSTANT: |
| 1757 | case TargetOpcode::G_FCOPYSIGN: |
| 1758 | case TargetOpcode::G_FCOS: |
| 1759 | case TargetOpcode::G_FDIV: |
| 1760 | case TargetOpcode::G_FEXP2: |
| 1761 | case TargetOpcode::G_FEXP: |
| 1762 | case TargetOpcode::G_FFLOOR: |
| 1763 | case TargetOpcode::G_FLOG10: |
| 1764 | case TargetOpcode::G_FLOG2: |
| 1765 | case TargetOpcode::G_FLOG: |
| 1766 | case TargetOpcode::G_FMA: |
| 1767 | case TargetOpcode::G_FMAD: |
| 1768 | case TargetOpcode::G_FMAXIMUM: |
| 1769 | case TargetOpcode::G_FMAXIMUMNUM: |
| 1770 | case TargetOpcode::G_FMAXNUM: |
| 1771 | case TargetOpcode::G_FMAXNUM_IEEE: |
| 1772 | case TargetOpcode::G_FMINIMUM: |
| 1773 | case TargetOpcode::G_FMINIMUMNUM: |
| 1774 | case TargetOpcode::G_FMINNUM: |
| 1775 | case TargetOpcode::G_FMINNUM_IEEE: |
| 1776 | case TargetOpcode::G_FMUL: |
| 1777 | case TargetOpcode::G_FNEARBYINT: |
| 1778 | case TargetOpcode::G_FNEG: |
| 1779 | case TargetOpcode::G_FPEXT: |
| 1780 | case TargetOpcode::G_FPOW: |
| 1781 | case TargetOpcode::G_FPTRUNC: |
| 1782 | case TargetOpcode::G_FREM: |
| 1783 | case TargetOpcode::G_FRINT: |
| 1784 | case TargetOpcode::G_FSIN: |
| 1785 | case TargetOpcode::G_FTAN: |
| 1786 | case TargetOpcode::G_FACOS: |
| 1787 | case TargetOpcode::G_FASIN: |
| 1788 | case TargetOpcode::G_FATAN: |
| 1789 | case TargetOpcode::G_FATAN2: |
| 1790 | case TargetOpcode::G_FCOSH: |
| 1791 | case TargetOpcode::G_FSINH: |
| 1792 | case TargetOpcode::G_FTANH: |
| 1793 | case TargetOpcode::G_FSQRT: |
| 1794 | case TargetOpcode::G_FSUB: |
| 1795 | case TargetOpcode::G_INTRINSIC_ROUND: |
| 1796 | case TargetOpcode::G_INTRINSIC_ROUNDEVEN: |
| 1797 | case TargetOpcode::G_INTRINSIC_TRUNC: |
| 1798 | return true; |
| 1799 | default: |
| 1800 | return false; |
| 1801 | } |
| 1802 | } |
| 1803 | |
| 1804 | /// Shifts return poison if shiftwidth is larger than the bitwidth. |
| 1805 | static bool shiftAmountKnownInRange(Register ShiftAmount, |
| 1806 | const MachineRegisterInfo &MRI) { |
| 1807 | LLT Ty = MRI.getType(Reg: ShiftAmount); |
| 1808 | |
| 1809 | if (Ty.isScalableVector()) |
| 1810 | return false; // Can't tell, just return false to be safe |
| 1811 | |
| 1812 | if (Ty.isScalar()) { |
| 1813 | std::optional<ValueAndVReg> Val = |
| 1814 | getIConstantVRegValWithLookThrough(VReg: ShiftAmount, MRI); |
| 1815 | if (!Val) |
| 1816 | return false; |
| 1817 | return Val->Value.ult(RHS: Ty.getScalarSizeInBits()); |
| 1818 | } |
| 1819 | |
| 1820 | GBuildVector *BV = getOpcodeDef<GBuildVector>(Reg: ShiftAmount, MRI); |
| 1821 | if (!BV) |
| 1822 | return false; |
| 1823 | |
| 1824 | unsigned Sources = BV->getNumSources(); |
| 1825 | for (unsigned I = 0; I < Sources; ++I) { |
| 1826 | std::optional<ValueAndVReg> Val = |
| 1827 | getIConstantVRegValWithLookThrough(VReg: BV->getSourceReg(I), MRI); |
| 1828 | if (!Val) |
| 1829 | return false; |
| 1830 | if (!Val->Value.ult(RHS: Ty.getScalarSizeInBits())) |
| 1831 | return false; |
| 1832 | } |
| 1833 | |
| 1834 | return true; |
| 1835 | } |
| 1836 | |
| 1837 | namespace { |
| 1838 | enum class UndefPoisonKind { |
| 1839 | PoisonOnly = (1 << 0), |
| 1840 | UndefOnly = (1 << 1), |
| 1841 | UndefOrPoison = PoisonOnly | UndefOnly, |
| 1842 | }; |
| 1843 | } |
| 1844 | |
| 1845 | static bool includesPoison(UndefPoisonKind Kind) { |
| 1846 | return (unsigned(Kind) & unsigned(UndefPoisonKind::PoisonOnly)) != 0; |
| 1847 | } |
| 1848 | |
| 1849 | static bool includesUndef(UndefPoisonKind Kind) { |
| 1850 | return (unsigned(Kind) & unsigned(UndefPoisonKind::UndefOnly)) != 0; |
| 1851 | } |
| 1852 | |
| 1853 | static bool canCreateUndefOrPoison(Register Reg, const MachineRegisterInfo &MRI, |
| 1854 | bool ConsiderFlagsAndMetadata, |
| 1855 | UndefPoisonKind Kind) { |
| 1856 | MachineInstr *RegDef = MRI.getVRegDef(Reg); |
| 1857 | |
| 1858 | if (ConsiderFlagsAndMetadata && includesPoison(Kind)) |
| 1859 | if (auto *GMI = dyn_cast<GenericMachineInstr>(Val: RegDef)) |
| 1860 | if (GMI->hasPoisonGeneratingFlags()) |
| 1861 | return true; |
| 1862 | |
| 1863 | // Check whether opcode is a poison/undef-generating operation. |
| 1864 | switch (RegDef->getOpcode()) { |
| 1865 | case TargetOpcode::G_BUILD_VECTOR: |
| 1866 | case TargetOpcode::G_CONSTANT_FOLD_BARRIER: |
| 1867 | return false; |
| 1868 | case TargetOpcode::G_SHL: |
| 1869 | case TargetOpcode::G_ASHR: |
| 1870 | case TargetOpcode::G_LSHR: |
| 1871 | return includesPoison(Kind) && |
| 1872 | !shiftAmountKnownInRange(ShiftAmount: RegDef->getOperand(i: 2).getReg(), MRI); |
| 1873 | case TargetOpcode::G_FPTOSI: |
| 1874 | case TargetOpcode::G_FPTOUI: |
| 1875 | // fptosi/ui yields poison if the resulting value does not fit in the |
| 1876 | // destination type. |
| 1877 | return true; |
| 1878 | case TargetOpcode::G_CTLZ: |
| 1879 | case TargetOpcode::G_CTTZ: |
| 1880 | case TargetOpcode::G_CTLS: |
| 1881 | case TargetOpcode::G_ABS: |
| 1882 | case TargetOpcode::G_CTPOP: |
| 1883 | case TargetOpcode::G_BSWAP: |
| 1884 | case TargetOpcode::G_BITREVERSE: |
| 1885 | case TargetOpcode::G_FSHL: |
| 1886 | case TargetOpcode::G_FSHR: |
| 1887 | case TargetOpcode::G_SMAX: |
| 1888 | case TargetOpcode::G_SMIN: |
| 1889 | case TargetOpcode::G_SCMP: |
| 1890 | case TargetOpcode::G_UMAX: |
| 1891 | case TargetOpcode::G_UMIN: |
| 1892 | case TargetOpcode::G_UCMP: |
| 1893 | case TargetOpcode::G_PTRMASK: |
| 1894 | case TargetOpcode::G_SADDO: |
| 1895 | case TargetOpcode::G_SSUBO: |
| 1896 | case TargetOpcode::G_UADDO: |
| 1897 | case TargetOpcode::G_USUBO: |
| 1898 | case TargetOpcode::G_SMULO: |
| 1899 | case TargetOpcode::G_UMULO: |
| 1900 | case TargetOpcode::G_SADDSAT: |
| 1901 | case TargetOpcode::G_UADDSAT: |
| 1902 | case TargetOpcode::G_SSUBSAT: |
| 1903 | case TargetOpcode::G_USUBSAT: |
| 1904 | case TargetOpcode::G_SBFX: |
| 1905 | case TargetOpcode::G_UBFX: |
| 1906 | return false; |
| 1907 | case TargetOpcode::G_SSHLSAT: |
| 1908 | case TargetOpcode::G_USHLSAT: |
| 1909 | return includesPoison(Kind) && |
| 1910 | !shiftAmountKnownInRange(ShiftAmount: RegDef->getOperand(i: 2).getReg(), MRI); |
| 1911 | case TargetOpcode::G_INSERT_VECTOR_ELT: { |
| 1912 | GInsertVectorElement *Insert = cast<GInsertVectorElement>(Val: RegDef); |
| 1913 | if (includesPoison(Kind)) { |
| 1914 | std::optional<ValueAndVReg> Index = |
| 1915 | getIConstantVRegValWithLookThrough(VReg: Insert->getIndexReg(), MRI); |
| 1916 | if (!Index) |
| 1917 | return true; |
| 1918 | LLT VecTy = MRI.getType(Reg: Insert->getVectorReg()); |
| 1919 | return Index->Value.uge(RHS: VecTy.getElementCount().getKnownMinValue()); |
| 1920 | } |
| 1921 | return false; |
| 1922 | } |
| 1923 | case TargetOpcode::G_EXTRACT_VECTOR_ELT: { |
| 1924 | GExtractVectorElement * = cast<GExtractVectorElement>(Val: RegDef); |
| 1925 | if (includesPoison(Kind)) { |
| 1926 | std::optional<ValueAndVReg> Index = |
| 1927 | getIConstantVRegValWithLookThrough(VReg: Extract->getIndexReg(), MRI); |
| 1928 | if (!Index) |
| 1929 | return true; |
| 1930 | LLT VecTy = MRI.getType(Reg: Extract->getVectorReg()); |
| 1931 | return Index->Value.uge(RHS: VecTy.getElementCount().getKnownMinValue()); |
| 1932 | } |
| 1933 | return false; |
| 1934 | } |
| 1935 | case TargetOpcode::G_SHUFFLE_VECTOR: { |
| 1936 | GShuffleVector *Shuffle = cast<GShuffleVector>(Val: RegDef); |
| 1937 | ArrayRef<int> Mask = Shuffle->getMask(); |
| 1938 | return includesPoison(Kind) && is_contained(Range&: Mask, Element: -1); |
| 1939 | } |
| 1940 | case TargetOpcode::G_FNEG: |
| 1941 | case TargetOpcode::G_PHI: |
| 1942 | case TargetOpcode::G_SELECT: |
| 1943 | case TargetOpcode::G_UREM: |
| 1944 | case TargetOpcode::G_SREM: |
| 1945 | case TargetOpcode::G_FREEZE: |
| 1946 | case TargetOpcode::G_ICMP: |
| 1947 | case TargetOpcode::G_FCMP: |
| 1948 | case TargetOpcode::G_FADD: |
| 1949 | case TargetOpcode::G_FSUB: |
| 1950 | case TargetOpcode::G_FMUL: |
| 1951 | case TargetOpcode::G_FDIV: |
| 1952 | case TargetOpcode::G_FREM: |
| 1953 | case TargetOpcode::G_PTR_ADD: |
| 1954 | return false; |
| 1955 | default: |
| 1956 | return !isa<GCastOp>(Val: RegDef) && !isa<GBinOp>(Val: RegDef); |
| 1957 | } |
| 1958 | } |
| 1959 | |
| 1960 | static bool isGuaranteedNotToBeUndefOrPoison(Register Reg, |
| 1961 | const MachineRegisterInfo &MRI, |
| 1962 | unsigned Depth, |
| 1963 | UndefPoisonKind Kind) { |
| 1964 | if (Depth >= MaxAnalysisRecursionDepth) |
| 1965 | return false; |
| 1966 | |
| 1967 | MachineInstr *RegDef = MRI.getVRegDef(Reg); |
| 1968 | |
| 1969 | switch (RegDef->getOpcode()) { |
| 1970 | case TargetOpcode::G_FREEZE: |
| 1971 | return true; |
| 1972 | case TargetOpcode::G_IMPLICIT_DEF: |
| 1973 | return !includesUndef(Kind); |
| 1974 | case TargetOpcode::G_CONSTANT: |
| 1975 | case TargetOpcode::G_FCONSTANT: |
| 1976 | return true; |
| 1977 | case TargetOpcode::G_BUILD_VECTOR: { |
| 1978 | GBuildVector *BV = cast<GBuildVector>(Val: RegDef); |
| 1979 | unsigned NumSources = BV->getNumSources(); |
| 1980 | for (unsigned I = 0; I < NumSources; ++I) |
| 1981 | if (!::isGuaranteedNotToBeUndefOrPoison(Reg: BV->getSourceReg(I), MRI, |
| 1982 | Depth: Depth + 1, Kind)) |
| 1983 | return false; |
| 1984 | return true; |
| 1985 | } |
| 1986 | case TargetOpcode::G_PHI: { |
| 1987 | GPhi *Phi = cast<GPhi>(Val: RegDef); |
| 1988 | unsigned NumIncoming = Phi->getNumIncomingValues(); |
| 1989 | for (unsigned I = 0; I < NumIncoming; ++I) |
| 1990 | if (!::isGuaranteedNotToBeUndefOrPoison(Reg: Phi->getIncomingValue(I), MRI, |
| 1991 | Depth: Depth + 1, Kind)) |
| 1992 | return false; |
| 1993 | return true; |
| 1994 | } |
| 1995 | default: { |
| 1996 | auto MOCheck = [&](const MachineOperand &MO) { |
| 1997 | if (!MO.isReg()) |
| 1998 | return true; |
| 1999 | return ::isGuaranteedNotToBeUndefOrPoison(Reg: MO.getReg(), MRI, Depth: Depth + 1, |
| 2000 | Kind); |
| 2001 | }; |
| 2002 | return !::canCreateUndefOrPoison(Reg, MRI, |
| 2003 | /*ConsiderFlagsAndMetadata=*/true, Kind) && |
| 2004 | all_of(Range: RegDef->uses(), P: MOCheck); |
| 2005 | } |
| 2006 | } |
| 2007 | } |
| 2008 | |
| 2009 | bool llvm::canCreateUndefOrPoison(Register Reg, const MachineRegisterInfo &MRI, |
| 2010 | bool ConsiderFlagsAndMetadata) { |
| 2011 | return ::canCreateUndefOrPoison(Reg, MRI, ConsiderFlagsAndMetadata, |
| 2012 | Kind: UndefPoisonKind::UndefOrPoison); |
| 2013 | } |
| 2014 | |
| 2015 | bool canCreatePoison(Register Reg, const MachineRegisterInfo &MRI, |
| 2016 | bool ConsiderFlagsAndMetadata = true) { |
| 2017 | return ::canCreateUndefOrPoison(Reg, MRI, ConsiderFlagsAndMetadata, |
| 2018 | Kind: UndefPoisonKind::PoisonOnly); |
| 2019 | } |
| 2020 | |
| 2021 | bool llvm::isGuaranteedNotToBeUndefOrPoison(Register Reg, |
| 2022 | const MachineRegisterInfo &MRI, |
| 2023 | unsigned Depth) { |
| 2024 | return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth, |
| 2025 | Kind: UndefPoisonKind::UndefOrPoison); |
| 2026 | } |
| 2027 | |
| 2028 | bool llvm::isGuaranteedNotToBePoison(Register Reg, |
| 2029 | const MachineRegisterInfo &MRI, |
| 2030 | unsigned Depth) { |
| 2031 | return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth, |
| 2032 | Kind: UndefPoisonKind::PoisonOnly); |
| 2033 | } |
| 2034 | |
| 2035 | bool llvm::isGuaranteedNotToBeUndef(Register Reg, |
| 2036 | const MachineRegisterInfo &MRI, |
| 2037 | unsigned Depth) { |
| 2038 | return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth, |
| 2039 | Kind: UndefPoisonKind::UndefOnly); |
| 2040 | } |
| 2041 | |
| 2042 | Type *llvm::getTypeForLLT(LLT Ty, LLVMContext &C) { |
| 2043 | if (Ty.isVector()) |
| 2044 | return VectorType::get(ElementType: IntegerType::get(C, NumBits: Ty.getScalarSizeInBits()), |
| 2045 | EC: Ty.getElementCount()); |
| 2046 | return IntegerType::get(C, NumBits: Ty.getSizeInBits()); |
| 2047 | } |
| 2048 | |
| 2049 | bool llvm::isAssertMI(const MachineInstr &MI) { |
| 2050 | switch (MI.getOpcode()) { |
| 2051 | default: |
| 2052 | return false; |
| 2053 | case TargetOpcode::G_ASSERT_ALIGN: |
| 2054 | case TargetOpcode::G_ASSERT_SEXT: |
| 2055 | case TargetOpcode::G_ASSERT_ZEXT: |
| 2056 | return true; |
| 2057 | } |
| 2058 | } |
| 2059 | |
| 2060 | APInt llvm::GIConstant::getScalarValue() const { |
| 2061 | assert(Kind == GIConstantKind::Scalar && "Expected scalar constant" ); |
| 2062 | |
| 2063 | return Value; |
| 2064 | } |
| 2065 | |
| 2066 | std::optional<GIConstant> |
| 2067 | llvm::GIConstant::getConstant(Register Const, const MachineRegisterInfo &MRI) { |
| 2068 | MachineInstr *Constant = getDefIgnoringCopies(Reg: Const, MRI); |
| 2069 | |
| 2070 | if (GSplatVector *Splat = dyn_cast<GSplatVector>(Val: Constant)) { |
| 2071 | std::optional<ValueAndVReg> MayBeConstant = |
| 2072 | getIConstantVRegValWithLookThrough(VReg: Splat->getScalarReg(), MRI); |
| 2073 | if (!MayBeConstant) |
| 2074 | return std::nullopt; |
| 2075 | return GIConstant(MayBeConstant->Value, GIConstantKind::ScalableVector); |
| 2076 | } |
| 2077 | |
| 2078 | if (GBuildVector *Build = dyn_cast<GBuildVector>(Val: Constant)) { |
| 2079 | SmallVector<APInt> Values; |
| 2080 | unsigned NumSources = Build->getNumSources(); |
| 2081 | for (unsigned I = 0; I < NumSources; ++I) { |
| 2082 | Register SrcReg = Build->getSourceReg(I); |
| 2083 | std::optional<ValueAndVReg> MayBeConstant = |
| 2084 | getIConstantVRegValWithLookThrough(VReg: SrcReg, MRI); |
| 2085 | if (!MayBeConstant) |
| 2086 | return std::nullopt; |
| 2087 | Values.push_back(Elt: MayBeConstant->Value); |
| 2088 | } |
| 2089 | return GIConstant(Values); |
| 2090 | } |
| 2091 | |
| 2092 | std::optional<ValueAndVReg> MayBeConstant = |
| 2093 | getIConstantVRegValWithLookThrough(VReg: Const, MRI); |
| 2094 | if (!MayBeConstant) |
| 2095 | return std::nullopt; |
| 2096 | |
| 2097 | return GIConstant(MayBeConstant->Value, GIConstantKind::Scalar); |
| 2098 | } |
| 2099 | |
| 2100 | APFloat llvm::GFConstant::getScalarValue() const { |
| 2101 | assert(Kind == GFConstantKind::Scalar && "Expected scalar constant" ); |
| 2102 | |
| 2103 | return Values[0]; |
| 2104 | } |
| 2105 | |
| 2106 | std::optional<GFConstant> |
| 2107 | llvm::GFConstant::getConstant(Register Const, const MachineRegisterInfo &MRI) { |
| 2108 | MachineInstr *Constant = getDefIgnoringCopies(Reg: Const, MRI); |
| 2109 | |
| 2110 | if (GSplatVector *Splat = dyn_cast<GSplatVector>(Val: Constant)) { |
| 2111 | std::optional<FPValueAndVReg> MayBeConstant = |
| 2112 | getFConstantVRegValWithLookThrough(VReg: Splat->getScalarReg(), MRI); |
| 2113 | if (!MayBeConstant) |
| 2114 | return std::nullopt; |
| 2115 | return GFConstant(MayBeConstant->Value, GFConstantKind::ScalableVector); |
| 2116 | } |
| 2117 | |
| 2118 | if (GBuildVector *Build = dyn_cast<GBuildVector>(Val: Constant)) { |
| 2119 | SmallVector<APFloat> Values; |
| 2120 | unsigned NumSources = Build->getNumSources(); |
| 2121 | for (unsigned I = 0; I < NumSources; ++I) { |
| 2122 | Register SrcReg = Build->getSourceReg(I); |
| 2123 | std::optional<FPValueAndVReg> MayBeConstant = |
| 2124 | getFConstantVRegValWithLookThrough(VReg: SrcReg, MRI); |
| 2125 | if (!MayBeConstant) |
| 2126 | return std::nullopt; |
| 2127 | Values.push_back(Elt: MayBeConstant->Value); |
| 2128 | } |
| 2129 | return GFConstant(Values); |
| 2130 | } |
| 2131 | |
| 2132 | std::optional<FPValueAndVReg> MayBeConstant = |
| 2133 | getFConstantVRegValWithLookThrough(VReg: Const, MRI); |
| 2134 | if (!MayBeConstant) |
| 2135 | return std::nullopt; |
| 2136 | |
| 2137 | return GFConstant(MayBeConstant->Value, GFConstantKind::Scalar); |
| 2138 | } |
| 2139 | |