| 1 | //===- ResourcePriorityQueue.cpp - A DFA-oriented priority queue -*- C++ -*-==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the ResourcePriorityQueue class, which is a |
| 10 | // SchedulingPriorityQueue that prioritizes instructions using DFA state to |
| 11 | // reduce the length of the critical path through the basic block |
| 12 | // on VLIW platforms. |
| 13 | // The scheduler is basically a top-down adaptable list scheduler with DFA |
| 14 | // resource tracking added to the cost function. |
| 15 | // DFA is queried as a state machine to model "packets/bundles" during |
| 16 | // schedule. Currently packets/bundles are discarded at the end of |
| 17 | // scheduling, affecting only order of instructions. |
| 18 | // |
| 19 | //===----------------------------------------------------------------------===// |
| 20 | |
| 21 | #include "llvm/CodeGen/ResourcePriorityQueue.h" |
| 22 | #include "llvm/CodeGen/DFAPacketizer.h" |
| 23 | #include "llvm/CodeGen/SelectionDAGISel.h" |
| 24 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
| 25 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 26 | #include "llvm/CodeGen/TargetLowering.h" |
| 27 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 28 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 29 | #include "llvm/Support/CommandLine.h" |
| 30 | |
| 31 | using namespace llvm; |
| 32 | |
| 33 | #define DEBUG_TYPE "scheduler" |
| 34 | |
| 35 | static cl::opt<bool> |
| 36 | DisableDFASched("disable-dfa-sched" , cl::Hidden, |
| 37 | cl::desc("Disable use of DFA during scheduling" )); |
| 38 | |
| 39 | static cl::opt<int> RegPressureThreshold( |
| 40 | "dfa-sched-reg-pressure-threshold" , cl::Hidden, cl::init(Val: 5), |
| 41 | cl::desc("Track reg pressure and switch priority to in-depth" )); |
| 42 | |
| 43 | ResourcePriorityQueue::ResourcePriorityQueue(SelectionDAGISel *IS) |
| 44 | : Picker(this), InstrItins(IS->MF->getSubtarget().getInstrItineraryData()) { |
| 45 | const TargetSubtargetInfo &STI = IS->MF->getSubtarget(); |
| 46 | TRI = STI.getRegisterInfo(); |
| 47 | TLI = IS->TLI; |
| 48 | TII = STI.getInstrInfo(); |
| 49 | ResourcesModel.reset(p: TII->CreateTargetScheduleState(STI)); |
| 50 | // This hard requirement could be relaxed, but for now |
| 51 | // do not let it proceed. |
| 52 | assert(ResourcesModel && "Unimplemented CreateTargetScheduleState." ); |
| 53 | |
| 54 | unsigned NumRC = TRI->getNumRegClasses(); |
| 55 | RegLimit.resize(new_size: NumRC); |
| 56 | RegPressure.resize(new_size: NumRC); |
| 57 | llvm::fill(Range&: RegLimit, Value: 0); |
| 58 | llvm::fill(Range&: RegPressure, Value: 0); |
| 59 | for (const TargetRegisterClass *RC : TRI->regclasses()) |
| 60 | RegLimit[RC->getID()] = TRI->getRegPressureLimit(RC, MF&: *IS->MF); |
| 61 | |
| 62 | ParallelLiveRanges = 0; |
| 63 | HorizontalVerticalBalance = 0; |
| 64 | } |
| 65 | |
| 66 | ResourcePriorityQueue::~ResourcePriorityQueue() = default; |
| 67 | |
| 68 | unsigned |
| 69 | ResourcePriorityQueue::numberRCValPredInSU(SUnit *SU, unsigned RCId) { |
| 70 | unsigned NumberDeps = 0; |
| 71 | for (SDep &Pred : SU->Preds) { |
| 72 | if (Pred.isCtrl()) |
| 73 | continue; |
| 74 | |
| 75 | SUnit *PredSU = Pred.getSUnit(); |
| 76 | const SDNode *ScegN = PredSU->getNode(); |
| 77 | |
| 78 | if (!ScegN) |
| 79 | continue; |
| 80 | |
| 81 | // If value is passed to CopyToReg, it is probably |
| 82 | // live outside BB. |
| 83 | switch (ScegN->getOpcode()) { |
| 84 | default: break; |
| 85 | case ISD::TokenFactor: break; |
| 86 | case ISD::CopyFromReg: NumberDeps++; break; |
| 87 | case ISD::CopyToReg: break; |
| 88 | case ISD::INLINEASM: break; |
| 89 | case ISD::INLINEASM_BR: break; |
| 90 | } |
| 91 | if (!ScegN->isMachineOpcode()) |
| 92 | continue; |
| 93 | |
| 94 | for (unsigned i = 0, e = ScegN->getNumValues(); i != e; ++i) { |
| 95 | MVT VT = ScegN->getSimpleValueType(ResNo: i); |
| 96 | if (TLI->isTypeLegal(VT) |
| 97 | && (TLI->getRegClassFor(VT)->getID() == RCId)) { |
| 98 | NumberDeps++; |
| 99 | break; |
| 100 | } |
| 101 | } |
| 102 | } |
| 103 | return NumberDeps; |
| 104 | } |
| 105 | |
| 106 | unsigned ResourcePriorityQueue::numberRCValSuccInSU(SUnit *SU, |
| 107 | unsigned RCId) { |
| 108 | unsigned NumberDeps = 0; |
| 109 | for (const SDep &Succ : SU->Succs) { |
| 110 | if (Succ.isCtrl()) |
| 111 | continue; |
| 112 | |
| 113 | SUnit *SuccSU = Succ.getSUnit(); |
| 114 | const SDNode *ScegN = SuccSU->getNode(); |
| 115 | if (!ScegN) |
| 116 | continue; |
| 117 | |
| 118 | // If value is passed to CopyToReg, it is probably |
| 119 | // live outside BB. |
| 120 | switch (ScegN->getOpcode()) { |
| 121 | default: break; |
| 122 | case ISD::TokenFactor: break; |
| 123 | case ISD::CopyFromReg: break; |
| 124 | case ISD::CopyToReg: NumberDeps++; break; |
| 125 | case ISD::INLINEASM: break; |
| 126 | case ISD::INLINEASM_BR: break; |
| 127 | } |
| 128 | if (!ScegN->isMachineOpcode()) |
| 129 | continue; |
| 130 | |
| 131 | for (unsigned i = 0, e = ScegN->getNumOperands(); i != e; ++i) { |
| 132 | const SDValue &Op = ScegN->getOperand(Num: i); |
| 133 | MVT VT = Op.getNode()->getSimpleValueType(ResNo: Op.getResNo()); |
| 134 | if (TLI->isTypeLegal(VT) |
| 135 | && (TLI->getRegClassFor(VT)->getID() == RCId)) { |
| 136 | NumberDeps++; |
| 137 | break; |
| 138 | } |
| 139 | } |
| 140 | } |
| 141 | return NumberDeps; |
| 142 | } |
| 143 | |
| 144 | static unsigned numberCtrlDepsInSU(SUnit *SU) { |
| 145 | unsigned NumberDeps = 0; |
| 146 | for (const SDep &Succ : SU->Succs) |
| 147 | if (Succ.isCtrl()) |
| 148 | NumberDeps++; |
| 149 | |
| 150 | return NumberDeps; |
| 151 | } |
| 152 | |
| 153 | static unsigned numberCtrlPredInSU(SUnit *SU) { |
| 154 | unsigned NumberDeps = 0; |
| 155 | for (SDep &Pred : SU->Preds) |
| 156 | if (Pred.isCtrl()) |
| 157 | NumberDeps++; |
| 158 | |
| 159 | return NumberDeps; |
| 160 | } |
| 161 | |
| 162 | /// |
| 163 | /// Initialize nodes. |
| 164 | /// |
| 165 | void ResourcePriorityQueue::initNodes(std::vector<SUnit> &sunits) { |
| 166 | SUnits = &sunits; |
| 167 | NumNodesSolelyBlocking.resize(new_size: SUnits->size(), x: 0); |
| 168 | |
| 169 | for (SUnit &SU : *SUnits) { |
| 170 | initNumRegDefsLeft(SU: &SU); |
| 171 | SU.NodeQueueId = 0; |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | /// This heuristic is used if DFA scheduling is not desired |
| 176 | /// for some VLIW platform. |
| 177 | bool resource_sort::operator()(const SUnit *LHS, const SUnit *RHS) const { |
| 178 | // The isScheduleHigh flag allows nodes with wraparound dependencies that |
| 179 | // cannot easily be modeled as edges with latencies to be scheduled as |
| 180 | // soon as possible in a top-down schedule. |
| 181 | if (LHS->isScheduleHigh && !RHS->isScheduleHigh) |
| 182 | return false; |
| 183 | |
| 184 | if (!LHS->isScheduleHigh && RHS->isScheduleHigh) |
| 185 | return true; |
| 186 | |
| 187 | unsigned LHSNum = LHS->NodeNum; |
| 188 | unsigned RHSNum = RHS->NodeNum; |
| 189 | |
| 190 | // The most important heuristic is scheduling the critical path. |
| 191 | unsigned LHSLatency = PQ->getLatency(NodeNum: LHSNum); |
| 192 | unsigned RHSLatency = PQ->getLatency(NodeNum: RHSNum); |
| 193 | if (LHSLatency < RHSLatency) return true; |
| 194 | if (LHSLatency > RHSLatency) return false; |
| 195 | |
| 196 | // After that, if two nodes have identical latencies, look to see if one will |
| 197 | // unblock more other nodes than the other. |
| 198 | unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(NodeNum: LHSNum); |
| 199 | unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(NodeNum: RHSNum); |
| 200 | if (LHSBlocked < RHSBlocked) return true; |
| 201 | if (LHSBlocked > RHSBlocked) return false; |
| 202 | |
| 203 | // Finally, just to provide a stable ordering, use the node number as a |
| 204 | // deciding factor. |
| 205 | return LHSNum < RHSNum; |
| 206 | } |
| 207 | |
| 208 | |
| 209 | /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor |
| 210 | /// of SU, return it, otherwise return null. |
| 211 | SUnit *ResourcePriorityQueue::getSingleUnscheduledPred(SUnit *SU) { |
| 212 | SUnit *OnlyAvailablePred = nullptr; |
| 213 | for (const SDep &Pred : SU->Preds) { |
| 214 | SUnit &PredSU = *Pred.getSUnit(); |
| 215 | if (!PredSU.isScheduled) { |
| 216 | // We found an available, but not scheduled, predecessor. If it's the |
| 217 | // only one we have found, keep track of it... otherwise give up. |
| 218 | if (OnlyAvailablePred && OnlyAvailablePred != &PredSU) |
| 219 | return nullptr; |
| 220 | OnlyAvailablePred = &PredSU; |
| 221 | } |
| 222 | } |
| 223 | return OnlyAvailablePred; |
| 224 | } |
| 225 | |
| 226 | void ResourcePriorityQueue::push(SUnit *SU) { |
| 227 | // Look at all of the successors of this node. Count the number of nodes that |
| 228 | // this node is the sole unscheduled node for. |
| 229 | unsigned NumNodesBlocking = 0; |
| 230 | for (const SDep &Succ : SU->Succs) |
| 231 | if (getSingleUnscheduledPred(SU: Succ.getSUnit()) == SU) |
| 232 | ++NumNodesBlocking; |
| 233 | |
| 234 | NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking; |
| 235 | Queue.push_back(x: SU); |
| 236 | } |
| 237 | |
| 238 | /// Check if scheduling of this SU is possible |
| 239 | /// in the current packet. |
| 240 | bool ResourcePriorityQueue::isResourceAvailable(SUnit *SU) { |
| 241 | if (!SU || !SU->getNode()) |
| 242 | return false; |
| 243 | |
| 244 | // If this is a compound instruction, |
| 245 | // it is likely to be a call. Do not delay it. |
| 246 | if (SU->getNode()->getGluedNode()) |
| 247 | return true; |
| 248 | |
| 249 | // First see if the pipeline could receive this instruction |
| 250 | // in the current cycle. |
| 251 | if (SU->getNode()->isMachineOpcode()) |
| 252 | switch (SU->getNode()->getMachineOpcode()) { |
| 253 | default: |
| 254 | if (!ResourcesModel->canReserveResources(MID: &TII->get( |
| 255 | Opcode: SU->getNode()->getMachineOpcode()))) |
| 256 | return false; |
| 257 | break; |
| 258 | case TargetOpcode::EXTRACT_SUBREG: |
| 259 | case TargetOpcode::INSERT_SUBREG: |
| 260 | case TargetOpcode::SUBREG_TO_REG: |
| 261 | case TargetOpcode::REG_SEQUENCE: |
| 262 | case TargetOpcode::IMPLICIT_DEF: |
| 263 | break; |
| 264 | } |
| 265 | |
| 266 | // Now see if there are no other dependencies |
| 267 | // to instructions already in the packet. |
| 268 | for (const SUnit *S : Packet) |
| 269 | for (const SDep &Succ : S->Succs) { |
| 270 | // Since we do not add pseudos to packets, might as well |
| 271 | // ignore order deps. |
| 272 | if (Succ.isCtrl()) |
| 273 | continue; |
| 274 | |
| 275 | if (Succ.getSUnit() == SU) |
| 276 | return false; |
| 277 | } |
| 278 | |
| 279 | return true; |
| 280 | } |
| 281 | |
| 282 | /// Keep track of available resources. |
| 283 | void ResourcePriorityQueue::reserveResources(SUnit *SU) { |
| 284 | // If this SU does not fit in the packet |
| 285 | // start a new one. |
| 286 | if (!isResourceAvailable(SU) || SU->getNode()->getGluedNode()) { |
| 287 | ResourcesModel->clearResources(); |
| 288 | Packet.clear(); |
| 289 | } |
| 290 | |
| 291 | if (SU->getNode() && SU->getNode()->isMachineOpcode()) { |
| 292 | switch (SU->getNode()->getMachineOpcode()) { |
| 293 | default: |
| 294 | ResourcesModel->reserveResources(MID: &TII->get( |
| 295 | Opcode: SU->getNode()->getMachineOpcode())); |
| 296 | break; |
| 297 | case TargetOpcode::EXTRACT_SUBREG: |
| 298 | case TargetOpcode::INSERT_SUBREG: |
| 299 | case TargetOpcode::SUBREG_TO_REG: |
| 300 | case TargetOpcode::REG_SEQUENCE: |
| 301 | case TargetOpcode::IMPLICIT_DEF: |
| 302 | break; |
| 303 | } |
| 304 | Packet.push_back(x: SU); |
| 305 | } |
| 306 | // Forcefully end packet for PseudoOps. |
| 307 | else { |
| 308 | ResourcesModel->clearResources(); |
| 309 | Packet.clear(); |
| 310 | } |
| 311 | |
| 312 | // If packet is now full, reset the state so in the next cycle |
| 313 | // we start fresh. |
| 314 | if (Packet.size() >= InstrItins->SchedModel.IssueWidth) { |
| 315 | ResourcesModel->clearResources(); |
| 316 | Packet.clear(); |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | int ResourcePriorityQueue::rawRegPressureDelta(SUnit *SU, unsigned RCId) { |
| 321 | int RegBalance = 0; |
| 322 | |
| 323 | if (!SU || !SU->getNode() || !SU->getNode()->isMachineOpcode()) |
| 324 | return RegBalance; |
| 325 | |
| 326 | // Gen estimate. |
| 327 | for (unsigned i = 0, e = SU->getNode()->getNumValues(); i != e; ++i) { |
| 328 | MVT VT = SU->getNode()->getSimpleValueType(ResNo: i); |
| 329 | if (TLI->isTypeLegal(VT) |
| 330 | && TLI->getRegClassFor(VT) |
| 331 | && TLI->getRegClassFor(VT)->getID() == RCId) |
| 332 | RegBalance += numberRCValSuccInSU(SU, RCId); |
| 333 | } |
| 334 | // Kill estimate. |
| 335 | for (unsigned i = 0, e = SU->getNode()->getNumOperands(); i != e; ++i) { |
| 336 | const SDValue &Op = SU->getNode()->getOperand(Num: i); |
| 337 | MVT VT = Op.getNode()->getSimpleValueType(ResNo: Op.getResNo()); |
| 338 | if (isa<ConstantSDNode>(Val: Op.getNode())) |
| 339 | continue; |
| 340 | |
| 341 | if (TLI->isTypeLegal(VT) && TLI->getRegClassFor(VT) |
| 342 | && TLI->getRegClassFor(VT)->getID() == RCId) |
| 343 | RegBalance -= numberRCValPredInSU(SU, RCId); |
| 344 | } |
| 345 | return RegBalance; |
| 346 | } |
| 347 | |
| 348 | /// Estimates change in reg pressure from this SU. |
| 349 | /// It is achieved by trivial tracking of defined |
| 350 | /// and used vregs in dependent instructions. |
| 351 | /// The RawPressure flag makes this function to ignore |
| 352 | /// existing reg file sizes, and report raw def/use |
| 353 | /// balance. |
| 354 | int ResourcePriorityQueue::regPressureDelta(SUnit *SU, bool RawPressure) { |
| 355 | int RegBalance = 0; |
| 356 | |
| 357 | if (!SU || !SU->getNode() || !SU->getNode()->isMachineOpcode()) |
| 358 | return RegBalance; |
| 359 | |
| 360 | if (RawPressure) { |
| 361 | for (const TargetRegisterClass *RC : TRI->regclasses()) |
| 362 | RegBalance += rawRegPressureDelta(SU, RCId: RC->getID()); |
| 363 | } |
| 364 | else { |
| 365 | for (const TargetRegisterClass *RC : TRI->regclasses()) { |
| 366 | if ((RegPressure[RC->getID()] + |
| 367 | rawRegPressureDelta(SU, RCId: RC->getID()) > 0) && |
| 368 | (RegPressure[RC->getID()] + |
| 369 | rawRegPressureDelta(SU, RCId: RC->getID()) >= RegLimit[RC->getID()])) |
| 370 | RegBalance += rawRegPressureDelta(SU, RCId: RC->getID()); |
| 371 | } |
| 372 | } |
| 373 | |
| 374 | return RegBalance; |
| 375 | } |
| 376 | |
| 377 | // Constants used to denote relative importance of |
| 378 | // heuristic components for cost computation. |
| 379 | static const unsigned PriorityOne = 200; |
| 380 | static const unsigned PriorityTwo = 50; |
| 381 | static const unsigned PriorityThree = 15; |
| 382 | static const unsigned PriorityFour = 5; |
| 383 | static const unsigned ScaleOne = 20; |
| 384 | static const unsigned ScaleTwo = 10; |
| 385 | static const unsigned ScaleThree = 5; |
| 386 | static const unsigned FactorOne = 2; |
| 387 | |
| 388 | /// Returns single number reflecting benefit of scheduling SU |
| 389 | /// in the current cycle. |
| 390 | int ResourcePriorityQueue::SUSchedulingCost(SUnit *SU) { |
| 391 | // Initial trivial priority. |
| 392 | int ResCount = 1; |
| 393 | |
| 394 | // Do not waste time on a node that is already scheduled. |
| 395 | if (SU->isScheduled) |
| 396 | return ResCount; |
| 397 | |
| 398 | // Forced priority is high. |
| 399 | if (SU->isScheduleHigh) |
| 400 | ResCount += PriorityOne; |
| 401 | |
| 402 | // Adaptable scheduling |
| 403 | // A small, but very parallel |
| 404 | // region, where reg pressure is an issue. |
| 405 | if (HorizontalVerticalBalance > RegPressureThreshold) { |
| 406 | // Critical path first |
| 407 | ResCount += (SU->getHeight() * ScaleTwo); |
| 408 | // If resources are available for it, multiply the |
| 409 | // chance of scheduling. |
| 410 | if (isResourceAvailable(SU)) |
| 411 | ResCount <<= FactorOne; |
| 412 | |
| 413 | // Consider change to reg pressure from scheduling |
| 414 | // this SU. |
| 415 | ResCount -= (regPressureDelta(SU,RawPressure: true) * ScaleOne); |
| 416 | } |
| 417 | // Default heuristic, greeady and |
| 418 | // critical path driven. |
| 419 | else { |
| 420 | // Critical path first. |
| 421 | ResCount += (SU->getHeight() * ScaleTwo); |
| 422 | // Now see how many instructions is blocked by this SU. |
| 423 | ResCount += (NumNodesSolelyBlocking[SU->NodeNum] * ScaleTwo); |
| 424 | // If resources are available for it, multiply the |
| 425 | // chance of scheduling. |
| 426 | if (isResourceAvailable(SU)) |
| 427 | ResCount <<= FactorOne; |
| 428 | |
| 429 | ResCount -= (regPressureDelta(SU) * ScaleTwo); |
| 430 | } |
| 431 | |
| 432 | // These are platform-specific things. |
| 433 | // Will need to go into the back end |
| 434 | // and accessed from here via a hook. |
| 435 | for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) { |
| 436 | if (N->isMachineOpcode()) { |
| 437 | const MCInstrDesc &TID = TII->get(Opcode: N->getMachineOpcode()); |
| 438 | if (TID.isCall()) |
| 439 | ResCount += (PriorityTwo + (ScaleThree*N->getNumValues())); |
| 440 | } |
| 441 | else |
| 442 | switch (N->getOpcode()) { |
| 443 | default: break; |
| 444 | case ISD::TokenFactor: |
| 445 | case ISD::CopyFromReg: |
| 446 | case ISD::CopyToReg: |
| 447 | ResCount += PriorityFour; |
| 448 | break; |
| 449 | |
| 450 | case ISD::INLINEASM: |
| 451 | case ISD::INLINEASM_BR: |
| 452 | ResCount += PriorityThree; |
| 453 | break; |
| 454 | } |
| 455 | } |
| 456 | return ResCount; |
| 457 | } |
| 458 | |
| 459 | |
| 460 | /// Main resource tracking point. |
| 461 | void ResourcePriorityQueue::scheduledNode(SUnit *SU) { |
| 462 | // Use NULL entry as an event marker to reset |
| 463 | // the DFA state. |
| 464 | if (!SU) { |
| 465 | ResourcesModel->clearResources(); |
| 466 | Packet.clear(); |
| 467 | return; |
| 468 | } |
| 469 | |
| 470 | const SDNode *ScegN = SU->getNode(); |
| 471 | // Update reg pressure tracking. |
| 472 | // First update current node. |
| 473 | if (ScegN->isMachineOpcode()) { |
| 474 | // Estimate generated regs. |
| 475 | for (unsigned i = 0, e = ScegN->getNumValues(); i != e; ++i) { |
| 476 | MVT VT = ScegN->getSimpleValueType(ResNo: i); |
| 477 | |
| 478 | if (TLI->isTypeLegal(VT)) { |
| 479 | const TargetRegisterClass *RC = TLI->getRegClassFor(VT); |
| 480 | if (RC) |
| 481 | RegPressure[RC->getID()] += numberRCValSuccInSU(SU, RCId: RC->getID()); |
| 482 | } |
| 483 | } |
| 484 | // Estimate killed regs. |
| 485 | for (unsigned i = 0, e = ScegN->getNumOperands(); i != e; ++i) { |
| 486 | const SDValue &Op = ScegN->getOperand(Num: i); |
| 487 | MVT VT = Op.getNode()->getSimpleValueType(ResNo: Op.getResNo()); |
| 488 | |
| 489 | if (TLI->isTypeLegal(VT)) { |
| 490 | const TargetRegisterClass *RC = TLI->getRegClassFor(VT); |
| 491 | if (RC) { |
| 492 | if (RegPressure[RC->getID()] > |
| 493 | (numberRCValPredInSU(SU, RCId: RC->getID()))) |
| 494 | RegPressure[RC->getID()] -= numberRCValPredInSU(SU, RCId: RC->getID()); |
| 495 | else RegPressure[RC->getID()] = 0; |
| 496 | } |
| 497 | } |
| 498 | } |
| 499 | for (SDep &Pred : SU->Preds) { |
| 500 | if (Pred.isCtrl() || (Pred.getSUnit()->NumRegDefsLeft == 0)) |
| 501 | continue; |
| 502 | --Pred.getSUnit()->NumRegDefsLeft; |
| 503 | } |
| 504 | } |
| 505 | |
| 506 | // Reserve resources for this SU. |
| 507 | reserveResources(SU); |
| 508 | |
| 509 | // Adjust number of parallel live ranges. |
| 510 | // Heuristic is simple - node with no data successors reduces |
| 511 | // number of live ranges. All others, increase it. |
| 512 | unsigned NumberNonControlDeps = 0; |
| 513 | |
| 514 | for (const SDep &Succ : SU->Succs) { |
| 515 | adjustPriorityOfUnscheduledPreds(SU: Succ.getSUnit()); |
| 516 | if (!Succ.isCtrl()) |
| 517 | NumberNonControlDeps++; |
| 518 | } |
| 519 | |
| 520 | if (!NumberNonControlDeps) { |
| 521 | if (ParallelLiveRanges >= SU->NumPreds) |
| 522 | ParallelLiveRanges -= SU->NumPreds; |
| 523 | else |
| 524 | ParallelLiveRanges = 0; |
| 525 | |
| 526 | } |
| 527 | else |
| 528 | ParallelLiveRanges += SU->NumRegDefsLeft; |
| 529 | |
| 530 | // Track parallel live chains. |
| 531 | HorizontalVerticalBalance += (SU->Succs.size() - numberCtrlDepsInSU(SU)); |
| 532 | HorizontalVerticalBalance -= (SU->Preds.size() - numberCtrlPredInSU(SU)); |
| 533 | } |
| 534 | |
| 535 | void ResourcePriorityQueue::initNumRegDefsLeft(SUnit *SU) { |
| 536 | unsigned NodeNumDefs = 0; |
| 537 | for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) |
| 538 | if (N->isMachineOpcode()) { |
| 539 | const MCInstrDesc &TID = TII->get(Opcode: N->getMachineOpcode()); |
| 540 | // No register need be allocated for this. |
| 541 | if (N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { |
| 542 | NodeNumDefs = 0; |
| 543 | break; |
| 544 | } |
| 545 | NodeNumDefs = std::min(a: N->getNumValues(), b: TID.getNumDefs()); |
| 546 | } |
| 547 | else |
| 548 | switch(N->getOpcode()) { |
| 549 | default: break; |
| 550 | case ISD::CopyFromReg: |
| 551 | NodeNumDefs++; |
| 552 | break; |
| 553 | case ISD::INLINEASM: |
| 554 | case ISD::INLINEASM_BR: |
| 555 | NodeNumDefs++; |
| 556 | break; |
| 557 | } |
| 558 | |
| 559 | SU->NumRegDefsLeft = NodeNumDefs; |
| 560 | } |
| 561 | |
| 562 | /// adjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just |
| 563 | /// scheduled. If SU is not itself available, then there is at least one |
| 564 | /// predecessor node that has not been scheduled yet. If SU has exactly ONE |
| 565 | /// unscheduled predecessor, we want to increase its priority: it getting |
| 566 | /// scheduled will make this node available, so it is better than some other |
| 567 | /// node of the same priority that will not make a node available. |
| 568 | void ResourcePriorityQueue::adjustPriorityOfUnscheduledPreds(SUnit *SU) { |
| 569 | if (SU->isAvailable) return; // All preds scheduled. |
| 570 | |
| 571 | SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU); |
| 572 | if (!OnlyAvailablePred || !OnlyAvailablePred->isAvailable) |
| 573 | return; |
| 574 | |
| 575 | // Okay, we found a single predecessor that is available, but not scheduled. |
| 576 | // Since it is available, it must be in the priority queue. First remove it. |
| 577 | remove(SU: OnlyAvailablePred); |
| 578 | |
| 579 | // Reinsert the node into the priority queue, which recomputes its |
| 580 | // NumNodesSolelyBlocking value. |
| 581 | push(SU: OnlyAvailablePred); |
| 582 | } |
| 583 | |
| 584 | |
| 585 | /// Main access point - returns next instructions |
| 586 | /// to be placed in scheduling sequence. |
| 587 | SUnit *ResourcePriorityQueue::pop() { |
| 588 | if (empty()) |
| 589 | return nullptr; |
| 590 | |
| 591 | std::vector<SUnit *>::iterator Best = Queue.begin(); |
| 592 | if (!DisableDFASched) { |
| 593 | int BestCost = SUSchedulingCost(SU: *Best); |
| 594 | for (auto I = std::next(x: Queue.begin()), E = Queue.end(); I != E; ++I) { |
| 595 | |
| 596 | if (SUSchedulingCost(SU: *I) > BestCost) { |
| 597 | BestCost = SUSchedulingCost(SU: *I); |
| 598 | Best = I; |
| 599 | } |
| 600 | } |
| 601 | } |
| 602 | // Use default TD scheduling mechanism. |
| 603 | else { |
| 604 | for (auto I = std::next(x: Queue.begin()), E = Queue.end(); I != E; ++I) |
| 605 | if (Picker(*Best, *I)) |
| 606 | Best = I; |
| 607 | } |
| 608 | |
| 609 | SUnit *V = *Best; |
| 610 | if (Best != std::prev(x: Queue.end())) |
| 611 | std::swap(a&: *Best, b&: Queue.back()); |
| 612 | |
| 613 | Queue.pop_back(); |
| 614 | |
| 615 | return V; |
| 616 | } |
| 617 | |
| 618 | |
| 619 | void ResourcePriorityQueue::remove(SUnit *SU) { |
| 620 | assert(!Queue.empty() && "Queue is empty!" ); |
| 621 | std::vector<SUnit *>::iterator I = find(Range&: Queue, Val: SU); |
| 622 | if (I != std::prev(x: Queue.end())) |
| 623 | std::swap(a&: *I, b&: Queue.back()); |
| 624 | |
| 625 | Queue.pop_back(); |
| 626 | } |
| 627 | |