| 1 | //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This implements the SelectionDAGISel class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/CodeGen/SelectionDAGISel.h" |
| 14 | #include "ScheduleDAGSDNodes.h" |
| 15 | #include "SelectionDAGBuilder.h" |
| 16 | #include "llvm/ADT/APInt.h" |
| 17 | #include "llvm/ADT/DenseMap.h" |
| 18 | #include "llvm/ADT/PostOrderIterator.h" |
| 19 | #include "llvm/ADT/STLExtras.h" |
| 20 | #include "llvm/ADT/SmallPtrSet.h" |
| 21 | #include "llvm/ADT/SmallVector.h" |
| 22 | #include "llvm/ADT/Statistic.h" |
| 23 | #include "llvm/ADT/StringRef.h" |
| 24 | #include "llvm/Analysis/AliasAnalysis.h" |
| 25 | #include "llvm/Analysis/AssumptionCache.h" |
| 26 | #include "llvm/Analysis/BranchProbabilityInfo.h" |
| 27 | #include "llvm/Analysis/CFG.h" |
| 28 | #include "llvm/Analysis/LazyBlockFrequencyInfo.h" |
| 29 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 30 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
| 31 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 32 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 33 | #include "llvm/Analysis/UniformityAnalysis.h" |
| 34 | #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" |
| 35 | #include "llvm/CodeGen/CodeGenCommonISel.h" |
| 36 | #include "llvm/CodeGen/FastISel.h" |
| 37 | #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| 38 | #include "llvm/CodeGen/GCMetadata.h" |
| 39 | #include "llvm/CodeGen/ISDOpcodes.h" |
| 40 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 41 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 42 | #include "llvm/CodeGen/MachineFunction.h" |
| 43 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 44 | #include "llvm/CodeGen/MachineInstr.h" |
| 45 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 46 | #include "llvm/CodeGen/MachineMemOperand.h" |
| 47 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 48 | #include "llvm/CodeGen/MachineOperand.h" |
| 49 | #include "llvm/CodeGen/MachinePassRegistry.h" |
| 50 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 51 | #include "llvm/CodeGen/SchedulerRegistry.h" |
| 52 | #include "llvm/CodeGen/SelectionDAG.h" |
| 53 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
| 54 | #include "llvm/CodeGen/SelectionDAGTargetInfo.h" |
| 55 | #include "llvm/CodeGen/StackMaps.h" |
| 56 | #include "llvm/CodeGen/StackProtector.h" |
| 57 | #include "llvm/CodeGen/SwiftErrorValueTracking.h" |
| 58 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 59 | #include "llvm/CodeGen/TargetLowering.h" |
| 60 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 61 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 62 | #include "llvm/CodeGen/ValueTypes.h" |
| 63 | #include "llvm/CodeGen/WinEHFuncInfo.h" |
| 64 | #include "llvm/CodeGenTypes/MachineValueType.h" |
| 65 | #include "llvm/IR/BasicBlock.h" |
| 66 | #include "llvm/IR/Constants.h" |
| 67 | #include "llvm/IR/DataLayout.h" |
| 68 | #include "llvm/IR/DebugInfo.h" |
| 69 | #include "llvm/IR/DebugInfoMetadata.h" |
| 70 | #include "llvm/IR/DebugLoc.h" |
| 71 | #include "llvm/IR/DiagnosticInfo.h" |
| 72 | #include "llvm/IR/EHPersonalities.h" |
| 73 | #include "llvm/IR/Function.h" |
| 74 | #include "llvm/IR/InlineAsm.h" |
| 75 | #include "llvm/IR/InstIterator.h" |
| 76 | #include "llvm/IR/Instruction.h" |
| 77 | #include "llvm/IR/Instructions.h" |
| 78 | #include "llvm/IR/IntrinsicInst.h" |
| 79 | #include "llvm/IR/Intrinsics.h" |
| 80 | #include "llvm/IR/IntrinsicsWebAssembly.h" |
| 81 | #include "llvm/IR/Metadata.h" |
| 82 | #include "llvm/IR/Module.h" |
| 83 | #include "llvm/IR/PrintPasses.h" |
| 84 | #include "llvm/IR/Statepoint.h" |
| 85 | #include "llvm/IR/Type.h" |
| 86 | #include "llvm/IR/User.h" |
| 87 | #include "llvm/IR/Value.h" |
| 88 | #include "llvm/InitializePasses.h" |
| 89 | #include "llvm/MC/MCInstrDesc.h" |
| 90 | #include "llvm/Pass.h" |
| 91 | #include "llvm/Support/BranchProbability.h" |
| 92 | #include "llvm/Support/Casting.h" |
| 93 | #include "llvm/Support/CodeGen.h" |
| 94 | #include "llvm/Support/CommandLine.h" |
| 95 | #include "llvm/Support/Compiler.h" |
| 96 | #include "llvm/Support/Debug.h" |
| 97 | #include "llvm/Support/ErrorHandling.h" |
| 98 | #include "llvm/Support/KnownBits.h" |
| 99 | #include "llvm/Support/Timer.h" |
| 100 | #include "llvm/Support/raw_ostream.h" |
| 101 | #include "llvm/Target/TargetMachine.h" |
| 102 | #include "llvm/Target/TargetOptions.h" |
| 103 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 104 | #include <cassert> |
| 105 | #include <cstdint> |
| 106 | #include <iterator> |
| 107 | #include <limits> |
| 108 | #include <memory> |
| 109 | #include <optional> |
| 110 | #include <string> |
| 111 | #include <utility> |
| 112 | #include <vector> |
| 113 | |
| 114 | using namespace llvm; |
| 115 | |
| 116 | #define DEBUG_TYPE "isel" |
| 117 | #define ISEL_DUMP_DEBUG_TYPE DEBUG_TYPE "-dump" |
| 118 | |
| 119 | STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on" ); |
| 120 | STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected" ); |
| 121 | STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel" ); |
| 122 | STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG" ); |
| 123 | STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path" ); |
| 124 | STATISTIC(NumEntryBlocks, "Number of entry blocks encountered" ); |
| 125 | STATISTIC(NumFastIselFailLowerArguments, |
| 126 | "Number of entry blocks where fast isel failed to lower arguments" ); |
| 127 | |
| 128 | static cl::opt<int> EnableFastISelAbort( |
| 129 | "fast-isel-abort" , cl::Hidden, |
| 130 | cl::desc("Enable abort calls when \"fast\" instruction selection " |
| 131 | "fails to lower an instruction: 0 disable the abort, 1 will " |
| 132 | "abort but for args, calls and terminators, 2 will also " |
| 133 | "abort for argument lowering, and 3 will never fallback " |
| 134 | "to SelectionDAG." )); |
| 135 | |
| 136 | static cl::opt<bool> EnableFastISelFallbackReport( |
| 137 | "fast-isel-report-on-fallback" , cl::Hidden, |
| 138 | cl::desc("Emit a diagnostic when \"fast\" instruction selection " |
| 139 | "falls back to SelectionDAG." )); |
| 140 | |
| 141 | static cl::opt<bool> |
| 142 | UseMBPI("use-mbpi" , |
| 143 | cl::desc("use Machine Branch Probability Info" ), |
| 144 | cl::init(Val: true), cl::Hidden); |
| 145 | |
| 146 | #ifndef NDEBUG |
| 147 | static cl::opt<bool> |
| 148 | DumpSortedDAG("dump-sorted-dags" , cl::Hidden, |
| 149 | cl::desc("Print DAGs with sorted nodes in debug dump" ), |
| 150 | cl::init(false)); |
| 151 | |
| 152 | static cl::opt<std::string> |
| 153 | FilterDAGBasicBlockName("filter-view-dags" , cl::Hidden, |
| 154 | cl::desc("Only display the basic block whose name " |
| 155 | "matches this for all view-*-dags options" )); |
| 156 | static cl::opt<bool> |
| 157 | ViewDAGCombine1("view-dag-combine1-dags" , cl::Hidden, |
| 158 | cl::desc("Pop up a window to show dags before the first " |
| 159 | "dag combine pass" )); |
| 160 | static cl::opt<bool> |
| 161 | ViewLegalizeTypesDAGs("view-legalize-types-dags" , cl::Hidden, |
| 162 | cl::desc("Pop up a window to show dags before legalize types" )); |
| 163 | static cl::opt<bool> |
| 164 | ViewDAGCombineLT("view-dag-combine-lt-dags" , cl::Hidden, |
| 165 | cl::desc("Pop up a window to show dags before the post " |
| 166 | "legalize types dag combine pass" )); |
| 167 | static cl::opt<bool> |
| 168 | ViewLegalizeDAGs("view-legalize-dags" , cl::Hidden, |
| 169 | cl::desc("Pop up a window to show dags before legalize" )); |
| 170 | static cl::opt<bool> |
| 171 | ViewDAGCombine2("view-dag-combine2-dags" , cl::Hidden, |
| 172 | cl::desc("Pop up a window to show dags before the second " |
| 173 | "dag combine pass" )); |
| 174 | static cl::opt<bool> |
| 175 | ViewISelDAGs("view-isel-dags" , cl::Hidden, |
| 176 | cl::desc("Pop up a window to show isel dags as they are selected" )); |
| 177 | static cl::opt<bool> |
| 178 | ViewSchedDAGs("view-sched-dags" , cl::Hidden, |
| 179 | cl::desc("Pop up a window to show sched dags as they are processed" )); |
| 180 | static cl::opt<bool> |
| 181 | ViewSUnitDAGs("view-sunit-dags" , cl::Hidden, |
| 182 | cl::desc("Pop up a window to show SUnit dags after they are processed" )); |
| 183 | #else |
| 184 | static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false, |
| 185 | ViewDAGCombineLT = false, ViewLegalizeDAGs = false, |
| 186 | ViewDAGCombine2 = false, ViewISelDAGs = false, |
| 187 | ViewSchedDAGs = false, ViewSUnitDAGs = false; |
| 188 | #endif |
| 189 | |
| 190 | #ifndef NDEBUG |
| 191 | #define ISEL_DUMP(X) \ |
| 192 | do { \ |
| 193 | if (llvm::DebugFlag && \ |
| 194 | (isCurrentDebugType(DEBUG_TYPE) || \ |
| 195 | (isCurrentDebugType(ISEL_DUMP_DEBUG_TYPE) && MatchFilterFuncName))) { \ |
| 196 | X; \ |
| 197 | } \ |
| 198 | } while (false) |
| 199 | #else |
| 200 | #define ISEL_DUMP(X) do { } while (false) |
| 201 | #endif |
| 202 | |
| 203 | //===---------------------------------------------------------------------===// |
| 204 | /// |
| 205 | /// RegisterScheduler class - Track the registration of instruction schedulers. |
| 206 | /// |
| 207 | //===---------------------------------------------------------------------===// |
| 208 | MachinePassRegistry<RegisterScheduler::FunctionPassCtor> |
| 209 | RegisterScheduler::Registry; |
| 210 | |
| 211 | //===---------------------------------------------------------------------===// |
| 212 | /// |
| 213 | /// ISHeuristic command line option for instruction schedulers. |
| 214 | /// |
| 215 | //===---------------------------------------------------------------------===// |
| 216 | static cl::opt<RegisterScheduler::FunctionPassCtor, false, |
| 217 | RegisterPassParser<RegisterScheduler>> |
| 218 | ISHeuristic("pre-RA-sched" , |
| 219 | cl::init(Val: &createDefaultScheduler), cl::Hidden, |
| 220 | cl::desc("Instruction schedulers available (before register" |
| 221 | " allocation):" )); |
| 222 | |
| 223 | static RegisterScheduler |
| 224 | defaultListDAGScheduler("default" , "Best scheduler for the target" , |
| 225 | createDefaultScheduler); |
| 226 | |
| 227 | static bool dontUseFastISelFor(const Function &Fn) { |
| 228 | // Don't enable FastISel for functions with swiftasync Arguments. |
| 229 | // Debug info on those is reliant on good Argument lowering, and FastISel is |
| 230 | // not capable of lowering the entire function. Mixing the two selectors tend |
| 231 | // to result in poor lowering of Arguments. |
| 232 | return any_of(Range: Fn.args(), P: [](const Argument &Arg) { |
| 233 | return Arg.hasAttribute(Kind: Attribute::AttrKind::SwiftAsync); |
| 234 | }); |
| 235 | } |
| 236 | |
| 237 | static bool maintainPGOProfile(const TargetMachine &TM, |
| 238 | CodeGenOptLevel OptLevel) { |
| 239 | if (OptLevel != CodeGenOptLevel::None) |
| 240 | return true; |
| 241 | if (TM.getPGOOption()) { |
| 242 | const PGOOptions &Options = *TM.getPGOOption(); |
| 243 | return Options.Action == PGOOptions::PGOAction::IRUse || |
| 244 | Options.Action == PGOOptions::PGOAction::SampleUse || |
| 245 | Options.CSAction == PGOOptions::CSPGOAction::CSIRUse; |
| 246 | } |
| 247 | return false; |
| 248 | } |
| 249 | |
| 250 | namespace llvm { |
| 251 | |
| 252 | //===--------------------------------------------------------------------===// |
| 253 | /// This class is used by SelectionDAGISel to temporarily override |
| 254 | /// the optimization level on a per-function basis. |
| 255 | class OptLevelChanger { |
| 256 | SelectionDAGISel &IS; |
| 257 | CodeGenOptLevel SavedOptLevel; |
| 258 | bool SavedFastISel; |
| 259 | |
| 260 | public: |
| 261 | OptLevelChanger(SelectionDAGISel &ISel, CodeGenOptLevel NewOptLevel) |
| 262 | : IS(ISel) { |
| 263 | SavedOptLevel = IS.OptLevel; |
| 264 | SavedFastISel = IS.TM.Options.EnableFastISel; |
| 265 | if (NewOptLevel != SavedOptLevel) { |
| 266 | IS.OptLevel = NewOptLevel; |
| 267 | IS.TM.setOptLevel(NewOptLevel); |
| 268 | LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function " |
| 269 | << IS.MF->getFunction().getName() << "\n" ); |
| 270 | LLVM_DEBUG(dbgs() << "\tBefore: -O" << static_cast<int>(SavedOptLevel) |
| 271 | << " ; After: -O" << static_cast<int>(NewOptLevel) |
| 272 | << "\n" ); |
| 273 | if (NewOptLevel == CodeGenOptLevel::None) |
| 274 | IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); |
| 275 | } |
| 276 | if (dontUseFastISelFor(Fn: IS.MF->getFunction())) |
| 277 | IS.TM.setFastISel(false); |
| 278 | LLVM_DEBUG( |
| 279 | dbgs() << "\tFastISel is " |
| 280 | << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled" ) |
| 281 | << "\n" ); |
| 282 | } |
| 283 | |
| 284 | ~OptLevelChanger() { |
| 285 | if (IS.OptLevel == SavedOptLevel) |
| 286 | return; |
| 287 | LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function " |
| 288 | << IS.MF->getFunction().getName() << "\n" ); |
| 289 | LLVM_DEBUG(dbgs() << "\tBefore: -O" << static_cast<int>(IS.OptLevel) |
| 290 | << " ; After: -O" << static_cast<int>(SavedOptLevel) << "\n" ); |
| 291 | IS.OptLevel = SavedOptLevel; |
| 292 | IS.TM.setOptLevel(SavedOptLevel); |
| 293 | IS.TM.setFastISel(SavedFastISel); |
| 294 | } |
| 295 | }; |
| 296 | |
| 297 | //===--------------------------------------------------------------------===// |
| 298 | /// createDefaultScheduler - This creates an instruction scheduler appropriate |
| 299 | /// for the target. |
| 300 | ScheduleDAGSDNodes *createDefaultScheduler(SelectionDAGISel *IS, |
| 301 | CodeGenOptLevel OptLevel) { |
| 302 | const TargetLowering *TLI = IS->TLI; |
| 303 | const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); |
| 304 | |
| 305 | // Try first to see if the Target has its own way of selecting a scheduler |
| 306 | if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { |
| 307 | return SchedulerCtor(IS, OptLevel); |
| 308 | } |
| 309 | |
| 310 | if (OptLevel == CodeGenOptLevel::None || |
| 311 | (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || |
| 312 | TLI->getSchedulingPreference() == Sched::Source) |
| 313 | return createSourceListDAGScheduler(IS, OptLevel); |
| 314 | if (TLI->getSchedulingPreference() == Sched::RegPressure) |
| 315 | return createBURRListDAGScheduler(IS, OptLevel); |
| 316 | if (TLI->getSchedulingPreference() == Sched::Hybrid) |
| 317 | return createHybridListDAGScheduler(IS, OptLevel); |
| 318 | if (TLI->getSchedulingPreference() == Sched::VLIW) |
| 319 | return createVLIWDAGScheduler(IS, OptLevel); |
| 320 | if (TLI->getSchedulingPreference() == Sched::Fast) |
| 321 | return createFastDAGScheduler(IS, OptLevel); |
| 322 | if (TLI->getSchedulingPreference() == Sched::Linearize) |
| 323 | return createDAGLinearizer(IS, OptLevel); |
| 324 | assert(TLI->getSchedulingPreference() == Sched::ILP && |
| 325 | "Unknown sched type!" ); |
| 326 | return createILPListDAGScheduler(IS, OptLevel); |
| 327 | } |
| 328 | |
| 329 | } // end namespace llvm |
| 330 | |
| 331 | MachineBasicBlock * |
| 332 | TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
| 333 | MachineBasicBlock *MBB) const { |
| 334 | switch (MI.getOpcode()) { |
| 335 | case TargetOpcode::STATEPOINT: |
| 336 | // As an implementation detail, STATEPOINT shares the STACKMAP format at |
| 337 | // this point in the process. We diverge later. |
| 338 | case TargetOpcode::STACKMAP: |
| 339 | case TargetOpcode::PATCHPOINT: |
| 340 | return emitPatchPoint(MI, MBB); |
| 341 | default: |
| 342 | break; |
| 343 | } |
| 344 | |
| 345 | #ifndef NDEBUG |
| 346 | dbgs() << "If a target marks an instruction with " |
| 347 | "'usesCustomInserter', it must implement " |
| 348 | "TargetLowering::EmitInstrWithCustomInserter!\n" ; |
| 349 | #endif |
| 350 | llvm_unreachable(nullptr); |
| 351 | } |
| 352 | |
| 353 | void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, |
| 354 | SDNode *Node) const { |
| 355 | assert(!MI.hasPostISelHook() && |
| 356 | "If a target marks an instruction with 'hasPostISelHook', " |
| 357 | "it must implement TargetLowering::AdjustInstrPostInstrSelection!" ); |
| 358 | } |
| 359 | |
| 360 | //===----------------------------------------------------------------------===// |
| 361 | // SelectionDAGISel code |
| 362 | //===----------------------------------------------------------------------===// |
| 363 | |
| 364 | SelectionDAGISelLegacy::SelectionDAGISelLegacy( |
| 365 | char &ID, std::unique_ptr<SelectionDAGISel> S) |
| 366 | : MachineFunctionPass(ID), Selector(std::move(S)) { |
| 367 | initializeBranchProbabilityInfoWrapperPassPass( |
| 368 | *PassRegistry::getPassRegistry()); |
| 369 | initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); |
| 370 | initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry()); |
| 371 | } |
| 372 | |
| 373 | bool SelectionDAGISelLegacy::runOnMachineFunction(MachineFunction &MF) { |
| 374 | // If we already selected that function, we do not need to run SDISel. |
| 375 | if (MF.getProperties().hasSelected()) |
| 376 | return false; |
| 377 | |
| 378 | // Do some sanity-checking on the command-line options. |
| 379 | if (EnableFastISelAbort && !Selector->TM.Options.EnableFastISel) |
| 380 | reportFatalUsageError(reason: "-fast-isel-abort > 0 requires -fast-isel" ); |
| 381 | |
| 382 | // Decide what flavour of variable location debug-info will be used, before |
| 383 | // we change the optimisation level. |
| 384 | MF.setUseDebugInstrRef(MF.shouldUseDebugInstrRef()); |
| 385 | |
| 386 | // Reset the target options before resetting the optimization |
| 387 | // level below. |
| 388 | // FIXME: This is a horrible hack and should be processed via |
| 389 | // codegen looking at the optimization level explicitly when |
| 390 | // it wants to look at it. |
| 391 | Selector->TM.resetTargetOptions(F: MF.getFunction()); |
| 392 | // Reset OptLevel to None for optnone functions. |
| 393 | CodeGenOptLevel NewOptLevel = skipFunction(F: MF.getFunction()) |
| 394 | ? CodeGenOptLevel::None |
| 395 | : Selector->OptLevel; |
| 396 | |
| 397 | Selector->MF = &MF; |
| 398 | OptLevelChanger OLC(*Selector, NewOptLevel); |
| 399 | Selector->initializeAnalysisResults(MFP&: *this); |
| 400 | return Selector->runOnMachineFunction(mf&: MF); |
| 401 | } |
| 402 | |
| 403 | SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOptLevel OL) |
| 404 | : TM(tm), FuncInfo(new FunctionLoweringInfo()), |
| 405 | SwiftError(new SwiftErrorValueTracking()), |
| 406 | CurDAG(new SelectionDAG(tm, OL)), |
| 407 | SDB(std::make_unique<SelectionDAGBuilder>(args&: *CurDAG, args&: *FuncInfo, args&: *SwiftError, |
| 408 | args&: OL)), |
| 409 | OptLevel(OL) { |
| 410 | initializeBranchProbabilityInfoWrapperPassPass( |
| 411 | *PassRegistry::getPassRegistry()); |
| 412 | initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); |
| 413 | initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry()); |
| 414 | } |
| 415 | |
| 416 | SelectionDAGISel::~SelectionDAGISel() { delete CurDAG; } |
| 417 | |
| 418 | void SelectionDAGISelLegacy::getAnalysisUsage(AnalysisUsage &AU) const { |
| 419 | CodeGenOptLevel OptLevel = Selector->OptLevel; |
| 420 | bool RegisterPGOPasses = maintainPGOProfile(TM: Selector->TM, OptLevel: Selector->OptLevel); |
| 421 | if (OptLevel != CodeGenOptLevel::None) |
| 422 | AU.addRequired<AAResultsWrapperPass>(); |
| 423 | AU.addRequired<GCModuleInfo>(); |
| 424 | AU.addRequired<StackProtector>(); |
| 425 | AU.addPreserved<GCModuleInfo>(); |
| 426 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| 427 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
| 428 | AU.addRequired<AssumptionCacheTracker>(); |
| 429 | if (UseMBPI && RegisterPGOPasses) |
| 430 | AU.addRequired<BranchProbabilityInfoWrapperPass>(); |
| 431 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| 432 | // AssignmentTrackingAnalysis only runs if assignment tracking is enabled for |
| 433 | // the module. |
| 434 | AU.addRequired<AssignmentTrackingAnalysis>(); |
| 435 | AU.addPreserved<AssignmentTrackingAnalysis>(); |
| 436 | if (RegisterPGOPasses) |
| 437 | LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); |
| 438 | |
| 439 | AU.addRequired<LibcallLoweringInfoWrapper>(); |
| 440 | |
| 441 | MachineFunctionPass::getAnalysisUsage(AU); |
| 442 | } |
| 443 | |
| 444 | PreservedAnalyses |
| 445 | SelectionDAGISelPass::run(MachineFunction &MF, |
| 446 | MachineFunctionAnalysisManager &MFAM) { |
| 447 | // If we already selected that function, we do not need to run SDISel. |
| 448 | if (MF.getProperties().hasSelected()) |
| 449 | return PreservedAnalyses::all(); |
| 450 | |
| 451 | // Do some sanity-checking on the command-line options. |
| 452 | if (EnableFastISelAbort && !Selector->TM.Options.EnableFastISel) |
| 453 | reportFatalUsageError(reason: "-fast-isel-abort > 0 requires -fast-isel" ); |
| 454 | |
| 455 | // Decide what flavour of variable location debug-info will be used, before |
| 456 | // we change the optimisation level. |
| 457 | MF.setUseDebugInstrRef(MF.shouldUseDebugInstrRef()); |
| 458 | |
| 459 | // Reset the target options before resetting the optimization |
| 460 | // level below. |
| 461 | // FIXME: This is a horrible hack and should be processed via |
| 462 | // codegen looking at the optimization level explicitly when |
| 463 | // it wants to look at it. |
| 464 | Selector->TM.resetTargetOptions(F: MF.getFunction()); |
| 465 | // Reset OptLevel to None for optnone functions. |
| 466 | // TODO: Add a function analysis to handle this. |
| 467 | Selector->MF = &MF; |
| 468 | // Reset OptLevel to None for optnone functions. |
| 469 | CodeGenOptLevel NewOptLevel = MF.getFunction().hasOptNone() |
| 470 | ? CodeGenOptLevel::None |
| 471 | : Selector->OptLevel; |
| 472 | |
| 473 | OptLevelChanger OLC(*Selector, NewOptLevel); |
| 474 | Selector->initializeAnalysisResults(MFAM); |
| 475 | Selector->runOnMachineFunction(mf&: MF); |
| 476 | |
| 477 | return getMachineFunctionPassPreservedAnalyses(); |
| 478 | } |
| 479 | |
| 480 | void SelectionDAGISel::initializeAnalysisResults( |
| 481 | MachineFunctionAnalysisManager &MFAM) { |
| 482 | auto &FAM = MFAM.getResult<FunctionAnalysisManagerMachineFunctionProxy>(IR&: *MF) |
| 483 | .getManager(); |
| 484 | auto &MAMP = MFAM.getResult<ModuleAnalysisManagerMachineFunctionProxy>(IR&: *MF); |
| 485 | Function &Fn = MF->getFunction(); |
| 486 | #ifndef NDEBUG |
| 487 | FuncName = Fn.getName(); |
| 488 | MatchFilterFuncName = isFunctionInPrintList(FuncName); |
| 489 | #else |
| 490 | (void)MatchFilterFuncName; |
| 491 | #endif |
| 492 | |
| 493 | const TargetSubtargetInfo &Subtarget = MF->getSubtarget(); |
| 494 | bool RegisterPGOPasses = maintainPGOProfile(TM, OptLevel); |
| 495 | TII = Subtarget.getInstrInfo(); |
| 496 | TLI = Subtarget.getTargetLowering(); |
| 497 | RegInfo = &MF->getRegInfo(); |
| 498 | LibInfo = &FAM.getResult<TargetLibraryAnalysis>(IR&: Fn); |
| 499 | |
| 500 | GFI = Fn.hasGC() ? &FAM.getResult<GCFunctionAnalysis>(IR&: Fn) : nullptr; |
| 501 | ORE = std::make_unique<OptimizationRemarkEmitter>(args: &Fn); |
| 502 | AC = &FAM.getResult<AssumptionAnalysis>(IR&: Fn); |
| 503 | auto *PSI = MAMP.getCachedResult<ProfileSummaryAnalysis>(IR&: *Fn.getParent()); |
| 504 | BlockFrequencyInfo *BFI = nullptr; |
| 505 | FAM.getResult<BlockFrequencyAnalysis>(IR&: Fn); |
| 506 | if (PSI && PSI->hasProfileSummary() && RegisterPGOPasses) |
| 507 | BFI = &FAM.getResult<BlockFrequencyAnalysis>(IR&: Fn); |
| 508 | |
| 509 | FunctionVarLocs const *FnVarLocs = nullptr; |
| 510 | if (isAssignmentTrackingEnabled(M: *Fn.getParent())) |
| 511 | FnVarLocs = &FAM.getResult<DebugAssignmentTrackingAnalysis>(IR&: Fn); |
| 512 | |
| 513 | auto *UA = FAM.getCachedResult<UniformityInfoAnalysis>(IR&: Fn); |
| 514 | MachineModuleInfo &MMI = |
| 515 | MAMP.getCachedResult<MachineModuleAnalysis>(IR&: *Fn.getParent())->getMMI(); |
| 516 | |
| 517 | const LibcallLoweringModuleAnalysisResult *LibcallResult = |
| 518 | MAMP.getCachedResult<LibcallLoweringModuleAnalysis>(IR&: *Fn.getParent()); |
| 519 | if (!LibcallResult) { |
| 520 | reportFatalUsageError(reason: "'" + LibcallLoweringModuleAnalysis::name() + |
| 521 | "' analysis required" ); |
| 522 | } |
| 523 | |
| 524 | LibcallLowering = &LibcallResult->getLibcallLowering(Subtarget); |
| 525 | CurDAG->init(NewMF&: *MF, NewORE&: *ORE, AM&: MFAM, LibraryInfo: LibInfo, LibcallsInfo: LibcallLowering, UA, PSIin: PSI, BFIin: BFI, MMI, |
| 526 | FnVarLocs); |
| 527 | |
| 528 | // Now get the optional analyzes if we want to. |
| 529 | // This is based on the possibly changed OptLevel (after optnone is taken |
| 530 | // into account). That's unfortunate but OK because it just means we won't |
| 531 | // ask for passes that have been required anyway. |
| 532 | |
| 533 | if (UseMBPI && RegisterPGOPasses) |
| 534 | FuncInfo->BPI = &FAM.getResult<BranchProbabilityAnalysis>(IR&: Fn); |
| 535 | else |
| 536 | FuncInfo->BPI = nullptr; |
| 537 | |
| 538 | if (OptLevel != CodeGenOptLevel::None) |
| 539 | BatchAA.emplace(args&: FAM.getResult<AAManager>(IR&: Fn)); |
| 540 | else |
| 541 | BatchAA = std::nullopt; |
| 542 | |
| 543 | SP = &FAM.getResult<SSPLayoutAnalysis>(IR&: Fn); |
| 544 | |
| 545 | TTI = &FAM.getResult<TargetIRAnalysis>(IR&: Fn); |
| 546 | |
| 547 | HwMode = Subtarget.getHwMode(); |
| 548 | } |
| 549 | |
| 550 | void SelectionDAGISel::initializeAnalysisResults(MachineFunctionPass &MFP) { |
| 551 | Function &Fn = MF->getFunction(); |
| 552 | #ifndef NDEBUG |
| 553 | FuncName = Fn.getName(); |
| 554 | MatchFilterFuncName = isFunctionInPrintList(FuncName); |
| 555 | #else |
| 556 | (void)MatchFilterFuncName; |
| 557 | #endif |
| 558 | |
| 559 | const TargetSubtargetInfo &Subtarget = MF->getSubtarget(); |
| 560 | |
| 561 | bool RegisterPGOPasses = maintainPGOProfile(TM, OptLevel); |
| 562 | TII = Subtarget.getInstrInfo(); |
| 563 | TLI = Subtarget.getTargetLowering(); |
| 564 | RegInfo = &MF->getRegInfo(); |
| 565 | LibInfo = &MFP.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F: Fn); |
| 566 | |
| 567 | GFI = Fn.hasGC() ? &MFP.getAnalysis<GCModuleInfo>().getFunctionInfo(F: Fn) |
| 568 | : nullptr; |
| 569 | ORE = std::make_unique<OptimizationRemarkEmitter>(args: &Fn); |
| 570 | AC = &MFP.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F&: Fn); |
| 571 | auto *PSI = &MFP.getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| 572 | BlockFrequencyInfo *BFI = nullptr; |
| 573 | if (PSI && PSI->hasProfileSummary() && RegisterPGOPasses) |
| 574 | BFI = &MFP.getAnalysis<LazyBlockFrequencyInfoPass>().getBFI(); |
| 575 | |
| 576 | FunctionVarLocs const *FnVarLocs = nullptr; |
| 577 | if (isAssignmentTrackingEnabled(M: *Fn.getParent())) |
| 578 | FnVarLocs = MFP.getAnalysis<AssignmentTrackingAnalysis>().getResults(); |
| 579 | |
| 580 | UniformityInfo *UA = nullptr; |
| 581 | if (auto *UAPass = MFP.getAnalysisIfAvailable<UniformityInfoWrapperPass>()) |
| 582 | UA = &UAPass->getUniformityInfo(); |
| 583 | |
| 584 | MachineModuleInfo &MMI = |
| 585 | MFP.getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); |
| 586 | |
| 587 | LibcallLowering = |
| 588 | &MFP.getAnalysis<LibcallLoweringInfoWrapper>().getLibcallLowering( |
| 589 | M: *Fn.getParent(), Subtarget); |
| 590 | |
| 591 | CurDAG->init(NewMF&: *MF, NewORE&: *ORE, PassPtr: &MFP, LibraryInfo: LibInfo, LibcallsInfo: LibcallLowering, UA, PSIin: PSI, BFIin: BFI, MMI, |
| 592 | FnVarLocs); |
| 593 | |
| 594 | // Now get the optional analyzes if we want to. |
| 595 | // This is based on the possibly changed OptLevel (after optnone is taken |
| 596 | // into account). That's unfortunate but OK because it just means we won't |
| 597 | // ask for passes that have been required anyway. |
| 598 | |
| 599 | if (UseMBPI && RegisterPGOPasses) |
| 600 | FuncInfo->BPI = |
| 601 | &MFP.getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); |
| 602 | else |
| 603 | FuncInfo->BPI = nullptr; |
| 604 | |
| 605 | if (OptLevel != CodeGenOptLevel::None) |
| 606 | BatchAA.emplace(args&: MFP.getAnalysis<AAResultsWrapperPass>().getAAResults()); |
| 607 | else |
| 608 | BatchAA = std::nullopt; |
| 609 | |
| 610 | SP = &MFP.getAnalysis<StackProtector>().getLayoutInfo(); |
| 611 | |
| 612 | TTI = &MFP.getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F: Fn); |
| 613 | |
| 614 | HwMode = Subtarget.getHwMode(); |
| 615 | } |
| 616 | |
| 617 | bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { |
| 618 | SwiftError->setFunction(mf); |
| 619 | const Function &Fn = mf.getFunction(); |
| 620 | |
| 621 | bool InstrRef = mf.useDebugInstrRef(); |
| 622 | |
| 623 | FuncInfo->set(Fn: MF->getFunction(), MF&: *MF, DAG: CurDAG); |
| 624 | |
| 625 | ISEL_DUMP(dbgs() << "\n\n\n=== " << FuncName << '\n'); |
| 626 | |
| 627 | SDB->init(gfi: GFI, BatchAA: getBatchAA(), AC, li: LibInfo, TTI: *TTI); |
| 628 | |
| 629 | MF->setHasInlineAsm(false); |
| 630 | |
| 631 | FuncInfo->SplitCSR = false; |
| 632 | |
| 633 | // We split CSR if the target supports it for the given function |
| 634 | // and the function has only return exits. |
| 635 | if (OptLevel != CodeGenOptLevel::None && TLI->supportSplitCSR(MF)) { |
| 636 | FuncInfo->SplitCSR = true; |
| 637 | |
| 638 | // Collect all the return blocks. |
| 639 | for (const BasicBlock &BB : Fn) { |
| 640 | if (!succ_empty(BB: &BB)) |
| 641 | continue; |
| 642 | |
| 643 | const Instruction *Term = BB.getTerminator(); |
| 644 | if (isa<UnreachableInst>(Val: Term) || isa<ReturnInst>(Val: Term)) |
| 645 | continue; |
| 646 | |
| 647 | // Bail out if the exit block is not Return nor Unreachable. |
| 648 | FuncInfo->SplitCSR = false; |
| 649 | break; |
| 650 | } |
| 651 | } |
| 652 | |
| 653 | MachineBasicBlock *EntryMBB = &MF->front(); |
| 654 | if (FuncInfo->SplitCSR) |
| 655 | // This performs initialization so lowering for SplitCSR will be correct. |
| 656 | TLI->initializeSplitCSR(Entry: EntryMBB); |
| 657 | |
| 658 | SelectAllBasicBlocks(Fn); |
| 659 | if (FastISelFailed && EnableFastISelFallbackReport) { |
| 660 | DiagnosticInfoISelFallback DiagFallback(Fn); |
| 661 | Fn.getContext().diagnose(DI: DiagFallback); |
| 662 | } |
| 663 | |
| 664 | // Replace forward-declared registers with the registers containing |
| 665 | // the desired value. |
| 666 | // Note: it is important that this happens **before** the call to |
| 667 | // EmitLiveInCopies, since implementations can skip copies of unused |
| 668 | // registers. If we don't apply the reg fixups before, some registers may |
| 669 | // appear as unused and will be skipped, resulting in bad MI. |
| 670 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
| 671 | for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(), |
| 672 | E = FuncInfo->RegFixups.end(); |
| 673 | I != E; ++I) { |
| 674 | Register From = I->first; |
| 675 | Register To = I->second; |
| 676 | // If To is also scheduled to be replaced, find what its ultimate |
| 677 | // replacement is. |
| 678 | while (true) { |
| 679 | DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(Val: To); |
| 680 | if (J == E) |
| 681 | break; |
| 682 | To = J->second; |
| 683 | } |
| 684 | // Make sure the new register has a sufficiently constrained register class. |
| 685 | if (From.isVirtual() && To.isVirtual()) |
| 686 | MRI.constrainRegClass(Reg: To, RC: MRI.getRegClass(Reg: From)); |
| 687 | // Replace it. |
| 688 | |
| 689 | // Replacing one register with another won't touch the kill flags. |
| 690 | // We need to conservatively clear the kill flags as a kill on the old |
| 691 | // register might dominate existing uses of the new register. |
| 692 | if (!MRI.use_empty(RegNo: To)) |
| 693 | MRI.clearKillFlags(Reg: From); |
| 694 | MRI.replaceRegWith(FromReg: From, ToReg: To); |
| 695 | } |
| 696 | |
| 697 | // If the first basic block in the function has live ins that need to be |
| 698 | // copied into vregs, emit the copies into the top of the block before |
| 699 | // emitting the code for the block. |
| 700 | const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); |
| 701 | RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII: *TII); |
| 702 | |
| 703 | // Insert copies in the entry block and the return blocks. |
| 704 | if (FuncInfo->SplitCSR) { |
| 705 | SmallVector<MachineBasicBlock*, 4> Returns; |
| 706 | // Collect all the return blocks. |
| 707 | for (MachineBasicBlock &MBB : mf) { |
| 708 | if (!MBB.succ_empty()) |
| 709 | continue; |
| 710 | |
| 711 | MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); |
| 712 | if (Term != MBB.end() && Term->isReturn()) { |
| 713 | Returns.push_back(Elt: &MBB); |
| 714 | continue; |
| 715 | } |
| 716 | } |
| 717 | TLI->insertCopiesSplitCSR(Entry: EntryMBB, Exits: Returns); |
| 718 | } |
| 719 | |
| 720 | DenseMap<MCRegister, Register> LiveInMap; |
| 721 | if (!FuncInfo->ArgDbgValues.empty()) |
| 722 | for (std::pair<MCRegister, Register> LI : RegInfo->liveins()) |
| 723 | if (LI.second) |
| 724 | LiveInMap.insert(KV: LI); |
| 725 | |
| 726 | // Insert DBG_VALUE instructions for function arguments to the entry block. |
| 727 | for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { |
| 728 | MachineInstr *MI = FuncInfo->ArgDbgValues[e - i - 1]; |
| 729 | assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST && |
| 730 | "Function parameters should not be described by DBG_VALUE_LIST." ); |
| 731 | bool hasFI = MI->getDebugOperand(Index: 0).isFI(); |
| 732 | Register Reg = |
| 733 | hasFI ? TRI.getFrameRegister(MF: *MF) : MI->getDebugOperand(Index: 0).getReg(); |
| 734 | if (Reg.isPhysical()) |
| 735 | EntryMBB->insert(I: EntryMBB->begin(), MI); |
| 736 | else { |
| 737 | MachineInstr *Def = RegInfo->getVRegDef(Reg); |
| 738 | if (Def) { |
| 739 | MachineBasicBlock::iterator InsertPos = Def; |
| 740 | // FIXME: VR def may not be in entry block. |
| 741 | Def->getParent()->insert(I: std::next(x: InsertPos), MI); |
| 742 | } else |
| 743 | LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg" |
| 744 | << printReg(Reg) << '\n'); |
| 745 | } |
| 746 | |
| 747 | // Don't try and extend through copies in instruction referencing mode. |
| 748 | if (InstrRef) |
| 749 | continue; |
| 750 | |
| 751 | // If Reg is live-in then update debug info to track its copy in a vreg. |
| 752 | if (!Reg.isPhysical()) |
| 753 | continue; |
| 754 | DenseMap<MCRegister, Register>::iterator LDI = LiveInMap.find(Val: Reg); |
| 755 | if (LDI != LiveInMap.end()) { |
| 756 | assert(!hasFI && "There's no handling of frame pointer updating here yet " |
| 757 | "- add if needed" ); |
| 758 | MachineInstr *Def = RegInfo->getVRegDef(Reg: LDI->second); |
| 759 | MachineBasicBlock::iterator InsertPos = Def; |
| 760 | const MDNode *Variable = MI->getDebugVariable(); |
| 761 | const MDNode *Expr = MI->getDebugExpression(); |
| 762 | DebugLoc DL = MI->getDebugLoc(); |
| 763 | bool IsIndirect = MI->isIndirectDebugValue(); |
| 764 | if (IsIndirect) |
| 765 | assert(MI->getDebugOffset().getImm() == 0 && |
| 766 | "DBG_VALUE with nonzero offset" ); |
| 767 | assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && |
| 768 | "Expected inlined-at fields to agree" ); |
| 769 | assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST && |
| 770 | "Didn't expect to see a DBG_VALUE_LIST here" ); |
| 771 | // Def is never a terminator here, so it is ok to increment InsertPos. |
| 772 | BuildMI(BB&: *EntryMBB, I: ++InsertPos, DL, MCID: TII->get(Opcode: TargetOpcode::DBG_VALUE), |
| 773 | IsIndirect, Reg: LDI->second, Variable, Expr); |
| 774 | |
| 775 | // If this vreg is directly copied into an exported register then |
| 776 | // that COPY instructions also need DBG_VALUE, if it is the only |
| 777 | // user of LDI->second. |
| 778 | MachineInstr *CopyUseMI = nullptr; |
| 779 | for (MachineInstr &UseMI : RegInfo->use_instructions(Reg: LDI->second)) { |
| 780 | if (UseMI.isDebugValue()) |
| 781 | continue; |
| 782 | if (UseMI.isCopy() && !CopyUseMI && UseMI.getParent() == EntryMBB) { |
| 783 | CopyUseMI = &UseMI; |
| 784 | continue; |
| 785 | } |
| 786 | // Otherwise this is another use or second copy use. |
| 787 | CopyUseMI = nullptr; |
| 788 | break; |
| 789 | } |
| 790 | if (CopyUseMI && |
| 791 | TRI.getRegSizeInBits(Reg: LDI->second, MRI) == |
| 792 | TRI.getRegSizeInBits(Reg: CopyUseMI->getOperand(i: 0).getReg(), MRI)) { |
| 793 | // Use MI's debug location, which describes where Variable was |
| 794 | // declared, rather than whatever is attached to CopyUseMI. |
| 795 | MachineInstr *NewMI = |
| 796 | BuildMI(MF&: *MF, DL, MCID: TII->get(Opcode: TargetOpcode::DBG_VALUE), IsIndirect, |
| 797 | Reg: CopyUseMI->getOperand(i: 0).getReg(), Variable, Expr); |
| 798 | MachineBasicBlock::iterator Pos = CopyUseMI; |
| 799 | EntryMBB->insertAfter(I: Pos, MI: NewMI); |
| 800 | } |
| 801 | } |
| 802 | } |
| 803 | |
| 804 | // For debug-info, in instruction referencing mode, we need to perform some |
| 805 | // post-isel maintenence. |
| 806 | if (MF->useDebugInstrRef()) |
| 807 | MF->finalizeDebugInstrRefs(); |
| 808 | |
| 809 | // Determine if there are any calls in this machine function. |
| 810 | MachineFrameInfo &MFI = MF->getFrameInfo(); |
| 811 | for (const auto &MBB : *MF) { |
| 812 | if (MFI.hasCalls() && MF->hasInlineAsm()) |
| 813 | break; |
| 814 | |
| 815 | for (const auto &MI : MBB) { |
| 816 | const MCInstrDesc &MCID = TII->get(Opcode: MI.getOpcode()); |
| 817 | if ((MCID.isCall() && !MCID.isReturn()) || |
| 818 | MI.isStackAligningInlineAsm()) { |
| 819 | MFI.setHasCalls(true); |
| 820 | } |
| 821 | if (MI.isInlineAsm()) { |
| 822 | MF->setHasInlineAsm(true); |
| 823 | } |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | // Release function-specific state. SDB and CurDAG are already cleared |
| 828 | // at this point. |
| 829 | FuncInfo->clear(); |
| 830 | |
| 831 | ISEL_DUMP(dbgs() << "*** MachineFunction at end of ISel ***\n" ); |
| 832 | ISEL_DUMP(MF->print(dbgs())); |
| 833 | |
| 834 | return true; |
| 835 | } |
| 836 | |
| 837 | static void (MachineFunction &MF, |
| 838 | OptimizationRemarkEmitter &ORE, |
| 839 | OptimizationRemarkMissed &R, |
| 840 | bool ShouldAbort) { |
| 841 | // Print the function name explicitly if we don't have a debug location (which |
| 842 | // makes the diagnostic less useful) or if we're going to emit a raw error. |
| 843 | if (!R.getLocation().isValid() || ShouldAbort) |
| 844 | R << (" (in function: " + MF.getName() + ")" ).str(); |
| 845 | |
| 846 | if (ShouldAbort) |
| 847 | reportFatalUsageError(reason: Twine(R.getMsg())); |
| 848 | |
| 849 | ORE.emit(OptDiag&: R); |
| 850 | LLVM_DEBUG(dbgs() << R.getMsg() << "\n" ); |
| 851 | } |
| 852 | |
| 853 | // Detect any fake uses that follow a tail call and move them before the tail |
| 854 | // call. Ignore fake uses that use values that are def'd by or after the tail |
| 855 | // call. |
| 856 | static void preserveFakeUses(BasicBlock::iterator Begin, |
| 857 | BasicBlock::iterator End) { |
| 858 | BasicBlock::iterator I = End; |
| 859 | if (--I == Begin || !isa<ReturnInst>(Val: *I)) |
| 860 | return; |
| 861 | // Detect whether there are any fake uses trailing a (potential) tail call. |
| 862 | bool HaveFakeUse = false; |
| 863 | bool HaveTailCall = false; |
| 864 | do { |
| 865 | if (const CallInst *CI = dyn_cast<CallInst>(Val&: --I)) |
| 866 | if (CI->isTailCall()) { |
| 867 | HaveTailCall = true; |
| 868 | break; |
| 869 | } |
| 870 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val&: I)) |
| 871 | if (II->getIntrinsicID() == Intrinsic::fake_use) |
| 872 | HaveFakeUse = true; |
| 873 | } while (I != Begin); |
| 874 | |
| 875 | // If we didn't find any tail calls followed by fake uses, we are done. |
| 876 | if (!HaveTailCall || !HaveFakeUse) |
| 877 | return; |
| 878 | |
| 879 | SmallVector<IntrinsicInst *> FakeUses; |
| 880 | // Record the fake uses we found so we can move them to the front of the |
| 881 | // tail call. Ignore them if they use a value that is def'd by or after |
| 882 | // the tail call. |
| 883 | for (BasicBlock::iterator Inst = I; Inst != End; Inst++) { |
| 884 | if (IntrinsicInst *FakeUse = dyn_cast<IntrinsicInst>(Val&: Inst); |
| 885 | FakeUse && FakeUse->getIntrinsicID() == Intrinsic::fake_use) { |
| 886 | if (auto UsedDef = dyn_cast<Instruction>(Val: FakeUse->getOperand(i_nocapture: 0)); |
| 887 | !UsedDef || UsedDef->getParent() != I->getParent() || |
| 888 | UsedDef->comesBefore(Other: &*I)) |
| 889 | FakeUses.push_back(Elt: FakeUse); |
| 890 | } |
| 891 | } |
| 892 | |
| 893 | for (auto *Inst : FakeUses) |
| 894 | Inst->moveBefore(BB&: *Inst->getParent(), I); |
| 895 | } |
| 896 | |
| 897 | void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, |
| 898 | BasicBlock::const_iterator End, |
| 899 | bool &HadTailCall) { |
| 900 | // Allow creating illegal types during DAG building for the basic block. |
| 901 | CurDAG->NewNodesMustHaveLegalTypes = false; |
| 902 | |
| 903 | // Lower the instructions. If a call is emitted as a tail call, cease emitting |
| 904 | // nodes for this block. If an instruction is elided, don't emit it, but do |
| 905 | // handle any debug-info attached to it. |
| 906 | for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { |
| 907 | if (!ElidedArgCopyInstrs.count(Ptr: &*I)) |
| 908 | SDB->visit(I: *I); |
| 909 | else |
| 910 | SDB->visitDbgInfo(I: *I); |
| 911 | } |
| 912 | |
| 913 | // Make sure the root of the DAG is up-to-date. |
| 914 | CurDAG->setRoot(SDB->getControlRoot()); |
| 915 | HadTailCall = SDB->HasTailCall; |
| 916 | SDB->resolveOrClearDbgInfo(); |
| 917 | SDB->clear(); |
| 918 | |
| 919 | // Final step, emit the lowered DAG as machine code. |
| 920 | CodeGenAndEmitDAG(); |
| 921 | } |
| 922 | |
| 923 | void SelectionDAGISel::ComputeLiveOutVRegInfo() { |
| 924 | SmallPtrSet<SDNode *, 16> Added; |
| 925 | SmallVector<SDNode*, 128> Worklist; |
| 926 | |
| 927 | Worklist.push_back(Elt: CurDAG->getRoot().getNode()); |
| 928 | Added.insert(Ptr: CurDAG->getRoot().getNode()); |
| 929 | |
| 930 | KnownBits Known; |
| 931 | |
| 932 | do { |
| 933 | SDNode *N = Worklist.pop_back_val(); |
| 934 | |
| 935 | // Otherwise, add all chain operands to the worklist. |
| 936 | for (const SDValue &Op : N->op_values()) |
| 937 | if (Op.getValueType() == MVT::Other && Added.insert(Ptr: Op.getNode()).second) |
| 938 | Worklist.push_back(Elt: Op.getNode()); |
| 939 | |
| 940 | // If this is a CopyToReg with a vreg dest, process it. |
| 941 | if (N->getOpcode() != ISD::CopyToReg) |
| 942 | continue; |
| 943 | |
| 944 | Register DestReg = cast<RegisterSDNode>(Val: N->getOperand(Num: 1))->getReg(); |
| 945 | if (!DestReg.isVirtual()) |
| 946 | continue; |
| 947 | |
| 948 | // Ignore non-integer values. |
| 949 | SDValue Src = N->getOperand(Num: 2); |
| 950 | EVT SrcVT = Src.getValueType(); |
| 951 | if (!SrcVT.isInteger()) |
| 952 | continue; |
| 953 | |
| 954 | unsigned NumSignBits = CurDAG->ComputeNumSignBits(Op: Src); |
| 955 | Known = CurDAG->computeKnownBits(Op: Src); |
| 956 | FuncInfo->AddLiveOutRegInfo(Reg: DestReg, NumSignBits, Known); |
| 957 | } while (!Worklist.empty()); |
| 958 | } |
| 959 | |
| 960 | void SelectionDAGISel::CodeGenAndEmitDAG() { |
| 961 | StringRef GroupName = "sdag" ; |
| 962 | StringRef GroupDescription = "Instruction Selection and Scheduling" ; |
| 963 | std::string BlockName; |
| 964 | bool MatchFilterBB = false; |
| 965 | (void)MatchFilterBB; |
| 966 | |
| 967 | // Pre-type legalization allow creation of any node types. |
| 968 | CurDAG->NewNodesMustHaveLegalTypes = false; |
| 969 | |
| 970 | #ifndef NDEBUG |
| 971 | MatchFilterBB = (FilterDAGBasicBlockName.empty() || |
| 972 | FilterDAGBasicBlockName == |
| 973 | FuncInfo->MBB->getBasicBlock()->getName()); |
| 974 | #endif |
| 975 | #ifdef NDEBUG |
| 976 | if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT || |
| 977 | ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || |
| 978 | ViewSUnitDAGs) |
| 979 | #endif |
| 980 | { |
| 981 | BlockName = |
| 982 | (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); |
| 983 | } |
| 984 | ISEL_DUMP(dbgs() << "\nInitial selection DAG: " |
| 985 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 986 | << "'\n" ; |
| 987 | CurDAG->dump(DumpSortedDAG)); |
| 988 | |
| 989 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 990 | if (TTI->hasBranchDivergence()) |
| 991 | CurDAG->VerifyDAGDivergence(); |
| 992 | #endif |
| 993 | |
| 994 | if (ViewDAGCombine1 && MatchFilterBB) |
| 995 | CurDAG->viewGraph(Title: "dag-combine1 input for " + BlockName); |
| 996 | |
| 997 | // Run the DAG combiner in pre-legalize mode. |
| 998 | { |
| 999 | NamedRegionTimer T("combine1" , "DAG Combining 1" , GroupName, |
| 1000 | GroupDescription, TimePassesIsEnabled); |
| 1001 | CurDAG->Combine(Level: BeforeLegalizeTypes, BatchAA: getBatchAA(), OptLevel); |
| 1002 | } |
| 1003 | |
| 1004 | ISEL_DUMP(dbgs() << "\nOptimized lowered selection DAG: " |
| 1005 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 1006 | << "'\n" ; |
| 1007 | CurDAG->dump(DumpSortedDAG)); |
| 1008 | |
| 1009 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 1010 | if (TTI->hasBranchDivergence()) |
| 1011 | CurDAG->VerifyDAGDivergence(); |
| 1012 | #endif |
| 1013 | |
| 1014 | // Second step, hack on the DAG until it only uses operations and types that |
| 1015 | // the target supports. |
| 1016 | if (ViewLegalizeTypesDAGs && MatchFilterBB) |
| 1017 | CurDAG->viewGraph(Title: "legalize-types input for " + BlockName); |
| 1018 | |
| 1019 | bool Changed; |
| 1020 | { |
| 1021 | NamedRegionTimer T("legalize_types" , "Type Legalization" , GroupName, |
| 1022 | GroupDescription, TimePassesIsEnabled); |
| 1023 | Changed = CurDAG->LegalizeTypes(); |
| 1024 | } |
| 1025 | |
| 1026 | ISEL_DUMP(dbgs() << "\nType-legalized selection DAG: " |
| 1027 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 1028 | << "'\n" ; |
| 1029 | CurDAG->dump(DumpSortedDAG)); |
| 1030 | |
| 1031 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 1032 | if (TTI->hasBranchDivergence()) |
| 1033 | CurDAG->VerifyDAGDivergence(); |
| 1034 | #endif |
| 1035 | |
| 1036 | // Only allow creation of legal node types. |
| 1037 | CurDAG->NewNodesMustHaveLegalTypes = true; |
| 1038 | |
| 1039 | if (Changed) { |
| 1040 | if (ViewDAGCombineLT && MatchFilterBB) |
| 1041 | CurDAG->viewGraph(Title: "dag-combine-lt input for " + BlockName); |
| 1042 | |
| 1043 | // Run the DAG combiner in post-type-legalize mode. |
| 1044 | { |
| 1045 | NamedRegionTimer T("combine_lt" , "DAG Combining after legalize types" , |
| 1046 | GroupName, GroupDescription, TimePassesIsEnabled); |
| 1047 | CurDAG->Combine(Level: AfterLegalizeTypes, BatchAA: getBatchAA(), OptLevel); |
| 1048 | } |
| 1049 | |
| 1050 | ISEL_DUMP(dbgs() << "\nOptimized type-legalized selection DAG: " |
| 1051 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 1052 | << "'\n" ; |
| 1053 | CurDAG->dump(DumpSortedDAG)); |
| 1054 | |
| 1055 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 1056 | if (TTI->hasBranchDivergence()) |
| 1057 | CurDAG->VerifyDAGDivergence(); |
| 1058 | #endif |
| 1059 | } |
| 1060 | |
| 1061 | { |
| 1062 | NamedRegionTimer T("legalize_vec" , "Vector Legalization" , GroupName, |
| 1063 | GroupDescription, TimePassesIsEnabled); |
| 1064 | Changed = CurDAG->LegalizeVectors(); |
| 1065 | } |
| 1066 | |
| 1067 | if (Changed) { |
| 1068 | ISEL_DUMP(dbgs() << "\nVector-legalized selection DAG: " |
| 1069 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 1070 | << "'\n" ; |
| 1071 | CurDAG->dump(DumpSortedDAG)); |
| 1072 | |
| 1073 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 1074 | if (TTI->hasBranchDivergence()) |
| 1075 | CurDAG->VerifyDAGDivergence(); |
| 1076 | #endif |
| 1077 | |
| 1078 | { |
| 1079 | NamedRegionTimer T("legalize_types2" , "Type Legalization 2" , GroupName, |
| 1080 | GroupDescription, TimePassesIsEnabled); |
| 1081 | CurDAG->LegalizeTypes(); |
| 1082 | } |
| 1083 | |
| 1084 | ISEL_DUMP(dbgs() << "\nVector/type-legalized selection DAG: " |
| 1085 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 1086 | << "'\n" ; |
| 1087 | CurDAG->dump(DumpSortedDAG)); |
| 1088 | |
| 1089 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 1090 | if (TTI->hasBranchDivergence()) |
| 1091 | CurDAG->VerifyDAGDivergence(); |
| 1092 | #endif |
| 1093 | |
| 1094 | if (ViewDAGCombineLT && MatchFilterBB) |
| 1095 | CurDAG->viewGraph(Title: "dag-combine-lv input for " + BlockName); |
| 1096 | |
| 1097 | // Run the DAG combiner in post-type-legalize mode. |
| 1098 | { |
| 1099 | NamedRegionTimer T("combine_lv" , "DAG Combining after legalize vectors" , |
| 1100 | GroupName, GroupDescription, TimePassesIsEnabled); |
| 1101 | CurDAG->Combine(Level: AfterLegalizeVectorOps, BatchAA: getBatchAA(), OptLevel); |
| 1102 | } |
| 1103 | |
| 1104 | ISEL_DUMP(dbgs() << "\nOptimized vector-legalized selection DAG: " |
| 1105 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 1106 | << "'\n" ; |
| 1107 | CurDAG->dump(DumpSortedDAG)); |
| 1108 | |
| 1109 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 1110 | if (TTI->hasBranchDivergence()) |
| 1111 | CurDAG->VerifyDAGDivergence(); |
| 1112 | #endif |
| 1113 | } |
| 1114 | |
| 1115 | if (ViewLegalizeDAGs && MatchFilterBB) |
| 1116 | CurDAG->viewGraph(Title: "legalize input for " + BlockName); |
| 1117 | |
| 1118 | { |
| 1119 | NamedRegionTimer T("legalize" , "DAG Legalization" , GroupName, |
| 1120 | GroupDescription, TimePassesIsEnabled); |
| 1121 | CurDAG->Legalize(); |
| 1122 | } |
| 1123 | |
| 1124 | ISEL_DUMP(dbgs() << "\nLegalized selection DAG: " |
| 1125 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 1126 | << "'\n" ; |
| 1127 | CurDAG->dump(DumpSortedDAG)); |
| 1128 | |
| 1129 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 1130 | if (TTI->hasBranchDivergence()) |
| 1131 | CurDAG->VerifyDAGDivergence(); |
| 1132 | #endif |
| 1133 | |
| 1134 | if (ViewDAGCombine2 && MatchFilterBB) |
| 1135 | CurDAG->viewGraph(Title: "dag-combine2 input for " + BlockName); |
| 1136 | |
| 1137 | // Run the DAG combiner in post-legalize mode. |
| 1138 | { |
| 1139 | NamedRegionTimer T("combine2" , "DAG Combining 2" , GroupName, |
| 1140 | GroupDescription, TimePassesIsEnabled); |
| 1141 | CurDAG->Combine(Level: AfterLegalizeDAG, BatchAA: getBatchAA(), OptLevel); |
| 1142 | } |
| 1143 | |
| 1144 | ISEL_DUMP(dbgs() << "\nOptimized legalized selection DAG: " |
| 1145 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 1146 | << "'\n" ; |
| 1147 | CurDAG->dump(DumpSortedDAG)); |
| 1148 | |
| 1149 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 1150 | if (TTI->hasBranchDivergence()) |
| 1151 | CurDAG->VerifyDAGDivergence(); |
| 1152 | #endif |
| 1153 | |
| 1154 | if (OptLevel != CodeGenOptLevel::None) |
| 1155 | ComputeLiveOutVRegInfo(); |
| 1156 | |
| 1157 | if (ViewISelDAGs && MatchFilterBB) |
| 1158 | CurDAG->viewGraph(Title: "isel input for " + BlockName); |
| 1159 | |
| 1160 | // Third, instruction select all of the operations to machine code, adding the |
| 1161 | // code to the MachineBasicBlock. |
| 1162 | { |
| 1163 | NamedRegionTimer T("isel" , "Instruction Selection" , GroupName, |
| 1164 | GroupDescription, TimePassesIsEnabled); |
| 1165 | DoInstructionSelection(); |
| 1166 | } |
| 1167 | |
| 1168 | ISEL_DUMP(dbgs() << "\nSelected selection DAG: " |
| 1169 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 1170 | << "'\n" ; |
| 1171 | CurDAG->dump(DumpSortedDAG)); |
| 1172 | |
| 1173 | if (ViewSchedDAGs && MatchFilterBB) |
| 1174 | CurDAG->viewGraph(Title: "scheduler input for " + BlockName); |
| 1175 | |
| 1176 | // Schedule machine code. |
| 1177 | ScheduleDAGSDNodes *Scheduler = CreateScheduler(); |
| 1178 | { |
| 1179 | NamedRegionTimer T("sched" , "Instruction Scheduling" , GroupName, |
| 1180 | GroupDescription, TimePassesIsEnabled); |
| 1181 | Scheduler->Run(dag: CurDAG, bb: FuncInfo->MBB); |
| 1182 | } |
| 1183 | |
| 1184 | if (ViewSUnitDAGs && MatchFilterBB) |
| 1185 | Scheduler->viewGraph(); |
| 1186 | |
| 1187 | // Emit machine code to BB. This can change 'BB' to the last block being |
| 1188 | // inserted into. |
| 1189 | MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; |
| 1190 | { |
| 1191 | NamedRegionTimer T("emit" , "Instruction Creation" , GroupName, |
| 1192 | GroupDescription, TimePassesIsEnabled); |
| 1193 | |
| 1194 | // FuncInfo->InsertPt is passed by reference and set to the end of the |
| 1195 | // scheduled instructions. |
| 1196 | LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(InsertPos&: FuncInfo->InsertPt); |
| 1197 | } |
| 1198 | |
| 1199 | // If the block was split, make sure we update any references that are used to |
| 1200 | // update PHI nodes later on. |
| 1201 | if (FirstMBB != LastMBB) |
| 1202 | SDB->UpdateSplitBlock(First: FirstMBB, Last: LastMBB); |
| 1203 | |
| 1204 | // Free the scheduler state. |
| 1205 | { |
| 1206 | NamedRegionTimer T("cleanup" , "Instruction Scheduling Cleanup" , GroupName, |
| 1207 | GroupDescription, TimePassesIsEnabled); |
| 1208 | delete Scheduler; |
| 1209 | } |
| 1210 | |
| 1211 | // Free the SelectionDAG state, now that we're finished with it. |
| 1212 | CurDAG->clear(); |
| 1213 | } |
| 1214 | |
| 1215 | namespace { |
| 1216 | |
| 1217 | /// ISelUpdater - helper class to handle updates of the instruction selection |
| 1218 | /// graph. |
| 1219 | class ISelUpdater : public SelectionDAG::DAGUpdateListener { |
| 1220 | SelectionDAG::allnodes_iterator &ISelPosition; |
| 1221 | |
| 1222 | public: |
| 1223 | ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) |
| 1224 | : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} |
| 1225 | |
| 1226 | /// NodeDeleted - Handle nodes deleted from the graph. If the node being |
| 1227 | /// deleted is the current ISelPosition node, update ISelPosition. |
| 1228 | /// |
| 1229 | void NodeDeleted(SDNode *N, SDNode *E) override { |
| 1230 | if (ISelPosition == SelectionDAG::allnodes_iterator(N)) |
| 1231 | ++ISelPosition; |
| 1232 | } |
| 1233 | |
| 1234 | /// NodeInserted - Handle new nodes inserted into the graph: propagate |
| 1235 | /// metadata from root nodes that also applies to new nodes, in case the root |
| 1236 | /// is later deleted. |
| 1237 | void NodeInserted(SDNode *N) override { |
| 1238 | SDNode *CurNode = &*ISelPosition; |
| 1239 | if (MDNode *MD = DAG.getPCSections(Node: CurNode)) |
| 1240 | DAG.addPCSections(Node: N, MD); |
| 1241 | if (MDNode *MMRA = DAG.getMMRAMetadata(Node: CurNode)) |
| 1242 | DAG.addMMRAMetadata(Node: N, MMRA); |
| 1243 | } |
| 1244 | }; |
| 1245 | |
| 1246 | } // end anonymous namespace |
| 1247 | |
| 1248 | // This function is used to enforce the topological node id property |
| 1249 | // leveraged during instruction selection. Before the selection process all |
| 1250 | // nodes are given a non-negative id such that all nodes have a greater id than |
| 1251 | // their operands. As this holds transitively we can prune checks that a node N |
| 1252 | // is a predecessor of M another by not recursively checking through M's |
| 1253 | // operands if N's ID is larger than M's ID. This significantly improves |
| 1254 | // performance of various legality checks (e.g. IsLegalToFold / UpdateChains). |
| 1255 | |
| 1256 | // However, when we fuse multiple nodes into a single node during the |
| 1257 | // selection we may induce a predecessor relationship between inputs and |
| 1258 | // outputs of distinct nodes being merged, violating the topological property. |
| 1259 | // Should a fused node have a successor which has yet to be selected, |
| 1260 | // our legality checks would be incorrect. To avoid this we mark all unselected |
| 1261 | // successor nodes, i.e. id != -1, as invalid for pruning by bit-negating (x => |
| 1262 | // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M. |
| 1263 | // We use bit-negation to more clearly enforce that node id -1 can only be |
| 1264 | // achieved by selected nodes. As the conversion is reversable to the original |
| 1265 | // Id, topological pruning can still be leveraged when looking for unselected |
| 1266 | // nodes. This method is called internally in all ISel replacement related |
| 1267 | // functions. |
| 1268 | void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) { |
| 1269 | SmallVector<SDNode *, 4> Nodes; |
| 1270 | Nodes.push_back(Elt: Node); |
| 1271 | |
| 1272 | while (!Nodes.empty()) { |
| 1273 | SDNode *N = Nodes.pop_back_val(); |
| 1274 | for (auto *U : N->users()) { |
| 1275 | auto UId = U->getNodeId(); |
| 1276 | if (UId > 0) { |
| 1277 | InvalidateNodeId(N: U); |
| 1278 | Nodes.push_back(Elt: U); |
| 1279 | } |
| 1280 | } |
| 1281 | } |
| 1282 | } |
| 1283 | |
| 1284 | // InvalidateNodeId - As explained in EnforceNodeIdInvariant, mark a |
| 1285 | // NodeId with the equivalent node id which is invalid for topological |
| 1286 | // pruning. |
| 1287 | void SelectionDAGISel::InvalidateNodeId(SDNode *N) { |
| 1288 | int InvalidId = -(N->getNodeId() + 1); |
| 1289 | N->setNodeId(InvalidId); |
| 1290 | } |
| 1291 | |
| 1292 | // getUninvalidatedNodeId - get original uninvalidated node id. |
| 1293 | int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) { |
| 1294 | int Id = N->getNodeId(); |
| 1295 | if (Id < -1) |
| 1296 | return -(Id + 1); |
| 1297 | return Id; |
| 1298 | } |
| 1299 | |
| 1300 | void SelectionDAGISel::DoInstructionSelection() { |
| 1301 | LLVM_DEBUG(dbgs() << "===== Instruction selection begins: " |
| 1302 | << printMBBReference(*FuncInfo->MBB) << " '" |
| 1303 | << FuncInfo->MBB->getName() << "'\n" ); |
| 1304 | |
| 1305 | PreprocessISelDAG(); |
| 1306 | |
| 1307 | // Select target instructions for the DAG. |
| 1308 | { |
| 1309 | // Number all nodes with a topological order and set DAGSize. |
| 1310 | DAGSize = CurDAG->AssignTopologicalOrder(); |
| 1311 | |
| 1312 | // Create a dummy node (which is not added to allnodes), that adds |
| 1313 | // a reference to the root node, preventing it from being deleted, |
| 1314 | // and tracking any changes of the root. |
| 1315 | HandleSDNode Dummy(CurDAG->getRoot()); |
| 1316 | SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); |
| 1317 | ++ISelPosition; |
| 1318 | |
| 1319 | // Make sure that ISelPosition gets properly updated when nodes are deleted |
| 1320 | // in calls made from this function. New nodes inherit relevant metadata. |
| 1321 | ISelUpdater ISU(*CurDAG, ISelPosition); |
| 1322 | |
| 1323 | // The AllNodes list is now topological-sorted. Visit the |
| 1324 | // nodes by starting at the end of the list (the root of the |
| 1325 | // graph) and preceding back toward the beginning (the entry |
| 1326 | // node). |
| 1327 | while (ISelPosition != CurDAG->allnodes_begin()) { |
| 1328 | SDNode *Node = &*--ISelPosition; |
| 1329 | // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, |
| 1330 | // but there are currently some corner cases that it misses. Also, this |
| 1331 | // makes it theoretically possible to disable the DAGCombiner. |
| 1332 | if (Node->use_empty()) |
| 1333 | continue; |
| 1334 | |
| 1335 | #ifndef NDEBUG |
| 1336 | SmallVector<SDNode *, 4> Nodes; |
| 1337 | Nodes.push_back(Node); |
| 1338 | |
| 1339 | while (!Nodes.empty()) { |
| 1340 | auto N = Nodes.pop_back_val(); |
| 1341 | if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0) |
| 1342 | continue; |
| 1343 | for (const SDValue &Op : N->op_values()) { |
| 1344 | if (Op->getOpcode() == ISD::TokenFactor) |
| 1345 | Nodes.push_back(Op.getNode()); |
| 1346 | else { |
| 1347 | // We rely on topological ordering of node ids for checking for |
| 1348 | // cycles when fusing nodes during selection. All unselected nodes |
| 1349 | // successors of an already selected node should have a negative id. |
| 1350 | // This assertion will catch such cases. If this assertion triggers |
| 1351 | // it is likely you using DAG-level Value/Node replacement functions |
| 1352 | // (versus equivalent ISEL replacement) in backend-specific |
| 1353 | // selections. See comment in EnforceNodeIdInvariant for more |
| 1354 | // details. |
| 1355 | assert(Op->getNodeId() != -1 && |
| 1356 | "Node has already selected predecessor node" ); |
| 1357 | } |
| 1358 | } |
| 1359 | } |
| 1360 | #endif |
| 1361 | |
| 1362 | // When we are using non-default rounding modes or FP exception behavior |
| 1363 | // FP operations are represented by StrictFP pseudo-operations. For |
| 1364 | // targets that do not (yet) understand strict FP operations directly, |
| 1365 | // we convert them to normal FP opcodes instead at this point. This |
| 1366 | // will allow them to be handled by existing target-specific instruction |
| 1367 | // selectors. |
| 1368 | if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) { |
| 1369 | // For some opcodes, we need to call TLI->getOperationAction using |
| 1370 | // the first operand type instead of the result type. Note that this |
| 1371 | // must match what SelectionDAGLegalize::LegalizeOp is doing. |
| 1372 | EVT ActionVT; |
| 1373 | switch (Node->getOpcode()) { |
| 1374 | case ISD::STRICT_SINT_TO_FP: |
| 1375 | case ISD::STRICT_UINT_TO_FP: |
| 1376 | case ISD::STRICT_LRINT: |
| 1377 | case ISD::STRICT_LLRINT: |
| 1378 | case ISD::STRICT_LROUND: |
| 1379 | case ISD::STRICT_LLROUND: |
| 1380 | case ISD::STRICT_FSETCC: |
| 1381 | case ISD::STRICT_FSETCCS: |
| 1382 | ActionVT = Node->getOperand(Num: 1).getValueType(); |
| 1383 | break; |
| 1384 | default: |
| 1385 | ActionVT = Node->getValueType(ResNo: 0); |
| 1386 | break; |
| 1387 | } |
| 1388 | if (TLI->getOperationAction(Op: Node->getOpcode(), VT: ActionVT) |
| 1389 | == TargetLowering::Expand) |
| 1390 | Node = CurDAG->mutateStrictFPToFP(Node); |
| 1391 | } |
| 1392 | |
| 1393 | LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: " ; |
| 1394 | Node->dump(CurDAG)); |
| 1395 | |
| 1396 | Select(N: Node); |
| 1397 | } |
| 1398 | |
| 1399 | CurDAG->setRoot(Dummy.getValue()); |
| 1400 | } |
| 1401 | |
| 1402 | LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n" ); |
| 1403 | |
| 1404 | PostprocessISelDAG(); |
| 1405 | } |
| 1406 | |
| 1407 | static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { |
| 1408 | for (const User *U : CPI->users()) { |
| 1409 | if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(Val: U)) { |
| 1410 | Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); |
| 1411 | if (IID == Intrinsic::eh_exceptionpointer || |
| 1412 | IID == Intrinsic::eh_exceptioncode) |
| 1413 | return true; |
| 1414 | } |
| 1415 | } |
| 1416 | return false; |
| 1417 | } |
| 1418 | |
| 1419 | // wasm.landingpad.index intrinsic is for associating a landing pad index number |
| 1420 | // with a catchpad instruction. Retrieve the landing pad index in the intrinsic |
| 1421 | // and store the mapping in the function. |
| 1422 | static void mapWasmLandingPadIndex(MachineBasicBlock *MBB, |
| 1423 | const CatchPadInst *CPI) { |
| 1424 | MachineFunction *MF = MBB->getParent(); |
| 1425 | // In case of single catch (...), we don't emit LSDA, so we don't need |
| 1426 | // this information. |
| 1427 | bool IsSingleCatchAllClause = |
| 1428 | CPI->arg_size() == 1 && |
| 1429 | cast<Constant>(Val: CPI->getArgOperand(i: 0))->isNullValue(); |
| 1430 | // cathchpads for longjmp use an empty type list, e.g. catchpad within %0 [] |
| 1431 | // and they don't need LSDA info |
| 1432 | bool IsCatchLongjmp = CPI->arg_size() == 0; |
| 1433 | if (!IsSingleCatchAllClause && !IsCatchLongjmp) { |
| 1434 | // Create a mapping from landing pad label to landing pad index. |
| 1435 | bool IntrFound = false; |
| 1436 | for (const User *U : CPI->users()) { |
| 1437 | if (const auto *Call = dyn_cast<IntrinsicInst>(Val: U)) { |
| 1438 | Intrinsic::ID IID = Call->getIntrinsicID(); |
| 1439 | if (IID == Intrinsic::wasm_landingpad_index) { |
| 1440 | Value *IndexArg = Call->getArgOperand(i: 1); |
| 1441 | int Index = cast<ConstantInt>(Val: IndexArg)->getZExtValue(); |
| 1442 | MF->setWasmLandingPadIndex(LPad: MBB, Index); |
| 1443 | IntrFound = true; |
| 1444 | break; |
| 1445 | } |
| 1446 | } |
| 1447 | } |
| 1448 | assert(IntrFound && "wasm.landingpad.index intrinsic not found!" ); |
| 1449 | (void)IntrFound; |
| 1450 | } |
| 1451 | } |
| 1452 | |
| 1453 | /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and |
| 1454 | /// do other setup for EH landing-pad blocks. |
| 1455 | bool SelectionDAGISel::PrepareEHLandingPad() { |
| 1456 | MachineBasicBlock *MBB = FuncInfo->MBB; |
| 1457 | const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); |
| 1458 | const BasicBlock *LLVMBB = MBB->getBasicBlock(); |
| 1459 | const TargetRegisterClass *PtrRC = |
| 1460 | TLI->getRegClassFor(VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
| 1461 | |
| 1462 | auto Pers = classifyEHPersonality(Pers: PersonalityFn); |
| 1463 | |
| 1464 | // Catchpads have one live-in register, which typically holds the exception |
| 1465 | // pointer or code. |
| 1466 | if (isFuncletEHPersonality(Pers)) { |
| 1467 | if (const auto *CPI = dyn_cast<CatchPadInst>(Val: LLVMBB->getFirstNonPHIIt())) { |
| 1468 | if (hasExceptionPointerOrCodeUser(CPI)) { |
| 1469 | // Get or create the virtual register to hold the pointer or code. Mark |
| 1470 | // the live in physreg and copy into the vreg. |
| 1471 | MCRegister EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); |
| 1472 | assert(EHPhysReg && "target lacks exception pointer register" ); |
| 1473 | MBB->addLiveIn(PhysReg: EHPhysReg); |
| 1474 | Register VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, RC: PtrRC); |
| 1475 | BuildMI(BB&: *MBB, I: FuncInfo->InsertPt, MIMD: SDB->getCurDebugLoc(), |
| 1476 | MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: VReg) |
| 1477 | .addReg(RegNo: EHPhysReg, Flags: RegState::Kill); |
| 1478 | } |
| 1479 | } |
| 1480 | return true; |
| 1481 | } |
| 1482 | |
| 1483 | // Add a label to mark the beginning of the landing pad. Deletion of the |
| 1484 | // landing pad can thus be detected via the MachineModuleInfo. |
| 1485 | MCSymbol *Label = MF->addLandingPad(LandingPad: MBB); |
| 1486 | |
| 1487 | const MCInstrDesc &II = TII->get(Opcode: TargetOpcode::EH_LABEL); |
| 1488 | BuildMI(BB&: *MBB, I: FuncInfo->InsertPt, MIMD: SDB->getCurDebugLoc(), MCID: II) |
| 1489 | .addSym(Sym: Label); |
| 1490 | |
| 1491 | // If the unwinder does not preserve all registers, ensure that the |
| 1492 | // function marks the clobbered registers as used. |
| 1493 | const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); |
| 1494 | if (auto *RegMask = TRI.getCustomEHPadPreservedMask(MF: *MF)) |
| 1495 | MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); |
| 1496 | |
| 1497 | if (Pers == EHPersonality::Wasm_CXX) { |
| 1498 | if (const auto *CPI = dyn_cast<CatchPadInst>(Val: LLVMBB->getFirstNonPHIIt())) |
| 1499 | mapWasmLandingPadIndex(MBB, CPI); |
| 1500 | } else { |
| 1501 | // Assign the call site to the landing pad's begin label. |
| 1502 | MF->setCallSiteLandingPad(Sym: Label, Sites: SDB->LPadToCallSiteMap[MBB]); |
| 1503 | // Mark exception register as live in. |
| 1504 | if (MCRegister Reg = TLI->getExceptionPointerRegister(PersonalityFn)) |
| 1505 | FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(PhysReg: Reg, RC: PtrRC); |
| 1506 | // Mark exception selector register as live in. |
| 1507 | if (MCRegister Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) |
| 1508 | FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(PhysReg: Reg, RC: PtrRC); |
| 1509 | } |
| 1510 | |
| 1511 | return true; |
| 1512 | } |
| 1513 | |
| 1514 | // Mark and Report IPToState for each Block under IsEHa |
| 1515 | void SelectionDAGISel::reportIPToStateForBlocks(MachineFunction *MF) { |
| 1516 | llvm::WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo(); |
| 1517 | if (!EHInfo) |
| 1518 | return; |
| 1519 | for (MachineBasicBlock &MBB : *MF) { |
| 1520 | const BasicBlock *BB = MBB.getBasicBlock(); |
| 1521 | int State = EHInfo->BlockToStateMap[BB]; |
| 1522 | if (BB->getFirstMayFaultInst()) { |
| 1523 | // Report IP range only for blocks with Faulty inst |
| 1524 | auto MBBb = MBB.getFirstNonPHI(); |
| 1525 | |
| 1526 | if (MBBb == MBB.end()) |
| 1527 | continue; |
| 1528 | |
| 1529 | MachineInstr *MIb = &*MBBb; |
| 1530 | if (MIb->isTerminator()) |
| 1531 | continue; |
| 1532 | |
| 1533 | // Insert EH Labels |
| 1534 | MCSymbol *BeginLabel = MF->getContext().createTempSymbol(); |
| 1535 | MCSymbol *EndLabel = MF->getContext().createTempSymbol(); |
| 1536 | EHInfo->addIPToStateRange(State, InvokeBegin: BeginLabel, InvokeEnd: EndLabel); |
| 1537 | BuildMI(BB&: MBB, I: MBBb, MIMD: SDB->getCurDebugLoc(), |
| 1538 | MCID: TII->get(Opcode: TargetOpcode::EH_LABEL)) |
| 1539 | .addSym(Sym: BeginLabel); |
| 1540 | auto MBBe = MBB.instr_end(); |
| 1541 | MachineInstr *MIe = &*(--MBBe); |
| 1542 | // insert before (possible multiple) terminators |
| 1543 | while (MIe->isTerminator()) |
| 1544 | MIe = &*(--MBBe); |
| 1545 | ++MBBe; |
| 1546 | BuildMI(BB&: MBB, I: MBBe, MIMD: SDB->getCurDebugLoc(), |
| 1547 | MCID: TII->get(Opcode: TargetOpcode::EH_LABEL)) |
| 1548 | .addSym(Sym: EndLabel); |
| 1549 | } |
| 1550 | } |
| 1551 | } |
| 1552 | |
| 1553 | /// isFoldedOrDeadInstruction - Return true if the specified instruction is |
| 1554 | /// side-effect free and is either dead or folded into a generated instruction. |
| 1555 | /// Return false if it needs to be emitted. |
| 1556 | static bool isFoldedOrDeadInstruction(const Instruction *I, |
| 1557 | const FunctionLoweringInfo &FuncInfo) { |
| 1558 | return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. |
| 1559 | !I->isTerminator() && // Terminators aren't folded. |
| 1560 | !I->isEHPad() && // EH pad instructions aren't folded. |
| 1561 | !FuncInfo.isExportedInst(V: I); // Exported instrs must be computed. |
| 1562 | } |
| 1563 | |
| 1564 | static bool processIfEntryValueDbgDeclare(FunctionLoweringInfo &FuncInfo, |
| 1565 | const Value *Arg, DIExpression *Expr, |
| 1566 | DILocalVariable *Var, |
| 1567 | DebugLoc DbgLoc) { |
| 1568 | if (!Expr->isEntryValue() || !isa<Argument>(Val: Arg)) |
| 1569 | return false; |
| 1570 | |
| 1571 | auto ArgIt = FuncInfo.ValueMap.find(Val: Arg); |
| 1572 | if (ArgIt == FuncInfo.ValueMap.end()) |
| 1573 | return false; |
| 1574 | Register ArgVReg = ArgIt->getSecond(); |
| 1575 | |
| 1576 | // Find the corresponding livein physical register to this argument. |
| 1577 | for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) |
| 1578 | if (VirtReg == ArgVReg) { |
| 1579 | // Append an op deref to account for the fact that this is a dbg_declare. |
| 1580 | Expr = DIExpression::append(Expr, Ops: dwarf::DW_OP_deref); |
| 1581 | FuncInfo.MF->setVariableDbgInfo(Var, Expr, Reg: PhysReg, Loc: DbgLoc); |
| 1582 | LLVM_DEBUG(dbgs() << "processDbgDeclare: setVariableDbgInfo Var=" << *Var |
| 1583 | << ", Expr=" << *Expr << ", MCRegister=" << PhysReg |
| 1584 | << ", DbgLoc=" << DbgLoc << "\n" ); |
| 1585 | return true; |
| 1586 | } |
| 1587 | return false; |
| 1588 | } |
| 1589 | |
| 1590 | static bool processDbgDeclare(FunctionLoweringInfo &FuncInfo, |
| 1591 | const Value *Address, DIExpression *Expr, |
| 1592 | DILocalVariable *Var, DebugLoc DbgLoc) { |
| 1593 | if (!Address) { |
| 1594 | LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *Var |
| 1595 | << " (bad address)\n" ); |
| 1596 | return false; |
| 1597 | } |
| 1598 | |
| 1599 | if (processIfEntryValueDbgDeclare(FuncInfo, Arg: Address, Expr, Var, DbgLoc)) |
| 1600 | return true; |
| 1601 | |
| 1602 | if (!Address->getType()->isPointerTy()) |
| 1603 | return false; |
| 1604 | |
| 1605 | MachineFunction *MF = FuncInfo.MF; |
| 1606 | const DataLayout &DL = MF->getDataLayout(); |
| 1607 | |
| 1608 | assert(Var && "Missing variable" ); |
| 1609 | assert(DbgLoc && "Missing location" ); |
| 1610 | |
| 1611 | // Look through casts and constant offset GEPs. These mostly come from |
| 1612 | // inalloca. |
| 1613 | APInt Offset(DL.getIndexTypeSizeInBits(Ty: Address->getType()), 0); |
| 1614 | Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); |
| 1615 | |
| 1616 | // Check if the variable is a static alloca or a byval or inalloca |
| 1617 | // argument passed in memory. If it is not, then we will ignore this |
| 1618 | // intrinsic and handle this during isel like dbg.value. |
| 1619 | int FI = std::numeric_limits<int>::max(); |
| 1620 | if (const auto *AI = dyn_cast<AllocaInst>(Val: Address)) { |
| 1621 | auto SI = FuncInfo.StaticAllocaMap.find(Val: AI); |
| 1622 | if (SI != FuncInfo.StaticAllocaMap.end()) |
| 1623 | FI = SI->second; |
| 1624 | } else if (const auto *Arg = dyn_cast<Argument>(Val: Address)) |
| 1625 | FI = FuncInfo.getArgumentFrameIndex(A: Arg); |
| 1626 | |
| 1627 | if (FI == std::numeric_limits<int>::max()) |
| 1628 | return false; |
| 1629 | |
| 1630 | if (Offset.getBoolValue()) |
| 1631 | Expr = DIExpression::prepend(Expr, Flags: DIExpression::ApplyOffset, |
| 1632 | Offset: Offset.getZExtValue()); |
| 1633 | |
| 1634 | LLVM_DEBUG(dbgs() << "processDbgDeclare: setVariableDbgInfo Var=" << *Var |
| 1635 | << ", Expr=" << *Expr << ", FI=" << FI |
| 1636 | << ", DbgLoc=" << DbgLoc << "\n" ); |
| 1637 | MF->setVariableDbgInfo(Var, Expr, Slot: FI, Loc: DbgLoc); |
| 1638 | return true; |
| 1639 | } |
| 1640 | |
| 1641 | /// Collect llvm.dbg.declare information. This is done after argument lowering |
| 1642 | /// in case the declarations refer to arguments. |
| 1643 | static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) { |
| 1644 | for (const auto &I : instructions(F: *FuncInfo.Fn)) { |
| 1645 | for (const DbgVariableRecord &DVR : filterDbgVars(R: I.getDbgRecordRange())) { |
| 1646 | if (DVR.Type == DbgVariableRecord::LocationType::Declare && |
| 1647 | processDbgDeclare(FuncInfo, Address: DVR.getVariableLocationOp(OpIdx: 0), |
| 1648 | Expr: DVR.getExpression(), Var: DVR.getVariable(), |
| 1649 | DbgLoc: DVR.getDebugLoc())) |
| 1650 | FuncInfo.PreprocessedDVRDeclares.insert(Ptr: &DVR); |
| 1651 | } |
| 1652 | } |
| 1653 | } |
| 1654 | |
| 1655 | /// Collect single location variable information generated with assignment |
| 1656 | /// tracking. This is done after argument lowering in case the declarations |
| 1657 | /// refer to arguments. |
| 1658 | static void processSingleLocVars(FunctionLoweringInfo &FuncInfo, |
| 1659 | FunctionVarLocs const *FnVarLocs) { |
| 1660 | for (auto It = FnVarLocs->single_locs_begin(), |
| 1661 | End = FnVarLocs->single_locs_end(); |
| 1662 | It != End; ++It) { |
| 1663 | assert(!It->Values.hasArgList() && "Single loc variadic ops not supported" ); |
| 1664 | processDbgDeclare(FuncInfo, Address: It->Values.getVariableLocationOp(OpIdx: 0), Expr: It->Expr, |
| 1665 | Var: FnVarLocs->getDILocalVariable(ID: It->VariableID), DbgLoc: It->DL); |
| 1666 | } |
| 1667 | } |
| 1668 | |
| 1669 | void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { |
| 1670 | FastISelFailed = false; |
| 1671 | // Initialize the Fast-ISel state, if needed. |
| 1672 | FastISel *FastIS = nullptr; |
| 1673 | if (TM.Options.EnableFastISel) { |
| 1674 | LLVM_DEBUG(dbgs() << "Enabling fast-isel\n" ); |
| 1675 | FastIS = TLI->createFastISel(*FuncInfo, LibInfo, LibcallLowering); |
| 1676 | } |
| 1677 | |
| 1678 | ReversePostOrderTraversal<const Function*> RPOT(&Fn); |
| 1679 | |
| 1680 | // Lower arguments up front. An RPO iteration always visits the entry block |
| 1681 | // first. |
| 1682 | assert(*RPOT.begin() == &Fn.getEntryBlock()); |
| 1683 | ++NumEntryBlocks; |
| 1684 | |
| 1685 | // Set up FuncInfo for ISel. Entry blocks never have PHIs. |
| 1686 | FuncInfo->MBB = FuncInfo->getMBB(BB: &Fn.getEntryBlock()); |
| 1687 | FuncInfo->InsertPt = FuncInfo->MBB->begin(); |
| 1688 | |
| 1689 | CurDAG->setFunctionLoweringInfo(FuncInfo.get()); |
| 1690 | |
| 1691 | if (!FastIS) { |
| 1692 | LowerArguments(F: Fn); |
| 1693 | } else { |
| 1694 | // See if fast isel can lower the arguments. |
| 1695 | FastIS->startNewBlock(); |
| 1696 | if (!FastIS->lowerArguments()) { |
| 1697 | FastISelFailed = true; |
| 1698 | // Fast isel failed to lower these arguments |
| 1699 | ++NumFastIselFailLowerArguments; |
| 1700 | |
| 1701 | OptimizationRemarkMissed R("sdagisel" , "FastISelFailure" , |
| 1702 | Fn.getSubprogram(), |
| 1703 | &Fn.getEntryBlock()); |
| 1704 | R << "FastISel didn't lower all arguments: " |
| 1705 | << ore::NV("Prototype" , Fn.getFunctionType()); |
| 1706 | reportFastISelFailure(MF&: *MF, ORE&: *ORE, R, ShouldAbort: EnableFastISelAbort > 1); |
| 1707 | |
| 1708 | // Use SelectionDAG argument lowering |
| 1709 | LowerArguments(F: Fn); |
| 1710 | CurDAG->setRoot(SDB->getControlRoot()); |
| 1711 | SDB->clear(); |
| 1712 | CodeGenAndEmitDAG(); |
| 1713 | } |
| 1714 | |
| 1715 | // If we inserted any instructions at the beginning, make a note of |
| 1716 | // where they are, so we can be sure to emit subsequent instructions |
| 1717 | // after them. |
| 1718 | if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) |
| 1719 | FastIS->setLastLocalValue(&*std::prev(x: FuncInfo->InsertPt)); |
| 1720 | else |
| 1721 | FastIS->setLastLocalValue(nullptr); |
| 1722 | } |
| 1723 | |
| 1724 | bool Inserted = SwiftError->createEntriesInEntryBlock(DbgLoc: SDB->getCurDebugLoc()); |
| 1725 | |
| 1726 | if (FastIS && Inserted) |
| 1727 | FastIS->setLastLocalValue(&*std::prev(x: FuncInfo->InsertPt)); |
| 1728 | |
| 1729 | if (isAssignmentTrackingEnabled(M: *Fn.getParent())) { |
| 1730 | assert(CurDAG->getFunctionVarLocs() && |
| 1731 | "expected AssignmentTrackingAnalysis pass results" ); |
| 1732 | processSingleLocVars(FuncInfo&: *FuncInfo, FnVarLocs: CurDAG->getFunctionVarLocs()); |
| 1733 | } else { |
| 1734 | processDbgDeclares(FuncInfo&: *FuncInfo); |
| 1735 | } |
| 1736 | |
| 1737 | // Iterate over all basic blocks in the function. |
| 1738 | FuncInfo->VisitedBBs.assign(NumElts: Fn.getMaxBlockNumber(), Elt: false); |
| 1739 | for (const BasicBlock *LLVMBB : RPOT) { |
| 1740 | if (OptLevel != CodeGenOptLevel::None) { |
| 1741 | bool AllPredsVisited = true; |
| 1742 | for (const BasicBlock *Pred : predecessors(BB: LLVMBB)) { |
| 1743 | if (!FuncInfo->VisitedBBs[Pred->getNumber()]) { |
| 1744 | AllPredsVisited = false; |
| 1745 | break; |
| 1746 | } |
| 1747 | } |
| 1748 | |
| 1749 | if (AllPredsVisited) { |
| 1750 | for (const PHINode &PN : LLVMBB->phis()) |
| 1751 | FuncInfo->ComputePHILiveOutRegInfo(&PN); |
| 1752 | } else { |
| 1753 | for (const PHINode &PN : LLVMBB->phis()) |
| 1754 | FuncInfo->InvalidatePHILiveOutRegInfo(PN: &PN); |
| 1755 | } |
| 1756 | |
| 1757 | FuncInfo->VisitedBBs[LLVMBB->getNumber()] = true; |
| 1758 | } |
| 1759 | |
| 1760 | // Fake uses that follow tail calls are dropped. To avoid this, move |
| 1761 | // such fake uses in front of the tail call, provided they don't |
| 1762 | // use anything def'd by or after the tail call. |
| 1763 | { |
| 1764 | BasicBlock::iterator BBStart = |
| 1765 | const_cast<BasicBlock *>(LLVMBB)->getFirstNonPHIIt(); |
| 1766 | BasicBlock::iterator BBEnd = const_cast<BasicBlock *>(LLVMBB)->end(); |
| 1767 | preserveFakeUses(Begin: BBStart, End: BBEnd); |
| 1768 | } |
| 1769 | |
| 1770 | BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHIIt(); |
| 1771 | BasicBlock::const_iterator const End = LLVMBB->end(); |
| 1772 | BasicBlock::const_iterator BI = End; |
| 1773 | |
| 1774 | FuncInfo->MBB = FuncInfo->getMBB(BB: LLVMBB); |
| 1775 | if (!FuncInfo->MBB) |
| 1776 | continue; // Some blocks like catchpads have no code or MBB. |
| 1777 | |
| 1778 | // Insert new instructions after any phi or argument setup code. |
| 1779 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| 1780 | |
| 1781 | // Setup an EH landing-pad block. |
| 1782 | FuncInfo->ExceptionPointerVirtReg = Register(); |
| 1783 | FuncInfo->ExceptionSelectorVirtReg = Register(); |
| 1784 | if (LLVMBB->isEHPad()) { |
| 1785 | if (!PrepareEHLandingPad()) |
| 1786 | continue; |
| 1787 | |
| 1788 | if (!FastIS) { |
| 1789 | SDValue NewRoot = TLI->lowerEHPadEntry(Chain: CurDAG->getRoot(), |
| 1790 | DL: SDB->getCurSDLoc(), DAG&: *CurDAG); |
| 1791 | if (NewRoot && NewRoot != CurDAG->getRoot()) |
| 1792 | CurDAG->setRoot(NewRoot); |
| 1793 | } |
| 1794 | } |
| 1795 | |
| 1796 | // Before doing SelectionDAG ISel, see if FastISel has been requested. |
| 1797 | if (FastIS) { |
| 1798 | if (LLVMBB != &Fn.getEntryBlock()) |
| 1799 | FastIS->startNewBlock(); |
| 1800 | |
| 1801 | unsigned NumFastIselRemaining = std::distance(first: Begin, last: End); |
| 1802 | |
| 1803 | // Pre-assign swifterror vregs. |
| 1804 | SwiftError->preassignVRegs(MBB: FuncInfo->MBB, Begin, End); |
| 1805 | |
| 1806 | // Do FastISel on as many instructions as possible. |
| 1807 | for (; BI != Begin; --BI) { |
| 1808 | const Instruction *Inst = &*std::prev(x: BI); |
| 1809 | |
| 1810 | // If we no longer require this instruction, skip it. |
| 1811 | if (isFoldedOrDeadInstruction(I: Inst, FuncInfo: *FuncInfo) || |
| 1812 | ElidedArgCopyInstrs.count(Ptr: Inst)) { |
| 1813 | --NumFastIselRemaining; |
| 1814 | FastIS->handleDbgInfo(II: Inst); |
| 1815 | continue; |
| 1816 | } |
| 1817 | |
| 1818 | // Bottom-up: reset the insert pos at the top, after any local-value |
| 1819 | // instructions. |
| 1820 | FastIS->recomputeInsertPt(); |
| 1821 | |
| 1822 | // Try to select the instruction with FastISel. |
| 1823 | if (FastIS->selectInstruction(I: Inst)) { |
| 1824 | --NumFastIselRemaining; |
| 1825 | ++NumFastIselSuccess; |
| 1826 | |
| 1827 | FastIS->handleDbgInfo(II: Inst); |
| 1828 | // If fast isel succeeded, skip over all the folded instructions, and |
| 1829 | // then see if there is a load right before the selected instructions. |
| 1830 | // Try to fold the load if so. |
| 1831 | const Instruction *BeforeInst = Inst; |
| 1832 | while (BeforeInst != &*Begin) { |
| 1833 | BeforeInst = &*std::prev(x: BasicBlock::const_iterator(BeforeInst)); |
| 1834 | if (!isFoldedOrDeadInstruction(I: BeforeInst, FuncInfo: *FuncInfo)) |
| 1835 | break; |
| 1836 | } |
| 1837 | if (BeforeInst != Inst && isa<LoadInst>(Val: BeforeInst) && |
| 1838 | BeforeInst->hasOneUse() && |
| 1839 | FastIS->tryToFoldLoad(LI: cast<LoadInst>(Val: BeforeInst), FoldInst: Inst)) { |
| 1840 | // If we succeeded, don't re-select the load. |
| 1841 | LLVM_DEBUG(dbgs() |
| 1842 | << "FastISel folded load: " << *BeforeInst << "\n" ); |
| 1843 | FastIS->handleDbgInfo(II: BeforeInst); |
| 1844 | BI = std::next(x: BasicBlock::const_iterator(BeforeInst)); |
| 1845 | --NumFastIselRemaining; |
| 1846 | ++NumFastIselSuccess; |
| 1847 | } |
| 1848 | continue; |
| 1849 | } |
| 1850 | |
| 1851 | FastISelFailed = true; |
| 1852 | |
| 1853 | // Then handle certain instructions as single-LLVM-Instruction blocks. |
| 1854 | // We cannot separate out GCrelocates to their own blocks since we need |
| 1855 | // to keep track of gc-relocates for a particular gc-statepoint. This is |
| 1856 | // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before |
| 1857 | // visitGCRelocate. |
| 1858 | if (isa<CallInst>(Val: Inst) && !isa<GCStatepointInst>(Val: Inst) && |
| 1859 | !isa<GCRelocateInst>(Val: Inst) && !isa<GCResultInst>(Val: Inst)) { |
| 1860 | OptimizationRemarkMissed R("sdagisel" , "FastISelFailure" , |
| 1861 | Inst->getDebugLoc(), LLVMBB); |
| 1862 | |
| 1863 | R << "FastISel missed call" ; |
| 1864 | |
| 1865 | if (R.isEnabled() || EnableFastISelAbort) { |
| 1866 | std::string InstStrStorage; |
| 1867 | raw_string_ostream InstStr(InstStrStorage); |
| 1868 | InstStr << *Inst; |
| 1869 | |
| 1870 | R << ": " << InstStrStorage; |
| 1871 | } |
| 1872 | |
| 1873 | reportFastISelFailure(MF&: *MF, ORE&: *ORE, R, ShouldAbort: EnableFastISelAbort > 2); |
| 1874 | |
| 1875 | // If the call has operand bundles, then it's best if they are handled |
| 1876 | // together with the call instead of selecting the call as its own |
| 1877 | // block. |
| 1878 | if (cast<CallInst>(Val: Inst)->hasOperandBundles()) { |
| 1879 | NumFastIselFailures += NumFastIselRemaining; |
| 1880 | break; |
| 1881 | } |
| 1882 | |
| 1883 | if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && |
| 1884 | !Inst->use_empty()) { |
| 1885 | Register &R = FuncInfo->ValueMap[Inst]; |
| 1886 | if (!R) |
| 1887 | R = FuncInfo->CreateRegs(V: Inst); |
| 1888 | } |
| 1889 | |
| 1890 | bool HadTailCall = false; |
| 1891 | MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; |
| 1892 | SelectBasicBlock(Begin: Inst->getIterator(), End: BI, HadTailCall); |
| 1893 | |
| 1894 | // If the call was emitted as a tail call, we're done with the block. |
| 1895 | // We also need to delete any previously emitted instructions. |
| 1896 | if (HadTailCall) { |
| 1897 | FastIS->removeDeadCode(I: SavedInsertPt, E: FuncInfo->MBB->end()); |
| 1898 | --BI; |
| 1899 | break; |
| 1900 | } |
| 1901 | |
| 1902 | // Recompute NumFastIselRemaining as Selection DAG instruction |
| 1903 | // selection may have handled the call, input args, etc. |
| 1904 | unsigned RemainingNow = std::distance(first: Begin, last: BI); |
| 1905 | NumFastIselFailures += NumFastIselRemaining - RemainingNow; |
| 1906 | NumFastIselRemaining = RemainingNow; |
| 1907 | continue; |
| 1908 | } |
| 1909 | |
| 1910 | OptimizationRemarkMissed R("sdagisel" , "FastISelFailure" , |
| 1911 | Inst->getDebugLoc(), LLVMBB); |
| 1912 | |
| 1913 | bool ShouldAbort = EnableFastISelAbort; |
| 1914 | if (Inst->isTerminator()) { |
| 1915 | // Use a different message for terminator misses. |
| 1916 | R << "FastISel missed terminator" ; |
| 1917 | // Don't abort for terminator unless the level is really high |
| 1918 | ShouldAbort = (EnableFastISelAbort > 2); |
| 1919 | } else { |
| 1920 | R << "FastISel missed" ; |
| 1921 | } |
| 1922 | |
| 1923 | if (R.isEnabled() || EnableFastISelAbort) { |
| 1924 | std::string InstStrStorage; |
| 1925 | raw_string_ostream InstStr(InstStrStorage); |
| 1926 | InstStr << *Inst; |
| 1927 | R << ": " << InstStrStorage; |
| 1928 | } |
| 1929 | |
| 1930 | reportFastISelFailure(MF&: *MF, ORE&: *ORE, R, ShouldAbort); |
| 1931 | |
| 1932 | NumFastIselFailures += NumFastIselRemaining; |
| 1933 | break; |
| 1934 | } |
| 1935 | |
| 1936 | FastIS->recomputeInsertPt(); |
| 1937 | } |
| 1938 | |
| 1939 | if (SP->shouldEmitSDCheck(BB: *LLVMBB)) { |
| 1940 | bool FunctionBasedInstrumentation = |
| 1941 | TLI->getSSPStackGuardCheck(M: *Fn.getParent(), Libcalls: *LibcallLowering) && |
| 1942 | Fn.hasMinSize(); |
| 1943 | SDB->SPDescriptor.initialize(BB: LLVMBB, MBB: FuncInfo->getMBB(BB: LLVMBB), |
| 1944 | FunctionBasedInstrumentation); |
| 1945 | } |
| 1946 | |
| 1947 | if (Begin != BI) |
| 1948 | ++NumDAGBlocks; |
| 1949 | else |
| 1950 | ++NumFastIselBlocks; |
| 1951 | |
| 1952 | if (Begin != BI) { |
| 1953 | // Run SelectionDAG instruction selection on the remainder of the block |
| 1954 | // not handled by FastISel. If FastISel is not run, this is the entire |
| 1955 | // block. |
| 1956 | bool HadTailCall; |
| 1957 | SelectBasicBlock(Begin, End: BI, HadTailCall); |
| 1958 | |
| 1959 | // But if FastISel was run, we already selected some of the block. |
| 1960 | // If we emitted a tail-call, we need to delete any previously emitted |
| 1961 | // instruction that follows it. |
| 1962 | if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end()) |
| 1963 | FastIS->removeDeadCode(I: FuncInfo->InsertPt, E: FuncInfo->MBB->end()); |
| 1964 | } |
| 1965 | |
| 1966 | if (FastIS) |
| 1967 | FastIS->finishBasicBlock(); |
| 1968 | FinishBasicBlock(); |
| 1969 | FuncInfo->PHINodesToUpdate.clear(); |
| 1970 | ElidedArgCopyInstrs.clear(); |
| 1971 | } |
| 1972 | |
| 1973 | // AsynchEH: Report Block State under -AsynchEH |
| 1974 | if (Fn.getParent()->getModuleFlag(Key: "eh-asynch" )) |
| 1975 | reportIPToStateForBlocks(MF); |
| 1976 | |
| 1977 | SP->copyToMachineFrameInfo(MFI&: MF->getFrameInfo()); |
| 1978 | |
| 1979 | SwiftError->propagateVRegs(); |
| 1980 | |
| 1981 | delete FastIS; |
| 1982 | SDB->clearDanglingDebugInfo(); |
| 1983 | SDB->SPDescriptor.resetPerFunctionState(); |
| 1984 | } |
| 1985 | |
| 1986 | void |
| 1987 | SelectionDAGISel::FinishBasicBlock() { |
| 1988 | LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: " |
| 1989 | << FuncInfo->PHINodesToUpdate.size() << "\n" ; |
| 1990 | for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; |
| 1991 | ++i) dbgs() |
| 1992 | << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first |
| 1993 | << ", " << printReg(FuncInfo->PHINodesToUpdate[i].second) |
| 1994 | << ")\n" ); |
| 1995 | |
| 1996 | // Next, now that we know what the last MBB the LLVM BB expanded is, update |
| 1997 | // PHI nodes in successors. |
| 1998 | for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { |
| 1999 | MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); |
| 2000 | assert(PHI->isPHI() && |
| 2001 | "This is not a machine PHI node that we are updating!" ); |
| 2002 | if (!FuncInfo->MBB->isSuccessor(MBB: PHI->getParent())) |
| 2003 | continue; |
| 2004 | PHI.addReg(RegNo: FuncInfo->PHINodesToUpdate[i].second).addMBB(MBB: FuncInfo->MBB); |
| 2005 | } |
| 2006 | |
| 2007 | // Handle stack protector. |
| 2008 | if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { |
| 2009 | // The target provides a guard check function. There is no need to |
| 2010 | // generate error handling code or to split current basic block. |
| 2011 | MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); |
| 2012 | |
| 2013 | // Add load and check to the basicblock. |
| 2014 | FuncInfo->MBB = ParentMBB; |
| 2015 | FuncInfo->InsertPt = findSplitPointForStackProtector(BB: ParentMBB, TII: *TII); |
| 2016 | SDB->visitSPDescriptorParent(SPD&: SDB->SPDescriptor, ParentBB: ParentMBB); |
| 2017 | CurDAG->setRoot(SDB->getRoot()); |
| 2018 | SDB->clear(); |
| 2019 | CodeGenAndEmitDAG(); |
| 2020 | |
| 2021 | // Clear the Per-BB State. |
| 2022 | SDB->SPDescriptor.resetPerBBState(); |
| 2023 | } else if (SDB->SPDescriptor.shouldEmitStackProtector()) { |
| 2024 | MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); |
| 2025 | MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); |
| 2026 | |
| 2027 | // Find the split point to split the parent mbb. At the same time copy all |
| 2028 | // physical registers used in the tail of parent mbb into virtual registers |
| 2029 | // before the split point and back into physical registers after the split |
| 2030 | // point. This prevents us needing to deal with Live-ins and many other |
| 2031 | // register allocation issues caused by us splitting the parent mbb. The |
| 2032 | // register allocator will clean up said virtual copies later on. |
| 2033 | MachineBasicBlock::iterator SplitPoint = |
| 2034 | findSplitPointForStackProtector(BB: ParentMBB, TII: *TII); |
| 2035 | |
| 2036 | // Splice the terminator of ParentMBB into SuccessMBB. |
| 2037 | SuccessMBB->splice(Where: SuccessMBB->end(), Other: ParentMBB, From: SplitPoint, |
| 2038 | To: ParentMBB->end()); |
| 2039 | |
| 2040 | // Add compare/jump on neq/jump to the parent BB. |
| 2041 | FuncInfo->MBB = ParentMBB; |
| 2042 | FuncInfo->InsertPt = ParentMBB->end(); |
| 2043 | SDB->visitSPDescriptorParent(SPD&: SDB->SPDescriptor, ParentBB: ParentMBB); |
| 2044 | CurDAG->setRoot(SDB->getRoot()); |
| 2045 | SDB->clear(); |
| 2046 | CodeGenAndEmitDAG(); |
| 2047 | |
| 2048 | // CodeGen Failure MBB if we have not codegened it yet. |
| 2049 | MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); |
| 2050 | if (FailureMBB->empty()) { |
| 2051 | FuncInfo->MBB = FailureMBB; |
| 2052 | FuncInfo->InsertPt = FailureMBB->end(); |
| 2053 | SDB->visitSPDescriptorFailure(SPD&: SDB->SPDescriptor); |
| 2054 | CurDAG->setRoot(SDB->getRoot()); |
| 2055 | SDB->clear(); |
| 2056 | CodeGenAndEmitDAG(); |
| 2057 | } |
| 2058 | |
| 2059 | // Clear the Per-BB State. |
| 2060 | SDB->SPDescriptor.resetPerBBState(); |
| 2061 | } |
| 2062 | |
| 2063 | // Lower each BitTestBlock. |
| 2064 | for (auto &BTB : SDB->SL->BitTestCases) { |
| 2065 | // Lower header first, if it wasn't already lowered |
| 2066 | if (!BTB.Emitted) { |
| 2067 | // Set the current basic block to the mbb we wish to insert the code into |
| 2068 | FuncInfo->MBB = BTB.Parent; |
| 2069 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| 2070 | // Emit the code |
| 2071 | SDB->visitBitTestHeader(B&: BTB, SwitchBB: FuncInfo->MBB); |
| 2072 | CurDAG->setRoot(SDB->getRoot()); |
| 2073 | SDB->clear(); |
| 2074 | CodeGenAndEmitDAG(); |
| 2075 | } |
| 2076 | |
| 2077 | BranchProbability UnhandledProb = BTB.Prob; |
| 2078 | for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { |
| 2079 | UnhandledProb -= BTB.Cases[j].ExtraProb; |
| 2080 | // Set the current basic block to the mbb we wish to insert the code into |
| 2081 | FuncInfo->MBB = BTB.Cases[j].ThisBB; |
| 2082 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| 2083 | // Emit the code |
| 2084 | |
| 2085 | // If all cases cover a contiguous range, it is not necessary to jump to |
| 2086 | // the default block after the last bit test fails. This is because the |
| 2087 | // range check during bit test header creation has guaranteed that every |
| 2088 | // case here doesn't go outside the range. In this case, there is no need |
| 2089 | // to perform the last bit test, as it will always be true. Instead, make |
| 2090 | // the second-to-last bit-test fall through to the target of the last bit |
| 2091 | // test, and delete the last bit test. |
| 2092 | |
| 2093 | MachineBasicBlock *NextMBB; |
| 2094 | if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { |
| 2095 | // Second-to-last bit-test with contiguous range or omitted range |
| 2096 | // check: fall through to the target of the final bit test. |
| 2097 | NextMBB = BTB.Cases[j + 1].TargetBB; |
| 2098 | } else if (j + 1 == ej) { |
| 2099 | // For the last bit test, fall through to Default. |
| 2100 | NextMBB = BTB.Default; |
| 2101 | } else { |
| 2102 | // Otherwise, fall through to the next bit test. |
| 2103 | NextMBB = BTB.Cases[j + 1].ThisBB; |
| 2104 | } |
| 2105 | |
| 2106 | SDB->visitBitTestCase(BB&: BTB, NextMBB, BranchProbToNext: UnhandledProb, Reg: BTB.Reg, B&: BTB.Cases[j], |
| 2107 | SwitchBB: FuncInfo->MBB); |
| 2108 | |
| 2109 | CurDAG->setRoot(SDB->getRoot()); |
| 2110 | SDB->clear(); |
| 2111 | CodeGenAndEmitDAG(); |
| 2112 | |
| 2113 | if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { |
| 2114 | // Since we're not going to use the final bit test, remove it. |
| 2115 | BTB.Cases.pop_back(); |
| 2116 | break; |
| 2117 | } |
| 2118 | } |
| 2119 | |
| 2120 | // Update PHI Nodes |
| 2121 | for (const std::pair<MachineInstr *, Register> &P : |
| 2122 | FuncInfo->PHINodesToUpdate) { |
| 2123 | MachineInstrBuilder PHI(*MF, P.first); |
| 2124 | MachineBasicBlock *PHIBB = PHI->getParent(); |
| 2125 | assert(PHI->isPHI() && |
| 2126 | "This is not a machine PHI node that we are updating!" ); |
| 2127 | // This is "default" BB. We have two jumps to it. From "header" BB and |
| 2128 | // from last "case" BB, unless the latter was skipped. |
| 2129 | if (PHIBB == BTB.Default) { |
| 2130 | PHI.addReg(RegNo: P.second).addMBB(MBB: BTB.Parent); |
| 2131 | if (!BTB.ContiguousRange) { |
| 2132 | PHI.addReg(RegNo: P.second).addMBB(MBB: BTB.Cases.back().ThisBB); |
| 2133 | } |
| 2134 | } |
| 2135 | // One of "cases" BB. |
| 2136 | for (const SwitchCG::BitTestCase &BT : BTB.Cases) { |
| 2137 | MachineBasicBlock* cBB = BT.ThisBB; |
| 2138 | if (cBB->isSuccessor(MBB: PHIBB)) |
| 2139 | PHI.addReg(RegNo: P.second).addMBB(MBB: cBB); |
| 2140 | } |
| 2141 | } |
| 2142 | } |
| 2143 | SDB->SL->BitTestCases.clear(); |
| 2144 | |
| 2145 | // If the JumpTable record is filled in, then we need to emit a jump table. |
| 2146 | // Updating the PHI nodes is tricky in this case, since we need to determine |
| 2147 | // whether the PHI is a successor of the range check MBB or the jump table MBB |
| 2148 | for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) { |
| 2149 | // Lower header first, if it wasn't already lowered |
| 2150 | if (!SDB->SL->JTCases[i].first.Emitted) { |
| 2151 | // Set the current basic block to the mbb we wish to insert the code into |
| 2152 | FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB; |
| 2153 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| 2154 | // Emit the code |
| 2155 | SDB->visitJumpTableHeader(JT&: SDB->SL->JTCases[i].second, |
| 2156 | JTH&: SDB->SL->JTCases[i].first, SwitchBB: FuncInfo->MBB); |
| 2157 | CurDAG->setRoot(SDB->getRoot()); |
| 2158 | SDB->clear(); |
| 2159 | CodeGenAndEmitDAG(); |
| 2160 | } |
| 2161 | |
| 2162 | // Set the current basic block to the mbb we wish to insert the code into |
| 2163 | FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB; |
| 2164 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| 2165 | // Emit the code |
| 2166 | SDB->visitJumpTable(JT&: SDB->SL->JTCases[i].second); |
| 2167 | CurDAG->setRoot(SDB->getRoot()); |
| 2168 | SDB->clear(); |
| 2169 | CodeGenAndEmitDAG(); |
| 2170 | |
| 2171 | // Update PHI Nodes |
| 2172 | for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); |
| 2173 | pi != pe; ++pi) { |
| 2174 | MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); |
| 2175 | MachineBasicBlock *PHIBB = PHI->getParent(); |
| 2176 | assert(PHI->isPHI() && |
| 2177 | "This is not a machine PHI node that we are updating!" ); |
| 2178 | // "default" BB. We can go there only from header BB. |
| 2179 | if (PHIBB == SDB->SL->JTCases[i].second.Default) |
| 2180 | PHI.addReg(RegNo: FuncInfo->PHINodesToUpdate[pi].second) |
| 2181 | .addMBB(MBB: SDB->SL->JTCases[i].first.HeaderBB); |
| 2182 | // JT BB. Just iterate over successors here |
| 2183 | if (FuncInfo->MBB->isSuccessor(MBB: PHIBB)) |
| 2184 | PHI.addReg(RegNo: FuncInfo->PHINodesToUpdate[pi].second).addMBB(MBB: FuncInfo->MBB); |
| 2185 | } |
| 2186 | } |
| 2187 | SDB->SL->JTCases.clear(); |
| 2188 | |
| 2189 | // If we generated any switch lowering information, build and codegen any |
| 2190 | // additional DAGs necessary. |
| 2191 | for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) { |
| 2192 | // Set the current basic block to the mbb we wish to insert the code into |
| 2193 | FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB; |
| 2194 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| 2195 | |
| 2196 | // Determine the unique successors. |
| 2197 | SmallVector<MachineBasicBlock *, 2> Succs; |
| 2198 | Succs.push_back(Elt: SDB->SL->SwitchCases[i].TrueBB); |
| 2199 | if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB) |
| 2200 | Succs.push_back(Elt: SDB->SL->SwitchCases[i].FalseBB); |
| 2201 | |
| 2202 | // Emit the code. Note that this could result in FuncInfo->MBB being split. |
| 2203 | SDB->visitSwitchCase(CB&: SDB->SL->SwitchCases[i], SwitchBB: FuncInfo->MBB); |
| 2204 | CurDAG->setRoot(SDB->getRoot()); |
| 2205 | SDB->clear(); |
| 2206 | CodeGenAndEmitDAG(); |
| 2207 | |
| 2208 | // Remember the last block, now that any splitting is done, for use in |
| 2209 | // populating PHI nodes in successors. |
| 2210 | MachineBasicBlock *ThisBB = FuncInfo->MBB; |
| 2211 | |
| 2212 | // Handle any PHI nodes in successors of this chunk, as if we were coming |
| 2213 | // from the original BB before switch expansion. Note that PHI nodes can |
| 2214 | // occur multiple times in PHINodesToUpdate. We have to be very careful to |
| 2215 | // handle them the right number of times. |
| 2216 | for (MachineBasicBlock *Succ : Succs) { |
| 2217 | FuncInfo->MBB = Succ; |
| 2218 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| 2219 | // FuncInfo->MBB may have been removed from the CFG if a branch was |
| 2220 | // constant folded. |
| 2221 | if (ThisBB->isSuccessor(MBB: FuncInfo->MBB)) { |
| 2222 | for (MachineBasicBlock::iterator |
| 2223 | MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); |
| 2224 | MBBI != MBBE && MBBI->isPHI(); ++MBBI) { |
| 2225 | MachineInstrBuilder PHI(*MF, MBBI); |
| 2226 | // This value for this PHI node is recorded in PHINodesToUpdate. |
| 2227 | for (unsigned pn = 0; ; ++pn) { |
| 2228 | assert(pn != FuncInfo->PHINodesToUpdate.size() && |
| 2229 | "Didn't find PHI entry!" ); |
| 2230 | if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { |
| 2231 | PHI.addReg(RegNo: FuncInfo->PHINodesToUpdate[pn].second).addMBB(MBB: ThisBB); |
| 2232 | break; |
| 2233 | } |
| 2234 | } |
| 2235 | } |
| 2236 | } |
| 2237 | } |
| 2238 | } |
| 2239 | SDB->SL->SwitchCases.clear(); |
| 2240 | } |
| 2241 | |
| 2242 | /// Create the scheduler. If a specific scheduler was specified |
| 2243 | /// via the SchedulerRegistry, use it, otherwise select the |
| 2244 | /// one preferred by the target. |
| 2245 | /// |
| 2246 | ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { |
| 2247 | return ISHeuristic(this, OptLevel); |
| 2248 | } |
| 2249 | |
| 2250 | //===----------------------------------------------------------------------===// |
| 2251 | // Helper functions used by the generated instruction selector. |
| 2252 | //===----------------------------------------------------------------------===// |
| 2253 | // Calls to these methods are generated by tblgen. |
| 2254 | |
| 2255 | /// CheckAndMask - The isel is trying to match something like (and X, 255). If |
| 2256 | /// the dag combiner simplified the 255, we still want to match. RHS is the |
| 2257 | /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value |
| 2258 | /// specified in the .td file (e.g. 255). |
| 2259 | bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, |
| 2260 | int64_t DesiredMaskS) const { |
| 2261 | const APInt &ActualMask = RHS->getAPIntValue(); |
| 2262 | // TODO: Avoid implicit trunc? |
| 2263 | // See https://github.com/llvm/llvm-project/issues/112510. |
| 2264 | const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS, |
| 2265 | /*isSigned=*/false, /*implicitTrunc=*/true); |
| 2266 | |
| 2267 | // If the actual mask exactly matches, success! |
| 2268 | if (ActualMask == DesiredMask) |
| 2269 | return true; |
| 2270 | |
| 2271 | // If the actual AND mask is allowing unallowed bits, this doesn't match. |
| 2272 | if (!ActualMask.isSubsetOf(RHS: DesiredMask)) |
| 2273 | return false; |
| 2274 | |
| 2275 | // Otherwise, the DAG Combiner may have proven that the value coming in is |
| 2276 | // either already zero or is not demanded. Check for known zero input bits. |
| 2277 | APInt NeededMask = DesiredMask & ~ActualMask; |
| 2278 | if (CurDAG->MaskedValueIsZero(Op: LHS, Mask: NeededMask)) |
| 2279 | return true; |
| 2280 | |
| 2281 | // TODO: check to see if missing bits are just not demanded. |
| 2282 | |
| 2283 | // Otherwise, this pattern doesn't match. |
| 2284 | return false; |
| 2285 | } |
| 2286 | |
| 2287 | /// CheckOrMask - The isel is trying to match something like (or X, 255). If |
| 2288 | /// the dag combiner simplified the 255, we still want to match. RHS is the |
| 2289 | /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value |
| 2290 | /// specified in the .td file (e.g. 255). |
| 2291 | bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, |
| 2292 | int64_t DesiredMaskS) const { |
| 2293 | const APInt &ActualMask = RHS->getAPIntValue(); |
| 2294 | // TODO: Avoid implicit trunc? |
| 2295 | // See https://github.com/llvm/llvm-project/issues/112510. |
| 2296 | const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS, |
| 2297 | /*isSigned=*/false, /*implicitTrunc=*/true); |
| 2298 | |
| 2299 | // If the actual mask exactly matches, success! |
| 2300 | if (ActualMask == DesiredMask) |
| 2301 | return true; |
| 2302 | |
| 2303 | // If the actual AND mask is allowing unallowed bits, this doesn't match. |
| 2304 | if (!ActualMask.isSubsetOf(RHS: DesiredMask)) |
| 2305 | return false; |
| 2306 | |
| 2307 | // Otherwise, the DAG Combiner may have proven that the value coming in is |
| 2308 | // either already zero or is not demanded. Check for known zero input bits. |
| 2309 | APInt NeededMask = DesiredMask & ~ActualMask; |
| 2310 | KnownBits Known = CurDAG->computeKnownBits(Op: LHS); |
| 2311 | |
| 2312 | // If all the missing bits in the or are already known to be set, match! |
| 2313 | if (NeededMask.isSubsetOf(RHS: Known.One)) |
| 2314 | return true; |
| 2315 | |
| 2316 | // TODO: check to see if missing bits are just not demanded. |
| 2317 | |
| 2318 | // Otherwise, this pattern doesn't match. |
| 2319 | return false; |
| 2320 | } |
| 2321 | |
| 2322 | /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated |
| 2323 | /// by tblgen. Others should not call it. |
| 2324 | void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, |
| 2325 | const SDLoc &DL) { |
| 2326 | // Change the vector of SDValue into a list of SDNodeHandle for x86 might call |
| 2327 | // replaceAllUses when matching address. |
| 2328 | |
| 2329 | std::list<HandleSDNode> Handles; |
| 2330 | |
| 2331 | Handles.emplace_back(args&: Ops[InlineAsm::Op_InputChain]); // 0 |
| 2332 | Handles.emplace_back(args&: Ops[InlineAsm::Op_AsmString]); // 1 |
| 2333 | Handles.emplace_back(args&: Ops[InlineAsm::Op_MDNode]); // 2, !srcloc |
| 2334 | Handles.emplace_back( |
| 2335 | args&: Ops[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) |
| 2336 | |
| 2337 | unsigned i = InlineAsm::Op_FirstOperand, e = Ops.size(); |
| 2338 | if (Ops[e - 1].getValueType() == MVT::Glue) |
| 2339 | --e; // Don't process a glue operand if it is here. |
| 2340 | |
| 2341 | while (i != e) { |
| 2342 | InlineAsm::Flag Flags(Ops[i]->getAsZExtVal()); |
| 2343 | if (!Flags.isMemKind() && !Flags.isFuncKind()) { |
| 2344 | // Just skip over this operand, copying the operands verbatim. |
| 2345 | Handles.insert(position: Handles.end(), first: Ops.begin() + i, |
| 2346 | last: Ops.begin() + i + Flags.getNumOperandRegisters() + 1); |
| 2347 | i += Flags.getNumOperandRegisters() + 1; |
| 2348 | } else { |
| 2349 | assert(Flags.getNumOperandRegisters() == 1 && |
| 2350 | "Memory operand with multiple values?" ); |
| 2351 | |
| 2352 | unsigned TiedToOperand; |
| 2353 | if (Flags.isUseOperandTiedToDef(Idx&: TiedToOperand)) { |
| 2354 | // We need the constraint ID from the operand this is tied to. |
| 2355 | unsigned CurOp = InlineAsm::Op_FirstOperand; |
| 2356 | Flags = InlineAsm::Flag(Ops[CurOp]->getAsZExtVal()); |
| 2357 | for (; TiedToOperand; --TiedToOperand) { |
| 2358 | CurOp += Flags.getNumOperandRegisters() + 1; |
| 2359 | Flags = InlineAsm::Flag(Ops[CurOp]->getAsZExtVal()); |
| 2360 | } |
| 2361 | } |
| 2362 | |
| 2363 | // Otherwise, this is a memory operand. Ask the target to select it. |
| 2364 | std::vector<SDValue> SelOps; |
| 2365 | const InlineAsm::ConstraintCode ConstraintID = |
| 2366 | Flags.getMemoryConstraintID(); |
| 2367 | if (SelectInlineAsmMemoryOperand(Op: Ops[i + 1], ConstraintID, OutOps&: SelOps)) |
| 2368 | report_fatal_error(reason: "Could not match memory address. Inline asm" |
| 2369 | " failure!" ); |
| 2370 | |
| 2371 | // Add this to the output node. |
| 2372 | Flags = InlineAsm::Flag(Flags.isMemKind() ? InlineAsm::Kind::Mem |
| 2373 | : InlineAsm::Kind::Func, |
| 2374 | SelOps.size()); |
| 2375 | Flags.setMemConstraint(ConstraintID); |
| 2376 | Handles.emplace_back(args: CurDAG->getTargetConstant(Val: Flags, DL, VT: MVT::i32)); |
| 2377 | llvm::append_range(C&: Handles, R&: SelOps); |
| 2378 | i += 2; |
| 2379 | } |
| 2380 | } |
| 2381 | |
| 2382 | // Add the glue input back if present. |
| 2383 | if (e != Ops.size()) |
| 2384 | Handles.emplace_back(args&: Ops.back()); |
| 2385 | |
| 2386 | Ops.clear(); |
| 2387 | for (auto &handle : Handles) |
| 2388 | Ops.push_back(x: handle.getValue()); |
| 2389 | } |
| 2390 | |
| 2391 | /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path |
| 2392 | /// beyond "ImmedUse". We may ignore chains as they are checked separately. |
| 2393 | static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse, |
| 2394 | bool IgnoreChains) { |
| 2395 | SmallPtrSet<const SDNode *, 16> Visited; |
| 2396 | SmallVector<const SDNode *, 16> WorkList; |
| 2397 | // Only check if we have non-immediate uses of Def. |
| 2398 | if (ImmedUse->isOnlyUserOf(N: Def)) |
| 2399 | return false; |
| 2400 | |
| 2401 | // We don't care about paths to Def that go through ImmedUse so mark it |
| 2402 | // visited and mark non-def operands as used. |
| 2403 | Visited.insert(Ptr: ImmedUse); |
| 2404 | for (const SDValue &Op : ImmedUse->op_values()) { |
| 2405 | SDNode *N = Op.getNode(); |
| 2406 | // Ignore chain deps (they are validated by |
| 2407 | // HandleMergeInputChains) and immediate uses |
| 2408 | if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) |
| 2409 | continue; |
| 2410 | if (!Visited.insert(Ptr: N).second) |
| 2411 | continue; |
| 2412 | WorkList.push_back(Elt: N); |
| 2413 | } |
| 2414 | |
| 2415 | // Initialize worklist to operands of Root. |
| 2416 | if (Root != ImmedUse) { |
| 2417 | for (const SDValue &Op : Root->op_values()) { |
| 2418 | SDNode *N = Op.getNode(); |
| 2419 | // Ignore chains (they are validated by HandleMergeInputChains) |
| 2420 | if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) |
| 2421 | continue; |
| 2422 | if (!Visited.insert(Ptr: N).second) |
| 2423 | continue; |
| 2424 | WorkList.push_back(Elt: N); |
| 2425 | } |
| 2426 | } |
| 2427 | |
| 2428 | return SDNode::hasPredecessorHelper(N: Def, Visited, Worklist&: WorkList, MaxSteps: 0, TopologicalPrune: true); |
| 2429 | } |
| 2430 | |
| 2431 | /// IsProfitableToFold - Returns true if it's profitable to fold the specific |
| 2432 | /// operand node N of U during instruction selection that starts at Root. |
| 2433 | bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, |
| 2434 | SDNode *Root) const { |
| 2435 | if (OptLevel == CodeGenOptLevel::None) |
| 2436 | return false; |
| 2437 | return N.hasOneUse(); |
| 2438 | } |
| 2439 | |
| 2440 | /// IsLegalToFold - Returns true if the specific operand node N of |
| 2441 | /// U can be folded during instruction selection that starts at Root. |
| 2442 | bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, |
| 2443 | CodeGenOptLevel OptLevel, |
| 2444 | bool IgnoreChains) { |
| 2445 | if (OptLevel == CodeGenOptLevel::None) |
| 2446 | return false; |
| 2447 | |
| 2448 | // If Root use can somehow reach N through a path that doesn't contain |
| 2449 | // U then folding N would create a cycle. e.g. In the following |
| 2450 | // diagram, Root can reach N through X. If N is folded into Root, then |
| 2451 | // X is both a predecessor and a successor of U. |
| 2452 | // |
| 2453 | // [N*] // |
| 2454 | // ^ ^ // |
| 2455 | // / \ // |
| 2456 | // [U*] [X]? // |
| 2457 | // ^ ^ // |
| 2458 | // \ / // |
| 2459 | // \ / // |
| 2460 | // [Root*] // |
| 2461 | // |
| 2462 | // * indicates nodes to be folded together. |
| 2463 | // |
| 2464 | // If Root produces glue, then it gets (even more) interesting. Since it |
| 2465 | // will be "glued" together with its glue use in the scheduler, we need to |
| 2466 | // check if it might reach N. |
| 2467 | // |
| 2468 | // [N*] // |
| 2469 | // ^ ^ // |
| 2470 | // / \ // |
| 2471 | // [U*] [X]? // |
| 2472 | // ^ ^ // |
| 2473 | // \ \ // |
| 2474 | // \ | // |
| 2475 | // [Root*] | // |
| 2476 | // ^ | // |
| 2477 | // f | // |
| 2478 | // | / // |
| 2479 | // [Y] / // |
| 2480 | // ^ / // |
| 2481 | // f / // |
| 2482 | // | / // |
| 2483 | // [GU] // |
| 2484 | // |
| 2485 | // If GU (glue use) indirectly reaches N (the load), and Root folds N |
| 2486 | // (call it Fold), then X is a predecessor of GU and a successor of |
| 2487 | // Fold. But since Fold and GU are glued together, this will create |
| 2488 | // a cycle in the scheduling graph. |
| 2489 | |
| 2490 | // If the node has glue, walk down the graph to the "lowest" node in the |
| 2491 | // glued set. |
| 2492 | EVT VT = Root->getValueType(ResNo: Root->getNumValues()-1); |
| 2493 | while (VT == MVT::Glue) { |
| 2494 | SDNode *GU = Root->getGluedUser(); |
| 2495 | if (!GU) |
| 2496 | break; |
| 2497 | Root = GU; |
| 2498 | VT = Root->getValueType(ResNo: Root->getNumValues()-1); |
| 2499 | |
| 2500 | // If our query node has a glue result with a use, we've walked up it. If |
| 2501 | // the user (which has already been selected) has a chain or indirectly uses |
| 2502 | // the chain, HandleMergeInputChains will not consider it. Because of |
| 2503 | // this, we cannot ignore chains in this predicate. |
| 2504 | IgnoreChains = false; |
| 2505 | } |
| 2506 | |
| 2507 | return !findNonImmUse(Root, Def: N.getNode(), ImmedUse: U, IgnoreChains); |
| 2508 | } |
| 2509 | |
| 2510 | void SelectionDAGISel::Select_INLINEASM(SDNode *N) { |
| 2511 | SDLoc DL(N); |
| 2512 | |
| 2513 | std::vector<SDValue> Ops(N->op_begin(), N->op_end()); |
| 2514 | SelectInlineAsmMemoryOperands(Ops, DL); |
| 2515 | |
| 2516 | const EVT VTs[] = {MVT::Other, MVT::Glue}; |
| 2517 | SDValue New = CurDAG->getNode(Opcode: N->getOpcode(), DL, ResultTys: VTs, Ops); |
| 2518 | New->setNodeId(-1); |
| 2519 | ReplaceUses(F: N, T: New.getNode()); |
| 2520 | CurDAG->RemoveDeadNode(N); |
| 2521 | } |
| 2522 | |
| 2523 | void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { |
| 2524 | SDLoc dl(Op); |
| 2525 | MDNodeSDNode *MD = cast<MDNodeSDNode>(Val: Op->getOperand(Num: 1)); |
| 2526 | const MDString *RegStr = cast<MDString>(Val: MD->getMD()->getOperand(I: 0)); |
| 2527 | |
| 2528 | EVT VT = Op->getValueType(ResNo: 0); |
| 2529 | LLT Ty = VT.isSimple() ? getLLTForMVT(Ty: VT.getSimpleVT()) : LLT(); |
| 2530 | |
| 2531 | const MachineFunction &MF = CurDAG->getMachineFunction(); |
| 2532 | Register Reg = TLI->getRegisterByName(RegName: RegStr->getString().data(), Ty, MF); |
| 2533 | |
| 2534 | SDValue New; |
| 2535 | if (!Reg) { |
| 2536 | const Function &Fn = MF.getFunction(); |
| 2537 | Fn.getContext().diagnose(DI: DiagnosticInfoGenericWithLoc( |
| 2538 | "invalid register \"" + Twine(RegStr->getString().data()) + |
| 2539 | "\" for llvm.read_register" , |
| 2540 | Fn, Op->getDebugLoc())); |
| 2541 | New = |
| 2542 | SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl, VT), 0); |
| 2543 | ReplaceUses(F: SDValue(Op, 1), T: Op->getOperand(Num: 0)); |
| 2544 | } else { |
| 2545 | New = |
| 2546 | CurDAG->getCopyFromReg(Chain: Op->getOperand(Num: 0), dl, Reg, VT: Op->getValueType(ResNo: 0)); |
| 2547 | } |
| 2548 | |
| 2549 | New->setNodeId(-1); |
| 2550 | ReplaceUses(F: Op, T: New.getNode()); |
| 2551 | CurDAG->RemoveDeadNode(N: Op); |
| 2552 | } |
| 2553 | |
| 2554 | void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { |
| 2555 | SDLoc dl(Op); |
| 2556 | MDNodeSDNode *MD = cast<MDNodeSDNode>(Val: Op->getOperand(Num: 1)); |
| 2557 | const MDString *RegStr = cast<MDString>(Val: MD->getMD()->getOperand(I: 0)); |
| 2558 | |
| 2559 | EVT VT = Op->getOperand(Num: 2).getValueType(); |
| 2560 | LLT Ty = VT.isSimple() ? getLLTForMVT(Ty: VT.getSimpleVT()) : LLT(); |
| 2561 | |
| 2562 | const MachineFunction &MF = CurDAG->getMachineFunction(); |
| 2563 | Register Reg = TLI->getRegisterByName(RegName: RegStr->getString().data(), Ty, MF); |
| 2564 | |
| 2565 | if (!Reg) { |
| 2566 | const Function &Fn = MF.getFunction(); |
| 2567 | Fn.getContext().diagnose(DI: DiagnosticInfoGenericWithLoc( |
| 2568 | "invalid register \"" + Twine(RegStr->getString().data()) + |
| 2569 | "\" for llvm.write_register" , |
| 2570 | Fn, Op->getDebugLoc())); |
| 2571 | ReplaceUses(F: SDValue(Op, 0), T: Op->getOperand(Num: 0)); |
| 2572 | } else { |
| 2573 | SDValue New = |
| 2574 | CurDAG->getCopyToReg(Chain: Op->getOperand(Num: 0), dl, Reg, N: Op->getOperand(Num: 2)); |
| 2575 | New->setNodeId(-1); |
| 2576 | ReplaceUses(F: Op, T: New.getNode()); |
| 2577 | } |
| 2578 | |
| 2579 | CurDAG->RemoveDeadNode(N: Op); |
| 2580 | } |
| 2581 | |
| 2582 | void SelectionDAGISel::Select_UNDEF(SDNode *N) { |
| 2583 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::IMPLICIT_DEF, VT: N->getValueType(ResNo: 0)); |
| 2584 | } |
| 2585 | |
| 2586 | // Use the generic target FAKE_USE target opcode. The chain operand |
| 2587 | // must come last, because InstrEmitter::AddOperand() requires it. |
| 2588 | void SelectionDAGISel::Select_FAKE_USE(SDNode *N) { |
| 2589 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::FAKE_USE, VT: N->getValueType(ResNo: 0), |
| 2590 | Op1: N->getOperand(Num: 1), Op2: N->getOperand(Num: 0)); |
| 2591 | } |
| 2592 | |
| 2593 | void SelectionDAGISel::Select_RELOC_NONE(SDNode *N) { |
| 2594 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::RELOC_NONE, VT: N->getValueType(ResNo: 0), |
| 2595 | Op1: N->getOperand(Num: 1), Op2: N->getOperand(Num: 0)); |
| 2596 | } |
| 2597 | |
| 2598 | void SelectionDAGISel::Select_FREEZE(SDNode *N) { |
| 2599 | // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now. |
| 2600 | // If FREEZE instruction is added later, the code below must be changed as |
| 2601 | // well. |
| 2602 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::COPY, VT: N->getValueType(ResNo: 0), |
| 2603 | Op1: N->getOperand(Num: 0)); |
| 2604 | } |
| 2605 | |
| 2606 | void SelectionDAGISel::Select_ARITH_FENCE(SDNode *N) { |
| 2607 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::ARITH_FENCE, VT: N->getValueType(ResNo: 0), |
| 2608 | Op1: N->getOperand(Num: 0)); |
| 2609 | } |
| 2610 | |
| 2611 | void SelectionDAGISel::Select_MEMBARRIER(SDNode *N) { |
| 2612 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::MEMBARRIER, VT: N->getValueType(ResNo: 0), |
| 2613 | Op1: N->getOperand(Num: 0)); |
| 2614 | } |
| 2615 | |
| 2616 | void SelectionDAGISel::Select_CONVERGENCECTRL_ANCHOR(SDNode *N) { |
| 2617 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::CONVERGENCECTRL_ANCHOR, |
| 2618 | VT: N->getValueType(ResNo: 0)); |
| 2619 | } |
| 2620 | |
| 2621 | void SelectionDAGISel::Select_CONVERGENCECTRL_ENTRY(SDNode *N) { |
| 2622 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::CONVERGENCECTRL_ENTRY, |
| 2623 | VT: N->getValueType(ResNo: 0)); |
| 2624 | } |
| 2625 | |
| 2626 | void SelectionDAGISel::Select_CONVERGENCECTRL_LOOP(SDNode *N) { |
| 2627 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::CONVERGENCECTRL_LOOP, |
| 2628 | VT: N->getValueType(ResNo: 0), Op1: N->getOperand(Num: 0)); |
| 2629 | } |
| 2630 | |
| 2631 | void SelectionDAGISel::pushStackMapLiveVariable(SmallVectorImpl<SDValue> &Ops, |
| 2632 | SDValue OpVal, SDLoc DL) { |
| 2633 | SDNode *OpNode = OpVal.getNode(); |
| 2634 | |
| 2635 | // FrameIndex nodes should have been directly emitted to TargetFrameIndex |
| 2636 | // nodes at DAG-construction time. |
| 2637 | assert(OpNode->getOpcode() != ISD::FrameIndex); |
| 2638 | |
| 2639 | if (OpNode->getOpcode() == ISD::Constant) { |
| 2640 | Ops.push_back( |
| 2641 | Elt: CurDAG->getTargetConstant(Val: StackMaps::ConstantOp, DL, VT: MVT::i64)); |
| 2642 | Ops.push_back(Elt: CurDAG->getTargetConstant(Val: OpNode->getAsZExtVal(), DL, |
| 2643 | VT: OpVal.getValueType())); |
| 2644 | } else { |
| 2645 | Ops.push_back(Elt: OpVal); |
| 2646 | } |
| 2647 | } |
| 2648 | |
| 2649 | void SelectionDAGISel::Select_STACKMAP(SDNode *N) { |
| 2650 | SmallVector<SDValue, 32> Ops; |
| 2651 | auto *It = N->op_begin(); |
| 2652 | SDLoc DL(N); |
| 2653 | |
| 2654 | // Stash the chain and glue operands so we can move them to the end. |
| 2655 | SDValue Chain = *It++; |
| 2656 | SDValue InGlue = *It++; |
| 2657 | |
| 2658 | // <id> operand. |
| 2659 | SDValue ID = *It++; |
| 2660 | assert(ID.getValueType() == MVT::i64); |
| 2661 | Ops.push_back(Elt: ID); |
| 2662 | |
| 2663 | // <numShadowBytes> operand. |
| 2664 | SDValue Shad = *It++; |
| 2665 | assert(Shad.getValueType() == MVT::i32); |
| 2666 | Ops.push_back(Elt: Shad); |
| 2667 | |
| 2668 | // Live variable operands. |
| 2669 | for (; It != N->op_end(); It++) |
| 2670 | pushStackMapLiveVariable(Ops, OpVal: *It, DL); |
| 2671 | |
| 2672 | Ops.push_back(Elt: Chain); |
| 2673 | Ops.push_back(Elt: InGlue); |
| 2674 | |
| 2675 | SDVTList NodeTys = CurDAG->getVTList(VT1: MVT::Other, VT2: MVT::Glue); |
| 2676 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::STACKMAP, VTs: NodeTys, Ops); |
| 2677 | } |
| 2678 | |
| 2679 | void SelectionDAGISel::Select_PATCHPOINT(SDNode *N) { |
| 2680 | SmallVector<SDValue, 32> Ops; |
| 2681 | auto *It = N->op_begin(); |
| 2682 | SDLoc DL(N); |
| 2683 | |
| 2684 | // Cache arguments that will be moved to the end in the target node. |
| 2685 | SDValue Chain = *It++; |
| 2686 | std::optional<SDValue> Glue; |
| 2687 | if (It->getValueType() == MVT::Glue) |
| 2688 | Glue = *It++; |
| 2689 | SDValue RegMask = *It++; |
| 2690 | |
| 2691 | // <id> operand. |
| 2692 | SDValue ID = *It++; |
| 2693 | assert(ID.getValueType() == MVT::i64); |
| 2694 | Ops.push_back(Elt: ID); |
| 2695 | |
| 2696 | // <numShadowBytes> operand. |
| 2697 | SDValue Shad = *It++; |
| 2698 | assert(Shad.getValueType() == MVT::i32); |
| 2699 | Ops.push_back(Elt: Shad); |
| 2700 | |
| 2701 | // Add the callee. |
| 2702 | Ops.push_back(Elt: *It++); |
| 2703 | |
| 2704 | // Add <numArgs>. |
| 2705 | SDValue NumArgs = *It++; |
| 2706 | assert(NumArgs.getValueType() == MVT::i32); |
| 2707 | Ops.push_back(Elt: NumArgs); |
| 2708 | |
| 2709 | // Calling convention. |
| 2710 | Ops.push_back(Elt: *It++); |
| 2711 | |
| 2712 | // Push the args for the call. |
| 2713 | for (uint64_t I = NumArgs->getAsZExtVal(); I != 0; I--) |
| 2714 | Ops.push_back(Elt: *It++); |
| 2715 | |
| 2716 | // Now push the live variables. |
| 2717 | for (; It != N->op_end(); It++) |
| 2718 | pushStackMapLiveVariable(Ops, OpVal: *It, DL); |
| 2719 | |
| 2720 | // Finally, the regmask, chain and (if present) glue are moved to the end. |
| 2721 | Ops.push_back(Elt: RegMask); |
| 2722 | Ops.push_back(Elt: Chain); |
| 2723 | if (Glue.has_value()) |
| 2724 | Ops.push_back(Elt: *Glue); |
| 2725 | |
| 2726 | SDVTList NodeTys = N->getVTList(); |
| 2727 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::PATCHPOINT, VTs: NodeTys, Ops); |
| 2728 | } |
| 2729 | |
| 2730 | /// GetVBR - decode a vbr encoding whose top bit is set. |
| 2731 | LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t |
| 2732 | GetVBR(uint64_t Val, const uint8_t *MatcherTable, size_t &Idx) { |
| 2733 | assert(Val >= 128 && "Not a VBR" ); |
| 2734 | Val &= 127; // Remove first vbr bit. |
| 2735 | |
| 2736 | unsigned Shift = 7; |
| 2737 | uint64_t NextBits; |
| 2738 | do { |
| 2739 | NextBits = MatcherTable[Idx++]; |
| 2740 | Val |= (NextBits&127) << Shift; |
| 2741 | Shift += 7; |
| 2742 | } while (NextBits & 128); |
| 2743 | |
| 2744 | return Val; |
| 2745 | } |
| 2746 | |
| 2747 | LLVM_ATTRIBUTE_ALWAYS_INLINE static int64_t |
| 2748 | GetSignedVBR(const unsigned char *MatcherTable, size_t &Idx) { |
| 2749 | int64_t Val = 0; |
| 2750 | unsigned Shift = 0; |
| 2751 | uint64_t NextBits; |
| 2752 | do { |
| 2753 | NextBits = MatcherTable[Idx++]; |
| 2754 | Val |= (NextBits & 127) << Shift; |
| 2755 | Shift += 7; |
| 2756 | } while (NextBits & 128); |
| 2757 | |
| 2758 | if (Shift < 64 && (NextBits & 0x40)) |
| 2759 | Val |= UINT64_MAX << Shift; |
| 2760 | |
| 2761 | return Val; |
| 2762 | } |
| 2763 | |
| 2764 | /// getSimpleVT - Decode a value in MatcherTable, if it's a VBR encoded value, |
| 2765 | /// use GetVBR to decode it. |
| 2766 | LLVM_ATTRIBUTE_ALWAYS_INLINE static MVT::SimpleValueType |
| 2767 | getSimpleVT(const uint8_t *MatcherTable, size_t &MatcherIndex) { |
| 2768 | unsigned SimpleVT = MatcherTable[MatcherIndex++]; |
| 2769 | if (SimpleVT & 128) |
| 2770 | SimpleVT = GetVBR(Val: SimpleVT, MatcherTable, Idx&: MatcherIndex); |
| 2771 | |
| 2772 | return static_cast<MVT::SimpleValueType>(SimpleVT); |
| 2773 | } |
| 2774 | |
| 2775 | /// Decode a HwMode VT in MatcherTable by calling getValueTypeForHwMode. |
| 2776 | LLVM_ATTRIBUTE_ALWAYS_INLINE static MVT |
| 2777 | getHwModeVT(const uint8_t *MatcherTable, size_t &MatcherIndex, |
| 2778 | const SelectionDAGISel &SDISel) { |
| 2779 | unsigned Index = MatcherTable[MatcherIndex++]; |
| 2780 | return SDISel.getValueTypeForHwMode(Index); |
| 2781 | } |
| 2782 | |
| 2783 | void SelectionDAGISel::Select_JUMP_TABLE_DEBUG_INFO(SDNode *N) { |
| 2784 | SDLoc dl(N); |
| 2785 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::JUMP_TABLE_DEBUG_INFO, VT: MVT::Glue, |
| 2786 | Op1: CurDAG->getTargetConstant(Val: N->getConstantOperandVal(Num: 1), |
| 2787 | DL: dl, VT: MVT::i64, isOpaque: true)); |
| 2788 | } |
| 2789 | |
| 2790 | /// When a match is complete, this method updates uses of interior chain results |
| 2791 | /// to use the new results. |
| 2792 | void SelectionDAGISel::UpdateChains( |
| 2793 | SDNode *NodeToMatch, SDValue InputChain, |
| 2794 | SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) { |
| 2795 | SmallVector<SDNode*, 4> NowDeadNodes; |
| 2796 | |
| 2797 | // Now that all the normal results are replaced, we replace the chain and |
| 2798 | // glue results if present. |
| 2799 | if (!ChainNodesMatched.empty()) { |
| 2800 | assert(InputChain.getNode() && |
| 2801 | "Matched input chains but didn't produce a chain" ); |
| 2802 | // Loop over all of the nodes we matched that produced a chain result. |
| 2803 | // Replace all the chain results with the final chain we ended up with. |
| 2804 | for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { |
| 2805 | SDNode *ChainNode = ChainNodesMatched[i]; |
| 2806 | // If ChainNode is null, it's because we replaced it on a previous |
| 2807 | // iteration and we cleared it out of the map. Just skip it. |
| 2808 | if (!ChainNode) |
| 2809 | continue; |
| 2810 | |
| 2811 | assert(ChainNode->getOpcode() != ISD::DELETED_NODE && |
| 2812 | "Deleted node left in chain" ); |
| 2813 | |
| 2814 | // Don't replace the results of the root node if we're doing a |
| 2815 | // MorphNodeTo. |
| 2816 | if (ChainNode == NodeToMatch && isMorphNodeTo) |
| 2817 | continue; |
| 2818 | |
| 2819 | SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); |
| 2820 | if (ChainVal.getValueType() == MVT::Glue) |
| 2821 | ChainVal = ChainVal.getValue(R: ChainVal->getNumValues()-2); |
| 2822 | assert(ChainVal.getValueType() == MVT::Other && "Not a chain?" ); |
| 2823 | SelectionDAG::DAGNodeDeletedListener NDL( |
| 2824 | *CurDAG, [&](SDNode *N, SDNode *E) { |
| 2825 | llvm::replace(Range&: ChainNodesMatched, OldValue: N, NewValue: static_cast<SDNode *>(nullptr)); |
| 2826 | }); |
| 2827 | if (ChainNode->getOpcode() != ISD::TokenFactor) |
| 2828 | ReplaceUses(F: ChainVal, T: InputChain); |
| 2829 | |
| 2830 | // If the node became dead and we haven't already seen it, delete it. |
| 2831 | if (ChainNode != NodeToMatch && ChainNode->use_empty() && |
| 2832 | !llvm::is_contained(Range&: NowDeadNodes, Element: ChainNode)) |
| 2833 | NowDeadNodes.push_back(Elt: ChainNode); |
| 2834 | } |
| 2835 | } |
| 2836 | |
| 2837 | if (!NowDeadNodes.empty()) |
| 2838 | CurDAG->RemoveDeadNodes(DeadNodes&: NowDeadNodes); |
| 2839 | |
| 2840 | LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n" ); |
| 2841 | } |
| 2842 | |
| 2843 | /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains |
| 2844 | /// operation for when the pattern matched at least one node with a chains. The |
| 2845 | /// input vector contains a list of all of the chained nodes that we match. We |
| 2846 | /// must determine if this is a valid thing to cover (i.e. matching it won't |
| 2847 | /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will |
| 2848 | /// be used as the input node chain for the generated nodes. |
| 2849 | static SDValue |
| 2850 | HandleMergeInputChains(const SmallVectorImpl<SDNode *> &ChainNodesMatched, |
| 2851 | SDValue InputGlue, SelectionDAG *CurDAG) { |
| 2852 | |
| 2853 | SmallPtrSet<const SDNode *, 16> Visited; |
| 2854 | SmallVector<const SDNode *, 8> Worklist; |
| 2855 | SmallVector<SDValue, 3> InputChains; |
| 2856 | unsigned int Max = 8192; |
| 2857 | |
| 2858 | // Quick exit on trivial merge. |
| 2859 | if (ChainNodesMatched.size() == 1) |
| 2860 | return ChainNodesMatched[0]->getOperand(Num: 0); |
| 2861 | |
| 2862 | // Add chains that aren't already added (internal). Peek through |
| 2863 | // token factors. |
| 2864 | std::function<void(const SDValue)> AddChains = [&](const SDValue V) { |
| 2865 | if (V.getValueType() != MVT::Other) |
| 2866 | return; |
| 2867 | if (V->getOpcode() == ISD::EntryToken) |
| 2868 | return; |
| 2869 | if (!Visited.insert(Ptr: V.getNode()).second) |
| 2870 | return; |
| 2871 | if (V->getOpcode() == ISD::TokenFactor) { |
| 2872 | for (const SDValue &Op : V->op_values()) |
| 2873 | AddChains(Op); |
| 2874 | } else |
| 2875 | InputChains.push_back(Elt: V); |
| 2876 | }; |
| 2877 | |
| 2878 | for (auto *N : ChainNodesMatched) { |
| 2879 | Worklist.push_back(Elt: N); |
| 2880 | Visited.insert(Ptr: N); |
| 2881 | } |
| 2882 | |
| 2883 | while (!Worklist.empty()) |
| 2884 | AddChains(Worklist.pop_back_val()->getOperand(Num: 0)); |
| 2885 | |
| 2886 | // Skip the search if there are no chain dependencies. |
| 2887 | if (InputChains.size() == 0) |
| 2888 | return CurDAG->getEntryNode(); |
| 2889 | |
| 2890 | // If one of these chains is a successor of input, we must have a |
| 2891 | // node that is both the predecessor and successor of the |
| 2892 | // to-be-merged nodes. Fail. |
| 2893 | Visited.clear(); |
| 2894 | for (SDValue V : InputChains) { |
| 2895 | // If we need to create a TokenFactor, and any of the input chain nodes will |
| 2896 | // also be glued to the output, we cannot merge the chains. The TokenFactor |
| 2897 | // would prevent the glue from being honored. |
| 2898 | if (InputChains.size() != 1 && |
| 2899 | V->getValueType(ResNo: V->getNumValues() - 1) == MVT::Glue && |
| 2900 | InputGlue.getNode() == V.getNode()) |
| 2901 | return SDValue(); |
| 2902 | Worklist.push_back(Elt: V.getNode()); |
| 2903 | } |
| 2904 | |
| 2905 | for (auto *N : ChainNodesMatched) |
| 2906 | if (SDNode::hasPredecessorHelper(N, Visited, Worklist, MaxSteps: Max, TopologicalPrune: true)) |
| 2907 | return SDValue(); |
| 2908 | |
| 2909 | // Return merged chain. |
| 2910 | if (InputChains.size() == 1) |
| 2911 | return InputChains[0]; |
| 2912 | return CurDAG->getNode(Opcode: ISD::TokenFactor, DL: SDLoc(ChainNodesMatched[0]), |
| 2913 | VT: MVT::Other, Ops: InputChains); |
| 2914 | } |
| 2915 | |
| 2916 | /// MorphNode - Handle morphing a node in place for the selector. |
| 2917 | SDNode *SelectionDAGISel:: |
| 2918 | MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, |
| 2919 | ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { |
| 2920 | // It is possible we're using MorphNodeTo to replace a node with no |
| 2921 | // normal results with one that has a normal result (or we could be |
| 2922 | // adding a chain) and the input could have glue and chains as well. |
| 2923 | // In this case we need to shift the operands down. |
| 2924 | // FIXME: This is a horrible hack and broken in obscure cases, no worse |
| 2925 | // than the old isel though. |
| 2926 | int OldGlueResultNo = -1, OldChainResultNo = -1; |
| 2927 | |
| 2928 | unsigned NTMNumResults = Node->getNumValues(); |
| 2929 | if (Node->getValueType(ResNo: NTMNumResults-1) == MVT::Glue) { |
| 2930 | OldGlueResultNo = NTMNumResults-1; |
| 2931 | if (NTMNumResults != 1 && |
| 2932 | Node->getValueType(ResNo: NTMNumResults-2) == MVT::Other) |
| 2933 | OldChainResultNo = NTMNumResults-2; |
| 2934 | } else if (Node->getValueType(ResNo: NTMNumResults-1) == MVT::Other) |
| 2935 | OldChainResultNo = NTMNumResults-1; |
| 2936 | |
| 2937 | // Call the underlying SelectionDAG routine to do the transmogrification. Note |
| 2938 | // that this deletes operands of the old node that become dead. |
| 2939 | SDNode *Res = CurDAG->MorphNodeTo(N: Node, Opc: ~TargetOpc, VTs: VTList, Ops); |
| 2940 | |
| 2941 | // MorphNodeTo can operate in two ways: if an existing node with the |
| 2942 | // specified operands exists, it can just return it. Otherwise, it |
| 2943 | // updates the node in place to have the requested operands. |
| 2944 | if (Res == Node) { |
| 2945 | // If we updated the node in place, reset the node ID. To the isel, |
| 2946 | // this should be just like a newly allocated machine node. |
| 2947 | Res->setNodeId(-1); |
| 2948 | } |
| 2949 | |
| 2950 | unsigned ResNumResults = Res->getNumValues(); |
| 2951 | // Move the glue if needed. |
| 2952 | if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && |
| 2953 | static_cast<unsigned>(OldGlueResultNo) != ResNumResults - 1) |
| 2954 | ReplaceUses(F: SDValue(Node, OldGlueResultNo), |
| 2955 | T: SDValue(Res, ResNumResults - 1)); |
| 2956 | |
| 2957 | if ((EmitNodeInfo & OPFL_GlueOutput) != 0) |
| 2958 | --ResNumResults; |
| 2959 | |
| 2960 | // Move the chain reference if needed. |
| 2961 | if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && |
| 2962 | static_cast<unsigned>(OldChainResultNo) != ResNumResults - 1) |
| 2963 | ReplaceUses(F: SDValue(Node, OldChainResultNo), |
| 2964 | T: SDValue(Res, ResNumResults - 1)); |
| 2965 | |
| 2966 | // Otherwise, no replacement happened because the node already exists. Replace |
| 2967 | // Uses of the old node with the new one. |
| 2968 | if (Res != Node) { |
| 2969 | ReplaceNode(F: Node, T: Res); |
| 2970 | } else { |
| 2971 | EnforceNodeIdInvariant(Node: Res); |
| 2972 | } |
| 2973 | |
| 2974 | return Res; |
| 2975 | } |
| 2976 | |
| 2977 | /// CheckSame - Implements OP_CheckSame. |
| 2978 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 2979 | CheckSame(const uint8_t *MatcherTable, size_t &MatcherIndex, SDValue N, |
| 2980 | const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) { |
| 2981 | // Accept if it is exactly the same as a previously recorded node. |
| 2982 | unsigned RecNo = MatcherTable[MatcherIndex++]; |
| 2983 | assert(RecNo < RecordedNodes.size() && "Invalid CheckSame" ); |
| 2984 | return N == RecordedNodes[RecNo].first; |
| 2985 | } |
| 2986 | |
| 2987 | /// CheckChildSame - Implements OP_CheckChildXSame. |
| 2988 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame( |
| 2989 | const uint8_t *MatcherTable, size_t &MatcherIndex, SDValue N, |
| 2990 | const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes, |
| 2991 | unsigned ChildNo) { |
| 2992 | if (ChildNo >= N.getNumOperands()) |
| 2993 | return false; // Match fails if out of range child #. |
| 2994 | return ::CheckSame(MatcherTable, MatcherIndex, N: N.getOperand(i: ChildNo), |
| 2995 | RecordedNodes); |
| 2996 | } |
| 2997 | |
| 2998 | /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. |
| 2999 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 3000 | CheckPatternPredicate(unsigned Opcode, const uint8_t *MatcherTable, |
| 3001 | size_t &MatcherIndex, const SelectionDAGISel &SDISel) { |
| 3002 | bool TwoBytePredNo = |
| 3003 | Opcode == SelectionDAGISel::OPC_CheckPatternPredicateTwoByte; |
| 3004 | unsigned PredNo = |
| 3005 | TwoBytePredNo || Opcode == SelectionDAGISel::OPC_CheckPatternPredicate |
| 3006 | ? MatcherTable[MatcherIndex++] |
| 3007 | : Opcode - SelectionDAGISel::OPC_CheckPatternPredicate0; |
| 3008 | if (TwoBytePredNo) |
| 3009 | PredNo |= MatcherTable[MatcherIndex++] << 8; |
| 3010 | return SDISel.CheckPatternPredicate(PredNo); |
| 3011 | } |
| 3012 | |
| 3013 | /// CheckNodePredicate - Implements OP_CheckNodePredicate. |
| 3014 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 3015 | CheckNodePredicate(unsigned Opcode, const uint8_t *MatcherTable, |
| 3016 | size_t &MatcherIndex, const SelectionDAGISel &SDISel, |
| 3017 | SDValue Op) { |
| 3018 | unsigned PredNo = Opcode == SelectionDAGISel::OPC_CheckPredicate |
| 3019 | ? MatcherTable[MatcherIndex++] |
| 3020 | : Opcode - SelectionDAGISel::OPC_CheckPredicate0; |
| 3021 | return SDISel.CheckNodePredicate(Op, PredNo); |
| 3022 | } |
| 3023 | |
| 3024 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 3025 | CheckOpcode(const uint8_t *MatcherTable, size_t &MatcherIndex, SDNode *N) { |
| 3026 | uint16_t Opc = MatcherTable[MatcherIndex++]; |
| 3027 | Opc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8; |
| 3028 | return N->getOpcode() == Opc; |
| 3029 | } |
| 3030 | |
| 3031 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckType(MVT::SimpleValueType VT, |
| 3032 | SDValue N, |
| 3033 | const TargetLowering *TLI, |
| 3034 | const DataLayout &DL) { |
| 3035 | if (N.getValueType() == VT) |
| 3036 | return true; |
| 3037 | |
| 3038 | // Handle the case when VT is iPTR. |
| 3039 | return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); |
| 3040 | } |
| 3041 | |
| 3042 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 3043 | CheckChildType(MVT::SimpleValueType VT, SDValue N, const TargetLowering *TLI, |
| 3044 | const DataLayout &DL, unsigned ChildNo) { |
| 3045 | if (ChildNo >= N.getNumOperands()) |
| 3046 | return false; // Match fails if out of range child #. |
| 3047 | return ::CheckType(VT, N: N.getOperand(i: ChildNo), TLI, DL); |
| 3048 | } |
| 3049 | |
| 3050 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 3051 | CheckCondCode(const uint8_t *MatcherTable, size_t &MatcherIndex, SDValue N) { |
| 3052 | return cast<CondCodeSDNode>(Val&: N)->get() == |
| 3053 | static_cast<ISD::CondCode>(MatcherTable[MatcherIndex++]); |
| 3054 | } |
| 3055 | |
| 3056 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 3057 | CheckChild2CondCode(const uint8_t *MatcherTable, size_t &MatcherIndex, |
| 3058 | SDValue N) { |
| 3059 | if (2 >= N.getNumOperands()) |
| 3060 | return false; |
| 3061 | return ::CheckCondCode(MatcherTable, MatcherIndex, N: N.getOperand(i: 2)); |
| 3062 | } |
| 3063 | |
| 3064 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 3065 | CheckValueType(const uint8_t *MatcherTable, size_t &MatcherIndex, SDValue N, |
| 3066 | const TargetLowering *TLI, const DataLayout &DL) { |
| 3067 | MVT::SimpleValueType VT = getSimpleVT(MatcherTable, MatcherIndex); |
| 3068 | if (cast<VTSDNode>(Val&: N)->getVT() == VT) |
| 3069 | return true; |
| 3070 | |
| 3071 | // Handle the case when VT is iPTR. |
| 3072 | return VT == MVT::iPTR && cast<VTSDNode>(Val&: N)->getVT() == TLI->getPointerTy(DL); |
| 3073 | } |
| 3074 | |
| 3075 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 3076 | CheckInteger(const uint8_t *MatcherTable, size_t &MatcherIndex, SDValue N) { |
| 3077 | int64_t Val = GetSignedVBR(MatcherTable, Idx&: MatcherIndex); |
| 3078 | |
| 3079 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: N); |
| 3080 | return C && C->getAPIntValue().trySExtValue() == Val; |
| 3081 | } |
| 3082 | |
| 3083 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 3084 | CheckChildInteger(const uint8_t *MatcherTable, size_t &MatcherIndex, SDValue N, |
| 3085 | unsigned ChildNo) { |
| 3086 | if (ChildNo >= N.getNumOperands()) |
| 3087 | return false; // Match fails if out of range child #. |
| 3088 | return ::CheckInteger(MatcherTable, MatcherIndex, N: N.getOperand(i: ChildNo)); |
| 3089 | } |
| 3090 | |
| 3091 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 3092 | CheckAndImm(const uint8_t *MatcherTable, size_t &MatcherIndex, SDValue N, |
| 3093 | const SelectionDAGISel &SDISel) { |
| 3094 | int64_t Val = MatcherTable[MatcherIndex++]; |
| 3095 | if (Val & 128) |
| 3096 | Val = GetVBR(Val, MatcherTable, Idx&: MatcherIndex); |
| 3097 | |
| 3098 | if (N->getOpcode() != ISD::AND) return false; |
| 3099 | |
| 3100 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
| 3101 | return C && SDISel.CheckAndMask(LHS: N.getOperand(i: 0), RHS: C, DesiredMaskS: Val); |
| 3102 | } |
| 3103 | |
| 3104 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 3105 | CheckOrImm(const uint8_t *MatcherTable, size_t &MatcherIndex, SDValue N, |
| 3106 | const SelectionDAGISel &SDISel) { |
| 3107 | int64_t Val = MatcherTable[MatcherIndex++]; |
| 3108 | if (Val & 128) |
| 3109 | Val = GetVBR(Val, MatcherTable, Idx&: MatcherIndex); |
| 3110 | |
| 3111 | if (N->getOpcode() != ISD::OR) return false; |
| 3112 | |
| 3113 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
| 3114 | return C && SDISel.CheckOrMask(LHS: N.getOperand(i: 0), RHS: C, DesiredMaskS: Val); |
| 3115 | } |
| 3116 | |
| 3117 | /// IsPredicateKnownToFail - If we know how and can do so without pushing a |
| 3118 | /// scope, evaluate the current node. If the current predicate is known to |
| 3119 | /// fail, set Result=true and return anything. If the current predicate is |
| 3120 | /// known to pass, set Result=false and return the MatcherIndex to continue |
| 3121 | /// with. If the current predicate is unknown, set Result=false and return the |
| 3122 | /// MatcherIndex to continue with. |
| 3123 | static size_t IsPredicateKnownToFail( |
| 3124 | const uint8_t *Table, size_t Index, SDValue N, bool &Result, |
| 3125 | const SelectionDAGISel &SDISel, |
| 3126 | SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) { |
| 3127 | unsigned Opcode = Table[Index++]; |
| 3128 | switch (Opcode) { |
| 3129 | default: |
| 3130 | Result = false; |
| 3131 | return Index-1; // Could not evaluate this predicate. |
| 3132 | case SelectionDAGISel::OPC_CheckSame: |
| 3133 | Result = !::CheckSame(MatcherTable: Table, MatcherIndex&: Index, N, RecordedNodes); |
| 3134 | return Index; |
| 3135 | case SelectionDAGISel::OPC_CheckChild0Same: |
| 3136 | case SelectionDAGISel::OPC_CheckChild1Same: |
| 3137 | case SelectionDAGISel::OPC_CheckChild2Same: |
| 3138 | case SelectionDAGISel::OPC_CheckChild3Same: |
| 3139 | Result = !::CheckChildSame(MatcherTable: Table, MatcherIndex&: Index, N, RecordedNodes, |
| 3140 | ChildNo: Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); |
| 3141 | return Index; |
| 3142 | case SelectionDAGISel::OPC_CheckPatternPredicate: |
| 3143 | case SelectionDAGISel::OPC_CheckPatternPredicate0: |
| 3144 | case SelectionDAGISel::OPC_CheckPatternPredicate1: |
| 3145 | case SelectionDAGISel::OPC_CheckPatternPredicate2: |
| 3146 | case SelectionDAGISel::OPC_CheckPatternPredicate3: |
| 3147 | case SelectionDAGISel::OPC_CheckPatternPredicate4: |
| 3148 | case SelectionDAGISel::OPC_CheckPatternPredicate5: |
| 3149 | case SelectionDAGISel::OPC_CheckPatternPredicate6: |
| 3150 | case SelectionDAGISel::OPC_CheckPatternPredicate7: |
| 3151 | case SelectionDAGISel::OPC_CheckPatternPredicateTwoByte: |
| 3152 | Result = !::CheckPatternPredicate(Opcode, MatcherTable: Table, MatcherIndex&: Index, SDISel); |
| 3153 | return Index; |
| 3154 | case SelectionDAGISel::OPC_CheckPredicate: |
| 3155 | case SelectionDAGISel::OPC_CheckPredicate0: |
| 3156 | case SelectionDAGISel::OPC_CheckPredicate1: |
| 3157 | case SelectionDAGISel::OPC_CheckPredicate2: |
| 3158 | case SelectionDAGISel::OPC_CheckPredicate3: |
| 3159 | case SelectionDAGISel::OPC_CheckPredicate4: |
| 3160 | case SelectionDAGISel::OPC_CheckPredicate5: |
| 3161 | case SelectionDAGISel::OPC_CheckPredicate6: |
| 3162 | case SelectionDAGISel::OPC_CheckPredicate7: |
| 3163 | Result = !::CheckNodePredicate(Opcode, MatcherTable: Table, MatcherIndex&: Index, SDISel, Op: N); |
| 3164 | return Index; |
| 3165 | case SelectionDAGISel::OPC_CheckOpcode: |
| 3166 | Result = !::CheckOpcode(MatcherTable: Table, MatcherIndex&: Index, N: N.getNode()); |
| 3167 | return Index; |
| 3168 | case SelectionDAGISel::OPC_CheckType: |
| 3169 | case SelectionDAGISel::OPC_CheckTypeI32: |
| 3170 | case SelectionDAGISel::OPC_CheckTypeI64: |
| 3171 | case SelectionDAGISel::OPC_CheckTypeByHwMode: { |
| 3172 | MVT VT; |
| 3173 | switch (Opcode) { |
| 3174 | case SelectionDAGISel::OPC_CheckTypeI32: |
| 3175 | VT = MVT::i32; |
| 3176 | break; |
| 3177 | case SelectionDAGISel::OPC_CheckTypeI64: |
| 3178 | VT = MVT::i64; |
| 3179 | break; |
| 3180 | case SelectionDAGISel::OPC_CheckTypeByHwMode: |
| 3181 | VT = getHwModeVT(MatcherTable: Table, MatcherIndex&: Index, SDISel); |
| 3182 | break; |
| 3183 | default: |
| 3184 | VT = getSimpleVT(MatcherTable: Table, MatcherIndex&: Index); |
| 3185 | break; |
| 3186 | } |
| 3187 | Result = !::CheckType(VT: VT.SimpleTy, N, TLI: SDISel.TLI, |
| 3188 | DL: SDISel.CurDAG->getDataLayout()); |
| 3189 | return Index; |
| 3190 | } |
| 3191 | case SelectionDAGISel::OPC_CheckTypeRes: |
| 3192 | case SelectionDAGISel::OPC_CheckTypeResByHwMode: { |
| 3193 | unsigned Res = Table[Index++]; |
| 3194 | MVT VT = Opcode == SelectionDAGISel::OPC_CheckTypeResByHwMode |
| 3195 | ? getHwModeVT(MatcherTable: Table, MatcherIndex&: Index, SDISel) |
| 3196 | : getSimpleVT(MatcherTable: Table, MatcherIndex&: Index); |
| 3197 | Result = !::CheckType(VT: VT.SimpleTy, N: N.getValue(R: Res), TLI: SDISel.TLI, |
| 3198 | DL: SDISel.CurDAG->getDataLayout()); |
| 3199 | return Index; |
| 3200 | } |
| 3201 | case SelectionDAGISel::OPC_CheckChild0Type: |
| 3202 | case SelectionDAGISel::OPC_CheckChild1Type: |
| 3203 | case SelectionDAGISel::OPC_CheckChild2Type: |
| 3204 | case SelectionDAGISel::OPC_CheckChild3Type: |
| 3205 | case SelectionDAGISel::OPC_CheckChild4Type: |
| 3206 | case SelectionDAGISel::OPC_CheckChild5Type: |
| 3207 | case SelectionDAGISel::OPC_CheckChild6Type: |
| 3208 | case SelectionDAGISel::OPC_CheckChild7Type: |
| 3209 | case SelectionDAGISel::OPC_CheckChild0TypeI32: |
| 3210 | case SelectionDAGISel::OPC_CheckChild1TypeI32: |
| 3211 | case SelectionDAGISel::OPC_CheckChild2TypeI32: |
| 3212 | case SelectionDAGISel::OPC_CheckChild3TypeI32: |
| 3213 | case SelectionDAGISel::OPC_CheckChild4TypeI32: |
| 3214 | case SelectionDAGISel::OPC_CheckChild5TypeI32: |
| 3215 | case SelectionDAGISel::OPC_CheckChild6TypeI32: |
| 3216 | case SelectionDAGISel::OPC_CheckChild7TypeI32: |
| 3217 | case SelectionDAGISel::OPC_CheckChild0TypeI64: |
| 3218 | case SelectionDAGISel::OPC_CheckChild1TypeI64: |
| 3219 | case SelectionDAGISel::OPC_CheckChild2TypeI64: |
| 3220 | case SelectionDAGISel::OPC_CheckChild3TypeI64: |
| 3221 | case SelectionDAGISel::OPC_CheckChild4TypeI64: |
| 3222 | case SelectionDAGISel::OPC_CheckChild5TypeI64: |
| 3223 | case SelectionDAGISel::OPC_CheckChild6TypeI64: |
| 3224 | case SelectionDAGISel::OPC_CheckChild7TypeI64: |
| 3225 | case SelectionDAGISel::OPC_CheckChild0TypeByHwMode: |
| 3226 | case SelectionDAGISel::OPC_CheckChild1TypeByHwMode: |
| 3227 | case SelectionDAGISel::OPC_CheckChild2TypeByHwMode: |
| 3228 | case SelectionDAGISel::OPC_CheckChild3TypeByHwMode: |
| 3229 | case SelectionDAGISel::OPC_CheckChild4TypeByHwMode: |
| 3230 | case SelectionDAGISel::OPC_CheckChild5TypeByHwMode: |
| 3231 | case SelectionDAGISel::OPC_CheckChild6TypeByHwMode: |
| 3232 | case SelectionDAGISel::OPC_CheckChild7TypeByHwMode: { |
| 3233 | MVT VT; |
| 3234 | unsigned ChildNo; |
| 3235 | if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI32 && |
| 3236 | Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI32) { |
| 3237 | VT = MVT::i32; |
| 3238 | ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI32; |
| 3239 | } else if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI64 && |
| 3240 | Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI64) { |
| 3241 | VT = MVT::i64; |
| 3242 | ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI64; |
| 3243 | } else if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeByHwMode && |
| 3244 | Opcode <= SelectionDAGISel::OPC_CheckChild7TypeByHwMode) { |
| 3245 | VT = getHwModeVT(MatcherTable: Table, MatcherIndex&: Index, SDISel); |
| 3246 | ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeByHwMode; |
| 3247 | } else { |
| 3248 | VT = getSimpleVT(MatcherTable: Table, MatcherIndex&: Index); |
| 3249 | ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0Type; |
| 3250 | } |
| 3251 | Result = !::CheckChildType(VT: VT.SimpleTy, N, TLI: SDISel.TLI, |
| 3252 | DL: SDISel.CurDAG->getDataLayout(), ChildNo); |
| 3253 | return Index; |
| 3254 | } |
| 3255 | case SelectionDAGISel::OPC_CheckCondCode: |
| 3256 | Result = !::CheckCondCode(MatcherTable: Table, MatcherIndex&: Index, N); |
| 3257 | return Index; |
| 3258 | case SelectionDAGISel::OPC_CheckChild2CondCode: |
| 3259 | Result = !::CheckChild2CondCode(MatcherTable: Table, MatcherIndex&: Index, N); |
| 3260 | return Index; |
| 3261 | case SelectionDAGISel::OPC_CheckValueType: |
| 3262 | Result = !::CheckValueType(MatcherTable: Table, MatcherIndex&: Index, N, TLI: SDISel.TLI, |
| 3263 | DL: SDISel.CurDAG->getDataLayout()); |
| 3264 | return Index; |
| 3265 | case SelectionDAGISel::OPC_CheckInteger: |
| 3266 | Result = !::CheckInteger(MatcherTable: Table, MatcherIndex&: Index, N); |
| 3267 | return Index; |
| 3268 | case SelectionDAGISel::OPC_CheckChild0Integer: |
| 3269 | case SelectionDAGISel::OPC_CheckChild1Integer: |
| 3270 | case SelectionDAGISel::OPC_CheckChild2Integer: |
| 3271 | case SelectionDAGISel::OPC_CheckChild3Integer: |
| 3272 | case SelectionDAGISel::OPC_CheckChild4Integer: |
| 3273 | Result = !::CheckChildInteger(MatcherTable: Table, MatcherIndex&: Index, N, |
| 3274 | ChildNo: Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); |
| 3275 | return Index; |
| 3276 | case SelectionDAGISel::OPC_CheckAndImm: |
| 3277 | Result = !::CheckAndImm(MatcherTable: Table, MatcherIndex&: Index, N, SDISel); |
| 3278 | return Index; |
| 3279 | case SelectionDAGISel::OPC_CheckOrImm: |
| 3280 | Result = !::CheckOrImm(MatcherTable: Table, MatcherIndex&: Index, N, SDISel); |
| 3281 | return Index; |
| 3282 | } |
| 3283 | } |
| 3284 | |
| 3285 | namespace { |
| 3286 | |
| 3287 | struct MatchScope { |
| 3288 | /// FailIndex - If this match fails, this is the index to continue with. |
| 3289 | unsigned FailIndex; |
| 3290 | |
| 3291 | /// NodeStack - The node stack when the scope was formed. |
| 3292 | SmallVector<SDValue, 4> NodeStack; |
| 3293 | |
| 3294 | /// NumRecordedNodes - The number of recorded nodes when the scope was formed. |
| 3295 | unsigned NumRecordedNodes; |
| 3296 | |
| 3297 | /// NumMatchedMemRefs - The number of matched memref entries. |
| 3298 | unsigned NumMatchedMemRefs; |
| 3299 | |
| 3300 | /// InputChain/InputGlue - The current chain/glue |
| 3301 | SDValue InputChain, InputGlue; |
| 3302 | |
| 3303 | /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. |
| 3304 | bool HasChainNodesMatched; |
| 3305 | }; |
| 3306 | |
| 3307 | /// \A DAG update listener to keep the matching state |
| 3308 | /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to |
| 3309 | /// change the DAG while matching. X86 addressing mode matcher is an example |
| 3310 | /// for this. |
| 3311 | class MatchStateUpdater : public SelectionDAG::DAGUpdateListener |
| 3312 | { |
| 3313 | SDNode **NodeToMatch; |
| 3314 | SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes; |
| 3315 | SmallVectorImpl<MatchScope> &MatchScopes; |
| 3316 | |
| 3317 | public: |
| 3318 | MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch, |
| 3319 | SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN, |
| 3320 | SmallVectorImpl<MatchScope> &MS) |
| 3321 | : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch), |
| 3322 | RecordedNodes(RN), MatchScopes(MS) {} |
| 3323 | |
| 3324 | void NodeDeleted(SDNode *N, SDNode *E) override { |
| 3325 | // Some early-returns here to avoid the search if we deleted the node or |
| 3326 | // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we |
| 3327 | // do, so it's unnecessary to update matching state at that point). |
| 3328 | // Neither of these can occur currently because we only install this |
| 3329 | // update listener during matching a complex patterns. |
| 3330 | if (!E || E->isMachineOpcode()) |
| 3331 | return; |
| 3332 | // Check if NodeToMatch was updated. |
| 3333 | if (N == *NodeToMatch) |
| 3334 | *NodeToMatch = E; |
| 3335 | // Performing linear search here does not matter because we almost never |
| 3336 | // run this code. You'd have to have a CSE during complex pattern |
| 3337 | // matching. |
| 3338 | for (auto &I : RecordedNodes) |
| 3339 | if (I.first.getNode() == N) |
| 3340 | I.first.setNode(E); |
| 3341 | |
| 3342 | for (auto &I : MatchScopes) |
| 3343 | for (auto &J : I.NodeStack) |
| 3344 | if (J.getNode() == N) |
| 3345 | J.setNode(E); |
| 3346 | } |
| 3347 | }; |
| 3348 | |
| 3349 | } // end anonymous namespace |
| 3350 | |
| 3351 | void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch, |
| 3352 | const uint8_t *MatcherTable, |
| 3353 | unsigned TableSize) { |
| 3354 | // FIXME: Should these even be selected? Handle these cases in the caller? |
| 3355 | switch (NodeToMatch->getOpcode()) { |
| 3356 | default: |
| 3357 | break; |
| 3358 | case ISD::EntryToken: // These nodes remain the same. |
| 3359 | case ISD::BasicBlock: |
| 3360 | case ISD::Register: |
| 3361 | case ISD::RegisterMask: |
| 3362 | case ISD::HANDLENODE: |
| 3363 | case ISD::MDNODE_SDNODE: |
| 3364 | case ISD::TargetConstant: |
| 3365 | case ISD::TargetConstantFP: |
| 3366 | case ISD::TargetConstantPool: |
| 3367 | case ISD::TargetFrameIndex: |
| 3368 | case ISD::TargetExternalSymbol: |
| 3369 | case ISD::MCSymbol: |
| 3370 | case ISD::TargetBlockAddress: |
| 3371 | case ISD::TargetJumpTable: |
| 3372 | case ISD::TargetGlobalTLSAddress: |
| 3373 | case ISD::TargetGlobalAddress: |
| 3374 | case ISD::TokenFactor: |
| 3375 | case ISD::CopyFromReg: |
| 3376 | case ISD::CopyToReg: |
| 3377 | case ISD::EH_LABEL: |
| 3378 | case ISD::ANNOTATION_LABEL: |
| 3379 | case ISD::LIFETIME_START: |
| 3380 | case ISD::LIFETIME_END: |
| 3381 | case ISD::PSEUDO_PROBE: |
| 3382 | case ISD::DEACTIVATION_SYMBOL: |
| 3383 | NodeToMatch->setNodeId(-1); // Mark selected. |
| 3384 | return; |
| 3385 | case ISD::AssertSext: |
| 3386 | case ISD::AssertZext: |
| 3387 | case ISD::AssertNoFPClass: |
| 3388 | case ISD::AssertAlign: |
| 3389 | ReplaceUses(F: SDValue(NodeToMatch, 0), T: NodeToMatch->getOperand(Num: 0)); |
| 3390 | CurDAG->RemoveDeadNode(N: NodeToMatch); |
| 3391 | return; |
| 3392 | case ISD::INLINEASM: |
| 3393 | case ISD::INLINEASM_BR: |
| 3394 | Select_INLINEASM(N: NodeToMatch); |
| 3395 | return; |
| 3396 | case ISD::READ_REGISTER: |
| 3397 | Select_READ_REGISTER(Op: NodeToMatch); |
| 3398 | return; |
| 3399 | case ISD::WRITE_REGISTER: |
| 3400 | Select_WRITE_REGISTER(Op: NodeToMatch); |
| 3401 | return; |
| 3402 | case ISD::POISON: |
| 3403 | case ISD::UNDEF: |
| 3404 | Select_UNDEF(N: NodeToMatch); |
| 3405 | return; |
| 3406 | case ISD::FAKE_USE: |
| 3407 | Select_FAKE_USE(N: NodeToMatch); |
| 3408 | return; |
| 3409 | case ISD::RELOC_NONE: |
| 3410 | Select_RELOC_NONE(N: NodeToMatch); |
| 3411 | return; |
| 3412 | case ISD::FREEZE: |
| 3413 | Select_FREEZE(N: NodeToMatch); |
| 3414 | return; |
| 3415 | case ISD::ARITH_FENCE: |
| 3416 | Select_ARITH_FENCE(N: NodeToMatch); |
| 3417 | return; |
| 3418 | case ISD::MEMBARRIER: |
| 3419 | Select_MEMBARRIER(N: NodeToMatch); |
| 3420 | return; |
| 3421 | case ISD::STACKMAP: |
| 3422 | Select_STACKMAP(N: NodeToMatch); |
| 3423 | return; |
| 3424 | case ISD::PATCHPOINT: |
| 3425 | Select_PATCHPOINT(N: NodeToMatch); |
| 3426 | return; |
| 3427 | case ISD::JUMP_TABLE_DEBUG_INFO: |
| 3428 | Select_JUMP_TABLE_DEBUG_INFO(N: NodeToMatch); |
| 3429 | return; |
| 3430 | case ISD::CONVERGENCECTRL_ANCHOR: |
| 3431 | Select_CONVERGENCECTRL_ANCHOR(N: NodeToMatch); |
| 3432 | return; |
| 3433 | case ISD::CONVERGENCECTRL_ENTRY: |
| 3434 | Select_CONVERGENCECTRL_ENTRY(N: NodeToMatch); |
| 3435 | return; |
| 3436 | case ISD::CONVERGENCECTRL_LOOP: |
| 3437 | Select_CONVERGENCECTRL_LOOP(N: NodeToMatch); |
| 3438 | return; |
| 3439 | } |
| 3440 | |
| 3441 | assert(!NodeToMatch->isMachineOpcode() && "Node already selected!" ); |
| 3442 | |
| 3443 | // Set up the node stack with NodeToMatch as the only node on the stack. |
| 3444 | SmallVector<SDValue, 8> NodeStack; |
| 3445 | SDValue N = SDValue(NodeToMatch, 0); |
| 3446 | NodeStack.push_back(Elt: N); |
| 3447 | |
| 3448 | // MatchScopes - Scopes used when matching, if a match failure happens, this |
| 3449 | // indicates where to continue checking. |
| 3450 | SmallVector<MatchScope, 8> MatchScopes; |
| 3451 | |
| 3452 | // RecordedNodes - This is the set of nodes that have been recorded by the |
| 3453 | // state machine. The second value is the parent of the node, or null if the |
| 3454 | // root is recorded. |
| 3455 | SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; |
| 3456 | |
| 3457 | // MatchedMemRefs - This is the set of MemRef's we've seen in the input |
| 3458 | // pattern. |
| 3459 | SmallVector<MachineMemOperand*, 2> MatchedMemRefs; |
| 3460 | |
| 3461 | // These are the current input chain and glue for use when generating nodes. |
| 3462 | // Various Emit operations change these. For example, emitting a copytoreg |
| 3463 | // uses and updates these. |
| 3464 | SDValue InputChain, InputGlue, DeactivationSymbol; |
| 3465 | |
| 3466 | // ChainNodesMatched - If a pattern matches nodes that have input/output |
| 3467 | // chains, the OPC_EmitMergeInputChains operation is emitted which indicates |
| 3468 | // which ones they are. The result is captured into this list so that we can |
| 3469 | // update the chain results when the pattern is complete. |
| 3470 | SmallVector<SDNode*, 3> ChainNodesMatched; |
| 3471 | |
| 3472 | LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n" ); |
| 3473 | |
| 3474 | // Determine where to start the interpreter. Normally we start at opcode #0, |
| 3475 | // but if the state machine starts with an OPC_SwitchOpcode, then we |
| 3476 | // accelerate the first lookup (which is guaranteed to be hot) with the |
| 3477 | // OpcodeOffset table. |
| 3478 | size_t MatcherIndex = 0; |
| 3479 | |
| 3480 | if (!OpcodeOffset.empty()) { |
| 3481 | // Already computed the OpcodeOffset table, just index into it. |
| 3482 | if (N.getOpcode() < OpcodeOffset.size()) |
| 3483 | MatcherIndex = OpcodeOffset[N.getOpcode()]; |
| 3484 | LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n" ); |
| 3485 | |
| 3486 | } else if (MatcherTable[0] == OPC_SwitchOpcode) { |
| 3487 | // Otherwise, the table isn't computed, but the state machine does start |
| 3488 | // with an OPC_SwitchOpcode instruction. Populate the table now, since this |
| 3489 | // is the first time we're selecting an instruction. |
| 3490 | size_t Idx = 1; |
| 3491 | while (true) { |
| 3492 | // Get the size of this case. |
| 3493 | unsigned CaseSize = MatcherTable[Idx++]; |
| 3494 | if (CaseSize & 128) |
| 3495 | CaseSize = GetVBR(Val: CaseSize, MatcherTable, Idx); |
| 3496 | if (CaseSize == 0) break; |
| 3497 | |
| 3498 | // Get the opcode, add the index to the table. |
| 3499 | uint16_t Opc = MatcherTable[Idx++]; |
| 3500 | Opc |= static_cast<uint16_t>(MatcherTable[Idx++]) << 8; |
| 3501 | if (Opc >= OpcodeOffset.size()) |
| 3502 | OpcodeOffset.resize(new_size: (Opc+1)*2); |
| 3503 | OpcodeOffset[Opc] = Idx; |
| 3504 | Idx += CaseSize; |
| 3505 | } |
| 3506 | |
| 3507 | // Okay, do the lookup for the first opcode. |
| 3508 | if (N.getOpcode() < OpcodeOffset.size()) |
| 3509 | MatcherIndex = OpcodeOffset[N.getOpcode()]; |
| 3510 | } |
| 3511 | |
| 3512 | while (true) { |
| 3513 | assert(MatcherIndex < TableSize && "Invalid index" ); |
| 3514 | #ifndef NDEBUG |
| 3515 | size_t CurrentOpcodeIndex = MatcherIndex; |
| 3516 | #endif |
| 3517 | BuiltinOpcodes Opcode = |
| 3518 | static_cast<BuiltinOpcodes>(MatcherTable[MatcherIndex++]); |
| 3519 | switch (Opcode) { |
| 3520 | case OPC_Scope: { |
| 3521 | // Okay, the semantics of this operation are that we should push a scope |
| 3522 | // then evaluate the first child. However, pushing a scope only to have |
| 3523 | // the first check fail (which then pops it) is inefficient. If we can |
| 3524 | // determine immediately that the first check (or first several) will |
| 3525 | // immediately fail, don't even bother pushing a scope for them. |
| 3526 | size_t FailIndex; |
| 3527 | |
| 3528 | while (true) { |
| 3529 | unsigned NumToSkip = MatcherTable[MatcherIndex++]; |
| 3530 | if (NumToSkip & 128) |
| 3531 | NumToSkip = GetVBR(Val: NumToSkip, MatcherTable, Idx&: MatcherIndex); |
| 3532 | // Found the end of the scope with no match. |
| 3533 | if (NumToSkip == 0) { |
| 3534 | FailIndex = 0; |
| 3535 | break; |
| 3536 | } |
| 3537 | |
| 3538 | FailIndex = MatcherIndex+NumToSkip; |
| 3539 | |
| 3540 | size_t MatcherIndexOfPredicate = MatcherIndex; |
| 3541 | (void)MatcherIndexOfPredicate; // silence warning. |
| 3542 | |
| 3543 | // If we can't evaluate this predicate without pushing a scope (e.g. if |
| 3544 | // it is a 'MoveParent') or if the predicate succeeds on this node, we |
| 3545 | // push the scope and evaluate the full predicate chain. |
| 3546 | bool Result; |
| 3547 | MatcherIndex = IsPredicateKnownToFail(Table: MatcherTable, Index: MatcherIndex, N, |
| 3548 | Result, SDISel: *this, RecordedNodes); |
| 3549 | if (!Result) |
| 3550 | break; |
| 3551 | |
| 3552 | LLVM_DEBUG( |
| 3553 | dbgs() << " Skipped scope entry (due to false predicate) at " |
| 3554 | << "index " << MatcherIndexOfPredicate << ", continuing at " |
| 3555 | << FailIndex << "\n" ); |
| 3556 | ++NumDAGIselRetries; |
| 3557 | |
| 3558 | // Otherwise, we know that this case of the Scope is guaranteed to fail, |
| 3559 | // move to the next case. |
| 3560 | MatcherIndex = FailIndex; |
| 3561 | } |
| 3562 | |
| 3563 | // If the whole scope failed to match, bail. |
| 3564 | if (FailIndex == 0) break; |
| 3565 | |
| 3566 | // Push a MatchScope which indicates where to go if the first child fails |
| 3567 | // to match. |
| 3568 | MatchScope &NewEntry = MatchScopes.emplace_back(); |
| 3569 | NewEntry.FailIndex = FailIndex; |
| 3570 | NewEntry.NodeStack.append(in_start: NodeStack.begin(), in_end: NodeStack.end()); |
| 3571 | NewEntry.NumRecordedNodes = RecordedNodes.size(); |
| 3572 | NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); |
| 3573 | NewEntry.InputChain = InputChain; |
| 3574 | NewEntry.InputGlue = InputGlue; |
| 3575 | NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); |
| 3576 | continue; |
| 3577 | } |
| 3578 | case OPC_RecordNode: { |
| 3579 | // Remember this node, it may end up being an operand in the pattern. |
| 3580 | SDNode *Parent = nullptr; |
| 3581 | if (NodeStack.size() > 1) |
| 3582 | Parent = NodeStack[NodeStack.size()-2].getNode(); |
| 3583 | RecordedNodes.emplace_back(Args&: N, Args&: Parent); |
| 3584 | continue; |
| 3585 | } |
| 3586 | |
| 3587 | case OPC_RecordChild0: case OPC_RecordChild1: |
| 3588 | case OPC_RecordChild2: case OPC_RecordChild3: |
| 3589 | case OPC_RecordChild4: case OPC_RecordChild5: |
| 3590 | case OPC_RecordChild6: case OPC_RecordChild7: { |
| 3591 | unsigned ChildNo = Opcode-OPC_RecordChild0; |
| 3592 | if (ChildNo >= N.getNumOperands()) |
| 3593 | break; // Match fails if out of range child #. |
| 3594 | |
| 3595 | RecordedNodes.emplace_back(Args: N->getOperand(Num: ChildNo), Args: N.getNode()); |
| 3596 | continue; |
| 3597 | } |
| 3598 | case OPC_RecordMemRef: |
| 3599 | if (auto *MN = dyn_cast<MemSDNode>(Val&: N)) |
| 3600 | llvm::append_range(C&: MatchedMemRefs, R: MN->memoperands()); |
| 3601 | else { |
| 3602 | LLVM_DEBUG(dbgs() << "Expected MemSDNode " ; N->dump(CurDAG); |
| 3603 | dbgs() << '\n'); |
| 3604 | } |
| 3605 | |
| 3606 | continue; |
| 3607 | |
| 3608 | case OPC_CaptureGlueInput: |
| 3609 | // If the current node has an input glue, capture it in InputGlue. |
| 3610 | if (N->getNumOperands() != 0 && |
| 3611 | N->getOperand(Num: N->getNumOperands()-1).getValueType() == MVT::Glue) |
| 3612 | InputGlue = N->getOperand(Num: N->getNumOperands()-1); |
| 3613 | continue; |
| 3614 | |
| 3615 | case OPC_CaptureDeactivationSymbol: |
| 3616 | // If the current node has a deactivation symbol, capture it in |
| 3617 | // DeactivationSymbol. |
| 3618 | if (N->getNumOperands() != 0 && |
| 3619 | N->getOperand(Num: N->getNumOperands() - 1).getOpcode() == |
| 3620 | ISD::DEACTIVATION_SYMBOL) |
| 3621 | DeactivationSymbol = N->getOperand(Num: N->getNumOperands() - 1); |
| 3622 | continue; |
| 3623 | |
| 3624 | case OPC_MoveChild: { |
| 3625 | unsigned ChildNo = MatcherTable[MatcherIndex++]; |
| 3626 | if (ChildNo >= N.getNumOperands()) |
| 3627 | break; // Match fails if out of range child #. |
| 3628 | N = N.getOperand(i: ChildNo); |
| 3629 | NodeStack.push_back(Elt: N); |
| 3630 | continue; |
| 3631 | } |
| 3632 | |
| 3633 | case OPC_MoveChild0: case OPC_MoveChild1: |
| 3634 | case OPC_MoveChild2: case OPC_MoveChild3: |
| 3635 | case OPC_MoveChild4: case OPC_MoveChild5: |
| 3636 | case OPC_MoveChild6: case OPC_MoveChild7: { |
| 3637 | unsigned ChildNo = Opcode-OPC_MoveChild0; |
| 3638 | if (ChildNo >= N.getNumOperands()) |
| 3639 | break; // Match fails if out of range child #. |
| 3640 | N = N.getOperand(i: ChildNo); |
| 3641 | NodeStack.push_back(Elt: N); |
| 3642 | continue; |
| 3643 | } |
| 3644 | |
| 3645 | case OPC_MoveSibling: |
| 3646 | case OPC_MoveSibling0: |
| 3647 | case OPC_MoveSibling1: |
| 3648 | case OPC_MoveSibling2: |
| 3649 | case OPC_MoveSibling3: |
| 3650 | case OPC_MoveSibling4: |
| 3651 | case OPC_MoveSibling5: |
| 3652 | case OPC_MoveSibling6: |
| 3653 | case OPC_MoveSibling7: { |
| 3654 | // Pop the current node off the NodeStack. |
| 3655 | NodeStack.pop_back(); |
| 3656 | assert(!NodeStack.empty() && "Node stack imbalance!" ); |
| 3657 | N = NodeStack.back(); |
| 3658 | |
| 3659 | unsigned SiblingNo = Opcode == OPC_MoveSibling |
| 3660 | ? MatcherTable[MatcherIndex++] |
| 3661 | : Opcode - OPC_MoveSibling0; |
| 3662 | if (SiblingNo >= N.getNumOperands()) |
| 3663 | break; // Match fails if out of range sibling #. |
| 3664 | N = N.getOperand(i: SiblingNo); |
| 3665 | NodeStack.push_back(Elt: N); |
| 3666 | continue; |
| 3667 | } |
| 3668 | case OPC_MoveParent: |
| 3669 | // Pop the current node off the NodeStack. |
| 3670 | NodeStack.pop_back(); |
| 3671 | assert(!NodeStack.empty() && "Node stack imbalance!" ); |
| 3672 | N = NodeStack.back(); |
| 3673 | continue; |
| 3674 | |
| 3675 | case OPC_CheckSame: |
| 3676 | if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; |
| 3677 | continue; |
| 3678 | |
| 3679 | case OPC_CheckChild0Same: case OPC_CheckChild1Same: |
| 3680 | case OPC_CheckChild2Same: case OPC_CheckChild3Same: |
| 3681 | if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, |
| 3682 | ChildNo: Opcode-OPC_CheckChild0Same)) |
| 3683 | break; |
| 3684 | continue; |
| 3685 | |
| 3686 | case OPC_CheckPatternPredicate: |
| 3687 | case OPC_CheckPatternPredicate0: |
| 3688 | case OPC_CheckPatternPredicate1: |
| 3689 | case OPC_CheckPatternPredicate2: |
| 3690 | case OPC_CheckPatternPredicate3: |
| 3691 | case OPC_CheckPatternPredicate4: |
| 3692 | case OPC_CheckPatternPredicate5: |
| 3693 | case OPC_CheckPatternPredicate6: |
| 3694 | case OPC_CheckPatternPredicate7: |
| 3695 | case OPC_CheckPatternPredicateTwoByte: |
| 3696 | if (!::CheckPatternPredicate(Opcode, MatcherTable, MatcherIndex, SDISel: *this)) |
| 3697 | break; |
| 3698 | continue; |
| 3699 | case SelectionDAGISel::OPC_CheckPredicate0: |
| 3700 | case SelectionDAGISel::OPC_CheckPredicate1: |
| 3701 | case SelectionDAGISel::OPC_CheckPredicate2: |
| 3702 | case SelectionDAGISel::OPC_CheckPredicate3: |
| 3703 | case SelectionDAGISel::OPC_CheckPredicate4: |
| 3704 | case SelectionDAGISel::OPC_CheckPredicate5: |
| 3705 | case SelectionDAGISel::OPC_CheckPredicate6: |
| 3706 | case SelectionDAGISel::OPC_CheckPredicate7: |
| 3707 | case OPC_CheckPredicate: |
| 3708 | if (!::CheckNodePredicate(Opcode, MatcherTable, MatcherIndex, SDISel: *this, Op: N)) |
| 3709 | break; |
| 3710 | continue; |
| 3711 | case OPC_CheckPredicateWithOperands: { |
| 3712 | unsigned OpNum = MatcherTable[MatcherIndex++]; |
| 3713 | SmallVector<SDValue, 8> Operands; |
| 3714 | |
| 3715 | for (unsigned i = 0; i < OpNum; ++i) |
| 3716 | Operands.push_back(Elt: RecordedNodes[MatcherTable[MatcherIndex++]].first); |
| 3717 | |
| 3718 | unsigned PredNo = MatcherTable[MatcherIndex++]; |
| 3719 | if (!CheckNodePredicateWithOperands(Op: N, PredNo, Operands)) |
| 3720 | break; |
| 3721 | continue; |
| 3722 | } |
| 3723 | case OPC_CheckComplexPat: |
| 3724 | case OPC_CheckComplexPat0: |
| 3725 | case OPC_CheckComplexPat1: |
| 3726 | case OPC_CheckComplexPat2: |
| 3727 | case OPC_CheckComplexPat3: |
| 3728 | case OPC_CheckComplexPat4: |
| 3729 | case OPC_CheckComplexPat5: |
| 3730 | case OPC_CheckComplexPat6: |
| 3731 | case OPC_CheckComplexPat7: { |
| 3732 | unsigned CPNum = Opcode == OPC_CheckComplexPat |
| 3733 | ? MatcherTable[MatcherIndex++] |
| 3734 | : Opcode - OPC_CheckComplexPat0; |
| 3735 | unsigned RecNo = MatcherTable[MatcherIndex++]; |
| 3736 | assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat" ); |
| 3737 | |
| 3738 | // If target can modify DAG during matching, keep the matching state |
| 3739 | // consistent. |
| 3740 | std::unique_ptr<MatchStateUpdater> MSU; |
| 3741 | if (ComplexPatternFuncMutatesDAG()) |
| 3742 | MSU.reset(p: new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes, |
| 3743 | MatchScopes)); |
| 3744 | |
| 3745 | if (!CheckComplexPattern(Root: NodeToMatch, Parent: RecordedNodes[RecNo].second, |
| 3746 | N: RecordedNodes[RecNo].first, PatternNo: CPNum, |
| 3747 | Result&: RecordedNodes)) |
| 3748 | break; |
| 3749 | continue; |
| 3750 | } |
| 3751 | case OPC_CheckOpcode: |
| 3752 | if (!::CheckOpcode(MatcherTable, MatcherIndex, N: N.getNode())) break; |
| 3753 | continue; |
| 3754 | |
| 3755 | case OPC_CheckType: |
| 3756 | case OPC_CheckTypeI32: |
| 3757 | case OPC_CheckTypeI64: |
| 3758 | case OPC_CheckTypeByHwMode: { |
| 3759 | MVT VT; |
| 3760 | switch (Opcode) { |
| 3761 | case OPC_CheckTypeI32: |
| 3762 | VT = MVT::i32; |
| 3763 | break; |
| 3764 | case OPC_CheckTypeI64: |
| 3765 | VT = MVT::i64; |
| 3766 | break; |
| 3767 | case OPC_CheckTypeByHwMode: |
| 3768 | VT = getHwModeVT(MatcherTable, MatcherIndex, SDISel: *this); |
| 3769 | break; |
| 3770 | default: |
| 3771 | VT = getSimpleVT(MatcherTable, MatcherIndex); |
| 3772 | break; |
| 3773 | } |
| 3774 | if (!::CheckType(VT: VT.SimpleTy, N, TLI, DL: CurDAG->getDataLayout())) |
| 3775 | break; |
| 3776 | continue; |
| 3777 | } |
| 3778 | |
| 3779 | case OPC_CheckTypeRes: |
| 3780 | case OPC_CheckTypeResByHwMode: { |
| 3781 | unsigned Res = MatcherTable[MatcherIndex++]; |
| 3782 | MVT VT = Opcode == OPC_CheckTypeResByHwMode |
| 3783 | ? getHwModeVT(MatcherTable, MatcherIndex, SDISel: *this) |
| 3784 | : getSimpleVT(MatcherTable, MatcherIndex); |
| 3785 | if (!::CheckType(VT: VT.SimpleTy, N: N.getValue(R: Res), TLI, |
| 3786 | DL: CurDAG->getDataLayout())) |
| 3787 | break; |
| 3788 | continue; |
| 3789 | } |
| 3790 | |
| 3791 | case OPC_SwitchOpcode: { |
| 3792 | unsigned CurNodeOpcode = N.getOpcode(); |
| 3793 | unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; |
| 3794 | unsigned CaseSize; |
| 3795 | while (true) { |
| 3796 | // Get the size of this case. |
| 3797 | CaseSize = MatcherTable[MatcherIndex++]; |
| 3798 | if (CaseSize & 128) |
| 3799 | CaseSize = GetVBR(Val: CaseSize, MatcherTable, Idx&: MatcherIndex); |
| 3800 | if (CaseSize == 0) break; |
| 3801 | |
| 3802 | uint16_t Opc = MatcherTable[MatcherIndex++]; |
| 3803 | Opc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8; |
| 3804 | |
| 3805 | // If the opcode matches, then we will execute this case. |
| 3806 | if (CurNodeOpcode == Opc) |
| 3807 | break; |
| 3808 | |
| 3809 | // Otherwise, skip over this case. |
| 3810 | MatcherIndex += CaseSize; |
| 3811 | } |
| 3812 | |
| 3813 | // If no cases matched, bail out. |
| 3814 | if (CaseSize == 0) break; |
| 3815 | |
| 3816 | // Otherwise, execute the case we found. |
| 3817 | LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to " |
| 3818 | << MatcherIndex << "\n" ); |
| 3819 | continue; |
| 3820 | } |
| 3821 | |
| 3822 | case OPC_SwitchType: { |
| 3823 | MVT CurNodeVT = N.getSimpleValueType(); |
| 3824 | unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; |
| 3825 | unsigned CaseSize; |
| 3826 | while (true) { |
| 3827 | // Get the size of this case. |
| 3828 | CaseSize = MatcherTable[MatcherIndex++]; |
| 3829 | if (CaseSize & 128) |
| 3830 | CaseSize = GetVBR(Val: CaseSize, MatcherTable, Idx&: MatcherIndex); |
| 3831 | if (CaseSize == 0) break; |
| 3832 | |
| 3833 | MVT CaseVT = getSimpleVT(MatcherTable, MatcherIndex); |
| 3834 | if (CaseVT == MVT::iPTR) |
| 3835 | CaseVT = TLI->getPointerTy(DL: CurDAG->getDataLayout()); |
| 3836 | |
| 3837 | // If the VT matches, then we will execute this case. |
| 3838 | if (CurNodeVT == CaseVT) |
| 3839 | break; |
| 3840 | |
| 3841 | // Otherwise, skip over this case. |
| 3842 | MatcherIndex += CaseSize; |
| 3843 | } |
| 3844 | |
| 3845 | // If no cases matched, bail out. |
| 3846 | if (CaseSize == 0) break; |
| 3847 | |
| 3848 | // Otherwise, execute the case we found. |
| 3849 | LLVM_DEBUG(dbgs() << " TypeSwitch[" << CurNodeVT |
| 3850 | << "] from " << SwitchStart << " to " << MatcherIndex |
| 3851 | << '\n'); |
| 3852 | continue; |
| 3853 | } |
| 3854 | case OPC_CheckChild0Type: |
| 3855 | case OPC_CheckChild1Type: |
| 3856 | case OPC_CheckChild2Type: |
| 3857 | case OPC_CheckChild3Type: |
| 3858 | case OPC_CheckChild4Type: |
| 3859 | case OPC_CheckChild5Type: |
| 3860 | case OPC_CheckChild6Type: |
| 3861 | case OPC_CheckChild7Type: |
| 3862 | case OPC_CheckChild0TypeI32: |
| 3863 | case OPC_CheckChild1TypeI32: |
| 3864 | case OPC_CheckChild2TypeI32: |
| 3865 | case OPC_CheckChild3TypeI32: |
| 3866 | case OPC_CheckChild4TypeI32: |
| 3867 | case OPC_CheckChild5TypeI32: |
| 3868 | case OPC_CheckChild6TypeI32: |
| 3869 | case OPC_CheckChild7TypeI32: |
| 3870 | case OPC_CheckChild0TypeI64: |
| 3871 | case OPC_CheckChild1TypeI64: |
| 3872 | case OPC_CheckChild2TypeI64: |
| 3873 | case OPC_CheckChild3TypeI64: |
| 3874 | case OPC_CheckChild4TypeI64: |
| 3875 | case OPC_CheckChild5TypeI64: |
| 3876 | case OPC_CheckChild6TypeI64: |
| 3877 | case OPC_CheckChild7TypeI64: { |
| 3878 | MVT::SimpleValueType VT; |
| 3879 | unsigned ChildNo; |
| 3880 | if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI32 && |
| 3881 | Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI32) { |
| 3882 | VT = MVT::i32; |
| 3883 | ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI32; |
| 3884 | } else if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI64 && |
| 3885 | Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI64) { |
| 3886 | VT = MVT::i64; |
| 3887 | ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI64; |
| 3888 | } else { |
| 3889 | VT = getSimpleVT(MatcherTable, MatcherIndex); |
| 3890 | ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0Type; |
| 3891 | } |
| 3892 | if (!::CheckChildType(VT, N, TLI, DL: CurDAG->getDataLayout(), ChildNo)) |
| 3893 | break; |
| 3894 | continue; |
| 3895 | } |
| 3896 | case OPC_CheckChild0TypeByHwMode: |
| 3897 | case OPC_CheckChild1TypeByHwMode: |
| 3898 | case OPC_CheckChild2TypeByHwMode: |
| 3899 | case OPC_CheckChild3TypeByHwMode: |
| 3900 | case OPC_CheckChild4TypeByHwMode: |
| 3901 | case OPC_CheckChild5TypeByHwMode: |
| 3902 | case OPC_CheckChild6TypeByHwMode: |
| 3903 | case OPC_CheckChild7TypeByHwMode: { |
| 3904 | MVT VT = getHwModeVT(MatcherTable, MatcherIndex, SDISel: *this); |
| 3905 | unsigned ChildNo = Opcode - OPC_CheckChild0TypeByHwMode; |
| 3906 | if (!::CheckChildType(VT: VT.SimpleTy, N, TLI, DL: CurDAG->getDataLayout(), |
| 3907 | ChildNo)) |
| 3908 | break; |
| 3909 | continue; |
| 3910 | } |
| 3911 | case OPC_CheckCondCode: |
| 3912 | if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; |
| 3913 | continue; |
| 3914 | case OPC_CheckChild2CondCode: |
| 3915 | if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break; |
| 3916 | continue; |
| 3917 | case OPC_CheckValueType: |
| 3918 | if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, |
| 3919 | DL: CurDAG->getDataLayout())) |
| 3920 | break; |
| 3921 | continue; |
| 3922 | case OPC_CheckInteger: |
| 3923 | if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; |
| 3924 | continue; |
| 3925 | case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: |
| 3926 | case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: |
| 3927 | case OPC_CheckChild4Integer: |
| 3928 | if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, |
| 3929 | ChildNo: Opcode-OPC_CheckChild0Integer)) break; |
| 3930 | continue; |
| 3931 | case OPC_CheckAndImm: |
| 3932 | if (!::CheckAndImm(MatcherTable, MatcherIndex, N, SDISel: *this)) break; |
| 3933 | continue; |
| 3934 | case OPC_CheckOrImm: |
| 3935 | if (!::CheckOrImm(MatcherTable, MatcherIndex, N, SDISel: *this)) break; |
| 3936 | continue; |
| 3937 | case OPC_CheckImmAllOnesV: |
| 3938 | if (!ISD::isConstantSplatVectorAllOnes(N: N.getNode())) |
| 3939 | break; |
| 3940 | continue; |
| 3941 | case OPC_CheckImmAllZerosV: |
| 3942 | if (!ISD::isConstantSplatVectorAllZeros(N: N.getNode())) |
| 3943 | break; |
| 3944 | continue; |
| 3945 | |
| 3946 | case OPC_CheckFoldableChainNode: { |
| 3947 | assert(NodeStack.size() != 1 && "No parent node" ); |
| 3948 | // Verify that all intermediate nodes between the root and this one have |
| 3949 | // a single use (ignoring chains, which are handled in UpdateChains). |
| 3950 | bool HasMultipleUses = false; |
| 3951 | for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) { |
| 3952 | unsigned NNonChainUses = 0; |
| 3953 | SDNode *NS = NodeStack[i].getNode(); |
| 3954 | for (const SDUse &U : NS->uses()) |
| 3955 | if (U.getValueType() != MVT::Other) |
| 3956 | if (++NNonChainUses > 1) { |
| 3957 | HasMultipleUses = true; |
| 3958 | break; |
| 3959 | } |
| 3960 | if (HasMultipleUses) break; |
| 3961 | } |
| 3962 | if (HasMultipleUses) break; |
| 3963 | |
| 3964 | // Check to see that the target thinks this is profitable to fold and that |
| 3965 | // we can fold it without inducing cycles in the graph. |
| 3966 | if (!IsProfitableToFold(N, U: NodeStack[NodeStack.size()-2].getNode(), |
| 3967 | Root: NodeToMatch) || |
| 3968 | !IsLegalToFold(N, U: NodeStack[NodeStack.size()-2].getNode(), |
| 3969 | Root: NodeToMatch, OptLevel, |
| 3970 | IgnoreChains: true/*We validate our own chains*/)) |
| 3971 | break; |
| 3972 | |
| 3973 | continue; |
| 3974 | } |
| 3975 | case OPC_EmitInteger: |
| 3976 | case OPC_EmitIntegerI8: |
| 3977 | case OPC_EmitIntegerI16: |
| 3978 | case OPC_EmitIntegerI32: |
| 3979 | case OPC_EmitIntegerI64: |
| 3980 | case OPC_EmitIntegerByHwMode: { |
| 3981 | MVT VT; |
| 3982 | switch (Opcode) { |
| 3983 | case OPC_EmitIntegerI8: |
| 3984 | VT = MVT::i8; |
| 3985 | break; |
| 3986 | case OPC_EmitIntegerI16: |
| 3987 | VT = MVT::i16; |
| 3988 | break; |
| 3989 | case OPC_EmitIntegerI32: |
| 3990 | VT = MVT::i32; |
| 3991 | break; |
| 3992 | case OPC_EmitIntegerI64: |
| 3993 | VT = MVT::i64; |
| 3994 | break; |
| 3995 | case OPC_EmitIntegerByHwMode: |
| 3996 | VT = getHwModeVT(MatcherTable, MatcherIndex, SDISel: *this); |
| 3997 | break; |
| 3998 | default: |
| 3999 | VT = getSimpleVT(MatcherTable, MatcherIndex); |
| 4000 | break; |
| 4001 | } |
| 4002 | int64_t Val = GetSignedVBR(MatcherTable, Idx&: MatcherIndex); |
| 4003 | Val = SignExtend64(X: Val, B: MVT(VT).getFixedSizeInBits()); |
| 4004 | RecordedNodes.emplace_back( |
| 4005 | Args: CurDAG->getSignedConstant(Val, DL: SDLoc(NodeToMatch), VT: VT.SimpleTy, |
| 4006 | /*isTarget=*/true), |
| 4007 | Args: nullptr); |
| 4008 | continue; |
| 4009 | } |
| 4010 | |
| 4011 | case OPC_EmitRegister: |
| 4012 | case OPC_EmitRegisterI32: |
| 4013 | case OPC_EmitRegisterI64: |
| 4014 | case OPC_EmitRegisterByHwMode: { |
| 4015 | MVT VT; |
| 4016 | switch (Opcode) { |
| 4017 | case OPC_EmitRegisterI32: |
| 4018 | VT = MVT::i32; |
| 4019 | break; |
| 4020 | case OPC_EmitRegisterI64: |
| 4021 | VT = MVT::i64; |
| 4022 | break; |
| 4023 | case OPC_EmitRegisterByHwMode: |
| 4024 | VT = getHwModeVT(MatcherTable, MatcherIndex, SDISel: *this); |
| 4025 | break; |
| 4026 | default: |
| 4027 | VT = getSimpleVT(MatcherTable, MatcherIndex); |
| 4028 | break; |
| 4029 | } |
| 4030 | unsigned RegNo = MatcherTable[MatcherIndex++]; |
| 4031 | RecordedNodes.emplace_back(Args: CurDAG->getRegister(Reg: RegNo, VT), Args: nullptr); |
| 4032 | continue; |
| 4033 | } |
| 4034 | case OPC_EmitRegister2: |
| 4035 | case OPC_EmitRegisterByHwMode2: { |
| 4036 | // For targets w/ more than 256 register names, the register enum |
| 4037 | // values are stored in two bytes in the matcher table (just like |
| 4038 | // opcodes). |
| 4039 | MVT VT = Opcode == OPC_EmitRegisterByHwMode2 |
| 4040 | ? getHwModeVT(MatcherTable, MatcherIndex, SDISel: *this) |
| 4041 | : getSimpleVT(MatcherTable, MatcherIndex); |
| 4042 | unsigned RegNo = MatcherTable[MatcherIndex++]; |
| 4043 | RegNo |= MatcherTable[MatcherIndex++] << 8; |
| 4044 | RecordedNodes.emplace_back(Args: CurDAG->getRegister(Reg: RegNo, VT), Args: nullptr); |
| 4045 | continue; |
| 4046 | } |
| 4047 | |
| 4048 | case OPC_EmitConvertToTarget: |
| 4049 | case OPC_EmitConvertToTarget0: |
| 4050 | case OPC_EmitConvertToTarget1: |
| 4051 | case OPC_EmitConvertToTarget2: |
| 4052 | case OPC_EmitConvertToTarget3: |
| 4053 | case OPC_EmitConvertToTarget4: |
| 4054 | case OPC_EmitConvertToTarget5: |
| 4055 | case OPC_EmitConvertToTarget6: |
| 4056 | case OPC_EmitConvertToTarget7: { |
| 4057 | // Convert from IMM/FPIMM to target version. |
| 4058 | unsigned RecNo = Opcode == OPC_EmitConvertToTarget |
| 4059 | ? MatcherTable[MatcherIndex++] |
| 4060 | : Opcode - OPC_EmitConvertToTarget0; |
| 4061 | assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget" ); |
| 4062 | SDValue Imm = RecordedNodes[RecNo].first; |
| 4063 | |
| 4064 | if (Imm->getOpcode() == ISD::Constant) { |
| 4065 | const ConstantInt *Val=cast<ConstantSDNode>(Val&: Imm)->getConstantIntValue(); |
| 4066 | Imm = CurDAG->getTargetConstant(Val: *Val, DL: SDLoc(NodeToMatch), |
| 4067 | VT: Imm.getValueType()); |
| 4068 | } else if (Imm->getOpcode() == ISD::ConstantFP) { |
| 4069 | const ConstantFP *Val=cast<ConstantFPSDNode>(Val&: Imm)->getConstantFPValue(); |
| 4070 | Imm = CurDAG->getTargetConstantFP(Val: *Val, DL: SDLoc(NodeToMatch), |
| 4071 | VT: Imm.getValueType()); |
| 4072 | } |
| 4073 | |
| 4074 | RecordedNodes.emplace_back(Args&: Imm, Args&: RecordedNodes[RecNo].second); |
| 4075 | continue; |
| 4076 | } |
| 4077 | |
| 4078 | case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 |
| 4079 | case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1 |
| 4080 | case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2 |
| 4081 | // These are space-optimized forms of OPC_EmitMergeInputChains. |
| 4082 | assert(!InputChain.getNode() && |
| 4083 | "EmitMergeInputChains should be the first chain producing node" ); |
| 4084 | assert(ChainNodesMatched.empty() && |
| 4085 | "Should only have one EmitMergeInputChains per match" ); |
| 4086 | |
| 4087 | // Read all of the chained nodes. |
| 4088 | unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; |
| 4089 | assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains" ); |
| 4090 | ChainNodesMatched.push_back(Elt: RecordedNodes[RecNo].first.getNode()); |
| 4091 | |
| 4092 | // If the chained node is not the root, we can't fold it if it has |
| 4093 | // multiple uses. |
| 4094 | // FIXME: What if other value results of the node have uses not matched |
| 4095 | // by this pattern? |
| 4096 | if (ChainNodesMatched.back() != NodeToMatch && |
| 4097 | !RecordedNodes[RecNo].first.hasOneUse()) { |
| 4098 | ChainNodesMatched.clear(); |
| 4099 | break; |
| 4100 | } |
| 4101 | |
| 4102 | // Merge the input chains if they are not intra-pattern references. |
| 4103 | InputChain = HandleMergeInputChains(ChainNodesMatched, InputGlue, CurDAG); |
| 4104 | |
| 4105 | if (!InputChain.getNode()) |
| 4106 | break; // Failed to merge. |
| 4107 | continue; |
| 4108 | } |
| 4109 | |
| 4110 | case OPC_EmitMergeInputChains: { |
| 4111 | assert(!InputChain.getNode() && |
| 4112 | "EmitMergeInputChains should be the first chain producing node" ); |
| 4113 | // This node gets a list of nodes we matched in the input that have |
| 4114 | // chains. We want to token factor all of the input chains to these nodes |
| 4115 | // together. However, if any of the input chains is actually one of the |
| 4116 | // nodes matched in this pattern, then we have an intra-match reference. |
| 4117 | // Ignore these because the newly token factored chain should not refer to |
| 4118 | // the old nodes. |
| 4119 | unsigned NumChains = MatcherTable[MatcherIndex++]; |
| 4120 | assert(NumChains != 0 && "Can't TF zero chains" ); |
| 4121 | |
| 4122 | assert(ChainNodesMatched.empty() && |
| 4123 | "Should only have one EmitMergeInputChains per match" ); |
| 4124 | |
| 4125 | // Read all of the chained nodes. |
| 4126 | for (unsigned i = 0; i != NumChains; ++i) { |
| 4127 | unsigned RecNo = MatcherTable[MatcherIndex++]; |
| 4128 | assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains" ); |
| 4129 | ChainNodesMatched.push_back(Elt: RecordedNodes[RecNo].first.getNode()); |
| 4130 | |
| 4131 | // If the chained node is not the root, we can't fold it if it has |
| 4132 | // multiple uses. |
| 4133 | // FIXME: What if other value results of the node have uses not matched |
| 4134 | // by this pattern? |
| 4135 | if (ChainNodesMatched.back() != NodeToMatch && |
| 4136 | !RecordedNodes[RecNo].first.hasOneUse()) { |
| 4137 | ChainNodesMatched.clear(); |
| 4138 | break; |
| 4139 | } |
| 4140 | } |
| 4141 | |
| 4142 | // If the inner loop broke out, the match fails. |
| 4143 | if (ChainNodesMatched.empty()) |
| 4144 | break; |
| 4145 | |
| 4146 | // Merge the input chains if they are not intra-pattern references. |
| 4147 | InputChain = HandleMergeInputChains(ChainNodesMatched, InputGlue, CurDAG); |
| 4148 | |
| 4149 | if (!InputChain.getNode()) |
| 4150 | break; // Failed to merge. |
| 4151 | |
| 4152 | continue; |
| 4153 | } |
| 4154 | |
| 4155 | case OPC_EmitCopyToReg: |
| 4156 | case OPC_EmitCopyToReg0: |
| 4157 | case OPC_EmitCopyToReg1: |
| 4158 | case OPC_EmitCopyToReg2: |
| 4159 | case OPC_EmitCopyToReg3: |
| 4160 | case OPC_EmitCopyToReg4: |
| 4161 | case OPC_EmitCopyToReg5: |
| 4162 | case OPC_EmitCopyToReg6: |
| 4163 | case OPC_EmitCopyToReg7: |
| 4164 | case OPC_EmitCopyToRegTwoByte: { |
| 4165 | unsigned RecNo = |
| 4166 | Opcode >= OPC_EmitCopyToReg0 && Opcode <= OPC_EmitCopyToReg7 |
| 4167 | ? Opcode - OPC_EmitCopyToReg0 |
| 4168 | : MatcherTable[MatcherIndex++]; |
| 4169 | assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg" ); |
| 4170 | unsigned DestPhysReg = MatcherTable[MatcherIndex++]; |
| 4171 | if (Opcode == OPC_EmitCopyToRegTwoByte) |
| 4172 | DestPhysReg |= MatcherTable[MatcherIndex++] << 8; |
| 4173 | |
| 4174 | if (!InputChain.getNode()) |
| 4175 | InputChain = CurDAG->getEntryNode(); |
| 4176 | |
| 4177 | InputChain = CurDAG->getCopyToReg(Chain: InputChain, dl: SDLoc(NodeToMatch), |
| 4178 | Reg: DestPhysReg, N: RecordedNodes[RecNo].first, |
| 4179 | Glue: InputGlue); |
| 4180 | |
| 4181 | InputGlue = InputChain.getValue(R: 1); |
| 4182 | continue; |
| 4183 | } |
| 4184 | |
| 4185 | case OPC_EmitNodeXForm: { |
| 4186 | unsigned XFormNo = MatcherTable[MatcherIndex++]; |
| 4187 | unsigned RecNo = MatcherTable[MatcherIndex++]; |
| 4188 | assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm" ); |
| 4189 | SDValue Res = RunSDNodeXForm(V: RecordedNodes[RecNo].first, XFormNo); |
| 4190 | RecordedNodes.emplace_back(Args&: Res, Args: nullptr); |
| 4191 | continue; |
| 4192 | } |
| 4193 | case OPC_Coverage: { |
| 4194 | // This is emitted right before MorphNode/EmitNode. |
| 4195 | // So it should be safe to assume that this node has been selected |
| 4196 | unsigned index = MatcherTable[MatcherIndex++]; |
| 4197 | index |= (MatcherTable[MatcherIndex++] << 8); |
| 4198 | index |= (MatcherTable[MatcherIndex++] << 16); |
| 4199 | index |= (MatcherTable[MatcherIndex++] << 24); |
| 4200 | dbgs() << "COVERED: " << getPatternForIndex(index) << "\n" ; |
| 4201 | dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n" ; |
| 4202 | continue; |
| 4203 | } |
| 4204 | |
| 4205 | case OPC_EmitNode: |
| 4206 | case OPC_EmitNodeByHwMode: |
| 4207 | case OPC_EmitNode0: |
| 4208 | case OPC_EmitNode1: |
| 4209 | case OPC_EmitNode2: |
| 4210 | case OPC_EmitNode1None: |
| 4211 | case OPC_EmitNode2None: |
| 4212 | case OPC_EmitNode0Chain: |
| 4213 | case OPC_EmitNode1Chain: |
| 4214 | case OPC_EmitNode2Chain: |
| 4215 | case OPC_MorphNodeTo: |
| 4216 | case OPC_MorphNodeToByHwMode: |
| 4217 | case OPC_MorphNodeTo0: |
| 4218 | case OPC_MorphNodeTo1: |
| 4219 | case OPC_MorphNodeTo2: |
| 4220 | case OPC_MorphNodeTo1None: |
| 4221 | case OPC_MorphNodeTo2None: |
| 4222 | case OPC_MorphNodeTo0Chain: |
| 4223 | case OPC_MorphNodeTo1Chain: |
| 4224 | case OPC_MorphNodeTo2Chain: |
| 4225 | case OPC_MorphNodeTo1GlueInput: |
| 4226 | case OPC_MorphNodeTo2GlueInput: |
| 4227 | case OPC_MorphNodeTo1GlueOutput: |
| 4228 | case OPC_MorphNodeTo2GlueOutput: { |
| 4229 | uint16_t TargetOpc = MatcherTable[MatcherIndex++]; |
| 4230 | TargetOpc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8; |
| 4231 | unsigned EmitNodeInfo; |
| 4232 | if (Opcode >= OPC_EmitNode1None && Opcode <= OPC_EmitNode2Chain) { |
| 4233 | if (Opcode >= OPC_EmitNode0Chain && Opcode <= OPC_EmitNode2Chain) |
| 4234 | EmitNodeInfo = OPFL_Chain; |
| 4235 | else |
| 4236 | EmitNodeInfo = OPFL_None; |
| 4237 | } else if (Opcode >= OPC_MorphNodeTo1None && |
| 4238 | Opcode <= OPC_MorphNodeTo2GlueOutput) { |
| 4239 | if (Opcode >= OPC_MorphNodeTo0Chain && Opcode <= OPC_MorphNodeTo2Chain) |
| 4240 | EmitNodeInfo = OPFL_Chain; |
| 4241 | else if (Opcode >= OPC_MorphNodeTo1GlueInput && |
| 4242 | Opcode <= OPC_MorphNodeTo2GlueInput) |
| 4243 | EmitNodeInfo = OPFL_GlueInput; |
| 4244 | else if (Opcode >= OPC_MorphNodeTo1GlueOutput && |
| 4245 | Opcode <= OPC_MorphNodeTo2GlueOutput) |
| 4246 | EmitNodeInfo = OPFL_GlueOutput; |
| 4247 | else |
| 4248 | EmitNodeInfo = OPFL_None; |
| 4249 | } else |
| 4250 | EmitNodeInfo = MatcherTable[MatcherIndex++]; |
| 4251 | // Get the result VT list. |
| 4252 | unsigned NumVTs; |
| 4253 | // If this is one of the compressed forms, get the number of VTs based |
| 4254 | // on the Opcode. Otherwise read the next byte from the table. |
| 4255 | if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2) |
| 4256 | NumVTs = Opcode - OPC_MorphNodeTo0; |
| 4257 | else if (Opcode >= OPC_MorphNodeTo1None && Opcode <= OPC_MorphNodeTo2None) |
| 4258 | NumVTs = Opcode - OPC_MorphNodeTo1None + 1; |
| 4259 | else if (Opcode >= OPC_MorphNodeTo0Chain && |
| 4260 | Opcode <= OPC_MorphNodeTo2Chain) |
| 4261 | NumVTs = Opcode - OPC_MorphNodeTo0Chain; |
| 4262 | else if (Opcode >= OPC_MorphNodeTo1GlueInput && |
| 4263 | Opcode <= OPC_MorphNodeTo2GlueInput) |
| 4264 | NumVTs = Opcode - OPC_MorphNodeTo1GlueInput + 1; |
| 4265 | else if (Opcode >= OPC_MorphNodeTo1GlueOutput && |
| 4266 | Opcode <= OPC_MorphNodeTo2GlueOutput) |
| 4267 | NumVTs = Opcode - OPC_MorphNodeTo1GlueOutput + 1; |
| 4268 | else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2) |
| 4269 | NumVTs = Opcode - OPC_EmitNode0; |
| 4270 | else if (Opcode >= OPC_EmitNode1None && Opcode <= OPC_EmitNode2None) |
| 4271 | NumVTs = Opcode - OPC_EmitNode1None + 1; |
| 4272 | else if (Opcode >= OPC_EmitNode0Chain && Opcode <= OPC_EmitNode2Chain) |
| 4273 | NumVTs = Opcode - OPC_EmitNode0Chain; |
| 4274 | else |
| 4275 | NumVTs = MatcherTable[MatcherIndex++]; |
| 4276 | SmallVector<EVT, 4> VTs; |
| 4277 | if (Opcode == OPC_EmitNodeByHwMode || Opcode == OPC_MorphNodeToByHwMode) { |
| 4278 | for (unsigned i = 0; i != NumVTs; ++i) { |
| 4279 | MVT VT = getHwModeVT(MatcherTable, MatcherIndex, SDISel: *this); |
| 4280 | if (VT == MVT::iPTR) |
| 4281 | VT = TLI->getPointerTy(DL: CurDAG->getDataLayout()); |
| 4282 | VTs.push_back(Elt: VT); |
| 4283 | } |
| 4284 | } else { |
| 4285 | for (unsigned i = 0; i != NumVTs; ++i) { |
| 4286 | MVT::SimpleValueType VT = getSimpleVT(MatcherTable, MatcherIndex); |
| 4287 | if (VT == MVT::iPTR) |
| 4288 | VT = TLI->getPointerTy(DL: CurDAG->getDataLayout()).SimpleTy; |
| 4289 | VTs.push_back(Elt: VT); |
| 4290 | } |
| 4291 | } |
| 4292 | |
| 4293 | if (EmitNodeInfo & OPFL_Chain) |
| 4294 | VTs.push_back(Elt: MVT::Other); |
| 4295 | if (EmitNodeInfo & OPFL_GlueOutput) |
| 4296 | VTs.push_back(Elt: MVT::Glue); |
| 4297 | |
| 4298 | // This is hot code, so optimize the two most common cases of 1 and 2 |
| 4299 | // results. |
| 4300 | SDVTList VTList; |
| 4301 | if (VTs.size() == 1) |
| 4302 | VTList = CurDAG->getVTList(VT: VTs[0]); |
| 4303 | else if (VTs.size() == 2) |
| 4304 | VTList = CurDAG->getVTList(VT1: VTs[0], VT2: VTs[1]); |
| 4305 | else |
| 4306 | VTList = CurDAG->getVTList(VTs); |
| 4307 | |
| 4308 | // Get the operand list. |
| 4309 | unsigned NumOps = MatcherTable[MatcherIndex++]; |
| 4310 | SmallVector<SDValue, 8> Ops; |
| 4311 | for (unsigned i = 0; i != NumOps; ++i) { |
| 4312 | unsigned RecNo = MatcherTable[MatcherIndex++]; |
| 4313 | if (RecNo & 128) |
| 4314 | RecNo = GetVBR(Val: RecNo, MatcherTable, Idx&: MatcherIndex); |
| 4315 | |
| 4316 | assert(RecNo < RecordedNodes.size() && "Invalid EmitNode" ); |
| 4317 | Ops.push_back(Elt: RecordedNodes[RecNo].first); |
| 4318 | } |
| 4319 | |
| 4320 | // If there are variadic operands to add, handle them now. |
| 4321 | if (EmitNodeInfo & OPFL_VariadicInfo) { |
| 4322 | // Determine the start index to copy from. |
| 4323 | unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(Flags: EmitNodeInfo); |
| 4324 | FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; |
| 4325 | assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && |
| 4326 | "Invalid variadic node" ); |
| 4327 | // Copy all of the variadic operands, not including a potential glue |
| 4328 | // input. |
| 4329 | for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); |
| 4330 | i != e; ++i) { |
| 4331 | SDValue V = NodeToMatch->getOperand(Num: i); |
| 4332 | if (V.getValueType() == MVT::Glue) break; |
| 4333 | Ops.push_back(Elt: V); |
| 4334 | } |
| 4335 | } |
| 4336 | |
| 4337 | // If this has chain/glue inputs, add them. |
| 4338 | if (EmitNodeInfo & OPFL_Chain) |
| 4339 | Ops.push_back(Elt: InputChain); |
| 4340 | if (DeactivationSymbol.getNode() != nullptr) |
| 4341 | Ops.push_back(Elt: DeactivationSymbol); |
| 4342 | if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) |
| 4343 | Ops.push_back(Elt: InputGlue); |
| 4344 | |
| 4345 | // Check whether any matched node could raise an FP exception. Since all |
| 4346 | // such nodes must have a chain, it suffices to check ChainNodesMatched. |
| 4347 | // We need to perform this check before potentially modifying one of the |
| 4348 | // nodes via MorphNode. |
| 4349 | bool MayRaiseFPException = |
| 4350 | llvm::any_of(Range&: ChainNodesMatched, P: [this](SDNode *N) { |
| 4351 | return mayRaiseFPException(Node: N) && !N->getFlags().hasNoFPExcept(); |
| 4352 | }); |
| 4353 | |
| 4354 | // Create the node. |
| 4355 | MachineSDNode *Res = nullptr; |
| 4356 | bool IsMorphNodeTo = |
| 4357 | Opcode == OPC_MorphNodeTo || Opcode == OPC_MorphNodeToByHwMode || |
| 4358 | (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2GlueOutput); |
| 4359 | if (!IsMorphNodeTo) { |
| 4360 | // If this is a normal EmitNode command, just create the new node and |
| 4361 | // add the results to the RecordedNodes list. |
| 4362 | Res = CurDAG->getMachineNode(Opcode: TargetOpc, dl: SDLoc(NodeToMatch), |
| 4363 | VTs: VTList, Ops); |
| 4364 | |
| 4365 | // Add all the non-glue/non-chain results to the RecordedNodes list. |
| 4366 | for (unsigned i = 0, e = VTs.size(); i != e; ++i) { |
| 4367 | if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; |
| 4368 | RecordedNodes.emplace_back(Args: SDValue(Res, i), Args: nullptr); |
| 4369 | } |
| 4370 | } else { |
| 4371 | assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE && |
| 4372 | "NodeToMatch was removed partway through selection" ); |
| 4373 | SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N, |
| 4374 | SDNode *E) { |
| 4375 | CurDAG->salvageDebugInfo(N&: *N); |
| 4376 | auto &Chain = ChainNodesMatched; |
| 4377 | assert((!E || !is_contained(Chain, N)) && |
| 4378 | "Chain node replaced during MorphNode" ); |
| 4379 | llvm::erase(C&: Chain, V: N); |
| 4380 | }); |
| 4381 | Res = cast<MachineSDNode>(Val: MorphNode(Node: NodeToMatch, TargetOpc, VTList, |
| 4382 | Ops, EmitNodeInfo)); |
| 4383 | } |
| 4384 | |
| 4385 | // Set the NoFPExcept flag when no original matched node could |
| 4386 | // raise an FP exception, but the new node potentially might. |
| 4387 | if (!MayRaiseFPException && mayRaiseFPException(Node: Res)) |
| 4388 | Res->setFlags(Res->getFlags() | SDNodeFlags::NoFPExcept); |
| 4389 | |
| 4390 | // If the node had chain/glue results, update our notion of the current |
| 4391 | // chain and glue. |
| 4392 | if (EmitNodeInfo & OPFL_GlueOutput) { |
| 4393 | InputGlue = SDValue(Res, VTs.size()-1); |
| 4394 | if (EmitNodeInfo & OPFL_Chain) |
| 4395 | InputChain = SDValue(Res, VTs.size()-2); |
| 4396 | } else if (EmitNodeInfo & OPFL_Chain) |
| 4397 | InputChain = SDValue(Res, VTs.size()-1); |
| 4398 | |
| 4399 | // If the OPFL_MemRefs glue is set on this node, slap all of the |
| 4400 | // accumulated memrefs onto it. |
| 4401 | // |
| 4402 | // FIXME: This is vastly incorrect for patterns with multiple outputs |
| 4403 | // instructions that access memory and for ComplexPatterns that match |
| 4404 | // loads. |
| 4405 | if (EmitNodeInfo & OPFL_MemRefs) { |
| 4406 | // Only attach load or store memory operands if the generated |
| 4407 | // instruction may load or store. |
| 4408 | const MCInstrDesc &MCID = TII->get(Opcode: TargetOpc); |
| 4409 | bool mayLoad = MCID.mayLoad(); |
| 4410 | bool mayStore = MCID.mayStore(); |
| 4411 | |
| 4412 | // We expect to have relatively few of these so just filter them into a |
| 4413 | // temporary buffer so that we can easily add them to the instruction. |
| 4414 | SmallVector<MachineMemOperand *, 4> FilteredMemRefs; |
| 4415 | for (MachineMemOperand *MMO : MatchedMemRefs) { |
| 4416 | if (MMO->isLoad()) { |
| 4417 | if (mayLoad) |
| 4418 | FilteredMemRefs.push_back(Elt: MMO); |
| 4419 | } else if (MMO->isStore()) { |
| 4420 | if (mayStore) |
| 4421 | FilteredMemRefs.push_back(Elt: MMO); |
| 4422 | } else { |
| 4423 | FilteredMemRefs.push_back(Elt: MMO); |
| 4424 | } |
| 4425 | } |
| 4426 | |
| 4427 | CurDAG->setNodeMemRefs(N: Res, NewMemRefs: FilteredMemRefs); |
| 4428 | } |
| 4429 | |
| 4430 | LLVM_DEBUG({ |
| 4431 | if (!MatchedMemRefs.empty() && Res->memoperands_empty()) |
| 4432 | dbgs() << " Dropping mem operands\n" ; |
| 4433 | dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created" ) << " node: " ; |
| 4434 | Res->dump(CurDAG); |
| 4435 | }); |
| 4436 | |
| 4437 | // If this was a MorphNodeTo then we're completely done! |
| 4438 | if (IsMorphNodeTo) { |
| 4439 | // Update chain uses. |
| 4440 | UpdateChains(NodeToMatch: Res, InputChain, ChainNodesMatched, isMorphNodeTo: true); |
| 4441 | return; |
| 4442 | } |
| 4443 | continue; |
| 4444 | } |
| 4445 | |
| 4446 | case OPC_CompleteMatch: { |
| 4447 | // The match has been completed, and any new nodes (if any) have been |
| 4448 | // created. Patch up references to the matched dag to use the newly |
| 4449 | // created nodes. |
| 4450 | unsigned NumResults = MatcherTable[MatcherIndex++]; |
| 4451 | |
| 4452 | for (unsigned i = 0; i != NumResults; ++i) { |
| 4453 | unsigned ResSlot = MatcherTable[MatcherIndex++]; |
| 4454 | if (ResSlot & 128) |
| 4455 | ResSlot = GetVBR(Val: ResSlot, MatcherTable, Idx&: MatcherIndex); |
| 4456 | |
| 4457 | assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch" ); |
| 4458 | SDValue Res = RecordedNodes[ResSlot].first; |
| 4459 | |
| 4460 | assert(i < NodeToMatch->getNumValues() && |
| 4461 | NodeToMatch->getValueType(i) != MVT::Other && |
| 4462 | NodeToMatch->getValueType(i) != MVT::Glue && |
| 4463 | "Invalid number of results to complete!" ); |
| 4464 | assert((NodeToMatch->getValueType(i) == Res.getValueType() || |
| 4465 | NodeToMatch->getValueType(i) == MVT::iPTR || |
| 4466 | Res.getValueType() == MVT::iPTR || |
| 4467 | NodeToMatch->getValueType(i).getSizeInBits() == |
| 4468 | Res.getValueSizeInBits()) && |
| 4469 | "invalid replacement" ); |
| 4470 | ReplaceUses(F: SDValue(NodeToMatch, i), T: Res); |
| 4471 | } |
| 4472 | |
| 4473 | // Update chain uses. |
| 4474 | UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, isMorphNodeTo: false); |
| 4475 | |
| 4476 | // If the root node defines glue, we need to update it to the glue result. |
| 4477 | // TODO: This never happens in our tests and I think it can be removed / |
| 4478 | // replaced with an assert, but if we do it this the way the change is |
| 4479 | // NFC. |
| 4480 | if (NodeToMatch->getValueType(ResNo: NodeToMatch->getNumValues() - 1) == |
| 4481 | MVT::Glue && |
| 4482 | InputGlue.getNode()) |
| 4483 | ReplaceUses(F: SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), |
| 4484 | T: InputGlue); |
| 4485 | |
| 4486 | assert(NodeToMatch->use_empty() && |
| 4487 | "Didn't replace all uses of the node?" ); |
| 4488 | CurDAG->RemoveDeadNode(N: NodeToMatch); |
| 4489 | |
| 4490 | return; |
| 4491 | } |
| 4492 | } |
| 4493 | |
| 4494 | // If the code reached this point, then the match failed. See if there is |
| 4495 | // another child to try in the current 'Scope', otherwise pop it until we |
| 4496 | // find a case to check. |
| 4497 | LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex |
| 4498 | << "\n" ); |
| 4499 | ++NumDAGIselRetries; |
| 4500 | while (true) { |
| 4501 | if (MatchScopes.empty()) { |
| 4502 | CannotYetSelect(N: NodeToMatch); |
| 4503 | return; |
| 4504 | } |
| 4505 | |
| 4506 | // Restore the interpreter state back to the point where the scope was |
| 4507 | // formed. |
| 4508 | MatchScope &LastScope = MatchScopes.back(); |
| 4509 | RecordedNodes.resize(N: LastScope.NumRecordedNodes); |
| 4510 | NodeStack.assign(in_start: LastScope.NodeStack.begin(), in_end: LastScope.NodeStack.end()); |
| 4511 | N = NodeStack.back(); |
| 4512 | |
| 4513 | if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) |
| 4514 | MatchedMemRefs.resize(N: LastScope.NumMatchedMemRefs); |
| 4515 | MatcherIndex = LastScope.FailIndex; |
| 4516 | |
| 4517 | LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n" ); |
| 4518 | |
| 4519 | InputChain = LastScope.InputChain; |
| 4520 | InputGlue = LastScope.InputGlue; |
| 4521 | if (!LastScope.HasChainNodesMatched) |
| 4522 | ChainNodesMatched.clear(); |
| 4523 | |
| 4524 | // Check to see what the offset is at the new MatcherIndex. If it is zero |
| 4525 | // we have reached the end of this scope, otherwise we have another child |
| 4526 | // in the current scope to try. |
| 4527 | unsigned NumToSkip = MatcherTable[MatcherIndex++]; |
| 4528 | if (NumToSkip & 128) |
| 4529 | NumToSkip = GetVBR(Val: NumToSkip, MatcherTable, Idx&: MatcherIndex); |
| 4530 | |
| 4531 | // If we have another child in this scope to match, update FailIndex and |
| 4532 | // try it. |
| 4533 | if (NumToSkip != 0) { |
| 4534 | LastScope.FailIndex = MatcherIndex+NumToSkip; |
| 4535 | break; |
| 4536 | } |
| 4537 | |
| 4538 | // End of this scope, pop it and try the next child in the containing |
| 4539 | // scope. |
| 4540 | MatchScopes.pop_back(); |
| 4541 | } |
| 4542 | } |
| 4543 | } |
| 4544 | |
| 4545 | /// Return whether the node may raise an FP exception. |
| 4546 | bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const { |
| 4547 | // For machine opcodes, consult the MCID flag. |
| 4548 | if (N->isMachineOpcode()) { |
| 4549 | const MCInstrDesc &MCID = TII->get(Opcode: N->getMachineOpcode()); |
| 4550 | return MCID.mayRaiseFPException(); |
| 4551 | } |
| 4552 | |
| 4553 | // For ISD opcodes, only StrictFP opcodes may raise an FP |
| 4554 | // exception. |
| 4555 | if (N->isTargetOpcode()) { |
| 4556 | const SelectionDAGTargetInfo &TSI = CurDAG->getSelectionDAGInfo(); |
| 4557 | return TSI.mayRaiseFPException(Opcode: N->getOpcode()); |
| 4558 | } |
| 4559 | return N->isStrictFPOpcode(); |
| 4560 | } |
| 4561 | |
| 4562 | bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const { |
| 4563 | assert(N->getOpcode() == ISD::OR && "Unexpected opcode" ); |
| 4564 | auto *C = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
| 4565 | if (!C) |
| 4566 | return false; |
| 4567 | |
| 4568 | // Detect when "or" is used to add an offset to a stack object. |
| 4569 | if (auto *FN = dyn_cast<FrameIndexSDNode>(Val: N->getOperand(Num: 0))) { |
| 4570 | MachineFrameInfo &MFI = MF->getFrameInfo(); |
| 4571 | Align A = MFI.getObjectAlign(ObjectIdx: FN->getIndex()); |
| 4572 | int32_t Off = C->getSExtValue(); |
| 4573 | // If the alleged offset fits in the zero bits guaranteed by |
| 4574 | // the alignment, then this or is really an add. |
| 4575 | return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off)); |
| 4576 | } |
| 4577 | return false; |
| 4578 | } |
| 4579 | |
| 4580 | void SelectionDAGISel::CannotYetSelect(SDNode *N) { |
| 4581 | std::string msg; |
| 4582 | raw_string_ostream Msg(msg); |
| 4583 | Msg << "Cannot select: " ; |
| 4584 | |
| 4585 | Msg.enable_colors(enable: errs().has_colors()); |
| 4586 | |
| 4587 | if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && |
| 4588 | N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && |
| 4589 | N->getOpcode() != ISD::INTRINSIC_VOID) { |
| 4590 | N->printrFull(O&: Msg, G: CurDAG); |
| 4591 | Msg << "\nIn function: " << MF->getName(); |
| 4592 | } else { |
| 4593 | bool HasInputChain = N->getOperand(Num: 0).getValueType() == MVT::Other; |
| 4594 | unsigned iid = N->getConstantOperandVal(Num: HasInputChain); |
| 4595 | if (iid < Intrinsic::num_intrinsics) |
| 4596 | Msg << "intrinsic %" << Intrinsic::getBaseName(id: (Intrinsic::ID)iid); |
| 4597 | else |
| 4598 | Msg << "unknown intrinsic #" << iid; |
| 4599 | } |
| 4600 | report_fatal_error(reason: Twine(msg)); |
| 4601 | } |
| 4602 | |