| 1 | //===- RISCVInsertVSETVLI.cpp - Insert VSETVLI instructions ---------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements a function pass that inserts VSETVLI instructions where |
| 10 | // needed and expands the vl outputs of VLEFF/VLSEGFF to PseudoReadVL |
| 11 | // instructions. |
| 12 | // |
| 13 | // This pass consists of 3 phases: |
| 14 | // |
| 15 | // Phase 1 collects how each basic block affects VL/VTYPE. |
| 16 | // |
| 17 | // Phase 2 uses the information from phase 1 to do a data flow analysis to |
| 18 | // propagate the VL/VTYPE changes through the function. This gives us the |
| 19 | // VL/VTYPE at the start of each basic block. |
| 20 | // |
| 21 | // Phase 3 inserts VSETVLI instructions in each basic block. Information from |
| 22 | // phase 2 is used to prevent inserting a VSETVLI before the first vector |
| 23 | // instruction in the block if possible. |
| 24 | // |
| 25 | //===----------------------------------------------------------------------===// |
| 26 | |
| 27 | #include "RISCV.h" |
| 28 | #include "RISCVSubtarget.h" |
| 29 | #include "RISCVVSETVLIInfoAnalysis.h" |
| 30 | #include "llvm/ADT/PostOrderIterator.h" |
| 31 | #include "llvm/ADT/Statistic.h" |
| 32 | #include "llvm/CodeGen/LiveDebugVariables.h" |
| 33 | #include "llvm/CodeGen/LiveIntervals.h" |
| 34 | #include "llvm/CodeGen/LiveStacks.h" |
| 35 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 36 | #include <queue> |
| 37 | using namespace llvm; |
| 38 | using namespace RISCV; |
| 39 | |
| 40 | #define DEBUG_TYPE "riscv-insert-vsetvli" |
| 41 | #define RISCV_INSERT_VSETVLI_NAME "RISC-V Insert VSETVLI pass" |
| 42 | |
| 43 | STATISTIC(NumInsertedVSETVL, "Number of VSETVL inst inserted" ); |
| 44 | STATISTIC(NumCoalescedVSETVL, "Number of VSETVL inst coalesced" ); |
| 45 | |
| 46 | static cl::opt<bool> EnsureWholeVectorRegisterMoveValidVTYPE( |
| 47 | DEBUG_TYPE "-whole-vector-register-move-valid-vtype" , cl::Hidden, |
| 48 | cl::desc("Insert vsetvlis before vmvNr.vs to ensure vtype is valid and " |
| 49 | "vill is cleared" ), |
| 50 | cl::init(Val: true)); |
| 51 | |
| 52 | namespace { |
| 53 | |
| 54 | /// Given a virtual register \p Reg, return the corresponding VNInfo for it. |
| 55 | /// This will return nullptr if the virtual register is an implicit_def or |
| 56 | /// if LiveIntervals is not available. |
| 57 | static VNInfo *getVNInfoFromReg(Register Reg, const MachineInstr &MI, |
| 58 | const LiveIntervals *LIS) { |
| 59 | assert(Reg.isVirtual()); |
| 60 | if (!LIS) |
| 61 | return nullptr; |
| 62 | auto &LI = LIS->getInterval(Reg); |
| 63 | SlotIndex SI = LIS->getSlotIndexes()->getInstructionIndex(MI); |
| 64 | return LI.getVNInfoBefore(Idx: SI); |
| 65 | } |
| 66 | |
| 67 | static unsigned getVLOpNum(const MachineInstr &MI) { |
| 68 | return RISCVII::getVLOpNum(Desc: MI.getDesc()); |
| 69 | } |
| 70 | |
| 71 | struct BlockData { |
| 72 | // The VSETVLIInfo that represents the VL/VTYPE settings on exit from this |
| 73 | // block. Calculated in Phase 2. |
| 74 | VSETVLIInfo Exit; |
| 75 | |
| 76 | // The VSETVLIInfo that represents the VL/VTYPE settings from all predecessor |
| 77 | // blocks. Calculated in Phase 2, and used by Phase 3. |
| 78 | VSETVLIInfo Pred; |
| 79 | |
| 80 | // Keeps track of whether the block is already in the queue. |
| 81 | bool InQueue = false; |
| 82 | |
| 83 | BlockData() = default; |
| 84 | }; |
| 85 | |
| 86 | enum TKTMMode { |
| 87 | VSETTK = 0, |
| 88 | VSETTM = 1, |
| 89 | }; |
| 90 | |
| 91 | class RISCVInsertVSETVLI : public MachineFunctionPass { |
| 92 | const RISCVSubtarget *ST; |
| 93 | const TargetInstrInfo *TII; |
| 94 | MachineRegisterInfo *MRI; |
| 95 | // Possibly null! |
| 96 | LiveIntervals *LIS; |
| 97 | RISCVVSETVLIInfoAnalysis VIA; |
| 98 | |
| 99 | std::vector<BlockData> BlockInfo; |
| 100 | std::queue<const MachineBasicBlock *> WorkList; |
| 101 | |
| 102 | public: |
| 103 | static char ID; |
| 104 | |
| 105 | RISCVInsertVSETVLI() : MachineFunctionPass(ID) {} |
| 106 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 107 | |
| 108 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 109 | AU.setPreservesCFG(); |
| 110 | |
| 111 | AU.addUsedIfAvailable<LiveIntervalsWrapperPass>(); |
| 112 | AU.addPreserved<LiveIntervalsWrapperPass>(); |
| 113 | AU.addPreserved<SlotIndexesWrapperPass>(); |
| 114 | AU.addPreserved<LiveDebugVariablesWrapperLegacy>(); |
| 115 | AU.addPreserved<LiveStacksWrapperLegacy>(); |
| 116 | |
| 117 | MachineFunctionPass::getAnalysisUsage(AU); |
| 118 | } |
| 119 | |
| 120 | StringRef getPassName() const override { return RISCV_INSERT_VSETVLI_NAME; } |
| 121 | |
| 122 | private: |
| 123 | bool needVSETVLI(const DemandedFields &Used, const VSETVLIInfo &Require, |
| 124 | const VSETVLIInfo &CurInfo) const; |
| 125 | bool needVSETVLIPHI(const VSETVLIInfo &Require, |
| 126 | const MachineBasicBlock &MBB) const; |
| 127 | void insertVSETVLI(MachineBasicBlock &MBB, |
| 128 | MachineBasicBlock::iterator InsertPt, DebugLoc DL, |
| 129 | const VSETVLIInfo &Info, const VSETVLIInfo &PrevInfo); |
| 130 | |
| 131 | void transferBefore(VSETVLIInfo &Info, const MachineInstr &MI) const; |
| 132 | void transferAfter(VSETVLIInfo &Info, const MachineInstr &MI) const; |
| 133 | bool computeVLVTYPEChanges(const MachineBasicBlock &MBB, |
| 134 | VSETVLIInfo &Info) const; |
| 135 | void computeIncomingVLVTYPE(const MachineBasicBlock &MBB); |
| 136 | void emitVSETVLIs(MachineBasicBlock &MBB); |
| 137 | void doPRE(MachineBasicBlock &MBB); |
| 138 | void insertReadVL(MachineBasicBlock &MBB); |
| 139 | |
| 140 | bool canMutatePriorConfig(const MachineInstr &PrevMI, const MachineInstr &MI, |
| 141 | const DemandedFields &Used) const; |
| 142 | void coalesceVSETVLIs(MachineBasicBlock &MBB) const; |
| 143 | bool insertVSETMTK(MachineBasicBlock &MBB, TKTMMode Mode) const; |
| 144 | }; |
| 145 | |
| 146 | } // end anonymous namespace |
| 147 | |
| 148 | char RISCVInsertVSETVLI::ID = 0; |
| 149 | char &llvm::RISCVInsertVSETVLIID = RISCVInsertVSETVLI::ID; |
| 150 | |
| 151 | INITIALIZE_PASS(RISCVInsertVSETVLI, DEBUG_TYPE, RISCV_INSERT_VSETVLI_NAME, |
| 152 | false, false) |
| 153 | |
| 154 | void RISCVInsertVSETVLI::insertVSETVLI(MachineBasicBlock &MBB, |
| 155 | MachineBasicBlock::iterator InsertPt, |
| 156 | DebugLoc DL, const VSETVLIInfo &Info, |
| 157 | const VSETVLIInfo &PrevInfo) { |
| 158 | ++NumInsertedVSETVL; |
| 159 | |
| 160 | if (Info.getTWiden()) { |
| 161 | if (Info.hasAVLVLMAX()) { |
| 162 | Register DestReg = MRI->createVirtualRegister(RegClass: &RISCV::GPRNoX0RegClass); |
| 163 | auto MI = BuildMI(BB&: MBB, I: InsertPt, MIMD: DL, MCID: TII->get(Opcode: RISCV::PseudoSF_VSETTNTX0)) |
| 164 | .addReg(RegNo: DestReg, Flags: RegState::Define | RegState::Dead) |
| 165 | .addReg(RegNo: RISCV::X0, Flags: RegState::Kill) |
| 166 | .addImm(Val: Info.encodeVTYPE()); |
| 167 | if (LIS) { |
| 168 | LIS->InsertMachineInstrInMaps(MI&: *MI); |
| 169 | LIS->createAndComputeVirtRegInterval(Reg: DestReg); |
| 170 | } |
| 171 | } else { |
| 172 | auto MI = BuildMI(BB&: MBB, I: InsertPt, MIMD: DL, MCID: TII->get(Opcode: RISCV::PseudoSF_VSETTNT)) |
| 173 | .addReg(RegNo: RISCV::X0, Flags: RegState::Define | RegState::Dead) |
| 174 | .addReg(RegNo: Info.getAVLReg()) |
| 175 | .addImm(Val: Info.encodeVTYPE()); |
| 176 | if (LIS) |
| 177 | LIS->InsertMachineInstrInMaps(MI&: *MI); |
| 178 | } |
| 179 | return; |
| 180 | } |
| 181 | |
| 182 | if (PrevInfo.isValid() && !PrevInfo.isUnknown()) { |
| 183 | // Use X0, X0 form if the AVL is the same and the SEW+LMUL gives the same |
| 184 | // VLMAX. |
| 185 | if (Info.hasSameAVL(Other: PrevInfo) && Info.hasSameVLMAX(Other: PrevInfo)) { |
| 186 | auto MI = BuildMI(BB&: MBB, I: InsertPt, MIMD: DL, MCID: TII->get(Opcode: RISCV::PseudoVSETVLIX0X0)) |
| 187 | .addReg(RegNo: RISCV::X0, Flags: RegState::Define | RegState::Dead) |
| 188 | .addReg(RegNo: RISCV::X0, Flags: RegState::Kill) |
| 189 | .addImm(Val: Info.encodeVTYPE()) |
| 190 | .addReg(RegNo: RISCV::VL, Flags: RegState::Implicit); |
| 191 | if (LIS) |
| 192 | LIS->InsertMachineInstrInMaps(MI&: *MI); |
| 193 | return; |
| 194 | } |
| 195 | |
| 196 | // If our AVL is a virtual register, it might be defined by a VSET(I)VLI. If |
| 197 | // it has the same VLMAX we want and the last VL/VTYPE we observed is the |
| 198 | // same, we can use the X0, X0 form. |
| 199 | if (Info.hasSameVLMAX(Other: PrevInfo) && Info.hasAVLReg()) { |
| 200 | if (const MachineInstr *DefMI = Info.getAVLDefMI(LIS); |
| 201 | DefMI && RISCVInstrInfo::isVectorConfigInstr(MI: *DefMI)) { |
| 202 | VSETVLIInfo DefInfo = VIA.getInfoForVSETVLI(MI: *DefMI); |
| 203 | if (DefInfo.hasSameAVL(Other: PrevInfo) && DefInfo.hasSameVLMAX(Other: PrevInfo)) { |
| 204 | auto MI = |
| 205 | BuildMI(BB&: MBB, I: InsertPt, MIMD: DL, MCID: TII->get(Opcode: RISCV::PseudoVSETVLIX0X0)) |
| 206 | .addReg(RegNo: RISCV::X0, Flags: RegState::Define | RegState::Dead) |
| 207 | .addReg(RegNo: RISCV::X0, Flags: RegState::Kill) |
| 208 | .addImm(Val: Info.encodeVTYPE()) |
| 209 | .addReg(RegNo: RISCV::VL, Flags: RegState::Implicit); |
| 210 | if (LIS) |
| 211 | LIS->InsertMachineInstrInMaps(MI&: *MI); |
| 212 | return; |
| 213 | } |
| 214 | } |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | if (Info.hasAVLImm()) { |
| 219 | auto MI = BuildMI(BB&: MBB, I: InsertPt, MIMD: DL, MCID: TII->get(Opcode: RISCV::PseudoVSETIVLI)) |
| 220 | .addReg(RegNo: RISCV::X0, Flags: RegState::Define | RegState::Dead) |
| 221 | .addImm(Val: Info.getAVLImm()) |
| 222 | .addImm(Val: Info.encodeVTYPE()); |
| 223 | if (LIS) |
| 224 | LIS->InsertMachineInstrInMaps(MI&: *MI); |
| 225 | return; |
| 226 | } |
| 227 | |
| 228 | if (Info.hasAVLVLMAX()) { |
| 229 | Register DestReg = MRI->createVirtualRegister(RegClass: &RISCV::GPRNoX0RegClass); |
| 230 | auto MI = BuildMI(BB&: MBB, I: InsertPt, MIMD: DL, MCID: TII->get(Opcode: RISCV::PseudoVSETVLIX0)) |
| 231 | .addReg(RegNo: DestReg, Flags: RegState::Define | RegState::Dead) |
| 232 | .addReg(RegNo: RISCV::X0, Flags: RegState::Kill) |
| 233 | .addImm(Val: Info.encodeVTYPE()); |
| 234 | if (LIS) { |
| 235 | LIS->InsertMachineInstrInMaps(MI&: *MI); |
| 236 | LIS->createAndComputeVirtRegInterval(Reg: DestReg); |
| 237 | } |
| 238 | return; |
| 239 | } |
| 240 | |
| 241 | Register AVLReg = Info.getAVLReg(); |
| 242 | MRI->constrainRegClass(Reg: AVLReg, RC: &RISCV::GPRNoX0RegClass); |
| 243 | auto MI = BuildMI(BB&: MBB, I: InsertPt, MIMD: DL, MCID: TII->get(Opcode: RISCV::PseudoVSETVLI)) |
| 244 | .addReg(RegNo: RISCV::X0, Flags: RegState::Define | RegState::Dead) |
| 245 | .addReg(RegNo: AVLReg) |
| 246 | .addImm(Val: Info.encodeVTYPE()); |
| 247 | if (LIS) { |
| 248 | LIS->InsertMachineInstrInMaps(MI&: *MI); |
| 249 | LiveInterval &LI = LIS->getInterval(Reg: AVLReg); |
| 250 | SlotIndex SI = LIS->getInstructionIndex(Instr: *MI).getRegSlot(); |
| 251 | const VNInfo *CurVNI = Info.getAVLVNInfo(); |
| 252 | // If the AVL value isn't live at MI, do a quick check to see if it's easily |
| 253 | // extendable. Otherwise, we need to copy it. |
| 254 | if (LI.getVNInfoBefore(Idx: SI) != CurVNI) { |
| 255 | if (!LI.liveAt(index: SI) && LI.containsOneValue()) |
| 256 | LIS->extendToIndices(LR&: LI, Indices: SI); |
| 257 | else { |
| 258 | Register AVLCopyReg = |
| 259 | MRI->createVirtualRegister(RegClass: &RISCV::GPRNoX0RegClass); |
| 260 | MachineBasicBlock *MBB = LIS->getMBBFromIndex(index: CurVNI->def); |
| 261 | MachineBasicBlock::iterator II; |
| 262 | if (CurVNI->isPHIDef()) |
| 263 | II = MBB->getFirstNonPHI(); |
| 264 | else { |
| 265 | II = LIS->getInstructionFromIndex(index: CurVNI->def); |
| 266 | II = std::next(x: II); |
| 267 | } |
| 268 | assert(II.isValid()); |
| 269 | auto AVLCopy = BuildMI(BB&: *MBB, I: II, MIMD: DL, MCID: TII->get(Opcode: RISCV::COPY), DestReg: AVLCopyReg) |
| 270 | .addReg(RegNo: AVLReg); |
| 271 | LIS->InsertMachineInstrInMaps(MI&: *AVLCopy); |
| 272 | MI->getOperand(i: 1).setReg(AVLCopyReg); |
| 273 | LIS->createAndComputeVirtRegInterval(Reg: AVLCopyReg); |
| 274 | } |
| 275 | } |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | /// Return true if a VSETVLI is required to transition from CurInfo to Require |
| 280 | /// given a set of DemandedFields \p Used. |
| 281 | bool RISCVInsertVSETVLI::needVSETVLI(const DemandedFields &Used, |
| 282 | const VSETVLIInfo &Require, |
| 283 | const VSETVLIInfo &CurInfo) const { |
| 284 | if (!CurInfo.isValid() || CurInfo.isUnknown() || CurInfo.hasSEWLMULRatioOnly()) |
| 285 | return true; |
| 286 | |
| 287 | if (CurInfo.isCompatible(Used, Require, LIS)) |
| 288 | return false; |
| 289 | |
| 290 | return true; |
| 291 | } |
| 292 | |
| 293 | // If we don't use LMUL or the SEW/LMUL ratio, then adjust LMUL so that we |
| 294 | // maintain the SEW/LMUL ratio. This allows us to eliminate VL toggles in more |
| 295 | // places. |
| 296 | static VSETVLIInfo adjustIncoming(const VSETVLIInfo &PrevInfo, |
| 297 | const VSETVLIInfo &NewInfo, |
| 298 | DemandedFields &Demanded) { |
| 299 | VSETVLIInfo Info = NewInfo; |
| 300 | |
| 301 | if (!Demanded.LMUL && !Demanded.SEWLMULRatio && PrevInfo.isValid() && |
| 302 | !PrevInfo.isUnknown()) { |
| 303 | if (auto NewVLMul = RISCVVType::getSameRatioLMUL(Ratio: PrevInfo.getSEWLMULRatio(), |
| 304 | EEW: Info.getSEW())) |
| 305 | Info.setVLMul(*NewVLMul); |
| 306 | Demanded.LMUL = DemandedFields::LMULEqual; |
| 307 | } |
| 308 | |
| 309 | return Info; |
| 310 | } |
| 311 | |
| 312 | // Given an incoming state reaching MI, minimally modifies that state so that it |
| 313 | // is compatible with MI. The resulting state is guaranteed to be semantically |
| 314 | // legal for MI, but may not be the state requested by MI. |
| 315 | void RISCVInsertVSETVLI::transferBefore(VSETVLIInfo &Info, |
| 316 | const MachineInstr &MI) const { |
| 317 | if (RISCV::isVectorCopy(TRI: ST->getRegisterInfo(), MI) && |
| 318 | (Info.isUnknown() || !Info.isValid() || Info.hasSEWLMULRatioOnly())) { |
| 319 | // Use an arbitrary but valid AVL and VTYPE so vill will be cleared. It may |
| 320 | // be coalesced into another vsetvli since we won't demand any fields. |
| 321 | VSETVLIInfo NewInfo; // Need a new VSETVLIInfo to clear SEWLMULRatioOnly |
| 322 | NewInfo.setAVLImm(1); |
| 323 | NewInfo.setVTYPE(L: RISCVVType::LMUL_1, /*sew*/ S: 8, /*ta*/ TA: true, /*ma*/ MA: true, |
| 324 | /*AltFmt*/ Altfmt: false, /*W*/ 0); |
| 325 | Info = NewInfo; |
| 326 | return; |
| 327 | } |
| 328 | |
| 329 | if (!RISCVII::hasSEWOp(TSFlags: MI.getDesc().TSFlags)) |
| 330 | return; |
| 331 | |
| 332 | DemandedFields Demanded = getDemanded(MI, ST); |
| 333 | |
| 334 | const VSETVLIInfo NewInfo = VIA.computeInfoForInstr(MI); |
| 335 | assert(NewInfo.isValid() && !NewInfo.isUnknown()); |
| 336 | if (Info.isValid() && !needVSETVLI(Used: Demanded, Require: NewInfo, CurInfo: Info)) |
| 337 | return; |
| 338 | |
| 339 | const VSETVLIInfo PrevInfo = Info; |
| 340 | if (!Info.isValid() || Info.isUnknown()) |
| 341 | Info = NewInfo; |
| 342 | |
| 343 | const VSETVLIInfo IncomingInfo = adjustIncoming(PrevInfo, NewInfo, Demanded); |
| 344 | |
| 345 | // If MI only demands that VL has the same zeroness, we only need to set the |
| 346 | // AVL if the zeroness differs. This removes a vsetvli entirely if the types |
| 347 | // match or allows use of cheaper avl preserving variant if VLMAX doesn't |
| 348 | // change. If VLMAX might change, we couldn't use the 'vsetvli x0, x0, vtype" |
| 349 | // variant, so we avoid the transform to prevent extending live range of an |
| 350 | // avl register operand. |
| 351 | // TODO: We can probably relax this for immediates. |
| 352 | bool EquallyZero = IncomingInfo.hasEquallyZeroAVL(Other: PrevInfo, LIS) && |
| 353 | IncomingInfo.hasSameVLMAX(Other: PrevInfo); |
| 354 | if (Demanded.VLAny || (Demanded.VLZeroness && !EquallyZero)) |
| 355 | Info.setAVL(IncomingInfo); |
| 356 | |
| 357 | // If we only knew the sew/lmul ratio previously, replace the VTYPE. |
| 358 | if (Info.hasSEWLMULRatioOnly()) { |
| 359 | VSETVLIInfo RatiolessInfo = IncomingInfo; |
| 360 | RatiolessInfo.setAVL(Info); |
| 361 | Info = RatiolessInfo; |
| 362 | } else { |
| 363 | Info.setVTYPE( |
| 364 | L: ((Demanded.LMUL || Demanded.SEWLMULRatio) ? IncomingInfo : Info) |
| 365 | .getVLMUL(), |
| 366 | S: ((Demanded.SEW || Demanded.SEWLMULRatio) ? IncomingInfo : Info) |
| 367 | .getSEW(), |
| 368 | // Prefer tail/mask agnostic since it can be relaxed to undisturbed |
| 369 | // later if needed. |
| 370 | TA: (Demanded.TailPolicy ? IncomingInfo : Info).getTailAgnostic() || |
| 371 | IncomingInfo.getTailAgnostic(), |
| 372 | MA: (Demanded.MaskPolicy ? IncomingInfo : Info).getMaskAgnostic() || |
| 373 | IncomingInfo.getMaskAgnostic(), |
| 374 | Altfmt: (Demanded.AltFmt ? IncomingInfo : Info).getAltFmt(), |
| 375 | W: Demanded.TWiden ? IncomingInfo.getTWiden() : 0); |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | // Given a state with which we evaluated MI (see transferBefore above for why |
| 380 | // this might be different that the state MI requested), modify the state to |
| 381 | // reflect the changes MI might make. |
| 382 | void RISCVInsertVSETVLI::transferAfter(VSETVLIInfo &Info, |
| 383 | const MachineInstr &MI) const { |
| 384 | if (RISCVInstrInfo::isVectorConfigInstr(MI)) { |
| 385 | Info = VIA.getInfoForVSETVLI(MI); |
| 386 | return; |
| 387 | } |
| 388 | |
| 389 | if (RISCVInstrInfo::isFaultOnlyFirstLoad(MI)) { |
| 390 | // Update AVL to vl-output of the fault first load. |
| 391 | assert(MI.getOperand(1).getReg().isVirtual()); |
| 392 | if (LIS) { |
| 393 | auto &LI = LIS->getInterval(Reg: MI.getOperand(i: 1).getReg()); |
| 394 | SlotIndex SI = |
| 395 | LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot(); |
| 396 | VNInfo *VNI = LI.getVNInfoAt(Idx: SI); |
| 397 | Info.setAVLRegDef(VNInfo: VNI, AVLReg: MI.getOperand(i: 1).getReg()); |
| 398 | } else |
| 399 | Info.setAVLRegDef(VNInfo: nullptr, AVLReg: MI.getOperand(i: 1).getReg()); |
| 400 | return; |
| 401 | } |
| 402 | |
| 403 | // If this is something that updates VL/VTYPE that we don't know about, set |
| 404 | // the state to unknown. |
| 405 | if (MI.isCall() || MI.isInlineAsm() || |
| 406 | MI.modifiesRegister(Reg: RISCV::VL, /*TRI=*/nullptr) || |
| 407 | MI.modifiesRegister(Reg: RISCV::VTYPE, /*TRI=*/nullptr)) |
| 408 | Info = VSETVLIInfo::getUnknown(); |
| 409 | } |
| 410 | |
| 411 | bool RISCVInsertVSETVLI::computeVLVTYPEChanges(const MachineBasicBlock &MBB, |
| 412 | VSETVLIInfo &Info) const { |
| 413 | bool HadVectorOp = false; |
| 414 | |
| 415 | Info = BlockInfo[MBB.getNumber()].Pred; |
| 416 | for (const MachineInstr &MI : MBB) { |
| 417 | transferBefore(Info, MI); |
| 418 | |
| 419 | if (RISCVInstrInfo::isVectorConfigInstr(MI) || |
| 420 | RISCVII::hasSEWOp(TSFlags: MI.getDesc().TSFlags) || |
| 421 | RISCV::isVectorCopy(TRI: ST->getRegisterInfo(), MI) || |
| 422 | RISCVInstrInfo::isXSfmmVectorConfigInstr(MI)) |
| 423 | HadVectorOp = true; |
| 424 | |
| 425 | transferAfter(Info, MI); |
| 426 | } |
| 427 | |
| 428 | return HadVectorOp; |
| 429 | } |
| 430 | |
| 431 | void RISCVInsertVSETVLI::computeIncomingVLVTYPE(const MachineBasicBlock &MBB) { |
| 432 | |
| 433 | BlockData &BBInfo = BlockInfo[MBB.getNumber()]; |
| 434 | |
| 435 | BBInfo.InQueue = false; |
| 436 | |
| 437 | // Start with the previous entry so that we keep the most conservative state |
| 438 | // we have ever found. |
| 439 | VSETVLIInfo InInfo = BBInfo.Pred; |
| 440 | if (MBB.pred_empty()) { |
| 441 | // There are no predecessors, so use the default starting status. |
| 442 | InInfo.setUnknown(); |
| 443 | } else { |
| 444 | for (MachineBasicBlock *P : MBB.predecessors()) |
| 445 | InInfo = InInfo.intersect(Other: BlockInfo[P->getNumber()].Exit); |
| 446 | } |
| 447 | |
| 448 | // If we don't have any valid predecessor value, wait until we do. |
| 449 | if (!InInfo.isValid()) |
| 450 | return; |
| 451 | |
| 452 | // If no change, no need to rerun block |
| 453 | if (InInfo == BBInfo.Pred) |
| 454 | return; |
| 455 | |
| 456 | BBInfo.Pred = InInfo; |
| 457 | LLVM_DEBUG(dbgs() << "Entry state of " << printMBBReference(MBB) |
| 458 | << " changed to " << BBInfo.Pred << "\n" ); |
| 459 | |
| 460 | // Note: It's tempting to cache the state changes here, but due to the |
| 461 | // compatibility checks performed a blocks output state can change based on |
| 462 | // the input state. To cache, we'd have to add logic for finding |
| 463 | // never-compatible state changes. |
| 464 | VSETVLIInfo TmpStatus; |
| 465 | computeVLVTYPEChanges(MBB, Info&: TmpStatus); |
| 466 | |
| 467 | // If the new exit value matches the old exit value, we don't need to revisit |
| 468 | // any blocks. |
| 469 | if (BBInfo.Exit == TmpStatus) |
| 470 | return; |
| 471 | |
| 472 | BBInfo.Exit = TmpStatus; |
| 473 | LLVM_DEBUG(dbgs() << "Exit state of " << printMBBReference(MBB) |
| 474 | << " changed to " << BBInfo.Exit << "\n" ); |
| 475 | |
| 476 | // Add the successors to the work list so we can propagate the changed exit |
| 477 | // status. |
| 478 | for (MachineBasicBlock *S : MBB.successors()) |
| 479 | if (!BlockInfo[S->getNumber()].InQueue) { |
| 480 | BlockInfo[S->getNumber()].InQueue = true; |
| 481 | WorkList.push(x: S); |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | // If we weren't able to prove a vsetvli was directly unneeded, it might still |
| 486 | // be unneeded if the AVL was a phi node where all incoming values are VL |
| 487 | // outputs from the last VSETVLI in their respective basic blocks. |
| 488 | bool RISCVInsertVSETVLI::needVSETVLIPHI(const VSETVLIInfo &Require, |
| 489 | const MachineBasicBlock &MBB) const { |
| 490 | if (!Require.hasAVLReg()) |
| 491 | return true; |
| 492 | |
| 493 | if (!LIS) |
| 494 | return true; |
| 495 | |
| 496 | // We need the AVL to have been produced by a PHI node in this basic block. |
| 497 | const VNInfo *Valno = Require.getAVLVNInfo(); |
| 498 | if (!Valno->isPHIDef() || LIS->getMBBFromIndex(index: Valno->def) != &MBB) |
| 499 | return true; |
| 500 | |
| 501 | const LiveRange &LR = LIS->getInterval(Reg: Require.getAVLReg()); |
| 502 | |
| 503 | for (auto *PBB : MBB.predecessors()) { |
| 504 | const VSETVLIInfo &PBBExit = BlockInfo[PBB->getNumber()].Exit; |
| 505 | |
| 506 | // We need the PHI input to the be the output of a VSET(I)VLI. |
| 507 | const VNInfo *Value = LR.getVNInfoBefore(Idx: LIS->getMBBEndIdx(mbb: PBB)); |
| 508 | if (!Value) |
| 509 | return true; |
| 510 | MachineInstr *DefMI = LIS->getInstructionFromIndex(index: Value->def); |
| 511 | if (!DefMI || !RISCVInstrInfo::isVectorConfigInstr(MI: *DefMI)) |
| 512 | return true; |
| 513 | |
| 514 | // We found a VSET(I)VLI make sure it matches the output of the |
| 515 | // predecessor block. |
| 516 | VSETVLIInfo DefInfo = VIA.getInfoForVSETVLI(MI: *DefMI); |
| 517 | if (DefInfo != PBBExit) |
| 518 | return true; |
| 519 | |
| 520 | // Require has the same VL as PBBExit, so if the exit from the |
| 521 | // predecessor has the VTYPE we are looking for we might be able |
| 522 | // to avoid a VSETVLI. |
| 523 | if (PBBExit.isUnknown() || !PBBExit.hasSameVTYPE(Other: Require)) |
| 524 | return true; |
| 525 | } |
| 526 | |
| 527 | // If all the incoming values to the PHI checked out, we don't need |
| 528 | // to insert a VSETVLI. |
| 529 | return false; |
| 530 | } |
| 531 | |
| 532 | void RISCVInsertVSETVLI::emitVSETVLIs(MachineBasicBlock &MBB) { |
| 533 | VSETVLIInfo CurInfo = BlockInfo[MBB.getNumber()].Pred; |
| 534 | // Track whether the prefix of the block we've scanned is transparent |
| 535 | // (meaning has not yet changed the abstract state). |
| 536 | bool PrefixTransparent = true; |
| 537 | for (MachineInstr &MI : MBB) { |
| 538 | const VSETVLIInfo PrevInfo = CurInfo; |
| 539 | transferBefore(Info&: CurInfo, MI); |
| 540 | |
| 541 | // If this is an explicit VSETVLI or VSETIVLI, update our state. |
| 542 | if (RISCVInstrInfo::isVectorConfigInstr(MI)) { |
| 543 | // Conservatively, mark the VL and VTYPE as live. |
| 544 | assert(MI.getOperand(3).getReg() == RISCV::VL && |
| 545 | MI.getOperand(4).getReg() == RISCV::VTYPE && |
| 546 | "Unexpected operands where VL and VTYPE should be" ); |
| 547 | MI.getOperand(i: 3).setIsDead(false); |
| 548 | MI.getOperand(i: 4).setIsDead(false); |
| 549 | PrefixTransparent = false; |
| 550 | } |
| 551 | |
| 552 | if (EnsureWholeVectorRegisterMoveValidVTYPE && |
| 553 | RISCV::isVectorCopy(TRI: ST->getRegisterInfo(), MI)) { |
| 554 | if (!PrevInfo.isCompatible(Used: DemandedFields::all(), Require: CurInfo, LIS)) { |
| 555 | insertVSETVLI(MBB, InsertPt: MI, DL: MI.getDebugLoc(), Info: CurInfo, PrevInfo); |
| 556 | PrefixTransparent = false; |
| 557 | } |
| 558 | MI.addOperand(Op: MachineOperand::CreateReg(Reg: RISCV::VTYPE, /*isDef*/ false, |
| 559 | /*isImp*/ true)); |
| 560 | } |
| 561 | |
| 562 | uint64_t TSFlags = MI.getDesc().TSFlags; |
| 563 | if (RISCVII::hasSEWOp(TSFlags)) { |
| 564 | if (!PrevInfo.isCompatible(Used: DemandedFields::all(), Require: CurInfo, LIS)) { |
| 565 | // If this is the first implicit state change, and the state change |
| 566 | // requested can be proven to produce the same register contents, we |
| 567 | // can skip emitting the actual state change and continue as if we |
| 568 | // had since we know the GPR result of the implicit state change |
| 569 | // wouldn't be used and VL/VTYPE registers are correct. Note that |
| 570 | // we *do* need to model the state as if it changed as while the |
| 571 | // register contents are unchanged, the abstract model can change. |
| 572 | if (!PrefixTransparent || needVSETVLIPHI(Require: CurInfo, MBB)) |
| 573 | insertVSETVLI(MBB, InsertPt: MI, DL: MI.getDebugLoc(), Info: CurInfo, PrevInfo); |
| 574 | PrefixTransparent = false; |
| 575 | } |
| 576 | |
| 577 | if (RISCVII::hasVLOp(TSFlags)) { |
| 578 | MachineOperand &VLOp = MI.getOperand(i: getVLOpNum(MI)); |
| 579 | if (VLOp.isReg()) { |
| 580 | Register Reg = VLOp.getReg(); |
| 581 | |
| 582 | // Erase the AVL operand from the instruction. |
| 583 | VLOp.setReg(Register()); |
| 584 | VLOp.setIsKill(false); |
| 585 | if (LIS) { |
| 586 | LiveInterval &LI = LIS->getInterval(Reg); |
| 587 | SmallVector<MachineInstr *> DeadMIs; |
| 588 | LIS->shrinkToUses(li: &LI, dead: &DeadMIs); |
| 589 | // We might have separate components that need split due to |
| 590 | // needVSETVLIPHI causing us to skip inserting a new VL def. |
| 591 | SmallVector<LiveInterval *> SplitLIs; |
| 592 | LIS->splitSeparateComponents(LI, SplitLIs); |
| 593 | |
| 594 | // If the AVL was an immediate > 31, then it would have been emitted |
| 595 | // as an ADDI. However, the ADDI might not have been used in the |
| 596 | // vsetvli, or a vsetvli might not have been emitted, so it may be |
| 597 | // dead now. |
| 598 | for (MachineInstr *DeadMI : DeadMIs) { |
| 599 | if (!TII->isAddImmediate(MI: *DeadMI, Reg)) |
| 600 | continue; |
| 601 | LIS->RemoveMachineInstrFromMaps(MI&: *DeadMI); |
| 602 | Register AddReg = DeadMI->getOperand(i: 1).getReg(); |
| 603 | DeadMI->eraseFromParent(); |
| 604 | if (AddReg.isVirtual()) |
| 605 | LIS->shrinkToUses(li: &LIS->getInterval(Reg: AddReg)); |
| 606 | } |
| 607 | } |
| 608 | } |
| 609 | MI.addOperand(Op: MachineOperand::CreateReg(Reg: RISCV::VL, /*isDef*/ false, |
| 610 | /*isImp*/ true)); |
| 611 | } |
| 612 | MI.addOperand(Op: MachineOperand::CreateReg(Reg: RISCV::VTYPE, /*isDef*/ false, |
| 613 | /*isImp*/ true)); |
| 614 | } |
| 615 | |
| 616 | if (MI.isInlineAsm()) { |
| 617 | MI.addOperand(Op: MachineOperand::CreateReg(Reg: RISCV::VL, /*isDef*/ true, |
| 618 | /*isImp*/ true)); |
| 619 | MI.addOperand(Op: MachineOperand::CreateReg(Reg: RISCV::VTYPE, /*isDef*/ true, |
| 620 | /*isImp*/ true)); |
| 621 | } |
| 622 | |
| 623 | if (MI.isCall() || MI.isInlineAsm() || |
| 624 | MI.modifiesRegister(Reg: RISCV::VL, /*TRI=*/nullptr) || |
| 625 | MI.modifiesRegister(Reg: RISCV::VTYPE, /*TRI=*/nullptr)) |
| 626 | PrefixTransparent = false; |
| 627 | |
| 628 | transferAfter(Info&: CurInfo, MI); |
| 629 | } |
| 630 | |
| 631 | const auto &Info = BlockInfo[MBB.getNumber()]; |
| 632 | if (CurInfo != Info.Exit) { |
| 633 | LLVM_DEBUG(dbgs() << "in block " << printMBBReference(MBB) << "\n" ); |
| 634 | LLVM_DEBUG(dbgs() << " begin state: " << Info.Pred << "\n" ); |
| 635 | LLVM_DEBUG(dbgs() << " expected end state: " << Info.Exit << "\n" ); |
| 636 | LLVM_DEBUG(dbgs() << " actual end state: " << CurInfo << "\n" ); |
| 637 | } |
| 638 | assert(CurInfo == Info.Exit && "InsertVSETVLI dataflow invariant violated" ); |
| 639 | } |
| 640 | |
| 641 | /// Perform simple partial redundancy elimination of the VSETVLI instructions |
| 642 | /// we're about to insert by looking for cases where we can PRE from the |
| 643 | /// beginning of one block to the end of one of its predecessors. Specifically, |
| 644 | /// this is geared to catch the common case of a fixed length vsetvl in a single |
| 645 | /// block loop when it could execute once in the preheader instead. |
| 646 | void RISCVInsertVSETVLI::doPRE(MachineBasicBlock &MBB) { |
| 647 | if (!BlockInfo[MBB.getNumber()].Pred.isUnknown()) |
| 648 | return; |
| 649 | |
| 650 | MachineBasicBlock *UnavailablePred = nullptr; |
| 651 | VSETVLIInfo AvailableInfo; |
| 652 | for (MachineBasicBlock *P : MBB.predecessors()) { |
| 653 | const VSETVLIInfo &PredInfo = BlockInfo[P->getNumber()].Exit; |
| 654 | if (PredInfo.isUnknown()) { |
| 655 | if (UnavailablePred) |
| 656 | return; |
| 657 | UnavailablePred = P; |
| 658 | } else if (!AvailableInfo.isValid()) { |
| 659 | AvailableInfo = PredInfo; |
| 660 | } else if (AvailableInfo != PredInfo) { |
| 661 | return; |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | // Unreachable, single pred, or full redundancy. Note that FRE is handled by |
| 666 | // phase 3. |
| 667 | if (!UnavailablePred || !AvailableInfo.isValid()) |
| 668 | return; |
| 669 | |
| 670 | if (!LIS) |
| 671 | return; |
| 672 | |
| 673 | // If we don't know the exact VTYPE, we can't copy the vsetvli to the exit of |
| 674 | // the unavailable pred. |
| 675 | if (AvailableInfo.hasSEWLMULRatioOnly()) |
| 676 | return; |
| 677 | |
| 678 | // Critical edge - TODO: consider splitting? |
| 679 | if (UnavailablePred->succ_size() != 1) |
| 680 | return; |
| 681 | |
| 682 | // If the AVL value is a register (other than our VLMAX sentinel), |
| 683 | // we need to prove the value is available at the point we're going |
| 684 | // to insert the vsetvli at. |
| 685 | if (AvailableInfo.hasAVLReg()) { |
| 686 | SlotIndex SI = AvailableInfo.getAVLVNInfo()->def; |
| 687 | // This is an inline dominance check which covers the case of |
| 688 | // UnavailablePred being the preheader of a loop. |
| 689 | if (LIS->getMBBFromIndex(index: SI) != UnavailablePred) |
| 690 | return; |
| 691 | if (!UnavailablePred->terminators().empty() && |
| 692 | SI >= LIS->getInstructionIndex(Instr: *UnavailablePred->getFirstTerminator())) |
| 693 | return; |
| 694 | } |
| 695 | |
| 696 | // Model the effect of changing the input state of the block MBB to |
| 697 | // AvailableInfo. We're looking for two issues here; one legality, |
| 698 | // one profitability. |
| 699 | // 1) If the block doesn't use some of the fields from VL or VTYPE, we |
| 700 | // may hit the end of the block with a different end state. We can |
| 701 | // not make this change without reflowing later blocks as well. |
| 702 | // 2) If we don't actually remove a transition, inserting a vsetvli |
| 703 | // into the predecessor block would be correct, but unprofitable. |
| 704 | VSETVLIInfo OldInfo = BlockInfo[MBB.getNumber()].Pred; |
| 705 | VSETVLIInfo CurInfo = AvailableInfo; |
| 706 | int TransitionsRemoved = 0; |
| 707 | for (const MachineInstr &MI : MBB) { |
| 708 | const VSETVLIInfo LastInfo = CurInfo; |
| 709 | const VSETVLIInfo LastOldInfo = OldInfo; |
| 710 | transferBefore(Info&: CurInfo, MI); |
| 711 | transferBefore(Info&: OldInfo, MI); |
| 712 | if (CurInfo == LastInfo) |
| 713 | TransitionsRemoved++; |
| 714 | if (LastOldInfo == OldInfo) |
| 715 | TransitionsRemoved--; |
| 716 | transferAfter(Info&: CurInfo, MI); |
| 717 | transferAfter(Info&: OldInfo, MI); |
| 718 | if (CurInfo == OldInfo) |
| 719 | // Convergence. All transitions after this must match by construction. |
| 720 | break; |
| 721 | } |
| 722 | if (CurInfo != OldInfo || TransitionsRemoved <= 0) |
| 723 | // Issues 1 and 2 above |
| 724 | return; |
| 725 | |
| 726 | // Finally, update both data flow state and insert the actual vsetvli. |
| 727 | // Doing both keeps the code in sync with the dataflow results, which |
| 728 | // is critical for correctness of phase 3. |
| 729 | auto OldExit = BlockInfo[UnavailablePred->getNumber()].Exit; |
| 730 | LLVM_DEBUG(dbgs() << "PRE VSETVLI from " << MBB.getName() << " to " |
| 731 | << UnavailablePred->getName() << " with state " |
| 732 | << AvailableInfo << "\n" ); |
| 733 | BlockInfo[UnavailablePred->getNumber()].Exit = AvailableInfo; |
| 734 | BlockInfo[MBB.getNumber()].Pred = AvailableInfo; |
| 735 | |
| 736 | // Note there's an implicit assumption here that terminators never use |
| 737 | // or modify VL or VTYPE. Also, fallthrough will return end(). |
| 738 | auto InsertPt = UnavailablePred->getFirstInstrTerminator(); |
| 739 | insertVSETVLI(MBB&: *UnavailablePred, InsertPt, |
| 740 | DL: UnavailablePred->findDebugLoc(MBBI: InsertPt), |
| 741 | Info: AvailableInfo, PrevInfo: OldExit); |
| 742 | } |
| 743 | |
| 744 | // Return true if we can mutate PrevMI to match MI without changing any the |
| 745 | // fields which would be observed. |
| 746 | bool RISCVInsertVSETVLI::canMutatePriorConfig( |
| 747 | const MachineInstr &PrevMI, const MachineInstr &MI, |
| 748 | const DemandedFields &Used) const { |
| 749 | // If the VL values aren't equal, return false if either a) the former is |
| 750 | // demanded, or b) we can't rewrite the former to be the later for |
| 751 | // implementation reasons. |
| 752 | if (!RISCVInstrInfo::isVLPreservingConfig(MI)) { |
| 753 | if (Used.VLAny) |
| 754 | return false; |
| 755 | |
| 756 | if (Used.VLZeroness) { |
| 757 | if (RISCVInstrInfo::isVLPreservingConfig(MI: PrevMI)) |
| 758 | return false; |
| 759 | if (!VIA.getInfoForVSETVLI(MI: PrevMI).hasEquallyZeroAVL( |
| 760 | Other: VIA.getInfoForVSETVLI(MI), LIS)) |
| 761 | return false; |
| 762 | } |
| 763 | |
| 764 | auto &AVL = MI.getOperand(i: 1); |
| 765 | |
| 766 | // If the AVL is a register, we need to make sure its definition is the same |
| 767 | // at PrevMI as it was at MI. |
| 768 | if (AVL.isReg() && AVL.getReg() != RISCV::X0) { |
| 769 | VNInfo *VNI = getVNInfoFromReg(Reg: AVL.getReg(), MI, LIS); |
| 770 | VNInfo *PrevVNI = getVNInfoFromReg(Reg: AVL.getReg(), MI: PrevMI, LIS); |
| 771 | if (!VNI || !PrevVNI || VNI != PrevVNI) |
| 772 | return false; |
| 773 | } |
| 774 | |
| 775 | // If we define VL and need to move the definition up, check we can extend |
| 776 | // the live interval upwards from MI to PrevMI. |
| 777 | Register VL = MI.getOperand(i: 0).getReg(); |
| 778 | if (VL.isVirtual() && LIS && |
| 779 | LIS->getInterval(Reg: VL).overlaps(Start: LIS->getInstructionIndex(Instr: PrevMI), |
| 780 | End: LIS->getInstructionIndex(Instr: MI))) |
| 781 | return false; |
| 782 | } |
| 783 | |
| 784 | assert(PrevMI.getOperand(2).isImm() && MI.getOperand(2).isImm()); |
| 785 | auto PriorVType = PrevMI.getOperand(i: 2).getImm(); |
| 786 | auto VType = MI.getOperand(i: 2).getImm(); |
| 787 | return areCompatibleVTYPEs(CurVType: PriorVType, NewVType: VType, Used); |
| 788 | } |
| 789 | |
| 790 | void RISCVInsertVSETVLI::coalesceVSETVLIs(MachineBasicBlock &MBB) const { |
| 791 | MachineInstr *NextMI = nullptr; |
| 792 | // We can have arbitrary code in successors, so VL and VTYPE |
| 793 | // must be considered demanded. |
| 794 | DemandedFields Used; |
| 795 | Used.demandVL(); |
| 796 | Used.demandVTYPE(); |
| 797 | SmallVector<MachineInstr*> ToDelete; |
| 798 | |
| 799 | auto dropAVLUse = [&](MachineOperand &MO) { |
| 800 | if (!MO.isReg() || !MO.getReg().isVirtual()) |
| 801 | return; |
| 802 | Register OldVLReg = MO.getReg(); |
| 803 | MO.setReg(Register()); |
| 804 | |
| 805 | if (LIS) |
| 806 | LIS->shrinkToUses(li: &LIS->getInterval(Reg: OldVLReg)); |
| 807 | |
| 808 | MachineInstr *VLOpDef = MRI->getUniqueVRegDef(Reg: OldVLReg); |
| 809 | if (VLOpDef && TII->isAddImmediate(MI: *VLOpDef, Reg: OldVLReg) && |
| 810 | MRI->use_nodbg_empty(RegNo: OldVLReg)) |
| 811 | ToDelete.push_back(Elt: VLOpDef); |
| 812 | }; |
| 813 | |
| 814 | for (MachineInstr &MI : make_early_inc_range(Range: reverse(C&: MBB))) { |
| 815 | // TODO: Support XSfmm. |
| 816 | if (RISCVII::hasTWidenOp(TSFlags: MI.getDesc().TSFlags) || |
| 817 | RISCVInstrInfo::isXSfmmVectorConfigInstr(MI)) { |
| 818 | NextMI = nullptr; |
| 819 | continue; |
| 820 | } |
| 821 | |
| 822 | if (!RISCVInstrInfo::isVectorConfigInstr(MI)) { |
| 823 | Used.doUnion(B: getDemanded(MI, ST)); |
| 824 | if (MI.isCall() || MI.isInlineAsm() || |
| 825 | MI.modifiesRegister(Reg: RISCV::VL, /*TRI=*/nullptr) || |
| 826 | MI.modifiesRegister(Reg: RISCV::VTYPE, /*TRI=*/nullptr)) |
| 827 | NextMI = nullptr; |
| 828 | continue; |
| 829 | } |
| 830 | |
| 831 | if (!MI.getOperand(i: 0).isDead()) |
| 832 | Used.demandVL(); |
| 833 | |
| 834 | if (NextMI) { |
| 835 | if (!Used.usedVL() && !Used.usedVTYPE()) { |
| 836 | dropAVLUse(MI.getOperand(i: 1)); |
| 837 | if (LIS) |
| 838 | LIS->RemoveMachineInstrFromMaps(MI); |
| 839 | MI.eraseFromParent(); |
| 840 | NumCoalescedVSETVL++; |
| 841 | // Leave NextMI unchanged |
| 842 | continue; |
| 843 | } |
| 844 | |
| 845 | if (canMutatePriorConfig(PrevMI: MI, MI: *NextMI, Used)) { |
| 846 | if (!RISCVInstrInfo::isVLPreservingConfig(MI: *NextMI)) { |
| 847 | Register DefReg = NextMI->getOperand(i: 0).getReg(); |
| 848 | |
| 849 | MI.getOperand(i: 0).setReg(DefReg); |
| 850 | MI.getOperand(i: 0).setIsDead(false); |
| 851 | |
| 852 | // Move the AVL from NextMI to MI |
| 853 | dropAVLUse(MI.getOperand(i: 1)); |
| 854 | if (NextMI->getOperand(i: 1).isImm()) |
| 855 | MI.getOperand(i: 1).ChangeToImmediate(ImmVal: NextMI->getOperand(i: 1).getImm()); |
| 856 | else |
| 857 | MI.getOperand(i: 1).ChangeToRegister(Reg: NextMI->getOperand(i: 1).getReg(), |
| 858 | isDef: false); |
| 859 | dropAVLUse(NextMI->getOperand(i: 1)); |
| 860 | |
| 861 | // The def of DefReg moved to MI, so extend the LiveInterval up to |
| 862 | // it. |
| 863 | if (DefReg.isVirtual() && LIS) { |
| 864 | LiveInterval &DefLI = LIS->getInterval(Reg: DefReg); |
| 865 | SlotIndex MISlot = LIS->getInstructionIndex(Instr: MI).getRegSlot(); |
| 866 | SlotIndex NextMISlot = |
| 867 | LIS->getInstructionIndex(Instr: *NextMI).getRegSlot(); |
| 868 | VNInfo *DefVNI = DefLI.getVNInfoAt(Idx: NextMISlot); |
| 869 | LiveInterval::Segment S(MISlot, NextMISlot, DefVNI); |
| 870 | DefLI.addSegment(S); |
| 871 | DefVNI->def = MISlot; |
| 872 | // Mark DefLI as spillable if it was previously unspillable |
| 873 | DefLI.setWeight(0); |
| 874 | |
| 875 | // DefReg may have had no uses, in which case we need to shrink |
| 876 | // the LiveInterval up to MI. |
| 877 | LIS->shrinkToUses(li: &DefLI); |
| 878 | } |
| 879 | |
| 880 | MI.setDesc(NextMI->getDesc()); |
| 881 | } |
| 882 | MI.getOperand(i: 2).setImm(NextMI->getOperand(i: 2).getImm()); |
| 883 | |
| 884 | dropAVLUse(NextMI->getOperand(i: 1)); |
| 885 | if (LIS) |
| 886 | LIS->RemoveMachineInstrFromMaps(MI&: *NextMI); |
| 887 | NextMI->eraseFromParent(); |
| 888 | NumCoalescedVSETVL++; |
| 889 | // fallthrough |
| 890 | } |
| 891 | } |
| 892 | NextMI = &MI; |
| 893 | Used = getDemanded(MI, ST); |
| 894 | } |
| 895 | |
| 896 | // Loop over the dead AVL values, and delete them now. This has |
| 897 | // to be outside the above loop to avoid invalidating iterators. |
| 898 | for (auto *MI : ToDelete) { |
| 899 | assert(MI->getOpcode() == RISCV::ADDI); |
| 900 | Register AddReg = MI->getOperand(i: 1).getReg(); |
| 901 | if (LIS) { |
| 902 | LIS->removeInterval(Reg: MI->getOperand(i: 0).getReg()); |
| 903 | LIS->RemoveMachineInstrFromMaps(MI&: *MI); |
| 904 | } |
| 905 | MI->eraseFromParent(); |
| 906 | if (LIS && AddReg.isVirtual()) |
| 907 | LIS->shrinkToUses(li: &LIS->getInterval(Reg: AddReg)); |
| 908 | } |
| 909 | } |
| 910 | |
| 911 | void RISCVInsertVSETVLI::insertReadVL(MachineBasicBlock &MBB) { |
| 912 | for (auto I = MBB.begin(), E = MBB.end(); I != E;) { |
| 913 | MachineInstr &MI = *I++; |
| 914 | if (RISCVInstrInfo::isFaultOnlyFirstLoad(MI)) { |
| 915 | Register VLOutput = MI.getOperand(i: 1).getReg(); |
| 916 | assert(VLOutput.isVirtual()); |
| 917 | if (!MI.getOperand(i: 1).isDead()) { |
| 918 | auto ReadVLMI = BuildMI(BB&: MBB, I, MIMD: MI.getDebugLoc(), |
| 919 | MCID: TII->get(Opcode: RISCV::PseudoReadVL), DestReg: VLOutput); |
| 920 | // Move the LiveInterval's definition down to PseudoReadVL. |
| 921 | if (LIS) { |
| 922 | SlotIndex NewDefSI = |
| 923 | LIS->InsertMachineInstrInMaps(MI&: *ReadVLMI).getRegSlot(); |
| 924 | LiveInterval &DefLI = LIS->getInterval(Reg: VLOutput); |
| 925 | LiveRange::Segment *DefSeg = DefLI.getSegmentContaining(Idx: NewDefSI); |
| 926 | VNInfo *DefVNI = DefLI.getVNInfoAt(Idx: DefSeg->start); |
| 927 | DefLI.removeSegment(Start: DefSeg->start, End: NewDefSI); |
| 928 | DefVNI->def = NewDefSI; |
| 929 | } |
| 930 | } |
| 931 | // We don't use the vl output of the VLEFF/VLSEGFF anymore. |
| 932 | MI.getOperand(i: 1).setReg(RISCV::X0); |
| 933 | MI.addRegisterDefined(Reg: RISCV::VL, RegInfo: MRI->getTargetRegisterInfo()); |
| 934 | } |
| 935 | } |
| 936 | } |
| 937 | |
| 938 | bool RISCVInsertVSETVLI::insertVSETMTK(MachineBasicBlock &MBB, |
| 939 | TKTMMode Mode) const { |
| 940 | |
| 941 | bool Changed = false; |
| 942 | for (auto &MI : MBB) { |
| 943 | uint64_t TSFlags = MI.getDesc().TSFlags; |
| 944 | if (RISCVInstrInfo::isXSfmmVectorConfigTMTKInstr(MI) || |
| 945 | !RISCVII::hasSEWOp(TSFlags) || !RISCVII::hasTWidenOp(TSFlags)) |
| 946 | continue; |
| 947 | |
| 948 | VSETVLIInfo CurrInfo = VIA.computeInfoForInstr(MI); |
| 949 | |
| 950 | if (Mode == VSETTK && !RISCVII::hasTKOp(TSFlags)) |
| 951 | continue; |
| 952 | |
| 953 | if (Mode == VSETTM && !RISCVII::hasTMOp(TSFlags)) |
| 954 | continue; |
| 955 | |
| 956 | unsigned OpNum = 0; |
| 957 | unsigned Opcode = 0; |
| 958 | switch (Mode) { |
| 959 | case VSETTK: |
| 960 | OpNum = RISCVII::getTKOpNum(Desc: MI.getDesc()); |
| 961 | Opcode = RISCV::PseudoSF_VSETTK; |
| 962 | break; |
| 963 | case VSETTM: |
| 964 | OpNum = RISCVII::getTMOpNum(Desc: MI.getDesc()); |
| 965 | Opcode = RISCV::PseudoSF_VSETTM; |
| 966 | break; |
| 967 | } |
| 968 | |
| 969 | assert(OpNum && Opcode && "Invalid OpNum or Opcode" ); |
| 970 | |
| 971 | MachineOperand &Op = MI.getOperand(i: OpNum); |
| 972 | |
| 973 | auto TmpMI = BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode)) |
| 974 | .addReg(RegNo: RISCV::X0, Flags: RegState::Define | RegState::Dead) |
| 975 | .addReg(RegNo: Op.getReg()) |
| 976 | .addImm(Val: Log2_32(Value: CurrInfo.getSEW())) |
| 977 | .addImm(Val: CurrInfo.getTWiden()); |
| 978 | |
| 979 | Changed = true; |
| 980 | Register Reg = Op.getReg(); |
| 981 | Op.setReg(Register()); |
| 982 | Op.setIsKill(false); |
| 983 | if (LIS) { |
| 984 | LIS->InsertMachineInstrInMaps(MI&: *TmpMI); |
| 985 | LiveInterval &LI = LIS->getInterval(Reg); |
| 986 | |
| 987 | // Erase the AVL operand from the instruction. |
| 988 | LIS->shrinkToUses(li: &LI); |
| 989 | // TODO: Enable this once needVSETVLIPHI is supported. |
| 990 | // SmallVector<LiveInterval *> SplitLIs; |
| 991 | // LIS->splitSeparateComponents(LI, SplitLIs); |
| 992 | } |
| 993 | } |
| 994 | return Changed; |
| 995 | } |
| 996 | |
| 997 | bool RISCVInsertVSETVLI::runOnMachineFunction(MachineFunction &MF) { |
| 998 | // Skip if the vector extension is not enabled. |
| 999 | ST = &MF.getSubtarget<RISCVSubtarget>(); |
| 1000 | if (!ST->hasVInstructions()) |
| 1001 | return false; |
| 1002 | |
| 1003 | LLVM_DEBUG(dbgs() << "Entering InsertVSETVLI for " << MF.getName() << "\n" ); |
| 1004 | |
| 1005 | TII = ST->getInstrInfo(); |
| 1006 | MRI = &MF.getRegInfo(); |
| 1007 | auto *LISWrapper = getAnalysisIfAvailable<LiveIntervalsWrapperPass>(); |
| 1008 | LIS = LISWrapper ? &LISWrapper->getLIS() : nullptr; |
| 1009 | VIA = RISCVVSETVLIInfoAnalysis(ST, LIS); |
| 1010 | |
| 1011 | assert(BlockInfo.empty() && "Expect empty block infos" ); |
| 1012 | BlockInfo.resize(new_size: MF.getNumBlockIDs()); |
| 1013 | |
| 1014 | bool HaveVectorOp = false; |
| 1015 | |
| 1016 | // Phase 1 - determine how VL/VTYPE are affected by the each block. |
| 1017 | for (const MachineBasicBlock &MBB : MF) { |
| 1018 | VSETVLIInfo TmpStatus; |
| 1019 | HaveVectorOp |= computeVLVTYPEChanges(MBB, Info&: TmpStatus); |
| 1020 | // Initial exit state is whatever change we found in the block. |
| 1021 | BlockData &BBInfo = BlockInfo[MBB.getNumber()]; |
| 1022 | BBInfo.Exit = TmpStatus; |
| 1023 | LLVM_DEBUG(dbgs() << "Initial exit state of " << printMBBReference(MBB) |
| 1024 | << " is " << BBInfo.Exit << "\n" ); |
| 1025 | |
| 1026 | } |
| 1027 | |
| 1028 | // If we didn't find any instructions that need VSETVLI, we're done. |
| 1029 | if (!HaveVectorOp) { |
| 1030 | BlockInfo.clear(); |
| 1031 | return false; |
| 1032 | } |
| 1033 | |
| 1034 | // Phase 2 - determine the exit VL/VTYPE from each block. We add all |
| 1035 | // blocks to the list here, but will also add any that need to be revisited |
| 1036 | // during Phase 2 processing. |
| 1037 | for (const MachineBasicBlock &MBB : MF) { |
| 1038 | WorkList.push(x: &MBB); |
| 1039 | BlockInfo[MBB.getNumber()].InQueue = true; |
| 1040 | } |
| 1041 | while (!WorkList.empty()) { |
| 1042 | const MachineBasicBlock &MBB = *WorkList.front(); |
| 1043 | WorkList.pop(); |
| 1044 | computeIncomingVLVTYPE(MBB); |
| 1045 | } |
| 1046 | |
| 1047 | // Perform partial redundancy elimination of vsetvli transitions. |
| 1048 | for (MachineBasicBlock &MBB : MF) |
| 1049 | doPRE(MBB); |
| 1050 | |
| 1051 | // Phase 3 - add any vsetvli instructions needed in the block. Use the |
| 1052 | // Phase 2 information to avoid adding vsetvlis before the first vector |
| 1053 | // instruction in the block if the VL/VTYPE is satisfied by its |
| 1054 | // predecessors. |
| 1055 | for (MachineBasicBlock &MBB : MF) |
| 1056 | emitVSETVLIs(MBB); |
| 1057 | |
| 1058 | // Now that all vsetvlis are explicit, go through and do block local |
| 1059 | // DSE and peephole based demanded fields based transforms. Note that |
| 1060 | // this *must* be done outside the main dataflow so long as we allow |
| 1061 | // any cross block analysis within the dataflow. We can't have both |
| 1062 | // demanded fields based mutation and non-local analysis in the |
| 1063 | // dataflow at the same time without introducing inconsistencies. |
| 1064 | // We're visiting blocks from the bottom up because a VSETVLI in the |
| 1065 | // earlier block might become dead when its uses in later blocks are |
| 1066 | // optimized away. |
| 1067 | for (MachineBasicBlock *MBB : post_order(G: &MF)) |
| 1068 | coalesceVSETVLIs(MBB&: *MBB); |
| 1069 | |
| 1070 | // Insert PseudoReadVL after VLEFF/VLSEGFF and replace it with the vl output |
| 1071 | // of VLEFF/VLSEGFF. |
| 1072 | for (MachineBasicBlock &MBB : MF) |
| 1073 | insertReadVL(MBB); |
| 1074 | |
| 1075 | for (MachineBasicBlock &MBB : MF) { |
| 1076 | insertVSETMTK(MBB, Mode: VSETTM); |
| 1077 | insertVSETMTK(MBB, Mode: VSETTK); |
| 1078 | } |
| 1079 | |
| 1080 | BlockInfo.clear(); |
| 1081 | return HaveVectorOp; |
| 1082 | } |
| 1083 | |
| 1084 | /// Returns an instance of the Insert VSETVLI pass. |
| 1085 | FunctionPass *llvm::createRISCVInsertVSETVLIPass() { |
| 1086 | return new RISCVInsertVSETVLI(); |
| 1087 | } |
| 1088 | |